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Abstract

The millimeter-Wave (mmWave) communication with the advantages of abundant bandwidth and immunity to interfer-
ence has been deemed a promising technology to greatly improve network capacity. However, due to such characteristics of
mmWave, as short transmission distance, high sensitivity to the blockage, and large propagation path loss, handover issues
(including trigger condition and target beam selection) become much complicated. In this paper, we design a novel handover
scheme to optimize the overall system throughput as well as the total system delay while guaranteeing the Quality of Service
(QoS) of each User Equipment (UE). Specifically, the proposed handover scheme called O-MAPPO integrates the Reinforce-
ment Learning (RL) algorithm and optimization theory. The RL algorithm known as Multi-Agent Proximal Policy Optimization
(MAPPO) plays a role in determining handover trigger conditions. Further, we propose an optimization problem in conjunction
with MAPPO to select the target base station. The aim is to evaluate and optimize the system performance of total throughput
and delay while guaranteeing the QoS of each UE after the handover decision is made. The numerical results show the overall
system throughput and delay with our method are slightly worse than that with the exhaustive search method but much better
than that using another typical RL algorithm Deep Deterministic Policy Gradient (DDPG).

© 2015 Published by Elsevier Ltd.
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1. Introduction

Millimeter-Wave (mmWave), with bandwidth rang-
ing from 30 to 300GHz, is a promising solution to
improve the performance of the wireless communica-
tion system. However, there are some obvious chal-
lenges in mmWave networks, such as short transmis-
sion distance, large propagation path loss and high
sensitivity to blockage; for example, mmWave can be
easily blocked by building materials, even the human
body and high oxygen absorption [1]. To overcome
the drawbacks of mmWave, beamforming and dense
Small Cell Base Stations (SCBSs) architecture [2, 3]
play a major role in mmWave communication [4]. Es-
pecially, cellular networks with dense SCBSs could
improve the efficient propagation of mmWave while
beamforming offers a potential solution for mmWave
to avoid the blockage.

However, with the increase of SCBS in the cellu-
lar network and the propagation becoming directional,

there is a great challenge for the Handover (HO) in
mmWave cellular network [5, 6]. Specifically, with
the SCBS increasing, the inter-cell handover becomes
more frequent, leading to higher HO rates. The User
equipments (UEs) need to switch from one SCBS (or
one beam) to another while moving to maintain the
communication quality [7]. In particular, HO mecha-
nisms affect not only the Quality of Service (QoS) on
UE side but also the network performance [8]. Since
there is a limitation of the resource in BS, growing
HO rates usually brings some problems to the net-
work, such as the increase of the HO failures rate and
higher signalling overheads, which reduces the system
performance [5]. Further, since most beamforming
techniques in particular are directional, the HO event
also occurs when UEs move from one beamforming
covering area to another. In this case, the intra-cell
HO also grows significantly compared with the tradi-
tional network structure. According to [9, 10], the av-
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erage handover interval could be lower than 0.75 sec-
onds in the typical mmWave cellular network scenar-
ios and approximately 61% of handovers are unnec-
essary. Therefore, how to improve the HO efficiency
in mmWave cellular network is a key issue to be re-
solved.

In the traditional communication network, to re-
duce the redundant handover, the 3rd Generation Part-
nership Project (3GPP) [11] defines that handover is
triggered when the Reference Signal Received Power
(RSRP) of current serving BS is lower than the thresh-
old and RSRP of targeting BS is stronger than the cur-
rent serving BS. However, this method is not adapted
to the mmWave cellular network, resulting in the fre-
quent HO and the increase of HO overhand [12].
Therefore, it is crucial to establish an advanced han-
dover mechanism. As the mm Wave scenario be-
comes more complex, plenty of optimization prob-
lems are nonlinear, making the traditional mathemat-
ical tool less efficient in solving the problem. In
this case, one of the widely-used AI algorithms, Re-
inforcement Learning (RL), could be designed for a
smart handover mechanism in mmWave cellular net-
work, via the interactions with the network environ-
ment. However, only in this way, can it not meet the
Quality of Service (QoS) of the mmWave network,
since RL method focuses on the handover trigger deci-
sions. Further, with the number of UEs and SCBSs in-
creasing, the resource allocation becomes difficult. In
other words, resource allocation should be optimized
in conjunction with handover decisions. RL method
typically estimates the UEs’ action through the inter-
action with the environment, which takes a long time
to converge. In this case, after the RL algorithm makes
the handover trigger decision, we implement the op-
timization theory to manage the resource allocation,
target BS and beam selection in each SCBS, which
not only improves the overall system performance, in-
cluding total throughput and delay but also guarantees
the QoS of each UE. The reason why only applying
RL can not achieve the best effect of improving sys-
tem performance is that RL is an expert to make the
decision. In HO scenario, it would be significantly
useful for HO trigger decision. However, if we only
apply RL to optimize the resource allocation and im-
prove system performance, especially in multi-agents
scenario, to achieve the global optimization, RL algo-
rithms would ignore the local optimization for each
UE[13]. Therefore, in this case, we only apply RL for
decision optimization and use optimal theory to im-
prove the performance of each UE, thereby achieving
the best performance of the system.

In this paper, we proposed a novel handover scheme
called the optimization-based MAPPO (O-MAPPO)
method to help UEs make the optimal handover deci-
sion regarding targeting beam and BS and improve the
overall system performance, including increasing to-
tal system throughput and reducing total system delay.

Further, with the assistance of our method, the demand
of individual UE, in terms of QoS is met. From the nu-
merical results, we demonstrate our method achieves
better performance compared with other typical RL al-
gorithms DDPG and performs slightly worse than the
exhaustive search method. The main contributions of
this paper are as follows:

1. The O-MAPPO method consists of two parts.
HO trigger conditions are learnt by the intelli-
gent handover trigger condition with MAPPO.
Meanwhile, the optimal handover decision is to
optimize the beams and BSs selection as well
as bandwidth allocation based on SINR between
each UE and its related BS. An intelligent han-
dover trigger condition scheme based on RL al-
gorithm called MAPPO is implemented in the
mmWave cellular network to assist each UE in
making the best handover trigger decision. With
the help of this method, the reliability of han-
dover in the network is improved, including the
reduction of HO rate and HO failures.

2. An optimal handover decision scheme based on
optimization theory is designed to manage the re-
sources in each SCBS, such as bandwidth allo-
cation and target beam and BS selection, which
optimizes the overall system throughput and de-
lay. In addition, to guarantee the QoS of each
UE, we set the constraintt in the optimization
function, ensuring that the connecting beams and
target beams provide promising service to UEs.
Further, the information generated by the optimal
handover decision scheme is used as the observa-
tion and state of the MAPPO algorithm, making
the handover decision more promising.

3. A handover penalty mechanism is applied to re-
duce the HO rate while avoiding unnecessary
handover. In this case, the system is optimized
in energy efficiency.

The rest of the paper is organized as follows. In
Section 2, the related work is discussed. We propose
a system model in Section 3. The basic framework of
O-MAPPO is stated in Section 4. The design of in-
telligent handover trigger condition scheme based on
the RL algorithm called MAPPO for handover deci-
sion of UEs is discussed in Section 5. The design of
optimal handover decision to manage the resources in
BSs and improve the system performance and guar-
antee the QoS of each UE is proposed in Section 6.
Simulations results and analysis are given in Section
Section 7. Finally, in Section 8 concludes the paper.

2. Related work

In order to improve the performance of handover in
mmWave system, some research work starts to exploit
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reinforcement learning with the consideration of dif-
ferent factors, including RSRP, QoS of UEs, UE mo-
bility characteristics, and BS load. In [14], an algo-
rithm with predicted channel information is designed
to help UE decide whether to make the handover or not
based on UE speed, location, and other information. In
[15], a handover based image-to-decision is proposed
with Deep Q-learning, which can map pictures to a
handover decision of UE. Further, a handover algo-
rithm is proposed in [16], which focuses on context
parameters, such as UE velocity, channel gain and cell
load information. To maximize the average capacity
of UE, Markov Decision Process (MDP) model is ap-
plied to help to select BS. Similarly, in [17], the au-
thors provide a handover algorithm with MDP, where
they combine the handover overhead, cell load and
channel condition in the reward function to achieve
high throughput while decreasing the handover rate.
Further, in [18], the authors propose Q-learning based
handover policy, in which the decision is learnt with
optimal policy without prior knowledge of the envi-
ronment. The results show that the significant quality
of experience performance is improved in heteroge-
neous mmWave network.

However, the above research has focused on a sin-
gle UE handover scenario. In practice, especially in
mmWave system, the handover rate is more frequent,
and the cost of handover failure is inestimable with the
increase of UE. In this case, the authors in [8] design
a smart handover policy for multi-UEs with different
UE densities to reduce the handover rate while main-
taining the QoS of UE. Further, the authors in [19]
propose a multi-agent handover algorithm with actor-
critic (A3C) method. Specifically, the handover deci-
sions are made by individual candidates’ RSRQs and
current connection information with a shred artificial
neural network. With handover penalty added in the
reward function, redundant handover is significantly
reduced. In [7], the authors propose a handover man-
agement and power allocation scheme to maximize
the overall throughput and reduce the handover fre-
quency. To achieve this, the authors develop a multi-
agent RL algorithm based on Proximal Policy Opti-
mization (PPO) method, which separates the learning
process to centralized training and decentralized exe-
cution. In this case, the global information generated
from BS can be used to train the UE at the initial stage.
After that, the UEs make their decision and take action
based on the local observation.

Inspired by all the research mentioned above, our
method takes advantage of the RL to train the multi-
UEs in mmWave mesh network to make the proper
handover decisions on each movement. However, only
applying RL can not achieve the best effect of im-
proving system performance. Therefore, compared
with other research, we formulate the system per-
formance with an optimal handover decision scheme
based on optimization theory. After the RL makes

handover trigger decisions, the optimal handover de-
cision scheme will allocate the resources in related
SCBSs, such as target beam and BS selection as well
as bandwidth capacity, and generate the system perfor-
mance, including overall throughput and delay, which
is also the states and observations sent back to the
RL algorithm as feedback. Further, in multi-UEs sce-
narios, the RL algorithm tends to be globally optimal
and ignores the basic demand of individual UE. Op-
timal handover decision scheme also can give a hand
in solving this problem and achieving the most opti-
mal system performance with the QoS of individual
UE guaranteed.

3. System model

3.1. Network topology
The network topology is shown in Fig. 1. We

present the mmWave cellular network, consisting of
one Macro Base Station (MBS) and M Small Cell Base
Station (SCBS) with N beams in each BS. The set of
BSs is denoted as M = {0, 1, 2, ...,M − 1}, in which 0
represents the index of MBS while {1, 2, ...,M − 1} is
the index of SCBS. We assume that each BS has the
same number of beams and the set of beams in each
BS is denoted as N = {0, 1, 2, ...,N − 1}. Further, the
set of UEs is defined as I = {0, 1, 2, ..., I − 1}. Each
UE is served by either the MBS or one SCBS with
only one beam. UEs are located at random positions
within the coverage of MBS at the initial stage. The
UE mobility model is random walk [20].

Wireless link from MBS UE trajectory

MBS

SCBS

UE 2

UE 1

Fig. 1: UEs and BS Distribution.

The channel information of UEs is periodically
measured. When UE moves, HO trigger conditions
are learnt by RL when either the current SINR can-
not meet the demand of UE’s service or UE moves
to overlapping area. Further, there are two handover
cases in our network: inter-cell handover and intra-cell
handover. Inter-cell handover occurs among the differ-
ent BSs, especially when UEs move to the overlapping
area and the current SINR is lower than the threshold.
Intra-cell handover triggers when UEs moves within
the same SCBS, but the current serving SINR can-
not meet the demand. When RL decides the handover
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trigger conditions, the channel information is used to
optimize the decisions of beam and BS selection and
bandwidth allocation. The UE can either switch to an-
other BS or maintain a different beam in the current
BS.

3.2. Channel model
The channel models between BS and UE are pre-

sented in this subsection. First, the channel model of
MBS is introduced. We consider that there is an om-
nidirectional antenna applied in the MBS to assure the
signal coverage. The path loss (in dB) model of the
MBS is [21]

PL(d)[dB] = αM + 10κM log10(d) + ψ + ξ (1)

where d is the distance in meters, κM is the path loss
exponent representing the slope of the best linear fit
to the propagation measurement in the mmWave band,
αM is the path loss factor, ψ is random small-scale fad-
ing, and ξ is the random lognormal shadowing.

On the UE i side, we define that d0
i is the dis-

tance between UE and MSB while p0
i denotes the

transmission power from MBS to UE, which satisfies∑I
i p0

i = PM . Since there is co-channel interference in
the mmWave band due to the shared bandwidth, the
SINR received by UE from MBS is

S INRi =
PL−1(d0

i )p0
i

βi + NMω
0
i

(2)

where βi is the co-channel interference 1, NM is the
noise power spectral density of MBS, and ω0

i repre-
sents the bandwidth allocated to UE from MBS.

Second, the channel model of mmWave SCBS is
presented. In practice, there are two kinds of channels
among different SCBS in mmWave band: Line-Of-
Sight (LOS) and Non-Line-Of-Sight (NLOS) channel
[22]. We consider a probabilistic LOS-NLOS chan-
nel model defined in 3GPP standard [8], which means
there are two different channels (LOS and NLOS) for
UE in SCBS and the channel can change with its prob-
ability. We define that νm

i is the probability of LOS
channel adopted from SCBS (m ∈ M,m , 0) to UE
(i ∈ I). According to [23], where there is an esti-
mation method for LOS channel probability with the
building density in the simulation area, the LOS prob-
ability from the SBS and UE is:

νm
i = exp(−

2DBXBdm
i

π
),m , 0 (3)

where DB is the building density, XB is the expectation
length of the buildings, and dm

i is the distance from UE
to SCBS. In this case, according to [8], the path loss
model of SCBS is:

pl(d)[dB] = αS + 10κS log10(d) (4)

1The interference is the sum power received on the UE side from
MBS nearby small cell base station.

where d is the distance in meters, αS and κS are the
same as those in equation (1), which is path loss fac-
tor and exponential decay factor, respectively2. The
random small-scale fading (ψ) and random lognormal
shadowing (ξ) are ignored since the LOS-NLOS prob-
ability mode has already considered.

It is assumed that the directional antennas are
equipped on all SCBSs to support beamforming and
beam tracking in mmWave system, while there is an
omnidirection antenna on UE side to calculate the an-
tenna gain on the SCBS side. In this case, according
to [8], the antenna gain is:

g(ϕ)

gmax, |ϕ| <
ϕS
2

gmin, otherwise
(5)

where ϕ is the angle between UE and BS, and ϕS is the
width of the antenna main lobe. In our case, perfect
beam tracking is performed, which means the UE is
always served by main lobe to obtain the maximum
antenna gain.

Since the interference among SCBSs can be ignored
in mmWave system, the Signal to Noise Ratio (SNR)
is calculated as

S NRm
i =

gmax pl−1(dm
i )pm

i

NS
,m , 0 ∈ M (6)

where pm
i is the transmission power between UE and

SCBS, satisfying
∑I

i pm
i = PS , and NS is the noise

power spectral density among SCBSs.

4. Framework of O-MAPPO handover scheme

This section proposes an O-MAPPO framework,
which contains two parts: intelligent handover trig-
ger condition and optimal handover decision. Specifi-
cally, we use MAPPO algorithm to learn the HO trig-
ger condition in the intelligent handover trigger con-
dition. After MAPPO makes the trigger decision, the
SINR between UE and BS are calculated based on the
channel model and sent to the optimal handover de-
cision. In this part, the beams and BSs selection as
well as bandwidth allocation are optimized and eval-
uated, through which the throughput and delay of all
UEs are calculated. The calculation results are then
passed to MAPPO as the observation and state to eval-
uate the handover trigger decision according to the
reward function. The basic structure of O-MAPPO
framework is shown in Fig. 2.

In more details, there are two handover trigger sce-
narios applied in our method: handover triggers either
in the SCBSs overlapping area, or the serving SINR
can not meet the demand. When UEs are moving,
MAPPO needs to decide the handover trigger condi-
tions. When the handover trigger occurs, the MAPPO

2αS and κS have different values in LOS and NLOS cases.
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Agent(UE) Environment

Optimal Handover 

Decision

MAPPO based Intelligent 

Handover Trigger Condition

Action

Reward

SCBS and beam 

selection information
Observation 

and States

Overall system 

performance

Environment 

changes

UE moving

Fig. 2: O-MAPPO framework.

algorithm searches the nearest three target beams in
current BS or other BSs with the shortest distance,
which can provide the highest SINR to UEs and then
send them to the optimal handover decision scheme
to make the beams and BSs selection. Further, the
optimal handover decision scheme allocates the band-
width based on the package length of different UEs.
It calculates the overall system throughput and delay
based on the resource allocation. Meanwhile, dur-
ing the allocation and calculation, there is a thresh-
old of throughput and delay for individual UE to guar-
antee the QoS. The allocation and calculation results
are then fed back to the MAPPO algorithm as states
and observations. According to the reward function in
the MAPPO algorithm, each handover trigger decision
will be either rewarded or punished. In this way, all
UEs learn how to make the best handover trigger deci-
sion, which improves the overall system performance
and makes the QoS of individual UE promising.

5. MAPPO based intelligent handover trigger con-
dition design

This section is based on the design of intelligent
handover trigger condition with MAPPO algorithm to
learn the handover trigger condition. The MAPPO that
we have proposed is a centralized training with MBS
but a decentralized execution with BSs the UE con-
necting framework [7]. The centralized critic and de-
centralized policy are learnt by the MBS for each UE
with our algorithm. Each UE updates its policy based
on recent learning results from MBS periodically.
Since the UEs in the mmWave system are interactive,
we model the problem as a fully cooperative multi-
agent task with reinforcement learning. This problem
can be described as Γ =< S,A,P,R,O,N , γ >. S is
the state space while A is the shared action space for
each agent. oi = O(s; i) is the local observation for
agent i at global state s. P(s′|s, A) represents the tran-
sition probability, while R is the shared reward func-
tion. γ is the discount factor, which is Σtγ

tR(st, at).

5.1. Action

The action of each UE in our system contains han-
dover trigger at each time step t. To guarantee the
QoS of the UE, MAPPO generates three candidate
BSs with the shortest distance and calculates the SINR
of UEs. At time step t, the action of UE i is expressed
as:

ai
t = {0, 1} (7)

where 1 represents trigger. Since all the UEs in the
system are required to be considered, we denote A as
the action space of all UEs, which is defined as:

At = (a1
t , a

2
t , a

3
t , ..., a

i
t) (8)

The reason why we generate the action set of all the
UEs’ is that there is a trade-off between the single
UE reward and the overall system reward. The max-
imum reward of the single UE not optimal in terms
of the overall system reward. The specific statement
to solve the trade-off is presented by the end of this
sub-section.

5.2. State and observation

The current serving beam n in its BS m of the UE i
is chosen at the previous time step t−1. At the start of
each time step, the public information is sent by MBS
to each UE. Specifically, for each BS m ∈ M, the total
number of served UEs is defined as IM

t =
∑

i∈I ni
t−1”,

where m and n at current time step t is the candidate
BSs and beam, which are also parts of state and obser-
vation. Therefore, the public information at time step t
is It = (n0

t , n
1
t , ..., n

m
t ). At the beginning of each time t,

the optimal handover decision scheme makes the HO
decision from candidate BSs and beams and calculates
the handover delay, bandwidth allocation, and overall
system throughput based on UEs’ actions taken at last
time step t − 1. In this case, for each UE, the observa-
tion can be denoted as:

si
t = (di,m

t−1, rt−1, b
i,m
t−1, It) (9)

where di,m
t−1 is the handover delay of each UE at the

previous time step t − 1, bi,m
t−1 is the bandwidth allo-

cation of each UE at the previous time step, and rt−1
is the overall system throughput at the previous time
step. Therefore, the global state as the ensemble of
observations of all UEs can be defined as

S t = (s1
t , s

1
t , ..., s

I
t ) ∈ S (10)

where S is the state space.

5.3. Reward

The reward of our algorithm is divided in two parts:
overall system throughput and delay evaluation and
Handover Rate (HOR). Firstly, since the switch deci-
sion leads to the changes of throughput and delay, it
is important to evaluate the handover trigger decision
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based on that. Therefore, we define the system perfor-
mance reward as:

Ri =


10δ, Rt > Rt1 ∧ Dt < Dt1
δ, Rt > Rt2 ∧ Dt < Dt2
−δ, Others

(11)

where Rt1 is the upper bound of system throughput
and Rt2 is the lower bound. Further, Dt1 is the lower
bound of system delay while Dt2 is the upper bound.
δ is the reward value. When Rt is higher than its upper
band and Dt is lower than its lower bound, we design a
great reward to this condition, which is 10δ. When Rt

and Dt are within their bound, there is a basic reward
δ. Otherwise, there would be a penalty −δ.

Secondly, we define the HO penalty, which is to
avoid the unnecessary handover trigger decisions:

Pi
HO(su

t , a
u
t ) = ε1

{
bi

t , bi
t−1

}
(12)

where ε ≥ 0 is the weighting factor. If the target BS
bi

t is different from the current serving BS bi
t−1, there

will be an HO penalty. After we combine the HO
penalty with reward function, the local reward with
HO penalty of UE in time step t is expressed as:

Ri
HO=


10δPi

HO(su
t , a

u
t ), Rt > Rt1 ∧ Dt < Dt1
δ, Rt > Rt2 ∧ Dt < Dt2

−δPi
HO(su

t , a
u
t ), Others

(13)
Since the problem is a multi-agent one, we model it
as a fully cooperative multi-agent task, where the total
reward of UE is

R(S t, At) =
I∑

i=1

Ri(si
t, At) (14)

The total reward R(S t, At) can guild agents to bal-
ance the trade-off between SINR trigger condition and
HOR with the adjusting weighting factor ε.

5.3.1. Q-value and Policy
We define the state-action value function Qπ, the

state value function Vπ, and the advantage function Aπ

as follows

Qπ(st, at) = Est+1,at+1 , ... [Rt |st, at]
Vπ(st) = Eat ,st+1 , ... [Rt |st]

Aπ(st, at) = Qπ(st, at) − Vπ(st)
(15)

where π is the joint policy. We update the parameters
ω for the critic Vω(st) by minimizing the loss

J(ω) = (̂E)
[
(Vω(st) − yt)

]
yt = Rt + γVω(st+1)

(16)

where Rt is the reward in time t, and Vω is the target
state-value function [24].

According to [7], the Independent Proximal Policy
Optimization (IPPO) is one of the RL methods that

implement the PPO algorithm on each UE indepen-
dently, where each UE learns the actor and critic on its
own. However, this method cannot approach the true
overall state value since the state and action informa-
tion is updated locally on the UE side. In this case,
there is no global state information or jointly action
information shared on the UE side, which makes the
advantage function of IPPO less accurate. In addition,
the lack of joint actions makes it more difficult for the
UE to learn about cooperation policies and assess the
influence of UE action on the reward.

Therefore, we propose the MAPPO algorithm, a
centralized training with a decentralized execution
framework to improve the performance of the IPPO.
In this case, global information is implemented for
training the decentralized policies of each UE. More
specifically, the global information is supposed to be
collected in MBS, and the learning procedure is also
processed in MBS.

We implement the decentralized actors and central-
ized critics framework since the joint advantage func-
tion has strong relevance with the policy gradients.
In this case, with the global information such as UE
action at and UE state st available, the centralized
critic evaluates the joint value function (Q or V) in
the training process. At the same time, decentralized
actors estimate locally based on UE’s observations.
When the training process finishes, global information
is no longer required, which means the UEs can imple-
ment the actions in the decentralized actors. The basic
MAPPO structure is shown in Fig. 3, in which there is
a neural network in each actor and critic.

Policy 1 Policy N

Q-value 1 Q-value 

N

Environment

Actor 1 Actor N

a1 o1

Critic 1 Critic N

oNaNUE 1 UE N

. . .

R R

. . .

Fig. 3: MPPO structure.

The state-value function V i
ω(st) is estimated in the

centralized critics with the critic parameters ωi of the
UE. Since the expectation is replaced by sample aver-
ages in RL, we update the policy with the gradient:

∆θi = ∇i
θÊt

{
f (ρt(θi), Ai(st, at))

}
(17)

where

f (ρt(θi), Ai(st, at)) = min(ρt(θi)Ai(st, at), clip(υt(θi),

1 − ϵ, 1 + ϵ)Ai(st, at))
(18)
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clip refers to conservative policy iteration and ϵ = 0.2
is the hyper-parameter, ρt(θi) = πi(ai

t |o
i
t)

πi
old(ai

t |o
i
t)

, and π is the
decentralized policy.

Ai(st, at) is the estimation of joint advantage func-
tion, which is calculated by Generalized Advantage
Estimation (GAE) [25] with the state-value function
V i
ω(st).

Ai(st, at) = τt + (γλ)τt+1 + ... + (γλ)TτT (19)

where τt = rt + γV i
ω̂(st+1) − V i

ω̂(st), and Vω̂ is the lo-
cal critic of UE i, γ ∈ [0, 1] is an estimator of the value
function. According to [7], there is a credit assignment
problem, since it is not clear how a specific UE action
contributes to the reward. In order to solve it, the coun-
terfactual baseline method proposed in [26] is used. In
our case, we propose a centralized critic Qωi (st, at) to
evaluate the action-value function. The joint quanti-
ties are denoted to UE as −i. Therefore, the advantage
function for each UE is calculated by comparing the
Q-value estimated by the critic for the executed ac-
tion ai

t to a counterfactual baseline that marginalizes
ai

t, maintaining the actions of other UEs

Ai(st, at) = Q̂i(st, at) − b(st, a−i
t ) (20)

where b(st, a−i
t ) is the counterfactual baseline, defined

as

b(st, a−i
t ) =

∑
ai

πi
old(ai | zi

t)Q
i
ω(st, (a−i

t , ai)) (21)

where πi
old is the initial guess of the optimal policy and

Q̂i is the estimation of Qπold , which is calculated by the
Temporal-Difference (TD) [27]. Although each Q̂i is
calculated by separated critics, the joint action-value
function Qπold (st, at) is the same.

Further, the discrete action space A is considered.
After the state-action (st, at) is input into the critic, the
scalar Qωi (st, at) is obtained. However, |A| times eval-
uation is necessary when the counterfactual baseline
is computed, which is time-consuming when the ac-
tion space is getting larger. In this case, we use the
critic structure in [26]. The input of the neural net-
work of the critic of UE is Qωi (st, at) while the output
is the state-action values of the UE. In order to distin-
guish whether the specific UE action is marginalized,
the critic structure requires that there must be a critic
for each UE. The procedure of MAPPO is presented
in Algorithm 1.

Algorithm 1 MAPPO procedure.
Initiate critic Qωi and actor πi with θi, ∀i.
Initiate the initial policies πi

old and target critic Qω̂i .
initiate state.
for iteration=1,2,...,T do

initiate state.
for an episode do

Executes action for each agent.
Get reward and the new state.

end
Get the movement of each UE.
Calculate the Q̂i(st, at).
Calculate all UEs’ action space Ai(si

t, at).
Store the data

{
zi

t,Q
i(st, at), Ai(si

t, at)
}

into database D.
for k=1,2,3,...,K do

Shuffle and relabel the data.
for j=0,1,2,....,H do

Select groups of data D j:
Calculate new action space.
for l=1,2,...,L do

Calculate gradient ascent ∆θi.
Use minibatch Adam [28] to apply gradient
ascent θi.
Calculate gradient ascent ∆ωi.
Use minibatch Adam [28] to apply gradient
ascent ωi.

end
end

end
Update θi and ωi for each UE.
Clear database D.

end

6. Optimal beam selection and bandwidth alloca-
tion for handover UEs

After the handover trigger decision is made, the re-
lated channel information is sent to optimal handover
decision scheme to optimize bandwidth allocation as
well as beams and BSs selection. Thereby, it can im-
prove the handover delay as well as the overall system
throughput while QoS of each UE is guaranteed. Fur-
ther, the results of calculation and allocation will be
then transferred to the MAPPO algorithm to evaluate
the handover trigger decision through reward function.
From 3GPP [29], the handover delay in mmWave sys-
tem is defined as

D = TR + TI + TT (22)

where TR is the Radio Resource Control (RRC) proce-
dure delay. It is the time from RRC procedures de-
cided by the communication system; TI is the han-
dover interruption time which includes target cell
searching time, target cell tracking and acquiring time,
and interruption uncertainty time, which is the in-
terruption uncertainty in acquiring the first available
physical random access channel occasion in the new
cell and it is also decided by the network system.
Thus, the handover transmission time TT between UE
and BS is the key to optimize the handover delay,
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which is expressed as:

T i
T =

PLi

Ri
(23)

where PL is the package length and R is the throughput
of the system and it is defined by Shannon Formula:

Ri = Bi log(1 + S INRi) (24)

where B is the bandwidth taken by the UE.
Based on the system model, we denote the optimal

handover decision scheme to improve the system per-
formance in terms of throughput and delay while guar-
antee the QoS of each UE, which can be denoted as:

min
∑
i∈I

∑
n∈N

∑
m∈M

xi
m,n × Delayi (25)

s.t.
∑
i∈I

∑
n∈N

xi
m,n × Bi ≤ B0 MHz,∀m ∈ M (26)∑

m∈M

∑
n∈N

xi
m,n × Ri ≥ R0 Mbps,∀i ∈ I (27)∑

m∈M

∑
n∈N

xi
m,n = 1,∀i ∈ I (28)

Delayi ≤ D0 ms, Ri ≥ Ri0 Mbps ∀i ∈ I (29)

where xi
m,n ∈ (1, 0) describes the UE connection stat-

ues. When xi
m,n = 1, it means UE i connects with the

beam n in BS m; on the contrary, xi
m,n = 0. Since

the maximum bandwidth of each SCBS is fixed, (24)
is the constraint showing that the maximum band-
width for each SCBS, which can provide to the UE.
(25) is the constraint, which aims to optimize the total
throughput of all UEs. We set a lower bound of the
throughput, which formulates the minimum through-
put all the UEs can gain from the system. In addition,
each UE can only connect with one beam in one BS,
which is constrainted by (26). (27) is the minimum
delay and throughput that each UE must reach, which
is used for guaranteeing the QoS of each UE. B0 is the
maximum bandwidth in each SCBS while R0 is the
minimum throughput that each SCBS must reach.

From our optimal handover decision scheme i.e.,
(23)-(27), as can be seen, since xi

m,n ∈ (0, 1) and the
equation (22) is a nonlinear function, the optimization
function is a zero-one mix integer nonlinear problem
and there are two unknown parameters (xi

m,n and Bi)
to figure out. In this case, we divide the problem into
three parts. Firstly, we utilize the Sequential Quadratic
Programming (SQP) algorithm [30] to solve the non-
linear part. In this case, we relax integer xi

m,n as a con-
tinuous variable, which ranges from 0 to 1. Secondly,
after we obtain the continuous xi

m,n, we use tight re-
laxation algorithm [31] to transfer continuous variable
into integer variable. Thirdly, after we solve the inte-
ger problem, the rest of the optimization function be-
comes a linear problem: the function of Bi. We solve
it with a linear algorithm to obtain the most suitable
bandwidth Bi for each UE. With the bandwidth allo-
cation of each UE, the throughput can be calculated;
thereby, the delay of different UEs can be obtained.

According to the SQP algorithm, the Lagrangian
function of the optimization function is:

L = F + αh1 + βh2 + γh3 (30)

where

F =
∑
i∈I

∑
n∈N

∑
m∈M

xi
m,n ×

PL
log (1 + S INRi)

(31)

h1 =
∑
i∈I

∑
n∈N

xi
m,n × Bi (32)

h2 =
∑
m∈M

∑
n∈N

xi
m,n × Bi log(1 + S INRi) (33)

h3 =
∑
m∈M

∑
n∈N

xi
m,n (34)

Here, the PL is the package length and S INR is chan-
nel state information, which means that the two vari-
ables are known in the system. In this case, the opti-
mization function is a nonlinear problem as the func-
tion of bandwidth (Bi). Then we figure out the first
order approximation of the gradient of the Lagrangian
function

∇L =


dL
dx
dL
dα
dL
dβ
dL
dγ

 =

∇F + α∇h1 + β∇h2 + γ∇h3

h1
h2
h3

 (35)

Then, the second order approximation of the gradi-
ent of the Lagrangian function is:

∇2L =


∇2

xL ∇h1 ∇h2 ∇h3
∇h1 0 0 0
∇h2 0 0 0
∇h3 0 0 0

 (36)

We define that p = ∇
2L
∇L =

∇2L(p)
∇L(p) . In this case, we can

simplify the nonlinear optimization function as:

min(p)F(xk) + ∇F(xk)T p +
1
2

pT∇2
xLk p (37)

s.t. ∇h1 p + h1 ≤ B0 MHz,∀m ∈ M (38)
∇h2 p + h2 ≥ R0 Mbps,∀i ∈ I (39)

∇h3 p + h3 = 1,∀i ∈ I (40)
Delayi ≤ D0 ms, Ri ≥ Ri0 Mbps ∀i ∈ I (41)

where k is the number of the iteration. Therefore, the
nonlinear function is approximated in the linear func-
tion and we can obtain the continuous xi

m,n.
We utilize the tight relaxation to transfer continuous

xi
m,n into integer. According to [32], the method we

use is implicit enumeration. As shown in Fig. 4, the
procedure we follow to search the possible xi

m,n is

1. Since we can obtain a set of variable xi
m,n with the

help of the SQP algorithm for each UE, the size
of which is m × n, we select the top three largest
xi

m,n to one of the permissible integer values.
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Fig. 4: Zero-One tight relaxation procedure flow diagram.

2. Resolve the problem in the remaining variable.
3. Fix one of three xi

m,n to another permissible value.
4. Repeat (2) and (3) until all possible for xi

m,n are
considered.

This algorithm is a basic search that implies a gen-
eral state of search in which all possible solutions are
considered either explicitly or implicitly. Finally, the
zero-one nonlinear integer problem is approximated
into a linear problem, which is easy to be solved.

7. Results and discussions

In this section, the simulation setups are presented
and we show some numerical results with discussions
and analysis.

7.1. Simulation setup

We propose a two-tier heterogeneous mmWave cel-
lular network consisting of one microwave MBS, Ms

mmWave SCBSs with the number of UE I, and for
each SCBS, there are total N beams. Specifically,
we donate Ms = 6, N = 8 and I = 10 as default.
Cartesian coordinates describe the location of BS and
SCBS. We assume that there is an effective propaga-
tion coverage with 200 meters radius. The MBS is
located in origin (0, 0), and the rest of the six SCBSs
are evenly distributed in the considered area. Further,
in each SCBS, eight directional beams are equally dis-
tributed with 45◦. The coverage of each SCBS has an
overlapping area with its neighbour. In this case, a
handover event occurs either when the current SINR
of UEs is lower than the threshold or when the UEs
are in an overlapping area for inter-cell handover. On

Table 1: Channel parameters of mmWave cellular network [8, 21,
33]

.

Parameters Value
Bandwidth of SCBSs 100 MHz
Bandwidth of MBS 20 MHz
Pathloss parameters of LOS αS = 70, κS = 2
Pathloss parameters of NLOS αS = 70, κS = 2
Pathloss parameters of MBS channel αM = 70, κM = 2
MmWave noise power density -163 dBm/Hz
Microwave noise power density -174 dBm/Hz
The maximum antenna gain 10 dB
Interval of each timestep 100 ms
Interruption time 100 ms
Building density 1 × 10−4/m2

Expected length of buildings 25 m
Transmission power of MBS 46 dBm
Transmission power of SCBS 30 dBm
Upper bound of system throughput (Rt1) 2300 Mbps
Lower bound of system throughput (Rt2)1800 Mbps
Upper bound of system delay (Dt2) 0.022 s
bound of system delay (Dt1) 0.018 s

the other hand, intra-cell handover occurs when UEs
move from one beam area to another. Furthermore, the
UEs that the SCBS cannot cover are served by MBS,
which usually occurs on the edge of the effective prop-
agation area. The log-normal shadow fading of MBS
ξ has zero mean and 3dB standard deviation, and the
small-scale fading in linear value from 10

ψ
10 follows an

exponential distribution with unit mean [7]. We sum-
marize the other channel parameters in Table I. The
initial location of UEs are randomly distributed, and
the movement of them obeys the random walk method
[20] with the velocity 2 m/s.

For the hyper-parameters of MAPPO, we apply the
Adam optimizer with the learning rate lr = 5 × 10−4.
We consider one hidden layer with 64 units using Rec-
tified Linear Unit (ReLU) activation function for the
policies and critics. We set the minibatch size to be
128, discount factor to be 0.9, γ = 0.5, and clip loss
value 0.2.

7.2. Results and discussions

In the following sub-section, to evaluate the system
performance in terms of system total throughput and
delay, some simulations are implemented with differ-
ent reward conditions.

Simulation I: The number of UE (I) is 10 and the
configured upper bounds and lower bound of through-
put (Rt1), delay (Dt1), (Rt2), and delay (Dt2) can
be found in Table I, which means if the throughput
or delay cannot reach the lower bound, the training
episodes will be done in that round and the training
will start again.

First, the training loss is shown in Fig. 5. As can be
seen, the training loss decreases with the increasing
training episodes, and it eventually converges to 0.1,
which means good performance of our method in this
simulation and all the numerical results are promising.
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Fig. 6: System throughput performance in Simulation I.
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Second, the Probability Density Function (PDF)
and distribution of system total throughput are shown
in Fig. 6. During the training process, most of the
system total throughput is distributed from 1800Mbps
to 2300Mbps, and the episodes, of which through-
put is lower than 1800Mbps, are 19.5%. Further-
more, from the system throughput distribution curve,
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Fig. 8: All UEs throughput performance with different algorithms
UE = 10 in Simulation II.

the lower throughput occurs in the early stage of the
training process. In this stage, the reward is not large
enough, which implies that the learning process of
UEs is bad. With the training continuing, the reward
becomes larger and larger, and the system achieves
good control of the SCBSs and beams allocation for
each UE. Therefore, the total system throughput in-
creases.

Third, the PDF and distribution of system total de-
lay are shown in Fig. 7. Alone with the training
progress, the system total delay mainly distributes
from 0.013s to 0.023s. There are 0.16% of episodes,
of which the delay is higher than the lower reward
bound Dt2, and there are 53% of episodes, of which
the delay is lower than the upper reward bound Dt1.
Further, the total delay reduces with the training
episode increasing, which indicates that UEs achieve a
better learning ability. The performance in terms of to-
tal system delay is better than total system throughput.
The reason is that two conditions (high throughput and
low delay) must trigger at the same time to obtain a
good reward. Moreover, the upper trigger condition
for the system delay is easier than that for the system
throughput.

Simulation II: In this simulation, we make a com-
parison between the proposed algorithm with other
typical RL algorithms, such as Deep Deterministic
Policy Gradient (DDPG) and the exhaustive search
method, in terms of system total delay and through-
put performance, respectively. The lower bound and
upper bound of reward are the same as that in Simu-
lation I, and all the algorithms are compared when the
number of UE is 10 (I = 10).

From Fig. 8 and Fig. 9, it can be seen that the
exhaustive search method has the best performance,
especially when the total system throughput is com-
pared. The performance of our method is slightly
worse than the exhaustive search method but much
better than MADDPG algorithm. For the total sys-
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tem delay performance, the result is the same as the
comparison of system throughput.

Simulation III: This section compares the system
performance with different SCBSs to explore the sys-

tem threshold of SCBS allocation when the number of
UEs is 10. The number of SCBSs ranges from 3 to
7 in this simulation. However, from the zoom in part
of Fig.10 and Fig. 11, the system throughput and de-
lay performance are almost the same when the num-
ber of SCBSs is Ms = 6 and Ms = 7, which means
the maximum capacity of SCBSs in our simulation
scenario is Ms = 6. As can be seen, there is slight
difference between Ms = 7, Ms = 6, and Ms = 64
for the system performance in terms of system de-
lay and throughput. However, there is a significant
gap between Ms = 4 and Ms = 3 for both system
performances. This simulation demonstrates that the
system total throughput performance reaches its max-
imum value when the number of SCBSs is 6 in our
simulation environment. Further, the performance of
Ms = 3 is the worst. When it comes to the total sys-
tem delay performance, shown in Fig. 11, the more
SCBSs lead to the better performance until the sys-
tem reaches its threshold. The reason is that since the
MBS effective signal coverage is fixed, when the num-
ber of SCBSs is reduced, the radius of each SCBSs in-
creases, making the propagation distance of mmWave
in each cell longer. MmWave attenuates as propaga-
tion distance increases, which leads to the SINR of
each UE reducing in high probability when connect-
ing with SCBS. Thus, the system performance wors-
ens with the number of SCBSs reducing. Meanwhile,
when the number of SCBSs increases, the handover
rate must be higher. Since each cell’s radius is smaller,
the overlapping area in the region grows, which means
more handover events will occur.

Simulation IV: This section evaluates the reliabil-
ity of our HO scheme in terms of making a comparison
between total HO times and HO Failure (HOF) times
with different UEs in 700 training episodes. The nu-
merical result is shown in Fig. 12. As can be seen,
HOF time grows up with the increase of UE in the
system. However, most HO failures occur at the ini-
tial training stage, where our algorithm is still learning
experience with the environment change. Further, the
HOF rate can maintain at a low level when the number
of UEs increases, which demonstrates the reliability of
our HO scheme.

8. Conclusions

An optimization-theory-based on one of the RL
methods called O-MAPPO is proposed in this paper
to optimize the total system delay and throughput.
Specifically, the RL algorithm called MAPPO is ap-
plied to improve the handover trigger decision. After
the handover triggers, the related channel information
is sent to the optimal handover decision scheme to op-
timize the beams and BSs selection, bandwidth allo-
cation, improving the performance of overall system
throughput and delay. Further, to avoid unnecessary
HO and lower the HO rate, we implement HO penalty
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Fig. 12: A comparison between HO times and HOF times with dif-
ferent UEs in Simulation IV.

strategy to improve the efficiency of the system. Sim-
ulation results demonstrate that with the training pro-
cessing, our method can achieve better performance in
terms of total system throughput and delay compared
with some typical RL algorithms, such as MADDPG
and DQN.
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