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Optimizing the DNA Fragment Assembly using Metaheuristic-based Overlap Layout 

Consensus Approach  

Uzma* and Zahid Halim 

Abstract 

Nucleotide sequencing finds the exact order of nucleotides present in a DNA molecule. The correct DNA sequence is 

required to obtain the desired information about the complete genetic makeup of an organism. The DNA fragment 

assembly correctly combines the DNA information present in the form of fragments as a sequence. Reconstruction of 

the original DNA sequence from large fragments is a challenging task due to the limitations of the available 

technologies that reads the DNA sequence. Objective of the DNA fragment assembly is to find the correct order of 

the fragments which is further used in the generation of a consensus sequence that represents the original DNA 

sequence. Power Aware Local Search (PALS) algorithm proposed for the DNA fragment assembly is an efficient 

method that orders the fragments in a correct sequence by minimizing the number of contigs. This work presents a 

hybrid approach on the basis of Overlap Layout Consensus for the DNA fragment assembly, where Restarting and 

Recentering Genetic Algorithm (RRGA) with integrated PALS is utilized as an evolutionary operator. Quality of the 

current proposal is quantified using overlap scores and the number of contigs. This work is evaluated using 25 

benchmark datasets with three types of experiments. The results are compared with four state-of-the-art methods for 

the same task, namely, Recentering-Restarting Genetic Algorithm variation for DNA fragment assembly, PALS, 

Genetic Algorithm, and Hybrid Genetic Algorithm. Results show better average performance of the proposed solution.  

Keywords: Metaheuristic, DNA fragment assembly, Hybrid genetic algorithm, Overlap layout consensus, 

Optimization 

 

1. Introduction  

Deoxyribonucleic acid (DNA) is a complex organo-chemical molecular structure, acting as a hereditary material. It is 

responsible for the storage and flow of genetic information present in all eukaryotes and prokaryotes including some 

viruses. It is a double stranded thread like helical structure positioned inside the nucleus of a cell. The two strands of 

DNA are wrapped around each other via chemical interactions such as Hydrogen bonding and Phosphodiester linkages 

between complementary bases and nucleotides, respectively [1]. Each strand comprises of a long stretch of nucleotides 

which consist of sugar without Oxygen atom at position 5 (deoxyribose sugar). This is linked to a phosphate group 

and one of the possibly four nucleotides which may be purines (Adenine & Guanine- A, G) or pyrimidine (Cytosine 

and Thymine-C, T). However, the binding of these two strands is base specific, i.e., adenine will only bond with 

thymine and cytosine will only interact with guanine. The DNA has coding and non-coding regions termed as exons 

and introns, respectively. Coding regions of the DNA are known as genes. The genetic information is stored in the 

form of chemical bases that are termed as nucleotides. This information is transcripted into Messenger ribonucleic 

acid (mRNA) which is later translated into a protein. This protein performs an encoding function, such as structural 

building or acting as a signaling molecule. The normal life cycle goes on in this way [2]. Alterations in the sequence 

of nucleotides do happen every single day because of the genetic or environmental fluctuations. These are called 

mutations that may either cause a variation or develop into a disease. An example disease is cancer if not repaired by 

the built-in mismatch repair mechanisms. These circumstances occur because the gene product, that is typically a 

protein, is sequence specific and proteins differ from each other on the bases of their amino acid sequence in the form 

of triplets (codons) [3]. Therefore, a nonsynonymous single nucleotide polymorphism (nsSNP) or missense mutation 

in the genomic sequence results in the translation of incorrect amino acid sequence. This yields an abnormal protein 

(mass) production or causes failure of the required protein production machinery that distracts the normal cell cycle 

mechanism. All of this develops into various biological syndromes. The chromosome is a protein-DNA complex on 

which the long DNA molecule is packaged acting as a template for the newly synthesized DNA molecules during cell 

division. The DNA has stable configuration as compared to RNA and is negatively charged molecule as a consequence 

of present phosphate ions that make-up the double-helical structure of the DNA.  

 

With the introduction of biomedical and bioinformatics tools along with the advancement in molecular biology, a gene 

or DNA as a whole, can be sequenced for numerous purposes. However, there is still a long way to go in order to 
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unveil the DNA completely and comprehend the mechanisms responsible for various biological syndromes, focusing 

on the hazy image of biological phenomenon. Fig. 1 shows a typical DNA structure, DNA sequencing, and assembly 

phases.  

 

The technique practiced to determine the exact order of nucleotide sequence within a DNA molecule is termed as 

DNA sequencing. The DNA molecule is a long stretch of nucleotides in a particular manner that defines the complete 

life of an individual. Therefore, it is imperative to recognize the exact sequence of this molecule to comprehend the 

biological phenomenon and face the future challenges. However, sequencing the entire genomic DNA of an organism 

is a complex and laborious task. Therefore, to sequence the long DNA stretch, it is chopped down into smaller 

fragments and the smaller sequences are assembled together to get a consensus sequence. Various techniques are used 

for DNA sequencing and each has its own pros and cons. The classical sequencing methods include sanger sequencing, 

Maxam and Gilbert sequencing, and Next Generation Sequencing (NGS) that include Ion-Torrent:Proton, Roche 454 

and Illumina (Solexa) sequencing [4], to name a few. Sanger sequencing is an enzymatic way of sequencing, which 

is also known as classical or the first generation sequencing. Its workflow is designed by considering the mechanism 

of nucleotides addition to form a DNA sequence. The query DNA is extracted and purified via in-vivo techniques. 

Next generation sequencing is a modern day sequencing technique because of its high throughput that include different 

technologies such as Ion-Torrent: Proton Sequencing, Roche 454 and Illumina (Solexa) sequencing. Though these 

technologies are executed and supported by various companies, however, they all have a common principle that 

involves amplicons reading. The advancement and optimization in sequencing technologies are reducing the cost with 

high throughput. Thus, the whole genome of an individual can be sequenced nowadays for a few thousand dollars. 

Despite these improvements, robust statistical and bioinformatics approaches are required to translate the genomic 

data into a meaningful form which can be analyzed and hence, it becomes vital to develop informatics algorithms to 

understand the true meaning of the data. The soft computing methods can play a vital role in this context.  

 

1.1. DNA fragment assembly 

DNA fragment assembly is a method of merging small fragments of DNA sequences into longer orders to reconstruct 

the original sequence. This long sequence, as a result of fragment assembly, is termed as ‘contig’, a sequence whose 

validity can be inspected via alignment with the reference genome. There are thousands of genes present on a human 

DNA, however, only a small percentage of them have been discovered so far [5]. Obtaining the exact DNA sequence 

is an important undertaking to find the exact location of these genes. The current technologies available for this task 

have limitations in sequencing the genome as a whole (in a single step). The human DNA has 3.2 billion nucleotides. 

However, even a read of more than 600 base pairs (bp) cannot be sequenced with certainty. Therefore, it is necessary 

to divide, the DNA into short pieces which can be sequenced conveniently with confidence. This procedure is called 

the shotgun sequencing. In this approach, each copy of the DNA portion (which is huge in numbers) is broken down 

into smaller fragments that can be automatically read by the sequencer. This results in the problem of orphan fragments 

as this process does not maintain details about the fragments’ order or knowledge about the portion from where these 

fragments came. This leads to the DNA fragment assembly problem where the overlapping locations are defined as 

landmarks to reassemble them for reconstruction of the original DNA sequence. 

 

Various methods are available for DNA fragment assembly. The most common is the Overlap Layout Consensus 

(OLC) approach  [6]. This involves three steps, construction of an overlap graph which is followed by a layout step in 

which stretches of the overlapping graphs are bundled into contigs and then finally the most likely nucleotide for each 

 

Fig. 1.  The phases of DNA sequencing and assembly. 
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contig is chosen in the consensus step. Suffix trees or dynamic programming is employed to find the overlapping 

regions in which reads’ length, total length, number of overlapping reads pair/global alignment recurrence, and score 

function are taken into consideration. Although, OLC paradigm has been followed by fragment assembly in DNA 

sequencing for more than 30 years, however, it is still recommended to employ de Bruijin graph (dBG) as the repeating 

regions are better assembled by it in comparison to the OLC. With the passage of time, advancements in NGS 

technology has been able to produce comparatively longer reads. This allows the OLC technique to be promising [7]. 

However, neither OLC nor dBG is static. Issues are raised due to these methods in genomic shotgun sequencing, but 

they are suitable for cloning assemblies. Pevzner et al. [8] presents an approach that bypasses the “repeat issues” which 

arises from the excessive number of contigs that makes the finishing unnecessarily complicated as they require 

screening of the whole genome even for a single error. 

  

Multiple strategies have been designed for the DNA fragment assembly problem in the past [9]. These strategies 

involve metaheuristic and heuristic methods in addition to machine learning and computational intelligence 

approaches. Some of the soft computing techniques used for DNA fragment assembly include Ant Colony 

Optimization (ACO) [10], Particle Swarm Optimization (PSO) [11], greedy algorithms [12] and structured pattern 

matching. This problem domain customizes the existing algorithms to improve the assessment of entire genome. 

Sanger sequencing or chain termination method [13] produces a high-quality sequence for comparatively longer 

stretches of DNA (900 bp long). It is commonly used for sequencing singular pieces of the DNA. However, for the 

entire genome sequencing, the Sanger technique is not appropriate because of it being expensive.  

 

1.2. Motivation and problem statement 

The key motivation of this work is to utilize the soft computing methods to device a framework that can solve the 

DNA fragment assembly problem. This work aims to develop a solution based on the Evolutionary Algorithms (EAs) 

from the domain of soft computing. The choice of EAs is made based on their proven quality of results [14] and the 

ability to search an optimum solution in large search spaces [15]. The proposed work adds to the existing pool of 

solutions for the DNA fragment assembly problem. Where, the end user could opt for the present proposal based on 

the features of the particular dataset at hand.      

 

As mentioned above, various technologies and algorithms have been designed in the recent past for the sequencing of 

nucleotide strands. However, the task of sequencing the strand (having the bp length of more than 600) with higher 

confidence is yet an open research problem. In the shotgun sequencing technique, the DNA is replicated many times 

via Polymerase Chain Reaction (PCR) and later each amplified fragment is divided into many small cut pieces. This 

process has its benefits, however, it does not keep track of the fragments’ order. This leads to the problem of fragment 

assembly. The objective of DNA fragment assembly is to find the correct order of fragments which is further used for 

the phase of consensus sequence representing the original DNA sequence. The approach in [16] combines heuristics 

with RRGA to improve its validity. This method uses the overlap score (as a fitness value) between the adjacent 

fragments for testing the quality of DNA fragment assembly. Power Aware Local Search (PALS) algorithm proposed 

for DNA fragment assembly is an efficient technique. A hybrid approach is defined in the present proposal, where the 

RRGA [17] use PALS as an evolutionary operator. The work in [16] uses the classical measure such as the overlap 

score between the adjacent fragments for the judgment of the assembly quality. However, the main objective of DNA 

fragment assembly is to find the order of the fragments which can minimize the number of contigs. The quantification 

of contigs estimation ensures the fragments order based on cutoff. The main objective here is to minimize the number 

of contigs in addition to maximizing the fitness value of a proposed set of fragments for the DNA fragment assembly 

problem (DNA-FAP). The solution obtained through two objectives (reduced contigs number and maximum fitness 

value) best represents the DNA sequence assembly. 

 

However, the issue remains that one cannot always prefer a high overlap score because sometimes, a strand having a 

higher number of contigs also has the highest number of overlap scores. Therefore, to judge the actual quality of the 

DNA fragment assembly, this work utilizes PALS to calculate the number of contigs with RRGA to enhance the DNA 

fragment assembly quality. Formally, the problem statement of this work is: 

To order the fragments while minimizing the number of contigs and maximize the overlap score. This is to 

be accomplished by avoiding the local optima to improve the quality of DNA fragment assembly (DFA). 

1.3. Key contributions and novelty 
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This work focuses on the DNA-FAP. It is concerned with the reconstruction of the target DNA. For this, it identifies 

the right order and orientation of nucleotides for each fragment in the layout by taking a vast number of sequenced 

fragments into consideration. Usually, when the reads are generated from a sequencing technology, it does not keep 

track of the fragments order leading to the problem of DNA fragment assembly. This work presents a solution to 

optimize the DFA.  

The past work on DFA has used the sum of overlap scores for the judgment of assembly. However, the sum of overlap 

scores do not prove that the reads are in their right order. This is because there is a possibility that some reads are 

adjacent based on higher overlap scores while others have low score. Thus, there are chances that a strand having 

maximum sum of overlap scores will produce large number of contigs. Therefore, the current work introduces a novel 

evolutionary technique that uses the local search algorithm as a genetic operator. This creates a strand having reads in 

order while minimizing the number of contigs by setting a threshold between adjacent fragments and having maximum 

sum of overlap scores. 

The current proposal presents a bi-objective optimization problem addressed through two main objectives, i.e., (a) 

maximizing the sum of overlap score, and (b) minimizing the number of contigs. For this, the proposed work focuses 

on OLC approach. For initializing the fragment positions, the Traveling Salesman Problem (TSP) approach is used. It 

is acknowledged that TSP finds the optimum solution efficiently in all benchmark datasets used here. The TSP 

heuristic, i.e., 2-opt is used to reset position of the fragments. Recentering-Restarting Hybrid Genetic Algorithm 

(RRHGA) is used to explore all feasible solutions. Due to its sequential search capability, RRHGA avoids premature 

convergence and thus orders the fragments while maximizing the overlap scores and minimizing the number of 

contigs. For performance evaluation, 25 benchmark datasets including the collection of 14 f-series datasets are used 

in this study. Three sets of experiments are conducted using these datasets by utilizing two approaches; (i) with force 

recentre and (ii) without force recentre. The solution obtained via RRHGA is further evaluated by the number of 

contigs and sum of overlap scores. As a result of this implementation, the final reads are better. This proposal addresses 

the issues faced by reconstructing the original DNA template from the fragments using soft computing methods. 

1.4. Paper organization 

The rest of the paper is organized as follows. Section 2 presents the related work on DNA fragment assembly. This 

section also lists synthesis of the state-of-the-art and separately mentions the limitations of the past contributions that 

the present proposal addresses. Section 3 explains the biological process and material utilized in this work including 

the Sanger sequencing, next generation sequencing, and the 25 benchmark datasets used during experiments. Section 

4 presents the proposed solution. This section first lists detail on existing methods that are incorporated in the proposed 

solution followed by the core of the proposed method. Section 5 lists the conducted experiments and obtained results. 

Section 6 discusses the results and performance of the competing methods. Finally, Section 7 concludes this work and 

mentions a few of the future directions. 

2. Related work 

This section highlights the previously reported works in the domain of DNA fragment assembly. The section also 

covers the current efforts to optimize available techniques along with the broad view and current state of DNA-DFA 

related challenges.  

2.1. Past contributions 

DNA fragment assembly is a strategy that endeavors to reconstruct the original DNA sequence from a large number 

of fragments that are several hundred bp long. Optimization of the DNA fragment assembly is crucial due to the 

limitations of presently available sequencing technologies that must be considered to address the challenges in the 

field of genome biology. For instance, the human DNA is around 3.2 billion nucleotides long and cannot be read at 

once. Typically, the DNA molecule is sliced randomly at first to get many shorter fragments that can be sequenced 

easily. The original DNA is reconstructed from overlapping the DNA fragments, called shotgun sequencing strategy. 

Initially, the assembly of short fragments was performed manually. To automate the shotgun arrangement assembly, 

abundant resources and efforts have been dedicated to explore new methods and approaches. Numerous literary works 

present solutions for DNA sequence assembly issue. The general framework of most assembly algorithms is to first 

find the overlap scores by comparing all pairs of fragments, taken after framing an inexact layout of fragments. 

Afterwards, they make a consensus sequence. The general framework of most assembly algorithms is to first arrange 

competitor covers by inspecting all set, trailed by shaping a surmised format of parts. Finally, making an accord 

succession. The fragment assembly is an non-deterministic polynomial-time hard (NP-hard) problem, which is 
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unsolvable in polynomial time. There are three separate stages that divides the DNA fragment assembly more 

specifically into three phases as shown in Fig 1. These include: overlap phase, layout phase, and consensus phase.    

The overlap phase finds the overlapping fragments. This phase find fragments having the largest similarity between 

the suffix of one sequence and prefix of the other. Usually a dynamic programming algorithm is implemented in 

finding the similarity between fragments. In the layout phase, fragments are ordered based on a similarity index, which 

is the main objective of this phase. An alignment algorithm is applied to the correct order of fragments that combines 

the whole pairwise alignments obtained in the overlap phase. This becomes a bit more challenging due to unknown 

orientation, repeated regions, base call errors, incomplete coverage, and chimeras/contamination. Finally, to derive 

the DNA sequence from the layout phase, the most common technique used is the majority rule in building the 

consensus.  

Ignatov et al. [18] present a fragmentation technique named Fragmentation Through Polymerization (FTP). Their 

method produces double-stranded DNA fragments. These fragments are directly usable for the NGS library 

construction. The advantage of their technique is that it eliminates the additional step of DNA end reparation. In their 

work Lorenz curves are utilized to access the read coverage for its uniformity along the entire genome. The FTP 

method enable to reduce the processing time from 180 minutes to 110 minutes. This ultimately will enable to reduce 

the cost of library creation. The work in [19] presents an approach based on the quantum-inspired genetic algorithm 

[20, 21] for the DNA fragment assembly. Their method is primarily focused to perform the de novo assembly of DNA 

fragments. This is done using the OLC approach. Authors have compared their method with three approaches for 

solving DFA problem, namely, Genetic Algorithm (GA), PSO, and ACO-based metaheuristic. Comparison is made 

based on the overlap score and number of contigs. Richter et al. [22] present a DNA-assembly system named as Zero-

Background Redα (ZeBRα), for cloning multiple DNA-fragments. According to the authors, their method reduces 

both time and cost. Their method addresses the issues in routine and high-throughput cloning. Raja et al. [23] introduce 

a method named MapReduce Maximum Exact Matches (MR-MEM) for searching and then mapping genome 

subsequences. The key contribution of their work is the utilization of MapReduce, a parallel execution framework. 

Alignment in their work is done based on a reference genome. For this, a fragment subsequence is initially matched 

with the genome to recognize the probable matching sites. 

Frequently used methods for DFA are naturally inspired algorithms such as ACO, PSO, and GA. Firoz et al. [24] 

present a hybrid metaheuristic that use Artificial Bee Colony (ABC) algorithm with PALS. Their method finds a 

permutation solution based on two objective functions; maximizing the overlap score and minimizing the number of 

contigs for choosing the best solutions. Hughes et al. [16] propose the OLC-based approach for DNA fragment 

assembly. Their algorithm merges two methods; heuristic and computational intelligence. The combination of GA 

variations such as island model, recentering restarting, and ring species are used to resolve the DNA-FAP. Heuristic 

algorithms such as 2-opt and the Lin-Kernighan [25] also employ the combination of GA. These combinations take 

advantages of heuristic and computational intelligence while suppressing existing shortcomings. Results show high 

quality performance when heuristic is used as an initial seed. Heuristic functions are useful in approximating exact 

values. They produce results within a shorter period that are still significant; however, they may be reduced to local 

optima. To overcome this issue, a more precise algorithm such as Recentering-Restarting Genetic Algorithm (RRGA) 

can be employed, which is devised to avoid local optima, thus improving the results. The strengths of this method 

include easy utilization, and the ability to avoid local optima. Result quality can improve further when RRGA is used 

with heuristic and a variation of the GA. The GA variations perform well as compared to the results of the previous 

algorithms for DNA-FAP. 

Alba et al. [26] propose a heuristic called PALS for DNA fragment assembly: a variation of Lin’s 2-opt. Their designed 

approach not only finds the scored overlaps, but also calculates the number of contigs that are created or destroyed 

when the tentative solution is manipulated. Traditional assembler finds the best solution having strong overlap scores 

between the adjacent fragments in the layout. However, the goal of DNA fragment assembly is to minimize the number 

of contigs using a specific order of the fragments. In some cases they report that the sum of all the overlap scores 

(fitness value) of a solution is better than the one generated by many contigs. This suggest that the fitness ought to be 

supplemented with the real number of contigs. The comparisons of their approach is made with commercially available 

GA packages, e.g., Phrap and a pattern matching algorithm. The comparison is made based on the final number of 

contigs. Where, PALS perform better or similar to the techniques utilized for comparison. 

Minetti et al. [27] set out to analyze the DNA-FAP for noisy data [28]. DFA is one of the important tasks of the 

genome project. The project depends on DFA accuracy and efficiency. The methods used for sequencing large DNA 
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strands in laboratory produces noisy data. Therefore, the data used for assembling the fragments contain errors. The 

analysis in [27] is completed using three well-known algorithms, namely, GA, PALS, and simulated annealing for the 

DFA problem in the case of noiseless and noisy instances. Their behaviors were observed for each scenario at various 

stages of the algorithms. For both scenarios, the performance is evaluated by executing each instance 30 times. While 

comparing the algorithms for noisy instance, experimental data show GA performance to be better than PALS and 

SA. However, for noiseless instances, the SA performs better than the other two. 

Kikuchi et al. [29] propose an approach based on GA for DNA-FAP. Their algorithm is based on two parts: the first 

part is about shortening the chromosome length called a Chromosome Reduction Step (CRed). Whereas, the second 

part is about greedy heuristic called Chromosome refinement step (CRef), which is implemented to enhance local 

chromosome fitness. The algorithm combines longer contigs with shorter gaps between them. The algorithm is 

designed such that the user can pause it at any moment to check whether the results meet their criteria. They use 

artificially created genomes to carry out their experiments. First, a genome of 1000 bp is randomly constructed. Later, 

100 fragments are generated from the genome. From these 100 fragments, the chromosomes of the GA are arranged 

randomly. The probability of crossover and mutation is set at 0.5 and 0.005, respectively. After 30000 generations, 

the algorithm succeeds in finding sequence covering 98% of the original DNA. 

Hughes et al. [30] present a hybrid algorithm that combines heuristic and GA variations for DNA fragment assembly. 

They use the overlap layout consensus approach among a variety of approaches, such as a de Bruijn graph and greedy 

algorithm. The study of RRGA with different variations such as RRGA+Ring Species and RRGA+island model 

produces quality results with direct/indirect representation. The experiments are seeded with two different solutions; 

random seed and a local search algorithm for TSP called 2-opt. The solution seeded with 2-opt produce better result 

than the random seed approach. Lin-Kernighan algorithm is also used as a starting seed. The results produced in their 

work show RRGA and GA variations to yield high-quality results. Combination of the heuristic and GA variation 

produces quality results on sixteen benchmark datasets in their proposal.  

Mallén-Fullerton [31] propose an algorithm based on PSO and Differential Evolution (DE). The experiments are 

executed in two parts. Firstly, the overlap matrix is calculated and insignificant fragments are excluded. Secondly, the 

Lin Kernighan algorithm is used for the TSP problem and then the Concorde program is implemented for verification 

of the Lin Kernighan algorithm. Their approach applies TSP variation and achieves global optima for all benchmark 

datasets. They present a collection of benchmark datasets used for DNA fragment assembly. Their work presents an 

accumulation of benchmark datasets1 for an extensive variety of fragment lengths, sequence lengths, and a number of 

fragments alongside portrayal of the technique used to create them. 

Hughes et al. [17] develop multiple variations of recentering-restarting evolutionary algorithms. This examination 

builds different varieties of this algorithm with the end goal of assessing its utilization for ordered-gene problems. 

Two distinctive versatile representations are investigated that create sets to deliver local search operations. Their 

approach has the ability to change the number of transpositions to adjust the measure of the search space. Hughes et 

al. also present the RRGA as an approach for improving the heuristic results. Two experiments of test analysis are 

performed. The first one utilizes large problem instances to analyze how well the algorithm performs in contrast to 

                                                           
1 http://chac.sis.uia.mx/fragbench/ 

Table 1 
Key features of the past works and current proposal.  

 Fitness value    

Work 
Utilize 

overlap score? 

Utilize 

no. of 
contigs 

2-opt for 

initial 
solution 

Computational 

intelligent 
method 

PALS as 

evolutionary 
operator  Premature convergence 

Hughes et al. [16]    RRGA  Avoids  premature convergence 

Alba et al. [26]   

Hybrid Genetic 
Algorithm  Premature convergence 

Alba et al. [43]   

Local Search 

Algorithm  Traps in local optima 

Rathee et al. [19]   

Quantum-

inspired GA  May occure 

Firoz et al. [24]    ABC + GA  May occure 

Parsons et al. [42]    GA  Premature convergence 

Current work    RRHGA 
Avoids local optima and premature 
convergence by using RRGA 
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the benchmarks from the Center for Discrete Mathematics and Theoretical Computer Science (DIMACS) TSP usage 

challenge. The second one utilizes numerous smaller problem samples to evaluate performance of the RRGA. Their 

results demonstrate that the RRGA can produce noteworthy outcomes over a fundamental GA when applied to the 

TSP variant. 

Meksangsouy [1] propose an asymmetric ordering representation. The search solution in their work is represented by 

a colony produced by the ants’ created paths. For each pair of successive fragments, the overlap scores are summed 

to evaluate the optimality of the layout. Two types of experiments are performed: single-contig and multiple-contig 

problems. The experiments for single contig problem indicate that the results for ant colony system algorithm and 

nearest neighbours heuristic are approximately the same. However, considering multiple-contig problems, ant colony 

algorithm performs better than the nearest neighbours heuristic. Nebro et al. [32] propose a GA in the computational 

grid for DNA fragment assembly. It uses panmictic population and computes several individual evaluations in parallel.  

2.2. Synthesis of the state-of-the-art 

Ignatov et al. [18] presented the FTP method that produces double-stranded DNA fragments. An advantage of their 

technique is that it eliminates the additional step of DNA end reparation. Their method has the limitation of producing 

a large number of dangling reads. However, in comparison to a commercial enzymatic techniques, i.e., fragmentase, 

the difference is less than 1%. The quantum-inspired GA for the DNA fragment assembly in [19] focus on de novo 

assembly utilizing OLC approach. It has the ability to find the solution in a large search space. However, there is a 

possibility that the GA-based solution may stuck in local optima.  

The proposal by Firoz et al. [24] present ABC-FAP integrated with PALS. They have the advantage of utilizing two 

objectives, i.e., maximizing the overlap score and minimizing the number of contigs for choosing the best solutions. 

The ABC-FAP finds a permutation solution based on the two objective functions. They use the bee algorithm for the 

task which has the limitation of requiring a new fitness tests on new algorithm parameters. Additionally, its processing 

speed is slow when executed sequentially. The solution in [16] propose the OLC-based approach for DNA fragment 

assembly utilizing GA. Like the proposal in [19] there is a possibility that the GA-based solution may stuck in local 

optima. Hughes et al. [17] develop multiple variations of recentering-restarting evolutionary algorithms. Their method 

has been used in the DFA domain. Despite of being an evolutionary approach, it has the capacity to escape the local 

optima. However, this is at the cost of additional computations and execution time. Nebro et al. [32] propose a GA in 

the computational grid for DNA fragment assembly. Utility of the grid has its advantage of lower access time. 

However, their work needs to be evaluated on large and more complex instances of the DNA-FAP as well. 

2.3. Limitations of the past works addressed in the present proposal 

The past works, like [16] and [26] proposed hybrid algorithm for DNA fragment assembly to enhance its validity. 

These methods utilized GA which causes premature convergence. The present proposal combines the heuristics with 

the computational intelligence approach. Here, the overlap score is utilized as a fitness value for the judgment of an 

assembly quality which is the main limitation of past works. Similarly, other works in the past designed a local search 

algorithm that minimizes the number of contigs to ensure the correct order of the fragments. However, the limitation 

of local search algorithm utilization is that it cannot be further improved and gets trapped in a local optimum. Hence, 

the shortcoming in the existing work is that one cannot focus on high overlap score alone because sometimes a strand 

having maximum number of contigs will also have the highest overlap score. The main objective of DNA fragment 

assembly is to correctly order the fragments while minimizing the number of contigs with the maximum overlap score. 

The solution obtained using these two objectives in the present proposal best represents the DNA fragment assembly. 

Therefore, this work designs a hybrid algorithm that combines RRGA with PALS. This approach orders the fragments 

while minimizing the number of contigs and maximize the overlap score. This is done here while avoiding the local 

optima to improve the quality of DFA. Table 1 lists the key features of the current proposal and closely related past 

works. 
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3. Biological process and material  

This section presents the related biological concepts and material used in this work. The section starts with a brief 

introduction to Sanger sequencing that is followed by the details about NGS. Additionally, key features of the 25 

benchmark datasets used here for analysis of the proposed algorithm are listed. 

 

3.1. Sanger sequencing 

Frederick Sanger [33] introduced an enzymatic way of sequencing, which is also known as classical or the first 

generation sequencing. The workflow is designed by considering the mechanism of nucleotides addition to form a 

DNA sequence. The query DNA is extracted and purified via in-vivo techniques. Four parallel PCR reactions are 

executed. These PCR reactions differ from the normal PCR. In case of Sanger sequencing, as the raw material includes 

an additional supplement, termed as dideoxynucleotides (ddNTPs) along with dNTPs, obstructs the nucleotide chain 

formation upon their addition. The ddNTPs lacks OH at position three which hampers the attachment of the next 

nucleotide during chain formation and thus it limits the fragment length. The purpose of adding these specialized 

ddNTPs is to make copies of the template strand with varying lengths. These fragments are then run on a poly 

acrylamide gel in order to get a sequence up to a few hundred bases. This is also known as chain termination technique 

which is further optimized by tagging a luminous dye (sparkling color) to each particular nucleotide. This makes it 

possible to run all the four reactions in a single go. The classical acrylamide gel is replaced by polyacrylamide gel in 

order to have better execution time. Low throughput makes this technique non-scalable as it is not a multiplex 

approach.  

 

 

 

                                                           
2 http://chac.sis.uia.mx/fragbench/ 

Table 2 
Datasets detail. 

Genre Benchmark2 Coverage 

Mean fragment 

length 

Number of 

fragments 

Original sequence 

length 

GenFrag 

instances 

x60189 5 5 286 48 

3,835 
x60189 6 6 343 66 

x60189 7 7 387 68 

m15421 5 5 398 398 

m15421 6 6 350 350 10,089 

m15421 7 7 383 383  
j02459 7 7 405 352 20,000 

bx842596 4 4 708 442 
77,292 

bx842596 7 7 703 773 

DNAgen 

instances 
acin1 26 182 307 2,170 

f-series 

f25_305 25 307   
f25_400 25 400   
f25_500 27 500   
f50_315 50 315   
f50_412 50 412   
f50_498 50 498   

f100_307 100 307   
f100_415 100 415   
f100_512 100 512   
f508_354 508 354   
f635_350 635 350   
f737_355 737 355   

f1343_354 1343 354   
f1577_354 1577 354     
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3.2. Next generation sequencing 

The second (next) generation sequencing is a modern day sequencing technique because of its high throughput that 

include different technologies such as SOLid, Ion-Torrent: Proton sequencing, Roche 454, and Illumina (Solexa) 

sequencing. Though these technologies are executed and supported by various companies, however, they all have a 

common principle that involves amplicons reading. It is spatially separated followed by a clonal amplification in a 

cyclic parallel pattern. The NGS has multiplex property. Referring to the technology, a couple of steps are there in 

DNA sequencing. Initially, the sample of DNA is shattered into pieces of particular size depending on the sequencing 

approach to be utilized. Mechanical techniques are used to shatter the DNA into fragments such as Sonication. This 

process can also be done via enzymatic activity which makes the process easier to be parallel Gel-based size selection 

to polish the dispersal of DNA piece and improve DNA library quality. At both ends of the DNA fragment, universal 

adapters are ligated which facilitates the PCR amplification with a single pair of primers or a collection of DNA 

fragments to stick to the surface by using adopter-complementary oligos. PCRs are run with rare rounds to avoid PCR 

biases and thus DNA fragments are prepared by individual technology which are called the fragment library. A couple 

of existing approaches are categorized on the basis of parameters to target enrichment. These include: specificity, 

consistency (sequence exposure across target sections), reproducibility, expense, convenience, and sample amount. 

The NGS has revolutionized the genome-wide studies and because of its multiplex nature and high throughput, it is 

capable of sequencing an entire human genome in a single day.  

 

3.3. Datasets  

A cluster of recurrently benchmark datasets3 offer a helpful tool for testing new algorithms for FAP. Apart from FAP, 

sixteen other well-known benchmarks have been utilized in this work. These benchmarks are a standard for the 

comparative analysis in the current domain of study. These were produced from the sequences which can be retrieved 

from a freely accessible online repository, i.e., National Center for Biotechnology Information4 (NCBI). Details of 

these datasets are mentioned in Table 2.  

A set of 25 benchmark datasets is used for experiments in this work. Each instance of the data contain a number of 

fragments. These fragments are used to reconstruct the original sequence (from which these fragments are generated). 

A tool used in genomics termed as GenFrag 2.1 is employed to divide the first four sequences into an overlapping 

fragment. This tool requires a nucleotide sequence as an input which results in the synthesis of a set of overlapping 

fragments on the basis of built-in constraints. This is exclusively suitable for testing fragment assembly. However, 

GenFrag 2.1 may deliver somewhat diverse yield because of various random numbers being utilized. Therefore, it is 

not for sure that precise outcome will be obtained every single time. As a result of GenFrag, 10 GenFrag instances are 

generated, namely x601894, x601895, x601896, x601897, m154215, m154216, m154217, j024597, bx8425964, and 

bx8425967. Each instance has to cover four parameters such as mean fragment length, number of fragments, and the 

length of the original sequence. The sequences at point 5 refers to acin sequences and are comparatively lengthier in 

contrast to previously chosen sequences. These sequences are chopped down into fragments by a tool called DNAgen 

which were selected for their discrepancy in complexity levels. 

As a result of DNAgen, six GenFrag instances are generated, namely acin1, acin2, acin3, acin5, acin7, and acin9 

having four parameters, namely, coverage, mean fragment length, number of fragments, and the original sequence 

length. A group of 14 datasets known as the f-series are additionally included here. Adequate information is not 

available about these instances and their genetic makeup is vague. However, they are still utilized in the experiments 

as they can be used for benchmarking. The names of these f-series datasets are f25_305, f25_400, f25_500, f50_315, 

f50_412, f50_498, f100_307, f100_415, f508_354, f635_350, f737_355, f1343_354, and f1577_354. The available 

parameters of these instances are coverage and mean fragment length only. 

                                                           
3 http://chac.sis.uia.mx/fragbench/index1.php 
4 https://www.ncbi.nlm.nih.gov/gds 
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4. Proposed solution 

This section presents the proposed solution for the DFA. The proposed evolutionary computing-based framework 

comprises of six primary components, namely, PALS, sequence alignment, representation, transposition, RRGA, and 

2-Opt. All of these components complement each other. The PALS is used to order the fragments while reducing the 

number of contigs. It is used as an evolutionary operator in the proposed framework. For sequence alignment, Smith-

Waterman algorithm is utilized to compute the overlap score between the adjacent fragments. Transposition is used 

PowerAwareLocalSearch () 

Input: Initial solution 

Output: Modified solution s (in a systematic way) 

__________________________________________________________________________________________ 
1. s←generate initial solution   

2. Repeat while there are no changes 

3.    L←∅   
4.     for i=0 to N do     

5.        for j=0 to N do    

6.            ∆c, ∆f←CalculateDelta(s,i,j) 

7.           if ( ∆c ≥0 ) 

8.                L←LU<i,j,∆c, ∆f>  

9.            end if                                                                                                                             

10.        end for 

11.    end for                                                                                                                           

12.    if L ≠ ∅ 
13.        <i,j,∆f,∆c>←select(L)    

14.        Apply movement(s,i,j)                                                                                    

15.    end if                                                                                                                                   

16. end repeat                                                                                                                                                           

17. return s 

 _________________________________________________________________________________________ 

Algorithm 1: Power Aware Local Search 

CalculateDeltaFunction() 

Input: Solution (chromosome / individual) and two indexes 𝑖 and j 

Output: ∆c ∆f (variation of contig ∆c and variation of overlap score ∆f) 

_________________________________________________________________________________________ 
1. ∆c←0 

2. ∆f←0 

3. ∆f=ws[i-1]s[j] + ws[i][j+1]  

4. ∆f←∆f -ws[i-1]s[i] + ws[j][j+1] 

5. if ws[i-1]s[i] > cutoff 

6.    ∆c=∆c+1 

7. end if 

8. if ws[j]s[j+1] > cuttoff  

9.    ∆c=∆c+1 

10. end if 

11. if ws[i-1]s[j] > cuttoff  

12.    ∆c=∆c-1  

13. end if 

14. if ws[i]s[j+1] > cuttoff  

15.    ∆c=∆c-1 

16. end if 

17. return ∆c ∆f  

_________________________________________________________________________________________ 

Algorithm 2: Calculate Delta Function 
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to generate candidate solutions for the evolutionary computing-based framework population. Where, these 

transpositions can produce both direct and indirect representation. The RRGA is utilized for the convergence purpose. 

To start the RRGA with a better initial population, 2-Opt heuristic is used. Fig. 2 demonstrate complete working of 

the proposed framework. Where, the red and yellow circles indicate sequence of various steps involved in the proposed 

evolutionary computing-based framework.        

The proposed solution is based on the concept of metaheuristics. Metaheuristic is a problem independent master 

strategy that provides a guiding method for enhancing the performance of other heuristics. Finding the feasible solution 

for various optimization problems is intractable. Therefore, heuristics and metaheuristic procedures are used for 

designing better solutions. Significance of metaheuristic is based on two concepts; intensification and diversification. 

Intensification intends to search new solutions while focusing on the current best way to report the situation. Whereas, 

diversification proposes to create diverse solutions to explore the search space on a global scale. The balance between 

intensification and diversification is the characteristic of metaheuristics while selecting the best solutions. This section 

starts with a brief introduction of the six primary components and other related concepts utilized in the proposed work. 

Next, sequence alignment coupled by its types is discussed, followed by the core of the proposed solution with relevant 

explanation.  

 

4.2. Individual components of the solution  

Before explaining the proposed solution, it is important to explain the working of a few of the prerequisite techniques 

employed in this proposal. These include: PALS, sequence alignment methods, and Smith-Waterman algorithm.   

 

Power Aware Local Search: The PALS metaheuristic [34] is a variation of the Lin’s 2-opt method, that explores the 

neighborhood of a tentative solution. The key idea underlying PALS is that instead of evaluating the complete fitness 

values, the neighbors are exploited efficiently by the computation of a lighter fitness function. This is done based on 

 

Fig. 2. Complete working of the proposed evolutionary computing-based framework. 
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the changes in the tentative solution. This method analyzes a large number of candidate solutions so that more 

comprehensive analysis of the search space is carried out and a high-quality result is obtained. In each iteration, the 

systematic explorative search over the whole neighbored of a tentative solution is efficiently carried out. Afterwards, 

only the candidate movements are retained. The candidate movement is used as a variation operator applied to the 

tentative solution. The mechanism continues till the end of new candidate movement production.   

 

PALS iniatially works on a single solution generated by producing the initial solution (see Algorithm 1). Later, the 

solution is changed iteratively using movement. Movement is a perturbation (see Algorithm 2) that gives two indices 

i and j and a solution s. Theses indices reverses the subpermutation (the fragments order) between the two positions, 

i.e., i and j in the solution. For the DFA problem, while applying the movement, the principle step is to find the varation 

of contig (∆c) and fragment overlap (∆f) between the present solution and the solution obtained after applying the 

movement. The calculation is computationally inexpensive because instead of finding the fitness function or the 

number of contigs, it finds the varation of the contig and overlap. To estimate these values, this work analyze the 

affected fragments by the tentative movement (i, j, i-1, j+1). Adding the modified solution and removing the overlap 

score of the current solution, effect the fragments ∆f (see algorithm 2). This analyzes whether some contigs are broken 

or merged by the movement operator.   

 

For all possible movements in each iteration, PALS does all these calculations. A list L, stores all movements  that 

reduce the number of contigs (∆𝑐  ≤ 0). The movement is selected from a list L after completion of all possible 

calculations selecting the movement from a list having low number of contigs. In a situation when there are multiple 

movements having the same number of contigs, movement of higher ∆f value is applied. The process continues until 

no candidate movement is further generated. Fig. 3 shows typical working of the PALS.    

 

Sequence alignment: Sequence alignment is another term used for comparative sequence analysis that is one of the 

fundamental technique used in structural bioinformatics. The basic concept of sequence alignment is to align the 

DNA/RNA or protein sequences in a regular fashion to identify the conserved regions. The elementary goal of 

 

Fig. 3. The PALS process overview. 
 

 

 

 

 

 
Fig. 4. Local sequence alignment. 
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alignment is to deduce structural and functional relationships among the proposed sequences along with its 

evolutionary connections that may be termed as phylogenetic analysis. An algorithm based on dynamic programming 

approach is utilized that creates sub-problems from the main problem. These are independent and scores are assigned 

to each unit that depends on its similarity according to the parameters adjusted for a particular case. The structure and 

function of a novel sequence can be predicted via sequence alignment. This is because it is claimed that species under 

the same genes would have higher similarity among their genomic or protein sequences. Higher rate of the 

conservancy in sequence denotes greater similarity of both structure and function. There are two approaches used for 

sequence alignment, namely, Global Sequence Alignment (GSA) and Local Sequence Alignment (LSA). The GSA 

approach is usually employed for comparative investigation of homologous genes or sequences that are of almost 

equal dimensions and have some sort of relativity. Here, the alignment is performed since beginning till the last residue 

of the sequence (globally aligned) to identify the conserved regions/hotspots. Whereas, the sequences that are not for 

sure to have resemblance or even unrelated sequences can be aligned with LSA technique. LSA is utilized in 

discovering preserved region in DNA sequences, conserved domains or motifs among multiple protein sequences. 

Both these alignment approaches are typically defined by the dynamic programming method for aligning two 

dissimilar series of residues. 

 

Smith-Waterman algorithm: It is a dynamic programming-based LSA algorithm [35] utilized to calculate the 

overlap metrics. Common parameter settings for this are, -2 for gap, for a match 1 is used and for mismatches, it uses 

-3. This algorithm finds the overlap scores in both directions for every combination of fragments. This is because the 

best possible orientation is unidentified yet. Once the algorithm calculates the overlap score between the fragments, it 

is placed in an overlap matrix. This algorithm contains the following three steps: (a) matrix initialization, (b) filling 

the matrix with the suitable scores, and (c) sequence backtracking.  

 

For matrix initialization, consider the following two sequences for LSA. 

ATCG (sequence #1, X)  

   TCG (sequence #2, Y) 

These are organized in a matrix form with X-2 rows and Y-2 columns. The values in the row N-1 and second column 

are set to zero as shown in Fig. 4. Where, x, y represent rows and columns. The matrix cell value is denoted by Mxy, C 

is the score of the required cell Cx,y. In case of match or a mismatch, the gap alignment is symbolized by G. 

 

𝑀𝑥,𝑦 = 𝑀𝑎𝑥[𝑀𝑥+1,𝑦−1 + 𝐶𝑥,𝑦, 𝑀𝑥,𝑦−1 + 𝐺, 𝑀𝑥+1,𝑦 + 𝐺, 0]                                            (1) 

 

Start: 
    Initial centre:    A T C G 
 
    Swap order for chromosome: 1 0 2 
 
    Apply order [1    0    2] on centre [A    T    C    G] 
 
    Centre  A    T    C    G  Swap 1 and 1+1 index 
                      A    C    T    G      Swap 0 and 0+1 index 
                      C    A    T    G   Swap 2 and 2+1 index 
                      C    A    G    T                Complete translation 

 

Fig. 5. Portrayal of translation algorithm required for the indirect and direct representation. 
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Once the matrix cell value is filled, the next step is filling up the entire matrix. It is important to have the knowledge 

of  neighboring values (diagonal, upper, and left) of the current cell to fill up the entire matrix. After initiating the 

matrix, the first character (nucleotides) of both sequences are compared, such as ‘T’ and ‘A’, in case of a match or 

mismatch the score is added with the diagonal value (𝑀𝑥+1,𝑦−1) of  𝑀𝑥,𝑦. However, the gap value is added to the left 

(𝑀𝑥,𝑦−1) and down (𝑀𝑥+1,𝑦 ) values of the cell (𝑀𝑥,𝑦 ). Therefore, the mismatch value -3 is added to the diagonal and 

a gap penalty of -2 is added to the left and down value. The value for 𝑀𝑥,𝑦 is calculated using Eq. (1). The LSA matrix 

only contain bits, therefore the negative values are replaced by 0 and positive with 1. The entire cells are filled up 

using this approach. A sample filled matrix can be seen in Fig. 4. Where, each cell is pointed by one or more 

neighboring cells, indicating the maximum score obtained from a particular cell.  

 

Before applying the final step, back tracing is needed to find the maximum value in the entire matrix. The maximum 

value can be in multiple cells. In that case, there is a possibility of multiple alignments. The best alignment is selected 

based on the scoring. In the example (Fig. 4), the maximum score in the matrix is 3. Consequently, the trace begins 

from the locality that is having the highest score which points back using the pointers, finds the possible predecessor 

and moves on to the next one. This process continues until a score of 0 is obtained (Fig. 4(c)). Thus, a possible local 

alignment is obtained as shown in Fig. 4(d). 

 

Representation: Two types of representations based on transposition for the RRGA are available. These include a 

direct and the indirect representation. For the direct representation, the centre is selected either randomly, or with some 

seed. To generate the population of m orderings (chromosomes), this work generates m lists of numbers of length n. 

Swaps (transpositions) are applied to a copy of the centre and once all n swaps have occurred, the chromosome is 

finally created. This is done for all m chromosomes. For the indirect representation, like the direct representation, a 

centre is selected and the population is generated. The only difference for indirect representation is that the population 

does not contain the orderings, but comprises of the list of swaps. Swaps application step is skipped when creating the 

population. A population of size m is still created, however, the chromosomes are the lists of swaps of length n. These 

chromosomes with the alphabet of positive integers less than the length of the centre are then evolved. There is a 

catch, however, with this representation. In order to evaluate the fitness of the chromosomes, it is needed to actually 

translate the chromosomes of swaps to an ordering like the one mentioned in the direct representation. The swaps are 

actually applied to a copy of the centre at the time of fitness evaluation. This transposition is created as follows [16]. 

Suppose, 𝑎1, 𝑎2, … . … 𝑎𝑛,  is an ordered list of numbers {1,2,3 … 𝑛 }. The set of transpositions that exchange the pairs 

𝑎𝑖, 𝑎𝑖+l generate Sn (they form a generating set). This generating set is of size n-1. 

 

RecenteringRestartingGeneticAlgorithm() 

Input: Initial solution (Centre / Initial order of fragments) 

Output: Solution s (correct order of fragments) 

_____________________________________________________________________________________ 
1. Assign initial centre σ 

2. Set Flag  

3. while Stopping Criteria is Not Met  

4.    if FlagSet 

5.        Center=σ 

6.        Initialize Population Through use of Transpositions 

7.    end if     

8.    Execute Genetic Algorithm 

9.    if solution τ is better than σ then 

10.        σ=τ 

11.        Set Flag 

12.    else 

13.        Increase/Decrease number of transpositions to be generated 

14.        Reset Flag  

15.    end if 

16. end while 

_____________________________________________________________________________________ 

Algorithm 3: Recentering-Restarting Genetic Algorithm 
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Transposition: It is a step that precisely trades two items while leaving all others unaltered. Consider a centre of four 

letters for simplicity: A, T, C, and G. To generate 5 chromosomes, 5 lists of swaps will be created having arbitrary 

length, let's say 3 in this case. The numbers in the list of swaps have to be between 0 and the length of the center. Fig. 

5 shows the translation required for the indirect and direct representation.  

 

Orderings: 

0, 1, 2 

0, 1, 1 

1, 0, 2 

2, 2, 2 

2, 1, 2 

 

These swaps are then applied to the copies of the centre. 

T, C, G, A 

T, A, C, G 

C, A, G, T 

A, T, G, C 

A, G, C, T 

4.3 Recentering-Restarting Genetic Algorithm 

Primary feature of the RRGA is its ability to escape the local optima. This is the reason RRGA is employed in various 

past works [36], e.g., TSP, studying epidemic networks, and side effect machines for decoding. RRGA has this ability 

due to its sequential search through the entire search space. This produces global optimum while avoiding the local 

optima. The algorithm starts by selecting the starting center. The centre is the initial representation of a solution to the 

problem. For a given problem, this representation might be chosen randomly or by utilizing some heuristic approach. 

Once the centre is chosen, the population construction would be convenient. The population is created based on two 

types of representation from the center: a direct representation and the indirect transposition representation. Algorithm 

3 lists the working of RRGA.  

 

After generating the population, the next step is to execute a model GA. The GA runs for a specified number of times 

and after its completion the obtained best fitness value from the GA is compared with the fitness of the current center. 

If the fitness value of the best chromosomes is greater than the current center, it will be considered as new centre 
Subsequently, the entire procedure is repeated. This may cause the number of transpositions to either increase or 

decrease. The expanded quantity of transpositions increases while the current centre remains unchanged in case if the 

fitness value of the best chromosome is not enhanced and vice versa. The search space is different for the next iteration 

when the centre is changed while maintaining the gain from the previous run. The two variants of the algorithm exploit 

the producing set by making their phenotypes from its transpositions. The utilization step is in fact the difference 

between the two variants in this algorithm. The direct representation uses the transposition right before the evaluation 

step, while indirect transposition representation practices the transposition during the chromosome evaluation step. 

The stopping criteria of GA usually is to recognize that the learning has stopped because of convergence [37]. The 

search space of the fitness landscape for an evolutionary algorithm is same but distinct from the centre because of the 

transpositions’ nature. After recentering, if the algorithm finds local optima, the search continues with other regions 

of the fitness landscape [38].  

2-optSwap() 

Input: initial permutation of fragments, k, m (k is index of a selected fragment and m is length of permutation/solution) 

Output: final permutation of fragments 

____________________________________________________________________________________________________ 
1. Select permutation[0] to permutation[k-1] and add in order to new_permutation 

2. Select permutation[k] to permutation[m] and add in reverse order to new_permutation 

3. Select permutation[m+1] to end and add in order to new_permutation 

4. return new_permutation 

____________________________________________________________________________________________________ 

Algorithm 4: Swap procedure of 2-opt 
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After each execution of the traditional GA, the number of transpositions are altered that are produced by generating 

sets. The algorithm reboots in case no learning is detected after a few cycles. Thus, the number of reboots for a 

particular run can be dynamically defined. The primary amount of transpositions can be defined as some division of 

the solution length. In RRGA, after the GA is run every single time, there are two different possible ways for the 

number of transpositions to be refashioned. The number of transpositions is amplified by a fixed predefined numeral 

in case of no improvement or it is decreased by a fixed predefined number. The number of transpositions experience 

quick fluctuations because of the dynamic behavior of the algorithm. To cope with this situation, upper and lower 

limits are defined for the number of transpositions. If this limit is crossed, the number of transpositions is reset to the 

initial value. Although any value can be used, reasonable limits are 10 times and 1/10th of the initial value. Sometimes 

it may be advantageous to force a recentre after the first GA run. This promote distance between the initial seed and 

the centre to help remove the risk of stagnation on the seed’s local optimum. Fig. 6 depicts the sequential traversal 

through the search space of the RRGA. 

 

4.4. 2-Opt 

The heuristic called 2-opt is specifically designed for TSP [39, 40]. It is also casted on for other various similar 

applications. The success of 2-opt has encouraged the employment of 3-opt, k-opt, and some other algorithms as well 

as the dynamic approach of Lin-Kernighan. The main step in 2-opt involves the selection of a sub-permutation and 

reversing it within the permutation. The newly generated permutation is compared to the previous best permutation 

and finally the best permutation is achieved. The approach listed in Algorithm 4 is used by 2-opt to compute 

permutation. 

  

4.5. Contig 

Contig is a layout consisting of contiguous overlapping fragments. It is a sequence in which the overlap between 

adjacent fragments is greater than a predefined threshold. Calculating a number of contigs ensure the order of the 

fragments in term of cutoff/threshold. The CalculateDelta function is used to set the overlap between two adjacent 

fragments. Classical assemblers practice fitness functions that favor solutions in which strong overlap occurs between 

adjacent fragments of the layouts. The formula for overlap score is given in Eq. (2).   

                        𝐹𝑠𝑐𝑜𝑟𝑒 = ∑ 𝑤𝑓[𝑖],𝑓[𝑖+1]
𝑛−2
𝑖=0                                                                         (2) 

Where, 𝑤𝑓 represent the overlap score between two adjacent fragments i and i+1. 

 

A cutoff value is set in the CalculateDelta function of Algorithm 2. The cutoff, that is fixed up to 30 (a very high 

value), provides one filter for spurious overlaps introduced by experimental error. 

 

4.6. Coverage 

The number of bases that individually exist in all of the pieces over the whole stretch of the DNA sequence is termed 

as coverage. On average, one can have an expectancy of ten instances for a provided base from an unknown spot from 

the template contig within a group of fragments for that contig. To ensure that multiple pieces of DNA contain the 

 

Fig. 6. Sequential search space traversal demonstrated by RRGA. 
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same base, the average coverage must be greater than 1 in case of FAP. Existence of single base in multiple fragments 

enhance the chance of fragments overlap which are vital for fragments order to be made possible. 

coverage =
∑ 𝑓𝑟𝑎𝑔 𝑖 𝑙𝑒𝑛𝑛

𝑖=1

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑙𝑒𝑛
                                                                  (3) 

Equation (3) represents that the coverage is the ratio of the sum of all the fragment’s length and the original sequence’s 

length. 

 

4.7. The proposed solution core  
A number of strategies have been used for the DNA fragments assembly problem, such as greedy graph-based 

algorithms, de Bruijn graphs, and the OLC approach. Focus of the current proposal is on OLC approach for this 

problem. The challenging step in OLC is the layout phase. In the layout stage, the permutation use each fragment only 

once to find correct order of the fragments. The idea proposed here is to define a hybrid approach where RRGA uses 

PALS as an evolutionary operator. One of the RRGA’s primary feature is its capability of avoiding the local optima. 

It is because of the RRGA’s traversal over the exploration space, along with the nature of the compulsory dynamic 

illustration. This work uses the classical measure such as the overlap score between adjacent fragments for the 

judgment of the assembly quality. However, the actual objective is to obtain an order of the fragments that minimizes 

the number of contigs. This has the goal of reaching one single contig, i.e., a complete DNA sequence that comprises 

of all the overlapping fragments. In PALS, the number of contigs are used as a high-level criterion to judge the result 

quality. However, the calculation of number of contigs is quite time-consuming, and this fact precludes any algorithm 

to use such calculations. A solution to this problem is to introduce methods that do not know the exact number of 

contigs and are computationally inexpensive. The key contribution of PALS is to indirectly estimate the number of 

contigs by measuring the actual number of contigs that are created or destroyed when tentative solutions are 

manipulated. To judge the actual quality of the DNA fragment assembly, this work uses PALS by calculating the 

number of contigs with RRGA to enhance the quality of DNA fragment assembly. The RRGA is executed with an 

initial representation of the fragments order, called centre. Centre represents the default order of the fragments in the 

dataset. The centre is then optimized by using 2-opt heuristic. Once the centre is generated, a set of chromosomes is 

created using the representation mechanisms. Afterwards, the GA+PALS are executed on the sets of chromosomes. 

Next, the reproduction operators, i.e., partially mapped crossover and swap mutation are applied to the chromosomes. 

The set of best chromosomes is obtained from GA+PALS. The best chromosome (B-chromosome) is selected based 

on fitness value from the set of chromosomes. Comparison of the B-chromosome is performed with the centre based 

on the fitness value. In case fitness value of B-chromosome is greater than the center, the number of transpositions are 

decreased by 5% and the centre is replaced with B-chromosome. This process is then repeated (generating the 

chromosomes, running the GA+PALS, and comparing the best chromosome with the center). However, if B-

chromosome is not better than the center, number of transpositions are increased by 10% and the process is repeated 

without changing the current center. Due to high computational time of RRGA, the process is executed for 100 

iterations. Stopping criteria and number of iterations for the other four competing methods during the experiments are 

also kept the same for a fair comparison. The fitness value used in the proposed solution is the overlap score. It must 

be noted that while computing the overlap score (i.e., the fitness value), number of contigs are also computed 

internally. The individuals with maximum overlap scores survive in the next generation. For the proposed idea, the 

evaluation is done on 25 benchmarks datasets. Comparison is based on the evaluation metrics of overlap scores and 

number of contigs. A solution is considered best on the basis of maximum number of overlap scores and the minimum 

number of contigs. A comparison is done with four state-of-the-art methods for the same task, namely, RRGA 

variation for DNA fragment assembly [16], PALS [27], GA [21], and hybrid GA [26].     

 

Fig. 7. Chromosome representation, crossover, and mutation procedures. 
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Fitness Function: The proposed methodology assembles the reads based on two objectives, i.e., (a) reducing the 

number of contigs and (b) maximizing the sum of overlap scores. The fitness function utilized in this work is based 

on these objectives. The purpose of reducing the number of contigs is to order the reads in such a way that it becomes 

a single contig for which a threshold is set between the overlap scores. PALS is used as an evolutionary operator to 

minimize the number of contigs. Hence, reads in the individuals are ordered based on the first objective. The sum of 

overlap scores is used as a fitness value for the second objective. The individuals having better fitness value are passed 

on to the next generation. The surviving individuals are the ones having reads ordered by minimizing the number of 

contigs and having the maximum sum of overlap scores. Computation of the fitness function used in this work is listed 

in Eq. (2).  

 

Suppose a set of fragments is an array F, where any fragment is represented by 𝐹[𝐼]. The symbol 𝐹[𝐼] represents the 

ith fragments. The overlap score between any two adjacent fragments 𝑓𝑟𝑚[𝑖], 𝑓𝑟𝑚[𝑖+1] represent the similarity between 

the two fragments which is estimated by Smith-Waterman algorithm. Where, the fitness function is the sum of the 

overlap score between all adjacent fragments. The criteria of overlap and number of contigs is based on assessing the 

fitness value by considering the sum of the overlap score of each individual and also reflecting the number of contigs 

in an individual with the help of PALS. The number of contigs is also taken into consideration for the final sequence 

obtained. The significance of contig calculation is to ensure that the solution best represents a sequence that is 

continuously assembled. The fitness function in this work utilizes both the number of contigs and overlap score. 

 

Chromosome structure: The DNA fragment assembly is a permutation problem. The chromosome is generated by 

either direct or indirect transposition representation technique. The chromosome is the list of fragments. The cells in 

the chromosome represents the fragment. The length of the chromosome represents the number of fragments in the 

FASTA dataset which is the same for each chromosome. Structure of the chromosome used in this work is shown in 

Fig. 7. 

  

Crossover and Mutation: The partially mapped crossover method is used in this work. The process starts by 

randomly selecting any two chromosomes (as parents). Next, the partially mapped crossover algorithm is applied on 

two chromosomes to generate the resultant child. Once the two parents are selected, a substring from each parents is 

randomly chosen and is exchanged between the two. The mapping relationship is determined between the two 

subgroups. Later on, the relation map is utilized to legalize the offspring. The detail of the partially mapped crossover 

according to the current problem is explained as follows. For partially mapped crossover, an offspring is built by 

choosing a subsequence of elements from one parent. This preserves the order and positions of as many elements as 

possible from the second parent. The subsequence of elements that chunk its copy from the first parent to the child is 

selected by choosing two random cut points, which serves as a boundary for the swapping operations. The partially 

mapped crossover algorithm for the current problem has following steps.  

 Start by randomly selecting any two chromosomes (as parents). Say, P1 and P2 are two chromosomes and C 

is the child (see. Fig. 7). 

 Choose random segment and copy it from P1 to C. 

 Then, start with the first crossover point and look for elements in that segment of P2, so in the corresponding 

segment of P2, it finds the element which has not been copied yet. 

 For each of these elements called 𝑖 elements, look in the offspring to see which element 𝑗 has been copied in 

its place from P1, now its dealing with elements and its places. For each element 𝑖 , these are the elements in 

the segment of P2.  It looks in the offspring and see which elements have been copied in its placed from P1, 

calling those elements the 𝑗 elements. 

 Place 𝑖 into position occupied by 𝑗 in P2, as 𝑗 is already in the offspring.  

 If the place occupied by 𝑗 in P2 has already filled in the offspring by an element 𝑘, it will put 𝑖 in the positions 

occupied by 𝑘 in P2.  The 𝑖 correspond to j, and 𝑗 correspond to 𝑖 + 1 and 𝑖 + 1 goes to k. If i and k are equal 

elements, then i will be compared with the next corresponding value and this process will continue until 

different values come across. 

 The rest of the offspring is filled directly from P2 (second parent). 
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For the mutation operation (see Fig. 7) the swap mutation option is utilized in this work. Given an input chromosome, 

two elements are picked randomly to be swapped. This method preserves most of the adjacency information. 

Therefore, no major change happens in the chromosomes. Fig. 7 shows the crossover and mutation operations utilized 

here. Algorithm 5 lists the complete working of the proposed solution.  

 

5. Experiments and results  

This section lists the experiments performed to evaluate the current proposal and their results. For this, 25 benchmark 

datasets, including 14 f-series sequences, are utilized. The results are compared with four state-of-the-art approaches 

from the same domain, namely, RRGA variation for DNA fragment assembly [16], PALS [27], GA [21], and hybrid 

GA [18]. Three different types of experiments are carried out. These set of experiments not only assist in evaluating 

the current proposal, but also help in determining the optimum settings of the proposed evolutionary computing-based 

framework to solve the DFA problem. The three set of experiments are: (a) setting the initial fragment positions 

optimized through 2-opt, (b) utilizing PALS for optimizing the solution obtained after executing GA, and (c) setup 

with swapping GA representation. Each of the three set of experiment is performed with and without force recentre. 

Table 3 lists the parameter settings for the proposed work. Partially mapped crossover and swap mutation is used here 

as genetic operators. The selection of chromosomes is done by the tournament selection method. All the evolutionary 

algorithms are basically probabilistic methods and the output achieved in one iteration may not be obtained in the 

other. Therefore, while reporting results of such methods average value of multiple runs is usually reported. The same 

procedure is adopted here and an average of 10 runs is used.  

 

DNAFragmentAssemblyviaRecentringRestaringHybridGeneticAlgorithm() 

Input: Initial order of the fragments (generate initial solution) 

Output: Overlap score and the number of contigs of final solution 

_______________________________________________________________________________________________ 
1. Representation: First, represent the initial order of fragments according to 

their original order of sequence in the benchmark.  

2. Initial centre of DNA fragment assembly: Apply the TSP heuristic called 2-Opt 

on initial order ε for optimizations. 

3. While termination condition is not meet execute RRHGA 

Generate the population of size N, randomly select N order and then apply 

N transposition to the centre so as to generate the set of chromosomes. 

4.    Execute GA with PALS (Until it does not meet the stopping criteria) 

5.           Selection for crossover 

Apply tournament selection to a population in order to select the 

chromosome for crossover, and then apply partially mapped crossover 

on selected chromosomes. 

6.           Mutation operator 

Apply swap mutation to chromosomes.  

7.           Use PALS as evolutionary operator 

Use PALS as evolutionary operator to optimize the solution. 

8.    Getting the best solution 

 The best solution is obtained via Hybrid GA. 

9.    Compare the solution with initial centre  

If a solution α after applying   GA is better than starting centre 𝜀 .Then 
replace the initial centre with best solution.  

           𝜀 = α 
10.   Fluctuating the number of transpositions 

In case of improving the solution, decrease in the transposition by 5 

present is idle, otherwise an increase of 10 percent is recommended. 

11.   Repeat step 4 to 10 

The process is repeated from step 4 to 10 continuously until the termination 

criteria is not satisfied.  

12.   Overlap score and the number of contigs as a final output._______________ 

Algorithm 5: Pseudocode of DNA fragment assembly via recentring-restaring hybrid genetic algorithm  
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5.1. Experimental design 

DNA fragment assembly is the process of reconstructing the original DNA sequence from small fragments of the 

DNA. Focus of the proposed work is on the OLC. The challenging part of OLC is the layout phase. OLC is a 

permutation problem in which each fragment is used exactly in an order of the layout that best represents the original 

sequence. The proposed work initializes the fragment positions utilizing 2-opt to enhance the solution [31]. The goal 

of the proposed solution is to maximize the overlap score of the layout and decrease the number of contigs to generate 

a high-quality solution.  

 

The overlap score of a solution is the sum of overlap scores between all the adjacent fragments i and i+1 in the 

permutation that can be calculated via Eq. (2). A better solution is the one with a higher overlap score. The second 

objective is to decrease the number of contigs with the help of CalculateDelta function (PALS algorithm). The contig 

finds the order of the overlapping fragments based on a threshold. The PALS algorithm optimizes the permutation by 

adjusting the order of the fragments for creating or destroying the number of contigs by generating the tentative 

solution [41]. Once the solution is optimized, candidate solutions are evaluated for their fitness value. The proposed 

solution analyzes the final sequence by calculating the number of contigs along with their fitness value. Various 

benchmarks exist for the comparison of existing methods and new approaches. Generally, eleven of these benchmarks 

are frequently used, namely, x601894, x601895, x601896, x601897, m154215, m154216, m154217, j024597, 

bx8425964, bx8425967, and acin1. Comparison of the proposed solution with the four state-of-the-art methods is 

carried out using these benchmarks and fourteen f-series datasets (see Table 2). 

 

Three types of experiments are conducted here. The first set of experiments consist of the initial fragment position 

which is optimized by 2-opt [16]. Due to the dynamic nature of RRGA, the algorithm restarts many times after a few 

generations in case of no learning. The effect of recentreing after the first restart is also studied. The effect of using 

PALS as a genetic operator for optimizing the individuals is analyzed. The second set of experiments repeat the first 

one, however, instead of using PALS as a genetic operator, it is utilized for optimizing the solution obtained after 

executing the GA. The third set is the replica of the first one with the difference that the representation for the GA is 

swapped if the first run of GA uses direct representation. The second one then uses the indirect representation and 

vice versa [16]. A comparative analysis is carried out with the four best algorithms shown in Table 4. The three types 

of experiments are validated by force recentering. This is because sometimes it maybe beneficial to force a recentre 

right after the first GA execution, which indorses the path length from the starting path to the center. Therefore, 

enabling to avoid the hazards of inertia over the seed’s local optimum. 

 

 

5.2. Experiments with initial fragment position optimized through 2-opt 

All tables shown in the experiments represent the results of both direct and indirect transposition representations. The 

tables show the results of 11 problem instance with 14 f-series datasets. Therefore, there are 25 datasets in each table. 

Each dataset is evaluated based on their obtained fitness value and number of contigs. The first set of experiments is 

the same as in [16], i.e., dynamic restart, force recentering after the first restart, altering the percentage of n 

transpositions. The improvement in this work is achieved by utilizing the PALS as a genetic operator. Two objective 

functions are used to evaluate the final sequence; the overlap scores and number of contigs. The contig values 

presented in the results here are calculated via PALS algorithm. The negative contig value denotes that the number of 

adjacent fragments is higher than a predefined threshold which is decreased by -1 as shown in Algorithm 2 (step 15). 

This process keeps on decreasing the contig’s value and finally it becomes less than zero where it is represented in the 

form of negative integers. 

 

Table 3 
Parameters for conducting the experiments for DNA fragment assembly. 

Population size 100 

Mutation rate  2% 

In case of no improvement, the number of transpositions is  increased by 10% 

In case of improvement, the number of transpositions is decreased by 5% 

Cutoff value  30 

Stopping criteria   No. of iterations, i.e., 100 

Objective function Sumo of overlap scores  

GA  operators Partially mapped crossover & swap mutations 



 

Table 4 
Summary of results on all 25 datasets using comparison papers. 

 RRGA GA GA+PALS PALS 

Dataset Fitness value Contig Time 
Fitness 

value 
Contig Time 

Fitness 

value 
Contig Time 

Fitness 

value 
Contig Time 

m15421_5 22143 -20 2.00E+09 7450 90 2.00E+09 6181 96 2.00E+09 80 259 2.00E+09 

m15421_6 28704 -42 2.00E+09 7501 132 2.00E+09 5236 148 2.00E+09 79 289 2.00E+09 

m15421_7 34463 -44 2.00E+09 6455 146 2.00E+09 5868 150 2.00E+09 80 259 2.00E+09 

x60189_4 5726 0 2.00E+09 6793 2 2.00E+09 3842 16 2.00E+09 91 306 2.00E+09 

x60189_5 8731 -11 2.00E+09 2917 25 2.00E+09 3798 23 2.00E+09 81 259 2.00E+09 

x60189_6 10643 -11 2.00E+09 3747 45 2.00E+09 3659 35 2.00E+09 84 267 2.00E+09 

x60189_7 11670 -5 2.00E+09 4805 23 2.00E+09 4910 23 2.00E+09 81 259 2.00E+09 

j02459_7 70701 -71 2.00E+09 16547 281 2.00E+09 14740 287 2.00E+09 70 259 2.00E+09 

acin1 46934 -298 2.00E+09 43285 -292 2.00E+09 3249 -298 2.00E+09 71 253 2.00E+09 

bx842596 4 125070 -59 2.00E+09 10848 409 2.00E+09 10718 411 2.00E+09 123 454 2.00E+09 

bx842596 7 246070 -152 2.00E+09 16983 730 2.00E+09 43580 -298 2.00E+09 123 454 2.00E+09 

f25_305 1974 10 2.00E+09 1335 12 2.00E+09 1789 14 2.00E+09 124 502 2.00E+09 

f25_400 3530 4 2.00E+09 3249 6 2.00E+09 1770 12 2.00E+09 77 302 2.00E+09 

f25_500 5226 -4 2.00E+09 3917 2 2.00E+09 3945 4 2.00E+09 124 502 2.00E+09 

f50_315 4018 17 2.00E+09 3053 23 2.00E+09 1948 29 2.00E+09 80 277 2.00E+09 

f50_412 6178 11 2.00E+09 4311 19 2.00E+09 4665 13 2.00E+09 101 384 2.00E+09 

f50_498 8583 1 2.00E+09 11331 -1 2.00E+09 3481 13 2.00E+09 117 393 2.00E+09 

f100_307 7104   47 2.00E+09 6264 65 2.00E+09 2604 85 2.00E+09 85 295 2.00E+09 

f100_415 8697 53 2.00E+09 3802 89 2.00E+09 6576 67 2.00E+09 102 330 2.00E+09 

f100_512 11586 45 2.00E+09 3846 81 2.00E+09 4484 73 2.00E+09 140 466 2.00E+09 

f508_354 55046 322 2.00E+09 9562 491 2.00E+09 12413 471 2.00E+09 67 281 2.00E+09 

f635_350 57309 426 2.00E+09 15126 604 2.00E+09 15579 602 2.00E+09 97  336 1.53E+09  

f737_355 112546 726 2.00E+09 736 736 2.00E+09 14364 716 2.00E+09 101  739 1.53E+09 

f1343_354 123130 906 2.00E+09 21362 1330 2.00E+09 21657 1334 2.00E+09 68 294 2.00E+09 

f1577_354 123130 906 2.00E+09 24829 1566 2.00E+09 24828 1568 2.00E+09 91 341 2.00E+09 
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X 

Table 5 

First set of results with force recentre. 

 Direct Indirect 

Dataset 
Fitness 

value 
Contig Time 

Fitness 

value 
Contig Time 

m15421_5 21553 -8 1524926083 20476 0 1524963941 

m15421_6 30306 -50 1524908557 27931 -32 1524992468 

m15421_7 33515 -39 1525008258 31065 -18 1525009295 

x60189_4 6009 -2 1524964126 7032 -14 1524984845 

x60189_5 8231 -9 1524966285 8500 -9 1524989358 

x60189_6 9749 -5 1524966289 9136 5 1524940843 

x60189_7 12838 -15 1524963528 11894 -7 1524955261 

j02459_7 68741 -59 1525008627 65708 -37 1525090946 

acin1 46947 -298 1524448446 46651 -286 1524991598 

bx842596 4 126113 -69 1525578659 122903 -47 1525572736 

bx842596 7 245634 -160 1525618669 240446 -130 1527432020 

f25_305 2161 4 1524922174 2288 4 1524920276 

f25_400 4132 -4 1524823823 3799 2 1524922122 

f25_500 5112 2 1524901379 5440 0 1524986792 

f50_315 3717 15 1525014442 4152 11 1525012912 

f50_412 6548 7 1525077368 6359 9 1525102491 

f50_498 7556 3 1524874474 8458 1 1524875744 

f100_307 5813 59 1532460882  6278 53 1532463052  

f100_415 8348 57 1524892166 8152 53 1524880752 

f100_512 11050 47 1524466104 11556 45 1525009131 

f508_354 44218 263 1524970014 43750 265 1525051146 

f635_350 55202 322 1524983434 54912 324 1524983630 

f737_355 56940 428 1524947267 55330 442 1525071886 

f1343_354 112246 728 1525127233 112009 730 1525084466 

f1577_354 123522 904 1525203170 121705 916 1525130401 

 



 

5.2.1. Forced recentre 

Table 5 shows the results on 25 problem instances for force recentre approach with both representations. The results 

show best fitness value achieved by the present work for 5 out of 11 problem instances in comparison to the competing 

algorithms. While for 3 out of 14 f-series instances, the results are better using the proposed solution. For comparing 

the contigs, the result shows minimum and same number of contigs for 4 and 3 f-series instances, respectively. The 

results for problem instance with minimum and same number of contig are 2 and 2, respectively. Therefore, the overall 

summary of the results for the first set of experiments concludes that for 10 out of 14 f-series instances and 9 out of 

11 problem instances, the proposed solution has performed better. 

 

5.2.2. No forced recentre 

Table 6 displays the results on 25 problem instances without force recentre approach with both representations. The 

summary result presents the best fitness value for 5 out of 11 problem instances. However, for f-series, it has best 

value for 7 out of 14 instances. While for contig, 3 and 1 problem instances represent the minimum and same number 

of contigs. For f-series, 2 and 1, the number of instances show minimum and same number of contigs sequentially. 

Therefore, the conclusion for without force recentre approach shows that for 9 out of 11 problem instances and 10 out 

of 14 f-series instances perform better using the proposed solution.      

 

5.3. Experiments with PALS for optimizing after executing GA  

The second set of experiment repeats the first set of experiments. However, in this experiment instead of using PALS 

as an evolutionary operator, it is used after the execution of GA. The reason of this is to save time by using it only for 

optimizing the obtained solution.  

Table 6 
First set of results without force recentre. 

 Direct Indirect 

Dataset Fitness value Contig Time Fitness value Contig Time 

m15421_5 22598 -14 1525648652 54932 -2 1525556089 

m15421_6 29469 -46 1525421686 27774 -30 1526817381 

m15421_7 32744 -38 1525108769 54932 -28 1525856065 

x60189_4 6488 -8 1525395759 6324 -4 1525549836 

x60189_5 8655 -11 1525822448 8496 -5 1525397582 

x60189_6 9943 -7 1525290915 9652 -1 1525328120 

x60189_7 11546 -3 1525332860 11160 3 1525333085 

j02459_7 68736 -59 1525566386 66109 -37 1525461427 

acin1 47037 -298 1525334606 47043 -298 1525334596 

bx842596 4 125711 -65 1526844963 122943 -47 1526838077 

bx842596 7 247856 -160 1533132218 241509 -130 1530581210 

f25_305 2271 4 1525348557 2124 8 1525363178 

f25_400 3139 4 1525423209 4024 0 1525363943 

f25_500 5777 -4 1525440028 5143 0 1525467617 

f50_315 4013 19 1525967670 4485 13 1525005277 

f50_412 5835 17 1526257288 6355 3 1526077729 

f50_498 9050 -3 1525873508 8100 -1 1525783248 

f100_307 7035 43 1532469479 7111 53 1532468245 

f100_415 9202 51 1525833169 8461 53 1525833177 

f100_512 11881 41 1525577068 54932 47 1525576977 

f508_354 44240 263 1525584043 43589 267 1525583997 

f635_350 55137 324 1525487810 54932 324 1525490303 

f737_355 57525 426 1525661171 55366 442 1526309255 

f1343_354 113172 722 1525649599 111753 732 1526854255 

f1577_354 123446 916 1526818991 121733 916 1525684222 
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5.3.1. Forced recentre 

Table 7 shows the results on 25 datasets for the second set of experiments with the force recentre approach. Result 

shows the proposed approach achieves best fitness value for 3 out of 11 problem instances. The results on f-series 

datasets give better fitness value for 3 out of 14 instances. However, the f-series shows the same and  minimum number 

of contigs for 5 and 2 instances, respectively. The force recentre for second experiments conclude that best fitness 

values are found for 3 out of 11 problem instances. For f-series datasets, the results are better for 10 out of 14 instances. 

 

5.3.2. Without forced recentre 

Table 8 shows the results without force recentre for the second set of experiments. The summary result shows that 

none of the problem instance performed better than the past algorithms using the proposed method. However, for f-

series datasets, there are only 3 out of 14 instances having better fitness values. Comparing based on contig, there is 

1 and 3 instances for the same and minimum number of contigs. This experiment shows that overall there are only 7 

out of 14 instances which perform better.   

 

The comparisons between the first and second set of experiments show that PALS perform better when used as a 

genetic operator. This is because it improves each individual from generation to generation and at the end gives better 

solution. The first set of experiments perform better with the force recentre and without force recentre for 19 instances 

out of 25. However, for the second set of experiments, the performance gets degraded and it performed better for 13 

and 7 instances for force recentre and without force recentre, respectively.   

 

5.6. Experiments with swapping GA representation 

The third set of experiments combine the first two sets of experiments with swapping representations. For example, if 

one run of GA is with a direct representation, then the second time it executes with an indirect transposition-based 

representation and vice versa.  

 

5.6.1. With force recentre 

Table 9 shows the summary of the third set of experiments for force recentre. The proposal performed better for 1 out 

of 11 problem instances and 2 out of 14 f-series instances. However, when contig is compared, there are 2 problem 

Table 7 
Second set of results with force recentre. 

 Direct Indirect 
Dataset Fitness value Contig Time Fitness value Contig Time 

m15421_5 21851 -10 1526771880 20579 -4 1526794122 

m15421_6 29330 -48 1526672492 8694 -9 1526686176 

m15421_7 33188 -40 1526720750 30735 -22 1526841144 
x60189_4 6947 -12 1526683631 6022 -4 1526645186 

x60189_5 8629 -7 1526723499 8694 -9 1526686176 

x60189_6 9527 1 1526790020 8599 11 1526701831 
x60189_7 11656 -9 1526713655 10962 -3 1526801702 

j02459_7 66770 -47 1527944784 65570 -33 1527948346 

acin1 46972 -298 1526878711 46837 -298 1526875181 
bx842596 4 123532 -53 1528117885 122435 -43 1528063311 

bx842596 7 242925 -140 1530160013 239466 -130 1530270189 

f25_305 2115 8 1526647579 1695 12 1526572576 
f25_400 3046 6 1526678760 3373 2 1526678919 

f25_500 4560 4 1526703753 4812 0 1526682992 

f50_315 5443 9 1526753246 4304 13 1526797562 
f50_412 6389 9 1526691464 6121 7 1526696305 

f50_498 6896 5 1526662758 8038 3 1526706263 

f100_307 4560 4 1526703753 6209 51 1526609099 
f100_415 8282 57 1526662648 8282 57 1526662648 

f100_512 11116 47 1527943310 10954 47 1527129950 

f508_354 44153 265 1527930106 43559 263 1528361477 
f635_350 54414 324 1528006362 54924 324 1528470553 

f737_355 55900 434 1527962099 55424 440 1528481359 

f1343_354 43927 265 1528472943 111687 732 1530042773 
f1577_354 122258 912 1530091905 121706 916 1528069185 
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instances having the same number of the contigs. For the f-series, there are 4 and 1 instance having minimum and 

same number of contigs. These experiments conclude that there are 3 out of 11 problem instances that are having 

better values while for f-series instance, there are 7 out of 14 instances having a better value.        

 

5.6.2. Without force recentre 

Table 9 also shows the summary of the third set of experiments without force recentre. There are 3 out of 11 problem 

instances that show comparatively better values. The results for f-series datasets represent better value for 2 out of 14 

instances. While comparing the number of contigs, there is 1 problem instance having the same value. However, for 

f-series datasets, it shows better value for 3 out of 14 instances. The third set of experiments without force recentre 

perform better for 4 out of 11 problem instances and 5 out of 14 f-series instances. 

 

The comparisons of all the three sets of experiments conclude that the proposed method perform well when PALS use 

it as a genetic operator. In the third set of experiments the performance is degraded due to the representation swapping. 

The results for force recentre act better for 10 out of 25 datasets. However, without force recentre the results for 9 out 

of 25 f-series instances perform best. The second set of experiments perform best for 13 and 7 instances for force and 

without force recentre approach, respectively. However, the first set of experiments show better results for 19 instances 

using force and without force recentre approach. 

 

In the present work, overlap scores are used as a fitness value. Based on this, individuals with better fitness value will 

pass on to the next generation. Therefore, only those individuals will survive that have better overlap score. A 

convergence graph of the proposed work using x601896 dataset is shown in Fig. 8. 

Table 8 
Second set of results without force recentre. 

 Direct Indirect 

Dataset Fitness value Contig Time Fitness value Contig Time 

m15421_5 8373 -7 1527218598 8465 -7 1527044228 

m15421_6 28275 -32 1527910382 27482 -30 1527918138 

m15421_7 32157 -24 1527289281 31708 -22 1527289935 

x60189_4 6200 -4 1527038783 6142 -4 1527037439 

x60189_5 9612 -1 1527047678 8803 -9 1527048804 

x60189_6 9032 3 1527054770 8328 7 1527057723 

x60189_7 11009 -1 1527019717 10998 3 1527062885 

j02459_7 65570 -33 1527948346 66437 -45 1527982218 

acin1 46978 -298 1527160100 47005 -298 1527160100 

bx842596 4 123249 -53 1530219318 122186 -45 1530218956 

bx842596 7 242616 -144 1530327389 241079 -134 1530501848 

f25_305 1644 8 1527024700 1904 8 1527031152 

f25_400 3511 4 1527031717 3190 2 1527028797 

f25_500 4818 0 1527040259 4444 2 1526994686 

f50_315 4070 17 1527035577 3805 19 1527035562 

f50_412 6029 13 1527048192 5812 15 1527055023 

f50_498 8432 1 1527064390 7637 7 1527020713 

f100_307 6077 53 1527065330 6119 53 1527064790 

f100_415 8132 57 1527106847 8159 55 1527108865 

f100_512 11402 47 1527156264 11458 47 1527151569 

f508_354 43927 265 1528472943 43559 267 1528361477 

f635_350 54931 322 1530163236 54715 324 1528387280 

f737_355 55341 440 1528519172 55286 442 1528521143 

f1343_354 112062 728 1530149150 111737 732 1530131189 

f1577_354 121755 914 1530300770 121565 916 1530194222 
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Fig. 8. Convergence graph of the proposed approach. 

 

5.7. Statistical significance 

It is important to see the statistical significance of the obtained results using the proposed approach in comparison to 

the other competing methods. This significance is identified here using the paired sample t-test. First, two null 

hypothesis (𝐻10, 𝐻20) and their alternative hypothesis (𝐻1𝐴,  𝐻2𝐴) are defined. These are listed in Table 10. Afterwards, 

the scores according to the number of contigs are assigned to the competing approaches based on their performance 

over 25 datasets. These scores are listed in Table 11. The proposed work has two objectives, therefore a statistical test 

is performed for each of these. The significance level α is set to 5% and degree of freedom (df) is set to 25. The p 

value is a measure of evidence strength against the null hypothesis that is produced by the sample.  
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Table 9 
Third set of experiments on all datasets. 

 Force recentre Without force recentre 

Datasets Fitness value Contig Time Fitness value Contigs Time 

m15421_5 21170 -12 1527908616 21974 -8 1527919051 

m15421_6 28295 -36 1527908653 28493 -40 1527916198 

m15421_7 31680 -26 1527871612 32115 -30 1527927321 

x60189_4 6413 -8 1527896556 6484 -6 1527896540 

x60189_5 8252 -5 1527897698 8454 -7 1528419149 

x60189_6 9343 1 1527898426 8855 3 1527899167 

x60189_7 10906 3 1527900576 11833 -5 1527906268 

j02459_7 68283 -51 1527068914 66323 -39 1528445333 

acin1 46755 -298 1527761450 47060 -298 1527906376 

bx842596 4 124304 -55 1530044793 122064 -45 1530452971 

bx842596 7 241886 -142 1530427891 42621 648 1530256206 

f25_305 1637 12 1527485726 1746 10 1527891640 

f25_400 3384 4 1527852955 2767 8 1527898626 

f25_500 4605 0 1527900388 5131 -2 1527900207 

f50_315 3683 19 1527895056 4128 21 1527897635 

f50_412 8622 55 1527773128 5764 13 1527902963 

f50_498 6871 1 1527901366 7542 7 1527907971 

f100_307  8350  49  1532464964  6184  53 1532464172 

f100_415 8585 53 1527905094 8349 59 1527979247 

f100_512 10343 49 1527766992 10654 49 1527926483 

f508_354 43920 263 1527980270 44044 263 1528050598 

f635_350 54861 320 1527811795 54983 322 1528514660 

f737_355 56316 434 1527824846 55867 438 1528015421 

f1343_354 112653 726 1528098144 111956 728 1530096617 

f1577_354 121793 916 1530163002 121496 916 1530143579 
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The t-statistic is computed for each pair. For this, first scores are assigned to all approaches for each dataset (see Table 

11). The score is the ratio of the number of contigs generated by an approach and total number of reads in a dataset. 

The results in Table 12 show that t-statistic was calculated for 25 samples with α=0.05 as significance level. As shown 

in the table there is a significant difference between the proposed work and RRGA [t (24) = 8.7376, p< 0.05], GA [t 

(24) = 72.528755, p<0.05], GA+PALS [t (24) = 61.956615, p< 0.05], and PALS [t (24) = 8.9909378, p< 0.05]. On 

the basis of the p-value which is lower than α, the null hypothesis 𝐻10 is rejected in favor of 𝐻1𝐴. Therefore, it is 

concluded that there is a significant difference between the groups.  

 

Table 10 
Null hypotheses with their alternatives.     
Null hypotheses   Alternate hypothesis 

𝑯𝟏𝟎 ∶The proposed technique does not reduce the sum of 

contigs.  𝑯𝟏𝑨 ∶The proposal reduces the sum of contigs. 

𝑯𝟐𝟎: The proposed technique does not maximize the sum of 

overlaps scores.  

𝑯𝟐𝑨 : The current proposal maximizes the sum 

of overlaps scores. 

 

Table 11 

Score assignment to the competing approaches for first hypothesis. 

Dataset Proposed RRGA GA GA+PALS PALS 

m15421_5 -0.11024 -0.15748 0.708661 0.755906 2.03937 

m15421_6 -0.2659 -0.24277 0.763006 0.855491 1.67052 

m15421_7 -0.21469 -0.24859 0.824859 0.847458 1.463277 

x60189_4 -0.20513 0 0.051282 0.410256 7.846154 

x60189_5 -0.22917 -0.22917 0.520833 0.479167 5.395833 

x60189_6 -0.10606 -0.16667 0.681818 0.530303 4.045455 

x60189_7 -0.04412 -0.07353 0.338235 0.338235 3.808824 

j02459_7 -0.16761 -0.2017 0.798295 0.815341 0.735795 

acin1 -0.97068 -0.97068 -0.95114 -0.97068 0.824104 

bx842596 4 -0.14706 -0.13348 0.925339 0.929864 1.027149 

bx842596 7 -0.20699 -0.19664 0.944373 -0.38551 0.587322 

f25_305 0.16 0.4 0.48 0.56 20.08 

f25_400 0.16 0.16 0.24 0.48 12.08 

f25_500 -0.14815 -0.14815 0.074074 0.148148 18.59259 

f50_315 0.38 0.34 0.46 0.58 5.54 

f50_412 0.34 0.22 0.38 0.26 7.68 

f50_498 -0.06 0.02 -0.02 0.26 7.86 

f100_307 0.43 0.43 0.65 0.85 2.95 

f100_415 0.51 0.53 0.89 0.67 3.3 

f100_512 0.41 0.45 0.81 0.73 4.66 

f508_354 0.517717 0.633858 0.966535 0.927165 0.55315 

f635_350 0.510236 0.670866 0.951181 0.948031 0.529134 

f737_355 0.578019 0.985075 0.998643 0.971506 1.002714 

f1343_354 0.537602 0.674609 0.99032 0.993299 0.218913 

f1577_354 0.58085 0.574509 0.993025 0.994293 0.216233 

Average 0.089546 0.132802 0.578774 0.559131 4.588262 

SD (σ) 0.382415 0.431921 0.449868 0.458208 5.386027 
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Table 12 

Paired sample t-test for first hypothesis. 

Paired differences T df Sig. (2-tailed) 

 

Mean 
Std. 

deviation 

Std. error 

mean 

95% confidence 
interval of the 

difference 

   Pairs Lower Upper 

Proposed-RRGA -0.0432566 -0.0495058 -0.0099012 -0.0228206 -0.0637 8.7376 24 6.40E-09 

Proposed-GA -0.4892281 -0.067453 -0.0134906 -0.4613835 -0.5171 72.528755 24 1.24E-29 

Proposed-GA+PALS -0.4695852 -0.0757926 -0.0151585 -0.438298 -0.5009 61.956615 24 5.35E-28 

Proposed-PALS -4.498716 -5.0036116 -1.0007223 -2.4332252 -6.5642 8.9909378 24 3.76E-09 

 

Table 13 

Scores assigned to the competing approaches for second hypothesis.  
Dataset Proposed RRGA GA GA+PALS PALS 

m15421_5 1 0.75 0.5 0 0.25 
m15421_6 1 0.75 0.5 0 0.25 

m15421_7 0.75 0.75 0.5 0 0.25 
x60189_4 0.75 0.5 0.75 0 0.25 

x60189_5 0.75 0.75 0.5 0 0.25 

x60189_6 0.75 1 0.5 0 0.25 
x60189_7 0.75 1 0.5 0 0.25 

j02459_7 0.75 1 0.5 0.25 0 

acin1 1 1 0.5 0 0.25 
bx842596 4 1 0.75 0.5 0 0.25 

bx842596 7 1 0.75 0.5 0 0.25 

f25_305 1 0.75 0.5 0 0.25 
f25_400 0.75 1 0.5 0 0.25 

f25_500 1 0.75 0.5 0 0.25 

f50_315 0.75 1 0.5 0 0.25 
f50_412 0.75 1 0.5 0 0.25 

f50_498 1 0.75 0.5 0 0.25 

f100_307 0.75 1 0.5 0 0.25 
f100_415 1 0.75 0.5 0 0.25 

f100_512 1 0.75 0.5 0 0.25 

f508_354 0.75 0.75 0.5 0 0.25 
f635_350 0.75 1 0.5 0.25 0 

f737_355 0.75 1 0.5 0 0.25 

f1343_354 0.75 1 0.5 0.25 0 
f1577_354 1 0.75 0.5 0.25 0 

Average 0.86 0.85 0.51 0.04 0.21 

SD (σ) 0.126656 0.144338 0.05 0.093541 0.093541 

X 
 

 

Table 14 

Paired sample t-test for second hypothesis.      
Paired differences T df Sig. (2-tailed) 

 

Mean 
Std. 

deviation 
Std. error 

mean 

95% confidence 

interval  of the 

difference 

     Pairs Lower Upper 

Proposed-RRGA 0.01 -0.01768 -0.0035364 0.017285 0.002715 -28.27756 24 6.12E-20 

Proposed-GA 0.35 0.076656 0.0153311 0.318418 0.381582 45.658704 24 7.65E-25 

Proposed-GA+PALS 0.82 0.033114 0.0066229 0.806357 0.833643 247.6274 24 2.07E-42 

Proposed-PALS 0.65 0.0331143 0.0066229 0.636357 0.663643 196.29002 24 5.46E-40 
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(a) 

 
(b) 

 
(c) 

Fig. 9. Analysis of the conducted experiments on the 25 benchmark datasets. (a) Initial fragment position 

optimized through 2-opt, (b) PALS for optimization after executing GA (c) swapping GA representation. 
X 

 
(a) 

 
(b) 

Fig. 10. Performance summary of the five competing methods. (a) proposed approach vs. other state-of-the-art 

methods (b) proposed approach vs. RRGA. 
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The second hypothesis is about the supposition that the proposed tool does not maximize the overlap scores. For this 

analysis the score is assigned by comparing the overlap scores among the five approaches. If the proposed approach’s 

overlap score is greater than all the competing algorithms then it is assigned a score of 4 out of 4. These scores are 

listed in Table 13. The paired sample t-test for this analysis is shown in Table 14 which shows that there is a significant 

difference between the proposed work and RRGA [t (24) = -28.27756, p< 0.05], GA [t (24) = 45.658704, p<0.05], 

GA+PALS [t (24) = 247.6274, p< 0.05], and PALS [t (24) = 196.29002, p< 0.05]. On the basis of the p-value which 

is lower than α, the null hypothesis 𝐻20 is rejected in favor of 𝐻2𝐴. It is therefore concluded that there is a significant 

difference between the groups.  

 

The statistical analysis here proves that the proposed work assemble the fragments based on maximizing the number 

of overlap scores and minimizing the number of contigs. It also suggests that the RRGA [t (24) = 8.7376, p< 0.05] 

and RRGA [t (24) = -28.27756, p< 0.05] perform better than the other three comparison methods. This is the primary 

reason of comparing results of the proposed approach with RRGA. 

 

 6. Discussion 

This work focused on the DNA-FAP and presented a soft computing-based solution. The DNA-FAP is concerned 

with the reconstruction of the target DNA. For this, it identifies the right order and orientation of nucleotides for each 

fragment in the layout by taking a vast number of sequenced fragments into consideration. The proposed solution 

presented a bi-objective optimization problem addressed through two main objectives. The objectives included (a) 

maximizing the sum of overlap scores between the two adjacent fragments and (b) minimizing the number of contigs. 

The current work focused on the OLC approach. For initializing the fragment’s position, the TSP heuristic, i.e., 2-opt 

was used to reset the position of the fragments. The RRHGA was used to explore all feasible solutions. Additionally, 

this work employed the PALS algorithm as an evolutionary operator to correctly order the fragments (genes) of the 

chromosome. For performance evaluation, 25 benchmark datasets including the collection of 14 f-series datasets were 

used. Three sets of experiments were conducted using these datasets utilizing two approaches, i.e., with force recentre 

and without force recentre. The current work was evaluated using three different types of tests. All these tests were 

carried out with force and without force recenter for both types of representation. The present proposal was compared 

with RRGA variation for the DNA fragment assembly, PALS, GA, and hybrid GA on the bases of the number of 

contigs. The main objective of this work was to maximize the sum of overlap scores while maintaining the lowest 

number of contigs. In the following, experiment wise discussion on the obtained results is presented. 

In the first set of experiments, the use of PALS as a genetic operator revealed that when the force recenter is used for 

the direct representation, the current methodology performed better in 19 out of 25 datasets. However, without force 

recenter and with direct representation, it performed better for 21 out of 25 datasets. Therefore, it can be concluded 

that the proposed approach performs better for the first set of experiments without force recenter and with the direct 

representation in case of minimizing the number of contigs. This observation can be seen in Fig. 9(a). 

The second set of experiments represented the effects of PALS algorithm by applying it to the solution obtained by 

the GA. These types of experiments were conducted with and without force recenter for both types of representation. 

The proposed methodology performed better in both the cases for the direct representation. However, comparing the 

experiments with and without force recenter, it performed better for 20 and 23 out of 25 datasets, respectively. Thus, 

it can be concluded that this methodology scores well without force recenter with direct representation as shown in 

Fig. 9(b). The third set of experiment combined the first two experiments with swapping representation. These 

experiments performed better for 15 out of 25 datasets without force recenter and scored better for 21 out of 25 datasets 

in case of force recentre. For these types of experiments, the presented methodology performed better with force 

recentre (Fig. 9 (c)). 

 

From the analysis presented in Fig. 9, it can be observed that the proposed solution performs better without the force 

recentre option and with direct representation. It is further observed form the results that the proposed approach 

performed better on 80% of the datasets in the first set of experiments and it had better performance on 60% of the 

datasets in the third set of experiments using the force recntre setting. For the setting without force recntre, the current 

proposal performed better on 84% datasets in the first and third set of experiments. Whereas, for the same setting it 

performed better in 92% cases during the second set of experiments.  
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After evaluating the proposed work’s performance in isolation, the next step is to analyze it without force recentre 

option and with the direct representation for all the three experiments. This was done here while comparing the present 

proposal with the best performing approach among the four state-of-the-art methods used for comparison, i.e., RRGA. 

In the first experiment, the present proposal performed better for 88% datasets. Whereas, in the second and third set 

of experiments, the proposed solution performed better for 72% and 68% datasets, respectively. In contrast to the first 

set of experiments, from these experiments, it can be seen that the proposed methodology performs better without the 

force recentre option for the direct representation. 

Fig. 10(a) shows the performance comparison summary between the proposed method and the four state-of-the-art 

approaches to solve DFA. Where, the x-axis lists the dataset number and y-axis mentions the number of contigs 

extracted by each of the competing methods. Performance comparison with RRGA revealed that the proposed model 

perform well in term of minimizing the number of cotings when there are large number of sequences in a dataset. The 

datasets with larger sequences such as f508_354, f635_350, f737_355, and f1343_354 have comparatively high 

difference. Whereas, on datasets with smaller sequences, it performs either same or better as compared to RRGA as 

shown in Fig. 10(b). However, for bx842596 4, bx8425967, and f1577_354 datasets, RRGA performed better because 

the length of the read is large. Based on this discussion, it can be said that when the number of sequences per dataset 

are larger and the number of bp of the sequence is small, the proposed model reduces the number of cotings while 

assembling the sequences.  

7. Conclusion and future directions 

 

This work presented a soft computing-based hybrid approach for Overlap Layout Consensus task in the DNA fragment 

assembly. The proposal was based on the combination of metaheuristics, like Restarting and Recentering Genetic 

Algorithm (RRGA) and Power Aware Local Search (PALS) algorithm. Where, PALS was utilized as an evolutionary 

operator. The goal of fragment assembly is to determine the exact order of the fragments that minimizes the number 

of contigs in order to get a single contig. Therefore, the objective function utilized in this work was to maximize the 

overlap scores and decrease the number of contigs. PALS, as a genetic operator, optimized the individuals by finding 

adjacent fragments based on threshold along with the number of contigs when the tentative solution was 

created/destroyed. Due to changes in the tentative solution, PALS exploited the neighbors efficiently by computing 

partial fitness instead of complete fitness and produced better results. The 2-opt heuristic was also utilized with the 

GA. Advantage of the heuristic approach was taken by using it for generating the initial seeds for the RRGA. Three 

types of experiments were conducted with and without force recentre option for avoiding the local optima. In the first 

set of experiments, PALS was used as a genetic operator. The second set of experiments used PALS after executing 

the GA. Whereas, in the third set of experiments PALS was used as a genetic operator and was also utilized after GA 

execution. In the experiments, 25 benchmark datasets were used. Fourteen of these datasets were f-series instances. 

The comparison of the proposed algorithm was made with four state-of-the-art related approaches for the same 

problem, i.e., RRGA variations for DNA fragment assembly, PALS, GA, and hybrid GA. The results showed, on an 

average, better performance of the proposed solution. For the setting without force recntre, in the first set of 

experiment, the present proposal performed better for 88% datasets. Whereas, in the second and third set of 

experiments, the proposed solution performed better for 72% and 68% datasets, respectively. Performance comparison 

with RRGA revealed that the proposed model perform well in term of minimizing the number of cotings when there 

are large number of sequences in a dataset. Whereas, on datasets with smaller sequences it performs either same or 

better as compared to RRGA. The proposed model reduces the number of cotings while assembling the sequences 

when the sequences per dataset are larger and the read length is small. 

 

The solution presented in this work can be extended in multiple ways in the future. In future, it is recommended to 

employ greedy algorithm instead of GA which may substantially decrease the execution time. The population can be 

generated by transposition representations as well. This will cause the individuals to be better in each iteration by 

eliminating some parts of the candidate solutions. Recently, deep learning methods have shown promising results for 

various classification tasks. It will be interesting to see the performance of deep learning for an unsupervised task, like 

DFA integrated with the GA. One of the performance bottleneck of the current proposal is repetitive assessments of a 

candidate solution by multiple population-based optimization techniques. In the future, the proposed framework can 

be transformed into its parallel equivalent using the parallel programming frameworks, like MapReduce. This may 

result in huge performance gain in terms of execution time.         
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