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Abstract
We show that Coulomb branches for 3-dimensional N = 4 supersymmetric gauge
theories have symplectic singularities. This confirms a conjecture of Braverman–
Finkelberg–Nakajima.

1 Introduction

Let G be a complex reductive algebraic group and N a finite-dimensional represen-
tation of G. A mathematical definition of the Coulomb branch (of cotangent type)
MC (G, N ) of a 3-dimensional N = 4 supersymmetric gauge theory associated
to (G, N ) was introduced in the seminal papers [5, 9]. They showed that Coulomb
branches have a number of remarkable properties. Of relevance to us is the fact that
they are irreducible normal Poisson varieties, where the Poisson structure is non-
degenerate on the smooth locus. Therefore, it is natural to conjecture, as they do, that
Coulomb branches have symplectic singularities in the sense of Beauville [1].

Using partial resolutions of singularities constructed from flavor symmetries, it was
shown byWeekes [11] that most Coulomb branches arising from quiver gauge theories
have symplectic singularities. In this note, we extend that result by showing that all
Coulomb branches have symplectic singularities.

Theorem 1.1 MC (G, N ) has symplectic singularities.

This confirms the "optimistic conjecture” of Braverman–Finkelberg–Nakajima [5,
3(iv)]. As an immediate corollary, we note that:

Corollary 1.2 MC (G, N ) has finitely many symplectic leaves.
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In the case of quiver gauge theories for finite type quivers, the symplectic leaves of
MC (G, N ) have been explicitly described in [7]. See [11] for other consequences of
the main theorem.

Our proof relies on an elementary observation about varieties with symplectic sin-
gularities. Namely, if there is a birational Poisson morphism X → Y between normal
affine varieties and Y is known to have symplectic singularities then so too does X .
We apply this observation twice—first in the case where G is a (connected) torus to
allow us to reduce to the case where the Coulomb branch can be identified with a toric
hyper-Kähler manifold and secondly to reduce from the case of a Coulomb branch
for a general reductive group to one for a torus. In both cases, the birational Poisson
morphism we require was already constructed by Braverman–Finkelberg–Nakajima
[5].

2 The proof

2.1 An elementary observation

Throughout, variety will mean a integral, separated scheme of finite type over the com-
plex numbers. We recall, following [1], that a variety X has symplectic singularities
if it is a normal variety whose smooth locus admits a symplectic form ω such that for
some (any) resolution of singularities q : Z → X , q∗ω extends to a regular 2-form on
Z .

The following elementary lemma is the key to the proof of the main theorem.

Lemma 2.1 Let X ,Y be complex normal Poisson varieties. Assume that Y has
symplectic singularities and the Poisson structure on the smooth locus of X is non-
degenerate. If there exists a generically étale Poisson morphism f : X → Y , then X
has symplectic singularities.

Proof The only thing to check is that the pull-back to some resolution of singularities
of the symplectic form ω on the smooth locus of X is regular. Let ω0 denote the
symplectic form on the smooth locus of Y .

We choose a resolution of singularities p : W → Y . Let C denote the (unique)
irreducible component ofW ×Y X dominating both Y and X . By base change,C → X
is a proper generically étale map. Taking a resolution of singularities Z → C , we form
the commutative diagram

Z

C X

W Y .

q

g
f

p

(2.1)

Since all the maps f , g, p, q are generically étale, there exists a dense open subset
U of Y such that the restrictions p−1(U ) → U , f −1(U ) → U and g−1(p−1(U )) →
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p−1(U ), q−1( f −1(U )) → f −1(U ) are étale. We check that q∗ω extends to a regular
form on Z . This means that there exists some regular 2-form (necessarily unique) on
Z whose restriction to some dense open subset, over which q is étale, agrees with
q∗ω. Since f is assumed Poisson, f ∗(ω0|U ) = ω| f −1(U ). Therefore,

q∗(ω| f −1(U )) = q∗( f ∗(ω0|U )) = g∗(p∗(ω0|U )).

Since Y is assumed to have symplectic singularities, there exists a regular 2-form
η on W whose restriction to p−1(U ) agrees with p∗(ω0|U ). Thus, q∗(ω| f −1(U ))|V
equals g∗(η)|V , where V = g−1(p−1(U )) ∩ q−1( f −1(U )) and g∗(η) is a regular
2-form on Z . ��

Instead of using Y to deduce that X has symplectic singularities, one can ask if
we can use X to deduce that Y has symplectic singularities. As shown in the result
below, the answer is yes, provided the morphism is also assumed proper; see also [1,
Proposition 2.4] or [3, Lemma 6.12]. The result is not required in this paper, but we
provide a proof for completeness.

Proposition 2.2 Let X ,Y be complex normal Poisson varieties. Assume that X has
symplectic singularities and the Poisson structure on the smooth locus of Y is non-
degenerate. If there exists a generically étale proper Poisson morphism f : X → Y ,
then Y has symplectic singularities.

The outline of the proof is the same as that of Lemma 2.1. The difference is that we
now have a meromorphic form p∗ω0 on W that we wish to show is regular. Diagram
(2.1) implies that g∗(p∗ω0) = q∗( f ∗ω) is regular on Z . We deduce from the key
lemma below that p∗ω0 is regular.

Lemma 2.3 Let g : Z → W be a proper, generically étale morphism between smooth
complex varieties. Then a meromorphic k-form ω on W is regular if and only if g∗ω
is regular.

Proof Our assumptions imply that g is surjective. First, we note that the locus whereω

is not regular is a divisor onW ; locallywecanpickw1, . . . , wn such thatdw1, . . . , dwn

are a basis of�1
W . Thenω can be uniquely expressed as

∑
i aidwi, and the non-regular

locus of ω is the union of the non-regular loci of the meromorphic functions ai.
Next, we claim that the locus (onW ) where g is finite has complement of codimen-

sion at least two. Since g is assumed proper, Stein factorization says that we can factor
g = φ ◦ h, where h : Z → T has connected fibers and φ : T → W is finite. It suffices
then to show that the locus of points t on T where dim h−1(t) = 0 has complement
C of codimension at least two. But if c is a generic point of an irreducible component
C0 of C , then dimC0 + dim h−1(c) < dim Z since h−1(C0) is a proper closed subset
of Z . Since dim h−1(c) ≥ 1, this implies that dimC0 < dim T − 1.

Therefore, we may assume that g is a finite morphism. If U ⊂ W is any open set
such that g is étale on g−1(U ) then it is clear that ω|U is regular if and only if g∗(ω|U )

is regular. Thus, we just need to consider a generic point w ∈ g(Rg) ⊂ W , where
Rg is the ramification divisor of g. Let D ⊂ g(Rg) be an irreducible component,
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and E ⊂ Rg an irreducible component of Rg mapping onto D. We may assume that
w1 = 0 is a local equation for D at w. Since Z and W are smooth, the local rings
OW ,D andOZ ,E are (noetherian) regular local rings of dimension one; that is, they are
discrete valuation rings.We have an embedding g∗ : OW ,D → OZ ,E , withOZ ,E finite
overOW ,D . The function w1 is a uniformizer forOW ,D , and choosing a uniformizer t
for OZ ,E , we have g∗(w1) = t�u for some unit u ∈ O×

Z ,E . Here � is the ramification

index of D. The module �1
OZ ,E

has basis dt, dg∗(w2), . . . , dg∗(wn). Therefore, if
ωi = aidw1 ∧ dwi1 ∧ · · · ∧ dwik−1 is a summand of ω, for some 1 < i1 < · · · <

ik−1 ≤ n, then

g∗ωi = �ug∗(ai)t�−1dt ∧ dg∗(wi1) ∧
· · · ∧ dg∗(wik−1) + g∗(ai)t�du ∧ dg∗(wi1) ∧ · · · ∧ dg∗(wik−1).

If ai = w−r
1 s for some unit s ∈ OW ,D and r ≥ 1, then �ug∗(ai)t�−1 =

�u1−r g∗(s)t−�(r−1)−1 has a pole of order �(r − 1) + 1 ≥ 1. Since du ∈⊕
i≥2 OZ ,E dg∗(wi ), we deduce that ωi is regular if and only if g∗ωi is regular. ��

2.2 Toric hyper-Kähler manifolds

Consider a short exact sequence

0 → Z
k B−→ Z

n A−→ Z
d → 0. (2.2)

We assume that no row of B is zero. Write T := C
× for the one torus. The above

sequence encodes an action of T d on C
n via

(t1, . . . , td) · xi = t
ai,1
1 · · · tai,dd xi .

Since (2.2) is exact, the stabilizer of any x ∈ C
n , with xi = 0 for all i , is trivial.

In particular, the action is effective. The induced action on T ∗
C
n is Hamiltonian, and

we write μ : T ∗
C
n → t∗d for the associated moment map. Explicitly,

μ(x, y) =
(

∑

i

ai, j xi yi

)d

j=1

.

If θ denotes a rational character of T d and ζ ∈ t∗d , then we can take Hamiltonian
reduction

MH (θ, ζ ) := μ−1(ζ )θ //T d .

Hereμ−1(ζ )θ denotes the open subset of θ -semistable points inμ−1(ζ ). The variety
MH (θ, ζ ) is a toric hyper-Kähler manifold (also called a hypertoric variety in the
literature) and is a Higgs branch for the gauge theory (T d ,Cn). The fact that these
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varieties have symplectic singularities iswell-known, but the proofs in the literature, [2,
Proposition 4.11] or [8, Theorem 2.16], always assume that thematrix A is unimodular
(so that the variety admits a symplectic resolution given by variation of GIT). Since
we will need to consider matrices A that are not unimodular, we explain how to extend
this result to general toric hyper-Kähler manifolds.

Lemma 2.4 Choose θ, θ ′ such thatμ−1(ζ )θ
′ ⊂ μ−1(ζ )θ . Then there exists a projective

birational Poisson morphismMH (θ ′, ζ ) → MH (θ, ζ ).

Proof Sincewe have assumed that no rowof B is zero,μ−1(ζ ) is a reduced, irreducible
complete intersection [2, Lemma 4.7]. Moreover, as shown in [2, Proposition 4.11]
when A is unimodular and in [10] in general, the quotientMH (θ, ζ ) is normal. Since
the variety is constructed as a Hamiltonian reduction, the Poisson bracket on OT ∗Cn

descends to a Poisson bracket on OMH (θ,ζ ).
The fact that there is a projective Poisson morphism π : MH (θ ′, ζ ) → MH (θ, ζ )

is a direct consequence of Hamiltonian reduction; see for instance the proof of [3,
Lemma 2.4]. We need to check that it is birational.

Let μ−1(ζ )θ st denote the set of θ -stable points in μ−1(ζ ) and MH (θ, ζ )θ st its
image in MH (θ, ζ ). The map π is bijective over MH (θ, ζ )θ st. Hence, we need to
show thatMH (θ, ζ )θ st (or equivalently,μ−1(ζ )θ st) is non-empty. Sinceμ−1(ζ )0 st is
contained in μ−1(ζ )θ st, it suffices to show that μ−1(ζ )0 st = ∅. In other words, there
exists a closed orbit in μ−1(ζ ) with finite (in fact trivial) stabilizer. Let U ⊂ T ∗V
consist of all points (x, y) with xi , yi = 0 for all 1 ≤ i ≤ n. As noted previously, the
stabilizer of any point inU is trivial.We claim that (a) every orbit inU is closed in T ∗V ,
and (b)μ−1(ζ )∩U = ∅. Thus, (a) and (b)would imply∅ = μ−1(ζ )∩U ⊂ μ−1(ζ )0 st.

Let (p, q) ∈ U . If piqi =: λi ∈ C
×, then the equation xi yi = λi holds for all

points in T d · (p, q). But this forces xi , yi = 0 for all points (x, y) in T d · (p, q). That
is, T d · (p, q) ⊂ U . Since all orbits in U are free, we have T d · (p, q) = T d · (p, q)

proving (a).
For (b), the exactness of (2.2) implies that the rank of A is d. Therefore, permuting

the xi , we may assume that the first d×d block of A has non-zero determinant. Apply-
ing an automorphism to T d corresponds to multiplying A on the left by a unimodular
d × d matrix U . Therefore, replacing A by U A, we may assume that A is in Hermite
form. In particular, the moment map relations μ(x, y) = ζ become

xi yi = a−1
i,i ζi −

∑

j>i

a−1
i,i a j,i x j y j . (2.3)

Making further substitutions (and replacing a−1
i,i ζi by some ζ ′

i ), we may assume
a j,i = 0 for j ≤ d in the relations (2.3). The fact that no row of B is zero translates
into the fact that for each 1 ≤ i ≤ d there exists some j > d with a j,i = 0. This means
that for generic (xd+1, . . . , xn, yd+1, . . . , yn) with x j , y j = 0 the relations (2.3) can
be satisfied, but only with xi yi = 0 for 1 ≤ i ≤ d too. Thus, μ−1(ζ ) ∩U = ∅. ��
Proposition 2.5 The toric hyper-Kähler manifoldMH (θ, ζ ) has symplectic singular-
ities.
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Proof As noted in the proof of Lemma 2.4, the quotientMH (θ, ζ ) is a normal Poisson
variety. Moreover, since T d acts freely, with closed orbits, on the non-empty open set
μ−1(ζ )θ st ∩U , the Poisson structure on MH (θ, ζ ) is generically non-degenerate.

Choose a generic θ ′ such that μ−1(ζ )θ
′ ⊂ μ−1(ζ )θ . Then Lemma 2.4 says that

there exists a projective birational Poisson morphism MH (θ ′, ζ ) → MH (θ, ζ ).
If MH (θ ′, ζ ) admits symplectic singularities, then [3, Lemma 6.12] implies that
MH (θ, ζ ) will also admit symplectic singularities. Thus, we may assume that θ is
generic.

To check that MH (θ, ζ ) has symplectic singularities, it suffices to check étale
locally. As explained in the proof of [6, Proposition 6.2], the fact that θ is generic
means that the stabilizer under T d of each point in μ−1(ζ )θ is finite. Therefore,
the (étale) symplectic slice theorem, e.g., [3, Theorem 3.8],1 says that étale locally
MH (θ, ζ ) is isomorphic (as a Poisson variety) to the quotient of a symplectic vector
space by a finite (abelian) group acting symplectically. In particular, it has symplectic
singularities by [1, Proposition 2.4] and hence the Poisson structure is non-degenerate
on the whole of the smooth locus of MH (θ, ζ ). ��

While this note was in preparation, the above statement also appeared as [4, Propo-
sition 5.1].

2.3 Coulomb branches

Coulomb branches are normal varieties whose smooth locus admits a symplectic form
[5]. Let G◦ be the connected component of the identity in G. Then, as noted in [5,
Remarks 2.8(3)], MC (G, N ) ∼= MC (G◦, N )/(G/G◦) as Poisson varieties. Hence,
MC (G, N ) will have symplectic singularities by [1, Proposition 2.4] if we can show
that MC (G◦, N ) has symplectic singularities. Therefore, we may assume that G is
connected. We first consider the abelian case.

Lemma 2.6 Assume G = T k is a torus. ThenMC (G, N ) has symplectic singularities.

Proof The action of G = T k on N = C
m is encoded in an integral k × m matrix B0.

Namely,

(t1, . . . , tk) · xi = t
b1,i
1 · · · tbk,id xi .

If we decompose N = N0 ⊕ NG , then [5, 3(vii)] says that MC (G, N ) =
MC (G, N0). Therefore, we may assume that N = N0. In other words, no row of
B0 is zero; this will be important later.

The idea of course is to identify the Coulomb branch with a toric hyper-Kähler
manifold and apply Proposition 2.5. However, this identification only holds if there is
sufficient matter in the theory, specifically if the representation N is assumed to be a
faithful T -module.

Let N ′ = N ⊕ C
k = C

n , where T k acts on C
k in the natural way (so that the

weights are encoded by the identity matrix) and n = m + k. By [5, 4(vi)], there is a

1 This is stated and proved for Nakajima quiver varieties, but both the statement and proof go through
without change for any reductive group acting symplectically on a symplectic vector space.
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birational Poisson morphism MC (T k, N ) → MC (T k, N ′). Then Lemma 2.1 says
thatMC (T k, N ) will have symplectic singularities if we can show thatMC (T k, N ′)
has symplectic singularities. The action of T k on N ′ is encoded in the matrix B =(
B0
Id

)

and we may form a short exact sequence

0 → Z
k B−→ Z

n A−→ Z
d → 0,

where A = (Id| −BT
0 ). We note that no row of B is zero. In this situation, it is noted

in [5, 4(iv)] that MC (T , N ′) is isomorphic to the affine toric hyper-Kähler manifold
MH ((T d)∨, N ′). By Proposition 2.5, the latter has symplectic singularities. ��

Now we return to the general situation, where G is a connected reductive group.
Let T be a maximal torus of G and W the associated Weyl group. It is shown
in [5, Lemma 5.9, Lemma 5.10] that there exists a birational Poisson morphism
MC (G, N ) → MC (T , N |T )/W . Lemma 2.1 implies that MC (T , N |T ) has sym-
plectic singularities. It follows from [1, Proposition 2.4] that MC (T , N |T )/W also
has symplectic singularities. Therefore, Theorem 1.1 is a consequence of Lemma 2.1.
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