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IRFU, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France and
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The Laser Interferometry Space Antenna (LISA) mission is the future space-based gravitational-
wave (GW) observatory of the European Space Agency. It is formed by 3 spacecraft exchanging laser
beams in order to form multiple interferometers. The data streams to be used in order to extract the
large number and variety of GW sources are time-delay interferometry (TDI) data. One important
processing step to produce these data is the TDI on-ground processing, which recombines multiple
interferometric on-board measurements to remove certain noise sources from the data, such as laser
frequency noise or spacecraft jitter noise. The LISA noise budget is therefore expressed at the TDI
level in order to account for the different TDI transfer functions applied for each noise source and
thus estimate their real weight on mission performance. In this study, we present an update model
for the beams, measurements and TDI, with several approximations to derive the noise transfer
functions. The laser locking and noise correlation are taken into account to see their impact in
the transfer functions. A methodology for such a derivation has been established in details, as well
as verification procedures against simulated data. It results in a set of transfer functions, which
are now used by the LISA project, in particular in its performance model. Using these transfer
functions, realistic noise curves for various instrumental configurations are provided to data analysis
algorithms and used for instrument design.

I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) [1, 2]
is a space-based gravitational wave observatory that aims
to measure gravitational waves (GWs) in the millihertz
range. The mission is led by European Space Agency
(ESA), with National Aeronautic and Space Administra-
tion (NASA) as a junior partner, and European mem-
ber states contributing to both hardware and process-
ing. LISA will enable the observation of parts of the
Universe invisible by other means, such as black holes
and binaries of compact objects. Furthermore, we will
be able to study the very early Universe soon after the
Big Bang, and possibly discover yet completely unknown
objects. LISA will enhance our knowledge about astro-
physics, cosmology and fundamental physics.

LISA is composed of 3 spacecraft (S/C) in heliocen-
tric orbits, forming an equilateral triangle constellation.
The constellation trajectory is in the ecliptic plane at one
astronomical unit from the Sun, and leading or trailing

Earth on its orbit, with an angular seperation of 10 to
30 degrees. This distance from Earth is chosen to mini-
mize arm-breathing induced by the Earth while still being
close enough to allow communications.

The S/C exchange laser beams to form multiple inter-
ferometers. By monitoring the changes in distance be-
tween free-falling test-masses inside the spacecraft, LISA
senses gravitational waves. Six laser beams, imprinted by
the gravitational waves, connecting the local and distant
test-masses, interfer with local laser beams and permit
measurements with picometer precision. Achieving this
precision requires the suppression of many technical noise
sources, the largest of which is laser frequency noise. It is
expected to be several orders of magnitude above Grav-
itational Wave (GW) signals. Time Delay Interferome-
try (TDI) [3–10] will suppress this dominant source of
noise by 8 orders of magnitude, bringing it below sec-
ondary noises and GW signals. The basic idea of TDI
is to combine time-shifted phase or frequency measure-
ments from the three satellites on-ground to synthesize

https://www.lisamission.org/
https://www.esa.int/
http://www.nasa.gov
http://www.nasa.gov
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virtual interferometers which are naturally insensitive to
laser frequency noise, but still sensitive to GW signals.
Other noise sources that are above the requirements [2],
need to be suppressed as part of the TDI algorithm, such
as clock noise. Additional algorithms are developed to
suppress these noise sources and then integrated to the
latest version of the TDI algorithm [11].

To define the instrument performances, two classes
of noises are considered: suppressed noises and unsup-
pressed noises. The suppressed noises are dominant in
LISA measurements and should be mitigated by some on-
board or offline data processing (e.g., TDI), such as laser
frequency noise [12, 13], spacecraft jitter noise, clock and
ranging noises [11], tilt-to-length [14]. The unsuppressed
ones are secondary noises, such as test-mass acceleration
noise, optical path noises, readout noises, backlink, etc.
However, they will constitute the dominant contribution
to the LISA instrument noise budget after mitigation of
all suppressed noises. This article will present the an-
alytical formulation of how unsuppressed noises propa-
gate through TDI and the validation of these formula-
tions. The analytical transfer function are expressed in
TDI second generation, which is required for laser fre-
quency noise suppression in realistic orbits with varying
armlengths [3].

The transfer functions of second generation TDI for the
suppressed noises (laser frequency noise [12, 13], clock
jitter noise [11, 15] and for the secondary noises [16]
have already investigated with ideal conditions, i.e., equal
armlengths and same statistical property of the same
type noises in different Movable Optical Sub-Assemblies
(MOSAs). In this article, we work out the transfer func-
tions of unsuppressed noises without these assumptions.
In addition, the impact of laser locking and noise correla-
tion in the transfer function is also investigated. In fact,
laser locking and frequency plan were taken into account
in some studies of the laser frequency noise reduction, see
e.g., [17, 18], but not for the secondary noises. Therefore,
we can extend the understanding of the propagation of
unsuppressed noise in realistic configuration, which could
change the LISA noise budget.

The article is structured as follows. In section II, we
introduce the LISA convention, unsuppressed noises, its
beam model and measurements, and TDI formulation.
The laser locking and some correlation scenarios are also
addressed in this section. Then, section III will focus
on the methodology to get the power spectral density
of the signal as a function of frequency. Some examples
show the detailed computation for analytical noise trans-
fer functions with different configurations. At the end
of section III, we present the procedure to compare an
approximated formulation with instrument simulations
performed with LISANode. The section IV will be dedi-
cated to the summary of analytical noise transfer func-
tions and the simulation validation. Finally, we conclude
in section V.

II. LISA MODEL

A. Convention

In this article, we follow the convention for the LISA
constellation proposed by LISA Consortium ([19]). The
indexing is summarized on figure 1. Spacecraft are in-
dexed 1, 2, 3 clockwise when looking down at their so-
lar panels. Each of them hosts two Movable Optical
Sub-Assemblies (MOSAs) which include the test-mass
and its housing, the optical bench and the telescope. A
laser source is associated with each Movable Optical Sub-
Assembly (MOSA). MOSAs on each spacecraft are in-
dexed with two numbers ij:

• The first number i is the index of the S/C the
MOSA is mounted on, i.e., the local S/C.

• The second number j is the index of the S/C the
MOSA points to.

FIG. 1. LISA constellation convention. The MOSA hosted on
spacecraft 1 (SC 1) pointing at spacecraft 2 (SC 2) is labeled
MOSA12. Each element hosted on this MOSA and the asso-
ciated laser source will share the same indexes. For example
the noise due to the laser associated to the MOSA12 will be
labeled p12.

All subsystems of the MOSA, the associated laser and
the optical measurements are indexed according to this
MOSA. There are 3 main interferometric measurements
in each MOSA: Inter-Satellite Interferometer (ISI), Test
Mass Interferometer (TMI) and Reference Interferome-
ter (RFI), which are respectively denoted as isi, tmi, rfi.1

The ISI measurement is monitoring the distance between

1 To feed the clock noise reduction algorithm, we also need the
sideband measurements in the isi and the rfi [11].
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two optical benches (OBs) in difference spacecraft, while
the TMI measures the distance between the test-mass
(TM) and OB in the same MOSA. The RFI measure-
ment is used to mitigate the spacecraft jitter noise (re-
lation motion between test-mass and optical bench at-
tached in spacecraft), and to reduce the number of free-
running laser as we see later in section IIG. The detailed
formulation of these measurements will be presented in
sections II C and IID.

We define Lij(t) as the light travel time from S/C j
to S/C i, in seconds. For the propagation of light, we
denote the propagation delay operator2 by Dij , so that
Diju(t) = u(t− Lij(t)) for any time-series u(t). We also
use the TDI delay operatorDij , such thatDiju(t) = x(t−
L̂ij(t)), where L̂ij(t) is the estimate of the light travel
time Lij(t). For nested delay operators, we use the short
hand notation di1i2...in ≡ di1i2di2i3 . . . din−1in , where d
could be D or D. In general, those delay operators are
not commutative since light travel times evolve with time.
If we use the commutator notation of [A,B] = AB−BA
then [Dij ,Dmn]u(t) ̸= 0 when (i, j) ̸= (m,n). But if
delay times or armlengths are assumed to be constant,
delay operators become commutative. We will use this
to simplify the computation process.

Another process we indicate using an operator is the
action of the anti-aliasing filters, which are used to pre-
vent power folding in the band of interest during deci-
mation. Its operator is denoted as F , such as Fu(t) =
(f ∗ u)(t), where the asterisk stands for the convolution
of time-series u(t) with the filter kernel f(t).
The GW signal measured in ISIij , caused by the accu-

mulated delay of the beam received on S/C i from S/C
j due to a GW, is labelled Hij .

The wavelength of laser associated to MOSAij is λij

and its frequency is denoted as νij = c/λij . We also de-
fine the frequency of the laser beam received by MOSAij

from MOSAji as νi←j . Due to the Doppler shift along
the link Lji, νi←j ̸= νji. The laser frequency ν is the
sum of nominal frequency (carrier or sideband – THz),
an offset frequency (Doppler and laser locking – MHz)
and small fluctuations (noises and GWs – nHz to Hz).
The interferometric signals in LISA are the heterodyne
beatnote frequencies, i.e., the frequency differences be-
tween the frequencies of associated beams (offsets and
small fluctuations). Their signs are (beatnote polarities)
θisi and θrfi for ISI and TMI/RFI signals, respectively.{

θisiij = sign(ωi←j − ωij),
θtmi
ij = θrfiij = sign(ωik − ωij),

(1)

where ω = 2πν, (i, j, k) matches every cyclic permutation
of (1, 2, 3). In general, θisiij ̸= −θisiji but θrfiij = −θrfiik .

2 Technically, since the measurements will be expressed in rela-
tive frequency fluctuation units, Dij is a Doppler-delay operator

Diju(t) = (1− L̇ij(t))u(t− Lij(t)) (see section 7.2 of [10]).

B. List of unsuppressed noises

The laser frequency noise is the dominant noise source
in LISA, and reduced by TDI post-processing algorithm
(see section IIG). Other noises that are not suppressed
by TDI or other post-processing algorithms are called
unsuppressed noises. Unsuppressed noises are subdomi-
nant (for example with respect to laser frequency noise
or clock noise) but once these dominant noises have been
suppressed, they contribute to the LISA noise budget. It
is therefore necessary to study their propagation through
TDI.
The measurements will be either in phase or frequency,

or a mixture of both. The final choice is not yet made.
Since the noises we are interested are expressed as small
fluctuations (phase or frequency), we will assume that
the measurements are in relative frequency fluctuations.
It is also the unit used for most of the GW analyses.
We will denote the LISA instrumental noises as follows:

• pij : laser frequency noise (free-running or locked,
see II F) of the laser on MOSA ij;

• δij = δ⃗ij .n̂ji/c : projection of test-mass ij jitter

noise vector δ⃗ij onto the sensitive axis. n̂ji is the
reference axis for the MOSA ij, i.e., from test-
mass to Optical Bench (OB) (see figures 1 and 2).
We assume that all measurements are in fractional
frequency units. The test-mass jitter noise is ex-
pressed in velocity (m/s), so we need the factor 1/c
(see [8] for the detailed derivation);

OB12OB21

X
TM21

Z

X

Z

TM12

MOSA21 of  S/C2 MOSA12 of  S/C1

D21 D12

tmi 21 tmi 12 isi 21                                                                                                  isi12 

FIG. 2. Conventions for direction of beams and motions for
MOSA 12 and MOSA 21. The reference X axis for MOSA 12
is equal to n̂21.

• ∆ij = ∆⃗ij .n̂ji/c: projection of MOSA ij jitter

noise vector ∆⃗ij onto the sensitive axis (longitu-
dinal axis);

• µx
ij→ik: backlink noise for the x measurement, x ∈

{tmi, rfi}. This noise is dominated by straylight
in the optical fibre connecting two MOSAs of the
same S/C (from OBij to OBik, (i, j, k) is the set
of combination of (1, 2, 3)). In general, this noise is
non-reciprocal, i.e., µx

ik→ij ̸= µx
ij→ik.

• Nro
x,ij : readout noise for the x measurement of

OBij , x ∈ {isi, tmi, rfi} ;
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• Nop
α,ij : generic optical path (OP) noise term due to

optical path fluctuations on OB ij. α refers to:

– TX/isi: OP noise on the beam transmited to
the distant S/C induced by the sending S/C;

– RX/isi: OP noise on the beam received from
the distant S/C induced by the receiving S/C;

– tmi: OP noise on adjacent beam in the TMI
measurement;

– rfi: OP noise on adjacent beam in the RFI
measurement;

– loc/isi: OP noise on local beam in the ISI mea-
surement;

– loc/tmi: OP noise on local beam in the TMI
measurement;

– loc/rfi: OP noise on local beam in the RFI
measurement.

C. Beam modeling

In order to model the interferometric measurement, we
start by modeling the beams that interfere in terms of
combination of noises. The main six beams of the three
interferometers in the MOSA 12 are described as

bisi,21→12 = D12

[
p21 +Nop

TX/isi,21 −
1

c
n̂12.∆⃗21

]
+H12 −

1

c
n̂21.∆⃗12 +Nop

RX/isi,12 (2a)

btmi,13→12 = p13 + µtmi
13→12 +Nop

tmi,12 (2b)

brfi,13→12 = p13 + µrfi
13→12 +Nop

rfi,12 (2c)

bisi,12→12 = p12 +Nop
loc/isi,12 (2d)

btmi,12→12 = p12 +
2

c
n̂21.(∆⃗12 − δ⃗12) +Nop

loc/tmi,12 (2e)

brfi,12→12 = p12 +Nop
loc/rfi,12 (2f)

where

• bisi,21→12 is the beam from MOSA 21 received by
MOSA 12,

• brfi,13→12 and btmi,13→12 are the beams propagating
from MOSA 13 to MOSA 12 through the backlink,
which respectively contribute to RFI and TMI mea-
surements.

• bx,12→12 are the local beams of the MOSA 12 with
x ∈ {isi, tmi, rfi}.

In the current design, the local beam of the TMI,
btmi,12→12, is bouncing on the test-mass. The sign con-
vention is such that if the test-mass moves towards the
OB, i.e., δ⃗12 points in the positive direction (X axis of
MOSA 21, n̂21, see figure 2), the optical path on the

beam btmi,12→12 decreases. If the OB moves away from

the test-mass, i.e., ∆⃗12 points in the positive direction,
the optical path on the beam btmi,12→12 increases while
it decreases on bisi,21→12.
The beams in MOSA 13 are constructed in the same

way. One can easily write them from the formulae of
MOSA 12 by replacing index 2 by 3 everywhere. The
beams in the other MOSAs can be deduced by circular
permutation of indices (1 → 2 → 3 → 1).

D. Interferometer measurement

Using those beams, we can construct the 3 main inter-
ferometric measurements, for example in the MOSA 12,
as follows

isi12 = F
[
θisi12 (bisi,21→12 − bisi,12→12) +Nro

isi,12

]
tmi12 = F

[
θrfi12 (btmi,13→12 − btmi,12→12) +Nro

tmi,12

]
rfi12 = F

[
θrfi12 (brfi,13→12 − brfi,12→12) +Nro

rfi,12

]
.

(3)
As indicated before, we are interested in the small fluc-

tuations from noises and GWs, and so neglect the beat-
note offsets in the intereferometric measurements3. All
measurements are expressed in relative frequency fluctu-
ation units. In phase units, these equations are similar,
with additional conversion factors.

E. Correlations

Even though, the impact of correlations has been dis-
cussed in early TDI studies [20]. In most studies, as for
example [1, 2, 21, 22], the LISA Instrument noise perfor-
mance are assessed as uncorrelated single link contribu-
tion from optical measurement system and test-mass ac-
celeration. This assumption simplifies the calculation of
noise propagation but may induce non-negligible errors in
the estimation of LISA performances. To quantitatively
estimate the deviation from the ideal case, we will con-
sider some generic scenarios of correlation in this study.
Furthermore, we can split the noises into two parts, the
correlated and uncorrelated terms, and derive their trans-
fer functions separately.
One obvious correlation scenario is related to the

thermo-mechanical optical path noises in the telescope4.

3 The beatnote polarities θisi, θrfi depend on the total laser fre-
quencies of the interefering beams. However, they only define
the signs of the beatnote measurements.

4 While the optical path noise enters in the ISI measurements in
the same way as the MOSA jitter noise, it is not cancelled by
the time-delay interferometry algorithm, as described later in
section IIG, because it does not appear in the TMI measure-
ments.
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Since the same telescope is used for both sending and re-
ceiving beams, it will imprint an identical noise at the ISI
beam, located at both end of a link. The optical path
noise on the emitted beam NOP

TX/isi,ij and the received

beam NOP
RX/isi,ij in the telescope of MOSA ij are fully

correlated:

NOP
TX/isi,ij = NOP

RX/isi,ij . (4)

Another possible correlation scenario is related to test-
mass acceleration noise. The two test-masses share the
same S/C and thus will likely have correlated source of
noises like temperature driven noises (stiffness, symetric
outgassing), cross-talk of S/C jitter, coupling with local
and interplanetary magnetic fields or local gravity field
fluctuation. We express it by the following correlation
relation

δ⃗ij .n̂ji = γ δ⃗ik.n̂ki, (5)

where γ is the correlation factor and (i, j, k) can be any
permutation of (1, 2, 3). γ is 1 in the case of fully-
correlated noise, or -1 in case of anti-correlation. We will
derive the propagation of the fully-correlated acceleration
noise in section IV. The transfer functions for fully cor-
related and anti-correlated acceleration noise, fully cor-
related and anti-correlated adjacent (same S/C) interfer-
ometer noise and fully-correlated optical path noise at
the same telescope are also given (see tables II and III).

F. Frequency planning – Laser locking scheme

The inter-satellite separation distance varies in time
due to orbital dynamics. As a consequence, the laser
beam coming from the distant S/C is frequency-shifted
by about 10 MHz according to the Doppler effect. The
laser frequencies used for the interferometric measure-
ment are slightly offset. There is a time evolution of the
beatnote between the two beams used to measure phase
shift via heterodyne interferometry.

The optical measurement system tracks the beatnote
frequencies in the range of 5 to 25 MHz, which is not
compatible with free running lasers and Doppler-shifted
beams. To accomodate this constraint, we lock the lasers
by controlling the frequency of a laser (therefore the beat-
note frequencies) such that they remain equal to a pre-
programmed reference value [23]. We use the RFI mea-
surement to phase-lock a laser with its adjacent laser
in the same S/C (local locking), and the ISI signal to
lock the local laser to the distant laser (distant locking).
In the end, 5 of 6 lasers will be locked on the primary
laser. In this study, we assume that laser frequency con-
trol works perfectly so the locking beatnote offset, laser
frequency offset plus the Doppler shift if it is distant lock-
ing, is exactly equal to the desired value. We also do not
consider the beatnote offset in the interferometric mea-
surement, as discussed in subsection IID. The constraint

equation of the beatnote fluctuation is used without fil-
ter since the laser locking control loop operates at high
frequency before measurements are filtered and down-
sampled [10].
In this study, the configuration N4-32 (cfg N2c in [23])

has been used5. The detailed phase-locking is shown on
figure 3. The constraints on the beatnote fluctuations
are

isi�ZF21 = 0, (6a)

rfi�ZF31 = 0, (6b)

isi�ZF13 = 0, (6c)

rfi�ZF12 = 0, (6d)

isi�ZF23 = 0, (6e)

where ��@@F indicates the unfiltered and non-downsampled
signal. These equations yield the following formulation
for the 5 locked laser frequency fluctuations:

p23 = θisi23N
ro
isi,23 + bisi,32→23 −Nop

loc/isi,23, (7a)

p31 = θrfi31N
ro
rfi,31 + brfi,32→31 −Nop

loc/rfi,31, (7b)

p13 = θisi13N
ro
isi,13 + bisi,31→13 −Nop

loc/isi,13, (7c)

p12 = θrfi12N
ro
rfi,12 + brfi,13→12 −Nop

loc/rfi,12, (7d)

p21 = θisi21N
ro
isi,21 + bisi,12→21 −Nop

loc/isi,23. (7e)

FIG. 3. Frequency planning configuration N4-32 (cfg N2c
in [23]). The primary laser is 32 with frequency fluctuations
p32. The other lasers are locked via RFI measurements (31
and 12) or via ISI measurements (13, 21 and 23).

5 We used N4-32 because it was the preferred configuration when
this study started. Currently the preferred configuration is N1-12
but this does not change the final results which are independent
of the locking configuration.
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G. Time-delay interferometry formulation

Due to the unequal armlengths entering the ISI mea-
surements, laser noise cannot be cancelled out when two
beams interfere at the photodiode. While the lasers are
pre-stabilized, the laser frequency noise is still too high
and will be a few orders of magnitude above the mis-
sion requirements [24]. The postprocessing algorithm
called TDI will reduce the laser frequency noise below
the requirements by building an equal-arm interferom-
eter (combining time-shifted raw phase measurements).
It has been showed that TDI preserves the gravitational
wave signal [5, 25, 26].

The TDI formulation involves several steps, which
yield the TDI variables. The first step is to suppress
the spacecraft motion (also dubbed optical bench dis-
placement) noise ∆ij , by introducing the intermediary
variables ξij . The idea is to extract the spacecraft jitter
noise from the test-mass interferometer (TMI) measure-
ment by subtracting it with reference (RFI) one, so that
the laser frequency noise both contained in TMI and RFI
are canceled out as the result. Then we subtract that
result by the ISI measurement, which also contains the
same noise term, to annihilate the spacecraft jitter noise.

ξ12 = isi12 − θisi12θ
rfi
12

λ12

λ21

tmi12(t)− rfi12(t)

2

−θisi12θ
rfi
21

D12 [tmi21(t)− rfi21(t)]

2
, (8)

ξ13 = isi13 − θisi13θ
rfi
13

λ13

λ31

tmi13(t)− rfi13(t)

2

−θisi13θ
rfi
31

D13 [tmi31(t)− rfi31(t)]

2
. (9)

Then, we can build the second intermediary variables to
reduce the number of laser noises by half using the RFI
measurements.

η12(t) = θisi12ξ12(t) +
D12

[
θrfi21rfi21(t)− θrfi23rfi23(t)

]
2

,(10)

η13(t) = θisi13ξ13(t)−
θrfi13rfi13(t)− θrfi12rfi12(t)

2
. (11)

From the intermediary variables ηij , we can build the
TDI variables that reduce laser noise. Several TDI com-
binations exist [5, 9, 10, 27]. In this article, we focus
on the second generation Michelson variables X2, Y2, Z2,
where each of the two virtual beams of the TDI Michel-
son [5], visits both distant spacecraft twice. We compute
X2 as

X2 = (1−D12131) [(η13 +D13η31) +D131 (η12 +D12η21)]

− (1−D13121) [(η12 +D12η21) +D121 (η13 +D13η31)] .

(12)

The other two Michelson combinations Y2 and Z2 are
derived from this equation by circularly permuting all
indices.

III. METHODOLOGY

In this section, we introduce our method to compute
the TDI transfer function of the noise propagation, us-
ing as an example test-mass acceleration noise. Approx-
imations for the simplified result are then justified. Fi-
nally, we validate the analytic transfer functions of sev-
eral noises using the LISANode simulator.

A. PSD/CSD computation

We will briefly introduce a method for calculating the
spectral density, which follows the procedure used in the
software [28]. The Cross power Spectral Density (CSD)
of two signals u(t) and v(t) can be defined as

Suv(f) = CSD[u, v] = lim
T→∞

1

T
ũ∗T (f)ṽT (f) ≡ ⟨ũ∗(f)ṽ(f)⟩.

(13)
where ũ(f) is the Fourier transform of u(t) at the fre-
quency f , a∗ denotes the complex conjugate of any func-
tion a. uT (t) is u(t) restricted to a time window of dura-
tion T . ũT (f) is the Fourier transform of uT (t).

It is obvious to show that Svu(f) is just the complex
conjugate of Suv(f). The Power Spectral Density (PSD)
of some stationary signal u(t) is Suu. It describes the
energy contained in the signal u(t) around the frequency
f . Details on the calculation of the PSD and its statis-
tic properties are provided in appendix A. We note that
all the PSDs in this article are given in one-side power
spectral densities, so the frequency is only positive.

To compute the Fourier transform of TDI variables,
we should consider the atomic block in TDI formulation:
the nested delay operator. We assume the light travel
times are constants, i.e., Lij(t) = Lij . For a nested delay
operator applied to a time-series, v(t) = Di1i2...in+1

u(t),
the Fourier transform is

ṽ(ω) = exp

(
−jω

n∑
k=1

Likik+1

)
ũ(ω), (14)

with n the number of delays.

The PSDs of the usual TDI generators (X, Y and Z)
are usually compositions of a limited set of patterns. For
each term, we use (14) to form the Fourier transform and
then compute the PSD.

We will use the short-hand notation

L̄ij =
Lij + Lji

2
and L̄ijik =

Lij + Lji + Lik + Lki

4
(15)

Here, the PSD computation is done for the simple
nested delay operator ± (1−Diji)u(t). The list of all
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Nested delay operator PSD

± (1−Diji)u(t) 4 sin2
(
ωL̄ij

)
Su

± (1 +Diji)u(t) 4 cos2
(
ωL̄ij

)
Su

± (1−Diji)Di1i2...inu(t) 4 sin2
(
ωL̄ij

)
Su

± (1 +Diji)Di1i2...inu(t) 4 cos2
(
ωL̄ij

)
Su

±Di1i2...in (1−Diji)u(t) 4 sin2
(
ωL̄ij

)
Su

±Di1i2...in (1 +Diji)u(t) 4 cos2
(
ωL̄ij

)
Su

± (1 +Diji) (1−Dklk)u(t) 16 cos2
(
ωL̄il

)
sin2

(
ωL̄kl

)
Su

± (1−Diji) (1 +Dklk)u(t) 16 sin2
(
ωL̄ij

)
cos2

(
ωL̄kl

)
Su

± (1 +Diji) (1 +Dklk)u(t) 16 cos2
(
ωL̄ij

)
cos2

(
ωL̄kl

)
Su

± (1−Diji) (1−Dklk′)u(t) 16 sin2
(
ωL̄ij

)
sin2

(
ωL̄kl

)
Su

± (1−Diji −Dijiki +Dikijiji)u(t) 16 sin2
(
ωL̄ij

)
sin2

(
2ωL̄ijk

)
Su

(a± bDiji)x(t)
[
a2 + b2 ± 2ab cos

(
ωL̄ij

)]
Su

TABLE I. Table of PSD for the usual patterns present in TDI time domain formulations.

useful patterns is provided in table I.

PSD [± (1−Diji)u(t)] (ω)

=
〈 ˜[(1−Diji)u(t)](ω)× ˜[(1−Diji)u(t)]

∗
(ω)
〉

=
〈(

1− e−jω(Lij+Lji)
)(

1− ejω(Lij+Lji)
)
ũ(ω)ũ∗(ω)

〉
= 4 sin2

(
ωL̄ij

)
Su. (16)

The CSD computation have some common patterns.
Note that we need to respect the order of the terms in
the calculation.

1. X = ±(1 ± Diji)x(t) and Y = ± (1±Dklk)u(t).
We choose one case of specific set of signs in front
of the nested delay operators, the others are easily
worked out in the same way.

CSD [X,Y ] = CSD [(1−Diji)u(t), (1 +Dklk)u(t)]

=
〈 ˜[(1−Diji)u(t)](ω)× ˜[(1 +Dklk)u(t)]

∗
(ω)
〉

=
〈(

1− e−2jωL̄ij

)(
1 + e2jωL̄kl

)
× ũ(ω)ũ∗(ω)

〉
= ejω(−L̄ij+L̄kl)

(
ejωL̄ij − e−jωL̄ij

)
×
(
e−jωL̄kl + ejωL̄kl

)
⟨ũ(ω)ũ∗(ω)⟩

= ejω(−L̄ij+L̄kl)2j sin(ωL̄ij)2j cos(ωL̄kl)Su

= −4 sin(ωL̄ij) cos(ωL̄kl)e
jω(−L̄ij+L̄kl)Su (17)

2. X = ±(a± bDiji)x(t) and
Y = ± (1±Dklk)Di1i2...inu(t). We choose one case
of specific set of signs in front of the nested delay
operators, the others are easily worked out in the

same way.

CSD [X,Y ] = CSD [(a+ bDiji)u(t) ∗ (1−Dklk)Di1i2...inu(t)]

=
〈 ˜[(a+ bDiji)u(t)](ω)

× ˜[(1−Dklk)Di1i2...inu(t)]
∗
(ω)
〉

=
〈(

a+ be−jω(Lij+Lji)
)(

1− ejω(Lkl+Llk)
)

× ejω(Li1+Li2+...+Lin )ũ(ω)ũ∗(ω)
〉

= ejω(Li1+Li2+...+Lin−L̄ij+L̄kl)
(
e−jωL̄kl − ejωL̄kl

)
×
(
aejωL̄ij + be−jωL̄ij

)
⟨ũ(ω)ũ∗(ω)⟩

= −2j sin(ωL̄kl)e
jω(Li1

+Li2
+...+Lin−L̄ij+L̄kl)

×
(
aejωL̄ij + be−jωL̄ij

)
Su. (18)

B. Approximation justification

In the previous subsections, some assumptions and ap-
proximations are made to reduce the complexity of the
calculation. They are collected and justified here.

1. We assume that clock noise has been suppressed
totally by the clock noise reduction algorithm [11].
Therefore we do not need to consider the sideband
beams in our beam model, since they are only used
for clock noise reduction. Since the residual clock
noise is expected below secondary noises, this as-
sumption is acceptable in our study case.

2. All measurements are perfectly synchronized in the
Barycentric Coordinate Time. Hence, there are
no errors in time stamping the on-board measure-
ments. This assumption simplifies the complexity
of the computation.

3. All interferometric measurements are expressed as
fractional frequency fluctuations around the nomi-
nal laser frequency. We assume this nominal laser
frequency is constant and equal for all laser source,
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and it is equal to the nominal laser frequency,
c/1064 nm = 282 THz.

4. The Drag-Free Attitude Control System (DFACS)
is ignored in this study, which means the S/C and
test-masses are treated as independent bodies. We
also neglect the tilt-to-length coupling noise in the
beam model.

5. We are assuming that S/C hardware from the noise
performance perspective are statistically identical.
Hence 6 test-mass acceleration noises have the same
PSD, or a correlation noise appearing between two
adjacent test-masses will occur similarly on all S/C.

6. All armlengths of the LISA constellation are con-
stant, and so delay operators are commutative.
We use this approximation frequently with unsup-
pressed noises because the armlength variation is
a second-order effect for these noises. Therefore,
this approximation is justified in the study of un-
suppressed noises.

Lij(t) = Lij ∀i, j ∈ {1, 2, 3} (19)

7. Mostly in the case of unsuppressed noises, we ne-
glect ranging and interpolation errors so the prop-
agation delay operators and the TDI delay opera-
tors can be treated similarly, D ≈ D. The effect
of ranging and interpolation errors will contribute
more significantly in the case of suppressed noises
but this is out of the scope of this article.

8. To simplify the final transfer functions, we use the
approximation of equal armlengths, which could be
considered as the average armlength for long dura-
tion of the mission operation. Due to the almost
equilateral configuration of the LISA constellation,
we expect the average of each armlength should be
not too different.

In the simulation validation studies (see section III E),
the 5 first approximations (no clock jitter noise, synchro-
nized measurements, constant nominal laser frequency,
no DFACS and noises of the same kind statistically sim-
ilar) are made. The validity of these approximations will
not be tested here, whereas it will be for approximations
6 to 8.

C. Procedure for spectral density computation

We will now detail the calculation of the transfer func-
tions for unsuppressed noises, using as example test-
mass acceleration noise. The propagation of other un-
suppressed noises are worked out in a similar way.

The calculations are performed in several steps:

1. If we consider laser frequency planning, laser noises
from the locking scheme should be substituted into

the beam model6.

2. Since most of the time, we assume that noises of
different types are uncorrelated, we can ignore all
noises in the beams except for the one of interest.
The LISA total noise transfer function is then sim-
ply the sum of all individual noise transfer func-
tions. If a noise correlation scenario is considered,
we need to apply the correlation relations and keep
only one of the correlated noises in the beam model.

3. Next step is the computation of TDI variables, pre-
sented in subsection IIG. First are the intermediary
variables, then the TDI combinations. We write the
result in terms of the product of nested delay oper-
ator applied to each noise, to ease the identification
of patterns in the next step.

4. Hence, we can use the patterns PSD/CSD pre-
sented in subsection IIIA for quick computation of
the spectral density of individual noise terms. The
noise terms are considered uncorrelated. The cor-
relations are treated by introducing the same noise
term in multiple measurements.

5. We use the approximation of constant armlengths
(19) to simplify the computation (allowing to com-
mute delay operators). Most of the time, the PSD
XX and the CSD XY are enough because we can
use index permutation to deduce the other spectral
densities. This apply if the beams are symmetric,
so it does not for the cases with frequency planning.

6. Finally, we sum up all components and simplify the
result using some approximations presented in the
end of subsection III B.

D. A few examples

1. Uncorrelated test-mass acceleration noise without laser
locking

In this section, we only consider test-mass acceleration
noise. For simplicity, we omit the time dependency in
the noise notation δ, but still remember that it is a time
varying signal. We only consider the projection of test-
mass displacement noise on the sensitive axis, δij , since
it is what enters the measurements.

6 An alternative approach is shown in section 12.2 of [10]. In prin-
ciple, TDI makes sure all the pij terms are strongly suppressed,
so any secondary noise terms in pij due to laser locking are sup-
pressed alongside the laser noise. Therefore, we expect the sec-
ondary noise levels to remain identical regardless of the locking
scheme, as verified by the explicit computation.
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Without frequency planning and correlation, the for-
mulation of the measurements in S/C 1 are: isi12 = 0

rfi12 = 0
tmi12 = 2 F θrfi12 δ12

 isi13 = 0
rfi13 = 0
tmi13 = 2 F θrfi13 δ13

(20)
We then compute the TDI intermediary variables. We
neglect the ranging and interpolation errors such that
the two types of delay operators are equivalent, D ≈ D.
Moreover, the nominal laser wavelength for every laser
source is constant and equal, i.e., λij = λ. Applying
these approximation to equations (8), (9), (10) and (11),
we get

ξ12 = −θisi12 F (D12δ21 + δ12) , (21)

ξ13 = −θisi13 F (D13δ31 + δ13) , (22)

and then

η12 = −F (D12δ21 + δ12) , (23)

η13 = −F (D13δ31 + δ13) . (24)

The Michelson combination is computed as follows, us-
ing the constant armlength approximation (19) (we can
commute the delay operators with themselves and with
antialiasing filter operator7).

X2 = (1−D12131) [(η13 +D13η31)

+D131 (η12 +D12η21)]− (1−D13121)

× [(η12 +D12η21) +D121 (η13 +D13η31)]

≈ (1−D12131) [(1−D121) (η13 +D13η31)

− (1−D131) (η12 +D12η21)]

= F
{
− (1−D12131) (1−D121) (1 +D131) δ13

−2 (1−D12131) (1−D121)D13δ31

+(1−D12131) (1−D131) (1 +D121) δ12

+2 (1−D12131) (1−D131)D12δ21

}
(25)

The Y -channel is just the index permutation of X-
channel.

Y2 = F
{
− (1−D23212) (1−D232) (1 +D212) δ21

−2 (1−D23212) (1−D232)D21δ12

+(1−D23212) (1−D212) (1 +D232) δ23

+2 (1−D23212) (1−D212)D23δ32

}
(26)

7 This is not true in the case of suppressed noises like laser fre-
quency noise. In such cases, we need to take into account the
non-commutation of delay operators with themselves and with
filter operators [12].

The PSD of these Michelson variables can be worked
out by collecting the Fourier transforms of the auto-
correlation functions of each noise in each MOSA. As-
suming uncorrelated noises, the cross-terms between two

different noises, such as ⟨δ̃12
∗
(f)δ̃13(f)⟩, are vanishing.

We can also use results from section IIIA for fast deduc-
tion. For example, the contribution to the PSD of X-
channel SXX(f) of acceleration noise in MOSA 13 reads:

PSD [−F (1−D12131) (1−D121) (1 +D131) δ13] (ω)

= 64SF (ω)Sδ13(ω) sin
2
[
ω(L̄12 + L̄31)

]
× sin2(ωL̄12) cos

2(ωL̄31), (27)

where SF (ω) = ⟨|F̃(f)|2⟩ and Sδ13(ω) = ⟨|δ̃13(f)|2⟩.
Then, one can check that the PSD of the X-channel for
the uncorrelated test-mass acceleration noise is:

Suncorr acc tm
XX (ω) = 64SF (ω) sin

2
[
ω(L̄12 + L̄31)

]
×
{
sin2(ωL̄12)

[
cos2(ωL̄31)Sδ13(ω)

+Sδ31(ω)] + sin2(ωL̄31)

×
[
cos2(ωL̄12)Sδ12(ω) + Sδ21(ω)

]}
(28)

The PSD of Y -channel, Suncorr acc tm
YY , has the same

form with permuted indices {1 → 2, 2 → 3, 3 → 1}. We
can use the equal armlength approximations Lij = L
and that all test-mass acceleration noises share the same
PSD, Sδij = Sδ, to get:

Suncorr acc tm
XX (ω) = Suncorr acc tm

YY (ω)

= 64 sin2 (2ωL) sin2 (ωL) [3 + cos(2ωL)]

×SF (ω)Sδ(ω) (29)

To compute the CSD between X and Y , we use the
same procedure and collect the non-zero terms that
have the same noise index. Note that CSD[Y,X] =
CSD[X,Y ]∗, so we only need to compute the CSD of
XY . We can also use the CSD result from section IIIA.
For example, the contribution of acceleration noise in
MOSA 12 to the CSD SXY reads:

CSD

[
F (1−D12131) (1−D131) (1 +D121) δ12

∗(−2) (1−D23212) (1−D232)D21δ12

]
(ω)

= −64SF (ω)Sδ12(ω) sin
[
ω(L̄12 + L̄31)

]
× sin

[
ω(L̄12 + L̄23)

]
sin(ωL̄13) sin(ωL̄23) cos(ωL̄12)

× exp
[
−jω

(
2L̄13 − 2L̄23 + L̄12 − L21

)]
(30)
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One can find the CSD of XY is given by

Suncorr acc tm
XY (ω) = −64SF (ω) sin

[
ω(L̄12 + L̄31)

]
× sin

[
ω(L̄12 + L̄23)

]
sin(ωL̄13)

× sin(ωL̄23) cos(ωL̄12)e
−jω L12−L21

2

×e−2jω(L̄13−L̄23) [Sδ12(ω) + Sδ21(ω)]

(31)

Assuming equal armlengths and the same test-mass
acceleration noise level in all MOSAs, we obtain

Suncorr acc tm
XY (ω) = −64SF (ω) sin

3 (2ωL) sin (ωL)Sδ(ω)

(32)

2. Uncorrelated test-mass acceleration noise with laser
locking

To account for frequency planning, we need to derive
the locked laser frequency fluctuations as functions of
the primary laser, p32, before substituting them in the
beam model and interferometric measurements. We use
the group of equations (7) and we only keep track of the
test-mass acceleration and primary laser noises,

p23 = D12 p32 (33a)

p31 = p32 (33b)

p13 = D21 p32 (33c)

p12 = D21 p32 (33d)

p21 = D321 p32. (33e)

Due to laser locking, the beams and interferometric
measurements are no longer symmetric for the different
S/C. We therefore give the interferometric signals for the
whole LISA constellation

• On S/C 1: isi12 = θisi12F (D121 − 1)D13p32
rfi12 = 0
tmi12 = 2 F θrfi12 δ12

(34)

 isi13 = 0
rfi13 = 0
tmi13 = 2 F θrfi13 δ13

(35)

• On S/C 2: isi23 = 0
rfi23 = θrfi23F (D213 −D23) p32
tmi23 = θrfi23F [(D213 −D23) p32 + 2δ23]

(36)

 isi21 = 0
rfi21 = θrfi21 (D23 −D213) p32
tmi21 = θrfi21F [(D23 −D213) p32 + 2δ21]

(37)

• On S/C 3:  isi31 = θisi31 (D313 − 1) p32
rfi31 = 0
tmi31 = 2Fθrfi31δ31

(38)

 isi32 = θisi32 (D323 − 1) p32
rfi32 = 0
tmi32 = 2Fθrfi32δ32

(39)

The next step is to compute the TDI intermediary vari-
ables ξ, η. Assuming D = D, one can verify that

η12 = F(D123 −D13)p32 −F (D12δ21 + δ12) (40)

η13 = −F (D13δ31 + δ13) (41)

η23 = −F (D23δ32 + δ23) (42)

η21 = F(D213 −D23)p32 −F (D21δ12 + δ21) (43)

η31 = F(D313 − 1)p32 −F (D31δ13 + δ31) (44)

η32 = F(D323 − 1)p32 −F (D32δ23 + δ32) (45)

We note that, except for the terms with laser frequency
noise p32, all terms in η are identical to the case without
laser locking. That is expected because the locking con-
straints (7) do not contain test-mass acceleration noise
in any term. The X-channel for laser noise only is

Xp-only
2 = F [(1−D13121)(1−D12131)

−(1−D12131)(1−D13121)] p32, (46)

which is cancelled out when we commute the TDI delay,
i.e., using constant delays assumption. In the end, the
TDI combinationsX, Y and Z in the case of laser locking
for the test-mass acceleration noise are exactly the same
as in the case without laser locking, (29) and (32).

3. Uncorrelated readout and optical path noises with laser
locking

The locking constraints (7) contain readout noises,
Nro

x,ij , and optical path noises, Nop
loc/x,ij . Therefore, the

situation is different from acceleration noise. Expanding
η12 without laser locking, we get:

η12 = θisi21FNro
s,12 − θrfi21FD12

Nro
ϵ,21 −Nro

rfi,21

2

−θrfi12F
Nro

ϵ,12 −Nro
rfi,12

2
+ θrfi21D12F

Nro
rfi,21 +Nro

rfi,23

2
,

(47)

while we get with laser locking:

η12 = θisi12FNro
s,12 − θrfi21D12F

Nro
ϵ,21 −Nro

rfi,21

2

−θrfi12F
Nro

ϵ,12 −Nro
rfi,12

2
+ θrfi21D12F

Nro
rfi,21 +Nro

rfi,23

2

−θisi13FNro
s,13 + θisi23FD12N

ro
s,23

−θrfi31FD13N
ro
rfi,31 − θrfi12FNro

rfi,12 (48)
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We observe that laser locking introduces additional
terms. These terms actually vanish at the next TDI step,
when forming the variable η. Considering, for example,
solely Nro

s,13, we have

η12 = −θisi13N
ro
s,13,

η21 = θisi13D21N
ro
s,13,

η31 = θisi13D31N
ro
s,13

Substituting in X2 given by equation (12), we get

X2 = [1−D121 −D12131 +D1312121 + (D13121 −D12131)

+ (D131212131 −D121313121)] θ
isi
13N

ro
s,13. (49)

Assuming that delay operators commute, the terms in
parentheses disappear and we are back to the results
without laser locking.

One can checked that we obtain the same results as for
the case without laser locking, for all terms of readout
noises and optical path noises. Finally, we find that the
results are the same with and without laser locking for
all unsuppressed noises.

4. Correlated acceleration noise

Finally, we consider the correlation scenario (5) for
test-mass acceleration noise. The correlation relation is

δij = γ δik, (50)

for (i, j, k) = circular permutation of (1, 2, 3), with γ the
correlation factor and with j ̸= k. We substitute this in
the beam model and then form the interferometric mea-
surements. Since the correlated noises are in the same
S/C, the interferometric measurements remain symmet-
ric (as in the uncorrelated noise case). In S/C 1, we keep
only the test-mass acceleration noise from MOSA 12,

 isi12 = 0
rfi12 = 0
tmi12 = 2 F θrfi12 δ12

 isi13 = 0
rfi13 = 0
tmi13 = 2 F θrfi13 γδ12

(51)
Then, the TDI intermediary variables η for S/C 1 are

η12 = −F (γD12δ23 + δ12) , (52)

η13 = −F (D13δ31 + γδ12) (53)

Applying the same procedure as for the uncorrelated
case, we get the following expression for the PSD:

Scorr acc tm
XX (ω) = 32

[
3γ2 + 2γ + 3 + (1 + γ)

2
cos(2ωL)

]
× sin2 (2ωL) sin2 (ωL)SF (ω)Sδ(ω),

(54)

and, for the CSD,

Scorr acc tm
XY (ω) = −64

[
(1 + γ)

2
cos(2ωL)− γ

]
× sin2 (2ωL) sin2 (ωL)SF (ω)Sδ(ω)

(55)

This example is a good illustration of the importance
of correlation. Indeed, at low frequency, cos(2ωL) ∼ 1,
and the fully correlated case (γ = 1) is 1.5 times higher
than the uncorrelated case. On the other hand, the fully
anticorrelated case (γ = −1) case is 2 times lower than
the uncorrelated case.

E. Validation with simulation

1. LISANode

LISANode [29] is the current official simulator of the
LISA Consortium. It is a time domain simulator based on
a modular structure using graphs to connect blocks and
finally core components. The core components are coded
in C++ and the rest (organisation of components, graph
building and validation, user interface) is in Python. Part
of the logic and several elements are inherited from the
LISACode simulator [6, 25]. LISANode takes as inputs an
orbit file, a frequency plan and potentially GW files and
glitch files. It simulates the noises sources, the propa-
gation of laser beams, the interferometric measurements,
the phasemeters, the clocks, etc. It produces the inter-
ferometric measurements at 16 Hz. These measurements
are then filtered and downsampled at 4 Hz to produce
the telemetred data. The simulator is then connected
to a processing module to apply TDI and produce any
TDI variables. It has already been used in multiple stud-
ies [11–13, 15] and is described in [8, 10].

2. Numerical method for spectral estimation

The procedure to validate the transfer function of a
particular type of noise (for example acceleration noise
or readout noise) is the following:

i) We configure the simulation for the noise to be stud-
ied, with all other noises configured to produce zeros
as output;

ii) From the simulated time domain data, we compute
the PSD and the CSD;

iii) For the same set of frequencies, we compute data
from our analytical formulation;

iv) We overplot the simulated and analytical PSDs
or CSDs, adding for the analytical curve, the
99.73% confidence interval (3 σ for normal distribu-
tion) which is computed statistically for our Welch
PSD/CSD estimates;
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v) The simulated points outside the confidence interval
are detected. The level of agreement between ana-
lytical formulation and simulated data is estimated
based on the plot and the number of points outside
the confidence interval.

IV. RESULTS

A. Propagation of unsuppressed noises

1. Analytical formulations

To summarize all analytical results, we list the noises
with the specific correlation and the TDI transfer func-
tions for X in table II. The results are the same for Y
and Z, even with laser locking. For all these results, the
equal armlengths and equal noise level approximations
are used. We do not distinguish between the case with
or without laser locking, since the results are identical
for the unsuppressed noises. For the sake of brevity, we
introduce two common factors in the summary table:

CXX(ω) = 16 sin2(ωL) sin2(2ωL), (56)

CXY (ω) = −16 sin(ωL) sin3(2ωL). (57)

Several types of noises share the same transfer func-
tion. For some of them, it is simply because the noises
enter identically in the measurement (e.g., readout ISI
and optical path ISI).

As a result, we recover the transfer functions of all
common noises existing in LISA sensitivity [2] after us-
ing the approximations. New transfer functions of the
optical path and readout noises in test-mass interferom-
eters are found, which can change the shape of LISA
sensitivity. In different noise correlation scenarios, the
transfer functions could be either lower or higher than
the ones in the uncorrelated case, which can help build
the worst-case model for the LISA noise budget.

There is another set of TDI variables, called A,E,T,
constructed from X,Y,Z [30, 31]:

A =
Z −X√

2
, E =

X − 2Y + Z√
6

, T =
X + Y + Z√

3
. (58)

A,E,T are useful for data analysis since they have vanish-
ing CSDs under the approximations of equal armlengths
and equal noise levels for the same type noises. The PSDs
for A,E,T are given in table III. They combine the PSDs
and CSDs of X,Y,Z as

SAA =
SZZ + SXX − 2Re[SZX ]

2
(59)

SEE =
SXX + 4SY Y + SZZ − 2Re[2SXY − SXZ + 2SY Z ]

6
(60)

STT =
SXX + SY Y + SZZ + 2Re[SXY + SXZ + SY Z ]

3
(61)

and are therefore slightly more complex. We remark that
while the equal arm models derived here are accurate
enough to describe the GW-sensitive channels X,Y,Z, as
well as for the quasi-orthogonal channels A and E, it
was demonstrated that this assumption is insufficient for
accurately describing the behaviour of the null-channel
T, in particular at low frequencies [32, 33].

2. Analytic formulations versus simulations

For the frequency range 10−4 to 1 Hz, the simulated
and analytical PSD/CSD for TDI X have been plotted
(see figures 4, 5, 6 and 7). Red lines show the analytical
formulation expressions. The blue dashed lines represent
the instrument response to the simulated single noises
(i.e, the test-mass acceleration noise in the following ex-
ample) for a duration about 3 × 105 s for uncorrelated
and correlated and about 7×104 s for anticorrelated. The
green envelope highlights the 99.73% confidence interval
with respect to the analytical formulation. The width
of the envelope depends on the confidence interval and
on the duration of the simulation (see the difference be-
tween 6 and 4 and 5). The probability that a single point
is outside of the confidence interval is around 4.5×10−7

in case of a perfect agreement between analytical formu-
lation and simulation (see appendix A and equation A5).

Figures 4, 5 and 6 show a great agreement for the test-
mass acceleration noise PSD in all uncorrelated, corre-
lated and anti-correlated cases.

The confidence interval described in the appendix A is
not applicable to the CSD. Nevertheless, the CSD com-
putation shows good visual agreement with the simulated
data from LISANode (see figure 7).
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FIG. 4. Uncorrelated test-mass acceleration noise cross-
comparison. The simulated data (red line) at 99.73% con-
fidence interval (green area) are in great agreement with the
analytical formulation (blue dashed line).
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Noise type Correlation PSD CSD

test-mass
acceleration

None 4CXX(ω) [3 + cos(2ωL)] 4CXY (ω)
Fully-correlated at the same S/C 8CXX(ω) −4CXX(ω)
Anti-correlated at the same S/C 8CXX(ω) [2 + cos(2ωL)] 4CXX(ω) [1− 4 cos(ωL)]

Readout (TMI) and
Optical Pathlength
(TMI)

None CXX(ω) [3 + cos(2ωL)] CXY (ω)
Correlated adjacent TMI noise 2CXX(ω) −CXX(ω)

Anti-correlated adjacent TMI noise 2CXX(ω) [2 + cos(2ωL)] CXX(ω) [1− 4 cos(ωL)]
Backlink (TMI) None CXX(ω) [3 + cos(2ωL)] CXY (ω)
Readout (ISI and
RFI) and Optical

Pathlength (ISI and
RFI)

None 4CXX(ω) CXY (ω)
Correlated adjacent IFO noise 2CXX(ω) −CXX(ω)

Anti-correlated adjacent IFO noise 6CXX(ω) CXX(ω) [1− 4 cos(ωL)]
Fully correlated at the same telescope 4CXX(ω) [3 + cos(2ωL)] 4CXY (ω)

Backlink (RFI) None 4CXX(ω) CXY (ω)

TABLE II. Summary table of analytical TDI X,Y ,Z transfer functions for unsuppressed noises. All results have been simplified
using approximations (refer to subsection III B).

Noise type Correlation PSD A & E PSD T

test-mass
acceleration

None 4CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 32CXX(ω) sin4(ωL
2
)

Fully-correlated noises at the same S/C 4CXX(ω) [1 + 2 cos(ωL)]2 64CXX(ω) sin4(ωL
2
)

Anti-correlated at the same S/C 12CXX(ω) 0

Readout (TMI) and
Optical Pathlength
(TMI)

None CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 8CXX(ω) sin4(ωL
2
)

Correlated adjacent TMI noise 3CXX(ω) 0

Anti-correlated adjacent TMI noise CXX(ω) [1 + 2 cos(ωL)]2 16CXX(ω) sin4
(
ωL
2

)
Backlink (TMI) None CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 8CXX(ω) sin4(ωL

2
)

Readout (ISI and
RFI) and Optical

Pathlength (ISI and
RFI)

None 2CXX(ω) [2 + cos(ωL)] 4CXX(ω) [1− cos(ωL)]
Correlated adjacent IFO noise 3CXX(ω) 0

Anti-correlated adjacent IFO noise CXX(ω) [5 + 4 cos(ωL)] −8CXX(ω) [−1 + cos(ωL)]
Fully correlated at the same telescope 4CXX(ω) [3 + 2 cos(ωL) + cos(2ωL)] 32CXX(ω) sin4(ωL

2
)

Backlink (RFI) None 2CXX(ω) [2 + cos(ωL)] 4CXX(ω) [1− cos(ωL)]

TABLE III. Summary table of analytical TDI A,E,T transfer functions for unsuppressed noises. All results have been simplified
using approximations (refer to subsection III B).
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FIG. 5. Correlated test-mass acceleration noise cross-
comparison. The simulated data (red line) at 99.73% con-
fidence interval (green area) are in great agreement with the
analytical formulation (blue dashed line).

B. About the propagation of suppressed noises

Although this article focuses on unsuppressed noises,
for the sake of completeness, we will summarize the sta-
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FIG. 6. Anti-correlated test-mass acceleration noise cross-
comparison. The simulated data (red line) at 99.73% confi-
dence interval (green area) are in great agreement with the
analytical formulation (blue dashed line).

tus of transfer functions for the suppressed noises, i.e.,
noises suppressed by TDI, as well as the additional noises
induced by this suppression.
Laser frequency noise has to be suppressed by sev-

eral order of magnitude by TDI, in order to be below
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FIG. 7. CSD uncorrelated TM acceleration noise. The red
line is the simulated data and the blue dashed line is the
analytical formulation.

the required noise level [2, 24, 31] defined by the unsup-
pressed noises (acceleration, readout and optical path).
It has been the main focus of TDI noise reduction stud-
ies during many years, one of the most recent studies on
the topic being [12]. Because of the high level of reduc-
tion required, the residual level is sensitive to all limit-
ing effects from the application of TDI: flexing-filtering
(non commutation between anti-aliasing filters and de-
lays) [12], ranging bias, stochastic ranging (imprecision
in the knowledge of delays), interpolation, aliasing and
fundamental armlength mismatch (limitation due to the
flexing with TDI 2.0). There are ongoing active studies
on all these effects and preliminary transfer functions are
already available enabling to establish the expected level
of the residual laser noise. Moreover, the residual laser
noise depends on the laser locking configuration. Only
preliminary checks based on simulation have been done
and preliminary models have been developed [10], and
more detailed studies are necessary.

In prinicple, most effects leading to residual laser noise
will also cause residuals in other noise sources which are
perfectly cancelled in an idealized situation. However,
since these other suppressed noises are several orders of
magnitude smaller than laser noise, their residuals can
usually be neglected.

Clock noise is also reduced by TDI. While its initial
level is lower than that of laser noise, it is still a few
orders of magnitude higher than the required noise level.
In order to suppress clock noise, the laser beams carry
sideband modulation with a clock-derived signal, creating
so-called clock-sidebands. Interferometric measurements
of these sidebands are then used in the TDI algorithm to
reduce clock noise [11].

S/C jitter noises ∆⃗ij are in theory perfectly cancelled
by TDI when forming the ξij (see (8) and (9)). In reality,
this cancellation will not be perfect and some residual
noise is expected.

Finally, since the application of TDI is a numerical
procedure, some numerical limitations are expected.

The estimated residuals of all suppressed noises are
currently below the required level, but some contribu-
tions are not negligible and need to be carefully studied.
The laser locking will impact some of these suppressed
noises and is the topic of further studies currently under-
way.

V. CONCLUSION

The modeling of the noises and their propagation from
the measurements to the TDI variables are crucial for
the LISA mission. Indeed, the TDI algorithm will re-
duce some noise sources while leaving others largely un-
touched. The impact of correlations between links can
either improve or deteriorate the performance of the mis-
sion at the TDI level. We have seen this in the particular
case of test mass acceleration noise, but it is also true for
tilt-to-length [14] or thermo-mechanical noises. In addi-
tion, many noises related to the application of the algo-
rithm itself, such as interpolation, clock noise residual or
sideband modulation noise [11] can only be expressed at
TDI level. Whether it is to establish the noise budget of
the mission or to improve our understanding and knowl-
edge of the noise for the needs of data analysis, the use
of these TDI models is necessary.
The TDI variables are the main data used to extract

GW signals. Therefore, it is important to have a good
modeling of the noise PSD and CSD for the various TDI
variables in order to search for GW sources, estimate
their parameters and distinguish them from the instru-
ment noises. This last point is particularly important for
the search for stochastic gravitational wave backgrounds
which can easily be confused with noise.
In this article, we revisit a method to compute ana-

lytically the PSDs and the CSDs of unsuppressed noises
at TDI level, as well as justify the approximations to
simplify the result. We indeed derive the TDI transfer
functions for most of noises in the update model for the
LISA interferometric measurements in the more realistic
configuration. We recover the transfer functions of the
standard LISA unsuppressed noises [2, 3, 26] in the ideal
case, i.e., under the assumption of equal armlengths and
identical statistical properties of same type noises in dif-
ferent MOSAs. It also turns out that the optical and
readout noises in the testmass interferometers have dif-
ferent transfer function than the ones in reference and
inter-satellite interferometers.
In addition, some standard cases of correlation have

been studied. Accordingly, the spectral density of cor-
related noises could either improve or degrade the LISA
noise budget, depending whether they are anti-correlated
or fully correlated. Further analyses to identify correla-
tion scenario preferable in reality are required.
The analytical expressions are provided in tables II

and III for the TDI variables X, Y, Z, A, E and T. The
analytical transfer functions of X, Y, Z have been vali-
dated against simulations in different configurations.
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The same method can be applied to any unsuppressed
noises and to any TDI variables.

The transfer functions for the unsuppressed noises with
laser locking are the same as the ones without laser lock-
ing. It is not necessarily the case for suppressed noises,
but we leave this for future works. Actually the propa-
gation of suppressed noises is usually more complicated.
Several studies are underway and should soon result in
publications.

Appendix A: Estimation of power spectral densities

In the following we describe the procedure of estimat-
ing the power spectral density for a stochastic time series
x(t) of finite length T . We use the Scipy implementation
of the so called “Welch’s Method”. It is summarized
in the following steps. First, the data is divided into
M segments of length L and a window function w(t) is
applied. Then, for each segment the Fourier transform
is calculated which form independent estimates of the
power spectral density as defined in (A1). Finally, the
average (see (A2)) over the M segments is taken to re-
duce the variance.

Ŝ(m)(fk) =
|x̃(m)

w (fk)|2

L
(A1)

S̄(fk) =
1

M

M−1∑
m=0

Ŝ(m)(fk) (A2)

This procedure yields estimates of S̄(fk) at frequencies
fk = ∆fk with k running from zero to K = Lfs. The
spectral resolution is given by ∆f = 1

L . In theory one
could choose to average over many segments to yield a
very precise estimate of the PSD. However, in reality we
are faced with limited amount of data and have to trade
off between low variance and high spectral resolution.

In our studies we aim to validate the analytical PSD
models with simulated data. To check whether the PSD
estimates S̄(fk) are consistent with the model (null hy-
pothesis) we conduct an hypothesis test. We define the
confidence level γ that represents the probability that all
PSD estimates are inside a given confidence interval.

γ =

K−1∏
k

P
(
S̄−(fk) ≤ S̄(fk) ≤ S̄+(fk)

)
(A3)

We reject the null hypothesis if a single estimate S̄(fk)
resides outside the confidence interval.

The confidence intervals [S−(fk), S+(fk)] can be de-
rived from the statistics of the PSD estimates S̄(fk). It
is easy to show that S̄(fk) has an expectation value of

E{S̄(fk)} =
(|w̃|2 ∗ S)(fk)

L
(A4)

Moreover, it has been demonstrated in [34] that νS̄(fk)
E{S̄(fk)}

is χ2
ν distributed with ν = 2M degrees of freedom. By

attributing “equal confidence” to each of theK frequency
bins we can write

P
(
S̄−(fk) ≤ S̄(fk) ≤ S̄+(fk)

)
= γ

1
K = 1− α (A5)

where α is the probability that the estimate resides out-
side the confidence interval. The limits S̄−(fk) and
S̄+(fk) are constructed symmetrically such that

P
(
S̄(fk) < S̄−(fk)

)
= P

(
S̄(fk) > S̄+(fk)

)
=

α

2
(A6)

They can be calculated by using the χ2
ν distributional

property.
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