
P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

Andy Buckley
Institute for Particle Physics Phenomenology, Durham University, UK.
E-mail: andy.buckley@durham.ac.uk

I describe the work of the CEDAR collaboration in developing tools for tuning and validating
Monte Carlo event generator programs. The core CEDAR task is to interface the Durham Hep-
Data database of experimental measurements to event generator validation tools such as the UCL
JetWeb system — this has necessitated the migration of HepData to a new relational database
system and a Java-based interaction model. The “number crunching” part of JetWeb is also being
upgraded, from the FORTRAN HZTool library to the new C++ Rivet system and a generator in-
terfacing layer named RivetGun. Finally, I describe how Rivet is already being used as a central
part of a new generator tuning system, and summarise two other CEDAR activities, HepML and
HepForge.

XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research
April 23-27 2007
Amsterdam, the Netherlands

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/

mailto:andy.buckley@durham.ac.uk

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

1. Introduction

Monte Carlo event generators are an essential tool for particle physics, simulating aspects of
collider events ranging from the parton-level signal process to cascades of QCD and QED radiation
in both initial and final states, non-perturbative hadronisation, underlying event physics and specific
particle decays. Event generators provide experimentalists and phenomenologists with samples of
fully exclusive events drawn from physical distributions, and are therefore central to the design of
both detector hardware and data analysis strategies: this is more true than ever for LHC physics.

However, event generators are not fully predictive: various phenomenological parameters must
be tuned to experimental data to bootstrap a general purpose generator before physically meaning-
ful predictions can be obtained. Such parameters include the parton density functions (PDFs) of the
colliding beam particles, parton shower cutoffs and evolution variables, the running of αs, choice of
ΛQCD, and a variety of hadronisation parameters which strongly depend on the hadronisation model
being applied. Observable distributions calculated from a generator’s output depend on these pa-
rameters in an extremely non-trivial way. This leads to the generator tuning problem — how to
choose the parameter sets that give the best fits to experimental data, given that we have no ready
parameterisation of the output, and an exhaustive exploration of the many-dimensional parameter
space is out of the question?

In this paper, I will describe the work done by the CEDAR collaboration [1, 2] towards ad-
dressing this problem for the LHC. The main theme of this work is the development of tools to
generate and efficiently analyse simulated events, and the validation of generator tunings against
experimental data using these tools.

2. HepData

HepData [3] is a database of experimental particle physics data, which has been maintained
at Durham University since the 1970s. HepData’s contents are not the raw experimental data, but
the data as presented in the plots and data tables of peer-reviewed experimental papers. HepData
contains data from a wide range of collider and fixed target experiments, covering many initial
states and

√
s: it is therefore an excellent reference point for the distributions of observables that

event generators should be tuned against.

2.1 The legacy database

Since its inception, HepData has been based on a hierarchical database management system
(HDBMS). In the intervening years, the database world has firmly centred its attention on more
flexible relational database systems (RDBMS), and today a wide range of high quality RDBMS
systems are available for free, with strong support for the SQL query language and networked
availability. By contrast, the hierarchical systems have evolved little or not at all, and even simple
operations like query changes or schema updates are substantial tasks involving writing FORTRAN

routines.
These shortcomings of the legacy database meant that, with the incentive of placing HepData

as a data service at the centre of projects like CEDAR, the decision was taken to upgrade HepData
to use a relational database system [4, 5].

2

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

2.2 The new database

HepData’s data model is intrinsically hierarchical: a given data point is located within the
hierarchy paper → dataset → axis → point and there is little point in comparing data points from
different distributions. Fortunately, a relational model is flexible enough that implementing a hier-
archical structure is easy.

In practice the RDBMS used is MySQL [6], but due to the ANSI-standardised SQL query
language this is easily swappable for almost any other modern RDBMS. A major design princi-
ple has been the decoupling of database access and implementation details, such as which parts
of a data record are stored in which fields and tables, from the semantic model of how various
aspects of the data are related to each other. Hence, the semantics of the data are reflected in a
Java “object model”, which makes no reference to database implementation, and the Hibernate [7]
object-RDBMS persistency system is used as a layer to isolates “client” code from the database im-
plementation details, using Java mechanisms such as reflection and annotations. With Hibernate,
the persistency between the persistent database storage and the ephemeral in-memory object rep-
resentation is governed by configuration files and Java metadata, and so much tedious and fragile
database access coding is avoided.

On top of this object model, the primary mode of access to the database will remain the Web
interface. This is also written in terms of Java objects, executed in the Apache Tomcat [8] servlet
engine. More decoupling is desirable here, and we intend to use the Tapestry [9] templating sys-
tem to isolate the data content from the Web presentation according to the model-view-controller
(MVC) design idiom, but as yet there has been little effort expended on the new Web interface.

While the Web interface, when completed, will be the primary method of searching and brows-
ing the database, our design means that the object model can also be imported from, and exported
to, various other representations. Datasets will be representable as graphics (in a variety of for-
mats), plain text, the AIDA [10] XML and ROOT data formats and HepML [11]. The last of these
is the canonical file format representation of HepData records and mechanisms for data import and
export in HepML format are built into HepData, using the Castor [12] object-XML marshalling
system. Another form of HepML is used by JetWeb and will be mentioned later.

2.3 Database migration

Migrating from the legacy hierarchical database to a new relational database has proven to be
a substantial task. In large part the difficulties have been due to the relative unstructured form of
the legacy database, which has no strong type system: data entries are simply text strings. This
means that the structure and integrity of the data has been subject to the whims of various data
submitters over a long time period, tempered by the diligence of the database managers, and there
are many cases where a data record which appears attractively formatted when presented as a Web
page turns out to be hard to fit into a more rigidly defined data model. To attempt to decouple the
target relational database design from the vagaries of the legacy system, the migration of data has
become a multi-stage process.

Legacy DBMS to flat files The first stage is to use a mixture of FORTRAN and Perl scripts to mas-
sage the hierarchical data records into a set of tab-delimited plain text files, each of which contains
all the information for one aspect of all the papers in the database. As might be expected, the data

3

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

point values and errors files are extremely large. This procedure needs only be done infrequently,
if the legacy database changes substantially, and so an immediate decoupling is achieved.

Flat files to HepML The second stage is to transform these “flat files” into a series of HepML
files, one for each paper, using a Python script. In practice, we have found that the efficiency of the
HepML builder can be greatly increased by splitting each of the flat files so that there is one file per
legacy paper, and then sorting the content of these files. This reduces the number of scans required
through large files, and allows caching to be made use of during the building of the XML object
model. There is not an exact match between the papers from the legacy database and those which
are available at the end of the HepML-building procedure because, due to technical limitations,
long papers often had to be split into several parts in the legacy system: the “logical” papers which
result from the HepML builder are the preferable form.

HepML to RDBMS The final stage of the HepData migration is the reading of HepML files
into the database. While the previous two migration steps are only of use in the migration process,
importing records from HepML is a core feature of the HepData system. The mechanism used is an
object persistency framework, Castor, of which we are only using the XML part. Like Hibernate,
Castor describes how the object model will be stored in a persistent form, but in this case the
persistency medium is an XML string rather than database tables. As some features of the HepML
representation are not strictly hierarchical, the JDOM [13] Java XML processing library is used as
an input filter when importing records from HepML files.

3. JetWeb

The second main component of CEDAR is JetWeb [14] an application for validating the per-
formance of various generator tunings. JetWeb combines a system for running a variety of event
generator programs, a database of distributions calculated from simulated events and a Web inter-
face written in Java and run on a Tomcat Java server. JetWeb’s development was motivated by the
need to avoid misleading tunings, where one distribution is fitted at the expense of unseen others:
accordingly, tunings considered by JetWeb will be compared to as many distributions as possible.

Consistently generating data for such a large number of distributions requires both a good
understanding of the physics models involved and a lot of computational power: JetWeb helps here
by providing a relatively user-friendly way of configuring the models, by archiving generated data
in such a way that extra statistics can be requested through the Web interface, and providing a
browsable archive of stored results. JetWeb shows the overall χ2 for a chosen model against all
distributions, as well as the fit quality to individual plots, so the overall quality of a given tuning
can be readily assessed.

JetWeb was initially developed at UCL, based on analyses using the HZTool [15–17] library
and various versions of the Herwig [18] and Pythia [19] FORTRAN event generators. The reference
data in this version was transcribed from a variety of sources, including HepData. Extension of
JetWeb’s prototype generator interface to deal with generators other than Pythia and Herwig proved
difficult, and hence CEDAR’s work on JetWeb has centred on improving the way that generators are
modelled, adding mechanisms for combining generator runs, and separating run parameters from
model parameters[4]. The Web user interface has also been considerably enhanced, and a version of

4

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

HepML for describing generator and run configurations has been developed and incorporated into
the JetWeb system. The other way in which JetWeb’s modernisation shows is that event generation
now uses Grid resources and authentication rather than local batch farms.

Another JetWeb change planned under CEDAR is the linking of JetWeb to HepData— a
“single-sourcing” approach which should result in more robust data–MC comparisons and eas-
ier adding of new analyses. Since the HepData migration process has been more lengthy than
anticipated, it is only recently that JetWeb has begun reading some data directly from the HepData
database (via the HepData Java object model). Before JetWeb’s internal database of experimental
reference data can be eliminated, some extra datasets must be added to HepData and the HepData
migration must be essentially complete so that data entries are reliably retrievable.

JetWeb is a relatively sophisticated tool for steering event generators based on “high level”
event type requests, and for comparing generated data to reference plots, but it does not actually
interface to the various generator codes or analyse the generated events directly. These rôles are
filled by a pair of native applications for event analysis and steering — in the existing incarna-
tions of JetWeb the FORTRAN programs HZTool [15] and HZSteer [20] are used, but CEDAR has
developed C++ replacements for these, titled Rivet [21, 22] and RivetGun [23] respectively.

4. Rivet and RivetGun

Rivet is a C++ replacement for the FORTRAN HZTool library, initially developed for the HERA
experiments H1 and ZEUS (hence the “HZ”). HZTool as a library has two rôles: firstly, to provide
a collection of physics utility routines for calculating commonly used quantities, such as imple-
mentations of jet definitions; and second, to collect a set of analyses which use these routines and
produce histograms comparable with experimental results. As a result of its HERA legacy, the
majority of HZTool analyses are from DIS and photoproduction experiments.

Initially, HZTool analyses included code to specifically configure particular generators. How-
ever, this approach scales badly, and a concerted effort was made in 2005 to decouple HZTool
routines from generator specifics. The result was a steering package, HZSteer [20], which contains
(almost) all of the generator-specific code, and the current version of HZTool is purely concerned
with the physics analyses of event records, and not where any given event came from. The current
version of JetWeb uses HZTool and HZSteer to generate and analyse events.

Even as HZSteer was being split off from HZTool, it was clear that time was running short
for FORTRAN-based analysis systems. The rising prominence of C++-based generators, such as
Herwig++ [25,26], SHERPA [27] and Pythia 7/8 [29,30], was evident, and FORTRAN does not have
the level of sophistication as an application framework language to steer these generators1. A not
unimportant secondary point is that the success of a system like HZTool relies on the support of the
community in providing new analyses to keep pace with the appearance of new data: the de facto
language used by LHC-era experimentalists is C++, and an analysis system written in any other
language is less likely to be embraced. The result is a new, C++-based analysis system, Rivet, to
replace HZTool, and a generator steering system, RivetGun, to replace HZSteer.

1Indeed, technical concerns with how C++ encodes symbol names mean that steering C++ from anything other than
C++ is troublesome.

5

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

4.1 Rivet

Rivet [21, 22] (an acronym for “Robust Independent Validation of Experiment and Theory”)
is a generator-agnostic analysis framework. Guiding design principles include the implementation
in object oriented C++ and compatibility with existing standard data formats such as HepMC [24]
and AIDA [10]. Rivet has no dependence on generator-specific features and sees data only via
HepMC event records either supplied from file or a generator steering package such as RivetGun
(see below). This makes it easier to incorporate new Monte Carlo generators into a Rivet-based
validation system than is currently the case with HZTool.

The Rivet analysis system is based on a concept of "event projections", which project a simu-
lated event into a lower-dimensional quantity such as scalar or tensor event shape variables. Projec-
tions can be nested and their results are automatically cached to eliminate duplicate computations,
using C++ runtime type information (RTTI) and comparison operators between projection classes.
The infrastructure has been designed to place as little burden as possible on the authors of projec-
tion and analysis classes, which should be concerned almost entirely with the analysis algorithm.

Sets of standard projections and analyses are included with the Rivet package, and this collec-
tion will grow with subsequent releases. Analysis data is accumulated using the AIDA interfaces,
and exported primarily in the AIDA XML histogram format. If ROOT is present on the build sys-
tem, ROOT format files can also be exported, allowing use of Rivet for n-tuple based analyses as
well as the primary design purpose of semi-automated event generator validation. To complement
the generated analysis data, HepData-generated AIDA records for each bundled analysis are in-
cluded in the Rivet package and can be used to define the binnings of generated data observables:
this improves the robustness of analysis implementations and allows easy data-theory comparisons
without requiring network access to HepData.

At the time of writing, the stable version of Rivet is 0.9, available from the Rivet development
website [22]. This first version includes 5 analyses — two from Tevatron Run 2, one from LEP and
two from HERA — as well as the library of projections which currently includes e+e− event shapes,
DIS kinematical boosts, the DØ “improved legacy cone” and k⊥ jet algorithms via KtJet [35,36], a
variety of final state projections including particle vetoing, and several others. With the main Rivet
design now stable, we intend for the next release to have much more substantial libraries of both
analyses and projections, such that Rivet can entirely replace HZTool.

4.2 RivetGun

Rivet is primarily a code library for use by generator steering packages, although it also in-
cludes a command line tool, rivet, which can read in HepMC “ASCII” event files. The main
tool for running Rivet is the RivetGun generator steering program. RivetGun is written in C++ and
provides a uniform programmatic and command line interface to running event generators, with
common generator configuration features such as setting initial states, named control parameters
and random seeds possible through the most general level of the interface. Using runtime dynamic
library loading, even different versions of the same generator can be used from the same executable,
which would not be possible with compile time library linking.

The RivetGun C++ class structure uses inheritance to define a base class, Generator on
which these operations are declared — each specific generator then implements the methods de-

6

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

clared in the interface in its own way, be that by mapping common blocks, calling FORTRAN

library routines or using the C++ class methods of the target generator. With this approach, switch-
ing between generators with the same initial state configuration is trivial, although knowledge of
generator-specific parameters is still needed for any proper study. Formally, the generator inter-
faces are part of a library called AGILe (“A Generator Interface Library”), since we wish to keep
open the possibility of using the interface without using Rivet at all.

RivetGun currently provides generator interfaces for FORTRAN Herwig [18] and Pythia [19],
plus enhanced versions of those generators using the AlpGen [31], Charybdis [32] and Jimmy
[33, 34] auxiliary generators. Preliminary bindings to the Herwig++ [25, 26], SHERPA [27, 28] and
Pythia 8 [30] generators are also available. RivetGun has not yet been formally released, but the
development code is sufficiently usable that it is by far the easiest way to generate distributions
using Rivet.

Since RivetGun is intended to be run from within JetWeb, the generator configuration will
eventually be able to be set from HepML generator description files, as well as the current methods
of command line arguments and/or simple key–value parameter files.

5. Tuning vs. validation

So far we have addressed efforts towards CEDAR’s central goal, which is the validation of
existing event generator tunings. An obvious criticism of this is that nowhere in the framework
is there a procedure for finding a better or, ideally, optimal tuning. Let us consider the general
problem before describing a particular, CEDAR-centric solution.

5.1 The tuning problem

Naïvely, one might expect that an event generator can be optimally tuned by either grid-
scanning the parameter space, evaluating a goodness of fit (GoF) measure against reference data
and choosing the best point. Anyone with experience in sampling problems will be aware of the
fallacies at work here: at the root of the difficulties is the exponential scaling, O(An), of computa-
tional requirements with the dimensionality n of the parameter space. This makes comprehensive
scanning unrealistic for typical tuning problems with n∼O(10). Even adaptive grid-scanning,
where the grid is non-uniform, or adapts to the local GoF, is subject to the exponential scaling.

Sampling specialists may suggest a Markov chain Monte Carlo (MCMC) approach to this
problem. MC sampling works because the scaling is independent of n, although there are only rules
of thumb available for estimating sampler convergence rates and the choice of proposal distribution
and use of gradient information can have very significant effects. However, the typical burn-in for
an MCMC sampler is likely to be in the hundreds or thousands of iterations even with a well-chosen
MCMC setup: this is fine for easily evaluated functions, but the “function” we are attempting to
minimise (the GoF for, say 100,000 events generated with the proposed parameter vector) renders
this approach on the edge of current computational feasibility.

There is a second reason to be wary of such approaches, though: a global GoF measure is not
sensitive enough for a non-exhaustive search such as MCMC to find a global optimum. There are
simply too many ways for parts of distributions to fit better or worse than others and the combi-
natorics generate a parameter space vastly dominated by mediocre tunings — what is needed is

7

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

a method which is more sensitive to the dependence of each element of each distribution on the
tuning parameters. Such a method was used by the LEP Delphi experiment [37, 38], and it is this
approach which we will now describe.

5.2 Professor — tuning with bin-by-bin interpolation

The Delphi approach to event generator tuning was to fit a function to the generator output on
a bin-by-bin basis and then to minimise the goodness of fit in all bins simultaneously, using the
interpolating functions. While previous approaches fitted a linear function, Delphi fitted a second
order polynomial since that is the first order at which inter-parameter correlations are taken account
of [38].

Delphi’s FORTRAN code implementing this algorithm was called Professor, and so is its con-
tinuation, although the implementation language is now Python combined with the C++ Rivet and
RivetGun systems. Professor is not a CEDAR project — it is a collaborative effort between the
Durham IPPP and Dresden MPI — but its aims are so closely connected to CEDAR that it seems
prudent to mention it here.

The procedure implemented by Professor is as follows:

1. Define a hypercube in the n-dimensional parameter space, by specifying sample ranges in
each parameter.

2. Generate N random parameter n-vectors in the hypercube. There is no upper limit on the
number of samples — indeed, the more the better as might be expected, — but there is a
minimum number, given later.

3. Run RivetGun and Rivet using the sampled parameter values: this will produce N Rivet
output AIDA files, each of which, say, describes B bins. The number of events generated in
each run should be sufficient to reduce statistical error to a near-negligible level.

4. For each bin, b, fit a polynomial function to the N generated values, using a singular value
decomposition (SVD) [39]. The SVD allows calculation of a “pseudoinverse” — a matrix
inverse for non-square matrices [40, 41] whose use in overconstrained systems performs a
least-squares fit [42]. The function to be fitted is the general second-order polynomial in n
dimensions,

fb(ppp) = αb +∑
i

βb,i ppp′′′i + ∑
i, j≥i

γb,i j ppp′′′i ppp′′′j. (5.1)

where ppp′′′ = ppp− ppp0, the shift of the parameters from their nominal/central values ppp0 and αb,
βb,i & γb,i j are the sets of polynomial coefficients to be determined for each bin b. Coefficient
counting reveals that there must be N ≥ 1 +(n2 + 3n)/2 parameter space samples for there
to be an inverse. In principle, ppp0 itself can be considered as a set of parameters to be fitted,
which would add another n to the minimum N.

5. Use reference data from HepData to compute a goodness of fit function for each bin, such as
error-weighted square deviation, φb(ppp) = (fb(ppp)− rb)2/E2

b where rb and Eb are the experi-
mental value and uncertainty respectively.

8

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

6. Analytically or numerically minimise the individual φb functions and the corresponding
global GoF figure, the ubiquitous χ2, defined2 as χ2(ppp) = ∑b φb(ppp). Flag any significant
deviations of the bin-by-bin minima from the global minimum.

7. Generate a final MC event sample using the interpolation-optimal parameters and compare
with the prediction.

Professor is currently in active development, testing the method with toy models and low-
dimensional samplings using Rivet and RivetGun. The first uses of it will be on relatively simple
cases such as re-implementing the original Delphi optimisation, and then proceeding to more com-
plex tunings for the LHC where data from various generators must be combined and extrapolated.
There is a great opportunity for statistical sophistication in this area, including bin–bin correlations,
various GoF measures [43] and weighting of particular distributions and bins.

6. HepForge

As a spin-off from our own development requirements, CEDAR now provides a free online
collaborative development facility, HepForge [44, 45], for HEP projects which aim to provide use-
ful, well-engineered tools to the community.

HepForge currently offers feature-enhanced Web hosting, hosting and HTTP access to the
Subversion code management system (a modern replacement for CVS), an integrated bug tracker
and wiki system strongly integrated with Subversion and mailing lists for developer contact, project
announcements and discussion. All the CEDAR projects and about 20 others are hosted with
HepForge and it has proven a popular alternative to CERN’s Savannah system, particularly for
small phenomenology collaborations.

The long-term plan for HepForge is that it will provide search facilities for a wide range of
HEP computational tools, but at present we are consolidating our developer support and improving
the existing system.

7. Summary

CEDAR is providing a wide variety of computational tools, which are the wide foundation
on which a systematic and global validation and tuning of HEP event generators is to be built.
The largest-scale components of CEDAR are HepData and JetWeb— established resources which
have been substantially re-designed and upgraded by CEDAR. HepData’s migration from a legacy
hierarchical database to a much more rigorously structured relational database and Java object
model and persistency system has been a substantial task and is now approaching its final stages.
JetWeb has been internally restructured a great deal, but the most obvious consequence of the
CEDAR upgrades is the forthcoming use of HepData as a source of reference data. The HepML
XML formats provide the glue between these systems, and a file persistency format.

At a finer-grained level, the Rivet and RivetGun systems are the C++ replacements for HZTool
and HZSteer being created by CEDAR. The first official release of Rivet has recently taken place

2We’re being somewhat sloppy about the definition of the error in this χ2 definition: strictly it should be the “theory
error” to avoid a biased distribution.

9

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

and work is now proceeding on adding new analyses to it and preparing RivetGun for its first stable
release. At Rivet’s core is the concept of event projections and generator independence — with
these and a design aim to make it as easy as possible to write algorithm-focused analysis code,
Rivet is an excellent framework for LHC validation and tuning studies and users are encouraged to
try it out.

Finally, mention was made of the Professor event generator tuning effort and of the HepForge
development environment. These will respectively build on the foundation provided by CEDAR
and continue to provide facilities for the development of HEP computational tools.

8. Acknowledgements

The CEDAR team would like to thank the UK Science and Technology Funding Council
(STFC) for their generous support. CEDAR’s work has also been supported in part by a Marie
Curie Research Training Network of the European Community’s Sixth Framework Programme
under contract number MRTN-CT-2006-035606.

References

[1] J. M. Butterworth et al., hep-ph/0412139, presented at CHEP’04, Interlaken, September 2004

[2] CEDAR Web site: http://www.cedar.ac.uk

[3] Legacy HepData Web interface: http://durpdg.dur.ac.uk/hepdata/

[4] A. Buckley et al., “HepData and JetWeb” in Proceedings of CHEP’06, arXiv:hep-ph/0605048v1

[5] HepData development: http://projects.hepforge.org/hepdata/

[6] MySQL: http://www.mysql.com

[7] Hibernate: http://www.hibernate.org

[8] Apache Tomcat: http://tomcat.apache.org

[9] Tapestry: http://tapestry.apache.org

[10] Abstract Interfaces for Data Analysis (AIDA), http://aida.freehep.org/

[11] HepML: http://projects.hepforge.org/hepml/

[12] Castor: http://www.castor.org

[13] JDOM: http://www.jdom.org

[14] J. M. Butterworth and S. Butterworth, Comput. Phys. Commun. 153 (2003) 164,
http://jetweb.cedar.ac.uk/

[15] J. Bromley et al., “HZTOOL: A package for Monte Carlo-data comparison at HERA (version 1.0),” in
Workshop on Future Physics at HERA, 1996

[16] J. M. Butterworth, H. Jung, V. Lendermann, B. M. Waugh, in HERA and the LHC: A Workshop on the
implications of HERA for LHC physics, Proceedings, Part B., hep-ph/0601013

[17] HZTool: http://hepforge.cedar.ac.uk/hztool/

[18] G. Corcella et al., “HERWIG 6.5 release note,” arXiv:hep-ph/0210213

10

P
o
S
(
A
C
A
T
)
0
5
0

CEDAR: tools for event generator tuning

[19] T. Sjöstrand, S. Mrenna and P. Skands, JHEP 0605 (2006) 026, arXiv:hep-ph/0603175

[20] HZSteer: http://hepforge.cedar.ac.uk/hzsteer/

[21] B. M. Waugh et al., “HZTool and Rivet” in Proceedings of CHEP’06, arXiv:hep-ph/0605034v1

[22] Rivet: http://projects.hepforge.org/rivet/

[23] RivetGun: http://projects.hepforge.org/rivetgun/

[24] M. Dobbs and J. B. Hansen, Comput. Phys. Commun. 134 (2001) 41,
https://savannah.cern.ch/projects/hepmc/

[25] S. Gieseke et al., “Herwig++ 2.0 release note,”, arXiv:hep-ph/0609306

[26] Herwig++: http://projects.hepforge.org/herwig/

[27] T. Gleisberg, S. Hoche, F. Krauss, A. Schalicke, S. Schumann and J. C. Winter, “SHERPA 1.alpha, a
proof-of-concept version,”, JHEP 0402 (2004) 056, arXiv:hep-ph/0311263

[28] http://projects.hepforge.org/sherpa/

[29] L. Lönnblad, “ThePEG, PYTHIA7 and ARIADNE,”, prepared for 12th International Workshop on
Deep Inelastic Scattering (DIS 2004)

[30] Pythia 8: http://www.thep.lu.se/~torbjorn/pythiaaux/future.html

[31] M. L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A. D. Polosa, JHEP 0307 (2003) 001,
arXiv:hep-ph/0206293

[32] C. M. Harris, P. Richardson and B. R. Webber, JHEP 0308 (2003) 033, arXiv:hep-ph/0307305

[33] J. M. Butterworth, J. R. Forshaw and M. H. Seymour, “Multiparton interactions in photoproduction at
HERA,”, Z. Phys. C 72 (1996) 637, arXiv:hep-ph/9601371

[34] Jimmy: http://hepforge.cedar.ac.uk/jimmy/

[35] J. M. Butterworth, J. P. Couchman, B. E. Cox and B. M. Waugh, “KtJet: A C++ implementation of the
k⊥ clustering algorithm,” Comput. Phys. Commun. 153 (2003) 85, arXiv:hep-ph/0210022

[36] KtJet: http://hepforge.cedar.ac.uk/ktjet/

[37] P. Abreu et al., DELPHI Collaboration, Z. Phys. C 73 (1996) 11.

[38] K. Hamacher and M. Weierstall, “The Next Round of Hadronic Generator Tuning Heavily Based on
Identified Particle Data,” arXiv:hep-ex/9511011

[39] H. Abdi, Singular Value Decomposition (SVD) and Generalized Singular Value Decomposition
(GSVD), in N. J. Salkind (Ed.), Encyclopedia of Measurement and Statistics, Thousand Oaks, 2007

[40] E. H. Moore, “On the reciprocal of the general algebraic matrix”, in Bulletin of the American
Mathematical Society 26 (1920) 394–395

[41] R. Penrose, “A generalized inverse for matrices”, in Proceedings of the Cambridge Philosophical
Society 51 (1955) 406–413

[42] R. Penrose, “On best approximate solution of linear matrix equations”, in Proceedings of the
Cambridge Philosophical Society 52 (1956) 17–19

[43] S. Donadio, S. Guatelli, B. Mascialino, M. G. Pia, A. Pfeiffer, A. Ribon and P. Viarengo, “A statistical
toolkit for data analysis,”, Nucl. Phys. Proc. Suppl. 150 (2006) 50

[44] A. Buckley et al., “HepForge: A lightweight development environment for HEP software” in
Proceedings of CHEP’06, arXiv:hep-ph/0605048v1

[45] HepForge: http://www.hepforge.org

11

