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Abstract8

Walking to and from school has significant implications for children’s physical and mental well-being.9

This study aims to investigate the accuracy of routing engines (Google Maps, Mapbox, and OSRM)10

in replicating GPS trajectories and explore potential associations with gender and socioeconomic11

status. The study analysed GPS data from 227 children aged 10-11 years old in Scotland. The12

results indicated that OSRM exhibited the highest accuracy with a mean GPS track overlap of13

56%. However, no substantial differences were found between the routing engines. Additionally,14

the accuracy of the engines did not vary based on gender or socioeconomic status. These findings15

provide reassurance that potential biases do not arise when using these navigation tools, as their16

accuracy remains consistent across different demographic groups.17
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1 Introduction28

Walking to and from school can greatly impact the overall physical and mental health of29

children [1]. Previous research has emphasised the importance of active commuting to school,30

as it encourages increased physical activity, benefiting bone and muscular fitness, mental31

well-being, and even saving time during drop-offs and pick-ups while raising awareness32

of traffic safety [1, 2, 3]. Furthermore, active commuting helps to reduce (non) tailpipe33

emissions and air pollution, both of which have far-reaching effects on public health and the34

environment [4].35

Understanding the routes children take to school is vital for their safety [5], fostering a36

sense of familiarity [6, 7], and effectively managing time during active travel [8]. Additionally,37

route choices hold particular significance for children from lower socioeconomic backgrounds38
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who may have limited access to transportation options and fewer opportunities to engage39

with enriching resources like museums and libraries.40

To measure these school routes, a combination of GPS (Global Positioning System)41

trajectories and GIS (Geographic Information System) estimates have gained popularity.42

While GPS trajectories offer high accuracy for individual children, they come with challenges43

such as the expensive and labour-intensive process of collecting GPS data [9]. As a result, a44

compelling solution emerges in exploring the potential of routing algorithms (engines) to45

replicate these GPS trajectories, eliminating the need for extensive data collection efforts.46

These algorithms have gained attention for their ability to generate optimised routes based47

on factors such as distance, traffic conditions, the presence of CCTV cameras, and road48

conditions [10, 11].49

However, despite their widespread usage, the accuracy of these pathfinding algorithms50

in replicating actual GPS trajectories remains a topic of investigation [12, 13, 14, 15, 16].51

One reason for this is that many “GPS vs GIS” routing studies often compare only a single52

shortest-path tool in GIS, without taking into account the various routing methods available53

between two locations [12, 14, 15, 17, 18]. Additionally, these studies often rely on GIS54

layers that guide routing algorithms based on road-based polylines, potentially disregarding55

smaller alleyways, park trails, or roads that have not yet been updated [14]. As a result,56

such approaches can lead to an oversimplified conclusion that GPS is a superior instrument57

for correctly measuring commute patterns without considering the broader context. Further,58

it is important to understand the potential consequences of demographic and socio-economic59

bias in performance-operating algorithms, particularly when replacing GPS data with routing60

algorithms. If these algorithms display poor performance for marginalised groups, it could61

introduce bias into subsequent actions and distort our understanding of the broader context62

[19].63

The objective of this study is to investigate and compare the accuracy of path-finding64

algorithm route selections to GPS trajectories. Specific questions are described below:65

1. Which routing engine is the closest to the GPS data?66

2. Does the accuracy of the routing algorithms, when compared to the GPS trajectories,67

vary 68 by the distance to school, gender, and socio-economic characteristics?68

2 Methodology69

2.1 GPS data70

The study used information from 227 children in Scotland drawn from the “SPACES (Studying71

Physical Activity In Children’s Environments)” study 2, which collected GPS data for children72

aged 10 and 11. The participant’s home and school locations, their activity measures, gender,73

and socio-economic data were provided. We used the Scottish Index of Multiple Deprivation74

(SIMD)3 as a proxy for an individual’s socioeconomic status in this study. During the75

pre-processing stage of the GPS data, the following inclusion criteria were applied in order76

to isolate GPS tracks which represented children walking to school in the morning: 1) only77

2 Please visit the following link for more information: https://www.gla.ac.uk/schools/
healthwellbeing/research/mrccsosocialandpublichealthsciencesunit/programmes/places/
movementurbanlandscapes/spaces/

3 SIMD is a ranked tool for determining a relative measure of deprivation across 6,976 small areas,
with 1 being the most deprived and 6,976 being the least deprived. For more information, visit
https://www.gov.scot/collections/scottish-index-of-multiple-deprivation-2020/

https://www.gla.ac.uk/schools/healthwellbeing/research/mrccsosocialandpublichealthsciencesunit/programmes/places/movementurbanlandscapes/spaces/
https://www.gla.ac.uk/schools/healthwellbeing/research/mrccsosocialandpublichealthsciencesunit/programmes/places/movementurbanlandscapes/spaces/
https://www.gla.ac.uk/schools/healthwellbeing/research/mrccsosocialandpublichealthsciencesunit/programmes/places/movementurbanlandscapes/spaces/
https://www.gov.scot/collections/scottish-index-of-multiple-deprivation-2020/
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points recorded on weekdays were considered, 2) points recorded between 07:30 and 09:0078

were selected, 3) the study focused on the home-to-school trajectory, not vice versa, as some79

children go to different places depending on their parents’ working conditions, and 4) points80

recorded with a speed of less than 5 km/h were included [20], indicating children whose mode81

of travel was most likely walking.82

To process the GPS data, each participant’s GPS track was randomly sampled from one83

of seven days in which the child was walking to school and had a valid track. The recorded84

points were then cleaned and interpolated to form a polyline.85

2.2 Modelling routes from home to school86

The provided GPS track data was processed by filtering out points with incorrect coordinates87

or overlapping locations over time. Next, we interpolated the individual data points to create88

a polyline representing the travel path of each child to school. To measure the overlapping89

percentage between the modelled polylines, we created a 30-meter buffer around the GPS90

track polyline, creating a polygon [12, 14]. These are the steps from 1 to 3 illustrated in91

Figure 1.92

For the routing engines, we generated routes for the children’s journeys between home and93

school using the "walking" mode. This study compared three popular routing models: Google94

API, Mapbox API, and Open Source Routing Machine (OSRM). The main objective of these95

routing models is to determine the shortest and most efficient path to school [12, 14]. To96

ensure consistency in the data cleaning and analysis process, we utilized specific R packages:97

mapsapi to access Google API’s routing engine, mapboxapi for Mapbox API, and osrm for98

OSRM. Once the routes for each child were generated, we applied a 30-meter buffer to the99

routes obtained from the three routing engines, creating polygons.100

Then, we performed a spatial intersection between the GPS polygons and each of the101

modelled routes, to determine the extent of polygon overlap, measured as percentage. The102

computation of the comparison between navigation routes and GPS tracks utilised the103

concept of spatial intersection, as described in previous studies [12, 14, 15, 16]. The resulting104

percentage of spatial intersection served as an indicator of the similarity between the two105

routes. A complete mismatch between the two routes would result in an error rate of 100%,106

indicating no overlap, while a perfect match between the routes would yield a difference of107

0%. These are the steps from 5 to 8 illustrated in Figure 1.108

It is important to note that different route engines can produce varying results due to109

factors such as pathfinding algorithms, road structure prioritisation, and an incomprehensible110

road database. As an example, one of the navigation methods identified that the child’s111

actual path went through a park, whereas the other two methods only provided detour routes112

along the streets (refer to Figure 2).113

3 Results114

A total of 227 participants contributed data on their walking routes to school. The character-115

istics of these participants can be found in the provided Table Go to Link here. Among the116

participants, there were 99 boys and 128 girls within the age range of 10 to 11. An analysis117

of the trip length data indicates that the majority of participants walked a distance of less118

than 2 kilometres to reach school.119
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Figure 1 The extraction of GPS and GIS data and the calculation of overlapping percentages

Figure 2 A comparison example of the accuracy of three routing engines against the GPS
trajectory in a school journey

3.1 Which routing algorithm is the closest to the GPS data?120

Our findings show that the mean GPS track overlap varied between the three routing models.121

OSRM exhibited the highest value at 56%, followed by Mapbox at 52%, and Google at 47%122

(see Figure 3A). However, we also observed significant variation in the overlapping percentage123

between participants, as indicated by the standard deviation, which can be influenced by the124

distance to school. Furthermore, the differences between the routes provided by the models125

were found to be small.126

When examining the percentage of children who had the highest accuracy with the GPS127

tracks (<10% error rate from Figure 3B), the results were as follows: OSRM - 12%, Google128

- 11%, and Mapbox - 8%. Considering a 30% error margin, the differences in accuracy129

between routing algorithms were approximately 42% for OSRM, 38% for Mapbox, and 30%130

for Google.131

3.2 Does the accuracy of the routing algorithm, when compared to the132

GPS trajectories, vary by the distance to school, gender, and133

socio-economic characteristics134

Figure 4 illustrates the relationship between the accuracy of modelled routes and GPS tracks135

and the distribution of children’s distance to school. This visual representation offers valuable136

insights into whether children residing closer to school tend to exhibit higher accuracy137
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Figure 3 A: Comparing the accuracy of the routing engines to GPS tracks and modelled routes.
B: Cumulative line plot for each group among the 227 children. The x-axis percentage shows the
error rate between GPS tracks and provides a cumulative error rate as the x-axis increases.

compared to those living farther away. It also enables us to explore potential correlations138

between distance and factors such as gender (Figure 4A) or socioeconomic status (Figure 4B).139

Our analysis, based on a sample of 227 children, revealed that among those with distances140

to school under 1km, over 60 of them achieved a remarkable accuracy rate of 75% in relation141

to the GPS tracks. Interestingly, we did not observe any discernible systematic differences142

between genders or across SIMD groups. Despite the fact that the sample size was skewed143

towards wealthier children, these findings provide strong evidence to confidently conclude144

that there are no systematic disparities in GPS accuracy based on gender or socioeconomic145

groups.146

4 Conclusion147

In our study, we conducted a comprehensive analysis to compare the accuracy of GPS tracks148

between home and school, employing three route estimation engines: Google Maps, Mapbox,149

and OSRM. The results showed that OSRM had the highest accuracy of 56%, which did not150

show a meaningful difference from the other two engines in the overall context. However, it is151

important to note that the accuracy of GPS tracks varied on an individual basis, influenced by152

factors such as the complexity of the built environment and the availability of neighbourhood153

amenities such as parks. Furthermore, our analysis demonstrated that the errors produced154

by these engines had no important association with gender or socioeconomic status, and only155

a weak relationship with the distance to school. These findings are particularly reassuring as156

they suggest that potential biases do not arise when utilising the aforementioned navigation157

tools. The accuracy of these platforms remains consistent regardless of socioeconomic status,158

indicating that the accuracy does not vary based on whether the child is from a disadvantaged159

background or not.160
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