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Abstract—As a new communication paradigm, neural network-
driven semantic communication (SemCom) has demonstrated
considerable promise in enhancing resource efficiency by trans-
mitting the semantics rather than all bits of source information.
Using a large semantic coding model can accurately distil se-
mantics, and significantly save the required bandwidth. However,
this consumes a large amount of computing resources, which are
also precious in the network. In this paper, we investigate the
joint computing resources and bandwidth allocation for SemCom
networks. We first introduce the computing latency model in
SemCom, and formulate the joint computing resources and
bandwidth allocation optimization problem with the objective of
maximizing semantic accuracy. Then, we transform this problem
into a deep reinforcement learning framework and exploit a
multi-agent proximal policy optimization to solve it. Numerical
results show that the proposed method significantly improves
the average semantic accuracy in the resource-constrained cases,
compared with the two baselines.

Index Terms—Semantic communication, bandwidth allocation,
semantic coding model

I. INTRODUCTION

With the explosive growth of new wireless applications, an
unprecedented amount of data exerts strain on the capacity of
wireless networks [1]. This motivates a new paradigm referred
to as semantic communication (SemCom), with the goal of
transmitting extracted semantics rather than all binary bits of
source information [2], [3]. Specifically, SemCom employs a
neural network-based semantic coding model to encode the
source information into a few transmitted bits represented
semantics and the semantics are decoded at the receiver end
to reconstruct the source information [4]. By transmitting
semantics to reduce network traffic, SemCom shows great
potential to alleviate bandwidth limitations [5].

Utilizing a large-scale semantic coding model (SCM) en-
ables the accurate distil of semantic information, resulting in
transmitting fewer bits and consequently saving bandwidth
[6]. Although SemCom offers substantial promise in saving
bandwidth, neural network execution in SCM is a computing-
intensive process that requires additional computing resources
[7], [8]. This leads to a shortage of computing resources,
resulting in high computing latency. Therefore, the exploration
of joint computing resources and bandwidth allocation is
meaningful in SemCom.

Regarding the joint computing resources and bandwidth
allocation, there has been some research in traditional com-

munication [9]. However, these researches cannot be directly
extended to SemCom due to the inherent changes in the trans-
mission scheme in SemCom, which poses two key challenges.
First, different from traditional communication, the limitation
of computing resources in SemCom is mainly reflected in the
long computing latency of executing the SCM. This is because
the execution of the neural network incurs an additional
computing latency, which is significantly higher compared
with that in traditional communication [10]. Meanwhile, when
employing equivalent computing resources, the computing
latency of an SCM increases with its neural network scale.
Therefore, it is necessary to formulate a computing latency
model of SemCom based on various SCMs. Second, the Sem-
Com scheme introduces background knowledge and neural
networks in order to transmit the meaning of the message, this
makes it unique in the paradigm of data transmission. Thus,
traditional resource allocation methods cannot directly be
used in SemCom to joint computing resources and bandwidth
allocation.

In this paper, we investigate the joint computing resources
and bandwidth allocation for SemCom and propose a deep
reinforcement learning (DRL) method to address it. The main
contributions of this paper are summarized as follows.

• The modeling of computing latency in SemCom: The
computing latency in SemCom consists of the inference
latency of the neural network and the traditional transmis-
sion latency. Specially, we model the inference latency as
the sum of the running time of all the kernels in the neural
network and calculate the inference latency by estimating
the running time of each kernel.

• A DRL framework for joint computing resources and
bandwidth allocation: We formulate the joint resource al-
location problem of computing resources and bandwidth
in SemCom as a multi-agent Markov Decision Process
(MDP) and define the actions, environment, and rewards
accordingly.

• MAPPO-based resource allocation algorithm: We design
a multi-agent proximal policy optimization (MAPPO)
based algorithm to solve the formulated problem with
the aim of maximizing the average semantic accuracy of
users.

• Simulation verification: We conduct numerical simula-



tions to verify the effectiveness of the proposed method,
where the results show the gain in terms of average
semantic accuracy compared with the random method and
the bandwidth-prior method.

The rest of this paper is organized as follows. Section II
describes the SemCom system model. Section III introduces
the proposed DRL method for joint computing resources and
bandwidth allocation. Section IV presents simulation results
and Section V concludes the paper.

II. SYSTEM MODEL

We consider a SemCom-empowered cellular network con-
sisting of a resource-constrained base station (BS) and a group
of users (i.e., devices), as shown in Fig. 1. We assume that
the semantic encoding and decoding of all transmissions take
place on devices. Moreover, each device stores multiple SCMs
with different computing consumption and varying semantic
accuracy for specific tasks. In the considered process of end-to-
end SemCom, the sender first selects an appropriate SCM for
encoding and decoding. Subsequently, the source information
is encoded to extract the semantics and packed into binary bits
to be transmitted over the wireless channel. On the receiver
side, the same SCM is exploited to recover the semantics based
on the received bits and decode the meaning of the original
information.

Fig. 1. The structure of semantic communication system

A. SemCom Computing Latency Model

We consider that each user i ∈ U = {1, 2, 3, ..., N} has
one or multiple SCMs available for a specific communication
task. We assume that for each SCM j ∈ M = {1, 2, 3, ...,M}
in a user i there is a variable semantic compression rate
oi,j(p), where p is the parameter of the SCM and determined
by the length of the SCM output. Specifically, oi,j(p) is
calculated as oi,j(p) =

|s′i,j |
|si,j | where |si,j | is the number

of bits of source information si,j and |s′i,j | is the number
of bits indicating semantics. For a given source information
si,j , there is a minimum description length to represent it in

bits which is denoted as d(si,j) [11]. Thus the range of the
semantic compression rate is oi,j(p) ∈ [δmin, δmax], where
δmax is bound by δmax ≥

∣∣∣d(si,j)|si,j |

∣∣∣. Under a given channel,
the transmission bandwidth Bi,j required for SCM j with
compression rate oi,j(p) is fixed.

Assuming user i has a required transmission rate ωi, and
the transmission latency is calculated as

τ ti,j =
s′i,j
ωi

. (1)

Moreover, for user i running SCM j with a semantic com-
pression rate oi,j(p), the computing latency τ ci,j is given by
the neural network inference latency. Based on the device
status, by predicting the running time of each kernel in the
neural network the overall inference time can be calculated,
and the predicting method can be found in [12]. For a kernel
z ∈ Zj where Zj is the set of kernels in SCM j, denote f(·)
as the kernel prediction function, the computing latency can
be calculated as

τ ci,j =
∑
z∈Zj

f(z) + ϵz, (2)

where ϵz is the prediction error of z. Thus the overall latency
caused by transmission and computing is

τi,j = τ ti,j + τ ci,j . (3)

B. Joint Computing Resources and Bandwidth Allocation
Problem Formulation

The optimization objective of the joint computing resources
and bandwidth allocation problem is to maximize the average
semantic accuracy of all users by selecting SCM and seman-
tic compression rate. Moreover, we consider the bandwidth
constraint, latency constraint, and the accuracy of semantic
constraints. Let B be the total bandwidth in the considered
BS. For each user i, the maximum latency is denoted as τmax

i .
Meanwhile, assuming that each user i has a minimum semantic
accuracy requirement Emin

i to ensure transmission quality.
The optimization problem can be described as

max
j,oi,j(p)

Ê =
n∑

i=1

E(j, oi,j(p))

n
(4)

s.t.

n∑
i=1

Bi,j ≤ B, i ∈ U , j ∈ M, (4-1)

τi ≤ τmax
i , i ∈ U , j ∈ M, (4-2)

E(j, oi,j(p)) ≥ Emin
i , i ∈ U , j ∈ M, (4-3)

oi,j(p) ∈ [δmin, δmax], i ∈ U , j ∈ M.. (4-4)

where E(j, oi,j(p)) is the semantic accuracy that the user
i using SCM j with semantic compression rate oi,j(p). In
particular, we should note that E(j, oi,j(p)) is the output of
the neural network, and it cannot be precisely encapsulated by
a rigorous mathematical model. In this case, to optimize Ê,
we transform the above optimization problem into the DRL
framework to solve this problem.



III. DRL-BASED JOINT COMPUTING RESOURCE AND
BANDWIDTH ALLOCATION

In this section, we first transform the joint computing re-
sources and bandwidth allocation problem into a DRL frame-
work and then exploit MAPPO to solve this DRL problem.

A. DRL Framework

Based on the system model described in Section II, the
joint computing resources and bandwidth allocation can be
formulated as follows multi-agent MDP problem. To illustrate
this problem let us define action, state, and reward.

1) Action: In this system, each user acts as an agent to
select suitable SCMs for SemCom transmission. We de-
note Ai as the set for the action space of selecting SCM
and compression rate for user i at time t. Specifically, an
action ai,t ∈ Ai is a decision matrix with length n×m.

2) State: The state of the system at time t is denoted
by st = {Ct,Dt}, where Ct = {Ct,1, Ct,2, ..., Ct,n}
is the set of channel condition (i.e. SNR) and Dt =
{Dt,1, Dt,2, ..., Dt,n} is available computing resources
of each user. For given channel condition Ct,i and avail-
able computing resources Dt,i, when selecting SCM
j and compression rate oi,j(p), Bi and τ ci,j can be
determined.

3) Reward: To reflect the performance of the action, we
denote the immediate reward in time t as

rt =

n∑
k=1

Et(j, oi,j(p)), (5)

where Et(j, oi,j(p)) is the semantic accuracy that the
user i using SCM j with semantic compression rate
oi,j(p) in time t. The aim of the DRL is to find an
optimal policy that achieves the maximum long-term
reward from the state. Thus, we define the long-term
reward as

R =

∞∑
i=0

γirt+i, (6)

where γi ∈ [0, 1] is the discount factor, which indicates
the extent to which future rewards and immediate re-
wards affect overall returns.

B. DRL-based Model Training

In this paper, we use the centralized training and decentral-
ized execution method to implement reinforcement learning
and use the MAPPO algorithm to solve the target problem
[13]. In this section, we first describe the training method for
a single agent and then introduce the global training process
for centralized training and decentralized execution.

The key to reinforcement learning is to execute actions by
estimating the policy function and the value function. The
agent selects the action according to the policy function, then
the value function gives the action reward, this process repeats
until finish training. Let us introduce the training methods of

Algorithm 1: MAPPO resource allocation algorathm

1 Initialize the value network q and policy networks π,
and the parameter θ, w;

2 Set learning rate α;
3 while training not stop do
4 for u=1,2,..,n do
5 Select an action ai,t base on the gradient or

select random action;
6 Input the bandwidth consumption Bi, semantic

compressionoi,j(p), required transmission
rate|s′i,j |, predicted running time τ ci,j ;

7 Calculate the total latency τi,j ;
8 Returns semantic accuracy E(j, oi,j(p));
9 end

10 Calculate the overall bandwidth consumption
average semantic accuracy Ê;

11 Observe the reward rt and new state st+1;
12 for u=1,2,..,n do
13 update R;
14 Computing the target loss function according to

(10) and the gradient descent step is
performed on (12), thus updating θ, w;

15 end
16 end

the policy function and the value function. For user i at time
t, the state-value function can be expressed as

Vπ(st) =
∑

a
π(ai,t|st) ·Qπ(st, ai,t), (7)

where Vπ is state-value function when taking action ai,t in the
current state st. We approximate the state-value function by
V (st, θ, w) which denoted by

V (st, θ, w) =
∑

a
π(ai,t|st, θ) · q(st, ai,t, w), (8)

where V (st, θ, w) is the neural network approximation state-
value function, the policy function and the value function are
approximated by the policy network π(ai,t|st, θ) and the value
network q(st, ai,t, w) respectively, θ is the parameter of the
policy network and w is the parameter of the value network.

We centralized training the value network q(st, ai,t, w)
which is trained on the base station with all agent’s actions and
observations, and all agents use the same value network. The
value network is updated by the TD algorithm and gradient
descent. Specifically, we use a stochastic gradient descent
(SGD) scheme to randomly select one of the optional SCMs
to calculate the TD error, and then calculate the stochastic
gradient. TD target is denoted as

yt = rt + γQ(st+1, ai,t+1, wt), (9)

then loss function can be expressed as

Lt(w) =
1

2
[Q(st, ai,t, w)− yt]

2, (10)



and the parameters w can be updated according to the follow-
ing rules:

wt+1 = wt − α · ∂Lt(w)

∂w
|w=wt

, (11)

where α denotes the learning rate of the value network.
Once the value network training has been completed, local

policy network training is performed. In decentralized execu-
tion, we train the policy network π(ai,t|st, θ) locally for each
user, with actions ai,t and state st as their independent deci-
sions and observations. The Monte Carlo estimation function
of the policy gradient can be expressed as

g(ai,t, θ) =
∂ log π(ai,t|st, θ)

∂θ
· q(st, ai,t, w), (12)

then the parameters θ can be updated according to the gradient
ascent:

θt+1 = θt + β · g(ai,t, θ), (13)

where β is the learning rate of the policy network.
By continuously updating the policy network and the value

network, agents can select actions with higher rewards. The
MAPPO-based joint computing resource and bandwidth allo-
cation algorithm is shown in Algorithm 1.

IV. NUMERICAL RESULTS AND DISCUSSIONS

We conduct numerical simulations to validate the semantic
accuracy of the proposed method. We compare two baselines
that execute two other action policies in the formulated DRL
framework:

1) Bandwidth-prior policy: The actions in this baseline
are always selecting the lowest bandwidth consumption
SCM and semantic compression rate;

2) Random policy: The actions in this baseline are ran-
domly selecting SCM and semantic compression rate.

A. Simulation Settings

TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of user n 50
SCM of each user 1 to 10
Total bandwidth 100Mhz

Semantic accuracy range [0.85, 0.99]
Running time of each SCM 20ms to 1000ms

latency capacity of each user 600ms to 1200ms

We consider a SemCom scenario consisting of a BS and 50
user devices, and each user device is randomly set up with 1
to 10 well-trained SCM models. For each SCM we assume
that there is a fixed bandwidth requirement and computing
latency. We set the BS to have 100Mhz bandwidth. In addition,
the running time of each SCM is randomly generated within
20ms to 1000ms. For each user, the semantic accuracy of
each SCM is in the range of [0.85, 0.99]. In particular, it is
assumed that the semantic compression rate of each SCM is

variable, and in the simulation, we set three different semantic
compression rates: original compression rate, compressed to
150% of the original compression rate, and compressed to
50% of the original compression rate.

B. Results and Discussions

We first examine the convergence of the MAPPO-based
joint computing resource and bandwidth allocation algorithm
network. Fig.3 shows the successful convergence of the
MAPPO method in the given numerical environment after
350,000 steps of training, which shows the effectiveness of
the trained network.

Fig. 2. Convergence of MAPPO-based joint computing resource and band-
width allocation algorithm network

Then, we evaluate the average rewards after network conver-
gence. The comparison of the average reward of our method
with other baselines in the 200-step iterations performed after
the network converges is shown in TableII. The rewards
of the MAPPO policy finally converge at 58.850, which is
significantly better than the bandwidth-prior policy and the
random policy. The reason is, that the bandwidth-prior policy
always selects the action with the worst semantic accuracy
and smallest bandwidth consumption and thus has the worst
reward. The random strategy can select some other actions
and achives a better average reward than the bandwidth-prior
policy. Our method relies on the MAPPO algorithm to make a
reasonable decision from a global perspective so as to obtain
the highest average reward.

TABLE II
FINAL AVERAGE REWARD AFTER NETWORK CONVERGENCE

Policy Average reward
MAPPO policy 58.850

Bandwidth-prior policy 42,843
Random policy 14.682

To evaluate the stability of the proposed method, we com-
pare the rewards with training steps after network convergence



Fig. 3. Rewards versus steps after network convergence

in Fig.3. The reward gained by the MAPPO policy is more
fluctuating but overall significantly higher than the other
two methods. This arises from the extensive scope of the
formulated environmental and action spaces. In contrast to
the other two baselines, our method has a broader strategic
scape, consequently leading to higher fluctuation. Our method
in the worst case also is better than the other two baselines,
this is due to the centralized training considering the global
awards, avoiding the most extreme resource competition be-
tween agents.

Fig. 4. Semantic accuracy versus steps after network convergence

At last, we present the average semantic accuracy with
training steps after network convergence as shown in Fig.4.
Similar to the rewards, the average semantic accuracy of the
MAPPO policy fluctuates significantly but is still significantly
higher than that of the other two baselines. Our method selects
actions with higher rewards from a global perspective and the
defined reward function directly reflects the average semantic
accuracy, thus exhibiting the highest average semantic accu-
racy as expected.

V. CONCLUSION

In this paper, we investigate the problem of joint computing
resources and bandwidth allocation for semantic communica-
tion (SemCom). Specifically, we formulate the optimization
problem and transform it into a reinforcement learning frame-
work to solve it. Compared with the two baselines, the numer-
ical results presented that our method achieves higher average
semantic accuracy. Our work can be seen as a pioneer in the
management of multi-dimensional resources in SemCom. The
initial results can be extended to some sophisticated models,
and later guide network operators to better design protocols
for SemCom deployment.
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