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Gene-encoder: A feature selection technique through unsupervised deep 

learning-based clustering for large gene expression data 

Uzma1, Feras Al-Obeidat2, Abdallah Tubaishat2, Babar Shah2, and Zahid Halim1 

Abstract 

Cancer is a severe condition of uncontrolled cell division that results in a tumor formation that spreads to other tissues 

of the body. Therefore, the development of new medication and treatment methods for this is in demand. Classification 

of microarray data plays a vital role in handling such situations. The relevant gene selection is an important step for 

the classification of microarray data. This work presents gene-encoder, an unsupervised two-stage feature selection 

technique for the cancer samples’ classification. The first stage aggregates three filter methods, namely, Principal 

Component Analysis (PCA), correlation, and spectral-based feature selection techniques. Next, the Genetic Algorithm 

(GA) is used, which evaluates the chromosome utilizing the autoencoder-based clustering. The resultant feature subset 

is used for the classification task. Three classifiers, namely, Support Vector Machine (SVM), k-Nearest Neighbors (k-

NN), and Random Forest (RF) are used in this work to avoid the dependency on any one classifier. Six benchmark 

gene expression datasets are used for the performance evaluation and a comparisons is made with four state-of-the-art 

related algorithms. Three set of experiments are carried out to evaluate the proposed method. These experiments are 

for the evaluation of the selected features based on sample-based clustering, adjusting optimal parameters, and for 

selecting better performing classifier. The comparison is based on accuracy, recall, false-positive rate, precision, F-

measure, and entropy. The obtained results suggest better performance of the current proposal.  

Keywords Deep learning, gene expression, clustering, unsupervised learning, genetic algorithm 

1 Introduction 

Bioinformatics is a domain that merges computing, statistics, and mathematical methods to understanding and solve 

various biological problems. It mainly includes three sub-disciplines. The first one is to understand the relationship 

between entities contained in enormous data through the development of novel algorithms and statistical analysis. 
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Second is to understand and analyze various kinds of data, such as the deoxyribonucleic acid (DNA) and protein 

sequences, gene expression, and protein structure. Whereas, third is the efficient access to information through the 

implementation and development of modern tools. Bioinformatics methods are often utilized for the big data generated 

through multiple initiatives. Genomics and proteomics are the two important large-scale areas that use bioinformatics 

methods. Genomics is the study of the organism's genome, which includes the sequences of DNA that determine the 

entire life of an organism. The genome consists of DNA sequences that include the set of genes carrying the hereditary 

material from parents to offspring and these transcripts include the ribonucleic acid (RNA) copies. The RNA decodes 

the genetic information. The analysis and sequencing of the genomic entities which counts both the transcripts and 

genes in an individual are referred to as genomics. Whereas, the analysis of the complete set of proteins is known as 

proteomics. Furthermore, bioinformatics is applied in many areas of biology, such as genomics, proteomics, 

transcriptomics, metabolomics, evolutionary biology, population genetics, precision medicine, and drug design. These 

areas aim to understand the complex biological system. Devising an unsupervised feature selection technique for the 

analysis of gene expression data is an open research problem. It selects the feature subset that is more effective for the 

clustering and classification of various gene expression data. 

DNA microarray is used for the measurement of gene expression levels of thousands of genes simultaneously. To 

figure out the gene function, a subtype of cancer and gene regularity mechanism, biologists measure the expression 

level in specific experimental conditions [1]. The analysis of gene expression data is getting attention due to its 

multiple applications in cancer diagnosis, prognosis, and other such domains. The most common analysis of gene 

expression data is the clustering of cancer samples. The primary aim is to group the samples with similar expression 

patterns that could help in the discovery of new cancer types. The clustering methods, a subcategory of unsupervised 

learning, are nowadays being emphasized in the scientific community since after their use in works like [2] and [3]. 

The clustering methods group the given data points in a way such that the points within a group are more similar to 

each other than the points in different groups based on all or a set of specified features. Therefore, the clustering 

analysis divides the gene expression data into groups such that similar genes (or samples) go in one group while 

dissimilar samples are placed in another group(s). The gene expression data is meaningful for both sample and gene-

based clustering. In the gene-based clustering, the co-expressed genes are grouped based on their expression patterns. 

It treats the genes as objects and the samples as features. However, in sample-based clustering, the samples can be 

assigned to homogeneous groups. Such clustering treats the samples as an object and genes as features. In gene 

expression datasets, genes are samples that can be defined numerically as a vector [4] as shown in Eq. (1). 

𝑂𝑖,𝑗|1 ≤ 𝑗 ≤ 𝑓                                                                                    (1) 

Where, 𝑓 represents the total number of features and 𝑂𝑖,𝑗 represents the expression level of the jth feature for ith data 

observation. The similarity between two objects 𝑂𝑖  and 𝑂𝑗 is the measure of Euclidean distance. Therefore, the distance 

between two observations 𝑂𝑖  and 𝑂𝑗 in an f-dimensional space is defined in Eq. (2).   

    𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝑂𝑖 , 𝑂𝑗) = √∑ (𝑂𝑖𝑠 − 𝑂𝑗𝑠)2𝑓
𝑠=1                                                               (2) 

Different clustering algorithms are used for gene expression data such as k-means [5], Self-Organization Map 

(SOM) [6], hierarchical clustering [7], graph-theoretical approaches [8], model-based clustering [9], and Density-

based Hierarchical Clustering (DHC) [10] approaches. In the gene expression matrix, there are usually several 

particular macroscopic phenotypes of samples related to some diseases or drug effects, such as diseased samples, 

normal samples, or drug-treated samples. The sample-based clustering aims to find the phenotype structure of the 

samples. The sample's phenotype is discriminated by a small subset of genes referred to as informative genes that are 

strongly correlated with the class label. The rest of the genes are considered as noise and have no role in the partitioning 

of interesting samples. 

The clustering of samples fall into two main categories: supervised analysis and unsupervised analysis. In a 

supervised approach, the phenotype information is attached to the samples. These phenotype’s information is used for 

the construction of a “classifier” that contains informative genes. This “classifier” is used for the clustering of samples 

and predicting the class labels for the incoming samples from the expression profile. Informative genes (i.e., features) 

are used only for the clustering of the whole set of samples. Due to low dimensional features, usually, k-means and 

SOM are applied for the clustered samples. Unsupervised clustering and informative gene selection is a complex 

process because of non-availability of the prior knowledge. There are two challenges for the unsupervised clustering 

that makes it hard to detect the phenotype of clusters and select the informative genes. These are: (1) the gene 

expression datasets contain a limited number of samples and a huge number of features, therefore, the convolutional 



techniques are unable to detect the sample’s class properly, and (2) out of all features, only 10% possess the required 

information [11]. Most of the collected genes are considered as noise because they play no role in the partition of 

samples. Therefore, it is difficult to choose informative genes for the clustering of samples. There are two methods 

used to address this problem. The first method reduces the feature’s dimensions by the identification of informative 

genes with the use of some statistical models [12] and then applies the conventional method for sample clustering. 

Whereas, the second method in an iterative manner use the relationship between the genes and samples for feature 

selection and clustering the samples simultaneously [13]. 

The goal of clustering is to partition the objects without having knowledge about their class label. Various 

clustering approaches have been designed for many application scenarios [14]. These are divided into two main 

categories, i.e., hierarchical clustering and partition-based clustering. The input to a clustering algorithm is either a 

pattern matrix or a proximity matrix. In the pattern matrix, each item is represented by a feature vector, whereas, the 

proximity matrix contains the similarity or dissimilarities between all pairs of points. This work focuses on the 

partition-based clustering with the pattern matrix as an input. In practice, if more information about the pattern is 

available, an improved clustering cannot be attained. This is because most of the features have ‘noise’ which degrades 

the performance of the clustering process. 

The gene expression data contains a lot of irrelevant, redundant, and noisy items. The ratio of informative and noisy 

data is 1:10 which degrades the performance of clustering if conventional methods are directly applied to the complete 

feature set. Therefore, the informative feature selection plays a vital role in high dimensional gene expression data for 

the retrieval of biological information. The feature selection methods are divided into two broad categories. The first 

category involve supervised, unsupervised, and semi-supervised techniques based on the availability of previous 

information. The second category contains filter, wrapper, embedded, hybrid, and ensemble methods based on how 

they concatenate the selection with the model building. All these methods have their advantages and disadvantages. 

Generally, the hybrid method is better than the wrapper method because it is less prone to overfitting. However, the 

ensemble method is more robust and flexible [15]. Therefore, the past works used this approach as the feature selection 

method.   

1.1 Problem statement 
 

The significance of gene expression analysis in medical science is high due to the mystery of biological systems. 

Therefore, one needs to understand gene expression data and extract important information. The analysis of biological 

data is highly demanding for the biologists to identify various diseases, its types, drug designing, and type of genes, 

and gene function. The DNA microarray technology can identify the expression level of hundreds of genes 

simultaneously. The internal view of the gene expression dataset makes it challenging to process. The huge dimension 

of gene expression data contains noise, redundant, and irrelevant items that makes it difficult to analyze. In the 

literature, the feature selection techniques are used to reduce the dimensions of the data for better gene expression 

analysis. 

Therefore, the proposed framework present a novel unsupervised two stage-feature selection technique for the 

classification of cancer samples. This framework uses the ensemble of three filter methods using the union aggregation 

function. The novelty lies in the second stage when unsupervised deep learning is used for the evaluation of each 

individual of the GA population. The encoder part uses the gene subset represented by the individual as an input. 

Afterwards, it transforms into a code layer by reducing its dimensions. The decoded part uses the reduced feature 

subset to generate the original individual feature set. Once the network is trained, k-means clustering is applied to the 

code layer for sample clustering of that specific set of features. Based on this, the problem statement of the present 

work is as follows. 

To analyze the gene expression data using ensemble of filters and a GA that evaluates candidate solutions 

using unsupervised deep learning-based clustering. 

 

1.2 Key contributions 
 

This work presents a novel approach for the analysis of gene expression datasets. The goal of the current work is to 

select most informative features for the classification of samples. This method uses samples-based partition-oriented 

clustering for feature selection. It takes a pattern matrix as an input for clustering. The proposed framework selects the 

optimum feature subset from high dimensional gene expression data. Therefore, this work is focused on the selection 

of informative genes for the best clustering of samples. The selection of informative genes to reduce the feature 



dimensions in the current framework is based on filter with the wrapper method. Overall, the proposed work makes 

following contributions. 

 Presents an ensemble filter method for feature selection. The ensemble method aggregates the top n features 

recommended by three filter methods, namely, Principle Component Analysis (PCA), the correlation method, 

and the spectral method.  

 Devices an iterative approach to select a set of features and then perform the autoencoder-based clustering and 

evaluate its validity. This method is a novel, GA-based feature selection technique. The individuals represent 

the set of selected features. Therefore, an individual (i.e., chromosome) is a binary string where a value of 1 

in the gene shows the selected feature. The selected feature set is used as an input to the autoencoder.  

 Utilizes the k-mean method as a clustering algorithm on the compressed coded layer of the autoencoder. The 

cluster is validated using the Davies Bouldin Index (DBI). The DBI is used as a fitness value for the 

individuals. The lower DBI value represents a better set of features. This method gives the best feature set that 

efficiently clusters the samples.  

 Based on the best feature set, the sample classification and also its autoencoding is performed.  

 

The performance of the proposed work is evaluated using both internal and external measures of cluster validity. 

Whereas, for the evaluation of classifier the confusion metrics is used. The DBI, Dunn index (DI), Silhouette coefficient 

(SC) are utilized as internal measures. Completeness, homogeneity, v-measure score, normalized mutual information 

(NMI), accuracy, recall, precision, false-positive rate, f-measure, and entropy are opted as external measures. 

The rest of the paper is organized as follows. Section 2 presents the related work. The proposed solution is explained 

in Section 3. Section 4 lists the conducted experiments and obtained results. Finally, Section 5 concludes this work and 

lists a few future directions.  

 

2 Related work 
 

This section covers the past works done in the domain of feature selection techniques and the deep/machine learning 

methods used for overcoming the clustering challenges in the gene expression data. The section is tailed by the 

limitations of the existing approaches and problem statement. 

The DNA microarray technology simultaneously gives the expression level of thousands of genes [16]. It organizes 

the gene expression data in the form of a matrix where rows and columns represent samples and genes, respectively. The 

set of values in the row and column represents the gene expression profile. However, each entry shows the expression 

level of a gene for a given sample. The need for gene expression data analysis is increasing by every passing day. It is 

a procedure that extracts valuable biological information that helps in finding cure for various human disorders [17].  

The analysis of enormous datasets generated by the DNA microarray technology is challenging for the researchers. 

Therefore, it is imperative to develop a tool in order to analyze and extract biologically meaningful information from 

some massive gene expression datasets [18]. In this regard, clustering is a useful learning technique, which can be 

effectively used for the analysis of large volumes of data. It is applied in various fields, for example, data mining [19], 

image analysis [20], machine learning [21], bioinformatics [23], and pattern recognition [24]. In the clustering 

technique, the data is partitioned in different groups based on shared characteristics. When clustering is applied to the 

gene expression data, the related gene expression data are grouped within one cluster and the dissimilar gene expression 

data is placed into another cluster. The gene expression data are clustered either by samples or genes. Clustering is one 

of the important techniques for the analysis of gene expression data. It is an unsupervised technique for multivariate 

data analysis, which puts the observations into groups based on similarity measures. The clustering of gene expression 

data is useful in understanding gene functions, subtypes of cells, understanding gene regulation, cellular processes, 

identification of homology, and cellular processes [25]. The internal view of the gene expression dataset makes it 

challenging to process. There are various number of genes which further makes the gene expression data complicated. 

Each gene has several conditions that change with time. On top of this, the dataset generated through microarray array 

technology contains outliers and noise. The proposed framework uses the ensemble filters with a wrapper method for 

selecting the important features and ignoring irrelevant, noisy and redundant attributes. The filter method determines 

the variance of each feature by using numerous statistical tests. The high variance feature considered is more important. 

The selected features’ subset comprises of features having larger variance than the threshold or the top high variance 

features. The wrapper method selects a subset of features based on the classifier performance. Therefore, it finds the 

optimal features by iteratively selecting a subset of features based on its performance. Several clustering algorithms 

have been reported in the past to be used for the analysis of gene expression data. Some of them are discussed below. 

 



2.1 Effect of feature selection on learning algorithm 
 

The selection of the best set of features play a vital role in any learning algorithm. The irrelevant features degrade the 

performance of these algorithms. In feature selection, eliminating unimportant features reduces the data dimensionality. 

Feature selection for unsupervised learning has been overlooked in the past due to the unavailability of class label, 

which makes it difficult to select the relevant attributes. Both filter and wrapper methods use the combinatorial search 

through the space of possible feature subsets. The combinatorial search techniques are used in various feature selection 

algorithms [26, 27, and 28]. The work in [29] presents a new methodology named as Simultaneous Clustering and 

Attribute Discrimination (SCAD) that simultaneously perform clustering and feature selection. It learns the different 

weight sets for the features of each cluster while grouping them. The weight of the features represent their relevance. 

The cluster of the set of informative features minimizes the objective function. Their experiments indicate 

comparatively satisfactory performance of their work due to its ability to determine the cluster dependent features. In 

[30], the authors propose a novel filter method for feature selection known as the Kernel-Based Clustering method for 

Gene Selection (KBCGS). Their method selects the important features during clustering based on learning the best 

weights of the genes. They use the kernel method to revel the intrinsic behavior in the data which captures the 

relationship among the genes. It assigns different weights to each gene, and then the optimal genes are selected by 

minimizing the objective function value. The performance is investigated by comparing it with six well-known feature 

selection methods using eight gene expression datasets. Two classifiers, i.e., k-NN and SVM are used for classification. 

The experiments reveals that KBCGS performs better on average. 

 

2.2 Autoencoder-based clustering 
 

Among the various fields of machine learning, deep learning is currently attracting research community attention. In 

various cases, deep learning performs well than the past works. The term “deep” represents the number of layers through 

which the data is transformed. Deep learning is successfully adopted in many fields, for instance, image processing, 

cancer detection, computer vision, and speech recognition. The autoencoder is a type of Artificial Neural Network 

(ANN) used for unsupervised learning. Following are a few reports in which the autoencoder is used for unsupervised 

learning. 

Song et al. [31] propose a novel deep learning-based graph clustering technique called grapencoder. The 

grapencoder takes the graph similarity matrix as an input. Then the sparse encoding output of grapencoder is achieved 

through the greedy layer-wise pre-training process. It first transforms the original graph into a sparse matrix by stack 

autoencoder, then applies the k-means algorithm on the sparse matrix for clustering. Performance of the proposed work 

is compared with spectral clustering on various graph datasets. The experiments represent that their work performs 

better from spectral clustering. Chen et al. [32] design a methodology for the analysis of high dimensional image data. 

The new model is based on a hybrid autoencoder, which combines the Stacked AutoEncoder (SAE), Convolutional 

AutoEncoder (CAE), and Adversarial AutoEncoder (AAE). The hybrid autoencoder combines the advantages of three 

autoencoders to learn the low feature representation. Afterwards, the k-mean algorithm is applied to the output of 

autoencoder for image clustering. For testing and comparison, the Modified National Institute of Standards and 

Technology (MNIST) and Canadian Institute For Advanced Research (CIFAR-10) datasets are used on their proposed 

model. The experiments indicate that their work is better in terms of Adjusted Rand Index (ARI), Normalized Mutual 

Information (NMI), and unsupervised clustering accuracy. 

 

2.3 Evolutionary algorithms for feature reduction 
 

The microarray data faces multiple challenges because of the high dimensional datasets and a small number of 

samples. Therefore, feature selection plays a vital role in removing irrelevant, redundant, and noisy information for 

improving the classification problem. In the past literature, evolutionary algorithms have been used to produce high-

quality solutions for the optimization problem. Salem et al. [33] proposed a novel methodology for the classification 

of human cancers. Their proposed framework uses the Information Gain (IG) for feature selection, it then uses the 

genetic algorithm for feature reduction. Finally, genetic programming is used for classification. Their work is tested 

for various thresholds. A feature is selected if its IG value is greater than a predefined threshold, otherwise, it is 

rejected. Their work is compared with six techniques by considering seven microarray datasets. 

Ghosh et al. [34] designed a new technique to overcome the challenges of microarray data. Their work is a 

metaheuristic approach having 2-stages of feature selection. The first method aggregates three filter methods, namely, 

Relief, chi-square, and symmetrical uncertainty. It takes the union and intersection of the top-N ranked features by all 

three methods. The second stage uses the first stage as an input for the GA to compute results. Their model use three 



classifiers, i.e., k-NN, Multi-Layer Perceptron (MLP), and Support Vector Machine (SVM). Performance of their 

work is tested on five datasets. The experiments indicate better accuracy and a minimum number of features obtained 

from their work. 

Rani et al. [35] design a two-stage feature selection technique for cancer prediction. In the first stage, the mutual 

information-based feature selection technique is used. In the second stage, the resultant feature subset from the first 

stage is used as an initial solution for the GA. The feature subset from the two staged method is evaluated using SVM-

based classification. Tiwari et al. [36] present a novel optimization technique for feature selection. Their work uses 

local and global optimization algorithms. Some preprocessing steps are performed instead of randomly generating the 

initial population for the global optimization algorithm. The local optimization algorithms, Mutual Information 

Maximization (MIM) and Sequential Backward Search (SBS), are used for removing irrelevant and redundant 

features. The noise generated by combining the relevant and non-redundant features is removed by applying the global 

optimization algorithm. The computation time of the global optimization algorithm is reduced through a better 

stopping criteria.  

Key features of the proposed work and past solutions are shown in Table 1. In the past literature, most of the 

techniques are designed for the supervised feature selection from the gene expression datasets. Mostly, the filter-based 

feature selection is used for gene expression datasets due to its large-scale information, which is computationally 

faster. However, in the past literature, the wrapper-based method provides more accurate classification outcomes than 

the filter-based method [37]. Different filter methods provide dissimilar feature subsets, therefore, selecting the 

optimal feature subset is a challenging task for unlabeled datasets. The past work use a single filter-based method for 

feature selection, such as Information Gain (IG) and Mutual Information (MI) [33, 34, 35]. Afterwards, the top-ranked 

features are used as an initial solution for the GA. However, different filter-based methods provide different feature 

subsets, so a single filter method does not give an optimal feature subset. Therefore, the proposed framework uses an 

ensemble of three filter methods. If one filter technique ignores the important feature, there is a possibility that the 

other selects it.  In the previous work, once the feature is selected by using a filter method, it is then optimized by 

using a GA. The GA evaluates the chromosomes using SVM as a classifier, and accuracy is assigned as fitness value 

to the chromosome. However, the current work uses the unsupervised method for feature selection. Performance of 

the traditional clustering-based method is reduced due to the high dimensionality of gene expression data. Therefore, 

the current proposal uses deep learning model called the autoencoder network, which transforms high dimensions into 

low and then applies k-means algorithm. 

  

3 Proposed solution 
 

This section presents the proposed solution for the feature selection from the gene expression data. The section starts 

with the preprocessing followed by the clustering of gene expression datasets, the concept of autoencoder, genetic 

algorithm, and ensemble of unsupervised features selection techniques. The feature slection techniques employed here 

include PCA, correlation, and spectral methods. Finally, this section provide details of the proposed work’s core 

component.  

 
 

Table 1 Key features of current work and past contributions 

Works 
Feature 

selection 

Computational 

technique 

Chromosome 

evaluation 
Classification 

No. of 

datasets 

Salem et al. [33] IG GA - 
Genetic 

programming 
7 

Rani et al. [35] MI GA 
Classification 

accuracy  
SVM 3 

Ayyad et al. [38] IG  - Modified k-NN 6 

Ghosh et al. [34] 

Ensemble 

of 3 filter 

method 

GA  
SVM-base 

classification 
MLP, SVM, k-NN 5 

Uzma et al. 

(proposed work) 

Ensemble 

of 3 filter 

methods 

GA 
Autoencoder-based 

k-means clustering 
SVM, k-NN, RF 6 

 



3.1 Preprocessing 

The proposed work use the preprocessing step because the large volume of biological data carries a high level of noise 

and bias. Therefore, the gene expression datasets require the following one or more preprocessing steps before 

applying pattern analysis [39].  

 The genes expression data exhibit a skewed distribution in which the lower expressed genes are between 0 and 1, 

while the highly expressed genes are between 1 and infinity. Therefore, when a parametric statistical test is applied 

to such asymmetric data, it will eventually result in biased results. To overcome this issue, the log transformation 

is used to make the data more symmetric, which is anticipated to give an accurate outcome during statistical tests.   

 The replicate handling looks for the repeated gene ids in a dataset, which is subsequently replaced by their average 

value and hence removing the inconsistent repetition. 

 The pattern standardization is used that eliminates the scale difference between the features by subtracting the 

sample average and dividing the value by standard deviation.  

 The presence of the missing value of a gene expression is dealt with the average pattern.  

 Flat pattern filtering is used that eliminates genes to reduce the complexity of a dataset that is utilized for the 

biological meaningful analysis. 
 

 
3.2 Individual components of the proposed solution  
 

The preliminaries used in the proposed framework for feature selection are explained here before going into the details. 

These include Principle component analysis (PCA), correlation, spectral feature selection, the concept of autoencoder, 

k-means clustering algorithm, and the classification methods. 

 

3.2.1 Principle component analysis 

The Principle Component Analysis (PCA) is a linear transformation, which is used to reduce the overfitting problem 

[40]. It transforms the large quantity of a dependent variable into a small number of independent variables that still 

comprises a large set of information. Here, the total number (N) of PCA is calculated. Where, N represents a minimum 

value for a number of samples and associated traits. The  𝑃𝐶𝐴1 is the highest sum squared distance of the projected 

points from the origin. The following steps are used by PCA-based feature selection. 

Step-1: The covariance matrix of size 𝑁 ∗ 𝑁 is calculated using Eq. (3).  

                          Cov (x, y) = ∑
(𝑥𝑘−𝑥𝑘̅̅ ̅̅ )(𝑥𝑦−𝑥𝑦̅̅ ̅̅ )

𝑁−1

𝑁

𝑘=1
                                                (3) 

 

Fig. 1.  A sample autoencoder 



Where 𝑥𝑘 and 𝑥𝑘̅̅ ̅ represent variable and average of the variables, respectively, and 𝑁 is the total number of 

variables.  

Step-2: The Eigenvalues are calculated using Eq. (4).  

                                    𝐶 − 𝛾𝐼 = 0                                                                                      (4) 

Where, 𝐼 and 𝛾 are the identity matrix and lambda (eigenvalue), respectively, and 𝐶 is a covariance matrix. 

Step-3: The eigenvector for each eigenvalue is calculated. 

Step-4: The first two best PCA are selected, i.e., PCA1 and 𝑃𝐶𝐴2. Then, the formulas given in Eq. (5). and Eq. (6) 

are applied. 

                              𝑥𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑝𝑐𝑎1 ∗ max  (𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑝𝑐𝑎1])                                   (5) 

                              𝑦𝑣𝑒𝑐𝑡𝑜𝑟 = 𝑣𝑒𝑐𝑡𝑜𝑟𝑝𝑐𝑎2 ∗ max  (𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑝𝑐𝑎2])                                    (6) 

Where, 𝑣𝑒𝑐𝑡𝑜𝑟𝑝𝑐𝑎1 is the vector for 𝑃𝐶𝐴1 and 𝑇𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠[𝑝𝑐𝑎1] is a column of a transform matrix. 

Step-5: The most important features are selected by calculating the Euclidean distance between 𝑥𝑣𝑒𝑐𝑡𝑜𝑟  and 𝑦𝑣𝑒𝑐𝑡𝑜𝑟  

as shown in Eq. (7).   

                        𝐼𝑚𝑝𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑠𝑜𝑟𝑡(√𝑥𝑣𝑒𝑐𝑡𝑜𝑟
2 

+ 𝑦𝑣𝑒𝑐𝑡𝑜𝑟  2
 
)                                                         (7) 

Where,  𝐼𝑚𝑝𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠  shows the list of significant features order according to their importance. 

 

3.2.2 Correlation filter measure 

The correlation is a statistic that determines the mutual relationship or connection between two or more attributes. It 

selects the features based on their correlation. Two linearly dependent attributes will have high correlation. Highly 

correlated features are more linearly dependent and have the same effect on the dependent variable. Therefore, the 

feature correlation is measured based on a threshold. For instance, if a correlation value is greater than the given 

threshold, it suggests that the associated features have the same effect and therefore, one or two features are removed. 

Once the redundant features are excluded from a datasets, the correlation of the remaining features is calculated 

followed by the sum of the correlation of each feature with variables. Finally, the features are ranked according to 

their aggregated correlation with the variables in a descending order.     

3.2.3 Spectral feature selection 

The spectral feature selection method considers feature selection and manifolds learning for reducing a high-

dimensional data. In this learning process, the high dimensional data structure is preserved during data conversion 

into a low dimension [41]. It first constructs the similarity matrix (S) of size 𝑁 ∗ 𝑁 from the samples. The similarity 

matrix data is further used to make a graph. Similarly, the adjacency matrix 𝐴, degree matrix 𝐷, and Laplacian matrix 

𝐿 of a graph are created. Each feature vector is evaluated by normalized cut and then the features are ranked in a 

descending order. 

   

3.2.4 Autoencoder 

The autoencoder is an artificial neural network used to learn efficient data representation. Aim of the autoencoder is 

dimensionality reduction by learning a representation for a particular set of data. Autoencoder is used to learn how to 

encode (reduce) and decode the data back from the reduced data. This kind of representation closely resembles the 

original representation as much as possible. The autoencoder incorporates the following components: (1) the model 

learns how to transform the high dimensional data into low dimensional data [42], (2) the code layer contains the 

compressed representation of input data, (3) the model learns how to reconstruct the data back from the low to high 

dimension, and (4) the reconstruction loss is a method in which the model measures how close an output is to its input. 

The model reconstruction loss is minimized by involving backpropagation. The architecture of a simple autoencoder 

includes the input layer, output layer, and number of hidden layers as shown in Fig. 1.   

 

3.3 k-means clustering algorithm 

The k-means is an unsupervised learning algorithm, which is used for the clustering of unlabeled data iteratively. It 

categorizes the instances into groups based on their feature similarity. A distance measure is used to assign each data 

point in one of the groups. It clusters the data points using the following steps: (a) the algorithm initially selects or 



generates the centroids randomly, (b) it then finds the nearest center for each data point based on the squared distance 

measure using Eq. (8).    

 𝑔𝑖∈𝐺
𝑑𝑖𝑠𝑡

𝑚𝑖𝑛(𝑔𝑖 , 𝑥)2                                        (8) 

Where, 𝑔𝑖 and 𝑥 represent the group i and data points, respectively. (c) Next, the centers are recomputed by taking the 

average of all data points contained in a particular center as shown in Eq. (9).    

 𝑔𝑖
 =

1

 |𝑁 |  
∑ 𝑥𝑖

 𝑁
𝑘=0                                                 (9) 

The algorithm repeats steps (b) and (c) until there is no change in the cluster centers or it reaches the maximum number 

of iteration. 

 

3.4 Classification methods 

In machine learning, classification is a supervised problem that recognizes the class of the new observation using a 

set of known classes. The category is identified based on the training set of data, including observations having the 

associated classes. The model is to learn from the training set to assign the category to the new observations. The 

present work utilizes three classifiers for this purpose.  

3.4.1 Support Vector Machines (SVMs) 

The SVM is a supervised learning model used for classification. SVMs are commonly applied to linearly separable 

data, however, they can also be used for non-linear classification in a high dimensional feature space. It creates a set 

of hyperplanes (decision planes) in a high dimensional space to classify the data. The advantage of SVM is its 

effectiveness in high dimensional space, its versatility (different kernel functions can be used and also the custom 

kernels), and also memory efficiency. However, if the number of features in larger compared to the number of 

samples, over fitting may occur. 

3.4.2 k-Nearest Neighbor (k-NN) 

The k-NN is a method used for both classification and regression. It classifies the data on the basis of majority votes 

by the k-neighbors. For a simple case, if k=1, there is one class of the data. The optimal value of k can be decided 

either by inspecting data or a series of experiments. A larger value of k is better, as it reduces noise. Votes are decided 

on the basis of the distance between two points. The distance function can be Euclidean, Manhattan, Minkowski or 

any other. Distance measures are usually decided on the basis of the type of the data. 

3.4.3 Random Forest (RF) 

It is a supervised classification method used in machine learning. As the name specifies, it constructs a bag of decision 

trees somewhat randomly and merges them together to improve the overall result. The concept is called "bagging" 

 

Fig. 2.  Chromosome structure and reproduction operations 



method [43]. The RF can be used for classification as well as for regression problems. In classification, RF looks for 

the random subset of features instead of searching one best feature. It creates the diversity in RF which results in a 

more stable prediction. Since RF is a set of decision trees termed as ensemble method, it results in better prediction 

instead of a single decision tree. Ensemble learning algorithms predict on the basis of aggregate decision by multiple 

predictors. 

3.5 The proposed solution core  

The proposed solution is a novel two-phase method for the feature selection from gene expression data. It is 

challenging to select/analyze gene expression datasets having very large number of attributes in contrast to the number 

of samples. This work implements a two-phase method, which include ensemble filters and wrapper methods for 

relevant feature selection. 

In the first phase, the ensemble filter method is utilized, which reduces the dimensionality of data by removing the 

irrelevant and redundant features. The ensemble method gives optimal feature set instead of a single filter method 

because if one method ignores the relevant feature the other one addresses it. Therefore, the aggregation of three filter 

methods including PCA, correlation, and spectral feature selection is used in this phase. The aggregation method takes 

into account the union of top-ranked feature subsets. The second phase applies a novel wrapper method on top of the 

first phase. This method selects a set of features and then evaluates it using autoencoder-based k-means clustering.The 

proposed wrapper method performs two functions: (1) selecting a set of features and (2) clustering the samples based 

on these sets. This process is repeated several times to choose a set of best features that would eventually preserve 

more information for clustering. It uses a GA with an autoencoder. Each chromosome describes a set of features. The 

produced best chromosome of the GA has enough information for classification of samples. The set of optimal features 

from phase-1 is used as an initial solution. Afterwards, a population of size 𝑛 is created. Both, k-means and 

autoencoders, are unsupervised learning algorithms. Therefore, the labeled input is not required. The k-means 

algorithm is opted here for the clustering of limited data. The autoencoder is used to determine better representation 

of the input feature vector. The irrelevant features are removed from the input vector by using the combination of 

encoder and decoder. In this work, the gene expression dataset is used, having an enormous feature size. The objective 

of the proposed solution is dimensionality reductions by removing irrelevant and redundant features. Therefore, the 

chromosome is first given to the autoencoder for its suitable representation. Afterwards, k-means clustering is 

employed on the new representation of the chromosomes. Eventually, the cluster validity index, i.e., DBI is used to 

assess the chromosome quality. 

3.5.1 Problem representation and reproduction operations 

The initial solution here consists of binary strings having the size of the original number of features in the data, where 

1 and 0 represent the selected and unselected features respectively by using phase-1, i.e., ensemble filter. Selection is 

the process that picks the chromosomes for later breeding. Truncation selection is used here that orders the population 

𝑃 according to their fitness value. Then, the top 𝑃/2  fittest chromosomes are selected for breeding. In the current 

 

Fig. 3.  Chromosome fitness evaluation 

 



solution, one point crossover procedure is adopted. It selects the mid of the chromosome as a crossover point, and 

then the tails of two parents are swapped to generate the offspring. The swap mutation is a genetic operator, which 

has been implemented in the current work. The swap mutation randomly selects any two genes of an individual and 

then swaps their locations. The mutation rate represents the percentage of genes that are swapped in a chromosome. 

Fig. 2 demonstrates the chromosome structure, crossover, and mutation procedures adopted in the present work.   

3.5.2 Autoencoder-based k-means clustering 

The proposed framework first utilizes an autoencoder for the preprocessing of a feature subset, followed by a k-means 

algorithm to evaluate the selected features. The architecture of the autoencoder which has been used for each feature 

subset (individual) is explained in the following. The autoencoder takes the individual chromosome as an input and 

the number of neurons in the hidden layer is defined using Eq. (10). 

ℎ𝑛 =
(𝑃𝑛)

2𝑙                                                   (10) 

Where, ℎ𝑛 and Pn are number of neurons in the hidden layer and previous layer, respectively. In the given equation,  

𝑙 represent an even number. 

The candidate solution is a binary string where 1 as an allele represents the selected feature. Therefore, the number 

of 1’s contained in an individual represent the input for the autoencoder. If 𝑥𝑖 is a vector of features having length 𝑁, 

the weights  𝑊𝑒 , 𝑊𝑑 , and biases 𝑏𝑒 and 𝑏𝑑 and output �̂�𝑖, then the mapping relationships are defined in Eq. (11). 

    𝑐𝑖 = 𝑥𝑖𝑊𝑒 +  𝑏𝑒       (11) 

�̂�𝑖 = 𝑊𝑑𝑐𝑖 +  𝑏𝑑                        (12) 

Where, 𝑐𝑖 is the compressed form of 𝑥𝑖 and �̂�𝑖 is the reconstructed form of 𝑥𝑖. The mapping from 𝑥𝑖 to 𝑐𝑖 is used 

as a preprocessing step for clustering. This model learns the features from unsupervised data. Therefore, the detected 

features are efficient for clustering the unsupervised data. When the autoencoder is trained by adjusting the weights 

Input: Gene expression dataset 

Output: Clusters and classification of gene expression datasets 

_________________________________________________________________________________________________ 

1. M← Dataset  

2. Preprocessing of dataset 

3. Ensemble PCA, Correlation, and Spectral base feature selection techniques with Union 

4. Union(PCA, Correlation, Spectral) 

5. S← optimal features subset 

6. Run GA with Auto encoder 

7.     for k=0 to N-generation do 

8.     set initial solution of binary string where 1 is set according to S 

9.      initial solution ← S 

10.      Create population of size m 

11. Calculate the fitness value of each chromosome 
12. Select the top N best chromosomes 

  Best_chrom ← population 

13. Apply genetic operator crossover 
offsprings ← crossover(Best_chrom) 

14. Apply genetic operator mutation  
15.       Mutate_ offsprings ← Mutation(offsprings) 
16. M_c,M_m ← Dataset is selected according to Best_chrom &   

      Mutate_Best_chrom                                 

17. Run Autoencoder on M_c & M_m for compressed data 
18. Apply K-means on(code layer)for clustering 

      Clusters ← K-means[compressed-data] 

  FitnessM_c, FitnessM_m ← DBI (Evaluate clusters) 

19. Complete population from selected parents/offsprings and sort them according to fitness 
Best_chrom =sort (FitnessM_c, FitnessM_m) 

Repeat step 14 to 20 until termination criteria is not meet. 

20. End 
21. Select the top best chromosome from GA  

Chromosome=Best (fitness value) 

22. Run autoencoder for the selected Chromosome and then Apply 

23. k-means based clustering. 

24. Use step 22 for classification.  

25. Evaluate step 23 by using internal and external measures 
26. Evaluate step 24 by using confusion matrix 

_____________________________________________________________________________________ 
Algorithm-1.  Complete pseudocode of the proposed solution 

 



and minimizing the error, the k-means method is applied to the compressed data for the purpose of clustering. Different 

parameter setting used in this work are listed in Table 3.   

3.5.3 Fitness function 

The present work use autoencoder-based k-means clustering to form groups and the fitness function to evaluate the 

clustering quality is DBI. Each chromosome represents a set of features. Hence, a particular chromosome is evaluated 

by applying the autoencoder on a set of features. Afterwards, the k-means clustering is used on the compressed data 

Table 2 Parameter settings 

Parameters Values 

Batch size 20 

Epochs 10 

Generation 100 

Population size 40 

TopN 100 

Mutation rate 80% 

Fitness function DBI 

Reproduction operations One point crossover & swap mutations  

. 

Table 3 Descriptions of the datasets 
Datasets Number of samples Number of genes Classes 

Leukemia 72 3571 2 

DLBCL 77 7070 2 

Colon cancer 62 2000 2 

Lung cancer 181 12533 2 

Prostate cancer 136 12600 2 

Center nerves system 61 7129 2 

 

Fig. 4. Overall working of the proposed solution 

 

 



produced via autoencoder. The generated clusters are then evaluated using DBI. The maximum DBI value show better 

set of features. The evaluation of fitness value is shown in Fig. 3.  

Algorithm-1shows the complete pseudocode of the proposed solution. The focus of the proposed framework is an 

optimal feature selection technique for the analysis of gene expression data. The proposed framework performs this 

task in six board phases. In the first phase, the proposed gene encoder takes the gene expression data as input. These 

are cancer datasets having S samples and F features. In the second phase three filters methods are applied on the data. 

After that, the top-ranked features are grouped with the help of union aggregation. This step generates a set of features. 

In the third phase, a GA is applied for optimization, where the initial solution is a subset of features generated from 

second phase. The GA population is created based on directed transpositions. The fitness values are calculated and 

assigned to the set of chromosomes. The chromosomes are then ordered based on their fitness value. Afterwards, top 

N/2 chromosomes are chosen for breeding. Each mutated chromosome sample is clustered through unsupervised deep 

learning-based k-means algorithm. The validity index, DBI, is assigned to the generated clusters which is used as a 

fitness value. The selected and mutated chromosomes are then ranked according to their fitness value. Next, this new 

population is used for crossover and mutation. The whole process is repeated for a fixed number of iterations. In the 

fourth phase top chromosomes are chosen that represent the best feature subset. This set of features represent the 

optimum features subset. In the fifth step the generated optimal features set via GA is used for cancer prediction. For 

this, three classifiers are utilized. In the final stage, the selected optimal set of features are also used for sample-based 

clustering. The proposed model can be applied for both clustering and classification of gene expression data. Fig. 4 

visually demonstrates the complete working of the proposed solution. 

4. Experiments and results  
 

This section presents the conducted experiments for the evaluation of the proposed work. For this, six benchmark gene 

expression datasets are utilized. The proposed idea is compared with four state-of-the-art algorithms, i.e., Salem et al. 

[33], Ghosh et al. [34], Rani et al. [35], and Modified k-Nearest Neighbor (MKNN) [38]. Three types of experiments 

are carried out for assessing the framework (a) evaluation of the selected features using sample-based clustering (b) 

analysis of parameter setting, i.e., Top𝑁 and mutation rate, and (c) evaluation of three classifiers, i.e., SVM, k-NN, 

and RF. The parameter setting mentioned in Table 2 is used in all experiments.  

4.1 Datasets 

For comparing the present work with the state-of-the-art methods, six benchmark gene expression datasets are utilized, 

namely, leukemia, DLBCL, colon cancer, lung cancer, and center nerves system [38]. These gene expression datasets 

contain fewer samples and a large number of genes. The information of these datasets is shown in Table 3. These 

datasets have two class labels and  high dimensional features (i.e., genes). The CNS, colon, and prostate cancer 

describe the normal and cancerous samples. Whereas, the remaining datasets are about the samples of various types 

of cancer. The leukemia datasets include 3571 features and 72 samples. The number of samples belonging to ALL of 

type cancer is 47, and 25 belongs to type AML. The DLBCL dataset has 77 and 7070 number of samples and features, 

respectively. There are 58 samples having DLBCL type cancer, and 19 samples have class label FL. The colon dataset 

has 2000 features. Where, the number of samples is 62 having 22 healthy instances and 40 are cancerous samples. 

The largest dataset is the prostate cancer having 12600 features and 136 samples. Where, the cancerous samples are 

77 and 59 are normal. The CNS datasets has 7129 features. The number of samples in this dataset has are 61. 

4.2 Performance metrics 
 

The proposed solution utilizes the unsupervised feature selection techniques for the analysis of gene expression data. 

The tasks of cancerous sample prediction and the clustering of gene expression data are performed based on the 

selected feature subset. It aims to select a relevant feature subset based on some criteria (their expression level) from 

the original feature subset. The feature selection is used for many reasons, such as removing redundant and irrelevant 

features, dimensionality reductions, improving the performance of the learning model, and reducing the amount of 

data needed for learning. The effectiveness of the classification and clustering problem depends on the selected 

features’ relevance. Confusion metric is used here to evaluate the performance of the classifier. The clustering of gene 

expression data is employed based on the chosen feature subset. Clustering is an unsupervised method, hence no 

information about the class is provided. Quality of a clustering algorithm is gauged using its results. For this, a number 

of cluster validation technique are used for finding the goodness of clustering algorithms. The proposed framework is 

evaluated using 10 performance metrics. These include both internal and external validation measures [45]. 



 

4.2.1 Internal validation measures 

Internal validation measures rely only on information available in data without any external evidence (i.e., the class 

label). The internal validation measures aim to select the optimal number of clusters and the best clustering method 

[46]. This measure evaluates the compactness and separation. Compactness measures how closely related are the 

cluster elements. A high compactness value represents low variance between objects of a cluster. Whereas, the 

separation metric represents the heterogeneity between clusters. High diversity depicts well-separated clusters. 

Following are the internal measures used here as a cluster validity index. 

 

Davies-Bouldin index (DBI): This index define the average similarity of each cluster with its similar cluster. This 

approach defines that no cluster is related to others. Therefore, the better clustering scheme minimizes the DBI [47]. 

However, the similarity is a ratio of intra-cluster distance and inter-cluster distance as shown in Eq. (13).  

𝐷𝐵 =
1

𝐺
∑  𝐺

𝑐=1  𝑅𝑖≠𝑗

 𝑑(𝑥𝑖)+𝑑(𝑥𝑗)

𝑑(𝐺𝑖,𝐺𝑗)
                                                                (13) 

Where, the number of clusters is shown by 𝐺. The clusters are labeled as 𝑖 and 𝑗. Where, the  𝑑(𝑥𝑖) and  𝑑(𝑥𝑗) specify 

the sample distance in cluster 𝑖 and 𝑗, respectively. The 𝑑(𝐺𝑖 , 𝐺𝑗)  represents the distance between centers. 

 

Dunn index (DI): The DI measure identifies the set of clusters that are well separated and have low variance between 

its members [48]. The higher DI indicates better clustering. The DI is mathematically defined using Eq. (14). 

𝐷𝐼 = 𝑚𝑖𝑛1≤𝑖≤𝑐  {

  
𝑚𝑖𝑛

 
{

 

  

 
 
 
  

 

𝑑 (𝐺𝑖, 𝐺𝑗 
)

___________
𝑚𝑎𝑥1≤𝑘≤𝑐  (𝑑(𝑥𝑘))  

 }     }                             (14) 

Where, the inter-cluster distance between clusters 𝐺𝑖 and 𝐺𝑗 is 𝑑 (𝐺𝑖 , 𝐺𝑗 
) and 𝑑(𝑥𝑘) is the distance between cluster 

members. The parameter 𝑐 represents the number of clusters. 

 

Silhouette Coefficient (SC): The SC evaluates the object similarity with its cluster as compared to other clusters as 

shown in Eq. (15). The range of SC value is between 1 and -1. High SC value represents that the object is categorized 

correctly [49]. Clustering is appropriate if most of the objects have a high value. For the number of objects, if SC 

values are negative, this represents that the number of clusters is too low.  

𝑐(𝑖) =
1

|𝑆𝑖|−1
∑ 𝑑(𝑖, 𝑗)𝑗∈𝑆𝑖,𝑖≠𝑗                                                                (15) 

Where, 𝑐𝑖  represents the average distance between object 𝑖 and all members of a cluster. 𝑆𝑖 represents the number of 

samples in the cluster 𝑖. The 𝑑(𝑖, 𝑗) show the distance between object 𝑖 and 𝑗 in the cluster. 

𝑜(𝑖) = 𝑚𝑖𝑛𝑘≠𝑖
1

|𝑆𝑘|
∑ 𝑑(𝑖, 𝑗)𝑗∈𝑆𝑘

                                                         (16) 

Where, 𝑜(𝑖) represents the average distance of an object 𝑖 from another object  𝑗 of cluster k. 

𝑆𝐶(𝑖) =
𝑜(𝑖) − 𝑐(𝑖)

𝑚𝑎𝑥{𝑐(𝑖), 𝑜(𝑖)}
  𝑖𝑓 |𝑆𝑖| > 1                                                                

     𝑆𝑐(𝑖) = 0                   𝑖𝑓 |𝑆𝑖| = 1                                                 (17) 

 

4.2.2 External validation measures 
 

The external validation measures are used to evaluate the clustering algorithms base on the ground truth. If the obtained 

result is similar to the prior knowledge, the solution is considered as a good clustering algorithm. The proposed 

framework is also evaluated using seven external measures. These are listed in the following. 

 

Normalized Mutual Information (NMI): The NMI is calculated based on the ground truth and the predicted class label 

as shown in Eq. (18). A higher NMI score represents better clustering formation [50]. 

𝑁𝑀𝐼(𝑌𝑙𝑎𝑏𝑒𝑙 , 𝐶𝑙𝑎𝑏𝑒𝑙) =
2∗𝐼(𝑌 ,𝐶 )

[𝐻(𝑌) +𝐻(𝐶) ]
                                                             (18) 

Where, 𝐼(𝑌 ,𝐶 )  represents the mutual information between the class and cluster label as defined in Eq. (19). 

𝐼(𝑌 ,𝐶 ) = 𝐻(𝑌) − 𝐻(𝑌|𝐶)                                                    (19) 



The entropy of the class label is represented by 𝐻(𝑌). However, 𝐻(𝑌|𝐶) is the entropy of resultant cluster labels. 

 

Entropy: The entropy measure represents purity of a cluster. A value of 0 for entropy indicate that the objects contained 

in all clusters have a single class label. The higher values of entropy means that the members of a class have distinct 

class labels [51]. For each cluster, the label's distribution is defined in Eq. (20). 

  𝐸𝑐𝑖 = ∑ 𝑝𝑖𝑗𝑖 𝑙𝑜𝑔(𝑝𝑖𝑗)                                                   (20) 

The entropy for a dataset is computed by adding all clusters’ entropy and is defined in Eq. (21).  

 
(a) 

 
(b) 

 
(c)  

(d) 

 
(e)  

(f) 

Fig. 5.  Internal and external validity index (a) DBI, (b) 

SC, (c) DI, (d) NMI, (e) Completeness, (f) Homogeneity, 

and (g) V measure 
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                 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = ∑
𝑛𝑐𝑖

𝑛
𝐸𝑐𝑖

𝑐
𝑖=1                                                         (21) 

Where, 𝑐 denotes the number of clusters, 𝑛𝑐𝑖 is the size of the cluster, and 𝑛 is the number of points. 

 

F-measure: F-measure is also called the balanced F-score or F-score. It is a harmonic mean of recall and precision 

[52]. First, the recall and precision of a cluster for each class in computed using Eq. (22) and Eq. (23). 

  𝑅𝑒𝑐𝑎𝑙𝑙(𝑙𝑖,𝑐𝑗) =  
𝑠𝑙𝑖,𝑐𝑗

𝑡𝑙𝑖
                                                                           (22) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑙𝑖,𝑐𝑗) =  
𝑠𝑙𝑖,𝑐𝑗

𝑡𝑐𝑗
                                                                           (23) 

Where, 𝑠𝑙𝑖,𝑐𝑗  is the number of samples belonging to label j, 𝑡𝑙𝑖 is the total number of samples belonging to label 𝑖, and 

𝑡𝑐𝑗  is the number of samples in cluster j. The F-score of cluster and class is defined in Eq. (24). The F-measure values 

are in the range of 0 and 1, the higher value represents better clustering. 

𝐹(𝑖,𝑗) =
2𝑅𝑒𝑐𝑎𝑙𝑙(𝑙𝑖,𝑐𝑗)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑙𝑖,𝑐𝑗)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑙𝑖,𝑐𝑗)+𝑅𝑒𝑐𝑎𝑙𝑙(𝑙𝑖,𝑐𝑗)
                                                              (24) 

Completeness, Homogeneity and V-measure score: The completeness criteria for the clustering algorithm states that 

all samples belonging to the label 𝑖 are assigned to the same cluster. Where, the homogeneity of a clustering algorithm 

means that all members of a cluster belong to the same class label [53].   

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑛𝑒𝑠𝑠𝑠𝑐𝑜𝑟𝑒 = 1 −
𝐻(𝑙|𝑐)

𝐻(𝑙)
                                                                     (25) 

   𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦𝑠𝑐𝑜𝑟𝑒 = 1 −
𝐻(𝐶|𝑙)

𝐻(𝑐)
                                                                    (26) 

Where, 𝐻 (𝐶|𝑙) represent the conditional entropy of a class given  its cluster as shown in Eq. (27). 

𝐻(𝑙|𝐶) = − ∑  
|𝐿|
𝑙=1 ∑

𝑆𝑙,𝑐

𝑛𝑐

|𝐶|
𝑐=1 . log (

𝑆𝑙,𝑐

𝑛𝑐 

)                                                             (27) 

and 𝐻(𝑙 ) is the entropy of the class 

     𝐻(𝑙 ) = − ∑  
|𝑙|
𝑙=1

𝑛𝑙

𝑛
. log (

𝑛𝑙

𝑛 
)                                                                     (28) 

Where, |𝐶| and |𝑙|  represent the number of clusters and classes respectively, 𝑛𝑙 and  𝑛𝑐 show the number of samples 

belonging to the class and cluster, respectively. The parameter 𝑆𝑙,𝑐 is the number of samples belonging to class 𝑖 
assigned to cluster 𝑐 and 𝑛 is the total number of samples. The score ranges between 0 and 1. Higher score represents 

better result. The V-measure is the harmonic mean of completeness, and homogeneity defined in Eq. (29). 

𝑣 = 2
homogeneity.completeness

homogeneity+completeness
                                                                       (29) 

Accuracy: Accuracy is a ratio of correctly predicted positive observation and all observation as defined in Eq. (30). 

The high accuracy shows a better classification model [54] 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                             (30) 

 

False Positive Rate (FPR): The False positive rate is calculated by using Eq. (31) 

 

Fig. 6.  Results for selecting value of TopN and mutation rate 
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𝐹𝑃𝑅 =
𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑒𝑣
                                                                   (31)  

Where, 𝐹𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒  is the number of positive observations that are predicted as negative. The 𝑇𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑒𝑣  is the 

number of negative observations that are also predicted negative. The range of this measure is between 1 and 0. 

 

Precision: Precision, also known as Positive Predictive Value (PPV), is defined as the ratio of total correct positive 

predictions and all positive predictions. The best value of specificity is 1 and its worst value is 0. Eq. (32) shows the 

computation of precision.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                            (32) 

Recall: The recall is a ratio of correctly predicted positive observation and all observation of the actual class. The 

recall is defined in Eq. (33) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒𝑝𝑜𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                                                      (33) 

 

4.3 Experiments for evaluating the selected feature based on clustering 
 

The proposed work uses cluster-based feature selection technique. Therefore, this experiment aims to use the internal 

and external validity index to evaluate the clusters generated for the selected feature subset. An experiment is 

performed on how well is the clustering formation generated for the selected feature subset. This indirectly represent 

the relevant feature subset selection. This experiment uses the k-means clustering to group the samples for the selected 

feature subset. The DBI, DI, and SCI are the internal cluster validity indices and NMI, completeness, homogeneity, 

V-measure score are used as external measures to evaluate the resultant clusters for a selected feature subset. Fig. 5 

represents the internal and external validity indices for the clustering of samples with respect to the selected feature 

subset. As shown in Fig. 5, the SC value for the largest dataset, i.e., prostate cancer, is 0.704833. For the second-

largest dataset, Lung-cancer, it is 0.454905. These datasets are largest and smallest respectively in terms of the number 

of samples and features. However, for CNS and DLBCL datasets, SC values are 0.297281 and 0.282616, respectively. 

Where the CNS dataset is larger than DLBCL in terms of features count. The SC value for colon-cancer is 0.43193, 

which is better than the ones obtained for DLBCL and CNS. This is because its feature dimension size is smaller than 

the other datasets. For the smallest dataset, i.e., leukemia, SC value is 0.156963. This suggest that the proposed 

solution works well for datasets having a large number of features and smaller samples. The average DI value for all 

datasets is 0.693567. For the largest and smallest dataset, its value is 0.7225 and 0.7225, respectively. Only for CNS 

data, its value is a bit worse. This is because it has the smallest sample size as compared to the other five datasets. The 

DBI value for all datasets show that its average value is 1.0757. Its value for the prostate cancer and leukemia datasets 

is 0.4381 and 1.9175, respectively. Similarly, the obtained NMI, completeness, and homogeneity values suggest that 

the proposed work achieve the goal of performing well for datasets having less number of samples than the number 

of features. 

Table 4 Accuracy of proposed work for various values of k for the k-NN classifier  
 Datasets 

  Leukemia DLBCL Lung Colon cancer 
Prostate 

cancer 
Center nerves center 

Average 

k=3 0.66667 0.86250 0.82857 0.76923 0.86486 0.86486 0.80945 

k=5 0.74667 0.87500 0.80714 0.76923 0.85946 0.69231 0.79163 

k=7 0.70667 0.87500 0.80714 0.76923 0.85946 0.69231 0.78497 

. 

Table 5 Performance of  the proposed framework with RF classifier 

Dataset Accuracy Recall False positive rate Precision F measure Entropy 

Leukemia 0.6962 0.5000 0.0417 0.7500 0.7855 0.0000 

DLBCL 0.7725 0.4933 0.0727 0.7833 0.5965 0.0000 

Lung 0.6688 0.4667 0.2045 0.5500 0.5000 0.0000 

Colon cancer 0.8077 1.0000 0.2083 0.3208 0.4750 0.0805 

Prostate cancer 0.9459 0.9667 0.1429 0.9669 0.9663 0.0323 

Center nerves center 0.9730 0.9667 0.0000 1.0000 0.9831 0.0000 

 



 

4.4 Experiment for setting parameters 

This experiment is conducted for setting the two key parameters, i.e., Top𝑁 and mutation rate. The Top𝑁  is the highly 

ranked N features that are selected by using the filter method. The mutation rate is the number of genes that are 

swapped for each individual. The aim of this experiment is to figure out the best parameters for the proposed work. 

  
Fig. 7.  Accuracy of the proposed framework on three classifiers 

 

Fig. 8.  Performance comparison based on computation 

 
Fig. 9.  Average accuracy on six datasets for the five competing methods 
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For this, mainly three combinations of these parameters are made. The first combination is to set Top𝑁 to 100 with 

various mutation rates, such as 50, 80, 100, 30, 20, and 10. The second combination is to set Top𝑁 at 50 and evaluate 

various mutation rates, such as 30, 20, and 10. The third and the last combination is to set Top𝑁 as 30 and use 10 and 

20 as a mutation rate for all datasets.  For each combination, 6, 3, and 2 experiments are conducted respectively using 

all six datasets as shown in Fig. 6. This experiment represents that the combination 100-80 perform better and give an 

average accuracy of 92%. In Fig. 6 the combination of 30-30 for parameters TopN and the mutation rate shows low 

accuracy. The value of 30 for TopN represents that the ensemble method aggregates the top 30 ranked features by the 

filter methods. Where, setting 30 as a mutation rate means that 30 genes of the chromosome are swaped during 

mutation operation. The gene expression dataset contains an enormous number of features. Therefore, for the small 

values of TopN there is a chance of avoiding the relevant features resulting in low accuracy. Results suggest that the 

largest dataset achieves an accuracy of 98% for the 100-80 setting.  However, for this setting recall and FPR values 

are 95% and 0%, respectively. Values obtained for precision and F-measure are 100% and 97%, respectively. 

Considering the smallest datasets, the accuracy and recall is 90%, and 83%. Where the value of FPR is 0%, and 

precision and entropy are 90% and 0% respectively.  For the second largest dataset, i.e., lung cancer, values of 99%, 

100%, 0.02, 99%, 99%, and 0% are achieved for accuracy, recall, FPR, precision, F-measure, and entropy sequentially. 

Whereas, for CNS dataset the value for accuracy, recall, FPR, precision, F-measure and entropy are 84%, 75%, 0.11%, 

75%, 75%, and 0.215, respectively. The DLBCL dataset gives 97% accuracy and 100%, recall. The FPR value for 

this dataset is 0.036. The precision, F-measure and entropy values are 93%, 96%, and 0.060. The accuracy for colon 

cancer on this combination is 84% and for recall its given 100%. However, its PFR, precision, F-measure, and entropy 

values are 0.1, 33%, 50%, and 0, sequentially. The aforementioned combination yields better results, therefore the 

proposed framework uses the same setting for the remaining experiments. The average accuracy of all datasets on 

100-80 setting, is 94% 

Table 6 Comparisons with the state-of-the-art methods 

Methods 

Performance 

metrics Leukemia DLBCL 

Lung 

cancer 

Colon 

cancer 

Prostrate 

cancer 

Central nervous 

system 

(Salem et al., 

2017) [33] 

Accuracy 0.7333 0.8750 0.3784 0.6923 0.5714 0.8462 

Recall 1.0000 1.0000 0.5000 0.6250 0.9412 1.0000 

FPR 0.5000 0.0000 0.2143 0.4286 0.5000 0.0000 

Precision 0.7333 0.8667 0.1304 0.8333 0.5926 0.8000 

F measure 0.8462 0.9286 0.2069 0.7143 0.7273 0.8889 

Entropy 0.0988 0.0539 0.1154 0.0660 0.1347 0.0775 

(Ayyad et al., 

2019) [38] 

Accuracy 0.7907 0.6697 0.8634 0.6086 0.6023 0.8361 

Recall 0.8303 0.8990 0.7647 0.7597 0.7272 0.8013 

FPR 0.2694 0.5383 0.1091 0.5115 0.4556 0.1961 

Precision 0.8582 0.6339 0.4397 0.5562 0.4986 0.4838 

F measure 0.8440 0.7436 0.5584 0.6422 0.5916 0.6033 

Entropy 0.0570 0.1255 0.1569 0.1417 0.1507 0.1526 

(Gush et al., 

2019) [34] 

Accuracy 1.0000 0.9375 1.0000 0.7846 0.9000 0.7538 

Recall 1.0000 0.9833 1.0000 0.7718 0.8926 0.7586 

FPR 0.0000 0.1952 0.0000 0.2352 0.0796 0.1150 

Precision 1.0000 0.9349 1.0000 0.8150 0.9308 0.8893 

F measure 1.0000 0.9585 1.0000 0.7928 0.9113 0.8188 

Entropy 0.0000 0.0273 0.0000 0.0724 0.0290 0.0453 

(Rani et al., 

2019) [35] 

Accuracy 0.9333 1.0000 1.0000 0.8462 0.9375 0.6923 

Recall 0.8889 1.0000 1.0000 1.0000 0.8889 0.5500 

FPR 0.0000 0.0000 0.0000 0.1667 0.0395 0.2444 

Precision 1.0000 1.0000 1.0000 0.3333 0.9194 0.5000 

F measure 0.9412 1.0000 1.0000 0.5000 0.9000 0.5067 

Entropy 0.0000 0.0000 0.0000 0.3662 0.0761 0.3466 

Uzma et al. 

(Proposed 

work) 

Accuracy 0.9000 0.9750 0.9946 0.8462 0.9857 0.8462 

Recall 0.8333 1.0000 1.0000 1.0000 0.9556 0.7500 

FPR 0.0000 0.0364 0.0286 0.1667 0.0000 0.1111 

Precision 1.0000 0.9333 0.9935 0.3333 1.0000 0.7500 

F measure 0.9000 0.9636 0.9967 0.5000 0.9765 0.7500 

Entropy 0.0000 0.0608 0.0063 0.3662 0.0000 0.2158 



4.5 Experiments for using various classifiers 

This experiment is carried out to show that the proposed framework is independent of any specific classifier. 

Therefore, three classifiers are used here, namely, SVM, k-NN, and RF. For k-NN classifier, various values of k are 

used such as 3, 5, and 7 to identify the best case. For these values of k, performance of the proposed work on the k-

NN classifier is shown in Table 4. Performance of the proposed work on random forest classifier is shown in Table 5.  

4.6 Analysis and comparison  

The DNA microarray measures the gene expression level of multiple genes simultaneously. The analysis of gene 

expression datasets is challenging due to its smaller number of samples and a large number of genes. Most of the 

genes are irrelevant and redundant, therefore, feature selection here plays a vital rule for analysis of such complex 

data. For feature selection, various techniques are used such as filter, wrapper, and ensemble methods. The present 

work used the hybrid method that combines the ensemble of three filter methods with a genetic algorithm for feature 

selection. The novelty of the proposed solution is that it used the unsupervised deep learning method for the evaluation 

of the chromosomes in a genetic algorithm. The chromosome used here opted for a binary representation where 1 

represented the selected feature, and 0 presented the neglected feature. The autoencoder-based k-means clustering was 

used to evaluate the chromosome. The cluster validity index DBI were used as a fitness value for the chromosomes. 

Once the features were selected, the SVM-based classification was used for the predications of samples. The confusion 

matrix was used for the evaluation of the proposed framework. The evaluation of the proposed idea on six benchmark 

datasets was done, namely, leukemia, DLBCL, colon, lung, prostate cancer, and CNS. The proposed approach was 

evaluated by conducting three types of experiments. These experiments were categorized based on the evaluation of 

the selected features, setting the parameters Top𝑁, mutation rate, and using various classifiers, such as SVM, RF, and 

KNN with the several value of k. The first set of experiments was about the selected feature subset. The feature 

selection technique was based on an unsupervised approach, therefore the internal and external cluster validity indices 

were used to evaluate the selected feature sets as shown in Fig. 5. 

The second set of experiments conclude that the optimum value of TopN is 100 and for mutation rate it is 80. The 

proposed framework performs better for this combination. The average accuracy on six datasets for the five competing 

methods is shown in Fig. 9. The method Salem et al. [33] has 57% accuracy on prostate cancer data. Where, for Lung 

and CNS datasets its accuracy is 37%, and 84%, respectively. It has an accuracy of 87% on DLBCL dataset and on 

colon cancer data, it has 69% accuracy. For leukemia dataset it obtains 73% accuracy. Salem et al. [33] therefore has 

an average accuracy of 68% on all datasets. The method Ayyad et al. [38] attains 60%, 86%, 72%, 60%, and 79% 

accuracies on prostate cancer, lung cancer, DLBCL, CNS, and leukemia dataset, respectively. Whereas, its average 

accuracy is 72%. The accuracies obtained for Gush et al. [34] for prostate cancer, lung cancer, DLBCL, CNS, and 

leukemia dataset are 90%, 100%, 89%, 93%, 78%, and 100%, respectively. This algorithm has 89% average accuracy 

on all datasets. Other than the proposed method, among the four competing methods, better results are obtained for 

Rani et al. [35] which gives 93% accuracy on the largest and smallest datasets, respectively. For the lung, CNS, and 

DLBCL datasets, its accuracy is 100%, 90%, and 100%, respectively. However, on the colon cancer data it has 84% 

accuracy, and the average accuracy on all datasets is 90%. The proposed framework gives an average accuracy of 

92%. Individually, on prostate cancer, lung cancer, CNS, DLBCL, colon cancer, and leukemia datasets, its accuracy 

is 98%, 99%, 92%, 97%, 94%, and 90%. The third experiment used three classifiers, i.e., SVM, k-NN, and RF. For 

the k-NN classifier, experiments were also conducted for the various value of k on the proposed framework (see Table 

4). Using value of k=5, better performance of the k-NN classifiers is observed. Fig. 7 presents the accuracy of the 

proposed framework on three classifiers. Fig. 7 lists the accuracy of the proposed work using six datasets and three 

classifiers. For the prostrate cancer dataset, the accuracy of SVM, k-NN, and RF is 98%, 85%, and 94%, respectively. 

The accuracy for SVM, k-NN, and RF is 99%, 80%, and 66% on the lung cancer dataset. Whereas the accuracy on 

CNS dataset, is 84% for SVM, 69% for k-NN, and 97% for RF. They give 97%, 87%, and 77%  accuracies on DLBCL 

dataset. Over the colon dataset an accuracy of 84%, 76%, and 80% is observed. For the smallest dataset leukemia, the 

accuracy obtained for SVM is 90%, it is 74% for k-NN, and 69%, using RF. This suggests that the proposed framework 

performs better with the SVM classifiers. Therefore, the parameters are adjusted based on these experiments as shown 

in Table 2. The current proposal is compared with four state-of-art algorithms based on  metrics computed using 

confusion matrix  (see Table 6). The performance comparison based on computation time is shown in Fig. 8. While 

comparing the competing methods based on accuracy, the work in [4] performs better than the other three comparison 

algorithms [34, 35, 38] with an exception of the central nervous system dataset. Therefore, the proposed work is 

compared with [35] in terms of accuracy. For two datasets, i.e., prostrate cancer, and central nervous system, the 



proposed work, performs better. However, for four other datasets, it performs the same as others. The average accuracy 

of all the comparison algorithms is shown in Fig. 9. 

While comparing the competing methods based on the recall metric, the proposed idea again performs better for 

prostrate cancer and central nervous system datasets, however, for other four datasets, it operates the same. Fig. 9 lists 

the average recall measure for all competing algorithms. Based on false positive rate measure, the proposed idea 

performs well for all datasets. Fig. 9 shows the average false positive rate of the comparison algorithms. Fig. 10 

represent the average precision, F measures, and entropy of the comparison algorithms on all datasets. These measures 

give better results on prostrate cancer and CNS datasets using proposed framework while perform the same for the 

other four datasets, i.e., leukemia, DLBCL, lung cancer, and colon cancer. From the comparison table, i.e. Table 6 it 

is evident that the proposed methodology performs better for all datasets comparatively. The other competing methods 

did not perform better for the largest and smallest datasets, i.e., prostrate cancer and CNS. 

 

4.7 Statistical significance 

The aim of the t-test is to show that the selected feature subset is statistically significant. The results of the 

classification based on the selected features subset are evaluated using the t-test here. To show the statistical 

  
Fig. 10.  Average precision, F measures, and entropy of the five competing methods 

Table 7 Ranking of the competing approches 
Datasets Uzma et al. Salem et al. [33] Ayyad et al. [38] Gush et al. [34] Rani et al. [35] 

Leukemia 0.5000 0.1667 0.0000 1.0000 0.3333 

DLBCL 0.8333 0.3333 0.0000 0.0000 0.5000 

Lung cancer 1.0000 0.0000 0.0000 0.1667 1.0000 

Colon cancer 0.6667 0.1667 0.0000 0.3333 0.0000 

Prostrate cancer 1.0000 0.0000 0.0000 0.0000 0.0000 

Central nervous system 0.3333 0.5000 0.0000 0.3333 0.0000 

Average 0.7222 0.1944 0.0000 0.3056 0.3056 

Std.dev 0.2722 0.1948 0.0000 0.3714 0.4002 

 
X 

Table 8 Paired sample t-test 

                                         Paired diffrences T df 
Sig. (2-

tailed) 

 
Mean 

Std. 

deviation  

Std. error 

mean 

95% confience interval 

of the difference 
   

Pairs    Lower Upper    

Uzma et al.-Salem et al. [33] 0.528 0.077 0.032 0.461 0.594 2.768 5.000 0.039 

Uzma et al-Ayyad et al. [38] 0.722 0.272 0.111 0.488 0.957 11.258 5.000 0.000 

Uzma et al-Gush et al. [34] 0.417 -0.099 -0.023 0.466 0.367 2.747 5.000 0.040 

Uzma et al-Rani et al. [35] 0.417 -0.128 -0.052 0.527 0.306 2.629 5.000 0.047 
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significance of the proposed idea, its outcome is compared with four state-of-art algorithms by employing the paired 

sample t-test. First, the null (𝐻10) and an alternative (𝐻1𝐴) hypothesis is defined as follows. 

 

𝐻10: The proposed solution does not perform better based on performance metrics. 

𝐻1𝐴,: The proposed solution performs better based on performance metrics. 

 

The level of significance α is a probability to reject the null hypothesis which is set to 5%. Where, 95% set as 

confidence level (1-α) refers to the probability of accepting the null hypothesis. The degree of freedom 𝑑𝑓 presents 

the total number of datasets, i.e., six. The probability value or p-value determine the evidence to reject the null 

hypothesis. The small p-value shows more evidence in favor of an alternative hypothesis. 

Based on the six performance metrics, scores are assigned to each approach for all the datasets. The score shows 

that an approach performs better out of 6 performance metrics for a given dataset. For example, if an approach 

performs better for 2 performance metrics on a given dataset, the score will be 2 out of 6. Table 7 presents all the 

assigned scores. Table 8 shows the result of the paired sample t-test by using the data mentioned in Table 7. The paired 

sample t-test shows a significant difference between Uzma et al. (proposed) and Salem et al.  [t (5) = 2.768241, p < 

0.05)], Ayyad et al. [t (5) = 11.25833, p < 0.05)], Gush et al. [t (5) = 2.7466892, p < 0.05)], and Rani et al. [t (5) = 

2.6290526, p < 0.05)]. Therefore, this analysis concludes that there is a significant difference between the groups 

based on the p-value. Hence, the null hypothesis ( 𝐻20) is rejected in favor of the alternative hypothesis. 

 

 

5 Conclusions and future direction 

This work presented a framework that focused on the filter with wrapper-based gene selection for the prediction of 

cancer. The proposed framework used the ensemble of three filter methods to avoid the chance of not selecting the 

important genes. This work adopted the meta-heuristic-based algorithm called the genetic algorithm instead of using 

the conventional wrapper method. This enabled adding or removing the best feature subset from the search space 

based on the fitness criteria. The deep learning methods have recently been a success in high dimensional data. 

Therefore, this work adopted the deep learning concept in a meta-heuristic-based wrapper method to efficiently select 

the best feature subset. The present work used unsupervised feature selection technique for the prediction of cancer. 

For this, an unsupervised deep learning model called autoencoder was utilized to evaluate the feature subset. The 

feature subset represented by a chromosome was given as an input to the autoencoder. The present proposal was 

evaluated on six benchmark datasets using ten standard evaluation metrics. The experiment showed that the clusters 

generated with the chosen features through the proposed framework were well separated, and the samples in the 

clusters were associated. Experiments also concluded that the proposed work performs better with the SVM classifier. 

Additionally, a comparison was made with four state-of-the-art related methods, where the present proposal performed 

better in most of the cases. This work can be extended in multiple ways in the future. The proposed framework can be 

extended by selecting the features through a different clustering method, like Self Organizing Maps or density-based 

clustering. This work utilized unsupervised deep learning approach. One can also extend the current work by selecting 

features with deep learning in a supervised manner. 
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