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ABSTRACT
Objective  Cytotoxic agents are the cornerstone of 
treatment for patients with advanced intrahepatic 
cholangiocarcinoma (iCCA), despite heterogeneous 
benefit. We hypothesised that the pretreatment 
molecular profiles of diagnostic biopsies can predict 
patient benefit from chemotherapy and define molecular 
bases of innate chemoresistance.
Design  We identified a cohort of advanced iCCA 
patients with comparable baseline characteristics who 
diverged as extreme outliers on chemotherapy (survival 
<6 m in rapid progressors, RP; survival >23 m in long 
survivors, LS). Diagnostic biopsies were characterised by 
digital pathology, then subjected to whole-transcriptome 
profiling of bulk and geospatially macrodissected tissue 
regions. Spatial transcriptomics of tumour-infiltrating 
myeloid cells was performed using targeted digital 
spatial profiling (GeoMx). Transcriptome signatures 
were evaluated in multiple cohorts of resected cancers. 
Signatures were also characterised using in vitro 
cell lines, in vivo mouse models and single cell RNA-
sequencing data.
Results  Pretreatment transcriptome profiles 
differentiated patients who would become RPs or LSs 
on chemotherapy. Biologically, this signature originated 
from altered tumour-myeloid dynamics, implicating 
tumour-induced immune tolerogenicity with poor 
response to chemotherapy. The central role of the liver 
microenviroment was confrmed by the association of the 
RPLS transcriptome signature with clinical outcome in 
iCCA but not extrahepatic CCA, and in liver metastasis 
from colorectal cancer, but not in the matched primary 
bowel tumours.
Conclusions  The RPLS signature could be a novel 
metric of chemotherapy outcome in iCCA. Further 
development and validation of this transcriptomic 
signature is warranted to develop precision 
chemotherapy strategies in these settings.

INTRODUCTION
Intrahepatic cholangiocarcinoma (iCCA) is a family 
of rare, heterogeneous tumours arising from the 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Cholangiocarcinoma (CCA) patient management 
continues to be dominated by an all-comer 
approach to chemotherapy in first-line despite 
heterogeneous benefit. Our inability to quantify 
the chemosensitivity of patients’ disease remains a 
bottleneck to optimising their clinical management. 
Increasing knowledge of the molecular bases 
behind chemosensitivity can aid development of 
novel therapeutic strategies.

WHAT THIS STUDY ADDS
	⇒ Pretreatment transcriptomic profiles of 
diagnostic biopsies differentiate intrahepatic 
CCA patients who become rapid progressors 
or long survivors on chemotherapy. The RPLS 
signature is associated with benefit from 
cytotoxic agents for patients with primary and 
liver-metastatic tumours, indicating a precision 
chemotherapy strategy may be feasible and 
identifying candidate therapeutic targets to 
boost chemosensitivity.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ Pending further validation, the RPLS signature 
could provide a clinical-grade tool to inform on 
chemotherapy benefit before starting treatment, 
foregoing unnecessary toxicities from a regimen 
of limited therapeutic benefit on a patient-by-
patient basis. In addition, it unveils the biology 
behind different long-term outcomes in patients 
receiving chemotherapy, providing the bases for 
development of novel therapeutics.
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intrahepatic biliary tree. Incidence and mortality rates of iCCA 
appear to be increasing.1 2 Due to asymptomatic development, 
typical presentation without known risk factors and lack of 
early diagnostic biomarkers, more than 50% of patients are 
diagnosed with locally advanced and metastatic disease.3 In this 
setting, systemic chemotherapy with gemcitabine and cisplatin 
remains the standard-of-care in first-line,4 with reported addi-
tive benefit of durvalumab and pembrolizumab for a niche of 
patients.5 6 Overall benefit from FOLFOX in second-line7 and 
capecitabine in the adjuvant setting8 reinforce chemotherapy 
as central to patients’ management throughout their disease 
trajectory. However, benefit from cytotoxic agents is heteroge-
neous. In the ABC-02 trial, 11% of biliary tract cancer (BTC) 
patients were alive at 2 years following enrolment, greater than 
double the median overall survival (OS).4 9 These long survivors 
(LSs) are contrasted with data indicating that chemotherapy 
fails to achieve disease control in 25%–28% of advanced BTC 
patients.4 10 Understanding and predicting benefit of chemo-
therapy remains a critical unmet need for patients with iCCA, 
especially as novel targeted therapies become available in second-
line for specific tumour genotypes11 12 and might be superior in 
first-line for patients unlikely to benefit from chemotherapy.13

Precision approaches improve the outcome of patients with 
iCCA,14 but are currently limited to targeted therapies. With 
an all-comer approach for first-line chemotherapy, it remains 
unclear which patients will not benefit from this regimen, with 
implications for optimal treatment and quality of life. Potentially 
actionable genomic alterations occur in up to 52% of iCCA,15 but 
corresponding therapies are only available following progression 
on chemotherapy, a rate-limiting step as many patients deterio-
rate as a result of disease progression. Unlike targeted therapies 
with clear DNA-based indications in single genes, the molecular 
basis of innate sensitivity to chemotherapy remains unclear. DNA 
profiling of tumours is restricted to detecting genetic alterations 
in tumour cells, omitting the important impact of non-genetic 
tumour alterations and non-genetic microenvironment alter-
ations on treatment outcome.16 Transcriptome profiling captures 
a more holistic overview of the tumour biology (cell composition 
and behaviour) and is gaining clinical traction due to successes 
in matching patients to novel therapies and predicting their 
outcomes.17

We have integrated transcriptomic profiling of bulk and 
geospatially macrodissected diagnostic biopsies with digital 
pathology and digital spatial profiling in a cohort of clinically 
matched iCCA patients with extreme divergent outcomes 
on chemotherapy. This led to identification of the RPLS gene 
expression signature as a candidate metric of poor clinical 
outcome and innate chemoresistance. Modelling the RPLS signa-
ture in cell lines, single cell RNA-sequencing data, animal models 
and bulk transcriptomic data from iCCA implicated tumour-
induced immune tolerogenicity as a defining hallmark of rapid 
progression on chemotherapy, as well as establishing a robust 
and feasible tool to validate for the development of precision 
chemotherapy in this rare cancer type.

MATERIALS AND METHODS
Comprehensive information on patients and methods are 
provided online in online supplemental information.

RESULTS
The RPLS cohort
Survival on chemotherapy is heterogeneous among patients 
with iCCA, including those with comparable clinical features 

at diagnosis.9 18 To identify pretreatment molecular features 
associated with chemotherapeutic outcome that are currently 
overlooked in the clinic, we identified a cohort of patients 
with advanced iCCA who diverged as rapid progressors (RP; 
n=7) or LS (LS; n=6) on chemotherapy. All RP patients 
survived less than 6 months (half the median OS reported in the 
ABC-02 trial4), whereas all LS patients survived more than 23 
months (double the median OS reported in the ABC-02 trial) 
(p=0.0003; figure 1A). Critically, these patients did not differ in 
baseline clinical features established during diagnostic workup 
(figure 1B, online supplemental table S1). No differences were 
found in haematological or systemic biochemical features, with 
the exception of higher platelets (p=0.03) and alkaline phos-
phatase (ALP) levels (p=0.01) in RP patients. All patients were 
treated with platinum-combination chemotherapy in first line, 
leading to greater radiological responses in LS patients (p=0.04; 
figure 1C). Of note, the response rate in the LS cohort was 66%, 
more than double compared with an unselected population, 
suggesting that the differences in the long-term control of the 
disease are not only related to slow growing tumours. Overall, 
LS patients received a greater number of lines of chemotherapy 
(p=0.002; online supplemental figure S1A,B). Collectively, the 
RPLS cohort epitomises extreme divergent outcomes on chemo-
therapy in an otherwise homogeneous patient population. As 
such, despite being of small size, we hypothesised that this cohort 
provides a prime setting, in which to apply molecular profiling 
to understand benefit from standard-of-care chemotherapy, as 
well as potentially overall prognosis.

Transcriptomic profiles of pretreatment biopsies differentiate 
RPs and LSs
We retrieved the pretreatment, diagnostic liver biopsies for 
patients in the RPLS cohort and performed digital histopatho-
logical evaluation (figure 2A). Pixel classification of the entire 
biopsy tissues showed no differences between RP and LS biopsies 
in tumorous (p=0.90), epithelial (p=0.39) or stromal (p=0.39) 
content. Cell detection and classification analysis also revealed 
no differences in the total number of epithelial (p=0.43) or 
tumour cells (p=0.39). However, RP biopsies had higher stromal 
(p=0.03) and lower immune cell (p=0.03) content, suggesting 
an association between microenvironment composition and 
chemotherapy outcome, consistently with previous studies.19 20

Next, we performed whole-transcriptome profiling of 
the bulk biopsies using Tempo-seq, a sequencing technology 
compatible with the limited and fragmented RNA retrievable 
from archival FFPE biopsies. In total, 504 genes were differen-
tially expressed between RP and LS biopsies (fold-change≥2, 
p<0.05), including 310 genes higher expressed in LS (‘LS-high’) 
and 194 genes higher expressed in RP (‘RP-high’) tissues with 
distinct biological functions (figure 2B,C, online supplemental 
table S2). Expression of RP-high and LS-high genes anticor-
related in the biopsies (Spearman’s r=−0.92, p=9.4×10−6), 
suggesting opposing biological functions that are associated 
with chemotherapy outcome (online supplemental figure 
S2A). Therefore, we derived a formula using the RPLS signa-
ture genes ([log2(ΣRP-high genes)−log2(ΣLS-high genes)]z-score), 
with resulting RPLS scores being higher in RP compared with 
LS biopsies (p=8.3×10−6; figure  2D). As such, we hypothe-
sised that the RPLS signature might represent a metric of the 
innate chemoresistance potential of iCCA. Inclusion of pretreat-
ment systemic features that differed between patient subgroups 
(platelets, ALP; figure  2B) or an optimised systemic signature 
(defined by AIC backwards elimination using all haematological 
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and systemic features; figure 2C) did not improve the predictive 
performance of the RPLS score in multivariable analysis (online 
supplemental figure S2B). This further supports the utility of the 
RPLS score during diagnostic workup of patients with advanced 
iCCA. Expression of genes involved in gemcitabine uptake/
metabolism and previous transcriptomic predictors of chemo-
sensitivity in other cancers failed to differentiate RP and LS biop-
sies (figure 2D). Collectively, these observations argue that the 
pretreatment molecular features associated with chemotherapy 
outcome are distinct in iCCA compared with other cancers, 
implicating disease and/or context (liver) specificity with treat-
ment response.

Geospatially distinct biopsy regions harbour unique 
transcriptional programmes that differentiate RP and LS 
patients
Bulk biopsy transcriptomes capture global signalling but lose 
biological resolution of specific histopathological regions within 
the tissues. To address this limitation, we performed geospatial 
macrodissection followed by whole-transcriptome profiling 
(Tempo-seq) of tumour cores (TCs; 11 LS, 9 RP), tumour 
stroma (TSs; 5 LS, 6 RP), invasive fronts (IFs; 3 LS, 3 RP) and 
non-malignant regions (NRs; 4 LS, 4 RP) from the same RPLS 
biopsies (figure 2E, online supplemental figure S3). Intrasample 
transcriptomic heterogeneity and phylotranscriptomic anal-
yses did not differentiate RP and LS biopsies, indicating that 
intrasample heterogeneity was not associated with outcomes 
(online supplemental figure S4A,B).

Intertumour heterogeneity is dictated by differential gene and 
pathway expression, modulated by cell-intrinsic transcriptional 
programmes. Therefore, we identified differentially expressed 
genes and pathways for each of the macrodissected regions, 
as well as predicting transcription factor (TF) activities. No 
significant differences were found for IFs, so these samples are 
excluded from further discussion.

In TCs, 639 genes (388 LS-high, 251 RP-high) were differ-
entially expressed between LS and RP biopsies (figure 2F). TF 
activities of PRDM14, GATA2 and TP63 were higher in RP 
tissues, potentially regulating 17%, 2% and 2% of the RP-high 
genes, respectively. In LS biopsies, there was increased activity of 
SREBF1 and ZNF263, each potentially controlling expression 
of 1% of the LS-high genes. Within these tumour cell-enriched 
regions, Notch and Wnt pathways were elevated in RP patients, 
both developmental programmes associated with poor prognosis 
in iCCA with incremental potential for druggability.21 22

In TSs, LS and RP biopsies differed in expression of 704 genes 
(637 LS-high, 67 RP-high) (online supplemental figure S5A). 
CDX2 and KLF4 were more active in RP TSs, potentially regu-
lating 9% and 1.5% of the RP-high genes, respectively. ZNF263 
was more active in LS TSs and may control expression of approx-
imately 4% of the LS-high genes. Notch signalling was higher 
in RP TSs, whereas metabolic processes and MYC targets were 
higher expressed in LS TS regions. Notably, previously reported 
signatures of cancer-associated fibroblasts (CAFs) in iCCA23 did 
not differ between TSs in our cohort (online supplemental figure 
S5B).

Figure 1  Clinical characteristics and chemotherapy response of patients with intrahepatic cholangiocarcinoma in the RPLS cohort. (A) Kaplan-Meier 
survival curves with log-rank statistics for overall survivalin the RPLS cohort. (B) Barplot of statistical differences in baseline characteristics between 
rapid progressor (RP) and long survivor (LS) patients. (C) Representative baseline and best response CT images for an RP and an LS patient. Barplot 
of best radiological response (Response Evaluation Criteria in Solid Tumours (RECIST)1; Welch t-test). Disease was not measurable for one RP patient, 
while three RP patients had clinical progression without radiological confirmation (RP-1/RP-3/RP-4/RP-5). ALAN, actual neutrophil count; lymphocyte-
monocyetesratio; neutrophil-lymphocytesratio; albumin.
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Figure 2  Histopathological and transcriptomic profiles of diagnostic biopsies from the RPLS cohort. (A) Representative H&E images (scale bars: 
2 mm—top; 200 µm—bottom), characterisation of the epithelial component of diagnostic biopsies in each region of interest, and differential 
composition in tumourous, stromal and immune cells following cell segmentation (LS: n=6; RP: n=7; Welch t-test). (B) Heatmap of 504 differentially 
expressed genes (≥2 fold change, p<0.05; Wilcoxon) between LS and RP biopsies. (C) KEGG pathway over-representation analysis of LS-high and 
RP-high genes using EnrichmentMap. Overlapping pathways are connected by lines and annotated under a common theme using AutoAnnotate. 
KEGG: Kyoto Encyclopaedia of Genes and Genomes. (D) Heatmap and differential expression analysis of the RPLS score and previously published 
metrics of gemcitabine sensitivity in the RPLS cohort. P values were derived by Wilcoxon test. (E) Representative H&E stain of a diagnostic biopsy, 
indicating histological regions targeted by macrodissection. (F) Differentially expressed genes (≥2 fold change, p<0.05; Wilcoxon), differentially active 
transcription factors (p<0.05, Wilcoxon test; DoRothEA), differentially expressed pathways (p<0.05, Wilcoxon test; ssGSEA of KEGG and Hallmarks 
gene lists), and differentially active cytokines (p<0.05, Wilcoxon test; CytoSig) between RP and LS tumour cores (TCs; 11 LS, 9 RP). (G) Differential 
expression of the bulk tissue RPLS signature in TCs, tumour stroma (TSs; 5 LS, 6 RP), invasive fronts (IFs; 3 LS, 3 RP) and non-malignant regions (NRs; 4 
LS, 4 RP) from RP and LS biopsies (Wilcoxon test). LS, long survivor; RP, rapid progressor.
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In NRs, the expression of 269 genes (251 LS-high, 45 
RP-high) differed between LS and RP biopsies (online supple-
mental figure S5C). Activities of CEBPB and E2F4 were elevated 
in RP NRs, potentially regulating 4% and 20% of the RP-high 
genes, respectively. PAX6 was more active in LS NRs and may 
control expression of 6% of LS-high genes. Diverse processes 
were more highly expressed in RP (fructose and mannose metab-
olism, G2M checkpoint, MTORC1 signalling) and LS (cytokine 
receptor interactions, haematopoietic cell lineage) NRs, the 
latter suggesting more widespread immune activity in the liver 
of LS patients.

Approximately one in four biopsies fail molecular profiling 
in BTCs due to low tumour cellularity.24 Evaluation of the 
RPLS signature (derived from bulk biopsy) in macrodissected 
biopsy regions revealed RPLS scores to be elevated in both TCs 
(p=5.4×10−4) and TSs (p=8.7×10−3) from RP patients, but not 
in IFs (p=0.1) or NRs (p=0.2) (figure 2G). These data suggest 
that the RPLS signature is tumour-specific and may be suffi-
ciently assessed in stroma-rich biopsies containing relatively few 
tumour cells, a critical limitation of DNA-based biopsy profiling 
in the clinic today.

The RPLS signature originates from tumour-intrinsic 
programmes associated with innate immune dysfunction
The RPLS signature can originate from differences in cell compo-
sition and/or behaviour. To investigate this, we pursued a digital 
cytometry approach (CIBERSORTx) to infer the cellular origin(s) 
of RPLS signature genes in our biopsies. Among assignable genes, 
the RPLS signature predominantly originated from tumour cells, 
followed by tumour-associated myeloid cells, B cells and CAFs 
(figure 3A). RP-high genes originating from tumour cells were 
over-represented in immune signalling pathways (IL-17, NFkB, 
TNF) and drug metabolism (figure 3B), highlighting two plau-
sible mechanisms (impaired immunogenic cell death, enhanced 
metabolic inactivation) undermining chemotherapy efficacy.16 25

As these immune pathways typically require heterotypic 
signalling between tumour and immune cells, we hypothesised 
that defective tumour-innate immune dynamics are a defining 
characteristic of RP tumours. Consistent with this, immune infil-
trates significantly differed between LS and RP TCs (figure 3C). 
Cytolytic scores were higher in LS TCs (p=0.04), indicating 
proficient anti-tumour cytotoxicity in these biopsies (figure 3D). 
Cytokine activity profiles also differed between LS and RP 
TCs (figure  3E). The interferon responsible for activation of 
antitumour immunity, interferon-γ (IFNG; p=0.02), and the 
proapoptotic cytokine, TNF-related apoptosis-inducing ligand 
(TRAIL; p=0.004), were both more active in LS TCs, indi-
cating effective cytotoxicity and cell death. In contrast, granu-
locyte colony-stimulating factor (GSCF), a promyelopoiesis and 
anti-inflammatory cytokine associated with myeloid-derived 
suppressor cells,26 had increased activity in RP TCs (p<0.05), 
supporting an immunosuppressive phenotype in these tumours.

To experimentally verify immune cell dysfunction, we 
performed digital spatial profiling (DSP, GeoMx) of tumour-
infiltrating myeloid cells (CD68) using a targeted immunobi-
ology panel (78 genes). Myeloid cells were chosen as they were 
the second most dominant contributor to the RPLS signature, 
pDCs were enriched in RP TCs and myeloid cells can promote 
chemosensitivity independent of adaptive immune cells.27 
In LS TCs, myeloid cells expressed high levels of cytotoxic 
effectors (BCL2, GZMB, NKG7, TNF) and cytokines (CCL5, 
CXCR6, IL12B, IL15, TNF) (figure 3F). RP tumour-infiltrating 
myeloid cells expressed high levels of molecules associated with 

immunosuppression (CD58, CD80, CD163), as well as monocyte 
activation and dendritic cell maturation (CD40). Consistent with 
failed immunogenic clearance, Ki-67 staining indicated tumour 
cells were proliferating faster in RP TCs (p=0.02; figure 3G). 
Altogether, these data implicate pretreatment antitumour immu-
nity as a characteristic required for chemotherapy benefit.

Myeloid cells are highly diverse, so we analysed myeloid-
specific RPLS scores (13 RPLS signature genes with predicted 
myeloid origin by digital cytometry) in scRNA-seq data gener-
ated from immune cells (CD45+) of 3 iCCA patients under-
going tumour resection.28 Under adjuvant capecitabine, one 
patient exhibited short disease-free survival (9 months; S-DFS) 
and two others exhibited long disease-free survival (L-DFS; ≥24 
months) (figure 3H). Among the eight identified cell subpopula-
tions, CD14 monocytes were more abundant in the L-DFS cases 
(p=0.03). However, evaluation of myeloid-specific RPLS scores 
identified increased signature expression across diverse myeloid 
cell types in S-DFS (CD140+ monocytes, ID3+ macrophages, 
MARCO+ macrophages, TREM2+ macrophages, CD1C+ cDC2, 
lymphoid-like cells). This implicates widespread behavioural 
changes of diverse myeloid subpopulations with diminished 
chemotherapy outcome.

RP-like and LS-like iCCA are dependent on unique gene 
networks for survival in vitro
In patient biopsies, the dominant origin of the RPLS signature is 
the tumour cells. To determine whether immortalised iCCA cell 
lines recapitulate aspects of these tumour-intrinsic programmes, 
we integrated the transcriptome profiles of 25 iCCA cell lines 
with transcriptome data from our biopsy TCs (online supple-
mental figure S7A), annotating 52% (13/25) of cell lines as 
RP-like and the remainder as LS-like (online supplemental figure 
S7B). RP-like cells had decreased in vitro gemcitabine sensi-
tivity (p=0.02; Figure S7C), trended towards association with 
KRAS mutations (p=0.07) (online supplemental figure S7D), 
and differentially expressed pathways (KRAS and P53 pathways, 
glycolysis) compared with LS-like cells (online supplemental 
figure S7E). These observations suggest that immortalised iCCA 
cell lines can provide minimalistic avatars to study some tumour-
intrinsic aspects of RP-like and LS-like patient phenotypes in vitro. 
As chemoresistance is associated with distinct biology, RP-like 
phenotypes should also be associated with fitness tradeoffs, 
specifically genes which become more or less important for 
tumour cell survival. Using genome-wide CRISPR inactivation 
data (DepMap), we identified differential gene dependencies 
(Wilcoxon p<0.05) between RP-likeand LS-like iCCA that fell 
into common biological networks (online supplemental table S3). 
RP-like iCCA was more dependent on 48 network-based genes 
for survival (Notch, p53 and TGF-β signalling; online supple-
mental figure S7F), whereas LS-like iCCA was more dependent 
on 62 network-based genes (Hedgehog, Ras signalling; online 
supplemental figure S7G). Approximately 44% (21/48) and 26% 
(16/62) of these genes are predicted to be potentially druggable 
for RP-like and LS-like phenotypes, respectively (online supple-
mental table S3). These subgroup-specific dependencies indicate 
that considerable drug development opportunities remain for 
patients with iCCA, including those with RP-like phenotypes on 
standard-of-care chemotherapy.

RP-like tumour cells engage immunosuppressive 
microenvironments via myeloid and T cell communication
Although in vitro models could partially recapitulate RPLS-
associated oncogenic programmes, they lack interacting 
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microenvironmental cells that are pronouncedly reprogrammed 
between RP and LS patient biopsies. Using two scRNA-seq iCCA 
datasets, we annotated patient tumours as RP-like or LS-like 
(figure 4A; Methods). Tumour cells mirrored pathway expres-
sion as observed in the immortalised cell lines, including elevated 
cytosolic DNA sensing, glycolysis, gluconeogenesis, and P53 
pathways in RP-like tumours (figure  4B, online supplemental 
table S4). RP-like and LS-like tumour cells were also character-
ised by unique cytokine and TF activity profiles (figure 4C, online 
supplemental table S5), highlighting stable cell behavioural states. 

Microenvironment cells (CAFs, myeloid, T cells) also exhibited 
unique cytokine and TF activity profiles that consistently differed 
between RP-like and LS-like tumours (figure 4C, online supple-
mental table S5). Metabolic flux modelling identified increased 
methionine and losartan utilisation by RP-like myeloid cells, 
metabolites that are required for anti-tumour immunity29 30 but 
appear to be otherwise restricted by the myeloid compartment, 
potentially indicating metabolic competition as a contributory 
factor to immune dysfunction (online supplemental figure S8). 
To pinpoint tumour–microenvironment interactions that support 

Figure 3  Cellular origins and tumour-immune dynamics associated with the RPLS signature. (A) Barplot of cell type-associations of RPLS signature 
genes. Genes were only assigned to cell types if their associations were supported by two independent single cell RNA-sequencing datasets. 
(B) KEGG pathway over-representation analysis of tumour-origin RPLS signature genes. (C) Differential enrichment (Wilcoxon test) of immune cell 
type signatures in rapid progressor (RP) and long survivor (LS) tumour cores (TCs) determined by cellular deconvolution (xCell). (D) Differential 
cytolytic scores (Wilcoxon test) between RP and LS TCs. (E) Differential cytokine activities (Wilcoxon test) between RP and LS TCs determined by 
CytoSig. (F) Representative multiplex immunofluorescence images of TCs undergoing RNA extraction from myeloid (CD68+) myeloid cells using the 
Digital Spatial Profiling (GeoMx) platform with regions of interest identifed. Volcano plot of differentially expressed genes (Immune Pathways Panel 
(NanoString) plus 5 custom targets derived from digital cytometry) in tumour-infiltrating myeloid cells from LS (n=6) and RP (n=6) TCs. P values were 
computed by Wilcoxon test. (G) Representative Ki-67 staining in an LS and RP TCs, including differential proliferation analysis (Welch t-test). (H) tSNE 
plot of myeloid subpopulations identified in immune-enriched single cell RNA-sequencing data from three resected iCCA. Frequency barplot (p values 
from χ2 test) comparing the abundance of myeloid subpopulations in patients without (long disease-free survival, L-DFS) and with (short disease-free 
survival, S-DFS) recurrence under adjuvant treatment with capecitabine. Differential expression (Wilcoxon test) of the myeloid-origin RPLS signature in 
myeloid subpopulations. iCCA, intrahepatic cholangiocarcinoma.
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Figure 4  Modelling the RPLS signature in iCCA single cell RNA-sequencing data. (A) Annotation of tumours as long survivor (LS)-iike or rapid 
progressor (RP)-like based on tumour cell expression of the tumour-origin RPLS signature (ESCAPE tool, p values derived by Wilcoxon test). 
(B) Differentially expressed pathways and processes (ESCAPE with KEGG and Hallmarks gene lists) between LS-like and RP-like tumour cells. (C) Cell 
type-specific transcription factor activities (DoRothEA), cytokine activities (CytoSig) and ligand:receptor interactions (CellChat) unique to RP-like 
tumours in GSE125449 and GSE151530, including the potential and current druggability of tumour surface receptors. (D) Differential expression of 
myeloid cell type and functional signatures in LS-like and RP-like myeloid cells (ESCAPE, Wilcoxon test). (E) T cell subtype annotation using ProjectTILs 
(p values from Fisher’s exact test). (F) RP-specific ligand-receptor interactions tumours in GSE125449 and GSE151530 involving immunomodulatory 
targets (highlighted in bold; defined by CRI iAtlas). iCCA, intrahepatic cholangiocarcinoma.
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these altered behavioural states, we identified ligand-receptor 
(LR) interactons (CellChat) unique to RP-like and LS-like iCCA. 
Whereas no LR interactions were unique to and reproducible 
for LS-like iCCA, RP-like iCCAs were characterised by many 
unique LR interactions: tumour-to-tumour (n=632), tumour-
to-myeloid (n=466), myeloid-to-tumour (n=644), tumour-
to-T cell (n=430), T cell-to-tumour (n=634) (figure 4C; online 
supplemental table S6). No unique interactions were found 
for CAFs, but this may be due to their under-representation in 
non-enriched scRNA-seq datasets. Receptors expressed on the 
surface of tumour cells have historically provided impactful ther-
apeutic targets. Focusing on the RP-like tumour ‘surfaceome’ 
with evidence of LR interactions, roughly 92% (176/192) are 
predicted to be potentially druggable, whereas 23% (45/192) are 
currently actionable with clinically approved compounds (online 
supplemental table S7). These agents include IL-6R monoclonal 
antibodies which have been shown to improve chemotherapy 
response in a subcutaneous transplant model of iCCA,31 as well 
as several FGFR inhibitors already approved for second-line use 
in iCCA.32

Variation in microenvironment behavioural states might 
reflect differences in abundance of cell subpopulations. RP-like 
myeloid cells had higher signature expression for dendritic cells 
(figure  4D), including plasmocytoid dendritic cells that were 
increased in RP TCs (figure 3C), as well as inflammatory and 
immune tolerogenic subtypes of liver-associated macrophages. 
RP-like myeloid cells were defined by higher antigen expression 
scores (including classical MHC presentation), but also co-oc-
curing expression of immunostimulator (including CD275 and 
IL6) and immunoinhibitor (including CSF1R, CTLA4, IDO1, 
LAG3, PDCD1) signatures (figure  4D). Subclassification of T 
cells into their functional ontogenies identified more regulatory 
T (Tregs) and T follicular helper cells in RP-like tumours, and a 
reduced amount of early active CD8 T cells (figure 4E). Collec-
tively, these findings implicate tumour-induced immune tolero-
genicity as a hallmark of RP phenotypes, defined by the activity 
of immunosuppressive cytokines (especially IL1033), antigen 
presentation in the presence of diverse immunoinhibitors and 
accumulation of regulatory T cells.

Combining chemotherapy with the PD-L1 inhibitor, 
durvalumab or the PD-1 inhibitor, pembrolizumab, improved OS 
of patients with BTC in the TOPAZ-1 trial5 and KEYNOTE-966 
trial,6 respectively. Combination chemotherapy-immunotherapy 
represents the new standard-of-care, although mechanistic 
explanations and biomarkers for patient selection are lacking. 
By investigating LR interactions involving immunomodulatory 
targets (CRI-iAtlas), we identified interactions between CD274 
(PD-L1), its receptor PDCD1 (PD-1) and its costimulator CD80 
(B7-1) exclusively in RP-like tumours (figure 4F). These obser-
vations suggest that the immune escape mechanisms employed 
by RP-like tumours might render them susceptible to checkpoint 
inhibitors compared with LS-like tumours. Other RP-specific 
targets for potential immunomodulatory inhibitors include 
immunosuppressive cytokines (IL10), ligands (PDCD1LG2, 
TGFB1, VEGFA, VEGFB) and receptors (EDNRB).

The RPLS signature is prognostic and pathobiologically 
distinct in early-stage iCCA
Although the RPLS signature was identified in advanced iCCA 
biopsies, its origin in tumour-immune interactions suggests that 
the determinants of chemotherapy response might be established 
early during cholangiocarcinogenesis. Therefore, we investigated 
the RPLS signature in 637 fresh-frozen iCCA.19 34–37 As with our 

biopsy cohort of advanced patients, LS-high and RP-high genes 
were anticorrelated in all resected cohorts, emphasising the 
reproducibility of the observed inter-network signalling (online 
supplemental figure S9). High RPLS scores (above median) 
were consistently associated with decreased 5-year survival in 
all cohorts (figure 5A). High RPLS scores were also associated 
with inferior survival in an FFPE cohort of 119 iCCA,38 but not 
in 219 extrahepatic CCA39 (online supplemental figure S10). As 
such, the RPLS signature appears to be prognostic exclusively in 
iCCA, further suggesting the importance of the liver microenvi-
ronment in the RPLS signature. Data on adjuvant or subsequent 
palliative therapy are not available and therefore association 
with chemoresistance cannot be deducted.

RPLS scores were lower in tumours harbouring IDH1 or IDH2 
mutations (all 3 cohorts with data available), as well as FGFR2 
fusions (2/3 cohorts) (figure  5B). Conversely, tumours with 
KRAS or TP53 mutations had higher RPLS scores in all cohorts, 
indicative of a higher baseline level of innate chemoresistance. 
Evaluation of 17 mouse models of iCCA revealed RPLS scores 
to become elevated in 24% (4/17) of model tumours relative to 
their controls, among which three involved insults in Kras and/or 
Tp53 (figure 5C). RPLS scores were also increased in intraductal 
papillary neoplasm of the bile duct relative to ductular prolif-
eration and normal tissues in cholangiocyte-specific KrasG12D-
expressing mice (online supplemental figure S11A), suggesting 
that RPLS-associated chemoresistance is established early during 
cholangiocarcinogenesis. Combining RPLS scores with associ-
ated genomic alterations in multivariable models revealed the 
RPLS signature to consistently provide genotype-indepedent 
prognostic information across cohorts (figure 5D).

Clinically, RPLS scores were consistently higher in iCCA with 
liver fluke infection, advanced grade, perineural involvement and 
portal tract spreading (figure 5E; online supplemental table S8). 
RPLS scores were higher in tumours with advanced stage and 
lymph node invasion (3/4 cohorts with data available) and posi-
tively correlated with serum albumin, CA19-9, CEA and GGT 
(figure 5E). Higher RPLS scores were associated with large duct-
type iCCA in a small reseceted cohort (p=0.007; GSE107943; 
online supplemental figure S11B), consistent with our mutation 
observations (KRAS and TP53) (figure 5B) and previous associa-
tions between morphology and chemotherapy outcome.40 In the 
Dong cohort where transcriptome and clinicopathological data 
are present for all patients, the RPLS signature is an indepen-
dent prognostic variable after correcting for its clinicopatholog-
ical correlates (online supplemental figure S11C), highlighting 
the potential utility of this metric in the resected setting where 
surgical and post-surgical specimen evaluation is possible (unlike 
the advanced setting).

Transcriptomically, the RPLS signature was associated with 
expression of metabolic pathways (glycolysis and gluconeogen-
esis, pentose phosphate pathway, phosphatidylinositol signal-
ling, citrate signalling) (figure 5F). The RPLS signature was also 
reproducibly associated with key TF activities, immune cell infil-
trates and cytokine activities. Therefore, RPLS-associated onco-
genic programmes exhibit robust pathobiological associations 
and reflect a significant source of intertumour heterogeneity.

The RPLS signature captures a liver-specific oncogenic 
programme and predicts chemotherapy outcome in liver-
metastatic colorectal cancer
Our observations that the RPLS signature is prognostic in iCCA 
but not eCCA indicate that the liver microenvironment plays an 
important role. As we found the RPLS signature is not prognostic 
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Figure 5  Prognostic, clinicogenomic and transcriptomic associations of the RPLS signature in 653 resected iCCA. (A) Kaplan-Meier survival 
curves with log-rank statistics of resected iCCA stratified into high (>median) or low (<median) RPLS score groups across five resected cohorts. 
(B) Differential expression (Wilcoxon test) of RPLS scores between iCCA stratified by genotype across three cohorts where RNA-profiling and 
DNA-profiling data are available. (C) Differential expression (Welch t-test) of RPLS scores between mouse models of iCCA and their study-specific 
controls. Cell type-specific induction of genetic insults are indicated as CK19 (biliary/progenitor cell) or hep (hepatocyte). ∆: deletion; (D) Forest plot 
of Cox proportional hazards statistics derived from multivariable analysis of RPLS scores and tumour genotypes. (E) Associations of RPLS scores 
with clinicopathological variables. γ-GT: γ-glutamyltransferase; CA 19–9: carbohydrate antigen 19–9; CEA: carcinoembryonic antigen. (E) Forest plot 
depicting ORs and p values from multivariable analysis of RPLS scores, tumour stages and genotypes across three resected cohorts. (F) Correlation plot 
of RPLS score with core signalling pathways (KEGG), biosynthesis and metabolic processes (KEGG), transcription factor activity (DoRothEA), immune 
cell infiltrate (xCell) and cytokine activity (CytoSig) across five resected cohorts. Spearman’s r is only indicated for significantly correlated features 
(FDR p<0.05). BDL, bile duct ligation; DDC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine; DEN, diethylnitrosamine; FDR, false discovery rate; iCCA, 
intrahepatic cholangiocarcinoma; mut, mutant; ns, not significant; wt, wild-type.
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in HCC (online supplemental figure S12) which is treated using 
targeted therapy-based regimens, we hypothesised that the RPLS 
signature is predictive for primary or metastatic liver tumours 
treated with chemotherapy. Accordingly, we investigated the RPLS 
signature in two basket cohorts of metastatic cancers: MET500 
(n=484) and POG-570 (n=438).41 42 Consistent with the biolog-
ical functions of the liver, liver metastases had higher expression of 
metabolic processes compared with other metastases in both cohorts 
(figure 6A, online supplemental table S9). These included glycolysis 
and gluconeogenesis, processes associated with increasing RPLS 
scores across iCCA models (advanced and resected patient tissues, 
immortalised cell lines, scRNA-seq). However, liver metastases 
were also remarkably depleted in diverse immune cells and immune 
processes compared with other metastatic sites, and associated with 
unique cytokine and TF activities, including a negative associa-
tion with TRAIL activity as observed in iCCA biopsies (figure 6B). 

Exclusively in the liver, RPLS scores negatively correlated with 
microenvironment signalling, highlighting the extensive immuno-
suppressive capacity of the liver in coordination with specific onco-
genic programmes.

Finally, we demonstrated the predictive utility of the RPLS 
signature in cancers with liver metastases undergoing chemo-
therapy. To evaluate this, we applied the RPLS signature to 
primary tumours and resected liver metastases from colorectal 
cancer patients receiving preoperative and postoperative chemo-
therapy with or without cetuximab in the phase III New EPOC 
trial.43 In the total cohort composed of both treatment arms, 
RPLS scores were not associated with progression-free survival 
(PFS; p=0.49) or OS (OS; p=0.7) when evaluated in primary 
tumours (figure 6C,D). However, high RPLS scores were asso-
ciated with inferior PFS (p=0.007) and OS (p=0.003) when 
measured in liver metastases. Liver metastasis RPLS scores were 

Figure 6  Pathobiological associations and predictive potential of the RPLS signature in liver metastases. (A) Differential expression of pathways and 
processes (ssGSEA with KEGG and Hallmarks gene lists) between liver metastases and other metastases in MET500 (n=490) and POG570 (n=438) 
cohorts (p values derived from Wilcoxon test). (B) Biological processes uniquely associated with the RPLS signature in liver metastases. (C, D) Kaplan-
Meier survival curves with log-rank statistics of primary colorectal cancer tumours (n=204) and liver metastases (n=145) stratified by RPLS score 
(above and below median) for (C) progression-free survival and (D) overall survival in the New EPOC trial. (E–F) Univariable and multivariable Cox 
proportional hazards analysis of RPLS scores and other significant clinicogenomic variables for (E) progression-free and (F) overall survival. ns, not 
significant.
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predictive of PFS (HR 1.4, 95% CI 1.2 to 1.7; online supple-
mental table S10) and OS (HR 1.6, 95% CI 1.3 to 2.2; online 
supplemental table S11) in univariable analyses in the New 
EPOC trial (figure 6E). These RPLS scores remained indepen-
dent predictors of PFS (HR 1.4, 95% CI 1.2 to 1.8) and OS (HR 
1.7, 95% CI 1.2 to 2.4) after adjusting for clinicopathologic and 
genomic predictors in multivariable analyses (figure 6F). Based 
on the robust predictive performance of the RPLS signature in 
primary (iCCA) and metastatic (colorectal) liver tumours treated 
with chemotherapy, continued clinical evaluation of this metric 
is warranted.

DISCUSSION
Heterogeneous benefit from chemotherapy challenges the para-
digm of this universal standard-of-care for patients with iCCA. 
In this study, we aimed to identify the biology associated with 
different clinical outcomes in iCCA undergoing chemotherapy 
(figure  7). Based on our data, we hypothesise that multilay-
ered mechanisms contribute to RPLS-associated chemoresis-
tance, involving tumour-intrinsic processes, tumour-myeloid 
interactions and tumour-T cell interactions. Decreased in vitro 
sensitivity of RP-like cell lines likely originates from meta-
bolic reprogramming such as increased glycolysis which has 
been shown to confer chemoresistance to cytotoxic agents in 
diverse cancers.44 45 In immunosuppressive microenvironments, 
macrophages can further limit the antitumour effects of chemo-
therapy, by metabolically inactivating gemcitabine prior to drug 
uptake by cancer cells27 and actively decreasing the duration 
of mitotic arrest of tumour cells following induction of DNA 
damage.46 Copresentation of tumour antigens alongside immu-
nosuppressive molecules by myeloid cells promotes regula-
tory T cell expansion and tumour tolerogenicity, culminating 
in a steady state of immunological inertia. In this context, the 

unique immunoregulatory capabilities of the liver microenviron-
ment appear to be critical, replete with atypical dendritic cells 
that normally function to suppress systemic immune responses 
arising from continuous exposure to antigens and gut microbial 
byproducts. Such systemic regulation of immunity by the liver 
may explain why only RPLS scores from liver tumours (primary 
and metastatic) are associated with chemotherapy outcome in 
our studies. A similar phenomenon has been reported for immu-
notherapy, in which liver metastases uniquely blunt checkpoint 
inhibitor response through hepatic macrophage-mediated elim-
ination of CD8 T cells.47 A critical question emerging is why 
only certain tumours in the liver can trigger high RPLS scores 
leading to diminished chemotherapy response. One common-
ality across in vitro and ex vivo analyses was high glycolytic 
pathway expression in models with high RPLS scores. Increased 
glucose consumption and lactic acid production are associated 
with immunosuppressive microenvironments,48 and myeloid 
cells are the highest cellular consumers of glucose,49 potentially 
establishing a metabolically initiated and competitive tumour 
niche.

Advancing the RPLS signature into a clinical grade test will 
require further optimisation in large retrospective cohorts. This 
will include statistically optimising the signature into a smaller 
gene panel with a weighted formula and establishing reference 
value ranges for interpretation of individual patient risk (radio-
logical response, PFS, OS) if treated with chemotherapy. Pending 
continued validation, clinical implementation of the optimised 
RPLS signature could prioritise patients for neoadjuvant chemo-
therapy (high-risk resectable or borderline resectable) and support 
earlier tumour molecular profiling in predicted RP patients to 
identify alternative first-line treatment strategies. For predicted 
RP patients currently lacking alternative treatment strategies, 
further therapeutic evaluation of RP-associated biology (Notch, 
TGF-β, IL-6, immune checkpoints) is warranted. A complemen-
tary transcriptome-driven approach will also be important to 
predict benefit from chemotherapy-immunotherapy combina-
tions. Pursuing such a precision chemotherapy approach will be 
critical for optimising patient management and decision-making 
as the treatment landscape continues to evolve in the present 
and future.
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SUPPLEMENTARY INFORMATION 

 

Total number of items: 12 supplementary figures, 11 supplementary tables 

 

SUPPLEMENTARY MATERIALS & METHODS 

 

RPLS COHORT 

Patient selection 

Patients with histologically proven advanced iCCA treated with first-line chemotherapy were 

retrospectively identified from the Modena Cancer Centre Biliary Tract Cancer Database, after 

review from the appropriate health research authorities (BILONG study protocol 465/18 - 

reviewed by the Area Vasta Emilia Nord Ethics committee). Patients were deemed eligible if 

they presented with de novo advanced unresectable iCCA (i.e. locally advanced or metastatic) 

and tissue from diagnostic liver biopsies were available. Patients with a diagnosis of mixed 

iCCA/HCC were excluded. Neither prior surgery nor liver-directed treatment were allowed. 

Clinical and laboratory data were retrieved retrospectively through electronic medical records 

review. The following baseline variables were collected and analysed before the 

commencement of first-line chemotherapy: age, sex, Eastern Cooperative Oncology Group 

(ECOG) performance status (PS), primary tumour site, disease status, location of metastatic 

sites. Overall survival (OS) was defined as the time from the first dose of first line 

chemotherapy to death. To meet the definition of rapid progressor (RP), patients had to have 

an OS ≤ 6 months which is below half the median survival time reported by the ABC-02 trial 

[1]. Long survivors (LS) were defined those patients who had OS ≥23 months since starting of 

chemotherapy, more than double the median survival time reported by the ABC-02 trial. The 

two patient subgroups were matched for major clinical features. None of these patients had 

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance
Supplemental material placed on this supplemental material which has been supplied by the author(s) Gut

 doi: 10.1136/gutjnl-2023-330748–13.:10 2023;Gut, et al. O'Rourke CJ



 3 

background liver cirrhosis. The study protocol conformed to the ethical guidelines of the 1975 

Declaration of Helsinki.  

 

Human tissues 

All patients underwent ultrasound-guided liver biopsy before the commencement of systemic 

treatment. Formalin Fixed Paraffin Embedded (FFPE) tissue slides were retrieved from liver 

biopsy. One slide was processed for targeted sequencing-based RNA expression analysis via 

TempO-Seq (Bioclavis, Glasgow, UK). One slide was used for macroscopic dissection of specific 

ROIs identified through a pathology review; tissue from each (region-of-interest) ROI was 

then subjected to targeted sequencing-based RNA expression analysis via TempO-Seq 

(Bioclavis, Glasgow, UK). A third consecutive slide was used for Digital Spatial Transcriptomic 

(see below). 

 

Digital pathology 

Hematoxylin-eosin slides were digitized using the APERIO platform (Leica Biosystems) at 20X 

of magnification. Each slide was analysed using the open-source software platform, QuPath 

(version 0.2.3) [2]. A region of interest (ROI) was annotated for each slide and the amount of 

tumoural tissue quantified. First, we characterised the amount of epithelial and stromal tissue 

components in each ROI by generating a random tree forest pixel classifier. Second, following 

cell detection on each ROI, a different random tree forest cell classifier was generated for 

each haematoxylin-eosin slide using cell features to classify cells into tumour, immune and 

stromal cells. To help the algorithm to perform an accurate classification, smoothed features 

at 25 radii were added and multiple rounds of cell classification review were performed.  

 

Whole-transcriptome profiling by Tempo-seq 

Whole transcriptome gene expression analysis was performed using the TempO-Seq Human 

Whole Transcriptome v2.0 panel (BioClavis, Glasgow, UK). Internal quality control was 

performed according to the following criteria: 1) number of mapped reads in positive RNA 

controls > 6 million [our study: 6,703,241]; 2) signal:noise ratio as the ratio between the total 

number of reads in the positive control and the total number of reads in the negative controls 
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>20 [our project 205;1]; 3) the percentage of mapped reads in positive controls > 80% [our 

project 97%]; 4) average reads/probe >250 [our project 471]. Process controls were run in 

replicate on each assay plate of samples to ensure quality metrics pass on a plate-wise level. 

High reproducibility of positive controls, and low signal in the negative control was observed 

in our project.  

Sequencing libraries for targeted panels were generated; briefly in TempO-Seq, each 

Detector Oligo consisted of a sequence complementary to an mRNA target plus a universal 

primer binding site. They annealed in immediate juxtaposition to each other on the targeted 

RNA template such that they can be ligated together. Ligated detector oligos were PCR-

amplified using a primer set (single-plex PCR reaction, with a single primer pair for each 

sample) that introduced both the adaptors required for sequencing and a sample-specific 

barcode. The barcode sequences flanked the target sequence and were inserted 

appropriately into the standard Illumina adaptors to permit standard dual-index sequencing 

of the barcodes and deconvolution of sample-specific reads from the sequencing data using 

the standard Illumina software. All the PCR-amplified and barcoded samples were pooled into 

a single library for sequencing. Sequencing reads were demultiplexed using the standard 

sequencing instrument software for each sample using the barcodes to give a FASTQ file for 

each. 

TempO-Seq sequence files were analysed using the Tempo-SeqR software package. 

Each FASTQ file was aligned using the STAR algorithm to a pseudotranscriptome 

corresponding to the gene panel used in the assay. Data were normalized using DESeq2 [3]. 

Transcriptome data can be made available upon request following IRB approval. 

 

GeoMx digital spatial profiling 

 

NanoString GeoMx digital spatial profiling 

To further characterise variation in transcriptomic expression between tumour-infiltrating 

myeloid cells in LS and RP patients, formalin-fixed paraffin-embedded (FFPE) sections of 12 

cholangiocarcinoma biopsies were selected for analysis on the NanoString GeoMx Digital 

Spatial Profiler (DSP). This platform enables the characterisation of user-selected topographic 

Regions of Interest (ROI) from immunofluorescently (IF) stained FFPE tissue. The GeoMx 

instrument achieves RNA profiling in situ hybridization by employing DNA oligonucleotide 
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probes designed to bind mRNA targets. From 5ʹ to 3ʹ, they comprise a 35- to 50-nucleotide 

target complementary sequence, an ultraviolet (UV) photocleavable linker and a 66-

nucleotide indexing oligonucleotide sequence containing a unique molecular identifier (UMI), 

RNA ID sequence and primer binding sites. Up to 10 RNA detection probes were designed per 

target mRNA. In summary, the instrument employs UV light to cleave the UV-sensitive probes 

leading to release of the hybridized barcodes. 

 

Slide preparation including hybridization of tissue with UV-photocleavable probes 

The DSP procedure has previously been described in detail by Merritt et al [4] with our own 

protocol described in Fisher et al [5]. 5-µm FFPE sections of the 12 cholangiocarcinoma 

biopsies were mounted on positively charged Superfrost glass slides (ThermoFisher Scientific) 

and baked for 1hr at 60°C. The tissue was dewaxed, hydrated and treated with 1 μg/ml 

Proteinase K (ThermoFisher Scientific, AM2546) for 15 minutes before undergoing heat-

induced epitope retrieval (HIER) on a Leica BOND Autostainer (pH 9.0, ER2 at 100°C) for 20 

minutes. The slides were then stored until required in 1X PBS (PBS: Invitrogen, AM9625). 

In-situ hybridization of RNA-directed DNA oligo probes (Immune Pathways Panel 

included 96 genes with the addition of CD58, ELK4, CD80, CD163, FOXO3, NanoString) was 

performed as per manufacturer’s protocol. HybriSlip™ covers were applied prior to overnight 

incubation at 37°C for at least 16 hours (ThermoFisher). The following day, slides were washed 

twice with a 1:1 ratio of 100% deionized formamide (Ambion) and 4X SSC (Sigma Aldrich) at 

37°C for 25 minutes.  

The GeoMx DSP is capable of capturing four channels (FITC/525nm, Cy3/568nm, Texas 

Red/615nm and Cy5/666nm) for the detection of up to four customizable IF morphology 

markers for each tissue [4]. One channel (FITC/525nm) is reserved for the nuclear stain 

(SYTO13). The slides were blocked with Buffer W (Nanostring) for 30 minutes at RT before 

incubation. Immunofluorescence staining was performed using primary conjugated 

antibodies (PanCK (NanoString), CD68 (clone KP1, 1:200, Santa Cruz) and Ki67 (clone D2H10, 

1:100, Cell Signaling Technologies)) and nucleic acid dye (SYTO 13 (NanoString)) as per the 

manufacturer protocol. Slides were then stored at 4°C in SSC before being loaded on the 

GeoMx DSP instrument for region of interest (ROI) selection and collection. 

 

Region selection and collection 
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The whole slides were imaged at 20x magnification using the GeoMx DSP, with the integrated 

software suite used to select ROIs for downstream analysis based on the 4-plex 

immunofluorescence staining of SYTO 13, PanCK, CD68 and Ki67. Polygonal ROIs were 

selected primarily according to the high density of CD68+ cells. 30 ROIs were selected in total 

from across the 12 slides. The CD68 staining was then used to employ segmentation within 

each ROI to create an area of interest (AOI) from which DNA oligo probes would be cleaved 

and cell-type specific transcriptomic profiles obtained. After AOIs were selected, the GeoMx 

DSP employs an automatically controlled UV laser (385nm) to illuminate each AOI in turn, 

specifically cleaving barcodes within the CD68+ immunofluorescent (IF) segments but not in 

surrounding tissue segments (CD68-). A microcapillary collection system collected the 

liberated barcodes from each AOI and plated them into individual wells on a 96-well 

microtiter plate. This process was repeated in turn for each AOI before downstream 

processing using the NanoString MAX/FLEX nCounter system. The oligonucleotides were 

dried overnight and subsequently resuspended using 7 μl of DEPC-treated water. 

 

nCounter hybridization assay for photocleaved oligo counting 

The nCounter readout of GeoMx DSP-collected probes was performed according to 

manufacturer’s protocol (NanoString, MAN-10089-08). In brief, samples were resuspended in 

dH20 prior overnight incubation (16–24 hours) with hybridization codes (Hyb Codes) at 65°C 

and heated lid (70°C). These Hyb Codes include reporter and capture probes to enable 

formation of a tripartite hybridization complex with the DNA oligo probes in the panel. 

Samples were then pooled by column into a 12-well strip tube before processing on 

NanoString’s MAX/FLEX system, using the high sensitivity protocol (NanoString, MAN-10089-

08). 

 

Data processing and analysis 

Data acquisition was performed by using the NanoString’s Digital Analyzer (field of view, 555) 

and Digital Count Conversion (DDC) files were re-uploaded onto the GeoMx DSP for mapping 

of transcriptomic data to the spatial origin, where they underwent quality control, filtering 

normalization and background correction. 

 

Bioinformatic analyses 
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RPLS signature identification 

RPLS signature genes were identified as genes differentially expressed between RP and LS 

patients with ≥ 2-fold expression difference and unadjusted p<0.05 (Wilcoxon rank-sum test). 

As RP-high and LS-high signature genes significantly anti-correlated, a single RPLS score was 

assigned to each tissue sample, defined as: ([log2(ΣRP-high genes)- log2(ΣLS-high genes)]z-score). 

To compare the predictive performance of the RPLS score against systemic features, it was 

included into multivariable Cox proportional hazards models with pre-treatment systemic 

features that differed between patient subgroups (platelets, ALP) or an optimized systemic 

signature (defined by AIC backwards elimination using all haematological and systemic 

features). The final formula derived for this optimized signature was: -211.622 + 41.2*Bili + 

1.208*ALP.  

 

Pathway analysis 

Pathway over-representation analysis of RPLS signature genes was performed using ENRICHR 

against the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [6] (including 

censoring of the non-relevant categories, “infectious disease” and “substance dependence”). 

Significantly over-represented pathways (p<0.05) were visualized using CytoScape (v3.9) [7]. 

Specifically, the EnrichmentMap application[8] was used to construct network maps in which 

each node represents a significant pathway and each line denotes shared genes between 

pathways (Jaccard coefficient above 0.375). Inter-related pathways were identified and 

biologically classified by Markov Cluster Algorithm (MCL) using the AutoAnnotate application 

(v1.3.3) [9]. 

Pathway expression analysis was performed using single sample gene set enrichment 

analysis (ssGSEA), as implemented in the ‘GSVA’ R package [10]. Prior to ssGSEA, 

transcriptome data were centered and scaled. KEGG [6] and Hallmarks [11] terms were 

downloaded from Molecular Signatures Database (MSigDB) v7.5.1 [12, 13] and used as input 

gene lists for ssGSEA. Only human- and cancer-relevant gene list categories were considered. 

Transcription factor activities were predicted from transcriptome data using 

DoRothEA [14]. A gene was predicted to be under regulation of a specific transcription factor 

if it is a known transcription factor [14] and if its expression positively correlates with activity 

of the candidate transcription factor regulator. 
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Gemcitabine resistance genes and signatures 

The expression of four genes involved in gemcitabine transport and metabolism that have 

been previously implicated in gemcitabine sensitivity [15, 16, 17] were investigated in our 

study: human equilibrative nucleoside transporter-1 (hENT1, encoded by SLC29A1); 

deoxycytidine kinase (dCK); ribonucleotide reductase catalytic subunit M1 (RRM1); 

ribonucleotide reductase catalytic subunit M1 (RRM1). 

Three gene expression signatures previously reported to predict gemcitabine 

sensitivity were also evaluated in our study: 

Mourragui et al. signature: This signature was identified based on in vitro sensitivity of 1,000 

immortalized cancer cell lines to gemcitabine [18]. It consists of a weighted linear sum of 

expression of 1774 genes which was applied to each bulk tissue sample in the RPLS cohort. 

Nicolle et al. signature: Also known as GemPred, this signature was identified based on in vitro 

sensitivity of 38 primary pancreatic adenocarcinoma (PDAC) cell lines to gemcitabine [19]. 

Whole-transcriptome profiles of RPLS samples were submitted to the GemPred web 

application (http://cit-apps.ligue-cancer.net/pancreatic_cancer/GemPred) in order to return 

a score per sample. Unreferenced values were used for further analysis. 

Tiriac et al. signature: This signature was identified based on in vitro sensitivity of 77 PDAC 

organoids to gemcitabine [20]. It consists of 225 genes whose expression correlates (95 

positively, 130 negatively) with gemcitabine sensitivity. These genes were combined into a 

weighted linear formula where each gene was assigned a coefficient proportional to its 

correlation coefficient, enabling assignment of an overall signature score to each of the bulk 

tissue samples in the RPLS cohort. 

 

Digital cytometry 

Cell type-specific deconvolution of the RPLS signature was performed in our RPLS cohort using 

CIBERSORTx [21]. Briefly, two public single cell RNA-sequencing (scRNA-seq) datasets from 

iCCA patients were downloaded from GEO (GSE125449 [22], GSE151530 [23]). These data 

were processed independently using the ‘Seurat’ package (v3) [24], including exclusion of 

outlier cells (mitochondrial content >0.05, gene counts <200 or 2500) and log normalization 

(scale factor of 10000). Six types of cells were commonly annotated by the original two scRNA-

seq studies: B cells, cancer-associated fibroblasts (CAFs), T cells, tumour cells, tumour-

associated myeloid cells (reannotated from cells originally reported as tumour-associated 
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macrophages), and tumour-associated endothelial cells (TECs). Only genes commonly 

detected in both datasets were used for gene expression classifier construction. 

Independently, a signature matrix was constructed for each scRNA-seq dataset in CIBERSORTx 

(‘scRNA-Seq’ as input data type with default settings). Each signature matrix was then applied 

independently to impute cell expression of the RPLS signature genes in our biopsy tissues 

(whole biopsies, tumour regions, tumour-associated stroma regions). This involved running 

the ‘Impute Cell Expression’ module of CIBERSORTx in ‘Group Mode’ with ‘S-mode’ batch 

correction and quantile normalization set as disabled. Each gene in the RPLS signature was 

only considered to originate from a specific cell type if this association was reproducible using 

both independent signature matrices (cell type-specific gene expression >1). 

 

Immunogenomic and microenvironment analyses 

Immune cell composition was predicted by cellular deconvolution using the xCell tool [25], 

implemented in the ‘immunedeconv’ package [26] with default settings. Anti-tumour immune 

activity was inferred using the cytolytic score, defined as the geometric mean of expression 

of granzyme A (GZMA) and perforin (PRF1) [27]. Cytokine activity was estimated using the 

CytoSig tool with default settings [28], implemented in Python on transcriptome data that 

was centralised and log2-transformed (including a pseudo-count of 1). Cancer testis antigen 

(CTA) expression was investigated using ssGSEA of CTA lists reported by CTdatabase 

(http://www.cta.lncc.br/) [29]. A gene expression-based microsatellite instability signature 

was calculated for RPLS samples using the Tumour Immune Dysfunction and Exclusion (TIDE) 

webtool [30]. A gene expression-based signature predictive of BRCA gene functionality and 

comprised of a weighted linear formula of 60 genes was used to assign a “BRCAness” score to 

each RPLS sample [31]. DNA repair signatures were obtained from Reactome [32]. Signatures 

associated with cancer-associated fibroblast subtypes detected in iCCA were investigated 

using ssGSEA with the gene lists reported in the original study [33].  

 

IMMORTALIZED iCCA CELL LINES 

Integration of cell line and RPLS tissue transcriptome data 

Transcriptome data (RNA-seq) for 25 iCCA cell lines was downloaded from DepMap (22Q2) 

[34] quantified in log2(TPM+1) units. In total, 14,728 genes were commonly detected in the 

cell line dataset and our RPLS tumour core (TC) dataset. Datasets were combined together by 
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performing quantile normalization (‘PreProcess’ package) followed by Combat batch 

correction (‘sva’ package) [35]. Removal of batch effects was confirmed by principal 

component analysis. 

 

Classification of cell lines as LS- or RP-like 

To develop a scoring method for RP- and LS-likeness, generalized linear models were run to 

identify genes individually capable of differentiating RP TCs from LS TCs in the adjusted 

dataset. In total, 441 significant genes (p<0.05) were identified. To generate an optimized 

classifier from these genes, least absolute shrinkage and selection operator (LASSO) 

regression was performed, resulting in the following classifier: -0.473260081235793 + (-

0.20222060165566*CERS2) + (-0.0619806057536049*CHST9) + (-

0.158248138046384*DCDC2) + (0.343556411268419*IGFBP4) + (-

0.157768591678966*KPNA6) + (0.153671854832587*PDE12) + 

(0.041350560922029*PTPRU) + (-0.00927545715353832*SLC5A9) + 

(0.029840846853945*SPTLC3) + (0.105321982050334*STEAP2). This classifier was then 

applied to the adjusted cell line data to identify LS-like (< median; n=12) and RP-like (> median; 

n=13) cell lines. 

 

Pharmacologic, genomic and transcriptomic comparison of LS- and RP-like cell lines 

Gemcitabine sensitivity was compared between LS- (n=4) and RP-like (n=4) cell lines using 

previously reported high-throughput drug screening data from Saha and colleagues [36]. 

Differential expression of pathways and processes was compared between LS- and RP-like cell 

lines using ssGSEA, as earlier described (section 1.6.2). Hotspot mutation data were available 

for all 25 iCCA cells through DepMap (22Q2) [34]. Association of recurrent hotspot mutations 

(IDH1, KCNA1, KIF4B, KRAS, PTEN, TBX5, TP53) with LS- or RP-like cell lines was investigated 

by fisher’s exact test for count data. 

 

Identification of differential genetic dependencies 

Genome-wide CRISPR inactivation screen data were available for 24 iCCA cell lines through 

DepMap (22Q2) [37], with gene effect scores inferenced by Chronos [38]. Pan-essential genes 

(n=2040) as reported by Dempster and colleagues [39] were filtered out from the dataset. To 

determine an appropriate cut-off value for a deleterious fitness effect, we calculated the 
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median Chronos score for each of the 2040 pan-essential genes across the 24 iCCA cell lines. 

We selected the largest of these median values as our negative fitness threshold (-

0.0141220545). Therefore, non-essential genes were identified as enhanced survival 

dependencies if they met the following criteria: (1) mean Chronos score below the threshold 

(-0.0141220545) among cell lines in LS-like and/or RP-like subgroups; (2) significant difference 

in Chronos scores between LS-like and RP-like subgroups (Wilcoxon p<0.05). As true survival 

dependencies likely arise from multiple genes within common networks, we prioritized 

enhanced survival dependencies annotated within a common pathway (informed by 

ENRICHR; described in section 1.6.2). Dependency networks were visualized using CytoScape 

(StringDB score 0.75) and manually annotated based on MSigDB associations. The potential 

druggability of genes was investigated using The Drug Gene Interaction Database (DGIdb 4.0) 

[40]. 

 

ANALYSIS OF SINGLE CELL RNA-SEQUENCING DATASETS 

Single cell RNA-sequencing dataset pre-processing and filtering 

In this manuscript, 3 single cell RNA-sequencing (scRNA-seq) datasets were analysed: 

GSE125449 [22]: Data were pre-processed as described in section 1.6.4. Cell type annotation 

was retained as previously reported by the authors, with the exception of tumour-associated 

macrophages which were renamed as tumour-associated myeloid cells. Exclusively 

considering samples where tumour cells were retained, the following cell numbers were 

included for analysis: 739 tumour cells, 354 cancer-associated fibroblasts, 386 tumour-

associated myeloid cells, 2138 T cells (corresponding to 9 samples). A tumour-origin RPLS 

score (predicted by digital cytometry; section 1.6.4) was calculated for each tumour cell using 

the ‘escape’ package. Samples were ranked according to tumour-origin RPLS scores and 

classified as LS- or RP-like based on median expression. 

GSE151530 [41]: Data were pre-processed as described in section 1.6.4. Cell type annotation 

was retained as previously reported by the authors, with the exception of tumour-associated 

macrophages which were renamed as tumour-associated myeloid cells. Exclusively 

considering samples where tumour cells were retained, the following cell numbers were 

included for analysis: 960 tumour cells, 314 cancer-associated fibroblasts, 478 tumour-

associated myeloid cells, 1032 T cells (corresponding to 10 samples). A tumour-origin RPLS 

score (predicted by digital cytometry; section 1.6.4) was calculated for each tumour cell using 
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the ‘escape’ package. Samples were ranked according to tumour-origin RPLS scores and 

classified as LS- or RP-like based on median expression. 

GSE171899 [42]: Data were pre-processed and cells were annotated by the original authors, 

as indicated in their manuscript. This dataset was exclusively comprised of immune (CD45+) 

cells and only cells originating from 3 patients who underwent adjuvant chemotherapy were 

considered: 39 cDC1 (BATF3+), 374 cDC2 (CD1C+), 185 lymphoid, 465 macrophages (ID3+), 

365 macrophages (MARCO+), 200 macrophages (TREM2+), 535 monocytes (CD14+), 38 

monocytes (FCGR3A). A myeloid-origin RPLS score (predicted by digital cytometry; section 

1.6.4) was calculated for each immune cell using the ‘escape’ package. 

 

Biological analysis of LS-like and RP-like iCCA in scRNA-seq datasets 

Biological pathway and process expression were calculated in single cells using the ‘escape’ 

package (using MSigDB reference signature databases, as described in section 1.6). The 

following signatures associated with myeloid cell phenotypes and processes were also used: 

inflammatory and tolerogenic hepatic macrophages [43]; activated dendritic cells (aDC), 

immature dendritic cells (iDC), plasmocytoid dendritic cells (pDC) [25]; antigen processing and 

presenting machinery (APM score) [44]; MHC presentation (classical, class I) [32]; 

immunoinhibitors and immunostimulators [45]. Transcription factor activities and cytokine 

activities were also calculated for single cells as earlier described (section 1.6). 

Ligand:receptor (LR) interactions were identified using CellChat with default settings [46]. 

Only reproducible interactions (identified in GSE125449 and GSE151530) identified in one 

tumour subgroup but not the other (LS-like or RP-like) were considered as significant. The 

potential druggability of genes was investigated using The Drug Gene Interaction Database 

(DGIdb 4.0) [40]. Clinically actionable targets were identified according to Pharos (Tclin level) 

[47]. T cell subtypes were assigned using the ‘ProjecTILs’ package [48]. Immune-oncology 

targets of interest were defined by the The Cancer Research Institute (CRI) iAtlas consortium 

(https://isb-cgc.shinyapps.io/shiny-iatlas/) [49]. Metabolic flux inference was performed 

using METAFLUX[50] with default settings, involving calculation of metabolic reaction activity 

scores (cubic root normalised) per cell followed by median-based collapsing of activity scores 

per sample. 
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RESECTED CHOLANGIOCARCINOMA DATASETS 

Transcriptome analyses 

The following transcriptome datasets were analysed as part of our study: 

Andersen cohort: This cohort is comprised of 138 resected iCCA and 37 resected pCCA (with 

survival data), originating from Australia, Europe (Belgium, France, Germany, Italy), and USA. 

Transcriptome data (humanRef-8v2 BeadChip and Human HT-12 v3 Expression BeadChip, 

Illumina) were generated by our group, as previously reported [51, 52]. Data were processed 

from raw IDAT files using background subtraction (iScan system, Illumina), followed by 

quantile normalization (‘preprocessCore’, R package). Data were quantified as normalized 

signal intensity (arbitrary units, ‘a.u.’). 

Dong cohort: This cohort is comprised of 244 resected iCCA (with survival data), originating 

from China. Transcriptome data (RNA sequencing) were retrieved from the supplementary 

information of the original manuscript [53]. Data were quantified using log2(TPM+1), as 

reported by the original study authors. 

GSE107943 cohort: This cohort is comprised of 30 resected iCCA (with classification as large 

duct- or small duct-type) from Korea. Transcriptome data (RNA sequencing) were retrieved 

from GEO (GSE107943) [54, 55]. Data were quantified using RPKM, as reported by the original 

study authors. 

Job cohort: This cohort is comprised of 70 resected iCCA (with survival data), originating from 

France. Transcriptome data (Human Transcriptome Array 2.0, Affymetrix) were retrieved 

form ArrayExpress (E-MTAB-6389) [56]. Data were processed from raw CEL files using Robust 

Multichip Average (RMA) normalization, as implemented in the ‘oligo’ R package. Data were 

quantified as normalized signal intensity (arbitrary units, ‘a.u.’). Genes with multiple probes 

were quantified as the median signal intensity across probes. 

Jusakul cohort: This cohort is comprised of 81 resected iCCA (with survival data), originating 

from Asia (Korea, Singapore, Thailand), Brazil and Europe (France, Romania). Transcriptome 

data (HumanHT-12 V4.0 expression BeadChip) were retrieved from Gene Expression Omnibus 

(GEO; GSE89747) [57]. Data were extracted from raw IDAT files and underwent quantile 

normalization (‘preprocessCore’, R package). Data were quantified as normalized signal 

intensity (arbitrary units, ‘a.u.’). 

Montal cohort: This cohort is comprised of 182 resected extrahepatic CCA (with survival data), 

originating from Europe (Spain, Switzerland) and USA. Transcriptome data (Human Genome 
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U219 Array, Affymetrix) were processed by the original study authors, as reported in the 

original manuscript [58]. Data were quantified as normalized signal intensity (arbitrary units, 

‘a.u.’). 

Nakamura cohort: This cohort is comprised of 111 resected iCCA (with survival data), 

originating from Japan. Transcriptome data (RNA sequencing) were retrieved from European 

Genome Phenome Archive (EGA; EGA00001000950) [59] and processed using standard 

bioinformatic pipelines, as previously reported by us [60]. Data were quantified using 

log2(RPKM+1). 

Sia cohort: This cohort is comprised of 119 resected iCCA (with survival data), originating from 

Europe (Italy, Spain) and USA. Transcriptome data (Whole-Genome DASL HT assay, Illumina) 

were processed by the original study authors, as reported in the original manuscript [61]. Data 

were quantified as normalized signal intensity (arbitrary units, ‘a.u.’). 

 

Genomic analyses 

Genomic data were available for the Andersen, Dong and Nakamura cohorts, as follows: 

Andersen cohort: Mutation data (TruSeq Amplicon Panel, Illumina) were available for 87% 

(120/138) of this cohort. Data were processed and analyzed as previously reported by our 

group [60]. FGFR2 fusion data (quantitative polymerase chain reaction of known breakpoint 

regions) were also available for 80.4% (111/138) of the cohort [60]. 

Dong cohort: Mutation data (whole-exome sequencing) and FGFR2 fusion data (RNA-seq) 

were available for 97.1% (237/244) and 100% (244/244) of this cohort, as originally reported 

by the study [53]. 

Nakamura cohort: Mutation data (whole-exome sequencing) and FGFR2 fusion data (RNA-

seq) were available for 100% (111/111) of this cohort [59], and these data were processed as 

originally reported by our group [60]. 

In each of these iCCA cohorts, cancer-relevant hotspot mutations were identified using the 

Cancer Hotspots database (https://www.cancerhotspots.org/) from Memorial Sloan 

Kettering Cancer Centre (MSKCC) [62]. 

 

ANIMAL MODELS 

Changes in RPLS signature expression was evaluated in 14 iCCA-relevant mouse models 

relative to their study-specific controls. Human homologs were identified for mouse genes 
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using the ‘HMD_HumanPhenotype’ file at Mouse Genome Informatics (MGI; 

informatics.jax.org) [63]. 

GSE66717: Transcriptome data (Affymetrix Mouse Gene 1.0 ST Array) were downloaded for 

Pten-/- (n=4), Pten-/- Tgfbr2-/- (n=4), and control (n=3) mice deposited in GSE66717 [64]. Raw 

CEL files were subjected to RMA normalization using the ‘oligo’ R package.  

GSE140498: Transcriptome data (Affymetrix Mouse Gene 1.1 ST Array) were downloaded 

from GSE140498 [65] for the following samples: NEMO single knockout (n=3), 

NEMO/JNK1Δhepa double knockout (n=3), JNK(1/2)Δhepa double knockout with 

diethylnitrosamine (DEN) treatment (n=3), JNK(1/2)Δhepa double knockout with bile duct 

ligation (BDL; n=3), NEMO/JNK(1/2)Δhepa triple knockout (n=3), control mice with DEN 

treatment (n=3), control mice with bile duct ligation (n=3), and control mice (n=3). 

GSE141511: Transcriptome data (RNA-seq) were downloaded for microdissected control 

(n=3), ductular proliferation (n=3), intraductal papillary neoplasia of the bile duct (IPNB; n=3) 

and tumour (n=3) tissues from cholangiocyte-directed KrasG12D mice with diet-induced 

inflammation (3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-treated) deposited in 

GSE141511 [66]. HTseq count files were merged using ‘tximportData’ and quantified in counts 

per million (CPM) using ‘edgeR’ [67]. 

AKT/YapS127A: Normalized transcriptome data (Affymetrix array) for this sleeping beauty 

model of iCCA [68] (n=3) and control mice (n=4) was kindly provided by Prof. Diego Calvisi 

(Universität Regensburg, Germany). 

AKT/NICD: Transcriptome data (Mouse Gene Expression BeadChips, Illumina) for this sleeping 

beauty model of iCCA [69] (n=4) and control mice (n=3) were generated and analysed as part 

of our previous study [52]. 

Genetically engineered models of iCCA: Transcriptome data (RNA-seq) from five iCCA 

genetically engineered mouse models (GEMMs) harbouring cholangiocyte (CK19)-specific 

genomic alterations were kindly provided by Dr. Luke Boulter (University of Edinburgh, UK) 

[70]:, Kras & Nf2 (n=3), Kras & shTrp53 (n=3), Kras & Tp53 (n=3), Kras & Nf2 & Tp53 (n=3), 

Kras & Tp53 & Plbx2 (n=3). Mouse gene IDs were batch annotated using informatics.jax.org. 

 

OTHER CANCER DATASETS 

Surgical HCC cohorts 
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TCGA-LIHC: This cohort is comprised of 359 resected HCC (histologically confirmed and 

survival data available), originating from USA and published as part of the The Cancer Genome 

Atlas [71]. Data were generated by RNA-seq and downloaded in RSEM normalized units from 

Broad GDAC Firehose (https://gdac.broadinstitute.org/). Clinical data were downloaded from 

cBioPortal (https://www.cbioportal.org/) [72]. 

GSE14520: This cohort is comprised of 178 resected HCC (histologically confirmed and survival 

data available). Transcriptome data (Affymetrix Human Genome U133A 2.0 Array) were 

retrieved from Gene Expression Omnibus (GSE14520) [73]. Data were processed from raw 

CEL files using Robust Multichip Average (RMA) normalization, as implemented in the ‘oligo’ 

R package. Data were quantified as normalized signal intensity (arbitrary units, ‘a.u.’). Genes 

with multiple probes were quantified as the median signal intensity across probes. 

 

Advanced basket cohorts 

MET500 cohort: This basket cohort was comprised of 490 metastatic biopsies representative 

of 22 primary cancer groups [74]. Processed, normalized data (RNA-seq) were downloaded 

from the following weblink: https://met500.path.med.umich.edu/. Samples were stratified 

by metastatic sites: abdominal (n=32), liver (n=130), lung & respiratory (n=37), lymph node 

(n=114), other (n=177). 

POG570 cohort: This basket cohort was comprised of 438 metastatic biopsies representative 

of 26 primary cancer groups [75]. Transcriptome data (RNA sequencing) were downloaded 

from https://www.bcgsc.ca/downloads/POG570/, followed by Ensembl ID mapping using 

‘biomaRt’. Data were quantified in TPM. Clinical and treatment information were also 

downloaded from the POG570 downloads repository: abdominal (n=54), liver (n=198), lung & 

respiratory (n=37), lymph node (n=87), other (n=62). 

 

Metastatic colorectal cancer cohorts 

New EPOC trial: Transcriptome data (normalized Affymetrix array, collapsed by median gene 

expression) for primary colorectal tumours (n=204) and resected liver metastases (n=145) 

from the phase III New EPOC trial [76] was kindly provided to us by the S:CORT consortium. 

 

STATISTICAL ANALYSES 
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Statistical analyses were conducted in R version 4.0.3, unless otherwise stated. Heatmaps 

were generated using ‘gplots’. Bar plots, violin plots, and XY plots were generated in ‘ggplot2’. 

Kaplan-Meier survival analysis and Cox proportional hazards modelling were performed using 

‘survival’ and ‘survminer’ packages. Forest plots were generated using the ‘forestplot’ 

package. Simpson’s index was computed using the ‘vegan’ package. Unrooted dendrograms 

based on Manhattan distance and complete linkage were generated using ‘cluster’ and ‘ape’ 

packages. Data normality was investigated using Shapiro-Wilk test. Quantitative data were 

compared across multiple groups using Kruskal-Wallis or ANOVA statistics for non-normal and 

normal data, respectively. Qualitative data was compared between two groups using 

Pearson’s Chi-squared test, except when one cell in a contingency table has an expected 

frequency below 5 in which case Fisher’s exact test was applied. Correlation analysis was 

performed using Spearman or Pearson statistics for non-normal and normal data, 

respectively. 

 

 

SUPPLEMENTAL FIGURES 

 

Figure S1: Patient treatment in the RPLS cohort. (A) Swimmer plot of patient management 

in the RPLS cohort, including a zoomed view on the first 12 months following initiation of 
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chemotherapy. (B) Comparison of number of chemotherapy regimens (Welch t-test) received 

by LS (n=6) and RP (n=7) patients. 

 

 

 

Figure S2: RPLS signature expression and predictive performance in the RPLS cohort. (A) 

Spearman correlation analysis of RP-high and LS-high gene expression. (B) Forest plot of Cox 

proportional hazards statistics derived from multivariable analysis of RPLS scores and 

systemic features differentially expressed between RP and LS patients. HR: hazard ratio; ns: 

not significant. (C) Forest plot of Cox proportional hazards statistics derived from 

multivariable analysis of RPLS scores and an optimized systemic signature (defined by AIC 

backwards elimination using all haematological and systemic features). The final formula 

derived for this optimized signature was: -211.622 + 41.2*Bili + 1.208*ALP. 
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Figure S3: Representative markup of a diagnostic biopsy from the RPLS cohort. Target 

regions were geospatially macrodissected for whole transcriptome profiling (Tempo-seq). 

 

 

Figure S4: Inter- and intra-sample heterogeneity of macrodissected biopsy regions in the 

RPLS cohort. (A) Differential intra-sample transcriptomic heterogeneity (Wilcoxon test) 
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defined by Simpson’s index between LS and RP biopsies: tumour cores (TCs; 11 LS, 9 RP), 

tumour stroma (TSs; 5 LS, 6 RP), invasive fronts (IFs; 3 LS, 3 RP) and non-malignant regions 

(NRs; 4 LS, 4 RP). (B) Phylotranscriptomic trees (Euclidean distance, Ward linkage) for 

individual biopsies with 3 or more geospatially macrodissected samples.  

 

 

Figure S5: Transcriptomic profiles of tumour stroma and non-malignant regions of biopsies 

in the RPLS cohort. (A) Differentially expressed genes (min. 2-fold difference, p<0.05, 

Wilcoxon rank-sum test), differentially active transcription factors (p<0.05, Wilcoxon rank-

sum test; DoRothEA), differentially expressed pathways (p<0.05, Wilcoxon rank-sum test; 

ssGSEA of KEGG and Hallmarks gene lists), and differentially active cytokines (p<0.05, 

Wilcoxon rank-sum test; CytoSig) between RP (n=6) and LS (n=5) tumour stroma. (B) 

Differential expression of iCCA cancer-associated fibroblast subtypes in tumour stroma. (C) 

Differentially expressed genes (min. 2-fold difference, p<0.05, Wilcoxon rank-sum test), 

differentially active transcription factors (p<0.05, Wilcoxon rank-sum test; DoRothEA), 

differentially expressed pathways (p<0.05, Wilcoxon rank-sum test; ssGSEA of KEGG and 
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Hallmarks gene lists), and differentially active cytokines (p<0.05, Wilcoxon rank-sum test; 

CytoSig) between RP (n=4) and LS (n=4) non-malignant regions. 

 

 

Figure S6: Genomic stability and immunogenicity of tumour cores in the RPLS cohort. 

Differential expression (Wilcoxon test) of signatures for (A) DNA repair processes (Reactome), 

(B) BRACness, (C) microsatellite instability, and (D) cancer testis antigen expression in LS and 

RP biopsies.  
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Figure S7: Evaluation of LS- and RP-like iCCA cell lines. (A) Principal component analysis of 

RPLS tumour core (TC) and iCCA cell line (DepMap) transcriptome profiles before and after 

data integration. PC: principal component; QN: quantile normalization. (B) Differential 

sensitivity of LS- and RP-like iCCA cell lines to gemcitabine using data from Saha et al. (Cancer 

Discovery 2016). IC50: half maximal inhibitory concentration; Ln: natural log. (C) Hotspot 

mutations in recurrently altered genes across LS- and RP-like cell lines (p-values from fisher’s 

exact test). 
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Figure S8: Metabolic flux inference in LS- and RP-like myeloid cells. (A) Differentially active 

metabolic pathways between myeloid cells in RP-like and LS-like tumours. Activity was 

inferred using METAFlux in two single cell RNA-sequencing datasets. Only pathways 

consistently differentially active (Wilcoxon p<0.05) in both datasets are shown. (B) 

Differentially active reactions (within differentially active pathways) between myeloid cells in 

RP-like and LS-like tumours. Reactions were pre-defined by BiGG Models and activity was 

inferred using METAflux in two single cell RNA-sequencing datasets. Only reactions 

consistently differentially active (Wilcoxon p<0.05) in both datasets are shown. 

 

 

Figure S9: Correlation analysis of RP-high and LS-high gene expression in resected cohorts. 

Statistics were computed by Spearman’s correlation statistics. 
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analysis of RPLS scores and correlated clinicopathologic variables in the Dong cohort (n=244). 

γ-GT: γ-glutamyltransferase; CA 19-9: carbohydrate antigen 19-9; CEA: carcinoembryonic 

antigen; HR: hazard ratio; ns: not significant. 

 

 

Figure S12: Prognostic associations of the RPLS signature in hepatocellular carcinoma. 

Kaplan-Meier survival curves with log-rank statistics for high (>median) and low (<median) 

RPLS signature expression in the TCGA-LIHC and GSE14520 cohorts of resected hepatocellular 

carcinoma patients. 
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Table S10: Univariable and multivariable progression-free survival (PFS) analysis of the RPLS 

signature, clinicopathologic and genomic features in colorectal cancer liver metastases (New 

EPOC trial). 

Table S11: Univariable and multivariable overall survival (OS) analysis of the RPLS signature, 

clinicopathologic and genomic features in colorectal cancer liver metastases (New EPOC trial). 
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