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Abstract: The evaluation and estimation of the Electric and Magnetic Field (EMF) intensity in the 9 

vicinity of Overhead Transmission Lines (OHTL) is of paramount importance for residents’ 10 

healthcare and industrial monitoring purposes. Using Artificial Intelligence (AI) techniques makes 11 

researchers able to estimate EMF with extremely high accuracy in a significantly short time. In this 12 

paper, two models based on the Artificial Neural Network (ANN) have been developed for estimat- 13 

ing electric and magnetic fields, i.e., Feed Forward Neural Network (FFNN) and Cascade Forward 14 

Neural Network (CFNN). By performing the sensitivity analysis on controlling/hyper-parameters 15 

of these two ANN models, the best setup resulting in the highest possible accuracy considering their 16 

response time has been chosen. Overall, the CFNN achieved a significant 56% reduction in Root 17 

Mean Squared Error (RMSE) for the electric field and a 5% reduction for the magnetic field com- 18 

pared to the FFNN. This indicates that the CFNN model provided more accurate predictions, par- 19 

ticularly for the electric field than the proposed methods in other recent works, making it a promis- 20 

ing choice for this application. When the model is trained, it will be tested by a different dataset. 21 

Then, the accuracy and response time of the model for new data points of that layout will be evalu- 22 

ated through this process. The model can predict the fields with an accuracy near 99.999% of the 23 

actual values in times under 10 ms. Also, the results of sensitivity analysis indicated that the CFNN 24 

models with triple and double hidden layers are the best options for the electric and magnetic field 25 

estimation, respectively. 26 

Keywords: Artificial intelligence; Cascade Forward Neural Network; Field estimation; Overhead 27 

transmission line; Feed Forward Neural Network 28 

Nomenclature 29 

Abbreviation Description  

EMF  Electric and magnetic field  

OHTL  Overhead Transmission Line  

AI  Artificial Intelligence  

ANN  Artificial Neural Network  

FFNN  Feed Forward Neural Network  

CFNN  Cascade Forward Neural Network  

LM  Levenberg-Marquardt  

SCG  Scaled Conjugate Gradient  
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RB  Resilient Backpropagation  

VLRB  Variable Learning Rate Backpropagation  

FEM  Finite Element Method  

MSE  Mean Squared Error  

RMSE  Root Mean Squared Error  

R-Squared  coefficient of determination  

SD  Standard Deviation  

 30 

1. Introduction 31 

Overhead transmission lines (OHTL) play a crucial role in transmitting electrical 32 

power over long distances [1]. They consist of conductors carrying alternating current 33 

(AC) from power generation sources to distribution centers and consumers. The genera- 34 

tion of electrical and magnetic fields in OHTL is a result of the current flowing through 35 

these conductors [2]. The EMF generated by individual conductors in the transmission 36 

line combines to form a complex pattern around the entire line [3]. Several reasons make 37 

EMF estimation of paramount importance. The major reason is that the EMF has a signif- 38 

icant effect on the human’s body [4]. Many studies in recent decades demonstrated that 39 

EMF caused by OHTLs in residential areas is one of the main reasons for the increased 40 

incidence of cancer, especially childhood leukemia [5]. Additionally, some studies have 41 

reported an increased risk of brain tumors among individuals exposed to prolonged and 42 

high-intensity EMFs [6]. Furthermore, it has an extensive effect on the corrosion of buried 43 

metallic infrastructures including pipelines, cables, shielding conductors, and grounding 44 

systems [7]–[10]. Therefore, health scientists, utility companies, and governments have to 45 

set limits to prevent future health problems [10]. Many organizations consider 0.4 µT as 46 

an acceptable level for long-term exposure to electromagnetic fields, while a few allow for 47 

a lower threshold of 0.2 µT as the critical point for leukemia risk [11]–[13]. The National 48 

Institute of Environmental Health Sciences and the International Agency for Research on 49 

Cancer (IARC), a part of the World Health Organization (WHO), have jointly identified 50 

the range of 0.3–0.4 µT as a critical threshold for leukemia risk, categorizing it as Group- 51 

B level [14]–[16]. In contrast, the International Non-ionizing Radiation Committee (IC- 52 

NIRP) recommends a considerably higher limit of 200 µT for public exposure, which sig- 53 

nificantly exceeds the recommendations of other reputable health organizations [17]. 54 

Also, for the purpose of real-time monitoring of the systems, the engineers need to esti- 55 

mate the EMF with exceptionally low latency [18]. 56 

There are some common ways among researchers for EMF estimation. Measuring the 57 

EMF in an experiment using sensors is one of the accurate ways [2]. That said, since in 58 

real-world cases the load of OHTL varies, the experiment is not under fully controlled 59 

conditions. Also, the change in temperature can affect the height of conductor in the long- 60 

term experiments which will result in changes in the measured fields. This can be over- 61 

come by measuring seasonal datasets or annual ones and then creating large datasets and 62 

using “big data” techniques using AI to estimate the field values. Moreover, it needs pre- 63 

cise instruments and skilled operators to avoid inaccuracies which turns it into an expen- 64 

sive practice [19]. Another means of EMF evaluation is analytical equations which can 65 

estimate them with some simplifications in the boundary conditions limiting it to merely 66 

useful for simple problems [20]. Moreover, EMF can be estimated using numerical finite 67 

element methods (FEM). In this method, the entire analysis domain must be divided into 68 

small elements where the governing equations will be solved numerically [21]. This means 69 

that an enormous number of equations have to be solved, leading to this method being 70 
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computationally intensive, expensive, and time-consuming [22]. Moreover, FEM accuracy 71 

heavily relies on the quantity and quality of meshes that are used to discretize the domain 72 

[7]. Achieving optimal mesh refinement requires careful consideration and expertise to 73 

balance accuracy and computational costs. For complex real-world geometries or high- 74 

resolution simulations, the mesh size should be adapted to consider every dynamic 75 

change in the parameters, ensuring accurate results [23], [24]. Furthermore, using FEM 76 

can be challenging for time-dependent EMF simulations, particularly when dynamic ef- 77 

fects and transient behaviors are involved [25]. All these reasons hinder the implementa- 78 

tion of this method in certain EMF estimation scenarios and encourage researchers to ex- 79 

plore or develop alternative methods. 80 

Artificial Intelligence (AI) techniques have been promoted among engineering and 81 

physics researchers since the early years of this century [26], [27]. These techniques can be 82 

useful for EMF estimation due to their ability to handle and learn from complex datasets, 83 

provide accurate predictions, and offer several advantages over traditional approaches 84 

[28]- [29]. They also can be retrained by more datasets to update the model to enhance 85 

various conditions coverage or improve the accuracy of the model. One of the most re- 86 

nowned types of AI for engineering and physics problems is Artificial Neural Networks 87 

(ANN), which has been inspired by the human brain's learning and decision-making pro- 88 

cesses [19]. The flexibility and adaptability of ANNs enable them to handle small and large 89 

datasets and extract meaningful insights from vast amounts of data/information [30]. 90 

Also, ANN's capability of handling non-linear relationships makes them particularly ad- 91 

vantageous in addressing complex and dynamic problems [27]. Moreover, they are able 92 

to predict the target parameters with remarkably high accuracy in a noticeably short 93 

timeframe. Feed Forward Neural Network (FFNN) is one of the most common ANN 94 

methods among researchers due to its simplicity and high accuracy [13]. Cascade Forward 95 

Neural Network is a variant of ANN that is a more complex version of FFNN by connect- 96 

ing the input and hidden layers to all preceding layers [31], [32]. Due to its naturally com- 97 

plex design, in some cases, it can yield more accurate results than a simple FFNN [33]. 98 

In the recent decade, researchers tried to implement AI methods to predict electric or 99 

magnetic fields. In [34], Ekonomou et al. initially provided a setup to measure the EMF to 100 

make a dataset for the AI model. Then, they developed a multilayer FFNN model to pre- 101 

dict the EMF radiating by electrostatic discharges. The relative error between the pre- 102 

dicted and actual value for EMF was reported between 5.437% and 23.620%. In [13], Car- 103 

lak et al. used a simple multilayer perceptron (MLPNN) and a generalized regression neu- 104 

ral network (GRNN) model to predict electric and magnetic fields. They proposed several 105 

models for both electric and magnetic fields, each one considering only one longitude po- 106 

sition of the conductor. The performance of MLPNN and GRNN models using Root Mean 107 

Squared Error (RMSE) value as the index was reported as 0.030855 and 0.053084 for the 108 

electric field and 0.02719 and 0.03666 for the magnetic field, respectively. In [35], Salam et 109 

al. implemented single and double-layer models based on FFNN to predict magnetic 110 

fields for four substations in Brunei. They trained the models for each of these substations 111 

separately and the results indicated that the R-squared value range of their models was 112 

from 70.9039% to 98.881%. 113 

In [20], Sivakami et al. suggested a model using a cuckoo search algorithm (CSA) and 114 

neuro-fuzzy controller (NFC). First, they used the cuckoo search algorithm as an opti- 115 

mizer to optimize the conductor spacing, which has a significant effect on the intensity of 116 

EMF to make an input dataset with minimum electric field intensity for the NFC. This is 117 

because of that they generated the training data using some base equations while consid- 118 

ering some simplifications to be able to use those formulas. Finally, by training the NFC 119 

with that data set, they reached a model that was able to estimate the intensity by 5-190% 120 

relative error for different data points. In [30], Alihodzic et al. implemented two algo- 121 

rithms namely the charge simulation method and Biot-Savart law to generate target val- 122 

ues for the electric field intensity and magnetic flux density datasets, respectively. After 123 

that, they developed a FFNN model using Scaled Conjugated Gradient (SCG) as the 124 
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training function. In another paper with the same process for data collection, Turajilic et 125 

al. implemented two FFNN models for each of the magnetic and electric fields. Their mod- 126 

els' accuracy was reported using RMSE and R-squared as indices. For the electric model, 127 

RMSE and R-squared were 0.6172 and 0.9121 while for the magnetic field, they were 128 

0.3602 and 0.9471, respectively. However, since these papers used analytical models with 129 

some simplifications, the final model might not be accurate enough for real-world study 130 

cases [36]. 131 

While there have been efforts to estimate or measure EMF near the OHTLs, a signif- 132 

icant gap exists in the literature regarding the development of a fast, precise, and experi- 133 

mental-based EMF estimation approach, as opposed to relying solely on conventional an- 134 

alytical models. Recent research has predominantly focused on utilizing FFNN for EMF 135 

estimation, resulting in suboptimal accuracy. Consequently, there is a pressing need for a 136 

more advanced model capable of effectively handling highly non-linear data. One of the 137 

best AI models is the CFNN, renowned for its ability to provide accurate predictions for 138 

complex and non-linear problems. The CFNN's sophistication lies in its capacity to update 139 

layer parameters based on the outputs from preceding layers, enabling the model to de- 140 

rive more optimal weight and bias factors, ultimately yielding higher accuracy results. 141 

This paper aims to propose the CFNN models for estimating the electric and magnetic 142 

fields of OHTLs. These models have been assessed through sensitivity analysis on the 143 

effective parameters, ensuring that they are trained with the best setup to reach the most 144 

accurate and stable results. In the following, first, the models will be introduced and ex- 145 

plained in detail. Then, the sensitivity analysis process will be discussed. In the fourth 146 

section, the results of each step of sensitivity analysis will be presented and the perfor- 147 

mance of both FFNN and CFNN models will be discussed. Finally, a brief conclusion will 148 

be made in the fifth section. 149 

2. ANN Materials and Methods 150 

As it has been discussed above, the ANN has been chosen for this case of study as it 151 

is extensively flexible to the various datasets either the large ones with lots of data/obser- 152 

vations and effective parameters or smaller ones with limited observations which are not 153 

suitable for complex machine learning methods. One of the ANN variants is CFNN which 154 

is chosen as the main approach for this study. The other method is FFNN, which is im- 155 

mensely popular and commonly used among researchers, and here in this article, it has 156 

been used for comparison purposes. In the following, these methods will be discussed, 157 

and the differences will be highlighted. 158 

2.1. FFNN 159 

2.1.1. Architecture 160 

The FFNN approach can be put into action by employing a multilayer ANN model 161 

that comprises interconnected layers of neurons. The input layer receives EMF-related 162 

features including longitude and altitude of the conductor position. Within the hidden 163 

layers, which can vary in number and size (the number of neurons), perform computa- 164 

tions on the input data using weighted connections. Each neuron within the hidden layers 165 

applies a nonlinear activation function to its weighted inputs, enabling the network to 166 

capture intricate relationships and nonlinearity in the data. The output layer generates 167 

estimated EMF values based on the computations conducted in the preceding layers.  168 

The fundamental equations of this methodology are as follows [9]: 169 

𝑦𝑝 = 𝑓0  (∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (∑ 𝜔𝑗𝑖

𝐻

𝑛

𝑖=1

𝑥𝑖)) 

(1) 

where 𝑓0 and 𝑓𝑗
𝐻 designate the output layer and the hidden layer activation func- 170 

tions, respectively. Considering the addition of bias to both the input layer and the hidden 171 

layer, equation (1) turns into: 172 
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𝑦𝑝 = 𝑓0  (𝜔𝑏 + ∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (𝜔𝑖

0 + ∑ 𝜔𝑗𝑖
𝐻

𝑛

𝑖=1

𝑥𝑖)) 

(2) 

where 𝜔𝑗
𝐻 and 𝜔𝑏 indicate the respective weight from bias to the hidden layer and 173 

output layer. 174 

2.1.2. Training, validation, and testing processes 175 

Training the FFNN involves optimizing the network's parameters, which are the 176 

weights and biases, to make the predicted EMF outputs as close as possible to the actual 177 

EMF values. This process is done through so-called “backpropagation”, where the net- 178 

work learns from its errors and adjusts its weights and biases accordingly. To help with 179 

efficient training, a loss function is used to measure the difference between the predicted 180 

and actual EMF values. A common loss function for this is Root Mean Squared Error 181 

(RMSE). The network's parameters are adjusted over multiple iterations using optimiza- 182 

tion algorithms like Scaled Conjugate Gradient (SCG), which uses a subset of the training 183 

data to calculate how much the weights and biases should be updated. 184 

After training the FFNN, it is essential to evaluate its performance and validate its 185 

effectiveness. Performance metrics such as Root Mean Squared Error (RMSE) and the co- 186 

efficient of determination (R-squared or 𝑅2) can be calculated to assess the network's ac- 187 

curacy in estimating the EMF values. The network's parameters are adjusted over multiple 188 

iterations using optimization algorithms (also known as training functions) like Leven- 189 

berg-Marquardt, which uses a subset of the training data to calculate how much the 190 

weights and biases should be updated. 191 

FFNN CFNN 

 

 

Figure 1. Schematic of the networks of FFNN and CFNN 192 

2.2. CFNN 193 

2.2.1. Unique Features and Architecture 194 

CFNN distinguishes itself from other ANN variants through its sequential learning 195 

approach. Unlike the FFNN, where data flows through the layers in a single pass, the 196 

CFNN introduces a two-stage learning process. In the first stage, a hidden layer is trained 197 

Additional weight factor 
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using a traditional feed-forward learning algorithm. Then, in the second stage, additional 198 

hidden units are added sequentially, in a cascade fashion, each trained to minimize the 199 

error remaining from the previous layer. This sequential learning process allows the net- 200 

work to refine its estimations layer by layer, progressively improving accuracy and en- 201 

hancing the overall estimation performance, which has been shown in Figure 1. The ad- 202 

dition of the cascade units and its incorporation into the network architecture enables the 203 

CFNN with multiple hidden layers to learn complex features in a gradual and systematic 204 

manner, further enhancing its capacity for learning intricate patterns and achieving im- 205 

proved performance [33], [37]. Therefore, the main difference between CFNN and FFNN 206 

is that the number of weight factors in each layer of CFNN increases in a cascade manner. 207 

This means that by moving to the next layers, the network will have more weight factors 208 

that contribute to the impact of the outputs of all previous layers. This is while in the 209 

FFNN, only one weight factor contributes to the influence of the previous layer (not all of 210 

the previous ones). 211 

The related mathematical equation for CFNN can be expressed as [9]: 212 

𝑦𝑝 = ∑ 𝑓𝑖𝜔𝑖
0

𝑛

𝑖=1

𝑥𝑖 + 𝑓0  (∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (∑ 𝜔𝑗ℎ

𝐻

𝑛

𝑖=1

𝑥𝑖)) 

(3) 

where 𝑓𝑖 and 𝑓𝑗
𝐻 designate the output layer and the hidden layer activation functions, 213 

respectively. By adding bias to both the input layer and the hidden layers, equation (3) 214 

will be modified to: 215 

𝑦𝑝 = ∑ 𝑓𝑖𝜔𝑖
0

𝑛

𝑖=1

𝑥𝑖 + 𝑓0  (𝜔𝑏 + ∑ 𝜔𝑖
0

𝑛

𝑗=1

𝑥𝑖𝑓𝑗
𝐻 (𝜔𝑖

0 + ∑ 𝜔𝑗ℎ
𝐻

𝑛

𝑖=1

𝑥𝑖)) 

(4) 

where 𝜔𝑗
𝐻 and 𝜔𝑏 indicate the respective weight from bias to the hidden layer and out- 216 

put layer. 217 

3. Results and Discussion 218 

3.1. Data collection 219 

The experimental data used in this paper has been collected from [13] which has pro- 220 

vided the data of an experimental measurement on a 154 kV OHTL where EMF has been 221 

measured using sensors in the vicinity of the OHTL. To measure the electric field, a CA42 222 

LF field meter has been used in 21 different longitude positions and 5 different heights 223 

from ground level. During the measurement period, the recorded instantaneous current 224 

value of the transmission line was approximately 156.3 Amperes. In the same process, by 225 

using Magnetic Field Hitester 3470 with the magnetic field sensor 3471, the magnetic field 226 

was measured.  227 

After data collection, both datasets have been organized and preprocessed making 228 

them suitable for use as input datasets for ANN models. 229 

3.2. Error indices for evaluating model performances 230 

There are three main indices that have been used to assess the accuracy of the differ- 231 

ent setups of a model as follows [38], [39]: 232 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =   √
∑ (�̅� − 𝑦𝑖)2𝑚

𝑖=1

𝑚 − 1
 

 

(5) 
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𝑛𝑠

𝑛𝑠

𝑘=1

 

 

(6) 

𝑅2 =  
∑ (𝑑𝑘 − �̅�)(𝑦𝑘 − �̅�)𝑛𝑠

𝑘=1
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𝑘=1
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(7) 

In these equations, m represents the number of iterations for each setup, y is the pre- 233 

dicted value, �̅� is mean value of x in m iterations, 𝑛𝑠 is the number of samples of the 234 

training dataset, 𝑑𝑘 is the actual value, and 𝑑𝑘
̅̅ ̅ is the mean value of 𝑑𝑘. 235 

3.3. Sensitivity analysis 236 

The sensitivity of models to their major controlling parameters or so-called “hyper- 237 

parameters” should be tested for both electric and magnetic fields, making sure the best 238 

architecture/setup has been proposed for the final model. Therefore, a sophisticated ap- 239 

proach has been proposed and followed for this step of analysis, which is demonstrated 240 

in Figure 2. 241 

3.3.1. Layers 242 

One of the most important parameters that have a significant impact on the accuracy 243 

and the training time of the ANN model is the number of hidden layers. For simplicity, 244 

most of the researchers consider only one layer for their ANN model. That said, in this 245 

work, the five different numbers of hidden layers, starting from the single-layer model to 246 

Quintuple layer one, have been tested to ensure that the best number of hidden layers for 247 

the dataset has been chosen for further steps. Also, it is good to note that the values of 248 

indices of the best setup of neurons in each number of hidden layers have been considered 249 

to perfectly make a decision, on which one is the best for further steps of analysis. Also, 250 

Levenberg-Marquardt as the training function, Purelin-Tansig as the activation function, 251 

and 70% as the training ratio have been considered for this step according to [28]. 252 

Electric field 253 

Figure 3 demonstrates that for the CFNN, the more hidden layers a model has, the 254 

lower RMSE and the higher R-squared it has. This means the total accuracy of the CFNN 255 

model increases by adding more hidden layers. This is while for the FFNN, after 3 hidden 256 

layers, the RMSE climbs up, and the R-squared drops. Therefore, for FFNN, more hidden 257 

layer than 2 not only do not increase but also decreases the model’s accuracy. This is a 258 

good example of the necessity of sensitivity analysis for AI models. 259 

 In terms of the response time, for both models, it sores after 3 hidden layers. This 260 

means that with respect to the application of the model and the computing resources, an 261 

appropriate limit for the response time should be chosen. It is good to note that the re- 262 

ported response time in this paper is the time that the model is able to predict the fields. 263 

Therefore, it may vary based on different computers. In this research, the models have 264 

been tested on a computer with Intel® Core™ i7-4710HQ CPU with 12GB RAM. 265 
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Figure 2. Flowchart of the sensitivity analysis process 267 
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 268 

(a) 269 

 270 

(b) 271 

 272 

(c) 273 

Figure 3. Sensitivity analysis on the number of Hidden layers in FFNN and CFNN for the electric 274 
field. a) RMSE values b) R-squared values c) Response time 275 
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Magnetic field 276 

In the aspect of accuracy, the line graphs of Figure 4 indicate that the results of CFNN 277 

and FFNN are very close; however, CFNN still has better results. CFNN is facing slight 278 

drops in accuracy by adding more hidden layers to the model after 2 layers which makes 279 

it the best number for it. Same for FFNN, the 2 hidden layers have the lowest RMSE and 280 

highest R-squared which makes it the best option for it but it is still not as accurate as 281 

CFNN. 282 

In the aspect of response time, generally, it increases by adding more layers. That 283 

said, although the double-layer model has the second lowest one after the single-layer 284 

model with a great difference, by taking the accuracy of the models into account, the dif- 285 

ference in time can be neglected. 286 

 287 

(a) 288 

 289 

(b) 290 
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  291 

(c) 292 

Figure 4. Hidden layers analysis for both FFNN and CFNN for the magnetic field. a) RMSE b) R- 293 
squared c) Response time 294 

3.3.2. Neurons 295 

Same for the layers, sensitivity analysis on the number of neurons in each hidden 296 

layer within ANNs is a critical approach for gaining deeper insights into the network's 297 

internal processes. Each neuron within ANN plays a vital role in the complex computation 298 

and feature extraction process. To explore the optimal configuration, we systematically 299 

varied the number of neurons in each hidden layer, ranging from a single neuron to a 300 

maximum of 15 neurons. This approach generated 15 possible configurations for each hid- 301 

den layer. By extending this analysis to encompass multiple hidden layers, denoted as 'k,' 302 

we meticulously examined 15𝑘 cases for each k and a total of 813,615 unique conditions. 303 

This exhaustive exploration aimed to identify the most efficient setup, so only the best 304 

configuration of each k has been reported in the figures and tables. 305 

 306 

Electric Field 307 

As can be seen in Table 1 and  308 

Table 2, the best neuron setup of each layer with respect to the RMSE value is shown. 309 

It is obvious that the CFNN triple layer model with [1 3 7] setup of neurons is the optimum 310 

configuration as it has extremely low RMSE. 311 

Table 1. Sensitivity Analysis of Layers and Neurons for FFNN for the electric field 312 

Layers Neurons RMSE R-Squared Response Time [ms] 

1 11 0.006217 0.999936 6.651 

2 [3 15] 0.003999 0.999978 8.621 

3 [5 7 7] 0.004381 0.999980 9.362 

4 [5 9 13 5] 0.006696 0.999956 12.652 

5 [5 9 9 13 5] 0.006174 0.999920 14.598 

 313 

Table 2. Sensitivity Analysis of Layers and Neurons for CFNN for the electric field 314 

Layers Neurons RMSE R-Squared Response Time [ms] 
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1 13 0.010050 0.999817 6.543 

2 [1 11] 0.002770 0.999984 8.467 

3 [1 3 7] 0.001953 0.999993 9.151 

4 [1 3 3 3] 0.002013 0.999994 11.206 

5 [2 2 2 4 2] 0.001763 0.999994 12.797 

 315 

 316 

Magnetic Field 317 

According to Table 3 and  318 

Table 4, the double layer models for both CFNN and FFNN with [3 3] and [3 9] setup 319 

of neurons, respectively, are the best option for this step of study. 320 

Table 3. Sensitivity analysis of Layers and Neurons for FFNN for the magnetic field 321 

Layers Neurons RMSE R-Squared Response Time [ms] 

1 6 4.97E-02 9.99E-01 3.27 

2 [3 9] 2.53E-02 9.99E-01 4.70 

3 [5 3 3] 2.66E-02 9.99E-01 6.31 

4 [5 5 9 9] 3.33E-02 9.99E-01 5.04 

5 [5 5 13 5 1] 2.85E-02 9.99E-01 5.25 

 322 

Table 4. Sensitivity analysis of Layers and Neurons for CFNN for the magnetic field 323 

Layers Neurons RMSE R-Squared Response Time [ms] 

1 5 4.87E-02 9.95E-01 3.32 

2 [3 3] 2.46E-02 9.99E-01 4.59 

3 [3 7 1] 2.53E-02 9.83E-01 7.48 

4 [5 5 1 5] 2.77E-02 9.99E-01 7.67 

5 [5 5 9 5 5] 3.13E-02 9.99E-01 6.84 

 324 

3.3.3. Training functions 325 

Sensitivity analysis of training functions in ANNs is a fundamental step in under- 326 

standing the impact of different optimization algorithms on the network's learning pro- 327 

cess and performance. The choice of a suitable training function directly influences the 328 

convergence rate, accuracy, and efficiency of the ANN model. In this paper, the four most 329 

common training functions (in literature) have been tested: Levenberg-Marquardt (LM), 330 

Scaled Conjugate Gradient (SCG), Resilient Backpropagation (RB), and Variable Learning 331 

Rate Backpropagation (VLRB). Analyzing the sensitivity of these training functions pro- 332 

vides valuable insights into their strengths, weaknesses, and suitability for the proposed 333 

model. 334 

Electric field 335 

As can be seen in Figure 5, the LM training function has the lowest RMSE in compar- 336 

ison to other training functions. In contrast, its best setup has a higher response time than 337 

the others. Also, the CFNN method has more accurate results than FFNN in all training 338 

functions. Therefore, the best model at this step is CFNN trained with LM. 339 
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  344 

(c) 345 

Figure 5. Sensitivity Analysis on the training functions in terms of RMSE, R-squared, and response 346 
time for both FFNN and CFNN for triple-layer models for the electric field 347 

 348 

Magnetic field 349 

Similar to the electric field, according to Figure 6 the LM has the lowest RMSE and 350 

highest R-squared. Also, the CFNN model’s RMSE is less than FFNN for all training func- 351 

tions. Moreover, in terms of response time, there is no significant difference between all 352 

the options. So, the best option is the CFNN method with the LM training function. 353 

 354 

 355 

(a) 356 
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 357 

(b) 358 

 359 

(c) 360 

Figure 6. Sensitivity Analysis on the training functions in terms of RMSE, R-squared, and response 361 
time for both FFNN and CFNN for triple-layer models for magnetic field 362 

3.3.4. Activation functions 363 

Activation functions introduce non-linearity to the neural network, enabling it to 364 

model complex relationships and learn intricate patterns from the data. In this paper, 4 365 

activation functions including Purelin, Tansig, Satlin, and Logsig have been considered 366 

for this step of analysis, as the most common functions used in the literature. The equa- 367 

tions of these activation functions are as follows [40], [41]: 368 

Pure linear 𝐹(𝑥) = 𝑥 (8) 

Saturated linear 
𝐹(𝑥) = {

0  𝑓𝑜𝑟 𝑥 < 0
1  𝑓𝑜𝑟 𝑥 > 1

 
(9) 

Hyperbolic tangent sigmoid 𝐹(𝑥) = 𝑡𝑎𝑛ℎ(𝑥) (10) 
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Log - sigmoid 
𝐹(𝑥)  =  

1

1 +  𝑒𝑥𝑝(−𝑥)
 

(11) 

It has been considered that the activation functions between the input and hidden 369 

layer, and the hidden layer and hidden layer are the same. Also, 8 combinations of activa- 370 

tion functions out of all possible conditions have been chosen from [19]. Then, they have 371 

been assessed to check whether they result in higher accuracy than others. 372 

 373 

Figure 7. RMSE values of the pairs of activation functions for both FFNN and CFNN for the electric 374 
field 375 

Table 5. R-squared values of the pairs of Activation functions for both FFNN and CFNN for the 376 
electric field 377 

Activation function FFNN CFNN 

Purelin-Tansig 0.999957 0.999995 

Tansig-Purelin 0.999997 0.999979 

Satlin-Tansig 0.981759 0.99983 

Tansig-Satlin 0.998797 0.999928 

Purelin-Logsig 0.859171 0.999979 

Logsig-Purelin 0.998393 0.999986 

Satlin-Logsig 0.901135 0.999884 

Logsig-Satlin 0.999866 0.999949 

 378 

As can be seen in Figure 7 and Table 5, for the electric field, Purelin – Logsig for 379 

CFNN and Tansig – Purelin for FFNN, resulted in the lowest RMSE and highest 𝑅2, re- 380 

spectively. Also, according to Figure 8 and Table 6, Logsig – Purelin for both CFNN and 381 

FFNN demonstrated the highest accuracy. Also, it is worth noting that CFNN has a higher 382 

𝑅2 than FFNN while it has lower RMSE values. This means that CFNN gives more accu- 383 

rate estimates of both electric and magnetic fields in most pairs of activation functions. 384 

 385 
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 386 

Figure 8. RMSE values of the pairs of Activation functions for both FFNN and CFNN for the mag- 387 
netic field 388 

Table 6. R-squared values of the pairs of Activation functions for both FFNN and CFNN for the 389 
magnetic field 390 

Activation function FFNN CFNN 

Purelin-Tansig 0.995210 0.995201 

Tansig-Purelin 0.999231 0.999198 

Satlin-Tansig 0.897353 0.998647 

Tansig-Satlin 0.621461 0.885737 

Purelin-Logsig 0.867373 0.867271 

Logsig-Purelin 0.999280 0.999177 

Satlin-Logsig 0.632067 0.879440 

Logsig-Satlin 0.533737 0.886112 

3.3.5. Training ratio 391 

The sensitivity of the model to the training data ratio must be assessed by considering 392 

different ratios for the number of training data to the total data in the dataset of the model. 393 

It is common practice among AI researchers to consider a data training ratio between 50% 394 

to 90% for the training of the model, and 5% to 25% for each Validation and Test process 395 

equally. This ratio depends on the number of observations in a dataset, the number of 396 

input parameters, etc.  397 

In this paper, the data training ratios have been considered for 50%, 60%, and 70% to 398 

find the best ratio in terms of the accuracy of the model. The reason that 80% and 90% 399 

have not been studied is that there was a risk of overfitting the model. The results of Table 400 

7 and Table 8 demonstrated that 70% training ratio gave the highest accuracy for both 401 

electric and magnetic fields. 402 

Table 7. The RMSE and R-squared of different data training ratios for the electric field estimation 403 

Training Ratio RMSE R-Squared 

70% 1.58E-03 0.999979 

60% 1.71E-03 0.999995 

50% 1.82E-03 0.999992 
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Table 8. The RMSE and R-squared of different data training ratios for the magnetic field estimation 404 

Training Ratio RMSE R-Squared 

70% 2.49E-02 0.999177 

60% 2.62E-02 0.999177 

50% 2.96E-02 0.998943 

 405 

3.3.6. Stability 406 

The performance variability observed in ANN models, even when the network setup 407 

remains unchanged, is a common phenomenon and can be attributed to several factors. 408 

First and foremost, ANNs inherently depend on the initial weights assigned to their con- 409 

nections, which are typically initialized randomly. This initial condition can lead to dif- 410 

ferent starting points for the learning process, resulting in divergent outcomes during 411 

training. Additionally, the data used for training plays a crucial role. The dataset splitting 412 

for the training, validation, and testing process is done randomly which can result in dif- 413 

ferent model performances. Stability analysis holds significant importance for ANN mod- 414 

els, as it guarantees the robustness and dependability of their predictions. In this paper, 415 

each setup/configuration for the ANN model, regardless of being in each step of sensitiv- 416 

ity analysis, has been repeated 50 times to avoid any significant fluctuation. Then, the 417 

mean values of RMSE and R-squared have been compared between models to assess their 418 

accuracy. As can be seen in Figure 9 and Figure 10, the RMSE values, are almost the same 419 

and fluctuations are not significant. Also, the SD of the data for electric field and magnetic 420 

field models has been evaluated using equation 1 and are only 4.88E-04 and 4.81E-03, re- 421 

spectively. As the SD values are near zero, they prove that the fluctuation of RMSE in both 422 

suggested models is negligible, and so, the suggested models are absolutely stable. 423 

 424 

Figure 9. RMSE distribution chart for 50 iterations for the electric field best model 425 
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 426 

Figure 10. RMSE distribution chart for 50 iterations for the magnetic field best model 427 

3.4. Comparison with other works 428 

In this section, the accuracy of the presented model in this paper will be compared to 429 

the previous works published in the literature. As it can be seen the RMSE of the proposed 430 

model in this paper is the lowest in comparison with other published papers. Also, in 431 

terms of R-squared, the proposed model in this paper has an R-squared of almost 0.999 432 

which is higher than other published papers. Moreover, in this paper, relative error never 433 

exceeded 5.4% (worst-case) while for other published papers it was reported between 3% 434 

to 190%. 435 
 436 
Table 9. Comparison of accuracy of the proposed model with other works 437 

Reference Method Field RMSE R2 Relative error 

[34] MLPNN Electric - - 5.437-23.62% 

    Magnetic - - 3.255-11.5% 

[13] MLPNN Electric 0.030855 - - 

    Magnetic 0.02719 - - 

[13]  GRNN Electric 0.053084 - - 

    Magnetic 0.03666 - - 

[20] NFC Electric - - 8-135% 

    Magnetic - - 5-190% 

[36] FFNN Electric 0.6172 0.9121 - 

    Magnetic 0.3602 0.9471 - 

[35] FFNN Electric - - - 

    Magnetic - 0.709-0.988 - 

Present paper CFNN Electric 0.001708 0.99995 0.01-3.281% 

    Magnetic 0.0246 0.99920 0.05-5.87% 

 438 

4. Conclusion 439 

Both finite element and experimental methods that are being used by researchers for 440 

the electric and magnetic fields evaluation are extensively time-consuming and expensive. 441 

This paper intends to propose an extremely fast and low-cost implementation method 442 

using AI methods based on neural networks. The Cascade Forward Neural Network 443 

(CFNN) as the main ANN method of this paper demonstrated higher accuracy than the 444 

commonly used Feed Forward Neural Network (FFNN). For the electric and magnetic 445 
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fields estimation, the CFNN exhibited a reduction in RMSE by 56% and 5% respectively 446 

compared to the FFNN. The other important findings can be expressed as follows: 447 

• The training time of both models does not exceed 10 s while this can take some 448 

days for the experimental and FEM methods. 449 

• The response times of both proposed models are less than 10 ms even using a 450 

regular personal computer. Therefore, they are very suitable for real-time use. 451 

• Although the CFNN models have more complex architecture, they had almost 452 

the same response time to FFNN with higher accuracy. 453 

It is worth noting that CFNN models are versatile and can handle various datasets in 454 

many engineering applications. These models have been developed for one layout and 455 

have very high accuracy for that layout. To reach similar accuracy for other layouts, the 456 

models can be retrained and updated with new datasets related to them. 457 
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