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A B S T R A C T   

Background: The Brain Health Index (BHI) is an automated approach to quantifying brain integrity, combining 
different types of structural magnetic resonance imaging (MRI). Normative values derived from generally healthy 
individuals provide a vital baseline for understanding neurodegenerative change. Although commonplace in 
other areas of medicine, these are not always established when proposing new analytical approaches using MRI. 
The scale and quality of the UK Biobank imaging cohort (approximately N = 50k, as of 2022) allows for deri-
vation of such values, and the wealth of additional lifestyle, physiological and demographic data enables vali-
dation of BHI through comparison with more established variables which may affect brain health. 
Aim: This study aimed to: 1) establish normative BHI values in a cohort of ‘healthy’ participants, and 2) explore 
associations between BHI and risk factors for brain health. 
Methods: The BHI was computed using voxel-based Gaussian mixture model cluster analysis of T1 and T2 FLAIR 
MRI in a sub-cohort of UK Biobank participants. From these data, normative score curves – with bounds 
described as 1, 2 and 3 standard deviations from the mean – were produced for males and females, using 
regression analyses to measure the scale of the BHI values as a function of age. Additional Pearson’s correlation 
testing was used to examine known risk factors to brain health and their relationship to BHI scores, with t-tests 
and ANOVAs used to determine between-group differences in BHI scoring. 
Results: Data from 2,990 participants (50.07% male, 97.05% Caucasian, 43.6% with degree-level education) were 
used to derive normative BHI curves from 48 to 77 years old. BHI scores were higher in female than male 
participants (95% CI: 0.0103 to 0.0162, p <0.001, Cohen’s d = 0.0416), males with a degree (95% CI: 0.000 to 
0.009; p < 0.05; Cohen’s d = 0.044), and lower in people with type 2 diabetes mellitus (95% CI: 0.018 to 0.033; p 
<0.001; Cohen’s d = 0.0417), hypertension (95% CI: 0.008 to 0.018; p <0.001; Cohen’s d = 0.0419), and regular 
smokers (95% CI: 0.009 to 0.017, p <0.001, Cohen’s d = 0.041). BHI scores were higher in those with lower 
waist-to-hip ratios (WHR; males: R2 = 0.02121, F(1, 1466) = 31.77, p <0.001; females: R2 = 0.02201, F(1, 
1454) = 32.72, p <0.001), and lower pulse pressure (males: R2 = 0.06261, F(1, 1215) = 81.16, p <0.001; fe-
males: R2 

= 0.07616, F(1, 1205) = 99.34, p <0.001). 
Conclusions: BHI score curves may provide useful reference values for future clinical research. More work is 
required to determine normative values in more diverse populations.   

1. Background 

Dementia is a global public health issue, the burden of which is only 
growing as life expectancy increases. Despite many clinical trials which 

focused on neurovascular changes and neurodegeneration, we still have 
no robust disease-modifying treatments and predicting who is most at 
risk of cognitive decline remains challenging. 

Most dementia syndromes exhibit mixed pathology, with both global 
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neurovascular and region-specific structural components, both present 
attractive targets for prognostic magnetic resonance imaging (MRI) 
biomarkers in dementia. Vascular changes are thought to occur early in 
neurodegeneration (Shi and Wardlaw, 2016; Debette et al., 2019), with 
brain atrophy a well-established risk factor for cognitive decline (Pini 
et al., 2016; Sweeney et al., 2018). Whilst such markers have limited 
utility on their own, combining them may enable identification of in-
dividuals who are more susceptible to developing dementia, particularly 
as accelerated brain at the normative level may represent the long 
preclinical phase of the disorder (Sperling et al., 2011). 

Recent work has attempted this using automated image processing of 
brain MRI scans which combine data from T1, T2, T2* and FLAIR MRI 
sequences into a single measure: the Brain Health Index (BHI, Dickie 
et al., 2018), suggests substantial benefit over isolated modalities. This 
study showed stronger associations between BHI scores and the 
Addenbrooke’s Cognitive Examination Revisited (ACER; standard beta 
= 0.20 - 0.59, p<0.05) than white matter hyperintensity (WMH; stan-
dard beta = 0.04 - 0.08, p>0.05) volume and total small vessel disease 
(SVD; standard beta = 0.02 - 0.27, p>0.05) score did when compared to 
the same test, but did not establish normative reference values for the 
BHI. 

Establishing normative values for new analytical metrics in a large- 
scale cohort provides substantial utility by providing a robust bench-
mark to aid interpretation of changes seen when the biomarker is clin-
ically applied. Although normative values are common in certain 
disciplines – psychology, paediatrics – they are less commonly applied to 
MRI metrics and brain health. UK Biobank (https://www.ukbiobank.ac. 
uk/) is one of the largest population studies in the world and collects 
detailed demographic and phenotypic data alongside multi-modal MRI 
data (Sudlow et al., 2015; Miller et al., 2016). Thus, UK biobank is an 
ideal resource for deriving normative ranges for the BHI marker. 

The UK Biobank can also facilitate an exploration, at scale, of factors 
associated with differential BHI. Such analyses can assist in validating 
the BHI. There are many such plausible factors. Education has been 
associated with greater grey matter volumes (Ho et al., 2011; Boller 
et al., 2017) and can modulate brain maintenance in pre-symptomatic 
frontotemporal dementia (Gazzina et al., 2019), but it is currently un-
known how education level might affect the BHI. Diagnosed conditions 
such as type 2 diabetes mellitus (T2DM, Strachan et al., 2011) and hy-
pertension (Sierra, 2020), as well as lifestyle factors such as cigarette 
smoking (Gray et al., 2020) and alcohol consumption (Topiwala et al., 
2021) and physiological measures such as body mass index (BMI, 
Momtaz et al., 2018), waist-to-hip ratio (WHR, Hamer and Batty, 2019) 
and pulse pressure (Thorin-Trescases et al., 2018; Levin et al., 2020), 
have all been negatively implicated in brain health but have not yet been 
investigated in the context of the BHI. 

1.1. Aims and hypothesis 

The current study aimed to enhance the practical utility of the BHI by 
1) defining normative score curves in older participants without any 
neurological issues from the UK Biobank MRI cohort and 2) investi-
gating how other physiological and lifestyle factors influence scoring. It 
was hypothesised that BHI scores would evidence a decrease in struc-
tural brain health with increasing age, which may be driven by differ-
ences in physiological and lifestyle factors which have been previously 
associated with brain health. 

2. Methods 

2.1. Approvals and participant consents 

UK Biobank was approved by the National Information Governance 
Board for Health and Social Care and the National Health Service North 
West Centre for Research Ethics Committee (Reference: 11/NW/0382). 
The current study falls under project #17869. Overarchingly, UK 

Biobank complies with both the Data Protection Act (DPA), and the 
General Data Protection Regulation (GDPR) which came into effect after 
commencement of the UK Biobank study. 

This paper represents the first in a suite of research into the BHI 
which is funded by the Chief Scientist Office (Grant reference: TCS/19/ 
31). The ultimate goal of this research is to determine the feasibility of 
BHI for use within the National Health Service. The code for BHI 
computation will be released once this research is complete, however it 
is our hope that releasing information on its normative values and 
relationship to certain brain health risk factors at this stage will 
encourage researchers to both use BHI in their own research and 
consider the benefits of using different MRI scans in combination when 
attempting to elucidate the nuances of brain ageing. 

This secondary-data analysis study was conducted under generic 
approval from the NHS National Research Ethics Service (approval letter 
dated 13 May 2016, Ref. 16/NW/0274). Written informed consent was 
obtained from all participants recruited to UK Biobank. 

2.2. Participant selection 

Random participant selection was carried out by organising partici-
pants by age, sex and chronological participant ID number, and then 
assigning each participant in each age/sex grouping a number from 1 to 
n, (for participants aged 45–80 years old). A random number generator 
(https://www.calculator.net/random-number-generator.html) was 
then used to select 50 participants from each grouping, with those 
participants used within the norming exercise Sample size was justified 
by a combination of other attempts to define normative values in 
different types of MRI (for example Leidhin et al., 2021 for arterial spin 
labelling), the number of participants required to create structural 
atlases in cognitive decline cohorts (Dickie et al., 2015), and the avail-
able data for each integer year age within the bounds of local compu-
tational storage limits. Where participants did not pass quality control or 
did not have all necessary scans, they were excluded, and the process 
was repeated with the remaining participants who were not originally 
selected. 

All participants in the final cohort were used for overall BHI analysis, 
but where additional self-report data was used or a participant preferred 
not to answer, they were excluded from related analyses. 

2.3. Participant demographics 

At the assessment centre, participants completed a self-report 
touchscreen questionnaire pertaining to personal demographics, 
health, and socioeconomic status. Accuracy of self-reported medical 
information – including any self-reported diagnoses – was improved by a 
nurse-led interview addressing a participant’s medical history. 

Exclusion criteria for the current study was as follows based on MRI- 
visit self-report: any chronic neurodegenerative condition (including 
dementias and Parkinson’s disease), demyelinating disease, or other 
condition affecting the brain, such as cancer, haemorrhage, aneurysm, 
abscess, stroke, head injury, brain trauma, cerebral palsy, or infection 
affecting the nervous system. 

2.4. Risk factors for brain health 

Any specific diagnoses of hypertension or T2DM were reported. 
Alcohol intake data was collected as part of the self-report question-
naire, self-rated from never to daily or almost daily. Cigarette smoking 
data was collected as part of the same questionnaire, with self- 
categorisation as smokers, occasional smokers, non-smokers, or ex- 
smokers. Waist-to-hip ratio was calculated as waist measurement/hip 
measurement, and body mass index by weight (kg)/height (m2). Blood 
pressure was measured twice, successively, and a mean taken (single 
measures used when mean values unavailable), with pulse pressure 
calculated as the log-transformed difference between systolic and 
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diastolic pressure. 

2.5. MRI acquisition 

The UK Biobank imaging cohort is described at length in Alfar-
o-Almagro et al. (2018) and Littlejohns et al., (2020). Participants un-
derwent multimodal brain MRI at one of three scanning centres 
equipped with identical scanners (3T Siemens Skyra,32-channel 
Siemens receive head coil). The full acquisition protocol took 31 min, 
with six different imaging sequences. In the current study, BHI utilised 
sagittal 3D magnetization prepared – rapid gradient echo (MP-RAGE) 
and T2 Fluid Attenuated Inversion Recovery (FLAIR) sequences, with 
key acquisition parameters as follows: MP-RAGE – resolution: 
1x1x1mm, field-of-view: 208x256x256 matrix, TI/TR = 880/2000ms, 
4:54 min; T2 FLAIR – resolution: 1.05x1x1mm, field-of-view: 
192x256x256 matrix, TI/TR = 1800/5000ms, 5:52 min. 

2.6. Image pre-processing 

BHI values are not contained within UK Biobank and were calculated 
from anonymised MRI scans. Anonymisation was carried out by the UK 
Biobank team, with raw scans “defaced” using a generic face and ear 
mask, and back-projected into native participant space, masking out 
voxels in these regions (Alfaro-Almagro et al., 2018). 

In-house, images were registered within-participant using Advanced 
Normalization Tools (ANTs v2.3.5., Avants et al., 2014). The T1 image 
was standardised to the MNI152 1 mm template (Mazziotta et al., 1995; 
2001a, 2001b) using six-point rigid body registration, before 12-point 
affine registration of the raw T2 FLAIR image to the standardised T1 
image. Both standardised images underwent bias field correction, 
whereby the erroneous low frequency signal differences which may exist 
within the image are corrected for to enable accurate computation by 
the BHI algorithm, using a nonparametric nonuniform intensity 
normalization algorithm (N4 Bias Field Correction; Tustison et al., 
2010). 

2.7. Intracranial volume masking 

A generic ICV mask was created in Mango (Version 4.1, 1531). The 
MNI 1 mm brain mask was used as a starting point for this ICV, and 
overlayed on the MNI 1 mm brain template. The wrapping function 
within Mango was used to ensure the brain mask (now ICV mask) was as 
close to the edge of the MNI template as possible, then further eroded by 
3 mm3, due to significant skull inclusion in a sub-cohort of subjects used 
for testing (sub-cohort n = 10, skull inclusion n = 4). Based on this 
generic mask, custom ICV masks were produced for each participant 
using diffeomorphic registration in ANTs (Avants et al., 2014). These 
custom masks restricted voxels used for BHI computation. 

2.8. The brain health index 

The computational processes underlying BHI are described in Dickie 
et al. (2018) and summarised in Fig. 1. In brief, BHI was implemented 
using the Gaussian mixture model cluster analysis function in Matrix 
Laboratory (MATLAB) Statistics and Machine Learning Toolbox 2018b 
(MATLAB, 2018©1994–2018, The MathWorks, Inc.) on the High Per-
formance Computing Cluster (HPCC) at the University of Glasgow 
(Centos Linux; 1,550 virtual central processing units (CPUs); 8 GeForce 
GTX 1080 graphics processing units (GPUs); up to 8 Gb RAM per core). 
The cluster analysis employs co-registered sequences to categorise ICV 
voxels as either (1) likely normal brain tissue, or (2) likely abnormal 
tissue or cerebrospinal fluid (CSF). Up to four different sequences can be 
overlaid here (for example in Dickie et al., 2018, T1, T2, T2* and FLAIR 
were used; the current study used only T1 and FLAIR), with each voxel 
given a value from each sequence. The expectation-maximization al-
gorithm then uses the voxel values given by each sequence to compute 

the posterior probability of a given voxel being likely normal or likely 
‘abnormal’/CSF, across all included sequences. ‘Abnormal’ brain tissue 
is categorised alongside CSF by design; the BHI is specifically interested 
in the ‘healthy’ tissue of the brain but allows for inter-individual 
assessment in all the intra-cranial space. This approach is pertinent to 
the future application in various neurodegenerative diseases and lon-
gitudinal studies, given the eventual fate of the diseased brain is a loss of 
tissue and replacement with CSF. 

Computation of BHI first produces a participant-specific 3D mask, 
with a value pertaining to the probability of “healthy” brain tissue 
attributed to each voxel within this mask. The mean of the voxel prob-
abilities in each participant is then reported as a value between 0 and 1 
(100%). Those closest to 100% are the “healthiest”, as defined by BHI. 

2.9. Quality control 

Quality control of participant-specific ICV and BHI masks was car-
ried out on all datasets using (MATLAB, 2018) to create multi-slice PNG 
images for visual assessment. For the ICV, the individual mask was 
overlaid on the participant-specific T1 image to ensure it adequately 
covered the brain without including skull. The BHI mask was overlaid on 
the participant-specific, bias field-corrected T1 image. 

2.10. Statistical analyses 

Statistical analyses were performed using R Studio (RStudio Team, 
2020, R version 4.2.1 (2022-06-23)), IBM® SPSS® Statistics (Version: 
28.0.0.0 (190) for Windows; IBM Corp, 2017) and GraphPad Prism for 
Windows (Version 9.4.1. (681), GraphPad Software, San Diego, Cali-
fornia USA, www.graphpad.com), with Stata 17.0 (StataCorp, 2021) 
used to handle and limit the full UK Biobank cohort to those relevant to 
the current study. The generalized additive model for location, scale and 
shape (GAMLSS; Rigby and Stasinopoulos, 2005) was used to derive 
normative values for the BHI, using regression analyses to measure the 
scale of the BHI values as a P-spline of age, varied by sex. There was no 
evidence that a more complex distribution was needed (p-value >0.05). 
There was also no evidence that the standard deviation of the BHI 
changes with age or sex (p-values >0.05). Further models were pro-
duced to determine whether BHI curves varied by degree-level 
education. 

Two-tailed t-tests with Welch’s correction were used to test for age-, 
sex- and education-related differences in BHI scores, as well as how a 
diagnosis of T2DM or hypertension (vs. not) associated with BHI scores. 
One-way ANOVAs assessed differences in BHI scores by merit of alcohol 
intake, and smoking status. Pearson’s correlation coefficient assessed 
relationships between BHI scores and continuous risk factors. 

Fig. 1. Flow diagram of processes involved in the computation of the Brain 
Health Index. 
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3. Results 

Cohort identification and participant attrition are described in Fig. 2. 
The final cohort comprised two thousand nine hundred and ninety 
healthy participants aged 48–77 years old. This altered age range was 
chosen due to scan availability. In all cases of failed BHI computation, 
this was due to slight misclassification of CSF as grey matter and vice- 
versa, and minute sections of skull as grey matter. None of these mis-
classifications were apparent without close visual inspection and were 
excluded out of an abundance of caution. Participant demographics are 
provided in Table 1, and example BHI maps in Fig. 3., and Fig. A.1. 

3.1. Statistical analyses 

3.1.1. Normative Brain Health Index curves 
Initial analyses suggested that the data was normally distributed, 

albeit slightly leptokurtic (summary of quantile residuals: mean = 1.435 
× 10-6; variance = 1.000335; coefficient of skewness = -0.2689; coef-
ficient of kurtosis = 3.327244). 

Normative curves for males and females are given in Fig. 4 (Cox Snell 
r2 of full R model = 0.482). A decline in BHI with age is seen in both the 
full cohort, and males and females independently (r2 = 0.431, F(1,2988) 
= 2262, p<0.0001; r2 = 0.5, F(1,1495) = 1497, p<0.0001; r2 = 0.382, F 
(1,1491) = 921.9, p<0.0001). 

Higher BHI scores in females than males were found when uncor-
rected for age (Welch’s 95% CI: 0.0103 to 0.0162; p <0.001; Cohen’s d 
= 0.0416). Some ages exhibit significantly higher BHI scores in females 
than in males. These are summarised in Tables A.1 and A.2. At no age 
were BHI values significantly higher in males. Using our derived curves, 
a male aged 75 would be likely to have a BHI score of 0.627 ± 0.024, 
compared to a female of the same age scoring 0.647 ± 0.034, with lower 
values suggesting possible neurodegenerative disease. 

Mean scores across the full cohort were compared to the work of 
Dickie et al. (2018). We found a mean score of 0.69 ± 0.04, similar to 
their work which found a mean of 0.71 ± 0.03 (n = 80). 

Female BHI scores did not differ depending on whether the subject 

Fig. 2. Participant identification pathway 
HPCC: High Performance Computing Cluster; UKB: UK Biobank 
* Age (available n of males: females) – 45 (2:3); 46 (11:17); 47 (48:50); 78 
(39:28); 79 (14:9); 80 (1:2). 
† Manual investigation of folders for those who did not run through analysis 
pipeline 
‡ Age (available n of males: females in incomplete sub-cohorts) – 57 (49:50); 64 
(50:48); 68 (49:50); 72 (49:50); 73 (50:49); 77 (50:46). 

Table 1 
Participant demographics for final cohort.  

Variable Units Results N with data 
available 

Demographics 
Age Years (mean, SD) 48-77 (62.47, 

8.65) 
2990 

Sex M (% M) 1497 (50.07%) 2990 
Ethnicity Caucasian (%) 97.05%a 2979b 

Education Degree (%): no degree 
(%) 

1299 (43.6%): 
1680 (56.4%) 

2979 

Vascular Risk Factors at MRI 
T2DM Yes (% Yes) 149 (5.04%) 2959 
Hypertension Yes (% Yes) 357 (11.94%) 2990 
Alcohol intake 

frequencyc 
Response count (%) 1 – 492 (16.6%) 2964 

2 – 799 (26.96%) 
3 – 843 (28.44%) 
4 – 349 (11.77%) 
5 – 290 (9.78%) 
6 – 191 (6.44%) 

Smoker Yes (% Yes); 
Occasionally (% 
Occasionally): No (% No) 

983 (33.28%); 123 
(4.16%); 1848 
(62.56%) 

2954 

Pulse pressure mmHg; range (mean, SD) 20-127 (56.63, 
14.1) 

2424 

BMI kg/m2; range (mean, SD) 16-58 (26.66, 
4.37) 

2915 

WHR (males) Range (mean, SD) 0.73 – 1.21 (0.93, 
0.06) 

1468 

WHR (females) Range (mean, SD) 0.63 – 1.08 (0.815, 
0.06) 

1456 

Medications Yes (% Yes) 147 (4.92%) 2990 

T2DM: type 2 diabetes mellitus; WHR: waist-to-hip ratio. 
N.B. - Percentage values are given in relation to number of responders, not 
overall cohort size. Data pertaining to medications with specific vascular risks e. 
g. anticholinergic drugs, not investigated in current cohort. 

a Other self-reported ethnicities: Chinese (n = 7); Other ethnic group (n = 18); 
white and black Caribbean (n = 3); white and black African (n = 2); white and 
Asian (n = 4); any other mixed background (n = 4); Indian (n = 23); Pakistani (n 
= 7); Bangladeshi (n = 1); any other Asian background (n = 4); Caribbean (n =
12); African (n = 3). 

b Does not include those who responded “Prefer not to answer” (n = 10) in 
total. 

c 1 – Daily or almost daily; 2 – Three to four times per week; 3 – One to two 
times per week; 4 – One to three times per month; 5 – Special occasions only; 6 – 
Never. 
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studied had degree-level education, but males with degrees scored 
higher than those who did not (Welch’s 95% CI: 0.000 to 0.009; p <
0.05; Cohen’s d = 0.044; see Fig. A.2). However, when sex is not 
considered here, there is no significant difference in BHI score. 

3.1.2. Associations of brain health risk factors with the brain health index 
Participants with T2DM exhibited lower BHI scores than those 

without T2DM (95% CI: 0.018 to 0.033; p <0.001; Cohen’s d = 0.0417). 
Similarly, those with hypertension had lower BHI scores than those 
without hypertension (95% CI: 0.008 to 0.018; p <0.001; Cohen’s d =
0.0419). 

Alcohol consumption affected BHI scores (F(5,2958) = 18.49, p 
<0.001, η2 = 0.03; Table A.3). Lower scores were evidenced in those 
who consumed alcohol daily or almost daily, when compared with those 
who drank anywhere between 3 and 4 times per week and on special 
occasions only (all p <0.001), but not those who never drank (see 
Fig. A.3). 

Participant smoking status had an impact on BHI scores (F(2,2951) 
= 33.31, p <0.001, η2 = 0.022). Post-hoc Tukey’s analysis suggests 

scores are higher for non-smokers compared with those who smoked on 
most or all days (95% CI: 0.009 to 0.017, p <0.001, Cohen’s d = 0.041). 
Occasional smokers scored higher than those who smoked on most or all 
days (95% CI: 0.003 to 0.021, p < 0.01, Cohen’s d = 0.043). Scores did 
not differ between those who smoked occasionally and those who did 
not smoke. 

The relationships between continuous risk factors and BHI scores are 
summarised in Fig. 5, with pulse pressure the most significant risk factor 
in this cohort, other than age. Both WHR and pulse pressure were further 
investigated to determine if sex is relevant to these findings. 

Both males and females with lower waist-to-hip ratios exhibited 
higher BHI scores (R2 = 0.02121, F(1, 1466) = 31.77, p <0.001; R2 =

0.02201, F(1, 1454) = 32.72, p <0.001), as did both males (R2 =

Fig. 3. Example BHI maps of A) a 74-year-old male (score = 0.524) and B) a 50-year-old male (score = 0.74), in native space.  

Fig. 4. Uncorrected Brain Health Index score curves for the full cohort (age 
range: 48–77 years old). Plus or minus X standard deviations are also given. 

Fig. 5. Two-tailed Pearson’s r analysis results for continuous covariates of in-
terest as measured at the MRI assessment centre. BP: blood pressure, BHI: brain 
health index, WHR: waist-hip ratio. 
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0.06261, F(1, 1215) = 81.16, p <0.001), and females (R2 = 0.07616, F 
(1, 1205) = 99.34, p <0.001) with lower pulse pressure. 

4. Discussion 

The BHI is an automated image analysis approach which quantifies 
structural brain integrity by combining different MRI sequences into a 
single measure. We used data from a subsample of N = 2990 in the UK 
Biobank imaging cohort (current N = 50k) to create normative BHI 
curves for individuals with no evidence of neurological issues aged be-
tween 48 and 77 years-old. These normalised score curves and SDs 
provide baseline scores for generally healthy individuals assessed using 
the BHI, and facilitates clinical application and interpretation of the 
measure. Use of GAMLSS modelling also allows for harmonization 
across other studies which assess brain development and ageing using 
diverse neuroimaging methodology (see Bethlehem et al., 2022). 

Mean scores across the full cohort were similar to prior work by 
Dickie et al. (2018), in their cohort of healthy participants (n = 80). 
Direct comparison is not possible due to T2 and T2* images additionally 
being used for BHI computation in their work, but this finding lends 
support to the idea that BHI can be reliably computed with only T1 and 
T2 FLAIR images. 

We hypothesised that BHI scores would significantly decrease with 
age, which was supported by our results. This was expected as brain 
atrophy and vascular health are two major age-related risk factors for 
cognitive decline and early neurodegeneration (Debette et al., 2019; Pini 
et al., 2016; Shi and Wardlaw, 2016; Sweeney et al., 2018), with BHI 
capturing both through the combination of scans used. What is less clear 
is why BHI scores were significantly lower in males than females for 
more than half of the age range investigated. Male brains are bigger 
(Eliot et al., 2021) but significantly more poorly perfused (Lu et al., 
2011), which has in turn been linked to pathological vessel changes, 
progressive neuronal loss, and development of Alzheimer’s disease, and 
possibly underpins this difference we see. 

Male participants with degree-level education had significantly 
higher BHI scores than those who did not. holding degree-level certifi-
cation has been linked to various socioeconomic benefits (Britton et al., 
2020) – including higher lifetime earnings – which may in turn affect 
brain health. However, degree-level education had no significant effect 
on scores for female participants. Thus, data on the effect of education 
on BHI were conflicting. At present, we would recommend adjusting for 
education level as is common for many other measures of brain function. 

When considering specific diagnoses, participants with T2DM and 
hypertension also evidenced significantly lower BHI scores than those 
without these conditions. T2DM has been shown to increase the risk of 
dementia by 1.5–2.5-fold (Strachan et al., 2011), and hypertension 
contributes to the vascular health risk (Sierra, 2020). 

A lack of significant difference in BHI score between participants 
who never drank and those who drank daily or almost daily was not 
anticipated, particularly given that lower scores were seen in those who 
drank daily/almost daily and those who drank anywhere between 3 and 
4 times a week and on special occasions only. A study of 25,378 UK 
Biobank participants found that there was no safe level of alcohol con-
sumption when considering grey matter volume, white matter micro-
structure, and functional connectivity (Topiwala et al., 2021). Whilst 
this does assess different aspects of brain health to the BHI, the scale of 
this study relative to our own highlights the need for further investi-
gation of the relationship between alcohol consumption and the BHI. 
Contrastingly, significantly higher BHI values in non-smokers compared 
with participants who smoked on all or most days is unsurprising, given 
the known links between smoking, brain ageing, and cognition (Linli 
et al., 2022). 

Waist-to-hip ratio and pulse pressure were highlighted as the risk 
factors most significantly related to BHI score. These findings were ex-
pected, with links between these metrics and brain health already 
established (Cox et al., 2019). High WHR has previously been 

investigated in 9,652 participants from UK Biobank and highlighted as a 
risk factor for grey matter atrophy (Hamer and Batty, 2019). A 2018 
review by Thorin-Trescases et al. shows that high pulse pressure poses a 
risk to the structure, metabolism and haemodynamics of the brain, with 
Levin et al. (2020) suggesting this may be an appropriate target for 
therapeutic interventions. 

The ability of the BHI to mirror certain established risk factors shows 
promise for its utility in a clinical setting, as do several of its key fea-
tures. The automated pipeline requires substantially less time invest-
ment than more manual image analysis techniques, whilst providing a 
more cohesive summary of brain health by combining multiple MRI scan 
types – neurodegenerative conditions affect the whole brain, and BHI 
captures this, rather than focusing on specific tissue or lesion damage, as 
other metrics do. Clinical metrics often lack granularity, however 
scoring BHI on a continuous scale provides easier interpretation and 
patient comprehension. 

Despite these strengths, there are limitations in the current work. The 
BHI requires T1, T2 FLAIR, T2 and T2* imaging to fully capture struc-
tural information, but only T1 and T2 FLAIR were used here. Although 
Dickie et al. (2018) suggest that this approach would yield unstable 
results, the similarity of our results with their healthy control findings 
support the assertion that doing so is possible where necessary. The UK 
Biobank imaging study uses a state-of-the-art protocol with tight time 
constraints to enable the volume of scanning required. However, such an 
approach does not allow for experimentation with alternate imaging 
parameters to determine whether BHI scoring depends on parameters 
such as slice thickness or slice gaps. Further work to improve tissue 
classifications at boundaries is also warranted. 

These normative curves are not immediately suited to clinical use 
and require further development to achieve this. There are many dif-
ferences in the imaging data used in the clinical routine and data ob-
tained in strict research contexts. As example, due to the high volume of 
clinical scans performed on a daily basis, clinical data may not be 
‘complete’, in that a field of view covering the whole brain may not be 
required to answer the clinical question. Additionally, there is a higher 
degree of variation between both sites and scanner models and manu-
facturers, thereby necessitating further processing steps to account for 
this variance. Nevertheless, BHI norms in both clinical and research 
contexts will provide a benchmark for the understanding of neurode-
generative change. The metric can also be calculated retrospectively 
from scans which are collected in regular clinical practice, thereby 
minimising additional costs, and increasing the information gained by 
the same imaging paradigms. However, currently the age range of par-
ticipants is fairly narrow, limiting the understanding of the BHI to in-
dividuals within this range. Normative BHI scores in the middle aged 
and the very old would have utility in our understanding of BHI across 
the lifespan and allow us to determine how BHI values change with age. 
The limitations of the current cohort also prevent understanding of how 
risk factors for poor brain health have contributed to BHI scoring over 
time. Thus, future investigation of the BHI should involve longitudinal, 
repeated investigation. 

The UK Biobank cohort is not representative of the general UK 
population, with fewer self-reported health conditions and less socio-
economic deprivation (Fry et al., 2017) relative to the general UK 
population. It is not an ancestrally diverse cohort. The imaging 
sub-sample shows less deprivation compared with the ‘full’ N = 502k UK 
Biobank cohort, among healthy biases in virtually all phenotypes (Lyall 
et al., 2022). There is also an education bias within the current study – 
43.6% of participants held degree-level education, compared with 
26.4% of the wider UK population aged 25–64 years (Organisation for 
Economic Co-operation and Development [OECD], 2021). Furthermore, 
recent research has shown that the MNI templates used within this study 
– and which are standard templates – are not always appropriate for use 
in diverse ancestries (Rao et al., 2017; Bhalerao et al., 2018; Pai et al., 
2020; Yang et al., 2020). 
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5. Conclusions 

Normative BHI scores in a generally healthy population of UK Bio-
bank participants were established using regression analyses, providing 
a baseline against which clinical BHI scoring can be understood in 
future. More work is required to understand how normative values vary 
in different populations, and how well vascular risk factors are associ-
ated with the BHI. 
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