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Abstract—Life on Earth depends on healthy oceans, which
supply a large percentage of the planet’s oxygen, food, and energy.
However, the oceans are under threat from climate change,
which is devastating the marine ecosystem and the economic
and social systems that depend on it. The Internet-of-underwater-
things (IoUTs), a global interconnection of underwater objects,
enables round-the-clock monitoring of the oceans. It provides
high-resolution data for training machine learning (ML) algo-
rithms for rapidly evaluating potential climate change solutions
and speeding up decision-making. The sensors in conventional
IoUTs are battery-powered, which limits their lifetime, and
constitutes environmental hazards when they die. In this paper,
we propose a sustainable scheme to improve the throughput
and enable wireless charging of underwater networks, enabling
them to potentially operate indefinitely. The scheme is based on
simultaneous wireless information and power transfer (SWIPT)
from an autonomous underwater vehicle (AUV) used for data
collection. We model the problem of jointly maximising through-
put and harvested power as a Markov Decision Process (MDP),
and develop a model-free reinforcement learning (RL) solution.
The model’s reward function incentivises the AUV to find optimal
trajectories that maximise throughput and power transfer to the
underwater nodes while minimising its own energy consumption.
To the best of our knowledge, this is the first attempt at using RL
for this application. The scheme is implemented in an open 3D
RL environment specifically developed in MATLAB for this study.
The performance results show up 207% improvement in energy
efficiency compared to those of a random trajectory scheme used
as a baseline model.

Index Terms—wireless underwater sensor networks, machine
learning, reinforcement learning, internet-of-underwater-things,
simultaneous wireless and information transfer, and wireless
power transfer (SWIPT), autonomous underwater vehicles (auv).

I. INTRODUCTION

The earth is a water planet. Over 70% of the earth’s surface
is covered by water, which provides the planet with food
and energy, and regulates global temperatures and wind. Most
importantly, the oceans generate about 50% of the oxygen used
on earth and absorb about 25% of all atmospheric carbons.
Man’s very existence and survival on earth depend on healthy
oceans. However, the oceans are under threat from pollution
and climate change, which are devastating them and the
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economic and social systems that depend on them, leading to
extreme and unpredictable weather events such as hurricanes,
wildfires, flooding, and droughts around the globe. Machine
learning (ML) provides tools for rapidly searching and testing
potential climate solutions, but they require vast amounts of
data to train their algorithms. Conventional marine research
tools that use ocean-going vessels and in-situ data analysis or
remote sensing have limitations such as large delays, limited
coverage, poor spatial resolution, etc.

Wireless underwater sensor networks (WUSNs) provide
round-the-clock data collection at higher spatial and temporal
resolutions than is possible via any other method of underwater
data collection. They are the foundation of the internet-of-
underwater-things (IoUTs), whereby sensors and underwater
objects are networked to cover as much of the oceans as
possible [1].

WUSNs provide vast amounts of data for training ML mod-
els for environmental and climate change research, industrial
applications, and serve as proactive disaster prevention and
early warning systems. ML models are used to automatically
learn patterns in the data collected by underwater networks
to improve decision-making [2] and to automate underwa-
ter network operations, and enhance their performance and
energy efficiency [3]. However, WUSNs nodes are energy-
constrained, and their operational life is limited by the size
of their onboard batteries. In addition, the batteries become
environmental hazards when they die and become ocean litter,
thereby exacerbating the problem they were designed to solve.

Energy efficiency is the most important factor limiting
WUSNs due to the high energy required for data transmission
and the difficulty of replacing depleted sensor batteries. In
light of the foregoing, there is an urgent need for sustainable
solutions to save the oceans. Underwater energy harvesting and
simultaneous wireless and information transfer (SWIPT) [4]
remove the need for large batteries in underwater sensor nodes
and enable them to potentially operate indefinitely. Acoustic-
based SWIPT enables contact-less recharging of underwater
sensor nodes at much longer distances than is possible through
RF, optical communication, or magnetic induction [5], which
are the other major signaling technologies for WUSNs. In
underwater SWIPT, the signal transmitted by an acoustic
source is used to decode data at the receivers and to charge a
bank of supercapacitors for powering WUSNs nodes [4], [5].
Supercapacitors are lighter than batteries, charge faster, and
pose fewer environmental problems [5].
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This paper proposes a sustainable underwater sensor net-
work based on SWIPT and AUVs. The AUVs are deployed
from a floating platform on the water surface to simultaneously
collect data from the underwater nodes and recharge the nodes.
Each AUV is equipped with a bidirectional acoustic modem;
one for communicating with the underwater sensor nodes
and the other for communicating with a floating station on
the water surface. It is imperative to improve the throughput
of the system to maximise data collection and at the same
time, maximise wireless power transfer (WPT) to the nodes.
However, finding locations that simultaneously maximise these
goals is a non-trivial problem due to the three-dimensional
nature of the ocean, and due to water current, which causes the
AUVs to sway and nodes to drift. In acoustic-based SWIPT, an
external acoustic source generates data-bearing acoustic waves
that can be collected by a piezoelectric ceramic transducer
some distance away from the source. The transducer extracts
electrical signal from the waves for data decoding and to
charge the transducer’s power source (a bank of supercapaci-
tors). Acoustic SWIPT is still in its infancy because of severe
limitations such as heavy channel losses due to absorption and
spreading [6], as well as high electrical–acoustic and acoustic–
electrical conversion losses at the transmitter and receiver [5],
respectively.

In this paper, we model the problem of simultaneously
maximising throughput and harvested power as a Markov
Decision Process (MDP). To deal with the stochastic and time-
varying nature of the underwater acoustic channels, we pro-
pose a model-free RL solution based on 𝑄−learning and state-
action-reward-state-action (SARSA) to solve the MDP. The
aim of this work is to simultaneously maximise throughput and
harvested power in the underwater network by finding optimal
trajectories for the AUV to follow during data collection
rounds. The proposed scheme considers SWIPT based on the
power splitting (PS) technique, whereby a portion of the re-
ceived power (𝛼) is used for communication and the remainder
(1−𝛼) for WPT. To evaluate the performance of the considered
scheme, we developed a three-dimensional (3D) underwater
environment in MATLAB to enable the deployment of RL
algorithms. The environment can be used to test any model-
free RL algorithm (as well as model-based schemes if a model
of the environment is provided).

To the best of the authors’ knowledge, this is the first work
to propose an RL-based path planning solution for AUV-
enabled underwater acoustic networks that jointly optimises
throughput and energy harvesting. Most prior work on WPT
for underwater sensor networks has focused on near-field tech-
niques such as inductive coupling or magnetic resonance [7]–
[11]. However, these methods only work over short distances
up to a few meters, creating the need for a far-field WPT solu-
tion. In contrast to inductive coupling or magnetic resonance
approaches, acoustic signals can propagate over hundreds of
meters underwater, enabling wireless charging of distant nodes
through SWIPT. By exploiting the same acoustic waves for
both information and power transfer, SWIPT provides capa-
bility for long-range wireless charging. However, optimally
balancing the trade-off between data communication versus
energy transfer poses a challenge. We propose using RL to

jointly optimise both throughput and WPT in acoustic-based
SWIPT systems. To the best of our knowledge, this is the first
work to use RL for this application.

The key advantage of RL is that it provides a data-driven
solution without requiring an accurate analytical model of
the complex underwater acoustic channel. The agent learns
directly from experience through interactions with the environ-
ment. By carefully designing the reward function, the RL agent
can learn optimal policies that maximise both throughput and
WPT simultaneously. The AUV adaptively adjusts its trajec-
tory to find optimal locations that balance the two objectives.
This data-driven approach also obviates the need for difficult
offline optimisation of transmitter beamforming and power
allocation between information versus energy transfer. The
agent automatically learns policies to optimise performance.
In contrast to prior short-range inductive coupling methods,
acoustic SWIPT enabled by RL offers a long-range wireless
charging capability. This helps overcome the limited battery
lifetimes of underwater nodes and enables sustainable perpet-
ual operation. The proposed RL-based solution advances the
state-of-the-art in underwater energy harvesting. By jointly
optimising throughput and WPT, this approach can enable
the realisation of sustainable sensor network deployments over
large areas.

The main contributions of this article are summarised as
follows:
• This is the first work to apply RL for joint throughput

and WPT optimisation in underwater acoustic networks
with SWIPT.

• It formulates the AUV trajectory optimisation for max-
imising data collection and wireless charging of nodes as
an MDP, which is solved using Q-learning and SARSA
RL algorithms based on a carefully designed reward
function.

• It implements and evaluates the RL solution in a 3D
underwater networking environment developed specifi-
cally to enable testing of different RL algorithms for
underwater sensor networks irrespective of the underlying
channel model or signaling technology used.

The rest of this paper is structured as follows. Section II
briefly reviews the state-of-the-art in wireless information and
power transfer in underwater sensor networks. The network
model, underlying underwater channel model and physics of
acoustic-based SWIPT are covered in Section III. Section IV
presents some background on RL, problem formulation as an
MDP, and presents the RL solution. This is followed by an
evaluation of the performance of the proposed solution and a
presentation of the achieved results in Section V. Section VI
concludes the paper and highlights future directions.

II. LITERATURE REVIEW

There is a dearth of current literature in acoustic-based
SWIPT, despite the existence of analytical proof of its feasi-
bility in underwater sensor networks [4], [12] and its practical
demonstration, as shown in [5], [12]–[14]. The pioneering
work in acoustic SWIPT was presented in [4], which showed
analytical proof of the feasibility of WPT to WUSNs nodes
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from a given distance. The authors derived the theoretical
upper bounds for harvested power for a given underwater
channel, source power budget, known source and receiver
characteristics, and range. They showed that up to 100 W
of electrical power can be harvested for a remote source
electrical power of 2 kW for frequencies less than 20 kHz
at less than 1 km distances. A batteryless underwater system
was proposed in [5], where it was demonstrated that sufficient
power can be harvested via SWIPT to operate an underwater
sensor node for both sensing and communication operations,
without an external power supply. The authors in [12], [15]
quantitatively and experimentally evaluated the magnitude of
electrical power delivered to a remote node from a source
of known acoustic strength via WPT. They also analysed
the parameters that influence the received power, such as
the transmission range, source strength, and the impedance
characteristics of the receiver. They used a receiver com-
prising a piezoelectric cylindrical bar operating in the 33-
mode (longitudinally excited) of piezoelectricity under free-
free mechanical boundary conditions, while a spherical wave
generator was used as a source.

Other sustainable solutions proposed for WUSNs include
scavenging energy from the ambient environment [16], [17],
which can power only a single node at a time, and WPT
through inductive and capacitive coupling [7], [9], [18]. Com-
pared to energy scavenging, an underwater acoustic source
can simultaneously power multiple underwater nodes via
SWIPT [4]. The authors in [5] showed that hardware reuse
is another advantage of acoustic-based underwater SWIPT
over energy scavenging, as the same transducer hardware used
for communication can be reused for recharging the energy
sources of sensor nodes.

In [19], multi-armed bandit RL was proposed to aid tidal
energy harvesting for an IoUTs network, where different
channel access contention window sizes were represented as
arms of the bandit. The RL agent learns the optimal window
size through interaction with the network. A shortest path
charging scheme based on 𝑘−Means clustering was proposed
in [20] to improve throughput and minimise the travel distance
for mobile robots used to recharge underwater nodes’ batteries,
but it lacked a channel model for evaluating the signalling
technology used. An acoustic modem was designed and tested
in [21] for SWIPT, which considers how to achieve high trans-
mission efficiency underwater. Power transfer was maximised
through electrical impedance matching (using a resonance
compensation circuit) and acoustic impedance matching (by
covering the bakelite shell with an iron shell to reduce energy
leakage). The work in [22] considered acoustic-based SWIPT
for unmanned underwater vehicles. However, the authors as-
sumed a linear energy harvesting model, whereas practical
SWIPT circuits are non-linear [4], [5], as we show in Section
III-C.

The bulk of the available literature on WPT in underwater
networks is based on inductive and capacitive coupling [7]–
[10], [18], [23], [24]. Inductive coupling is based on electro-
magnetic induction, whereby two conductors are configured
in such a way as to induce a voltage in one conductor due
to a change in electric current in the other. In underwater

Fig. 1. The AUV moves around the network and provides SWIPT-based wire-
less charging to power-constrained underwater sensor nodes. The harvested
power is used to recharge an onboard battery for sensing, data processing, and
transmission of collected data from sensor nodes to the AUV, which serves
as a local base station.

applications, WPT based on inductive coupling is achieved
using spiral or coil elements. These techniques can generate
milli-watts of power at distances of a few centimetres to
meters, with typical WPT efficiencies between 50% and 80%
at centimetre-distances [5].

III. SYSTEM MODEL

A. Network Model

A 3D underwater sensor network is considered, as shown
in Fig. 1. The environment comprises an AUV deployed from
a floating station and 𝑁 sensor nodes distributed within a
3D volume of dimensions 𝐿 × 𝑊 × 𝐻, where 𝐿 and 𝑊

represent the length and width of the network, respectively,
and 𝐻 represents the depth below sea level. Each sensor node
contains sensors for monitoring key underwater parameters
such as temperature, power of hydrogen (pH) and dissolved
oxygen. Each sensor node consists of a suite of sensors and
devices divided into three major units for communication and
sensing, energy conversion, and power management. These
units interface with the AUV for data and power transfer
through the acoustic transducer, as shown in the block diagram
in Fig. 2. The communication and sensing unit contains the
sensors used for environmental monitoring, a microcontroller
responsible for data processing, high pass filters (HPF) for
signal conditioning, and transceiver operations. The powering
unit is responsible for supplying the correct voltage logic
levels required by the different components of the sensor node,
while the energy conversion unit is responsible for impedance
matching, power rectification, and storage. The AUV can
communicate with the underwater sensor nodes as well as the
floating station at the water surface. The AUV communicates
with the underwater nodes via an acoustic modem/hydrophone,
whose coverage takes the form of a cone [4], as shown in
Fig. 1. This coverage pattern enables it to potentially recharge
multiple underwater nodes simultaneously via WPT.
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B. Channel Model

An underwater acoustic transmitter is called a projector,
while an array of hydrophones is typically used as receivers.
The acoustic source level of the projector expresses the
amount of power radiated, analogous to the transmitting power
in terrestrial network nodes. The passive SONAR equation
expresses the received acoustic intensity at a distance away
from the projector as a function of acoustic losses and modem
characteristics. In typical (terrestrial) network parameters, this
intensity is equivalent to the received power, which can be
used to calculate the received signal-to-noise ratio (𝛾) as [25]

𝛾 = 𝑆𝐿 − 𝑇𝐿 − 𝑁𝐿 + 𝐷𝐼, (1)

where SL is the acoustic source level, TL characterises the
transmission losses, NL is the noise level, and DI is the
directivity index, which expresses the ability of the acoustic
projector to focus the radiated energy in a desired direction.
At the projector, an electrical input signal is used to generate
an acoustic signal, which is propagated as pressure waves.
The source level depends heavily on the electrical–acoustic
conversion efficiency of the projector. This typically varies
between 20% and 70% for practical modems [4], implying
that in some cases, less than half of the input electrical
power is converted into acoustic power. Given similar losses
at the receiver and channel losses, only a fraction of the input
electrical power is available for SWIPT. The acoustic source
level at the projector is given by [4]

𝑆𝐿 = 170.8 + 10 log10 𝑃𝑒𝑙𝑒𝑐 + 10 log10 [ + 𝐷𝐼, (2)

where 𝑃𝑒𝑙𝑒𝑐 is the electrical input power at the source and [
is the electrical to acoustic power conversion efficiency. The
transmission loss is given by [6]

10 × log𝑇𝐿 (𝑟, 𝑓 ) = 𝑘 × 10log𝑟 + 𝑟 × 10log𝛼( 𝑓 ), (3)

where 𝑟 is the distance between the transmitter and the
receiver. The absorption loss was obtained empirically by W.H.
Thorp as [26]

𝛼( 𝑓 ) = 0.11
𝑓 2

1 + 𝑓 2 +44
𝑓 2

4100 + 𝑓 2 +2.75 ·10−4 𝑓 2+0.003, (4)

where 𝑓 is the operating frequency in kHz, and 𝑘 is referred
to as the channel spreading factor (similar to the path loss
exponent in terrestrial radio-based communications); 𝑘 takes
values of (1, 2), where 𝑘 = 1 is referred to as cylindrical
spreading and 𝑘 = 2 is referred to as spherical spreading.

The noise level represents the cumulative effect of noise
in an underwater communication system. Noise in underwater
acoustic communication systems is a function of the frequency
of the propagating acoustic waves. It comprises noise from
shipping (𝑁𝑠), water waves (𝑁𝑤), water turbulence (𝑁𝑡 ), and
thermal noise (𝑁𝑡ℎ), whose power spectral densities can be
expressed in dB re 1 `Pa at 1m per Hz [6] as

𝑁𝑡 ( 𝑓 ) =17 − 30 log( 𝑓 ), (5)
𝑁𝑠 ( 𝑓 ) =30+20𝑠+26 log( 𝑓 )−60 log( 𝑓 +0.03), (6)

𝑁𝑤 ( 𝑓 ) =50 + 7.5
√
𝑤 + 20 log( 𝑓 ) − 40 log( 𝑓 + 0.4), (7)

𝑁𝑡ℎ ( 𝑓 ) = − 15 + 20 log( 𝑓 ), (8)

where 𝑤 is the wind speed in m/s, 𝑠 is the shipping activity
factor (0 for low activity and 1 for high activity) and 𝑓 is the
frequency in kHz. Shipping activity noise and noise due to
ocean turbulence dominate at very low and low frequencies;
thermal noise is predominant at frequencies above 100 kHz,
while noise due to surface waves is strongest between 100 Hz
– 100 kHz [6].

C. Simultaneous Wireless Information and Power Transfer for
Acoustic-based Underwater Networks

Acoustic energy propagates in water as fluctuating pressure
waves with a given amplitude, frequency, and phase. In water,
acoustic waves are primarily generated through the piezoelec-
tric effect, which is the deformation of certain materials (such
as piezoelectric ceramics) due to the application of an electric
field. By carefully altering the frequency and intensity of the
applied electric field, a piezoelectric ceramic material (called
a transducer) can be expanded and contracted at a desired
frequency, causing information-bearing waves to be generated
around the material when immersed in water. The strength
of the acoustic waves generated depends on the magnitude
of the electrical input power and the characteristics of the
transducer, such as its electrical–acoustic conversion efficiency
and the impedance matching between the transducer and
seawater [27]. The shape of the waveform generated depends
on the dimensions of the source transducer (point sources
generate cylindrical waves in the far field; compact sources
generate spherical waves; planar sources generate plane waves,
etc.). Similarly, at the remote receiving end, pulsation of the
piezoelectric ceramic material due to water pressure generates
an electrical signal that can be used to decoded information
encoded in the acoustic waves at the source. As highlighted
in Section I, electrical energy can also be harvested from
the received signal. An acoustic wave propagating in the 𝑥-
axis generates pressure fluctuations that can be detected by an
acoustic hydrophone. The fluctuations can be expressed as [5]

𝑝(𝑥) = 𝑝0𝑒
−𝛼𝑥𝑒 𝑗 (𝜔𝑡−𝑘𝑥 ) , (9)

where 𝑘 = 𝜔/𝑐 is the wave number and 𝜔 is the angular
frequency. At the target, a receiver hydrophone containing a
piezoelectric transformer converts the mechanical vibrations
from the acoustic waves across its terminals into electrical
energy. The receiver sensitivity (𝜌) expresses the minimum
acoustic energy per unit pressure that can be detected by the
acoustic hydrophone. It is given by [4] 𝜌 = 20 log10 𝑀, where
𝑀 is the sensitivity in V/`Pa. The voltage induced across the
transducer terminals, 𝑝𝑀 depends on the acoustic pressure 𝑝
at that point, and can be expressed as 𝑝 = 10(𝛾/20) , where 𝛾
is the received SNR (Eq. 1). The induced voltage, 𝑉𝑖𝑛𝑑 at the
receiver hydrophone terminals is given by [4]

𝑉𝑖𝑛𝑑 =

(
10𝛾/20

) (
10𝜌/20

)
. (10)

The electrical power available for harvesting, 𝑃a depends on
the impedance matching between the receiver hydrophone and
the surrounding seawater. For a single hydrophone, this can be
expressed as

𝑃a =
𝑉2
𝑖𝑛𝑑

4𝑅𝑝
, (11)
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where 𝑅𝑝 is the load resistance required to ensure impedance
matching. If a transducer array is used (such as in [4]), Eq.
(11) is scaled by the number of array elements 𝑛 as 𝑛 (𝑉𝑖𝑛𝑑 )

2

4𝑅𝑝
.

The total harvestable power, 𝑃 is given by

𝑃 = [
10(𝛾+𝜌)/10

4𝑅𝑝
, (12)

where [ is acoustic–electrical power conversion efficiency.
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Fig. 2. Block diagram of a SWIPT-powered underwater sensor system, with
circuitry for electrical to acoustic power conversion and vice versa.

The SNR, 𝛾𝑖 between the 𝑖th node and the AUV can be
expressed as

𝛾𝑖 =
𝑃𝑖/𝑇𝐿𝑖,𝑎𝑢𝑣
𝑁0 ( 𝑓 )𝐵

, (13)

where 𝑃𝑖 is the transmitting power of the 𝑖th node, 𝑇𝐿 is the
transmission loss between the node and the AUV, 𝑁0 is the
noise power spectral density, and 𝐵 is the operating bandwidth.
Similarly, the SNR 𝛾𝑎𝑢𝑣 between the AUV and the surface
station (SS) can be expressed as

𝛾𝑎𝑢𝑣 =
𝑃𝑎𝑢𝑣/𝑇𝐿𝑎𝑢𝑣,𝑠𝑠

𝑁0 ( 𝑓 )𝐵
, (14)

where 𝛾𝑎𝑢𝑣 is the transmitting power of the AUV, 𝑇𝐿𝑎𝑢𝑣,𝑠𝑠 is
the transmission loss between the AUV and SS, and 𝑁0 is the
noise power spectral density. The system throughput is given
by

T = 𝐵 log2 (1 + 𝛾𝑎𝑢𝑣), (15)

where 𝛾𝑎𝑢𝑣 ≥ 𝛾𝑡ℎ, and 𝛾𝑡ℎ is the minimum receiver sensitivity.

D. Autonomous Underwater Vehicle Dynamics

The power consumed by the AUV is a function of the
forces acting on it. The AUV energy usage can be analysed as
follows [28]. The electrical power 𝑃 used for motion is given
by

𝑃 = 𝑃prop + 𝐻 = 𝐷 ×𝑉 + 𝐻, (16)

where 𝐻 is the hotel load (power consumed by the AUV’s
subsystems that are not associated with propulsion), 𝑃prop
is the propulsion power, 𝐷 is the drag force and 𝑉 is the
AUV velocity. The drag force is a function of the AUV

TABLE I
TABLE OF PARAMETERS I

Parameter Value
Network size 100 m × 100 m × 50 m
Transmit power (𝑃𝑡 ) 170 dB re 1 `Pa @ 1m
Frequency, 𝑓 24 kHz
Nominal sound speed, 𝑐 1500 m/s
𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥 22, 26 kHz
End-to-end reliability (𝛼) 0.95
Link failure rate (𝑝𝑖) (random) 0.05 – 0.25
Wind speed, (w) 10 m/s
Shipping activity factor, (s) 0
Spreading factor, (𝑘) 1.5
Relay set, (𝐾) 6
Node circuit power, (𝑃𝐶 ) ≈ 100 mW
Packet size, (𝐿𝑡 ) 100 bytes
Noise power, (𝑁𝐿) −50 dB
Target transmission rate, (𝑅) 1
Learning rate, 𝛼 0.75
Discount factor, ^ 0.99
Replay memory size 𝑁 1000
Exploration factor, 𝜖 1.0
𝜖𝑑𝑒𝑐𝑎𝑦 0.999
𝜖𝑚𝑖𝑛 0.001
Batch size 4

design (mostly shape), speed and hydrodynamic properties of
seawater. It is given by

𝐷 =
1
2
𝐶D𝐴𝜌𝑣

2

𝛽
, (17)

so that Eq. (16) can be expressed as

𝑃prop =
1
2
𝐶D𝐴𝜌𝑣

3

𝛽
, (18)

which depends on the drag coefficient, 𝐶D, area of the AUV,
𝐴, the density of water, 𝜌. 𝛽 is a conversion factor between
the mechanical power used for diving and the input electrical
power into the motor. The power used to travel between two
points 𝑝, 𝑞 is given by 𝐸 = 𝑃prop𝑡𝑝𝑞 = 𝑃prop

𝑑𝑝𝑞
𝑣
, where 𝑡𝑝𝑞

is derived from the velocity of the AUV and the distance

between the points, 𝑑𝑝𝑞 =

√︃(
𝑥𝑝,𝑞 − 𝑥𝑝,𝑞

)2 +
(
𝑦𝑝,𝑞 − �̂�𝑝,𝑞

)2,
where 𝑥𝑝,𝑞 , 𝑦𝑝,𝑞 represent the 𝑥 and 𝑦 coordinates of the first
point, and 𝑥𝑝,𝑞 , �̂�𝑝,𝑞 represent the 𝑥 and 𝑦 coordinates of the
second point. More in-depth coverage of AUV dynamics and
power requirements can be found in [29], [30].

IV. REINFORCEMENT LEARNING MODEL

RL involves learning through interaction, whereby a piece
of software called an agent takes trial-and-error actions in a
given environment in order to learn some desired behaviour.
A numerical reward is used to quantify how well the agent
has learned the desired behaviour; a high reward is given to
the agent if the action taken is the desired one, else, a low
or negative reward is given. As a result, a reward signal can
be used to completely guide the behaviour of an RL agent in
a given environment. The cumulative or total reward that an
agent can receive from an environment is called the return.
Taking actions that have immediate high rewards is referred
to as being greedy, in which case the agent exploits its current
knowledge to maximise the reward it can obtain. The agent
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can also forego immediate high rewards and test other actions
to evaluate if they could lead to higher future rewards. This
is known as exploration. A trade-off is often made between
exploration and exploitation to maximise the expected return
in an environment.

An RL problem is often modelled as an MDP, which
provides a mathematical framework for modelling decision-
making. MDPs exhibit the Markov property (the future state
of a system depends solely on its current state and is con-
ditionally independent of the past), and consists of a tuple
𝑀 = (𝑆, 𝐴, 𝑃, 𝑅𝑡 , ^), where 𝑆, 𝐴, 𝑃, 𝑅𝑡 respectively represent
the state space, action space, environment dynamics and transi-
tion probabilities and reward function at a time, 𝑡; ^ represents
a discount factor that indicates how much priority is given to
immediate rewards compared to future rewards. More in-depth
coverage of the foundations of RL can be found in [31] while a
concise overview of its applications in the IoUTs can be found
in [3]. In RL terminology, an agent is some software trained to
perform a given task, such as embedded software in an AUV
used for underwater navigation. The agent is represented by
its state, which is (internal) information from the environment
that it uses to select its next action. Everything external to the
agent constitutes its environment, from where it draws sensory
inputs. A reward is a numerical feedback signal used to judge
if the agent selected the correct action for the given state and
environment. When the agent takes an action or a set of actions
in a given state, it transitions to the next state and receives a
reward for the previous action.

In RL, an agent can learn a policy function, a value function
or a model of the environment. A policy, 𝜋 is a mapping from
states 𝑆 to actions 𝐴. That is, a policy can be defined as
the probability of selecting a particular action 𝑎, in a given
state 𝑠: (𝜋(𝑠, 𝑎) = 𝑝(𝐴(𝑡) = 𝑎 | 𝑆(𝑡) = 𝑠). In deterministic
policies, every state has a discrete set of actions associated
with it, whereas the set of actions is derived from a probability
distribution in stochastic policies. On-policy learning occurs
when the data being generated is used to learn the best
policy, changing the behaviour of the agent in the course
of learning (e.g. the SARSA algorithm), whereas off-policy
learning requires two policies: one for taking actions in the
environment and the other for learning from the data generated
(e.g. policy gradient (PG) methods). A value function measures
how good a given state is (it quantifies the cumulative reward
that can be derived from a given state over time). It can be
a function of a state (state-value functions, 𝑉 𝜋 (𝑠)), or of a
state-action pair (action-value functions, 𝑄 𝜋 (𝑠, 𝑎)). A model
or transition function is an ensemble of the environmental
knowledge available to the agent. It indicates how the agent
represents the environment and enables the agent to predict
future states and actions, even without actual interaction with
the environment. An agent using model-based RL methods
learns the transition dynamics of the environment to select the
optimal action to take in every state, whereas in model-free
methods, it must interact with the environment to learn an
optimal policy or value function that maximises the expected
return.

In model-free methods, the agent can directly learn an
optimal policy (PG methods) or indirectly learn a value

function (value iteration methods), which is then used to
extract the underlying policy. Hence, model-free methods can
be value-based or policy-based. Policy-based algorithms (more
details can be found in [32]) iteratively optimise a policy
through interaction with the environment until it converges
to an optimal policy. Value-based methods optimise a state-
value function 𝑉 𝜋 (𝑠) or a state-action value function 𝑄 𝜋 (𝑠, 𝑎),
also called a 𝑄 function (e.g. 𝑄-learning, SARSA, multi-
armed bandits, etc). The state-value function 𝑉 𝜋 (𝑠) indicates
the expected return in a given state (a measure of how
good the state is) following a policy 𝜋, and is defined as
𝑉 𝜋 (𝑠) = E𝜋 [𝑅𝑡 | 𝑠𝑡 = 𝑠]. The 𝑄 function denotes how good
it is to take an action in a given state following a policy 𝜋,
and is defined as 𝑄 𝜋 (𝑠, 𝑎) = E𝜋 [𝑅𝑡 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎]. Once the
𝑉 𝜋 (𝑠) or 𝑄 𝜋 (𝑠, 𝑎) is found, it can be used directly to extract
the optimal policy (argmax of the optimal value function).
The 𝑄 function uses a 𝑄-table to show all the actions that the
agent can take in a given state and their corresponding values,
hence the action with the maximum value is selected as the
optimal action. The Bellman optimality equations are used to
find optimal policies and value functions. For the state-value
function, this is given by [31]

𝑉∗ (𝑠) = max
𝑎∈𝐴

(
𝑅(𝑠, 𝑎) + 𝛾

∑︁
𝑠′∈𝑆

𝑃(𝑠′ |𝑠, 𝑎)𝑉 (𝑠′)
)
. (19)

The Bellman optimality equation for state-action value func-
tions is given by

𝑄∗ (𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + ^
∑︁
𝑠′∈𝑆

𝑃(𝑠′ |𝑠, 𝑎)max
𝑎′∈𝐴

𝑄(𝑠′, 𝑎′), (20)

where 𝑉∗ (𝑠) is the optimal state-value function for state 𝑠,
𝑄∗ (𝑠, 𝑎) is the optimal state-action value function for taking
action 𝑎 in state 𝑠, 𝑅(𝑠, 𝑎) is the reward for taking action 𝑎 in
state 𝑠, ^ is the discount factor, 𝑃(𝑠′ |𝑠, 𝑎) is the probability of
transitioning to state 𝑠′ given that action 𝑎 is taken in state 𝑠, 𝑆
is the set of possible states, 𝐴 is the set of possible actions in
state 𝑠, and max𝑎′∈𝐴𝑄 (𝑠′, 𝑎′) is the maximum expected future
reward over all possible actions in state 𝑠′. The Q-learning
algorithm satisfies the Bellman equation and is given by

𝑄(𝑆𝑡 , 𝐴𝑡 ) ← 𝑄(𝑆𝑡 , 𝐴𝑡 ) + 𝜌
[
𝑅𝑡+1 + ^max

𝑎
𝑄(𝑆𝑡+1, 𝑎)

−𝑄(𝑆𝑡 , 𝐴𝑡 ), (21)

where 𝜌 is the learning rate.

A. Joint maximisation of throughput and WPT as an RL
problem

The adoption of RL in this article to address the joint
maximisation of throughput and WPT problem is motivated by
its suitability for solving decision-making problems [3] under
uncertainty, especially in dynamic environments. The under-
water channel is stochastic and varies with time [33], [34],
making the instantaneous SNR unpredictable. The problem of
resource allocation in such channels naturally lends itself to
RL solutions [35], whereby the underlying channel parameters
can be learned in an online manner through interaction with
the network environment.
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The time-varying multipath fading and Doppler spreading
characteristics of underwater acoustic channels make them
highly dynamic environments. The channel impulse response
can vary significantly even over short distances due to changes
in water currents, temperature gradients, shipping activity,
etc., making it infeasible to acquire an accurate channel
model. This makes analytical solutions to throughput and WPT
maximisation intractable, as it is difficult to model the rapidly
changing channel conditions mathematically. As a result, the
stochastic channel variations must be learned directly through
interaction with the underwater environment. RL is a data-
driven approach that is very well-suited for decision making
under uncertainty. By modelling the joint throughput and WPT
maximisation as an MDP, RL algorithms can be leveraged
to learn optimal policies directly from the experience of
the agent, thus avoiding lengthy and inaccurate analytical
modelling of the complex time-varying underwater channel
characteristics. The agent learns by simply interacting with
the environment and collecting rewards. The reward signal
encapsulates the goals of maximising throughput and WPT,
as captured in Section IV-B. The agent can then rely on these
policies to make all future data transfer and WPT decisions
(i.e. its actions are guided by the policies) that dynamically
adjust to changing conditions of the ocean. The RL parameters
are defined in the next Section ( IV-B).

In this work, the RL models were trained offline, relying
on Monte Carlo simulations to explore extensive variations in
the underwater channel. After training, they are then deployed
to the simulated underwater network environment where they
execute their offline learning to dynamically take optimal deci-
sions despite the rapid variations in the underwater channel. In
the MDP model, the AUV represents the agent; the underwater
environment represents the environment of the MDP; moving a
unit distance in any either the positive or negative direction of
the Cartesian coordinates (x, y, or z) constitutes an action; the
3D position of the AUV, channel gains to nodes and residual
energies of the nodes under its coverage represent the AUV’s
state; while the reward depends on the system throughput,
wireless power transferred, and the energy expended by the
AUV to for the action taken. Detailed analysis of the RL
parameters is covered in Section IV-B while the 𝑄−learning
algorithm is presented in Algorithm 1.

Algorithm 1 𝑄−learning-based trajectory selection for under-
water SWIPT
Require: Learning rate 𝛼 ∈ (0, 1], splitting factor Γ, discount

factor ^ ∈ (0, 1], set of actions A, Q values Q = 0,
1: Initialize the environment and get initial state 𝑠1
2: for 𝑘 = 0, 1, 2, . . . , 𝐾 do
3: Select action 𝑎𝑡 ∈ A using the 𝜖-greedy policy
4: Apply action 𝑎𝑡 to the environment
5: Obtain (G𝑡−1,L𝑡 ,Ξ𝑡 ) from the environment
6: Receive rewards 𝑅(𝑠𝑡 , 𝑎𝑡 ) using Eq. (23)
7: Set 𝑆𝑡+1 = (G𝑡 ,L𝑡 ,Ξ𝑡 )
8: Update 𝑄(𝑠𝑡 , 𝑎𝑡 ) using Eq. (21)
9: end for

B. Reinforcement Learning Parameters

1) States: The two design goals of maximising throughput
and harvested power consider the channel between the AUV
and the network nodes and the optimal trajectory of the AUV
that maximises the design goals. Therefore, the state space
S = (G𝑡 ,L𝑡 ,Ξ𝑡 ) ∈ S where G𝑡 represents a vector of
the channel gain at 𝑡 obtained via implicit ARQ at periodic
intervals, L𝑡 represents a vector of the (𝑥, 𝑦, 𝑧) coordinates
of the AUV at 𝑡 and Ξ𝑡 represents a vector of the residual
energies of the nodes that are within the coverage zone of
the AUV (represented by the cone emanating from the AUV
in Fig. 1) at position L𝑡 . Whereas the 3D location of the
nodes can be floating point numbers, in our implementation,
(𝑥, 𝑦, 𝑧) ∈ L𝑡 are represented by integers to reduce the
computational demand of representing the system state. By
accounting for the residual energy in the state equation, the
AUV is motivated to move to a new state (new location) that
enables it to maximise the reward.

2) Actions: The actions consist of taking unit steps towards
the location that jointly maximises throughput and harvested
power. The AUV is considered a rigid body in the 3D
underwater space. The actions are discretised unit steps in the
positive or negative 𝑥 or 𝑦 or 𝑧 axes, as shown in Fig. 3. Each
action is selected following the 𝜖-greedy algorithm for both
𝑄-learning and SARSA 𝑄-learning. That is, at each episode,
the action is selected based on the following condition

𝑎𝑡 =


argmax
𝑎∈A

𝑄(𝑠, 𝑎), with probability 1 − 𝜖

∼ N(A), with probability 𝜖,
(22)

where N is the normal distribution that denotes selecting
a random action over the set of actions A and 𝜖 is the
exploration factor.

3) Rewards: Reward design is of paramount importance
in RL because the reward controls the agent’s behaviour and
guides it to take optimal actions. The reward for the state–
action–next state interaction is governed by the function 𝑟 :
S × A × S → R which we define as

R =


ΓT + (1-Γ)E𝜐-Pm

𝑎∈A
, if nodes

−P𝑚 otherwise,
(23)

where 𝜏, E𝜐 ,P𝑚 and Γ respectively represent the system
throughput, harvested power, power consumed to execute
a round, and a switching parameter used by the agent to
prioritize either achievable throughput or energy harvesting.
The parameter Γ is defined as {Γ ∈ R : 0 ≤ Γ ≤ 1}. Equation
(23) shows that the agent obtains the highest reward by moving
to a position that maximises both throughput and harvested
power. However, the agent must take such actions intelligently
to conserve its battery, which is also limited in supply. The
power consumption parameter P𝑚 discourages unprofitable
movements. If it moves to a position with no nodes, it does
not receive a reward but is charged a penalty for the energy
expended to execute the motion.

We analysed how the starting position of the AUV impacts
the number of underwater nodes it can simultaneously provide
coverage to. This is called the field of view of the AUV
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Fig. 3. Action space of the AUV agent. Each action involves taking a unit
step in any of the 𝑥, 𝑦, 𝑧 axes towards a location or set of locations. This
allows the AUV to maximise the data collection throughput and amount of
power harvested, thereby forming a trajectory of points during each episode.

0
5

10

02468100.75

0.8

0.85

0.9

0.95

1

xy

Pr
ob

ab
ili

ty

Fig. 4. Probability that the agent sees at least one node as a function of
starting position in 3D environment — 𝑧 = 0.

and is shown by the blue cone in Fig. 1. It should be noted
that the starting position is always along the 𝑧 axis. Our
analysis shows that the probability of covering more than
a single node is higher when the AUV is located near the
centre of the network area, compared to when it is close
to the edge of the network grid, as shown in Fig. 4. To
prevent the AUV from becoming stuck in a position with a
high probability of covering a large number of nodes, which
provides it higher immediate rewards at the expense of nodes
in sparsely populated parts of the network, we also analysed
the probability of covering a specific number of nodes (from
0 to M) as a function of the starting position of the AUV.
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Fig. 5. Probability that the field of view of the AUV covers 𝑘 nodes, as a
function of the initial state/starting position

Consideration of these probabilities informed the design of the
reward function, which encourages the AUV to explore more
and collect higher rewards, rather than becoming stuck in a
position with high initial rewards. This also ensure fairness
in network coverage. Our analysis of the AUV field of view
for multiple nodes adopted the binomial distribution as an
approximation of the Poisson distribution. Let 𝑛 be the total
number of nodes in the network grid (represented by the 3D
cube in Figure 3) and let 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 denote the coordinates of
node 𝑖, let 𝑉𝑐 denote the volume of the cone representing the
coverage area of the AUV, with angle Θ degrees that represents
its field of view. To calculate 𝑉𝑐, we can consider a cross-
section of the cone along the plane perpendicular to its axis.
The cross-section is a circle with radius 𝑟 , where 𝑟 is the
distance between the apex of the cone and the point on the
circumference of the circle that is farthest from the apex, and
ℎ is the distance from the apex to the base. The volume 𝑉𝑐,
given by Eq. 24 always depends on the current position of
the AUV, hence, the Monte-Carlo technique can be used to
approximate it for the general case as follows

𝑉𝑐 =
1
3
𝜋𝑟2ℎ. (24)

Let 𝑝𝑘 be the probability of covering 𝑘 nodes within the cone.
Since the nodes are distributed randomly in the 3D cube fol-
lowing a Poisson point process with density _, the probability
of finding a node within the cone is given by 𝑝 =

𝑉𝑐
𝑉𝑐𝑢𝑏𝑒

, where
𝑉𝑐𝑢𝑏𝑒 is the volume of the 3D cube. Considering binomial
distribution, the probability of not covering any nodes within
the cone is given by 𝑝0 = (1 − 𝑝)𝑛. Similarly, the probability
of covering exactly 𝑘 nodes within the cone can be calculated
as 𝑝𝑘 =

(𝑛
𝑘

)
× 𝑝𝑘 × (1 − 𝑝)𝑛−𝑘 . Therefore, to calculate the

probability of covering 𝑘 or more nodes within the cone, the
probabilities of covering 𝑘 , 𝑘 +1, . . . , 𝑛 nodes can be summed
up as

𝑝𝑘 =

𝑛∑︁
𝑖=𝑘

(
𝑛

𝑖

)
× 𝑝𝑖 × (1 − 𝑝)𝑛−𝑖 . (25)

Figure 5 shows the results from both the simulation and the
analytical approach. The probability of covering at least 𝑀
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nodes increases as the number of nodes in the environment
increases as a function of the initial state (starting position).
When there are more than 10 nodes in the network, the
probability of covering at least one node is greater than
50%. The probability of covering more nodes increases as
the number of nodes within the grid increases (the probability
of covering more than 4 nodes is higher than 50% when the
number of nodes exceeds 50. This distribution may hinder
learning since the agent may become stuck in a sub-optimal
position as the number of nodes increases. That is, if the
AUV can see many nodes from its starting position, it has no
incentive to explore other locations since it can collect high
rewards from such initial positions. To mitigate this issue, we
implemented a penalty for staying in a single position when
there is no data to transfer. If the AUV passes through a node
and there is data to transmit, the reward is similar to that given
in Eq. (23). Otherwise, the reward is −P𝑚. A similar approach
is taken when the AUV transfers power to the nodes. If the
node is already fully charged, it receives a reward of −P𝑚 to
encourage it to charge other nodes.

4) Environment dynamics: Nodes are randomly distributed
in a cube of dimensions 𝐿 ×𝑊 ×𝐻, where 𝐿 and 𝑊 represent
the length and width of the network, respectively, and 𝐻

represents the depth below sea level. When the agent takes
an action 𝑎𝑡 in state 𝑠𝑡 given by (G𝑡 ,L𝑡 ,Ξ𝑡 ), it receives a
reward 𝑟𝑡 , and transitions into a new state (G𝑡+1,L𝑡+1,Ξ𝑡+1).

A more rigorous analysis of the proposed RL framework for
joint throughput and WPT maximisation can also be consid-
ered from an optimal control perspective. The underlying MDP
formulation fits within the theory of discrete-time stochastic
optimal control processes. The key elements of the MDP can
be related to concepts from optimal control, whereby the
state space S (encompassing channel gains, AUV position,
and node energies) represents the system states; the action
set A of movements in 3D space denotes the control inputs;
the state transition probabilities P map the dynamics of the
acoustic channel and energy consumption models while the
reward function R encapsulates the objectives of maximising
throughput and WPT. The goal is to determine an optimal
policy, 𝜋∗ that chooses actions to maximise the expected
cumulative reward over the agent’s lifetime. This objective
corresponds to the standard infinite horizon discounted optimal
control problem with discount factor, ^. The Q-learning and
SARSA algorithms attempt to learn the optimal action-value
function 𝑄(𝑠, 𝑎) satisfying the Bellman optimality equation.
Convergence proofs rely on the contraction mapping theorem
while Lipschitz continuity of the Bellman operator can be used
to establish the loss function bounds for Q-learning.

V. PERFORMANCE EVALUATION

The simulations considered SARSA and Q-learning algo-
rithms based on the 𝜖−greedy policy. In SARSA, action values
are learned by following the current policy, while in Q-
learning, they are learned by following the greedy approach.
As a result, they converge to the absolute value function under
common conditions but at different rates. Q-learning tends to
converge more slowly compared to SARSA. However, it can

0 0.25 0.5 0.75 10

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

Power splitting factor, [

T
hr

ou
gh

pu
t

(k
bp

s)

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

T
hr

ou
gh

pu
t

(k
bp

s)

0

20

40

60

80

100

120

140

160

180

200

H
ar

ve
st

ed
po

w
er

(m
W

)

Reward Utility
Throughput
Harvested power

Fig. 6. Reward utility for varying values of the PS factor [ for a network
with 25 nodes. It is clear that throughput maximisation dominates irrespective
of the splitting factor (as long as [ < 1) due to the slow charging of the power
source compared to the duration required for data transmission.

continue learning while policies are changed. Additionally,
convergence is not guaranteed when Q-learning is combined
with linear approximation. In this study, we examined the
performance of the proposed model as the splitting factor, [
is varied from 0 to 1. The splitting factor measures how the
model allocates resources between two competing objectives,
such as WPT and throughput, especially in dense networks.
The model’s performance in this scenario is shown in Fig. 6,
which illustrates the contribution of the utility function to
the overall reward. The model was trained offline to reduce
computational demands on the resource-constrained underwa-
ter network. To ensure that the model generalises well to
the different network environments, Monte-Carlo simulations
were run, and the mean results were obtained.

The figure shows that even when the splitting factor is set
to [ = 0.5, the reward contribution is not equal for throughput
and harvested power when the learning converges. This is
because the agent must stay longer in a given state to be
able to maximise harvested power, which can result in a
negative reward for throughput since throughput requires a
shorter time to collect the rewards due to a particular state.
This is because it takes a much shorter duration to transfer
data from the nodes to the AUV than it takes to recharge
the supercapacitor bank of the nodes. Due to this behaviour,
the remainder of the performance evaluations considers only
values of [ = 1 and [ = 0, to maximise harvested power and
throughput respectively, unless otherwise stated. These values
represent the extreme ends of the reward function and provide
valuable insights into the trade-offs between the two design
objectives. In terms of the AUV trajectory, we observed that
if the agent is constrained to start from a fixed location, a
higher number of steps is required before converging to the
optimal trajectory. This is because the agent will explore more
(including taking sub-optimal trajectories). Meanwhile, if the
agent starts randomly, it converges faster since fewer steps are
required to orientate the agent, and it finds the optimal path
that it had already learned during training.

During execution, we evaluated the number of actions
required to achieve the maximum reward. From a network
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Fig. 7. Total network throughput for different algorithms averaged over Monte
Carlo runs for different network sizes.

design perspective, the maximum reward can help to estimate
the required power budget for a target throughput. By setting
an energy constraint at the nodes so they can transmit only
if their residual power level is higher than a set threshold,
the AUV is forced to maximise its actions to ensure that the
target throughput is reached by supplying the power required
by the nodes through WPT. This can then be used to quantify
the value of electrical power required from the AUV (given
the network topology and channel conditions) to supply the
target power budget. This is important for two reasons: a
classic challenge for mobile robots used in RL is balancing
between continuing to perform assigned tasks (in order to
collect higher rewards) versus returning to the charging station
to recharge its battery. If the robot continues working in the
environment, it will collect higher rewards. However, if it
runs out of power before returning to recharge, it will incur
a very high penalty, far higher than any additional rewards
it might collect from working longer. Thus, by quantifying
the power budget required to satisfy a target throughput and
linking it to the residual energy of the AUV, we successfully
address this dilemma for AUVs, ensuring that the AUV knows
exactly when to return to the surface station for recharging
by monitoring its own battery level. Secondly, this analysis
makes it easy for system designers to prepare a power budget
for the network and quantify the expected performance. It
answers the question: how much power is required to run
an underwater sensor network (given the network distribution,
reporting rate, density, etc.), and how long will the network
last? The following evaluations show how different models
perform under the given network conditions.

Most RL models use the average reward per iteration as a
metric to evaluate model convergence, with the average reward
per episode evaluated and compared with a baseline (random
actions in this work) or other models. Fig. 7 shows the average
aggregated network throughput as a function of the number of
actions the agent is required to take over an entire trajectory
for different models. For some applications, 𝑄−learning and
SARSA yield different results. Therefore, we explored how
both methods perform under the given optimisation problem.
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Fig. 8. Average number of actions required to achieve a given throughput. The
throughput targets are shown in Fig. 7. Clearly, randomly moving the AUV
around the network requires far more steps to achieve a target throughput than
𝑄−learning and SARSA.

Fig. 7 shows that 𝑄−learning and SARSA achieve similar
performance, but random action selection performs poorly
in comparison. It was observed that the performance gap
between the Q-learning and SARSA decreases as the number
of nodes increases, but there is no improvement in the random
action selection algorithm. This is because as the number
of nodes increases, the spatial variance between the nodes
increases, which implies that the agent is required to take
more actions (more angles, turns, and steps) to reach all the
nodes for data collection, thereby degrading its reward. If the
network size increases further, SARSA begins to outperform
𝑄−learning. Overall, the agent can reach more nodes to collect
data as the number of nodes increases, leading to higher total
throughput (and hence higher reward). However, the optimal
algorithms (Q-learning and SARSA) return higher rewards
than the random action selection. Each bin in Fig. 7 represents
the mean aggregate throughput, while the error bars indicate
the maximum and minimum throughputs.

Recall that AUVs are also battery-powered and have a finite
supply of energy. Though they can return to the surface station
to recharge their batteries, this affects their operation and
might add additional delays to the data collected and limit their
usefulness if only one AUV is used. To improve the endurance
of the AUV, it is important that it maximises its energy
efficiency by taking optimal actions at all times. Each action
the AUV takes consumes energy, as shown in Eq. 18. Fig. 8
quantifies the energy efficiency of the AUV as a function of
the number of actions it takes to achieve the maximum reward
in terms of throughput for different algorithms. Since the AUV
must provide energy to the underwater network nodes via
SWIPT and also upload data gathered by the nodes, the energy
usage of the AUV takes critical significance in the network
deployment. Fig. 8 shows that the optimal algorithms far
outperform the random actions by yielding higher throughputs
while using much less energy. That is, for the same energy
usage, 𝑄−learning and SARSA yield higher throughput and
harvested power. Stated differently, for the same number of
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actions, they require less energy to achieve a target throughput,
and there is some probability that the random action selection
will never achieve the target throughput even if it takes an
unlimited number of steps (actions).
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Fig. 9. Network energy efficiency, which quantifies the power consumed (by
the AUV and the sensor nodes) per unit of data collected as a function of the
number of nodes for different algorithms.
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Fig. 10. Total harvested power for different numbers of nodes per episode
(50 steps). This result compares the quantity of harvested power for different
algorithms. It is evident that 𝑄−learning and SARSA lead to higher harvested
power than taking random actions. In addition, the optimised algorithms
achieve the maximum harvestable power in fewer steps, as shown in Fig.
11. When the AUV moves (takes actions) at random, not only does it lead to
lower harvested power, it might never achieve the maximum power possible
in simulation time.

Energy efficiency can be defined as, 𝐸𝐸 = T/P𝜏 , where
P𝜏 is the total power. Two types of power are considered: a)
power used by the AUV for navigation and b) transmission
power used for SWIPT. Each node transmits with 1 kW of
power. P𝜏 is the sum of the transmission power from the AUV
to the node and the navigation power used for propulsion. The
total power for navigation is given by the number of actions
per step multiplied by the power consumed by each step.
Fig. 9 shows a decreasing trend for energy efficiency because
while throughput increases linearly with the number of nodes
in the network, power consumption increases geometrically.

However, it is still observed that 𝑄−learning and SARSA
achieve higher energy efficiency than random movements.
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Fig. 11. Average number of actions required to achieve a given magnitude
of power harvesting. Clearly, randomly moving the AUV around the network
requires far more steps to achieve a target throughput than 𝑄−learning and
SARSA. Moreover, the agent might never attain the maximum harvestable
power when it takes random actions.

Figure 10 shows the maximum harvested power for each
algorithm at different network sizes. When the PS factor 𝛼 = 0,
all the received power is used for WPT. We note that while the
trend for throughput is the same as that for WPT, the number
of steps (actions) required for both shows marked differences,
as more actions are required for WPT. Figure 11 shows how
the number of actions changes for the different algorithms to
achieve a target magnitude of power at the nodes.

z

VI. CONCLUSION

This article proposed a novel RL-based solution for making
underwater sensor networks that rely on AUVs for data
transfer more sustainable by jointly maximising throughput
and WPT in acoustic-enabled SWIPT systems. Formulating
the joint optimisation problem as an MDP and leveraging Q-
learning and SARSA algorithms provides an effective data-
driven approach for handling dynamic underwater channel
conditions. The customised reward function incentivises the
AUV to balance maximising data collection and wireless
charging of nodes with its own energy consumption. Imple-
mentation and evaluation of the proposed solution in an open
3D underwater networking environment specifically developed
for this study demonstrate significantly enhanced through-
put and energy harvesting compared to baseline schemes.
The proposed approach achieves over 200% gains in energy
efficiency. The environment built for testing this solution
works independently of the underlying channel model and
can be used to evaluate any RL algorithms designed for
underwater networks, irrespective of the signalling technology
employed. Unlike prior works which mostly focused on short-
range inductive power transfer, this article realises long-range
wireless charging combined with throughput maximisation
in underwater acoustic networks. The results validate the
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potential of the proposed RL-based solution for the sustainable
operation of underwater sensor networks.

While the current work demonstrates the promise of ex-
ploiting RL for sustainable underwater networking, several
modelling aspects can be enhanced in the future for closer
approximation to real-world systems. In particular, future
efforts will perform a link-level evaluation of the proposed
solution and extend the current work by 1) Implementing
non-linear acoustic-to-electric conversion models to emulate
practical SWIPT implementation losses better; 2) Simulating
node drift due to water currents and imperfect localisation to
improve robustness; 3) Evaluating how the solution performs
under different network protocols, scheduling algorithms, and
traffic patterns. Implementing these improvements will allow
the proposed RL framework to be validated on higher-fidelity
simulations and physical testbed deployments in the future.

REFERENCES

[1] M. C. Domingo, “An overview of the internet of underwater things,”
Journal of Network and Computer Applications, vol. 35, no. 6, pp. 1879–
1890, 2012.

[2] M. Jahanbakht, W. Xiang, L. Hanzo, and M. Rahimi Azghadi, “Internet
of underwater things and big marine data analytics—a comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp.
904–956, 2021.

[3] K. G. Omeke, A. I. Abubakar, L. Zhang, Q. H. Abbasi, and M. A. Imran,
“How reinforcement learning is helping to solve internet-of-underwater-
things problems,” IEEE Internet of Things Magazine, vol. 5, no. 4, pp.
24–29, 2022.

[4] A. Bereketli and S. Bilgen, “Remotely powered underwater acoustic
sensor networks,” IEEE Sensors Journal, vol. 12, no. 12, pp. 3467–
3472, 2012.

[5] R. Guida, E. Demirors, N. Dave, and T. Melodia, “Underwater ultrasonic
wireless power transfer: A battery-less platform for the internet of
underwater things,” IEEE Transactions on Mobile Computing, vol. 21,
no. 5, pp. 1861–1873, 2022.

[6] M. Stojanovic, “On the relationship between capacity and distance in
an underwater acoustic communication channel,” ACM SIGMOBILE
Mobile Computing and Communications Review, vol. 11, no. 4, pp. 34–
43, 2007.

[7] Y. Wang, T. Li, M. Zeng, J. Mai, P. Gu, and D. Xu, “An underwater
simultaneous wireless power and data transfer system for AUV with
high-rate full-duplex communication,” IEEE Transactions on Power
Electronics, vol. 38, no. 1, pp. 619–633, 2023.

[8] C. R. Teeneti, T. T. Truscott, D. N. Beal, and Z. Pantic, “Review of
wireless charging systems for autonomous underwater vehicles,” IEEE
Journal of Oceanic Engineering, vol. 46, no. 1, pp. 68–87, 2021.

[9] M. Tamura, K. Murai, and M. Matsumoto, “Design of conductive cou-
pler for underwater wireless power and data transfer,” IEEE Transactions
on Microwave Theory and Techniques, vol. 69, no. 1, pp. 1161–1175,
2021.

[10] H. Guo, Z. Sun, and P. Wang, “Joint design of communication, wireless
energy transfer, and control for swarm autonomous underwater vehicles,”
IEEE Transactions on Vehicular Technology, vol. 70, no. 2, pp. 1821–
1835, 2021.

[11] H.-X. Zou, M. Li, L.-C. Zhao, Q.-H. Gao, K.-X. Wei, L. Zuo, F. Qian,
and W.-M. Zhang, “A magnetically coupled bistable piezoelectric har-
vester for underwater energy harvesting,” Energy, vol. 217, p. 119429,
2021.

[12] S. Shahab, M. Gray, and A. Erturk, “An experimentally validated con-
tactless acoustic energy transfer model with resistive-reactive electrical
loading,” in Active and Passive Smart Structures and Integrated Systems,
SPIE, vol. 9431, 2015, pp. 31–44.

[13] H. S. Kim, S. Hur, D.-G. Lee, J. Shin, H. Qiao, S. Mun, H. Lee,
W. Moon, Y. Kim, J. M. Baik et al., “Ferroelectrically augmented contact
electrification enables efficient acoustic energy transfer through liquid
and solid media,” Energy & Environmental Science, vol. 15, no. 3, pp.
1243–1255, 2022.

[14] S. H. Si, R. Abd Rahim et al., “Acoustic energy harvesting using piezo-
electric generator for low frequency sound waves energy conversion,”
International Journal of Engineering and Technology (IJET), 2013.

[15] S. Shahab, S. Leadenham, F. Guillot, K. Sabra, and A. Erturk, “Ul-
trasound acoustic wave energy transfer and harvesting,” in Active and
Passive Smart Structures and Integrated Systems, SPIE, vol. 9057, 2014,
pp. 130–138.

[16] Y. Zou, P. Tan, B. Shi, H. Ouyang, D. Jiang, Z. Liu, H. Li, M. Yu,
C. Wang, X. Qu et al., “A bionic stretchable nanogenerator for under-
water sensing and energy harvesting,” Nature Communications, vol. 10,
no. 1, pp. 1–10, 2019.

[17] A. Allam, K. Sabra, and A. Erturk, “Piezoelectric transducer design for
simultaneous ultrasonic power transfer and backscatter communication,”
Smart Materials and Structures, vol. 31, no. 9, p. 095003, 2022.

[18] R. Lin, D. Li, T. Zhang, and M. Lin, “A non-contact docking system
for charging and recovering autonomous underwater vehicle,” Journal
of Marine Science and Technology, vol. 24, no. 3, pp. 902–916, 2019.

[19] M. Han, J. Duan, S. Khairy, and L. X. Cai, “Enabling sustainable
underwater IoT networks with energy harvesting: A decentralized rein-
forcement learning approach,” IEEE Internet of Things Journal, vol. 7,
no. 10, pp. 9953–9964, 2020.

[20] C. Lin, K. Wang, Z. Chu, K. Wang, J. Deng, M. S. Obaidat, and
G. Wu, “Hybrid charging scheduling schemes for three-dimensional
underwater wireless rechargeable sensor networks,” Journal of Systems
and Software, vol. 146, pp. 42–58, 2018.

[21] Y. Zhao, Y. Du, Z. Wang, J. Wang, and Y. Geng, “Design of ultrasonic
transducer structure for underwater wireless power transfer system,” in
2021 IEEE Wireless Power Transfer Conference (WPTC), 2021, pp. 1–4.

[22] H. Esmaiel, Z. A. Qasem, H. Sun, J. Qi, J. Wang, and Y. Gu, “Wireless
information and power transfer for underwater acoustic time-reversed
NOMA,” IET Communications, vol. 14, no. 19, pp. 3394–3403, 2020.

[23] E. Demirors, J. Shi, R. Guida, and T. Melodia, “SEANet G2: Toward
a high-data-rate software-defined underwater acoustic networking plat-
form,” in Proceedings of the 11th ACM International Conference on
Underwater Networks & Systems, 2016, pp. 1–8.

[24] Z. Cheng, Y. Lei, K. Song, and C. Zhu, “Design and loss analysis
of loosely coupled transformer for an underwater high-power inductive
power transfer system,” IEEE Transactions on Magnetics, vol. 51, no. 7,
pp. 1–10, 2014.

[25] R. J. Urick, Principles of underwater sound-2. New York, NY (USA)
McGraw-Hill Book, 1975.

[26] W. H. Thorp, “Analytic description of the low-frequency attenuation
coefficient,” The Journal of the Acoustical Society of America, vol. 42,
no. 1, pp. 270–270, 1967.

[27] L. Bjørnø, T. Neighbors, and D. Bradley, Applied underwater acoustics.
Elsevier, 2017.

[28] K. G. Omeke, M. S. Mollel, L. Zhang, Q. H. Abbasi, and M. A.
Imran, “Energy optimisation through path selection for underwater
wireless sensor networks,” in 2020 International Conference on UK-
China Emerging Technologies (UCET), 2020, pp. 1–4.

[29] F. Scibilia, U. Jørgensen, and R. Skjetne, “AUV guidance system for
dynamic trajectory generation,” IFAC Proceedings Volumes, vol. 45,
no. 5, pp. 198 – 203, 2012, 3rd IFAC Workshop on Navigation, Guidance
and Control of Underwater Vehicles.

[30] J. Bellingham, “Platforms: Autonomous underwater vehicles,” in
Encyclopedia of Ocean Sciences (Second Edition), J. H. Steele,
Ed. Oxford: Academic Press, 2009, pp. 473 – 484. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/B978012374473900730X

[31] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[32] M. Sewak, “Policy-based reinforcement learning approaches,” in Deep
Reinforcement Learning. Springer, 2019, pp. 127–140.

[33] P. Qarabaqi and M. Stojanovic, “Statistical characterization and com-
putationally efficient modeling of a class of underwater acoustic com-
munication channels,” IEEE Journal of Oceanic Engineering, vol. 38,
no. 4, pp. 701–717, 2013.

[34] N. Morozs, W. Gorma, B. T. Henson, L. Shen, P. D. Mitchell, and
Y. V. Zakharov, “Channel modeling for underwater acoustic network
simulation,” IEEE Access, vol. 8, pp. 136 151–136 175, 2020.

[35] W. Li, M.-L. Ku, Y. Chen, and K. J. R. Liu, “On outage probability for
stochastic energy harvesting communications in fading channels,” IEEE
Signal Processing Letters, vol. 22, no. 11, pp. 1893–1897, 2015.


	Enlighten Accepted coversheet
	306386

