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A Variance Partitioning Multi-level Model for
Forest Inventory Data with a Fixed Plot Design

Isa Marques , Paul F. V.Wiemann, and Thomas Kneib

Forest inventories are often carried out with a particular design, consisting of a multi-
level structure of observation plots spread over a larger domain and a fixed plot design
of exact observation locations within these plots. Consequently, the resulting data are
collected intensively within plots of equal size but with much less intensity at larger
spatial scales. The resulting data are likely to be spatially correlated both within and
between plots, with spatial effects extending over two different areas. However, a Gaus-
sian process model with a standard covariance structure is generally unable to capture
dependence at both fine and coarse scales of variation as well as for their interaction. In
this paper, we develop a computationally feasible multi-level spatial model that accounts
for dependence at multiple scales.We use a data-driven approach to determine theweight
of each spatial process in the model to partition the variability of the measurements. We
use simulated andGerman small tree inventory data to evaluate themodel’s performance.

Supplementary material to this paper is provided online.

Key Words: Bayesian inference; Forestry; Markov chain Monte Carlo simulations;
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1. INTRODUCTION

Designs for collecting spatially oriented data in agricultural, biological, or environmental
research often entail multi-level structures where data are collected at very different inten-
sities in different parts of the domain. As an example that will serve as the application of
interest later on in this paper, consider the design illustrated in Fig. 1 that arose from a large-
scale project on biodiversity research in Germany (BIOKLIM Project).1 As a part of this
project, information on forest cover of European blueberry in the Bavarian Forest National
Park in Germany was collected for a number of plots distributed over a large spatial range
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Figure 1. Locations of 30 identically sized plots distributed over a large spatial range (left panel) with identical
distribution of observation locations within the plots (zoom in for the area represented by the red circle on the left
in the right panel). The plots are located along straight transects following the altitude gradient. The data collected
included more plots, but we restricted the dataset to plots of European blueberries.

(left panel) along altitude gradients where within each plot intensive data collection takes
place on locations that are distributed in exactly the same setup around the centroid location
of the plot (magnified in the right panel). As a consequence, the actual data are organized
according to a specific multi-level structure representing two different spatial scales with
large distances between the plots and much smaller distances between the actual locations
of observations within the plots. Similar designs are very common, especially in forestry,
where forest inventories are probably the most accurate source of data, but are sparsely
collected due to the high financial costs involved (see, for example, Bässler et al. 2010;
Junttila et al. 2013; Finley et al. 2009, 2011).

Considering the analysis of forest cover as a dependent variable within a regression
scenario, it is most likely not sufficient to relate this to measured environmental factors. It
is therefore common practice to add a spatially correlated effect, e.g., based on a Gaussian
process, to account for unexplained spatial dependence in the data. However, due to the
specific design of the data collection, standard covariance functions are unlikely to beflexible
enough to represent the multi-level structure. More specifically, they cannot simultaneously
capture spatial variation between and within plots, as spatial variation occurs at completely
different spatial scales. Previous work on multi-resolution models relates to our objective of
modeling data available at different spatial scales (Nychka et al. 2015; Katzfuss 2017), but
we can cast our problem into a more straightforward multi-level model framework directly
addressing the data structure of the forest inventories.

The goal of this paper is to develop efficient Bayesian inference with Markov Chain
Monte Carlo (MCMC) for spatial regression models acknowledging the different spatial
scales arising from the fixed plot design.More specifically, we aim to (1) adequately account
for unobserved spatial variation at different scales, (2) allow for interactions between effects
at different scales, (3) obtain appropriate uncertainty estimates for the regression effects in
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the model, (4) obtain predictions at new locations within the observed plots as well as for
new plots, and (5) use efficient ways of handling Gaussian process models to make inference
tractable.

In our data, there are two different spatial scales to consider: the coarser plot level, where
only plot centroids are considered, and the finer within-plot level, which corresponds to the
area around the centroids (see again Fig. 1), where the circles (i.e., plots) are assumed to be
replicates of each other. This can easily be extended to include more scales, for example
if the plots themselves are organized into clusters. We allow any two scales to interact by
using Kronecker products of the dependence structures on the two scales. This follows
ideas developed in Knorr-Held (2000) and Franco-Villoria et al. (2022) for interactions in
space-time models. However, here we extend the concept to the case of two spatial effects
at different scales, i.e., a space–space interaction.

For inference, we follow a Bayesian approach based on MCMC simulations. To improve
the computational efficiency of the MCMC sampler, we exploit the techniques developed
in Stegle et al. (2011), which have rarely been used in the spatial statistics literature. This
technique allows for efficient inference in matrix-variate Gaussian models with i.i.d. obser-
vation noise by rotation of the data prior to evaluating the multivariate normal likelihood.
The resulting (marginalized) likelihood has a diagonal covariance that is easier to factor-
ize than a dense covariance. Indeed, although one can explore the Kronecker product for
computational efficiency in spatial models, this is generally not possible in models that
additionally include i.i.d. observation noise in the marginalized multivariate normal like-
lihood. Thus, this technique has benefits that extend beyond our space–space interactions
to any other interactions (such as space-time), and speed-up inference with MCMC in any
matrix-variate Gaussian model with i.i.d. observation noise.

Finally, ourmodel incorporates a data-driven variance partitioning approach to determine
the contribution of each spatial structure (within plot, between plots, interaction) and nugget
to the model, thus avoiding the need to postulate the presence or absence of an effect a
priori. This also helps to stabilize inference in situations where certain effects are absent,
and improves the interpretability of the model.

The paper is organized as follows: In Sect. 2,we introduce our novelmodelmore formally.
In Sect. 3, details on inference are provided, while in Sect. 4, we explain how predictions
are obtained. A simulation study is provided in Sect. 5. Finally, in Sect. 6 we consider a
German inventory of European blueberries that exemplifies the usefulness of allowing for
interaction between effects on different spatial scales.

2. MODEL STRUCTURE

2.1. FIXED PLOT DESIGNS WITH DIFFERENT SCALES

We consider regression data collected on a spatial domain S ⊂ R
2. Within S, data

are only available at m equally sized areas/plots, Si ⊂ S, i = 1, . . . ,m represented for
example by the coordinates si of their centroids. We assume that each plot has the same
number of observations y(si j ), j = 1, . . . , n, located at the same positions relative to
the centroid of the plot (see Fig. 1 for a graphical representation of such a structure; in
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Supplement 6 an additional example is provided), which is, in fact, a prevalent structure in
forest inventories. More precisely, let si j denote the location associated with observation
y(si j ), then ∀i, k ∈ 1, . . . ,m and ∀ j ∈ 1, . . . , n, the equality si j − si = sk j − sk holds. We
refer to such designs as fixed plot designs with different scales.

2.2. A SPATIAL REGRESSION MODEL FOR FIXED PLOT DESIGNS

To incorporate spatial variation in a regression model for fixed plot designs, we consider
the model equation

y(si j ) = x(si j )′β + γ b(si ) + γ w(si j − si ) + γ int (si , si j − si ) + εi j (1)

where y(si j ) and x(si j ) represent information on the response variable and the q-
dimensional vector of covariates, respectively, β are corresponding regression coefficients,
and εi j is an i.i.d. error term. The overall spatial variation is represented by the sum of three
spatial effects

γ (si , si j − si ) = γ b(si ) + γ w(si j − si ) + γ int (si , si j − si )

that corresponds to the spatial variation between plots on the large spatial scale (γ b(si ) being
a function of the centroid locations alone), spatial variation within the plots (γ w(si j − si )
being a function of the distance to the centroid alone), and their potential interaction
(γ int (si , si j − si ) being a function of both sources of spatial information).

In this way, the overall spatial dependence implied by the composed spatial process
γ (si , si j − si ) can be much more complex than the spatial dependence of each of the
individual components. The idea is to first account for fine-scale spatial structure within
the plots via γ w(si j − si ). Since this structure does not account for additional large-scale
spatial correlation between plots, we superpose the spatial effect γ b(si ). The superposition
of spatial effects allows us to explain both fine- and large-scale spatial dependence, without
recurring tomore complex and computationally intensive non-stationary spatialmodels (see,
e.g., Lindgren et al. 2011; Nychka et al. 2015). Finally, any remaining interactions between
and within plots are accounted for by an additional spatial process γ int (si , si j − si ). More
details on the structure of each spatial effect are provided in Sect. 2.3.

2.3. VARIANCE PARTITIONING PRIORS

Rather than assigning independent priors to the different quantities in model (1), we
distribute the variance between spatial effects in a variance partitioning multi-level model
(VPMM) specified as

y(si j )=x(si j )′β+τ
(√

abγ
b(si )+√

awγ w(si j − si )+√
aintγ

int (si , si j − si ) + √
aεεi j

)

(2)

where τ > 0 represents the overall variation, while the weights 0 ≤ ab, aw, aint , aε ≤ 1,
subject to ab + aw + aint + aε = 1 distribute this variation across the four sources of vari-



710 I. Marques et al.

ability (see Fuglstad et al. 2020; Franco-Villoria et al. 2022, for similar variance partitioning
specifications). One can think of the weight vector a as implying a joint prior for the nugget
effect εi j and the three spatial effects. Using a joint prior here makes sense because (1) the
main and interaction spatial effects in Eq. (2) are typically not independent and (2) for small
spatial ranges between and within areas, some components of the main effect in Eq. (2) will
approximately behave like the nugget. Moreover, from the stand-point of interpretability,
interpretation of the relative contribution of each effect is facilitated and the resulting prior
is more intuitive to elicit.

Assuming that data are organized according to the multi-level structure, Eq. (2) can be
rewritten in matrix notation as

y = Xβ + τ
(√

abZγ b + √
awγ w + √

aintγ
int + √

aεε
)

(3)

with the vector of observations y, the design matrix X , the block-diagonal matrix
Z = blockdiag(1n, . . . , 1n), and the vector of residuals ε ∼ N (0, I) appropriately defined
(e.g., ε = (ε11, . . . , ε1n, ε21, . . . , εmn)

′ and similar definitions for the other quantities).
For the different components in the VPMM, we now make more specific distri-

butional assumptions where zero mean Gaussian random fields (GRFs) will be con-
sidered for all spatial effects, besides ε ∼ N (0, I). More concretely, the GRF
γ w = (γ w(s11 − s1), . . . , γ w(s1n − s1), γ w(s21 − s2), . . . , γ w(smn − sm))′ describing
the spatial variation within each plot is a priori assumed to not be correlated between areas
such that

γ w ∼ N (0, Im ⊗ Rw) (4)

where Rw is the correlation matrix of size n × n based on the positive-definite exponential
covariance function Cor(si j − si , sil − si ) = exp

(−κw‖si j − sil‖
)
, i = 1, . . . ,m and

j, l = 1 . . . , n, where κw is related to the spatial range ρw of the GRF within the plot (see
Chapter 2 in Gelfand et al. 2010). The spatial range is defined as the minimum distance at
which the spatial correlation between locations is smaller than or equal to 0.05. Note that in
the evaluation of the correlation function, the location of the plot centroid cancels out such
that only relative distances within a plot play a role.

The GRF γ b = (γ b(s1), . . . , γ b(sm))′ acts as a random intercept for area Si with

γ b ∼ N (0, Rb), (5)

where Rb is a correlation matrix of size m × m based on the positive-definite exponential
covariance function Cor(si , sk) = exp (−κb||si − sk ||), i, k = 1 . . . ,m, where κb is related
to the spatial range ρb of the GRF between plots.

Lastly, the interaction term γ int = (γ int (s1, s11 − s1), . . . , γ int (sm, smn − sm))′ is such
that

γ int ∼ N (0, Rb ⊗ Rw). (6)
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The covariance Rb ⊗ Rw is positive definite since it results from the Kronecker product of
two positive-definite matrices (see Theorem 9 in Horn and Johnson 2012). The Kronecker
product represents the interaction between the two spatial scales, as it assumes that the spatial
dependence structure within each plot depends on the spatial dependence pattern between
all plots. More concretely, it accounts for additional correlation among observations from
different plots but close to each other relative to the plots’ origin. Such interactions make
sense in designs in which the environmental conditions (e.g., soil type) change identically
in space within each plot or when an external factor, like wind from one direction or fences,
affect all plots in the same manner. In the application, we consider plots located in line
transects along an altitude gradient, such that the same locations in different plots have
similar inclination and exposition (Bässler et al. 2010).

In the following, we denote γ b(si ) + γ w(si j − si ) the spatial main effects and
γ int (si , si j − si ) the spatial interaction effect. For aint = 0, the VPMM model implies
the correlation structure

Cor(yi j , ykl) =

⎧⎪⎪⎨
⎪⎪⎩

abRb[i, k] i �= k,

abRb[i, k] + awRw[ j, l] i = k, j �= l,

abRb[i, k] + awRw[ j, l] + aε i = k, j = l.

(7)

Thus, for observations in the same plot, we always havewithin-correlation, but if the plots are
different this correlation is zero. If both the plots and locations within an area are different,
we still have between-plot correlation.

The spatial interaction effect implies the pointwise correlation structure
Cor(γ int (si , si j − si ), γ int (sk, skl − sk)) = Rb[i, k] Rw[ j, l]. Consequently, for aint �= 0,
we add aint Rb[i, k] Rw[ j, l] to every case in Eq. (7)

2.4. RELATION TO OTHER DESIGNS

In space-time contexts, one can follow a similar method to the one above. For example,
in the case of one spatial resolution and one time resolution, one can adapt Eq. (2) to

y(si , t j ) = x(si , t j )′β + τ
(√

asγ
s(si ) + √

atγ
t (t j ) + √

aintγ
int (si , t j ) + √

aεεi j

)

where i = 1, . . . ,m indexes the plots, j = 1, . . . , n is the time index, and (si , t j ) ∈
R
2 × R, ∀i, j . Moreover, in matrix notation (as introduced in the previous section)

γ s ∼ N (0, Rs ⊗ In), γ t ∼ N (0, Im ⊗ Rt ) and γ int ∼ N (0, Rs ⊗ Rt ), where Rs

is a spatial correlation matrix and Rt is a temporal correlation matrix. The novelty in a
space-time context is that the computational trick that we introduce in Sect. 3.2 can also be
used here to reduce the run-time complexity of factorizing the covariance function of the
associated (partly marginalized) likelihood to O(m3 + n3).
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3. INFERENCE

3.1. PRIOR STRUCTURE

Consider the vector of all structural model parameters ϑ = (β, τ 2, a′, κ ′)′, where
κ = (κb, κw)′. We use diffuse priors for β, i.e., β0 ∼ N (0, 1002) and βv ∼ N (0, 102) for
v = 1, . . . , q with higher uncertainty attached to the intercept. For τ 2, we adopt a weakly
informative inverse gamma distribution IG(c = 0.001, d = 0.001) following the common
practice of using c = d, with both values approaching zero, as a weakly informative choice
for variance parameters (see Sect. 4.4 of Fahrmeir et al. (2013)). To sample within R, we
sample the logarithmic counterpart log(τ 2) and change the density accordingly, following
the change of variable theorem.

We assign a joint Dirichlet prior with parameters α1, . . . , α4 > 0 to the weights a. For
notational simplicity, we replace here (ab, aw, aint , aε) by (a1, . . . a4) such that

p(a) = 1

B(α1, . . . , α4)

4∏
p=1

a
αp−1
p , a = (a1, . . . , a4) ∈ 	4

where B(·) is a multivariate beta function and 	4 is the 3-simplex. If any of the weights
is 0 or 1, then the density is 0. We set α1 = α2 = α3 = α4 = 1 such that the prior is
uniform and represents no preference for any of the random effects. Furthermore, as we do
not sample a directly but sample on the equipotent R3, we need to perform a change of
variable transformation. The transformation bp and the so-called break proportions cp can
be defined element-wise as

bp = logit(cp) + log

(
1

4 − p

)
where cp = ap

1 − ∑p−1
p′=1 ap′

, for p ≥ 2,

where b = (b2, b3, b4)′ ∈ R
3, c = (c2, c3, c4)′ ∈ R

3 (see Stan Development Team 2022,
Sect. 10.7).

For the parameters κb, κw, we sample the logarithmic counterpart θb = log(κb) and
θw = log(κw). The densities are changed accordingly. In what follows, we describe the
prior structure for κb, but the same logic applies to κw. We assume a normally distributed
prior θb ∼ N (μκb , σ

2
κ ). Then, given that for the exponential correlation function the spatial

range satisfies ρb ≈ 3/κb, from the properties of the log-normal distribution we obtain
ρb ∼ Log-normal(log(3) − μκb , σ

2
κb

). The p-quantiles of the log-normal distributions for
the correlation range are

ρb(p) = 3 exp(−μκb + σκb�
−1(p)) (8)

where 0 ≥ p ≥ 1, and �(·) is the cumulative distribution function for the standard normal
distribution (see Ingebrigtsen et al. 2015, for a similar method). To choose priors, we specify
two quantiles of the prior for ρb. In our case, we focus on the median and 0.95-quantile and
then solve the corresponding two equations.We illustrate the prior’s behavior in Fig. 2,which
is based on the settings used in the simulation study and part of the real data application.
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Figure 2. Density of the prior for spatial ranges. We consider ρb(0.95) = 1 and test different values for the range
ρb(0.5) as shown in the legend. It follows similarly for ρw.

In the figure, we consider ρb(0.95) = 1 and test different values for the range ρb(0.5). It
follows similarly for ρw.

3.2. EFFICIENT INFERENCE

This section introduces the technique of Stegle et al. (2011) in the context of our model in
order to reduce computational complexity. Consider the marginalized likelihood following
Eq. (3) where

y|β, τ 2, a, κ ∼ N
(
Xβ, τ 2

(
aε Imn + abZRbZ′ + (aw Im + aint Rb) ⊗ Rw

))
. (9)

By integrating out the GRF in a spatial regression model, we typically achieve faster con-
vergence in MCMC samplers (Finley et al. 2015). However, the cost of factorizing the
covariance in Eq. (9) is cubic in mn.

By instead considering the likelihood with unmarginalized between main effect γ b, we
can exploit the structure of ab Imn + (aint Im + aεRb) ⊗ Rw to reduce computational
complexity using a technique introduced in Stegle et al. (2011). With γ b not marginalized,
we obtain

y|β, τ 2, a, κ, γ b ∼ N
(
Xβ +

√
τ 2abZγ b, τ 2

(
aε Imn + (aw Im + aint Rb) ⊗ Rw

))
.

(10)

The evaluation of this multivariate normal distribution requires the calculation of the deter-
minant and inverse of covariancewhich is amn×mnmatrixwith costsO(m3n3). These tasks
can be accomplished more efficiently by further exploiting the properties of the Kronecker
product.

Consider Y ∈ R
n×m with n rows andm columns. We define vec(Y) = y to be the vector

obtained by concatenating the columns of Y . A Kronecker product plus a constant diagonal



714 I. Marques et al.

term can then be rewritten as

τ 2
(
aε Imn + (aw Im + aint Rb) ⊗ Rw

)
= τ 2aε Imn + (τ 2aw Im + τ 2aint Rb) ⊗ Rw

= (Ub ⊗ Uw)(τ 2aε Imn + Sb ⊗ Sw)(U ′
b ⊗ U ′

w)

where UbSbU ′
b is the eigenvalue decomposition (EVD) of τ 2aw Im + τ 2aint Rb and

UwSwU ′
w is the EVDof Rw. By exploiting the identity (Ub⊗Uw)vec(Y) = vec(U ′

wYUb),
we can re-formulate the likelihood L in Eq. (10) such that

L = − mn

2
log(2π) − 1

2
log(|τ 2aε Imn + Sb ⊗ Sw|)−

1

2
vec(U ′

wYUb)
′(τ 2aε Imn + Sb ⊗ Sw)−1vec(U ′

wYUb).

This can now be interpreted as a multivariate normal distribution with diagonal covariance
matrix τ 2aε Imn + Sb ⊗ Sw and rotated data vec(U ′

wYUb) (Stegle et al. 2011).
The factorization of the diagonal covariance matrix implies a lower run-time complexity

than that of the dense counterpart. Moreover, although we need to calculate two eigen-
value decompositions, in general, we can perform factorizations on the smaller matrices,
reducing costs to O(m3) and O(n3), respectively. These two operations can additionally be
parallelized. Ultimately, without parallelization, this reformulation has computational com-
plexity of O(n3 + m3), rather than O(n3m3) in a global spatial model and in the scenarios
we are interested in; i.e., scenarios with n ≥ 2 andm ≥ 2, n3+m3 < n3 m3 are guaranteed.

3.3. SAMPLING

In the partially marginalized formulation of VPMM introduced in the previous section,
we update γ b and ϑ with an alternating scheme:

Update of ϑ . For efficient sampling, we use proposals based on Hamiltonian dynamics with
a subsequent Metropolis–Hastings correction known as Hamiltonian Monte Carlo (HMC,
Neal 2011). In each case, the step size and the mass vector are learned during warm-up. We
find that in some data settings the gradient of the unnormalized log-posterior with respect to
log(κb) and log(κw) is numerically unstable and better results are obtained when removing
those parameters from theHMC step and instead sample themwith theMetropolis–Hastings
algorithm using random-walk proposals. Similar to the HMC-based sampler, the step size
of the random-walk proposals is tuned during warm-up.

Update of γ b. Here, we use Gibbs sampling and draw γ b from the full conditional (see
Supplement 1).

3.4. SOFTWARE

The model is implemented in Python using the novel Liesel framework for Bayesian
computation (Riebl et al. 2022). In particular, we use Goose, the MCMC library of Liesel.
Goose provides a set of efficiently implemented and well-tested samplers capable of learn-
ing some tuning parameters, such as the step size, during warm-up. Different samplers



A Variance Partitioning Multi-level Model 715

can be associated with different parts of the parameter vector, allowing us to implement
the sampling procedure described in Sect. 3.3 with minimal effort. Liesel facilitates using
gradient-based samplers (e.g., HMC and NUTS) by taking advantage of automatic differen-
tiation, which allows us to implement only the unnormalized log-posterior. However, using
Liesel, we can—where necessary—integrate dedicated implementations incorporating the
computational tricks discussed.

4. SPATIAL PREDICTIONS

4.1. PREDICTIONS AT NEW LOCATIONS WITHIN THE OBSERVED PLOTS

These types of predictions seem particularly valuable as foresters could thin out their
data collection process within each plot or compensate any missing values within a plot.
Consider observations yi j available in each plot i = 1, . . . ,m at the same locations indexed
with j = 1, . . . , n and predictions at t ∈ N new locations in each plot indexed with
j = n+1, . . . , n+ t . For notational clarity, we write yi, j instead of y(si, j ) in the remaining
part of this section. To predict a random mt × 1 vector
y0 = (y1,n+1, . . . , y1,n+t , . . . , ym,1, . . . , ym,n+t )

′ associatedwith amt×pmatrix of predic-
tors, X0, we start with the joint distribution of ỹ = (y1,n+1, . . . , y1,n+t , y1,1 . . . , y1,n, . . . ,
ym,n+1, . . . , ym,1, . . . , ym,n)

′. Moreover, we have y1 = (y1,1, y1,2, . . . , ym,1, . . . , ym,n)
′.

The matrices X̃ , Z̃, and R̃
w
, shall denote the design matrix, projection matrix, and within-

correlation matrix similar to X , Z, Rw, but augmented such that they include the new values
associated with y0. Now, the joint distribution of ỹ given the model parameters ϑ and the
between area effect γ b is

ỹ|ϑ, γ b ∼ N
(
X̃β+

√
τ 2ab Z̃γ b, τ 2

(
(aw Im+aint Rb) ⊗ R̃

w+aε Im(n+t)

))
. (11)

The (n + t) × (n + t) correlation matrix R̃
w
can be expressed as a block-matrix

R̃
w =

[
Rw
00 Rw

01
Rw
10 Rw

11

]

with the correlation matrices describing the within-correlation of the new observations and
the old observations on the diagonal and the correlation matrix between those on the off-
diagonal. The conditional distribution of the predictions is given by

y0| y1,ϑ, γ b ∼ N
(
μ0 + �01�

−1
11 ( y1 − μ1),�00 − �01�

−1
11 �10

)
. (12)

Here, μ0 and μ1 refer to the components of the mean vector in Eq. (11) suitable to express
the mean of y0 and y1, respectively. Similar, the blocks �kl , k, l = 0, 1 arise from the
covariance matrix in Eq. (11) referring to the conditional covariance of yk and yl . Note,
�11 is equal to the covariancematrix in Eq. (10) and can be efficiently inverted using Stegle’s
method (see Sect. 3). Thus, run-time complexity is O(m3 + n3) rather than O(m3n3), with
potential for parallelizing the eigendecompositions.
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Bayesian prediction proceeds by sampling from the posterior predictive distribution
p( y0| y) = ∫

p( y0| y,ϑ, γ b)p(ϑ, γ b| y)dϑdγ b. For each posterior sample of (ϑ ′, (γ b)′)′,
we draw y0 from the corresponding distribution (see Eq. (12)).

4.2. PREDICTIONS AT NEW PLOTS

Predictions can also be constructed for new plots. Suppose we want to predict t ∈ N

new plots. To predict a random tn×1 vector y0 = (ym+1,1, ym+1,n, . . . , ym+t,1, . . . ym+t,n)
′

associated with a tn × p matrix of predictors, X0, we start with the joint
distribution of ỹ = (ym+1,1, . . . , ym+1,n, . . . , ym+t,n, y1,n, y1,2, . . . , ym,n)

′, where
y1 = (y1,1, . . . , y1,n, . . . , ym,n)

′. The matrices X̃ , Z̃, R̃
b
, γ̃ b shall denote the design matrix,

projection matrix, and between correlation matrix similar to X , Z, Rb, but augmented such
they include the new values associated with y0. We can factorize

p( y, γ̃ b,ϑ) = p( y0| y1, γ̃ b,ϑ)p(γ b
0|γ b

1,ϑ)︸ ︷︷ ︸
predictive density

p( y1|γ b
1,ϑ)p(γ b

1,ϑ)︸ ︷︷ ︸
model density

.

Assuming t < m, both predictive and model density can be evaluated in O(m3 + n3) using
Stegle’s method. Both factors of the predictive distribution relate to a conditional normal
distribution. The second term conditions on an m-dimensional vector, thus requiring the
factorization of an m × m matrix, which can be done in O(m3). The first term is more
involved. Consider, the joint distribution of ỹ given the model parameters ϑ and γ̃ b

ỹ|ϑ, γ̃ b ∼ N
(
X̃β+

√
τ 2ab Z̃γ̃ b, τ 2

(
(aw Im+t+aint R̃

b
) ⊗ Rw+aε I (m+t)n)

))
. (13)

The (m + t) × (m + t) correlation matrix R̃
b
can be expressed as a block-matrix

R̃
b =

[
Rb
00 Rb

01
Rb
10 Rb

11

]

The conditional distribution of the predictions follows similar to the previous section, with
the blocks �kl , k, l = 0, 1, forming the covariance matrix from Eq. (13). Once again, all
terms involving the inversion of �11 can be efficiently computed using Stegle’s method,
thus reducing the computational complexity from O(m3n3) to O(m3 + n3).

In the absence of an interaction effect, the predictive distribution of y0 allows the insight
that the expected value of y0 is constant within each plot. Moreover, the predictive distribu-
tion suggests a potential reduction in the uncertainty of the predicted values in the presence
of an interaction effect. Therefore, an improvement in the predictions compared to a model
focusing only on between-plot effects is expected if a considerable share of the total variance
is attributed to the interaction.
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5. SIMULATION

In this section,we present a simulation study that evaluates the performance of theVPMM
in terms of the bias of all estimated parameters, as well as the corresponding number of
MCMC effective samples (Geyer 2011).We assume that the Data GenerationModel (DGM)
and the Data Analysis Model (DAM) are identical and follow the VPMM. We evaluate the
performance of the VPMM for: (1) increasing sample sizes m and n; (2) different true
weight vectors a; and (3) increasing variance τ 2. Objective (1) is to find thresholds for m
and n at which the parameters of the model can be accurately estimated. Objective (2) aims
to identify potential identification problems between the multiple spatial effects, or any
tendency of the spatial effects to degenerate into i.i.d. processes, even if the priors on the
range parameters avoid small values. Finally, in (3) we investigate how different variances
affect the estimated parameters.

5.1. DGM

We expect the models to perform well for n relatively smaller than m, since the observa-
tions within-plot have m replicates. Given this, we consider m ∈ {30, 40} and n ∈ {10, 25}.
These are also close to the sample sizes in Sect. 6 (see also Supplement 6). We consider
τ 2 ∈ {1, 2} and the partitionings of the variance a = (ab, aw, aint , aε)

′ are such that
a ∈ {(0.35, 0.35, 0.2, 0.1)′, (0.25, 0.55, 0.05, 0.15)′, (0.70, 0.05, 0.05, 0.20)′}. The first
vector of weights represents a well-behaved scenario that we expect should be easy to
estimate for any reasonable sample size. The second vector of weights sets the interaction
weight close to zero, a scenario that is realistic for data structures that do not lead to stronger
correlation for the same locations in different plots. The scenario with aint = aw ≈ 0 rep-
resents a standard model used in forest sciences for inventory data, where one simply has
a random intercept for the plots, although this spatial effect is typically not spatially cor-
related. This scenario also aims at identifying any potential identification issues between
spatial effects or tendency to degenerate, e.g., the within effect degenerates to white noise
by having low values for the spatial range, instead of being assigned a weight of zero. Some
parameters are kept fixed: κb = 3/0.5, κw = 3/0.7, β1 = 1, and β2 = 0.5. Moreover,
x(si j ) ∼ N (0, 1). We consider 50 replicates.

5.2. DAM

The prior hierarchy follows Sect. 3.1. Since we resize every S and Si such that
S ⊂ [0, 1] × [0, 1] and Si ⊂ [0, 1] × [0, 1] ∀i , we set ρb(0.95) and ρw(0.95) in Eq. (8)
to the maximum diameter of the corresponding space; i.e., ρb(0.95) = ρw(0.95) = 1, and
ρb(0.5) = ρw(0.5) = 0.5. We run two MCMC chains, each with 2000 MCMC samples
and with a warm-up of 2000 samples. Convergence is confirmed by verifying that the R-hat
(Gelman and Rubin 1992) is smaller than 1.1, as well as by checking the smallest effective
sample size out of all the model’s parameters, based on the median effective sample size for
all MCMC samples (Geyer 2011; Gelman et al. 2013).
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Figure 3. Boxplots of the estimated posterior mean of ρw and ρb calculated over 50 replicates for scenarios with
τ2 = 2. On the x-axis, we show the different sample sizes (m, n). The columns show three different scenarios
with different true weights a = (ab, aw, aint , aε)

′ and the rows show the estimated values for each range ρ. The
dashed lines show the true values.

5.3. RESULTS

Results are summarized in Figs. 3 and 4. The main conclusions are the following:
Sample size and weights: Scenarios with a = (0.35, 0.35, 0.2, 0.1)′ lead to unbiased

estimates of all parameters for all sample sizes. The same is true for
a = (0.25, 0.55, 0.05, 0.15)′, except for n = 10 where there is a slight tendency for the
within weight to be underestimated and the interaction weight to be overestimated. In the
same direction, for a = (0.70, 0.05, 0.05, 0.20)′ the within-plot range is underestimated for
n = 10, although it remains far from zero. This underestimation ultimately leads to a slightly
biased weight for the within and nugget weights, suggesting some tendency for the within
effect to behave similarly to the nugget for situations in which it has a low weight and n is
small. However, the priors used for the range prevent the degeneration of the within effect
to white noise. Given n, both values of m behave similarly well, indicating that m = 30
is already large enough to recover all true model parameters. All in all, for n = 10, some
parameters might be slightly biased for less well-behaved scenarios (some weights close to
zero), but a sample size n = 25 is sufficient to recover unbiased estimates of all parameters.

Variance: The two values for variance τ 2 lead to nearly identical results for the distribution
of the bias of all parameters, except for the dispersion of β2, which is larger for larger τ 2.
Thus, we restrain from presenting these results in the main text (see Supplement 5).

Convergence: The smallest median effective sample size is far above 100 for all scenar-
ios. We follow the argumentation of (Gelman et al. 2013, p. 267), considering it enough
for “reasonable posterior summaries” and, in particular, for posterior mean estimates. The
R-hat value is also below 1.1 for all the results presented. Note that no thinning was used.
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Figure 4. Boxplots of the estimated posterior mean of a = (ab, aw, aint , aε)
′ calculated over 50 replicates for

scenarios with τ2 = 2. On the x-axis, we show the different sample sizes (m, n). The columns show three different
scenarios with different true weights a and the rows show the estimated values for each weight. The dashed lines
show the true values.

6. APPLICATION

We consider a German forest inventory dataset from the BIOKLIM Project.2 We model
forest cover of Vaccinium myrtillus, also known as European blueberry. The data were
collected in the Bavarian Forest National Park inm = 30 plots of 200m2. In each plot, there
are n = 8 observations distributed on a circle and equally spaced. The structure of the data
within and between plot is shown in Fig. 1.

The plots are distributed along four straight transects following the altitude gradient,
such that the inclination should be roughly similar for the same location in different plots
(as implied by the spatial effectγ int (·) inEq. (2)). The existence of distributionpatterns along
altitudinal gradients at large spatial scales remains disputed, partly because most models
to date ignore potential spatial dependencies (Bässler et al. 2010). However, data collected
along a transect with neighboring sampling points are likely to be spatially correlated. Thus,
it makes sense to account for spatial dependence at both larger and smaller scales.

2See, e.g., https://keep.eu/project-ext/26176/. The dataset is available from the corresponding author on reasonable
request.

https://keep.eu/project-ext/26176/
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6.1. GENERAL SETTING

For the application, the VPMM follows the structure

f (y(si j ))=β0+βelevxelev(si )+τ
(√

abγ
b(si )+√

awγ w(si j )+√
aintγ

int (si j )+√
aεεi j

)

(14)

where y(si j ) is the forest cover, which is subject to a transformation f (·). Particularly,
f (y(si j )) = (h ◦ g)(yi j ), such that g(y(si j )) = log(y(si j ) + 1) and h(·) additionally
standardizes g(y(si j )). We include standardized elevation (elev) as covariate in the model.
Elevation is only available at the plot level and thus it is indexed by si .

For the sake of comparison, we also run a non-spatial multi-level model which is com-
monly used for forest inventory data and specified as

f (y(si j )) = β0 + βelevxelev(si ) + τbbi + τεεi j (15)

where f (·) is the same transformation as in Eq. (14), b ∼ N (0, Im), the i.i.d. errors follow
εi j ∼ N (0, 1), and τ 2b and τ 2ε are variance parameters.

The prior hierarchy follows Sect. 3.1 and τ 2b , τ 2ε ∼ IG(0.001, 0.001). We convert lon-
gitude and latitude to Universal Transverse Mercator (UTM) coordinates in kilometers and
resize S and every Si such that S ⊂ [0, 1]×[0, 1] and Si ⊂ [0, 1]×[0, 1] ∀i ∈ {1, . . . ,m}.
Consequently, we consider ρb(0.5) = ρw(0.5) = 0.5, which represents a less informative
prior while still avoiding values that go far beyond the edge length of the unit square (see
Sect. 3.1). Moreover, ρw(0.5) = 0.38 and ρw(0.95) = 0.72 since dependence within the
plot seems to take place mostly between the direct neighbors (see Fig. 5).

We run two MCMC chains, each with 5000 MCMC samples, including a warm-up of
2000 samples. Convergence is confirmed by verifying that the R-hat (Gelman and Rubin
1992) is smaller than 1.1 and by checking the smallest number of effective samples out of
all parameters.

6.2. EVALUATION CRITERIA

To assess the quality of the predictions for new locations and plots, we consider the mean
squared error (MSE) in a leave-t-out cross-validation (CV) setting. Additionally, we also
consider logarithmic score. Consider the case of new locations within a plot. The case of
new plots follows similarly. To obtain the CV-MSE, the data are divided into training and
test data by randomly selecting t from the n available within the plot locations for the test
data. The remaining locations are used for training. This is repeated until there are fewer
than t observations available that were not previously used for testing. The quality of the
predictions is assessed using the posterior mean of the MSE with respect to the conditional
mean (CV mean) and the posterior predictions (CV sample) (see Sect. 4). We choose t = 1
for within-plot predictions which implies roughly 12.5% of the data is used for testing. For
predictions on new plots we use t = 3 which corresponds to 10% of the plots. Additionally,
we consider cases of the VPMMwith aint = 0 and aint = aw = 0 with adjusted prior for a.
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Figure 5. We rescaled the domain S to the unit-square for interpretability purposes.

The full-sample logarithmic score (log score) follows log
(
1
S

∑S
s=1 p

(
y|ϑ (s))) , where

∫ = 1, . . . , S areMCMC samples, andϑ (s) denotes the s-thMCMC sample ofϑ . Compared
to Eq. (10) we also marginalize γ b(·). The between effect is also marginalized in the model
from Eq. (15). The full-sample log score omits the leave-one-out idea, as it has been shown
that the full-sample option can have a better small-sample model discrimination ability than
the cross-validated one (Krnjajić and Draper 2014), and it is computationally cheaper than
doing CV.

6.3. RESULTS

Recall that we resize S and every Si ∀i ∈ {1, . . . ,m} (see Sect. 6.1 and Fig. 5). The
results are shown in Tables 1 and 2. In the VPMM, the posterior mean of τ 2 is 1.15. The
results indicate that approximately 15% of the variance is attributed to the between effect,
35% to the within effect, 15% to interaction effect, and 34% to the nugget. The spatial range
is 0.52 for the within effect. In Fig. 6, one can confirm that the spatial dependence within
plot is mostly present for direct neighbors. Large-scale dependence is also present, as the



722 I. Marques et al.

Table 1. Posterior mean estimates and equal-sided 90% credible interval for VPMM and non-spatial multi-level
model

Parameters VPMM non-spatial

βelev −0.03[−0.23, 0.14] 0.09 [−0.05, 0.23]
ab 0.15 [0.04, 0.31]
aw 0.35 [0.04, 0.70]
aint 0.15 [0.01, 0.34]
aε 0.34 [0.04, 0. 69]
τ2 1.15 [0.94, 1.44]
τ2b 0.09 [0.02, 0.24]
τ2ε 0.90 [0.78, 1.07]
ρb 0.30 [0.14, 0.58]
ρw 0.52 [0.37, 0.69]
Log score −336.51 −337.79

The last row shows the log score

Table 2. Mean and sample-based CV criteria for the models, where aint = 0 and aw = aint = 0 correspond to
the VPMM with these weights set to zero

Parameters VPMM aint = 0 aw = aint = 0 Non-spatial

CV-MSE mean (new locations) 1.04 1.01 1.02 1.04
CV-MSE sample (new locations) 1.80 1.76 2.23 1.93
CV-MSE mean (new plots) 1.02 1.02 1.01 1.07
CV-MSE sample (new plots) 1.93 2.02 2.00 2.09

New locations and new plots refer to predictions of the type presented in Sects. 4.1 and 4.2, respectively

model leads to a spatial range of 0.30 (approximately one-third of the edge length of the unit
square) for the between effect, which covers most of each respective transect. Moreover, as
expected, the interaction effect plays a relevant role. Since the plots are located along altitude
gradients, the same locations on different plots are thought to have similar inclinations, thus
inducing spatial correlation that can be explained by the space–space interaction.

Concerning the non-spatial multi-level model, the mean variance of the random intercept
on the non-spatialmodel is 0.09 and thus rather small, given that the response is standardized.
The remaining variance is attributed to the nugget. The credible interval (C.I.) of elevation
includes zero in both models. Thus, when interpreting the results, the non-spatial multi-level
model seems rather inappropriate for these data, since most of the behavior is explained by
the nugget.

The evaluation criteria also point in the direction of a better performance of the VPMM.
Indeed, the log score is higher for the VPMM and all CV-MSEs are lower (or equal at one
instance) for the VPMM compared to the non-spatial model. In general, while the VPMM
often does not outperform the three competitors in terms of the mean CV-MSE, significant
differences are visible for the sample version. This might be due to the fact that the within
and interaction effects are marginalized in our model, such that the sample version more
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Figure 6. Data within each of the 30 plots in application. From each observation, we removed the mean of each
corresponding plot .

clearly shows the differences in the two models. As speculated in Sect. 4.2, the interaction
effect is particularly helpful in predictions for new plots.

7. DISCUSSION

In this paper, we develop a computationally feasible multi-level spatial model which
accounts for dependence at multiple spatial scales—the VPMM. The model presented
includes a data-driven approach to determine which (spatial) effects are relevant for a spe-
cific dataset. The results of the simulation study show that we can recover all true parameters
of the VPMM, given a sufficiently large within-plot sample size (shown for n ≥ 25). In the
applications, we also demonstrate how the VPMM fulfills its purpose of improving inter-
pretability of irregular spatial data, by providing separate range of parameters for different
scales.

Future work should consider additional extensions to the VPMM. First and foremost,
the current version of the model assumes the same set of locations within each plot. This
assumption should be extended to flexibly deal with any sampling design in continuous
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space by, for example, using basis functions approaches within plot such as in Lindgren
et al. (2011); Morris et al. (2019). Such an extension would also make predictions at new
plots or different locations within each plot much more flexible. We suggest first steps in
the Supplement 4.

Second, forest inventory data are often collected coarsely over time. Therefore, an exten-
sion of the VPMM toward space-time which further exploits the method in Stegle et al.
(2011) could be investigated. A first tentative outline is presented in the Supplements 2 and
3. Indeed, in general, the technique used to reduce the computational complexity of the
model by reformulating the normal likelihood could also be used in a space-time context.

Concerning the prior structure, it would make sense to extend the joint prior for the
random effects to the fixed effects. There is, however, a need to rethink the concept of
total variance since the amount of variance explained by fixed effects is determined by
their coefficients, not their variances. It is worth noting that, although we present a forestry
example, the resulting methods can be applied to potentially many areas of research where
data of a similar structure are collected (e.g., agriculture).
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