Supplementary Information

Fig. S1 XRD patterns of $Co_3W_xMo_{3-x}N$ (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9) samples heated under NH₃ at 900 °C for 12 h.

Fig. S2 Rietveld fits to the XRD patterns of $Co_3W_xMo_{3-x}N$ series, where x = 0; ($R_{wp} \% = 3.9$ and $R_p \% = 3.13$), 0.1; ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$) and 0.2; ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$). Black crosses mark the data points, the red continuous line the fit and the blue continuous line the difference. Pink tick marks show the positions of the allowed reflections for the η -carbide structure $Co_3W_xMo_{3-x}N$ series in space group $Fd\overline{3}m$.

Fig. S3 Rietveld fits to the XRD patterns of $C_{03}W_xM_{03-x}N$ series, where x = 0.3; ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$), and 0.4; ($R_{wp} \% = 4.73$ and $P_p \% = 3.9$) and 0.5; ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$). The data points and Rietveld fits are overlaid in black crosses and red line, respectively. The difference plots are shown in blue. The pink tick marks represent the allowed reflection position for $C_{03}W_xM_{03-x}N$ series with space group $Fd\overline{3}m$.

Fig. S4 Rietveld fits to the XRD patterns of $C_{03}W_xM_{03-x}N$ series, where x = 0.6; ($R_{wp} \% = 5.03$ and $R_p \% = 4$), 0.7; ($R_{wp} \% = 5.3$ and $R_p \% = 4.18$) and 0.8; ($R_{wp} \% = 5.2$ and $R_p \% = 4.08$). Black crosses mark the data points, the red continuous line the fit and the blue continuous line the difference. Pink tick marks show the positions of the allowed reflections for the η -carbide structure $C_{03}W_xM_{03-x}N$ series in space group $Fd\overline{3}m$.

Fig. S5 Lattice parameter variation with tungsten content for $Co_3W_xMo_{3-x}N$ samples, showing the limit of tungsten solubility just above x = 0.8.

Fig. S6 Nitrogen adsorption/desorption isotherm curves for the Co₃W_xMo_{3-x}N samples.

Fig. S7 Representative SEM image of Co₃Mo_{2.6}W_{0.4}N.

Fig. S8 EDX analysis for nanostructured Co₃Mo_{2.6}W_{0.4}N using a 15 kV accelerating voltage.

Fig. S9 Reaction profile of Co_3Mo_3N under 3:1 H₂/Ar at 400°C for 3 h, 500°C for 1 h 15 min, 600°C for 1 h 10 min and 700°C for 1 h 35 min. Conductivity relates to that of aqueous sulfuric acid solution through which the reactor effluent is flowed. Decreasing conductivity corresponds to ammonia production wherein H⁺ ions react with NH₃ to form NH₄⁺ ions.

Fig. S10 Reaction profile of $Co_3Mo_{2.6}W_{0.4}N$ under 3:1 H_2/N_2 at 400°C for 60.5 h. The flask of dilute sulfuric acid was changed at 30 h. Conductivity relates to that of aqueous sulfuric acid solution through which the reactor effluent is flowed. Decreasing conductivity corresponds to ammonia production wherein H^+ ions react with NH₃ to form NH₄⁺ ions.

Fig. S11 XRD patterns for $Ni_2W_xMo_{3-x}N$ (x = 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5) samples heated under NH₃ at 800 °C for 12 h.

Fig. S12 Rietveld fits to the XRD patterns of Ni₂Mo₃N ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$), Ni₂W_{0.1}Mo_{2.9}N ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$), Ni₂W_{0.2}Mo_{2.8}N ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$) and Ni₂W_{0.3}Mo_{2.7}N ($R_{wp} \% = 4.9$ and $R_p \% = 3.9$). Black crosses mark the data points, the red continuous line the fit and the blue continuous line the difference. Pink tick marks show the positions of the allowed reflections for the filled β - manganese structure Ni₂W_xMo_{3-x}N series with space group *P*4₁32.

Fig. S13 Lattice parameter variation with tungsten content for $Ni_2W_xMo_{3-x}N$ samples, showing the limit of tungsten solubility at around x = 0.3.

Fig. S14 Nitrogen adsorption/desorption isotherms curves for the Ni₂W_xMo_{3-x}N samples.

Fig. S15 Fit in $P4_132$ to the XRD data for Ni₂Mo₃N after reduction treatment with H₂/Ar. In the upper plot blue crosses mark the data points, green lines the fit, cyan the difference and the red line the background. The lower plot is an expansion of the difference line. R_{wp} = 14.5%, *a* = 6.63209(13) Å; Mo x = 0.20196(13), y = 0.45196(13), z = 0.125, U_{iso} = 0.0103(5); Ni x = y = z = 0.0668(2), U_{iso} = 0.0099(9); N x = y = z = 0.375, U_{iso} = 0.025.

Fig. S16 Representative SEM image of Ni₂Mo_{2.7}W_{0.3}N produced at 800 °C.

Fig. S17 Reaction profile of $Ni_2Mo_{2.8}W_{0.2}N$ under 3:1 H₂/N₂ at 400°C for 60.5 h. Conductivity relates to that of aqueous sulfuric acid solution through which the reactor effluent is flowed. Decreasing conductivity corresponds to ammonia production wherein H⁺ ions react with NH₃ to form NH₄⁺ ions.

	Co ₃ Mo ₃ N	C03W0.1M02.9N	Co3 W0.2M02.8N	Co3 W0.3M02.7N	Co3 W0.4M02.6N	
Co 32e x, x, x						
x	0.2917(3)	0.290373(5)	0.29111(4)	0.290993(4)	0.29127(3)	
Uiso	0.3377(3)	0.029683(3)	0.03739(3)	0.01568(4)	0.0257 (3)	
Co 16d 1/2, 1/2, 1/2						
U _{iso}	0.03125	0.019074(5)	0.0267(5)	0.00176(4)	0.32489 (2)	
W/Mo 48f x, 1/8, 1/8, 1/8						
x	0.32513(3)	0.324154(3)	0.324854(3)	0.32418(3)	0.32489 (2)	
Uiso	0.3697 (1)	0.02212(2)	0.0238 (1)	0.00886(1)	0.02499 (1)	
N 16c 0,0,0 U _{iso}	0.025					

Table S1 Atomic parameters of $Co_3W_xMo_{3-x}N$ (x = 0.0, 0.1, 0.2, 0.3 and 0.4) obtained from XRD refined data.

	C03W0.5M02.5N	C03W0.6M02.4N	C03W0.6M02.4N C03W0.7M02.3N C03				
	Co 32e x, x, x						
x	0.291759(4)	0.290684(4)	0.291809(4)	0.29037(4)			
U_{iso} $0.02448(3)$ $0.0325(3)$ $0.02546(3)$		0.02287(3)					
Co 16d 1/2, 1/2, 1/2							
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		0.02344(2)					
W/Mo 48f x, 1/8, 1/8, 1/8							
x	0.3256(3)	0.324849(2)	0.325296(2)	0.325325 (2)			
Uiso	0.02769(1)	0.03196(1)	0.03081(1)	0.01786(1)			
N 16c 0,0,0 Uiso	0.025						

Table S2 Atomic parameters of $Co_3W_xMo_{3-x}N$ (x = 0.5, 0.6, 0.7 and 0.8) obtained from XRD refined data.

x in Co ₃ W _x Mo _{3-x} N	a/Å	$\mathbf{R}_{wp}, \mathbf{R}_{p}$ /%	Crystallite size/ nm
0	11.024(4)	3.9, 3.13	94(5)
0.1	11.02337(5)	4.89, 3.86	97(7)
0.2	11.02322(5)	4.86, 3.88	133(12)
0.3	11.02218(5)	4.87, 3.88	199(33)
0.4	11.02104(5)	4.73, 3.78	159(14)
0.5	11.02006(5)	4.86, 3.85	133(11)
0.6	11.01935(5)	5.03, 4.01	114(8)
0.7	11.01872(4)	5.27, 4.18	114(8)
0.8	11.01741(4)	5 18 4 08	114(8)

Element	C03W0.4M02.6N				
	Expected	Actual			
Со	42.9	40.6			
W	5.7	3			
Мо	42.9	54			

Table S4 The atom percentage of the $Co_3W_{0.4}Mo_{2.6}N$ sample evaluated by EDX analysis.

Composition	a/Å R _{wp} , R _p / %		Crystallite	Ni 8c (x, x, x)		W/Mo 12 d (1/8, y, z)			N 4a 3/8, 3/8,3/8
			SIZC/ IIII	x	U _{iso} / Å ²	У	Z	U_{iso} / Å ²	${ m U}_{ m iso}$ / ${ m \AA}^2$
Ni2M03N	6.632(2)	11.9, 9.24	114(5)	0.067284(3)	0.0674(2)	0.2017(2)	0.4517(2)	0.03105(9)	
Ni ₂ W _{0.1} Mo _{2.9} N	6.63404(2)	7.3, 5.64	104(9)	0.066204(3)	0.02926(1)	0.2018(2)	0.4518(2)	0.03012(1)	0.2500
Ni ₂ W _{0.2} Mo _{2.8} N	6.6359(2)	11.52, 8.83	89(7)	0.067084(5)	0.0144(2)	0.201793 (3)	0.451793(3)	0.01644(1)	0.2500
Ni ₂ W _{0.3} Mo _{2.7} N	6.63837(2)	8.22, 6.34	80(3)	0.067536(3)	0.05186(2)	0.201897(2)	0.4519(2)	0.04713(1)	

 $\textbf{Table S5} Atomic parameter and crystallographic information obtained from Rietveld refinement of Ni_2W_xMo_{3-x}N (x = 0.0, 0.1, 0.2 \text{ and } 0.3) \text{ samples}.$

In a series of different measurements, the ammonia synthesis activity was tested using 0.15 g of material. First, the nitrides were pre-treated at 700°C for 2 hours with 3:1 H₂/N₂ (BOC, H₂ 99.998 %, N₂ 99.995 %) at a total gas feed of 12 mL min⁻¹. The ammonia synthesis rates were then measured at atmospheric pressure and 500°C under the same gas flow.

Material	Specific Activity (μ mol h ⁻¹ m ⁻²)
Co ₃ Mo ₃ N	113 ± 5
$Co_3Mo_{2.9}W_{0.1}N$	103 ± 6
$Co_3Mo_{2.8}W_{0.2}N$	103 ± 8
Co ₃ Mo _{2.6} W _{0.4} N	98 ± 5
Ni ₂ Mo ₃ N	143 ± 13
Ni2M02.9W0.1N	140 ± 8
Ni2M02.8W0.2N	94 ± 2
Ni ₂ Mo _{2.7} W _{0.3} N	91 ± 3

Table S6 Ammonia synthesis activity under $3:1 \text{ H}_2/\text{N}_2$ (12 mL min⁻¹) at 500 °C.