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Abstract

Orbiting solar reflectors may be a useful assets to illuminate solar power farms to enhance their utility when direct sunlight is not
available. The assessment of their feasibility for a variety of applications requires accurate calculations of how much solar energy can
be delivered from a variety of orbits. This paper presents a generic, three-dimensional semi-analytical model that outputs the quantity
of solar energy for a given circular orbit and solar power farm position at the beginning of a pass. The model extends previous studies by
including new phenomena such as the Earth’s oblateness, rotation, shadow on the reflector and orbit around the Sun, in addition to time-
dependent geometric and atmospheric losses. These additions provide new analytical insights into the delivery of reflected solar energy
delivery and demonstrate the importance of high-fidelity modelling. The strengths of the model are illustrated for a 1000 km altitude Sun-
synchronous orbit throughout, as well as a range of other orbits and solar power farms located at different latitudes and longitudes.
� 2023 COSPAR. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Ultra-lightweight, large and flat orbiting solar reflectors
(OSR) can be used to reflect sunlight from space onto the
surface of the Earth and other planetary bodies. They were
considered a useful asset even before the modern space era
for the primary use of night-time illumination (Oberth,
1929). Later studies have considered the concept of OSR
to enhance the utility of solar power farms beyond the
hours of sunlight, agricultural production, street illumina-
tion and other climate applications (Buckingham and
Watson, 1968; Billman et al., 1977; Ehricke, 1979;
Canady and Allen, 1982). Unlike other space-based wire-
less power transmission concepts, such as solar power
satellites, OSRs are decoupled from terrestrial infrastruc-
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ture and can service terrestrial solar power plants, as long
as it is visible to them (Çelik et al., 2022), providing a truly
global space-based clean energy service. Reflectors in near-
polar orbits can service solar power plants anywhere on the
Earth near the dawn and dusk hours, where energy
demand is high, but solar energy supply is low, due to
the low (or below the horizon) elevation of the Sun. To that
end, Fraas et al. proposed the employment of a 10 km
reflector structure in a Sun-synchronous orbit of 1000 km
altitude to deliver solar energy to 40 solar power farms
across the Earth (Fraas, 2012; Fraas et al., 2013). A more
recent, detailed reference architecture study of orbiting
solar reflectors proposed solar energy delivery to 13 exist-
ing and proposed large solar power plants around the
Earth, from a repeating ground track Sun-synchronous
orbit at 884.6 km altitude (Viale et al., 2023). OSRs in
polar orbits, displaced by solar radiation pressure in the
anti-sunline direction can enhance the energy delivery
org/licenses/by/4.0/).
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Nomenclature

A area, km2

a semi-major axis of solar image, km
b semi-minor axis of solar image, km
c empirical parameter
D diameter, km
d slant range, km
e eccentricity, unitless
E energy, GWh
f function
f true anomaly, rad
h altitude, km
i orbit inclination, rad
I solar constant, GW/km2

J2 second-degree zonal harmonics, unitless
k empirical parameter
M matrix
P power, GW
R radius, km
r radius, km
T orbit period, sec
t time, sec
x; y; z cartesian coordinates
X state
a angle subtended by the Sun, rad
b half of central angle, rad
c polar angle, rad
� elevation angle, rad
d auxiliary parameter for eclipse detection
g integer, unitless
j scaling coefficient
k longitude, rad
l gravitational parameter, km3/s2

m generic angle, rad
x argument of periapsis, rad
x angular rate, rad/s
X right ascension of the ascending node, rad

w angle between incoming and outgoing sunlight,
rad

/ latitude, rad
q distance, km
r power density, GW/km2

s atmospheric transmission efficiency, unitless
h argument of latitude, rotation angle, rad
n Earth’s obliquity, rad

Subscripts
0 beginning; first
a semimajor axis
b semiminor axis
ecl eclipse
eff effective
E Earth
ECI Earth-centered inertial
ECR Earth-centered rotating
ENU East-North-Up frame
enu east-north-up frame
f end; last
gt ground target; solar power farm
i inertial frame
im solar image
J2 second-degree zonal harmonics
ORB orbit frame
o orbit frame; initial
p penumbra
pass orbital pass
pr projected
r rotating frame
ref reflector
sta stationary
sun Sun
u umbra
� Sun
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around dawn/dusk hours or extend it further into the night
(Çelik and McInnes, 2022). Other recent proposals include
a two-reflector constellation in anti-heliotropic orbits and
polar and Sun-synchronous orbits to deliver solar energy
to existing and hypothetical solar power farms (Bonetti
and McInnes, 2019; Çelik and McInnes, 2023). OSRs can
also be employed for lunar, Mars, and other non-
terrestrial applications (Bewick et al., 2011; Çelik and
McInnes, 2022). A detailed literature study is presented
in Çelik et al. (2022) and a technology demonstration road-
map is discussed in Viale et al. (2022).

For OSR applications, accurate modelling of the quan-
tity of energy delivered is of paramount importance to
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assess the feasibility of the concept. The geometry of the
reflected solar image and atmospheric losses are a function
of the elevation of the OSR from the solar power farm,
which is moving with the Earth. Considering the finite size
of a solar power farm, the solar image illuminates a vari-
able area of the farm itself. The quantity of energy deliv-
ered is obtained from the integration of this effective area
that captures the reflected sunlight. Yet, earlier studies lar-
gely ignored these issues and relied on simplified algebraic
expressions to calculate the quantity of energy delivered.
For example, geometric losses are ignored in Canady and
Allen (1982), and atmospheric losses are only considered
as fixed coefficients. Fraas (2012) and Fraas et al. (2013)



Fig. 1. Reference frames used in this paper.
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did attempt to include geometric and atmospheric losses,
but they also considered a single fixed coefficient for both.
Bonetti and McInnes (2019) considered time-variable
losses, but used a numerical solution and did not provide
analytical insights into the problem.

In a more recent study, Çelik and McInnes (2022) pro-
vided detailed analytical insights for the energy delivery
process from polar orbit with overhead passes, including
geometric losses, time-dependent atmospheric losses, and
panel tilt, and presented the power profile together with
non-terrestrial applications. Indeed, Çelik and McInnes
(2022) used scalar modelling, resulting in an analytical
solution with elliptical functions when atmospheric losses
are not included. However, none of the above studies pre-
sented a (semi-)analytical formulation that includes the
Earth’s rotation, oblateness, shadow on the reflector and
orbit around the Sun while it is valid for a range of orbits.
Such an approach would make the model non-scalar, but
vectorial descriptions would also extend the model applica-
bility to orbits with a range of inclinations, to passes that
are not just overhead, and to include eclipses by the Earth
and the seasonal variations, increasing its fidelity. Further
implications of this generic model are that the pass dura-
tion will not be fixed anymore, it will be dependent on
the relative positions of the reflector and the solar power
farm for a given orbit. The variable pass duration will have
an impact on the energy delivered during a pass. Non-
overhead or ‘offset’ passes will change the energy delivered
as compared to overhead passes, impacting the discussion
on reflector scheduling and economic breakeven.

Therefore this paper presents a generic semi-analytical
model for reflected solar energy delivery from circular
orbits. The aim of the model is to output the quantity of
solar energy delivered for a given set of orbital elements
of the orbit and the initial solar power farm position in lat-
itude and longitude. The reflector is assumed flat and the
solar power farm is assumed a circular disk. The orbit is
propagated analytically and low-order variations in the
orbital elements due to the Earth’s oblateness are included.
While the Earth is assumed oblate dynamically, it is
assumed spherical for the energy delivery process, but its
rotation is included in the model. Two different semi-
analytical approaches are presented for calculating pass
duration in the presence of the Earth’s rotation and
eclipses. The geometrical relationships and atmospheric
losses that are previously presented in Çelik and McInnes
(2022) are also included in the enhanced model and sum-
marised in the paper. Various test cases are presented, both
standalone and in comparison with previous studies to
both validate it and demonstrate its strengths.

The paper is structured as follows: In the next section,
the reference frames and orbital dynamics of the problem
are presented. In Section 3, the geometry of the solar image
is presented. The model is introduced and its details are dis-
cussed in Section 4. The model applications are discussed in
Section 5 and finally, conclusions are presented in
Section 6.
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2. Preliminaries

2.1. Reference frames

The model of reflected solar energy delivery is such that
for a given set of orbital parameters in terms of Keplerian
elements and a given initial position of the solar power
farm, the output is the energy delivered to the solar power
farm during an orbital pass. The problem at hand then
includes both the orbit and ground segments and the rota-
tion of the Earth. Therefore, multiple reference frames will
be used to describe the reflector position with respect to
each. The following reference frames are considered (also
shown in Fig. 1):

� Earth-centered inertial (ECI): This is an equatorial ref-
erence frame whose origin is centred at the centre of
the Earth, with the x-axis (x̂i) pointing to the vernal
equinox direction, and the z-axis (ẑi) pointing to the
Earth’s rotation axis, and the y-axis (ŷi) completing
the triad.

� Perifocal frame (or orbit frame): This is the reference
frame in which the orbit is propagated initially. Its ori-
gin is centred at the orbit’s focal point and xy-plane
defines the orbit plane. The x-axis points towards the
periapsis, and the z axis points towards the orbit angular
momentum vector and the y-axis completes the triad.
For a circular orbit considered in this paper, the position
of the reflector in this frame can be described as:

XORB ¼ ðRE þ hÞ
cos h

sin h

0

2
64

3
75 ð1Þ
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where RE is the Earth’s radius (RE = 6378.2 km) and h is
the orbit altitude. The position in perifocal frame can be
projected into the ECI frame by a 3–1-3 rotation
sequence (see Appendix A for details on the rotation
matrices and sequences):

XECI ¼ M3ðxÞM1ðiÞM3ðXÞXORB ð2Þ
where x is the argument of periapsis, i is the orbit incli-
nation and X is the right ascension of the ascending
node. The argument of periapsis is not defined for circu-
lar orbits, and it is assumed as 0, which results in M3ðxÞ
being an identity matrix.

� Earth-centered co-rotating (ECR) frame: The ECR
frame is essentially the same reference frame as the
ECI frame but it rotates around the z-axis with a rate
equal to the Earth’s rotation rate, xE = 7.27 � 10�5 rad
s�1. The reflector position in the ECR frame can there-
fore be expressed by a rotation around the z-axis, such
that

XECR ¼ M3ðhEÞXECI ð3Þ
where hE describes the Earth’s time dependent rotation,
i.e., hE ¼ hE;0 þ xEt with hE;0 is the initial angular posi-
tion of the ECR frame with respect to the ECI frame.

� East-North-Up (ENU) (or Topocentric horizon frame):
The origin of this frame is centred at the geographical
coordinates of the solar power farm (with a spherical
Earth assumption) with latitude / and longitude k.
The z-axis (ẑenu) is parallel to the local Earth radius vec-
tor and normal to the local horizontal plane of the solar
power farm. The x-axis (x̂enu) or the east direction is

defined as x̂enu ¼ ẑenu�ẑi
jẑenu�ẑi j, with the y-axis completing the

triad in the north direction. The position in the ECI
frame can then be projected in the topocentric horizon
frame by a transformation matrix such that (Curtis,
2013):

XENU ¼ MENU
ECI XECI ¼

� sin k cos k 0

� sin/ cos k � sin/ sin k cos/

cos/ cos k cos/ sin k sin/

2
64

3
75XECI ð4Þ

This expression provides the position of the reflector in
ENU for an instantaneous longitude. However, the
Earth’s rotation means that k will also vary by the same
rate, and the position in each instant of a pass can be
described in the instantaneous ENU frame as:

XENU ¼ MENU
ECI M3ðhEÞXECI ¼ MENU

ECI XECR ð5Þ
Finally, in order to describe the position relative to the
Earth’s surface, a translation by the Earth’s radius needs
to be performed along the ẑenu axis, such that:

XENU ¼ MENU
ECI XECR ¼ MENU

ECI M3ðhEÞXECI � ½0; 0;RE�T ð6Þ

In the implementation of the model, the orbit is first
propagated in the perifocal frame, then it is projected onto
the topocentric frame, following a sequence of transforma-
tions from perifocal to the ECI frame and from the ECI
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frame to the ECR frame. Although each is described sepa-
rately, the transformations are often not performed collec-
tively in a single step, similar to Eq. (6). This will also be
seen in the analytical slant range expression in the follow-
ing sections. Before discussing these issues the orbital
dynamics aspects of the problem will be presented in the
next subsection.
2.2. Orbit dynamics

A circular orbit is considered at altitude h and radius
RE þ h, inclination i, right ascension of the ascending node
X and argument of latitude h, which can be expressed as h
= x + f , where x denotes argument of periapsis and f
denotes true anomaly. x is not defined for circular orbits
and f is set to zero at the beginning of the simulations.
The position of the solar reflector in the perifocal frame
is given in Eq. (1), in which, the argument of latitude, h,
is propagated as follows:

h ¼ ho þ xot ð7Þ
where ho is the initial argument of latitude and xo is the
mean motion, which is found from:

xo ¼ 2p
T

¼ 2p

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
ðREþhÞ3

l

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l

ðRE þ hÞ3
s

ð8Þ

where T is the orbit period and l denotes the gravitational
parameter equal to 398600 km3 s�2 (Chobotov, 2002).
However, the effect of the Earth’s oblateness will also per-
turb the orbit period. In this paper, the Earth’s oblateness
up to the second degree zonal harmonics (i.e., J 2 =
1.08263 � 10�3 (Chobotov, 2002)) is implemented. The
variation of the orbit period as a result of the J 2 effect is
given as (Chobotov, 2002):

T J2 ¼ T 1� 3

2
J 2

R2
E

ðRE þ hÞ2 �
3

4
J 2

4� 5 sin2 i
� �

R2
E

ðRE þ hÞ2
" #

ð9Þ

The J 2-corrected mean motion will then be:

xo;J2 ¼
2p
T J2

ð10Þ

The Earth’s oblateness also causes variations in X and
x. Even though the latter is undefined for a circular orbit,
the effect of the Earth’s oblateness still results in an angular
shift in the start/end point of the orbit due to orbit rota-
tion. The time rate of change of X and x induced by the
Earth’s oblateness can be expressed for circular orbits as
(Chobotov, 2002):

_X ¼ � 3

2
J 2

ffiffiffi
l

p
R2
E

ðRE þ hÞ7=2
" #

cos i ð11Þ

_x ¼ � 3

2
J 2

ffiffiffi
l

p
R2
E

ðRE þ hÞ7=2
" #

5

2
sin2 i� 2

� �
ð12Þ
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Then, the linear change in X and x as the orbit propagates
will be:

X ¼ X0 þ _Xt ð13Þ
x ¼ x0 þ _xt ð14Þ
where X0 denotes the initial values of the right ascension of
the ascending node and the argument of periapsis. These
relationships are used when propagating the orbit and cal-
culating the slant range. It is worth noting that the Earth’s
oblateness also causes variations in other orbital elements,
but they are generally negligible for circular orbits over an
orbit period (Chobotov, 2002), and therefore are not
included in this study. They can be more influential when
the orbits are elliptical, which will be discussed later. In
the next section, the relationships derived in this and the
previous sections will be used to define the projected image
of the solar disk.

3. Geometry of the solar image

An image of the solar disk is projected onto a solar
power farm as soon as the reflector rises in the local hori-
d ¼

ðRE þ hÞ2 � 2REðRE þ hÞ cðhÞcðX� kÞcð/Þ � sðhÞsðX� kÞcðiÞcð/Þ þ sðhÞsðiÞsð/Þ½ � þ R2

E

q
ð18Þ

Fig. 2. Geometry during an orbital pass. Image not to scale.
zontal plane of the solar power farm until the reflector sets
again at the local horizontal plane, as shown in Fig. 2. This
image is elliptical and its time-dependent size is a function
of the slant range, elevation from the local horizon, and the
angle subtended by the Sun, as shown in Fig. 3 and
expressed below (Canady and Allen, 1982), such that:

bðtÞ ¼ dðtÞ tanða=2Þ ð15aÞ

aðtÞ ¼ bðtÞ
sin �ðtÞ ð15bÞ

where aðtÞ and bðtÞ denote semi-major and semi-minor axis
of the projected solar image. Then, dðtÞ; �ðtÞ and a are the
slant range, the elevation of the reflector from the local
horizon and the angle subtended by the Sun. Even before
any analysis, it can be stated that the solar image will be
stretched to infinity in its semi-major axis at the instant
that the reflector rises and sets at the local horizon. If the
maximum elevation reaches 90 deg, i.e., a direct overhead
pass, then the solar image will be circular. But it will be
shown later that in most cases the maximum elevation will
be less than 90 deg due to the Earth’s rotation.

The slant range is the first parameter to be investigated.
It is defined as the distance from the solar power farm
point and is expressed in the topocentric horizon frame.
Considering the rotating Earth and an orbit propagated
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in the orbit frame, the position of the reflector can be
expressed in the topocentric coordinate frame, XENU as
defined by Eq. (6). The final subtraction in Eq. (6) shifts
the position in the topocentric frame to the Earth’s surface.
By this description, the slant range vector XENU is described
in a topocentric rotating frame in which the effect of the
Earth’s oblateness is also included. The components of
the slant range vector can be written as:

xENU ¼ ðRE þ hÞ cðhÞcðX� kÞ þ sðhÞsðX� kÞcðiÞ½ � ð16aÞ
yENU ¼ ðRE þ hÞ � cðhÞcðX� kÞ � sðhÞsðX� kÞcðiÞð Þsð/Þ þ sðhÞsðiÞcð/Þ½ � ð16bÞ
zENU ¼ ðRE þ hÞ cðhÞcðX� kÞ � sðhÞsðX� kÞcðiÞð Þcð/Þ þ sðhÞsðiÞsð/Þ½ � � RE ð16cÞ

where s and c are the sine and cosine functions, and k and
/ are the longitude and the latitude of the solar power
farm, respectively. Due to the Earth’s rotation, k is equal
to:

k ¼ ko þ xEt ð17Þ
with ko the initial position of the solar power farm in the
ECI frame, and xE is the Earth’s rotation rate, as noted
earlier. The magnitude of the slant range can be calculated

as d ¼jj XENU jj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ENU þ y2ENU þ z2ENU

p
, such that:
For a polar orbit and non-rotating Earth (xE = 0) and
an equatorial solar power farm at / = 0 deg at ko = 90 deg,
the above expression would take the following form:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðRE þ hÞ2 þ R2

E � 2REðRE þ hÞ cosðhÞ
q

ð19Þ
which is the same as the scalar formulation of the slant
range in Çelik and McInnes (2022), where the cosine rule
is used to derive the slant range.



Fig. 3. Geometry of the reflected image from a side view (adapted from
Çelik and McInnes (2022)). The reflector is assumed point-like in this
paper. Image not to scale.
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The analytical slant range expression defined by Eq. (18)
can now be tested against a numerical simulation. Because
the J 2 effect is included in the description, a circular Sun-
synchronous orbit (SSO) at 1000 km altitude is going to
be considered. The orbit inclination can be found from

Eq. (11) by setting _X the Earth’s orbit rate around the
Sun (i.e., x� = 1.992 � 10�7 rad s�1) and is found to be
i = 99.48deg. The initial right ascension of the ascending
node is selected as X0 = 90deg. The solar power farm is
equatorial (/ = 0) and is initially on the terminator line
at ko = 90deg. The selection of orbit and solar power farm
parameters means that the reflector is at the zenith point
and the slant range is equal to its orbit altitude h. The ana-
lytical slant range values are generated for a 24 hour time
period with 1-s time intervals. These values are compared
against the slant range computed from a numerically simu-
lated orbit with the same orbit and solar power farm
parameters. The results are presented in Fig. 4 below.

Fig. 4 demonstrates the general agreement between the
analytical description and the numerical simulations. The
minimum possible slant range is 1000 km for this orbit
and it occurs at the beginning of the simulation as
described earlier. The slant range then follows a
sinusoidal-type structure with varying amplitudes due to
the Earth’s rotation, with values between approximately
1000 km and slightly less than 14000 km. If the Earth
was non-rotating, the slant range value would be varied
between the minimum possible value (1000 km) and the
maximum possible value (twice the orbit radius) as the
reflector orbits around the Earth.

The error between the analytical and numerical values is
within 0.3% and mostly less than 0.1%, as shown in the
right panel of Fig. 4. As discussed earlier, the J 2 effect on
the other orbital parameters is generally negligible but
may still introduce errors. For example, the orbit radius
varies by approximately 15 to 20 km as a result of the
Earth’s oblateness, even though the net change over one
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orbit period is zero. This variation within an orbit corre-
sponds to 0.27%. The second zonal harmonic description
of the Earth’s oblateness also introduces errors in the slant
range as compared to fully numerical simulations. How-
ever, approximately a minimum of 99.7% agreement is
deemed acceptable for the current model.

The slant range expression in Eq. (18) can now be used
in combination with its z component to find the elevation,
�, which can be expressed as:

�ðtÞ ¼ arcsin
zENU ðtÞ
dðtÞ ð20Þ

In addition to the image size, this elevation expression
will also be useful in finding the start and end points of a
pass, as � = 0 deg and � = 180 deg mark those points
respectively. This will be demonstrated in the following
subsections.

Finally, the angle subtended by the Sun, a, can be calcu-
lated as a function of the distance between the Earth and
the Sun, and the radius of the Sun according to Fig. 3,
expressed as follows:

a ¼ 2 arctan
Rsun

qsun
ð21Þ

where Rsun denotes the radius of the Sun, i.e., 696500 km
(Giorgini, 2015), and qsun denotes the distance from the
Sun, as shown in Fig. 3. Substituting Rsun and the mean
Earth–Sun distance 1 Astronomical Unit (AU) would
result in a as 0.0093rad. With all the necessary parameters
described, one can now express the area of the elliptical
solar image in Fig. 3 as (Çelik and McInnes, 2022):

AimðtÞ ¼ paðtÞbðtÞ ¼ p
½dðtÞ tanða=2Þ�2

sin �ðtÞ ð22Þ

After substituting for the elevation expression from Eq.
(20) in Eq. (22), this becomes:

AimðtÞ ¼ pdðtÞ3 tan ða=2Þ2
zENU ðtÞ ð23Þ

Note that Eqs. (21)–(23) assume a point-like reflector, as
also shown in Fig. 3. The effect of the finite size of the
reflector is negligible when the reflector size is small com-
pared to the orbit altitude. Çelik and McInnes (2022) esti-
mated that for a 1 km diameter reflector at 1000 km
altitude, the contribution of the finite reflector size is
approximately 0.5% to the total solar image area (Çelik
and McInnes, 2022). Therefore it is neglected in this paper,
but it should be taken into account when the reflectors are
much larger and/or the altitude is low. The calculation of
the area of the solar image is an important part of the
energy delivery process which will be discussed next.

4. A model for reflected solar energy delivery from space

The energy collected by an orbiting solar reflector with
area Aref is delivered across an image area AimðtÞ during



Fig. 4. The semi-analytically generated slant range compared against a
numerically simulated orbit.
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an orbital pass. The power density, r on the ground can be
expressed by the following relationship (Çelik and
McInnes, 2022):

r ¼ sðtÞIo Aref

AimðtÞ cos
wðtÞ
2

ð24Þ
where Io is the solar constant that is assumed to follow an
inverse-square law with distance from the Sun and is equal
to 1370 W m�2 at 1 AU. wðtÞ is the angle between the
incoming and the reflected sunlight, i.e. the angle of inci-
dence, as shown in Fig. 2. sðtÞ is an atmospheric loss func-
tion. Multiplying Eq. (24) by the effective area of the solar
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power that utilises the illumination results in the received
solar power on the ground as:

P ¼ rAeff ðtÞ ¼ sðtÞIo Aref Aeff ðtÞ
AimðtÞ cos

wðtÞ
2

ð25Þ

where Aeff ðtÞ is the effective solar power farm area, which
will be shown to be time-dependent for finite-sized solar
power farms as the solar image varies with elevation. Equa-
tion (25) expresses the concept of orbiting solar reflectors in
mathematical terms, in which an orbiting solar reflector
with area Aref intercepts incoming sunlight and reflects it
onto an area on the ground, AimðtÞ by an angle of incidence
wðtÞ. The projected sunlight is then captured on the ground
by an area Aeff ðtÞ to be utilised. The intensity of the sun-
light is reduced as it transmits through the atmosphere by
a function s. One can then determine the total energy deliv-
ered by integrating Eq. (25) over the duration of the orbital
pass such that:

E ¼ R T pass

0 Pdt ¼ IoAref

R T pass

o sðtÞ Aeff ðtÞ
AimðtÞ cos

wðtÞ
2
dt

¼ IoAref

p tan ða=2Þ2
R T pass

0
sðtÞ Aeff ðtÞzENU ðtÞ

dðtÞ3 cos wðtÞ
2
dt

ð26Þ
where T pass denotes the orbital pass duration. Even though
all terms can be expressed analytically, the only analytical
solution to the integral in Eq. (26) is in the form of elliptical
integrals and available when s;Aeff and w are all constants
(Çelik and McInnes, 2022). Such a solution may be useful
for non-terrestrial applications (such as for the Moon), but
the modelling for terrestrial applications will require a
numerical solution. Even before obtaining a solution, one
may deduce insights into the energy delivery process. At
the beginning and end of the pass, Aim will be infinite hence
the power delivered will start from zero, gradually increas-
ing until Aim becomes its smallest value where the solar
power density is the highest, and decreasing again as Aim

grows to infinity. However, while such a qualitative
description is rather straightforward, the modelling of solar
energy delivery for a generic orbit when the Earth’s rota-
tion and orbit around the Sun are both included will pose
a non-trivial modelling problem. One of those is the calcu-
lation of the orbital pass duration, which will be discussed
next.
4.1. Detection of pass duration

The inclusion of the Earth’s rotation and generic orbit
properties means that the pass duration is a function of
the position of the solar power farm. The pass duration
may then be sought by using the analytical slant rage
expression, particularly its z-component or the reflector
height from the local horizon plane.

Two different approaches are considered in this paper to
find the pass duration. The first one is to use one of the
properties of zENU , i.e., zENU can only be positive when the
reflector is above the local horizon or in view by the solar



Fig. 5. Estimating pass duration by detecting horizon crossing.
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power farm. A zENU profile can then be generated similar to
the slant range profile in Fig. 4 and the time points at which
zENU is positive can be identified. To do the latter, a detec-
tion algorithm is developed, in which the switch from neg-
ative to positive values (or vice versa) of zENU is detected
and the zero crossing is identified by interpolating between
the two positive and negative values. The difference
between the time points of zero crossings will then be the
pass duration. A particular advantage of this approach is
the ability to detect daily passes over a given solar power
farm and their pass duration. This may be useful, for exam-
ple, for the scheduling of solar power farms to be serviced
by the reflectors during the day. Fig. 5 depicts an example
of this for the orbit considered in the previous section.

Fig. 5 shows all the detected passes regardless of their
elevation. The maximum possible zENU is 1000 km and cor-
responds to the minimum slant range. The other passes
have lower zENU values and are therefore not overhead.
The first detection, which corresponds to a half pass,
occurs at 0.145 h, meaning that the full pass would last
0.29 h or 17.4 min. In the spherical and non-rotating Earth
model, the pass duration will be 17.62 min. The subsequent
passes last for a shorter duration, 9.62 min, 16.66 min,
14.65 and 14.08 min, respectively. Shorter duration passes
are expected in the subsequent passes as they occur at lower
elevations (due to lower zENU ).

Alternatively, pass duration may be found by using the
elevation expression. � needs to be 0 deg and 180 deg when
the reflector rises and sets, respectively. This would also be
the point where zENU is equal to zero from Eq. (20) such
that:

� ¼ arcsin
zENU
d

¼ 0 ) zENU
d

¼ 0 ) zENU ¼ 0:

As the pass begins at this point, it can be assumed for
convenience that t = 0, such that

zENU ð0Þ ¼ 0 ð27Þ
This nonlinear equation can be solved to find the initial
argument of latitude, ho for a given initial position of the
solar power farm, ko. Once ho is found, it can be input
again into the same zENU equation, but this time evaluated
at some t ¼ T pass, such that:

zENU ðT passÞ ¼ 0 ð28Þ
This second nonlinear equation can be solved to find

T pass. Note that despite the equations being the same, the
first one is solved for the initial orbital position, whereas
the second is solved to find the pass duration. As a demon-
stration of a simplified case, one may consider a circular
polar orbit (i = 90deg) and an equatorial solar power farm
at (i.e., / = 0). At t = 0, zENU in Eq. 16 would become as
follows:

zENU ð0Þ ¼ ðRE þ hÞ½cðhoÞcðX� koÞ� � RE ¼ 0 ð29Þ
then ho can be found as
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ho ¼ arccos
RE

cosðX� koÞðRE þ hÞ
� �

ð30Þ

Then, substituting ho in zENU in Eq. 16 again at some
t ¼ T pass and rearranging would yield

cosðho þ xoT passÞ cosðX� ðko þ xET passÞÞ ¼ RE
ðREþhÞ

) cosðho � Xþ ko þ ðxo � xEÞT passÞ
þ cosðho þ X� ko þ ðxo þ xEÞT passÞ ¼ 2RE

ðREþhÞ

ð31Þ

which can be solved to find T pass. Further simplifications
can be made if the orbit is a repeating ground track
(RGT), where xE ¼ gxo (g is an integer). However, despite
the analytical description, an exact T pass will likely be found
numerically, even for a simple case such as this. The solu-
tions are obtained through MATLAB’s fzero function in
this paper, which finds the root of a nonlinear function
(Forsythe et al., 1977). The initial conditions required by
the function may be obtained through the non-rotating
Earth assumption with an overhead pass (Çelik and
McInnes, 2022). In that case, the half angle determines
the point where the reflector rises above the local horizon,
which can be used to find ho. It is expressed as:

b ¼ arccos
RE

RE þ h
ð32Þ

where b denotes the half angle. Note the similarity between
Eq. (32) and Eq. (30). The initial condition for the second
equation would be the pass duration in the same non-
rotating Earth case with an overhead pass, such that:

T pass;sta ¼ 2bT
2p

¼ T
p
b ð33Þ

where T is the orbit period.
The detection of the pass duration by this approach may

be more suitable for individual solar power farm passes. To



Table 1
Pass duration for equatorial solar power farms at different initial points
measured from the inertial frame at 1000 km altitude Sun-synchronous
orbits placed on the terminator line

ko [o] T pass [s]

80 1009.19
84 1034.17
88 1041.76
92 1032.91
96 1007.47
100 964.17
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that end, the orbit considered in the previous section is
again used to demonstrate this approach with several dif-
ferent initial solar power farm positions. The results are
tabulated in Table 1.

Recall that at this altitude, the pass duration is calcu-
lated as 1057.4 s or 17.62 min for non-rotating solar power
farms. The maximum pass duration is found at ko = 88 deg
with 1041.76 s, which is approximately 15 s less than the
idealised case, meaning a near-overhead pass. It may be
noticeable from Table 1 that for the day-side ko (i.e.,
ko < 90 deg), T pass is generally higher than for the night-
side ko. This is because the eastward rotation of the Earth
means that the reflector and the solar power farm are
approaching each other in the former case in the retrograde
orbital motion, whereas in the latter the solar power farm
moves away from the reflector. This can be better observed
from the elevation profiles of these passes as provided in
Fig. 6.

The differences in the pass duration can be observed
from the end points of time in the x-axis Fig. 6. As
expected, the higher the elevation is, the closer the pass
duration is to a non-rotating Earth case. The elevation
reaches almost 90 deg for ko = 88 deg. There are also
two pairs of cases where the maximum elevation is similar.
These are 84–92 deg and 80–96 deg cases with values on
each side of the terminator line which yield elevation values
of approximately 60 deg and 40 deg at the maximum,
respectively. The smallest values in the pairs are farther
away from the terminator line than the largest values.
The farthest case, ko = 100 deg, yields the lowest elevation
as expected. As for the slant ranges shown in the right
panel, the near-overhead pass means that the slant range
is approximately equal to the orbit altitude at the zenith
point. The slant range for ko = 88 deg case is 1000.2 km,
only approximately 200 m higher than the orbit altitude.
The minimum slant range is higher for other ko values, as
expected in offset passes.

The method in this paper is developed to avoid any
additional numerical orbit propagation to detect the vari-
able pass duration. It also provides insights into the varia-
tion of the pass duration as a function of the initial
reflector and solar power farm positions, even though the
final equation to be solved is nonlinear. However, it is also
of interest how this methodology compares against numer-
ical simulations. To that end, the results of this paper will
be compared against two numerical tools, a J 2-enhanced
two-body orbit propagator, customised to calculate the
quantity of energy delivered (Viale et al., 2022) and the
contact locator functionality of General Mission Analysis
Tool (GMAT), developed by NASA and their collabora-
tors.1 Again, a 1000 km altitude circular SSO, placed at
the terminator line is considered. In addition to the inclina-
tion for this altitude (i = 99.5deg), 0, 45, 90, 135, 180 deg
1 Available at https://sourceforge.net/projects/gmat/ (Accessed March
7, 2023).

Fig. 6. The elevation and the slant range profiles in the 1000 km SSO case
for different initial solar power farm positions.
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Table 2
The results of pass duration (T pass) at 1000 km altitude circular orbit at
different inclinations in this paper, compared against J 2-enhanced two-
body orbit propagation and NASA’s GMAT.

i [deg] This paper Numerical GMAT

0 1139.46 1137.48 1123.76
45 1111.79 1008.22 1038.78
90 1052.95 1051.31 1025.12
99.5 (SSO) 1040.57 1042.69 1014.61
135 1002.92 999.60 987.78
180 984.20 982.37 982.26

Fig. 7. Generic eclipse geometry (Adapted from (Longo and Rickman,
1995)). The details of the calculation of np and nu can be found in
Appendix B. Image not to scale.

O. Çelik, C.R. McInnes Advances in Space Research 72 (2023) 5047–5069
inclinations are also considered to compare against a wide
variety of orbits that are both prograde and retrograde.
The equatorial solar power farm is given an initial longi-
tude of ko ¼ 90 deg. The corresponding ho is calculated
by the steps outlined earlier in this subsection and inputted
to GMAT as the initial condition to make the calculations
as close as possible to this study. Similarly, the Earth’s
radius, gravitational parameter (l) and the J 2 constants
are also taken to be the same as GMAT and inputted to
semi-analytical and numerical simulations. The results are
presented in Table 2.

There is generally a good agreement between all tech-
niques, albeit differences at different inclinations. The strat-
egy presented in this paper and the two-body orbit
propagation display an agreement within 3 s. The differ-
ence with GMAT is higher but generally within 30 s for
all cases. The difference decreases to within 15 s for equa-
torial orbits. The exact reason for the discrepancy between
the semi-analytical technique in this paper and GMAT is
not clear, especially given that the same constants are used
for the parameters such as J 2. However, it is found that the
GMAT results are sensitive to the initial epoch of the sim-
ulation, which may be a reason to explain the discrepancy.
It is important to note that this discrepancy may not be
detrimental as such, as the quantity of energy delivered at
the beginning or the end of a pass constitutes only a small
fraction of the total quantity, as shown in Çelik and
McInnes (2022), and will also be shown later in this paper.
The conditions such as eclipses may have a greater impact
on the effective pass duration, which will be investigated in
the next subsection.
4.2. Eclipses

Eclipses may need to be considered if there is a signifi-
cant deviation from near-polar orbit inclinations, when
the right ascension of the ascending node or initial solar
power farm longitudes are further into the night side or
when all these occur. The existence of eclipses shortens
the duration of the orbital pass where solar energy can
be delivered, as the incoming sunlight to the reflector is
blocked by the Earth’s shadow cone, as shown in Fig. 7.

Whether there is any eclipse in an orbit can be calculated
by projecting the current reflector position in orbit XECI

onto the unit Sun vector, such that (Longo and
Rickman, 1995):

Xpr ¼ ðXECI � ŝÞŝ ð34Þ

where Xpr is the projected reflector position and ŝ is the unit
Sun vector, such that ŝ ¼ Xsun

jjXsunjj. If XECI � ŝð Þ < 0, the point

of the shadow cone entry (both for penumbra (partial
eclipse) and umbra (total eclipse)) may be found (Longo
and Rickman, 1995). Another vector can be defined to find
this point as:

d ¼ XECI � Xpr ð35Þ
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If jj d jj is smaller than np or nu in Fig. 7, the reflector will be
in penumbra or umbra, respectively (Longo and Rickman,
1995). Only umbra cases are considered in this paper,
therefore nu is found as follows (Longo and Rickman,
1995):

nu ¼ ðqu� jj Xpr jjÞ tan au ð36Þ
where qu denotes the height and au is the apex angle of the
umbra cone. The details of the calculation are given in
Appendix B.

For the problem at hand, the time at which the reflector
is in eclipse can be calculated, after the pass duration is
found. There are three different eclipse cases that may
occur (other than no eclipse), which are eclipse at the
beginning of the pass, towards the end of the pass, and
in the middle of the pass, as shown in Fig. 8. Depending
on retrograde or prograde motion, the first two cases
would occur at dawn or dusk passes, whereas the third case
may occur if the pass duration is very long, particularly
later at night time for higher altitude orbits.

Incorporating eclipses into the problem will further
divide the piecewise integration which will be discussed
later, depending on which case of geometric loss where
the eclipse occurs, and when the eclipse occurs (i.e., begin-
ning, end or middle of the pass). Such an approach may be
cumbersome in implementation. In this paper, this was
avoided by integrating Eq. (26) first for the full duration
of the pass [0,T pass]. Then, the same integration is per-
formed for the eclipsed part of the pass between some ini-



Fig. 8. Eclipse cases that may occur during a pass. The red triangle shows a projection of the cone extending from the centre of the Earth and defines the
local horizontal plane of a solar power farm. Depending on the initial position of the solar power farm at the beginning of a pass and orbit altitude, the
reflector may be in the Earth’s shadow (a) towards the end, (b) at the beginning and (c) in the middle of the pass. Cases (a) and (b) are more likely to occur
for lower altitude orbits whereas case (c) would likely occur for much higher altitude orbits. Image not to scale.
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tial time T ecl;0 and the final time T ecl;f . Finally, the quantity
of energy ‘‘delivered” in the eclipsed part is subtracted
from the quantity of energy delivered in the no-eclipse case
to calculate the net energy delivery in the pass.

As the calculation of the eclipse entry and exit points is
algebraic, the eclipse evaluation can be done offline, i.e.,
before the integration. The eclipse time points can be calcu-
lated and assessed when in the pass the eclipses occur (i.e,
towards the beginning, end or middle of the pass). After the
no-eclipse integration, all the necessary information for the
eclipse part, such as geometric losses to be considered
(which will be explained in more detail in the next section),
will already have been calculated. This information can be
used to assess which piecewise integrals need to be solved
for the eclipse part. Fig. 9 demonstrates how the eclipse-
free part of the total pass duration is altered for a Sun-
synchronous orbit at 1000 km altitude, for a range of orbit
inclinations and initial solar power farm longitudes for an
equatorial farm.

The left panel in Fig. 9 shows pass duration when
eclipses are omitted. It shows an approximately symmetric
profile around 88deg where lower inclination orbits result
in longer pass duration as their motion is prograde. As
the inclination increases and the motion becomes retro-
grade (i.e., i >90deg), the pass duration decreases. The
results presented in the previous section can also be identi-
fied in the left panel, where for a 1000 km SSO at
i ¼ 99:5 deg X=90 deg, the pass duration is higher for ko
at approximately 88 deg, and decreases before and after
this point. When the eclipse loss is included, its effect is vis-
ible when ko >90 deg and when the orbit inclination is out-
side the range of 60 deg < i < 120 deg. When the solar
power farm is initially further into the night, near-
equatorial orbits lose nearly half of their effective pass
duration. This is true for both prograde and retrograde
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orbits. The results in Fig. 9 do not show any eclipses in
the middle of pass, and due to the selected range of ko,
the prograde orbits experience eclipses towards the end of
the pass and the retrograde orbits in the beginning. The
losses due to eclipses may have a significant impact on solar
energy delivery. However, if the eclipses are short and at
the beginning or end of a pass, the quantity of energy lost
may be negligible, but the loss may be significant if it is in
the middle of a pass, where the quantity of the energy deliv-
ered is the highest, or if the eclipse duration is long. This
can be assessed in the model with the offline eclipse check.
During the solar energy delivery process, further losses will
be experienced due to the finite size of the solar power
farm, which is discussed in the next subsection.
4.3. Effective solar power farm area

As shown in Section 3, the shape of the solar image is
elliptical (with the exception of the zenith point, where it
is circular) and its exact shape is dependent on the time-
varying slant range and elevation. For a solar power farm,
this will mean that only the portion of the farm illuminated
can be used for electricity generation. This will be termed
as the effective area, or Aeff . This will then make the inter-
action between the areas of the solar power farm and the
solar image important to model for the accurate estimation
of the solar energy delivered. To that end, the solar power
farm is modelled as disks on the ground. While this is evi-
dently not an accurate description of a solar power farm, it
will be used as a test case to demonstrate the modelling of
Aim.

Under the assumption of the solar power farm area as a
disk, three distinct geometric cases can be identified, as
shown in Fig. 10. These will be explained below:



Fig. 9. Pass duration with or without eclipses included for 1000 km Sun-
synchronous orbit at a range of inclinations and initial equatorial solar
power farm longitudes.
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1. The semi-minor axis length, b, of the solar image is
equal to or greater than the solar power farm radius,
Rgt, i.e. b P Rgt. This means that the solar power farm

is fully illuminated by the solar image, Aeff ¼ Agt ¼ pR2
gt.

2. The semi-major axis length, a, of the solar image is equal
to or smaller than the solar power farm radius, Rgt, i.e.
a 6 Rgt. This means that the area of the solar image is
equal to the area illuminated, Aeff ¼ Aim ¼ paðtÞbðtÞ.

3. The solar power farm radius, Rgt, is greater than b but
smaller than a, i.e., b < Rgt < a. This means that the
solar power farm is illuminated only by a portion of
the solar image, defined by the area intersecting between
the solar power farm disk and the solar image ellipse.
This case requires a more detailed geometric analysis,
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which is provided in Çelik and McInnes (2022). Here,
only the expression describing this area will be provided
as follows:

Aeff ¼ 4
c
2
R2
gt þ

pb2

4 sin �
� b2

2 sin �
arctan

tan c
sin �

� �

¼ 2cR2
gt þ

2b2

sin �

p
2
� arctan

tan c
sin �

� �
ð37Þ

where c is a polar angle defined at the intersection point
of the solar power farm disk and the solar image ellipse,
shown in the middle figure in the top row of Fig. 10.

Note that while these are the different cases that may be
encountered, not all of them are encountered for each pass.
For the non-rotating Earth case tackled in Çelik and
McInnes (2022), these cases can be determined based on
a limiting altitude, beyond which only Case 1 occurs. How-
ever, this is much more complicated in the current model
and depends also on the longitudinal separation between
the solar power farm and the reflector. Each of the above
cases may occur by itself during a pass, or they may occur
in pairs or all together.

In the implementation, b and a are generated for discrete
time points of the orbital pass and it is checked whether b
and a become smaller than Rgt at any point during the orbi-
tal pass, before investigating individual Aeff cases. If b
never becomes smaller than Rgt, then Case 1 occurs, if both
b and a become smaller than Rgt at some point in the pass,
then all three cases will occur. In order to accurately esti-
mate the times at which the transition occurs from Case
1 to 2 and Case 2 to 3, the root of the following equations
are found:

fbðtÞ ¼ bðtÞ � Rgt ¼ dðtÞ tanða=2Þ � Rgt ð38aÞ

faðtÞ ¼ aðtÞ � Rgt ¼ bðtÞ
sin �ðtÞ � Rgt ð38bÞ

The times, tb; ta at which fbðtbÞ ¼ 0; faðtaÞ ¼ 0 mark the
transitions. Note that there will be pairs of tb and ta. For
tb; tb;0 is the first instance where b ¼ Rgt after the reflector
rises above the horizon, whereas tb;f is the second instance
where the same identity occurs, shortly before the pass
ends. The same is more straightforward for ta where ta;0
and ta;f mark the first and the last time points, respectively,
where a ¼ Rgt. In the implementation, the solutions are
again obtained by MATLAB’s fzero function (Forsythe
et al., 1977). It was observed that solving these equations
may present challenges if the time points are very close to
each other, albeit rare for practical cases. The initial condi-
tion then needs to be carefully selected. The generated b
and a values as described above are used to select initial
conditions. Again, the discrete time point when b or a is
smaller than Rgt can be selected and inputted to the fzero
function as an initial condition. Then, the exact time point
(within the numerical tolerance) will be the solution for tb
or ta. This approach is found to ensure numerical stability.



Fig. 10. Three distinct cases of the solar image area in relation to the solar power farm area. Top figure shows effective usable area of the solar power farm
in each case considered. Lower figure shows the critical phases of a pass that is used to separate energy integration. At time tb and ta, the semi-minor (b)
and semi-major (a) axes dimensions of the solar image become equal to the solar power farm radius, respectively. At the zenith point (if it occurs), a and b
are equal to each other, i.e., the solar image is circular.
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It is also worth noting that the times between tb;0 and ta;0,
and ta;f and tb;f are when Case 3 occurs, which can be
found by finding tb and ta when both cases occur or tb or
ta if only one of them occurs. If neither tb nor ta is available,
then the entire pass is characterised by Case 3.

After the effective solar power farm area and time
expressions for each phase are presented, the following
conditions can be defined for a pass where all cases occur:

Aeff ¼
pR2

sf ; t 2 ½0; tb;0�; t 2 ½tb;f ; T pass�
paðtÞbðtÞ; t 2 ½ta;0; ta;f �
Eq: 37; t 2 ðtb;0; ta;0Þ; t 2 ðta;f ; tb;f Þ

8><
>: ð39Þ
Eq. (39) means that the energy integral in Eq. (26) would
need to be solved piecewise between the identified time
points and modified accordingly. A detailed discussion on
this issue is provided in Çelik and McInnes (2022). It is also
worth noting that the solar panel orientation would further
divide the energy integral. This case would be most relevant
to the tilted photovoltaic panels of a solar power farm. Any
non-zero panel tilt would shorten the pass duration and the
reflector would illuminate the ‘‘backside” of the panels
beyond the equivalent elevation angle. Depending on
which case this occurs the piecewise integration can be
divided further, yielding nine different integrals (Çelik
and McInnes, 2022). In the current model, the panel tilt
is not implemented to avoid a complexity that adds little
value, and the solar panels are assumed parallel to the local
horizontal. Instead, one may calculate the effective pass
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duration (shortened T pass due to the panel tilt) separately
and calculate the energy delivered.
4.4. The angle of incidence

The angle of incidence, w, is the angle between incoming
and outgoing light rays to and from the reflector. The
incoming vector is dependent on the position of the Sun
and the outgoing vector is dependent on the reflector posi-
tion with respect to the solar power farm. Both of these
vectors are in principle time-varying, although the varia-
tion of the position of the Sun may be negligible for short
duration passes. Therefore, w is a time-varying function
and can be expressed as follows:

wðtÞ ¼ arccos
Xref � ŝ

jj Xref jj � jj ŝ jj
� �

ð40Þ

where Xgt and ŝ are the position of the reflector with respect
to the solar power farm and the unit vector of the Sun,
both of which are in the ECI frame. Moreover, Xref can
be expressed as:

Xref ¼ Xgt � XECI ð41Þ
where Xgt is the instantaneous solar power farm position in
the ECI frame such that:

Xgt ¼ RE

cos/ cos kðtÞ
cos/ sin kðtÞ

sin/

2
64

3
75 ð42Þ
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and XECI is the orbital position of the reflector.
The unit Sun vector ŝ in equatorial coordinates can be

expressed as:

ŝ ¼
cos h�ðtÞ

cos n sin h�ðtÞ
sin n sin h�ðtÞ

2
64

3
75 ð43Þ

where n is the Earth’s axial tilt and equal to 23.44 deg.
Moreover, h� is the argument of latitude of the assumed
circular orbit of the Earth around the Sun (though for con-
venience it is assumed the Sun moving around the Earth)
and expressed as:

h� ¼ h�;0 þ x�t ð44Þ
where h�;0 is the initial position of the Earth, and x� is the
Earth’s orbit rate around the Sun, i.e.

x� ¼ 1:992� 10�7 rads�1. In addition, h�;0 can be found
by assuming the vernal equinox as h�;0 = 0, where

ŝ ¼ ½1; 0; 0�T . As the Sun vector points to the direction of
12 o’clock noon, the time in the Greenwich meridian (ex-
pressed as an angle) can also be found by using the Sun
vector. This may be useful to express the initial position
of a solar power farm as the time of the day.

It is worth noting that a trigonometric manipulation
may be made to simplify the angle of incidence term in
Eq. (26). First, let us consider the following trigonometric
identity for some variable m:

cos
m
2
¼ sign cos

m
2

	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos m

2

r
ð45Þ

Substituting w in Eq. (40) into Eq. (45) would yield:

cos
w
2
¼ sign cos

w
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ Xref � ŝ

jj Xref jj � jj ŝ jj
� �� �s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
1þ Xref � ŝ

jj Xref jj � jj ŝ jj
� �� �s

ð46Þ

as w 2 ½0; 180� deg, hence cos w
2
2 ½0; 1�. Albeit small in indi-

vidual cases, implementing a trigonometric function in this
form could save computational time in large scale optimi-
sation problems.

4.5. Atmospheric losses

Atmospheric losses in this problem include both trans-
mission efficiency through the clear sky and cloudiness.
For the former, Hottel (1976) provides an empirical model
for atmospheric transmission efficiency that is dependent
on the elevation angle (hence time-dependent) from the
local horizon (Hottel, 1976):

sðtÞ ¼ c0 þ c1e�k secðp=2��ðtÞÞ ð47Þ
where c0; c1 and k are empirical coefficients. In their work,
Hottel (1976) also provides a table of correction coefficients
for the sea-level elevation of the solar power farm (up to
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2.5 km) and climatic variations, including tropic and arctic
weather (Hottel, 1976). This model is discussed in more
detail in both Hottel (1976) and Çelik and McInnes
(2022). In this paper, the coefficients are selected for a
sea-level solar power farm without a climate correction.
Eq. (47) then takes the following form (Hottel, 1976;
Çelik and McInnes, 2022):

sðtÞ ¼ 0:1283þ 0:7559e�0:3878 secðp=2��ðtÞÞ ð48Þ
According to Eq. (48), the atmospheric transmission

efficiency is equal to 0.641 at the zenith point (� = 90
deg), i.e. approximately 36% of the solar energy is lost to
the atmosphere. With the correction coefficients for higher
altitudes and possible re-reflection, the efficiency increases
to a maximum of 70% according to this model (Hottel,
1976). The efficiency is more than 0.5 for
38 deg 6 � 6 142 deg. However, the transmission efficiency
decreases further down to approximately 0.13 at the begin-
ning and the end of an orbital pass.

As for cloud cover, there is no available model to incor-
porate in Eq. (26) to the knowledge of the authors. There-
fore, a cloudless sky will be assumed. However, according
to different studies, total cloudiness can decrease solar illu-
mination down to a quarter of a clear day and partial
cloudiness down to a third of a clear day (Canady and
Allen, 1982; Ehricke, 1979; Ehnberg and Bollen, 2005).

4.6. Discussion

In this section, the implementation of the model and its
applicability to elliptical orbits will be discussed.

4.6.1. Implementation

The model is implemented in the MATLAB environment,
but only a few built-in functions are used. The procedure
begins with user-input initial conditions such as orbital ele-
ments, initial solar power farm position and the Earth’s
position around the Sun (i.e., the season). Based on this
information, the cartesian orbital position of the reflector
and slant range from the solar power farm is generated
(Section 2 and 3). Next, pass duration (provided that the
solar power farm is visible) (Section 4.1), and eclipses (Sec-
tion 4.2) are calculated offline, i.e. before the energy inte-
gration begins. Eclipse cases are given distinct case
numbers to identify which type of eclipse occurs (Fig. 8).
Given the discrete time points in a pass, transition time
points between different geometric relationships between
the solar power farm and the solar image (Fig. 10) can also
be generated offline, which can be refined by solving non-
linear equations (Eq. 38) presented earlier. This allows us
to include/omit particular geometric loss cases that
occur/do not occur to improve computational speed.
Depending on when the pass ends, different numbers of
piecewise integrations are performed within which eclipses
are also included. The procedure does not explicitly include
the attitude of the reflector. The assumed circular shape of
solar power farms enables us to omit specific azimuthal ori-



Fig. 11. The semi-analytically generated slant range for one orbit period
of two elliptical orbits of the eccentricity of 0.01 (left) and 0.1 (right).

O. Çelik, C.R. McInnes Advances in Space Research 72 (2023) 5047–5069
entations of the solar image. The computational speed of
the code for reference case that has been considered
throughout the paper (SSO of 1000 km altitude) is typically
between 0.1 to 0.13 s on a typical laptop computer.
4.6.2. Model applicability for elliptical orbits

The model can in principle be expanded into elliptical
orbits, as the geometry of the solar image can be gener-
alised. However, the dynamical aspects of the energy deliv-
ery model are not as straightforward as it is for circular
orbits. The current implementation relies on linear propa-
gation of all time-dependent parameters for their simplicity
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and computational speed, without compromising the mod-
el’s accuracy and sophistication. Satisfying these demands
for elliptical orbits is challenging without a compromise
in any of these aspects. For instance, integrating Eq. (26)
over time means solving Kepler’s equation numerically. If
instead Eq. (26) is expressed in terms of true anomaly, then
parameters such as the Earth rotation also need to be
expressed in units of true anomaly. The low-order descrip-
tion of the Earth’s oblateness also becomes a challenge,
especially when the orbit eccentricity is increased. Fig. 11
below shows two examples of the slant range for one orbi-
tal period, as calculated for two elliptical orbits with eccen-
tricities of 0.01 and 0.1.

In Fig. 11, the slant range is expressed analytically in
terms of true anomaly, except for the Earth’s rotation,
which is expressed as a function of time, found from the
true anomaly. The numerical simulation is performed with
a J 2-enhanced two-body propagator, and appropriate
transformations are made to obtain the slant range from
the simulation output. The results show that, even for a
nearly circular orbit at e = 0.01, the error between the
numerical and analytical results builds up rapidly. For
the results in the left panel, the error is within 10%. Note
that the error is 0.3% at a maximum for circular orbits.
When the eccentricity is increased to 0.1 the error grows
to more than 15%. It was found that the low-order descrip-
tion of the Earth’s oblateness is the likely cause of the dis-
crepancy. It appears that Eqs. (13) and (14) cannot
accurately capture the short-period variations in the orbital
elements due to the Earth’s oblateness, even though they
appear to capture the average dynamics over an orbit per-
iod. However, these short-period variations are important
as the slant range is calculated within a portion of the orbit.
Including higher-order terms of the Earth’s oblateness
would improve the accuracy. However, this was not
included in the current paper to retain a level of simplicity
and computational speed. Nevertheless, the model
described throughout the paper may still be useful for
mildly elliptical orbits (e < 0:01) and/or for high-altitude
orbits where the effect of the Earth’s oblateness is smaller.
On the other hand, at lower altitudes where the effect of the
Earth’s oblateness increases, the eccentricity range may be
further limited.

5. Applications

5.1. Solar energy delivery from (near-) polar orbits

The delivery of reflected solar energy from a polar orbit
will be investigated first, as it provides a test bed to com-
pare the results of the model presented in this paper against
the previous works on the subject by Fraas (2012) and
Çelik and McInnes (2022). Both of these works considered
a 1000 km polar orbit and non-rotating Earth. Even with
this model, by including geometric losses (as discussed in
Section 4.3) and atmospheric losses more accurately,
Çelik and McInnes (2022) demonstrated that previous



Fig. 12. The power profile of the solar energy reflected to a 10 km
diameter solar power farm by a 1 km diameter reflector from a 1000 km
altitude polar orbit.
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works overestimate the quantity of energy delivery by more
than fourfold (Çelik and McInnes, 2022). This paper pre-
sents a model that is higher fidelity than both of the previ-
ous works and includes effects such as the Earth’s rotation,
which makes a direct comparison challenging. This will still
be attempted by finding a near-overhead pass over an
equatorial solar power farm for a 1000 km polar orbit,
placed at the terminator line (X ¼ 90 deg). It was found
that this occurs approximately ko ¼ 88 deg, hence this
value will be used as the initial solar power farm position.
The solar power farm is a circular disk with a diameter of
10 km and the reflector has a 1 km diameter. Note in this
case that, due to the polar orbit choice, the Earth’s oblate-
ness will not affect the results. The power profile of this
pass is presented in Fig. 12.

The duration for this pass is 1054.22 s, approximately 3
s shorter than the pass duration for a non-rotating solar
power farm (Çelik and McInnes, 2022), which confirms
the near-overhead pass. When non-rotating Earth is con-
sidered, the power profile is symmetric, provided that there
is no panel tilt considered, as in the case here. When all
geometric cases occur as discussed in Section 3, the profile
starts with a solar image larger than the solar power farm
and follows a brief period where the solar image semi-
minor axis (b) is smaller than the solar power farm radius
(Rgt), before the solar image is fully contained within the
solar power farm boundaries. This last phase is where the
peak power occurs due to the smaller solar image, generally
at the zenith point of the pass. However, in the case here,
despite the similarity in the pass duration, the inclusion
of the Earth’s rotation appears to distort the otherwise
symmetric profile in Çelik and McInnes (2022). All geomet-
ric phases still occur, but the highest power delivery skews
towards the first half of the pass, shortly before the halfway
point. The power delivered decreases beyond this point.
When the geometric case 3 (red dots) occurs in the second
half of the pass after around t = 550 sec, the power value is
generally lower than the same phase in the first half of the
pass, which suggests a more stretched image (larger a and
b) at this phase than in the first half. This may be expected
as in the first half of the pass the reflector and the solar
power farm are approaching each other, while in the sec-
ond half, they move away. The quantity of energy delivered
is found to be 35.06 MWh in this case. Table 3 presents a
comparison between this result and the other works.

In a recently published work, Fraas and O’Neill (2023)
presented their results for the quantity of energy delivered
for a 1-km reflector in a 1000-km altitude polar orbit. The
authors implement a geometric analysis to calculate a
power profile similar to this work. Although not explicitly
stated in Fraas and O’Neill (2023), the authors of this
paper believe that their calculation also includes atmo-
spheric transmission losses as the quantity of energy deliv-
ered found in Fraas and O’Neill (2023) is equal to 38
MWh, very close to the results of Çelik and McInnes
(2022) and this paper. The reason for the small discrepancy
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between Fraas and O’Neill (2023), Çelik and McInnes
(2022) and this paper is not clear, but it may be due to
the larger integration step size that appears to be chosen
in Fraas and O’Neill (2023). Nevertheless, the similarity
between the works provides an independent validation of
the results in this paper. On the other hand, the contrast
between the results of this work and Çelik and McInnes
(2022) is more subtle. The decrease in energy delivered by
the inclusion of the Earth’s rotation is approximately
0.14 MWh. One might argue that the complexity of the
modelling in this paper may not be justified by the
improvement obtained in the results. However, the previ-
ous work by Çelik and McInnes (2022) could only be
applied to the polar orbits, while the model in this paper
can in principle be expanded to any circular orbit and par-
ticularly to Sun-synchronous orbits, which are more rele-
vant for orbiting solar reflector applications. Sun-
synchronous orbits are one of the prime candidate orbits
for orbiting solar reflector applications (Viale et al.,
2023), as the orbit plane can be normal to the Sun-line as
the Earth orbits the Sun through nodal precession thanks
to the Earth’s oblateness and can be eclipse-free for most
of the year. Utilising the Earth’s oblateness requires SSOs
to be in a certain inclination for a given altitude
(Chobotov, 2002). For low-Earth orbit altitudes, this is
close to 90deg but significantly deviates from it as the orbit
altitude increases, which requires the higher fidelity mod-
elling that is presented in this paper.

An analysis will now be presented for the example Sun-
synchronous orbit used throughout the paper to demon-
strate the capabilities of the modelling of reflected solar
energy delivery. This orbit is a 1000 km altitude circular
orbit and placed at the terminator line (X ¼ 90 deg), which



Table 3
A comparison of the quantity of the energy delivered between Fraas and O’Neill (2023), Çelik and McInnes (2022) and this study for a 1 km diameter
reflector at a 1000 km polar orbit

Study Losses Delivered energy during a pass [MWh]

Fraas and O’Neill (2023) Atmospheric losses, Geometric losses 38
Çelik and McInnes (2022) Atmospheric transmission, Geometric losses 35.20
This paper Atmospheric transmission, Geometric losses, Earth’s rotation 35.06

Fig. 13. The power profile of the solar energy reflected to a 10 km
diameter solar power farm by a 1 km diameter reflector from a 1000 km
altitude Sun-synchronous orbit.

Fig. 14. The quantity of energy delivered by a 1 km diameter reflector
from different altitudes of Sun-synchronous orbits.
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can also be used to draw comparisons with the simple polar
orbits presented in the previous subsection. The orbit incli-
nation can be calculated as i ¼ 99:48 deg. As can be seen,
this is nearly a polar orbit, hence the final results may
not be substantially different from the polar orbit case,
especially if a near-overhead pass is selected, but this does
not discount the fact that the model at hand is applicable to
a much wider variety of cases. Again, a near-overhead pass
is selected with ko ¼ 88 deg for an equatorial solar power
farm (/ ¼ 0 deg). This results in an initial argument of lat-
itude of the pass being ho ¼ �29:79 deg and a pass duration
T pass ¼ 1041:8sec by using the techniques described in the
previous sections. According to these initial conditions,
the profile of the power delivered is presented in Fig. 13.

The profile in Fig. 13 is more skewed compared to its
polar orbit counterpart in Fig. 12. All three geometric cases
appear in the profile. However, the highest quantity of
power is delivered around the transition point between
cases 2 and 3 (yellow and red points, respectively). The
solar power farm and the reflector are approaching each
other in the first half of the pass, but this time, due to
the orbit inclination, the maximum power delivery is
skewed towards an earlier time than a simple polar orbit.
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The profile becomes sharper as the reflector and the solar
power farm move in opposite directions much faster due
to the orbit inclination. Note the orbit inclination here also
relates to the nodal precession which affects both the right
ascension of the ascending node and the argument of
latitude.

The quantity of energy delivered is equal to 34.7 MWh.
This value is close to but smaller than the polar orbit cases
considered in the previous subsection. The decrease in
energy delivered may not appear substantial, but it can
make a considerable impact on daily energy delivery when
multiple passes are considered. A possibly important point
to note is that the maximum quantity of power delivered is
higher in the Sun-synchronous orbit than in the polar orbit,
but the area under the curve is smaller. This highlights that
sampling a single value of power profile and extrapolating
it for the quantity of energy may not be representative of
the total quantity of energy, again highlighting the high-
fidelity approach taken here.

Throughout this paper, a 1000 km orbit is considered as
an example. Now, the analysis will be extended to different
orbit altitudes of SSOs and different ko values. The SSO
inclinations are calculated for altitudes between 400 km
and 1600 km and ko values between 70 deg and 110 deg.
The pass duration and other related parameters are



Fig. 15. The quantity of energy delivered by a 1 km diameter equivalent reflector from a Sun-synchronous orbit of 1000 km altitude, for a range of
equatorial solar power farm longitudes. Solar power farm diameter is 10 km.
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calculated according to the methodology presented in the
earlier sections. The results are presented in Fig. 14.

Among the orbit altitudes considered, the range between
800 and 1000 km appears to be the optimum range, within
which 900 km appears to be the optimum altitude for the
maximum quantity of energy delivered. For all three alti-
tudes, the maximum quantity is approximately 35 MWh
and can be delivered for ko �88 deg. There are then high
and low altitude pairs outside this optimum range, such
as 600 km and 1200 km and 400 km and 1400 km where
the maximum energy delivery is similar. Low altitude orbits
provide short passes but higher solar energy density. The
opposite is the case for higher altitude orbits. Generally,
the similarity is due to the compensation of short passes
with higher power density in lower altitude orbits and
lower power density with longer passes in higher altitude
orbits. However, the appearance of Fig. 14 can be different
if the solar power farm size is different. For example, in a
hypothetical case of a projected solar image contained
within the solar power farm boundaries (geometric loss
case 2 in Section 4.3) throughout the pass, the quantity
of energy delivered would be the highest for the highest
altitude instead, as the pass duration is the highest and
the effective solar power farm area is equal to the area of
the solar image. However, one should also note the impact
of the orbit inclination as it changes for different altitudes
for Sun-synchronous orbits. Another potentially interest-
ing result is for 1600 km altitude, the highest considered,
where the quantity of the energy delivered is the highest
at the extremes of the ko range due to the longest pass dura-
tion. Related to this point, the quantity of energy delivered
is generally less at the extreme points at the night side lon-
gitudes than that of the day side due to the eclipses imple-
mented in this model.
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5.2. Effects of orbit inclination and non-equatorial solar

power farms

To demonstrate further advantages of the model in this
paper, the analysis will be extended to other orbit inclina-
tions between 0 deg and 180 deg, and ko between 70 deg
and 110 deg for equatorial solar power farms. This analysis
also relates to the discussion on eclipses, as the reflectors at
some of the low inclination orbits will be eclipsed during
the energy delivery to the night-time longitudes. This will
be demonstrated with a hypothetical no-eclipse energy
delivery case, as shown in Fig. 15.

New insights into the solar energy delivery problem can
be obtained from this analysis. First of all, the quantity of
energy delivered can be higher than approximately 35
MWh presented in this paper and in Çelik and McInnes
(2022). The maximum value is approximately 38 MWh
and these higher values appear at equatorial inclinations
for most ko values and in a narrower band of ko values
for inclinations up to 75deg. These can be explained by
the direction of the motion of the reflector, which max-
imises the pass duration for equatorial longitudes, as the
orbital motion is prograde, which also appears to be effec-
tive for a band of longitudes at higher orbit inclinations.
Retrograde equatorial orbits also deliver energy at similar
levels as near-polar orbits as the pass geometry is favour-
able, despite the shortened pass duration. The quantity of
energy delivered varies the most for near-polar orbits,
which is extremely low at large and small ko values and
maximised at ko = 90 deg as discussed throughout. The
right panel of Fig. 15 shows the decrease in the quantity
due to the inclusion of eclipses. Despite the shortened total
pass duration due to eclipses (as shown in Fig. 9), the
decrease in the quantity of energy delivered appears to be



Fig. 16. Pass duration for a 1000 km altitude Sun-synchronous orbit at different inclinations and non-equatorial solar power farms, with eclipses included.

O. Çelik, C.R. McInnes Advances in Space Research 72 (2023) 5047–5069
relatively modest. Power profiles in Figs. 12 and 13 show
that the majority of the energy is delivered in the middle
portion of a pass, for approximately 300 sec. Eclipses out-
side of this zone do not affect the final quantity of energy
delivered substantially, as the results show in Fig. 15.

Thus far the analyses are considered for the case of
equatorial solar power farms, but the majority of existing
and planned solar power farms are in non-equatorial lati-
tudes as high as approximately 40 deg latitude Viale
et al. (2023). The solar power farm latitude / will then
be increased to 10, 20, 30 and 40 deg respectively to analyse
its effect on the quantity of energy delivered close to the
Earth’s terminator line. As considered throughout this
paper, a 1000 km altitude circular orbit placed at the termi-
nator line is considered. The inclination is varied between 0
and 180 deg and the initial solar power farm longitude
between 70 and 110 deg. First, Fig. 16 shows how the pass
duration evolves with the solar power farm latitude.
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Note that eclipses are included in the calculation of the
pass duration. The pass duration is between a few minutes
and up to 19 min as shown in the previous analyses in the
paper. From the top left to the lower right, the figures show
fewer contact opportunities from low inclination orbits as
/ increases. The orbit inclinations between 60 and 80 deg
and night-time longitudes (ko > 90 deg) repeatedly provide
the highest pass duration in all cases. The longer pass dura-
tion due to the prograde motion becomes limited to higher
inclination orbits as / increases. It can be expected that the
contour map will be defined by straight vertical lines, i.e.,
fixed pass duration for all longitudes for a given inclina-
tion, at / ¼ 90 deg, where different ko values correspond
to the same pole point. In light of these results, Fig. 17
shows maps of the quantity of energy delivered for the
same initial conditions.

In general, the availability of energy delivery becomes
limited as / increases. At the highest / considered in this



Fig. 17. The quantity of energy delivered by a 1 km diameter reflector from a 1000 km circular orbit at different inclinations and non-equatorial solar
power farms. The solar power farm diameter is 10 km.
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paper (lower right figure), energy delivery is only possible
between inclinations 30 and 150 deg and for quantities of
energy delivered up to 36 MWh, except for two small
islands where it is greater than 36 MWh. Those islands
are larger at lower / values and between inclinations of
30 deg and approximately 85 deg and in nighttime longi-
tudes. This is in line with the higher pass duration for pro-
grade orbits around these inclinations and initial longitudes
shown in Fig. 16. Due to the shrinking of the range of orbit
inclinations with increasing /, the quantity of energy deliv-
ered becomes closer to the cases where the Earth is non-
rotating. As discussed for the pass duration case, for
/ ¼ 90 deg, the model would effectively behave as if the
Earth is non-rotating as the pole point does not rotate.
At the pole point, the highest quantity of energy can only
be delivered by a polar orbit. To that end, Çelik and
McInnes (2022) finds that for a 1000 km polar orbit, the
quantity of energy delivered is equal to 35.2 MWh (also
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shown in Table 3). The convergence of the highest quantity
of energy delivered towards the range of 32–36 MWh then
becomes in line with the results of Çelik and McInnes
(2022). This consistency in energy delivery builds confi-
dence in the sophisticated model presented in this paper
to then consider it for a wider range of orbits and solar
reflector applications. However, the sophistication of the
model can be further demonstrated by analysing the sea-
sonal energy delivery.
5.3. Seasonal variations

The final analysis will be made on seasonal variations.
This analysis includes the Earth’s obliquity and orbit
around the Sun, which changes the direction of the effective
Sun vector. The variation in the Sun vector direction
induces small variations in the angle of incidence and also
changes the direction of the Earth’s shadow cone. How-



Fig. 18. Energy delivered at different positions of the Earth around the
Sun.
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ever, it is expected that the eclipses have minimal impact on
the quantity of energy delivered from SSOs placed on the
terminator line.

To demonstrate the variation in the quantity of energy
delivered, again, an SSO at 1000 km altitude is considered.
The orbit is placed at the terminator line and is assumed to
deliver solar energy to an equatorial solar power farm of
10 km diameter. The local time, or the initial longitude,
is ko ¼ 88 deg. The Earth’s position is expressed as the
angle from the vernal equinox day, where h� ¼ 0 deg and
increased by 1deg or approximately by a day. The results
are presented in Fig. 18.

The results show minimal variation in the quantity of
energy delivered. The difference between the maximum
and minimum is approximately 70 kWh. The maximum
quantity appears to be sometime between the vernal equi-
nox and summer solstice. The maximum energy delivered
between the autumn equinox and winter solstice is slightly
smaller than this. Similarly, the minimum values of energy
delivered are between the summer solstice and autumn
equinox, and the winter solstice and vernal equinox. Again,
the former is slightly greater than the latter. On average,
the quantity of energy delivered is equal to 34.66 MWh
throughout the year. This consistency in energy delivery
builds confidence in the employment of orbiting solar
reflectors for solar energy applications throughout the
year.

6. Conclusion

The potential of orbiting solar reflectors can be assessed
with high-fidelity modelling of the quantity of energy deliv-
ered to illuminate terrestrial solar power farms to enhance
their utility beyond the hours of daylight. This paper has
presented a high-fidelity, semi-analytical model to calculate
the reflected solar energy from circular orbits. The model
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has been developed such that for a given input of orbital
elements and initial solar power farm position from the
Sun-line (i.e., local time), the output is the quantity of
energy delivered. An idealised flat reflector and a circular
solar power farm are assumed, but the model includes
the Earth’s oblateness, rotation and the Earth’s orbit
around the Sun and eclipses, in addition to time-
dependent geometrical area relationships between the
image of the solar disk and the solar power farm, and
atmospheric losses. This extends the model to be applicable
to circular orbits at different inclinations, and particularly
to Sun-synchronous orbits that are relevant for space-
based solar energy applications. The final integration is
piecewise due to different geometrical relationships and
can only be solved numerically. However, analytical
insights are presented for variable pass durations, eclipses,
angle of incidence and other geometrical relationships.

The results show that the Earth’s rotation, the orbital
elements, particularly the reflector orbit inclination, and
eclipses affect the energy delivered depending on the initial
solar power farm position. Prograde orbits generally pro-
vide higher energy delivery due to longer pass durations.
However, the difference between prograde and retrograde
orbits is reduced as the solar power farm latitude increases
and disappears at the pole point. Indeed, a point at the pole
will be stationary and the current model can be validated
with our previous study where the Earth is assumed to be
non-rotating. This validation also demonstrates that the
current model is more general than existing models. Other
applications show that for a range of Sun-synchronous
orbit altitudes, 1 km diameter reflector and 10 km diameter
circular solar power farm, the largest quantity of energy
delivered would be between 800 and 1000 km altitudes.

The model presented in this paper offers insights into the
reflected solar energy delivery problem that were not
offered in previous papers. The results for the Earth can
be used in the design of orbiting solar reflector missions
that enhance the utility of terrestrial solar power in the
realisation of a truly global clean energy service. The model
can in principle be extended to other planetary bodies.
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Appendix A. Rotation matrices

The successive rotations about an axis j (j = 1,2,3) can
be expressed by using Euler angles and three rotation
matrices as follows (Schaub and Junkins, 2009):

M1ðm1Þ ¼
1 0 0

0 cos m1 sin m1
0 � sin m1 cos m1

2
64

3
75 ðA:1aÞ

M2ðm2Þ ¼
cos m2 0 � sin m2
0 1 0

sin m2 0 cos m2

2
4

3
5 ðA:1bÞ

M3ðm3Þ ¼
cos m3 sin m3 0
� sin m3 cos m3 0

0 0 1

2
4

3
5 ðA:1cÞ

A rotation matrix sequence, such as 3-1-3 used in this
paper, can be created such that:

M313 ¼ M3ðm3ÞM1ðm1ÞM3ðm3Þ ðA:1Þ
where mj denotes the angle of rotation, e.g. an orbital
element.
Appendix B. Calculation of shadow cones

The calculation procedure in this section is a summary
of the discussion in Longo and Rickman (1995). The angles
and lengths used in these calculations are presented in
Fig. B.1.

In the case of the umbra cone, its height can be found as
follows:

qu ¼
REqsun

Rsun � RE
ðB:1Þ
Fig. B.1. Eclipse geometry and different
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and the apex angle au can be found by using trigonometry:

au ¼ arcsin
RE

2qu
ðB:2Þ

Similarly the penumbra cone can be determined by first
finding the distance qp:

qp ¼
REqsun

Rsun þ RE
ðB:3Þ

Again, the apex angle ap can be from trigonometry:

ap ¼ arcsin
RE

2qp
ðB:4Þ

The entry point of the umbra cone is then found by
using both the cone height qu and its half angle au, and
the projected position of the reflector on the Sun line (see
Section 4.2 and Fig. 7 for details), such that:

nu ¼ ðqu� jj Xpr jjÞ tan au ðB:5Þ
Similarly, the entry point of the penumbra cone can be

found using qp; ap and ~Xpr:

np ¼ ðqpþ jj Xpr jjÞ tan ap ðB:6Þ
Then, by subtracting the reflector’s projected position

on the Sun line from its orbital position, the vector perpen-
dicular to the Sun line (dðtÞ in Section 4.2) can be found. If
the magnitude of this vector is smaller than nu and np, then
the reflector is in penumbra or umbra, respectively. The
points where dðtÞ is equal to nu or np would indicate the
beginning or end of the penumbra or umbra eclipse dura-
tion, which are used in this paper to determine the eclipse
period of the reflector’s pass over a solar power farm.
parameters used in the calculations.
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