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EXTREMAL METRICS ON FIBRATIONS

RUADHAÍ DERVAN AND LARS MARTIN SEKTNAN

Abstract. Consider a fibred compact Kähler manifold X endowed with a

relatively ample line bundle, such that each fibre admits a constant scalar

curvature Kähler metric and has discrete automorphism group. Assuming the
base of the fibration admits a twisted extremal metric where the twisting form

is a certain Weil-Petersson type metric, we prove that X admits an extremal

metric for polarisations making the fibres small. Thus X admits a constant
scalar curvature Kähler metric if and only if the Futaki invariant vanishes.

This extends a result of Fine, who proved this result when the base admits no

continuous automorphisms.
As consequences of our techniques, we obtain analogues for maps of various

fundamental results for varieties: if a map admits a twisted constant scalar

curvature Kähler metric metric, then its automorphism group is reductive; a
twisted extremal metric is invariant under a maximal compact subgroup of

the automorphism group of the map; there is a geometric interpretation for
uniqueness of twisted extremal metrics on maps.

1. Introduction

A basic question in complex geometry is whether or not a given Kähler manifold
admits an extremal Kähler metric. A special case of an extremal Kähler metric
is one that has constant scalar curvature (henceforth cscK), as the extremal con-
dition simply means that the ((1, 0)-part of the) gradient of the scalar curvature
is a holomorphic vector field. One motivation for this question is the link with
moduli theory: it is expected that one can form well-behaved moduli spaces of such
manifolds. The goal of the present work is to give a new construction of extremal
Kähler manifolds, using some ideas from moduli theory.

To motivate our work, we first review some older constructions of extremal
Kähler metrics. The first general construction of such metrics is due to Hong
[19], who considered fibrations π : P(E) → B, where P(E) denotes the projec-
tivisation of a vector bundle E on a compact complex manifold B. Suppose B
admits a line bundle L with a cscK metric, and suppose in addition that E admits
a Hermite-Einstein metric. Assume moreover that the data involved does not ad-
mit continuous automorphisms, i.e. Aut(X,L) is discrete and E is indecomposable.
Then Hong proves that P(E) admits a cscK metric in the class rL + OP(E)(1) for
r � 0 [19], where we have used additive notation for the tensor product of line
bundles, and suppressed pullbacks. In later work Hong relaxes the assumption on
the automorphisms, showing that provided E is Aut(X,L)-invariant then the class
rL + OP(E)(1) still admits a cscK metric provided the so-called Futaki invariant
vanishes on P(E) [20]. Most recently Hong has proved that the analogous result
holds even if E is not Aut(X,L)-invariant, however in this case E is required to
satisfy a certain finite-dimensional stability condition [21]. The latter result was
extended to the case that B instead admits an extremal metric by Lu-Seyyedali
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2 RUADHAÍ DERVAN AND LARS MARTIN SEKTNAN

[27], and related results have also been proven in the case that E is no longer
indecomposable [6, 2].

Projective bundles as above form one extreme of the types of fibrations. The
other extreme is a fibration π : X → B such that each fibre is a smooth projective
manifold with discrete automorphism group, but with possibly varying complex
structure (thus the map π is a holomorphic submersion). This is the situation
considered by Fine [14]. Assume that X admits a relatively ample line bundle H
such that the fibre (Xb, Hb) has discrete automorphism group and admits a cscK
metric for all b ∈ B, and that B admits an ample line bundle L with a unique
twisted cscK metric, i.e. one satisfying S(ω) − Λωα = const, for α a closed (1, 1)-
form which is determined by the geometry of the fibration. Then Fine proves that
X admits a cscK metric in the class rL+H for r � 0. In fact Fine’s proof contains
a gap in the case the base of the fibration has complex dimension at least two, in
that the uniqueness assumption he makes is not enough guarantee that the linear
operator he utilises is invertible, as we discuss further in Remark 3.23.

Our main result is the following:

Theorem 1.1. Suppose (X,H) → (B,L) is a fibration, with B and X compact,
such that each fibre (Xb, Hb) has discrete automorphism group and admits a cscK
metric for all b ∈ B. Suppose in addition that (B,L) admits a twisted extremal
metric with twist α a closed (1, 1)-form as above, and that the extremal vector field
on B lifts to X. Then (X, rL+H) admits an extremal metric for all r � 0.

Here a twisted extremal metric satisfies the condition that the gradient of S(ω)−
Λωα is a holomorphic vector field, called the extremal vector field. In the cscK case
we obtain:

Corollary 1.2. With all notation as above, (X, rL+H) admits a cscK metric for
all r � 0 if and only if the Futaki invariant vanishes.

We remark, though, that it may very well be that the Futaki invariant does not
vanish for any Kähler classes on X, see e.g. [1, Section 3]. Thus it seems important
to allow extremal metrics on X in general.

In particular we are not assuming ω is a unique solution of the twisted extremal
equation. We shall see in Remark 3.23 that the uniqueness assumption in Fine’s
result is analogous to Hong’s assumption that the base has no automorphisms
in Hong’s first result [19], and thus the corollary above is analogous to Hong’s
second result [20]. Surprisingly, while Hong had to assume that the vector bundle
E he considers is Aut(X,L)-invariant in [20], we do not need to make any such
an assumption on the fibration X → B. Thus our main result proves also the
analogous result of Hong’s most recent work described above [21], and also that
of Lu-Seyyedali [27]. Moreover, our result fixes the gap in Fine’s work in the case
that the base of the fibration has dimension at least two, and also shows that his
uniqueness assumption is essentially unnecessary.

The starting point of our result is the perspective of [10], that twisted cscK and
extremal metrics are best understood when α is the pullback of some Kähler form
from a map p : B → M. Indeed in this case, through [10, 12], the existence of a
twisted cscK metric is conjecturally equivalent to a notion of K-stability for the map
p : B →M (with one direction of this conjecture proven in [12]). To view α in this
way, we first observe that α can be identified with a Weil-Petersson metric induced
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from the cscK metrics on the fibres (Xb, Lb), as introduced by Fujiki-Schumacher
[16].

In order to see α as the pullback of a Kähler form through a morphism, we wish
to use a moduli space which parametrises the fibres. As this is rather fundamental
to our approach, we do this in two ways. The first is to directly appeal to the
construction of Fujiki-Schumacher of a moduli space of cscK manifolds [16], on
which they show the Weil-Petersson metric is Kähler with α ∈ c1(LCM ), where
LCM is the CM-line bundle of [16, 33]. The second is a more direct construction of
the moduli space via algebro-geometric methods, by using Donaldson’s fundamental
result that a projective manifold which admits a cscK metric, and with discrete
automorphism group, is asymptotically Chow stable [13]. We can then construct
an appropriate moduli space as a subvariety of a quotient of a moduli space of
certain Chow stable varieties, on which the Weil-Petersson metric is shown to have
the desired positivity properties.

The next step in the proof is to understand the properties of the linearisation of
the twisted extremal operator Lα at a twisted extremal metric. This is the key step
in forming an approximate solution to the extremal equation on X itself. We show
that when α is the pullback of a Kähler form through p as above, the kernel of Lα
can be identified with the vector fields whose flows induce automorphisms of the
map p : B → M. Since we have realised M as a moduli space parametrising the
fibres, using some moduli theory we show that these automorphisms are precisely
those which lift to X (this is clearest working with the moduli space as a quotient
of a Chow variety), and therefore that all holomorphic vector fields on X can be
identified with lifts of holomorphic vector fields on B preserving p. The proof of
this crucially uses that the fibres have discrete automorphism group: as one can
see in the example of projective bundles and which we explain in Remark 3.22, the
analogous result does not hold for arbitrary fibrations. While Lα is not invertible
in our situation, by searching for extremal metrics on X instead of cscK metrics we
show that one can adapt Fine’s technique in the automorphism-free case to produce
an approximately extremal metric. An implicit function theorem argument then
gives a genuine extremal metric, proving Theorem 1.1. Corollary 1.2 is then a
simple consequence of the fact that an extremal metric is cscK if and only if the
Futaki invariant vanishes.

1.1. The geomtery of maps. As mentioned above, twisted cscK metrics are con-
jecturally linked to stability notions for maps between polarised varieties, and hence
to the moduli theory of maps [10, 12]. One of the fundamental aspects of the rela-
tionship between (genuine) cscK metrics and stability is the link between the scalar
curvature operator and the geometry of the polarised variety (X,H) (here H is an
ample line bundle on X). The basic result along these lines is that the kernel of
the Lichnerowicz operator (the linearisation of the scalar curvature at a cscK met-
ric) can be identified with the Lie algebra of the automorphism group Aut(X,H).
We shall show in Section 3 that an analogous result holds for maps, namely the
kernel of the “twisted” Lichnerowicz operator on a map p : (B,L) → (M,LM )
can be identified with the Lie algebra p of the automorphism group of the map
p. Our first concrete consequence of this identification is the following analogue of
Matsushima’s theorem:

Theorem 1.3. Suppose the map p admits a twisted cscK metric. Then the Lie
algebra p is reductive.



4 RUADHAÍ DERVAN AND LARS MARTIN SEKTNAN

We further give a detailed description of the automorphism group on a map
admitting a twisted extremal metric. Similar ideas give the following.

Theorem 1.4. A twisted extremal metric is unique up to the action of the au-
tomorphism group of the map. Moreover, a twisted extremal metric is invariant
under a maximal compact subgroup the same automorphism group.

For the first statement our main contribution is the geometric interpretation
rather than the uniqueness result per se. Deep work of Berman-Berndtsson [5]
proves uniqueness of extremal metrics, and uniqueness of twisted extremal metrics
when the twisting form α is positive (so from our perspective p is an embedding). In
fact their techniques apply to a broader class of equations without change, provided
one understands the Hessian of the appropriate log norm functional. For us this
functional is the twisted Mabuchi functional, and we show the Hessian of this
functional degenerates precisely along the automorphisms of the map p, leading to
the above statement. In particular, it follows (see Remark 3.23) that the uniqueness
assumption in Fine’s work [14] is equivalent to demanding that the total space of
the fibration (X, rL+H) admit no continuous automorphisms. The automorphism
invariance of a twisted extremal metric is a consequence of the structure theory of
the automorphism group of the map that we develop, in a similar way to Calabi’s
results for extremal metrics. We hope these results demonstrate clearly that the
natural geometric setting for the study of twisted cscK metrics is on maps between
polarised varieties.

Twisted extremal metrics play an analogous role to extremal metrics for polarised
varieties, for example they are critical points of the twisted Calabi functional. It is
thus natural to expect that there is a stability notion associated to the existence
of twisted extremal metrics, extending the notion introduced by Székelyhidi for
extremal metrics [30] and building on his finite dimensional stability interpretation
for critical points of the norm squared of a moment map. The link between critical
points of moment maps and moduli theory was elucidated by Atiyah-Bott [4], and
thus it is natural to expect twisted extremal metrics similarly play an important
role in the moduli theory of maps. We refer to [29, 11] for results linking extremal
metrics to stability notions.

1.2. Moduli. As remarked above, we give a construction the moduli space parametris-
ing the fibres as a quotient of a certain Chow variety. This technique allows us to
give new, simple proofs (though perhaps known to experts) of two deep results of
Fujiki-Schumacher [16] regarding the properties of the moduli space cscK mani-
folds: such a moduli space is automatically separated, and any proper subspace of
such a moduli space is projective.

1.3. Examples. While our main interest in Theorem 1.1 is in the interplay between
the existence theory for extremal metrics and the moduli theory of the fibres, it is
an important problem to give new explicit examples of extremal Kähler manifolds.
One way of constructing such examples from our main result, at least modulo a
result regarding the existence of twisted extremal metrics on blowups, is as follows.
We begin with a fibration π : (X,H) → (B,L) with B a Riemann surface of
genus two and such that all fibres are Riemann surfaces of genus at least two.
Such examples were considered by Fine [14], who showed that such B admit a
solution of the twisted cscK equation for all L for the relevant twisting induced by
the moduli map. Consider the product (Y = B × P1, LY = p∗1L ⊗ p∗2O(1)), and
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the pullback family π′ : (X ′, H ′) = (X,H) ×B (B,H) → (Y, LY ). Then (Y, LY )
admits a twisted cscK metric with respect to the induced Weil-Petersson metric
on Y . A well-known result of Arezzo-Pacard-Singer states that if one blows-up
an automorphism invariant point on an extremal Kähler manifold (Z,LZ), then
the blow-up (BlpZ,LZ − εE) admits an extremal metric with E the exceptional
divisor and for ε sufficiently small [3]. Given our linearisation results, it is natural
to expect that the same is true in the twisted setting (with the automorphism group
of the Kähler manifold replaced by the automorphism group of the map), and hence
blowing-up an automorphism invariant point on our Y should produce a twisted
extremal metric on (BlpY, LY − εE) with respect to the relevant twisting. Finally,
applying our main result would then prove the existence of an extremal metric on
the total space of the induced Riemann surface fibration over (BlpY, LY − εE),
which is a projective 3-fold. We emphasise that this is a different construction
to producing an extremal metric on the natural fibration over (Y,LY ) and then
blowing-up.

Furthermore, we expect situations to which our construction applies to be rather
abundant, since stability of p (and hence the existence of twisted cscK or extremal
metrics) is expected to be a very common property. In fact, through the link
with stability, we hope to produce new examples in the following situation. Sup-
pose p : B → M is a Fano map, which means that L = −KB − LCM is ample.
The analogue of the Yau-Tian-Donaldson conjecture described in [10, 12] predicts
that the existence of a twisted Kähler-Einstein metric (hence twisted cscK) on p
is equivalent to the map p being equivariantly K-stable. There are now several
ways of producing explicit examples of (equivariantly) K-stable Fano varieties, for
example the threefolds with a two-dimensional torus action of Ilten-Süss [22], which
admit Kähler-Einstein metrics by the work of Chen-Donaldson-Sun [8] and Datar-
Székelyhidi [9]. Thus by analogy, assuming an analogue of the Yau-Tian-Donaldson
conjecture for Fano maps can be proved, we hope to produce cscK metrics on fi-
brations, where the base is a Fano map. We leave this for future work.

Outline: We begin in Section 2 with preliminaries detailing the geometry of fi-
brations and giving some basic information on twisted extremal metrics. Section 3
calculates the linearisation of the twisted extremal operator, and gives an interpre-
tation of its kernel as vector fields preserving the map. The moduli theory is also
discussed in Section 3, leading to the fact that the vector fields in the appropriate
kernel are precisely those that lift to the total space of the fibration. Section 4 con-
tinues with general theory of maps, proving that the existence of a twisted extremal
metric imposes certain constraints on the automorphism group of the map, prov-
ing Theorems 1.4 and 1.3. We prove the existence of an approximately extremal
metric in Section 5, and use an implicit function theorem argument to conclude the
existence of a genuine extremal metric in Section 6.

Acknowledgements: RD received funding from the ANR grant “GRACK”. LS
received funding from CIRGET.

Notation: For a holomorphic submersion π : X → B, the fibres will be denoted Xb

for b ∈ B and are always assumed to have fixed dimension m. We suppress pullbacks
of line bundles under this map, and use additive notation for line bundles, so that
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if H is a relatively ample line bundle on X and B is an ample line bundle on B
then rL+H denotes the line bundle (π∗L)⊗r ⊗H on X.

We will often have a map p : B → M , and will let b denote the Lie algebra of
Aut(B,L), with p the Lie subalgebra of holomorphic vector fields that also preserve
p (in a sense that we shall define). We denote h the Lie algebra of holomorphic
vector fields on X which have a zero (hence lift to one, and so any, ample line
bundle). We shall see that when M is a moduli space, one can identify h and b
naturally. Fixing a maximal compact torus t of p will then induce a maximal torus
l of h. Given a Kähler metric, the potentials for these vector fields will be denoted
with a bar, for example h. The extremal vector field on B will be denoted ν.

2. Preliminaries

2.1. Fibrations. We recall the setup which is largely the same as considered by
Fine [14]. Let π : X → B be a holomorphic submersion. We denote by H = π∗TB
the horizontal tangent bundle, and denote by V the vertical tangent bundle. The
fibration structure induces a short exact sequence of holomorphic vector bundles
on X

0→ V → TX → H→ 0.

Suppose now that H is a relatively ample line bundle on X, endowed with a
relatively Kähler metric ω0 ∈ c1(H). The main example is when each fibre (Xb, Hb)
admits a cscK metric and has discrete automorphism group, as then these metrics
glue to a relatively Kähler metric on H. This in turn induces a metric on V and
hence one obtains a metric on detV∗, which is simply the fibrewise Ricci curvature
of ω0 [14, Section 3.1]. Denote this form by ρ ∈ c1(V) = c1(detV). Note that the
determinant detV is simply −KX/B , the relative anti-canonical class.

Since ω0 restricts to a non-degenerate metric on each fibre, one obtains a splitting
in the smooth category TX ∼= V ⊕H by

Hx = {u ∈ TxX | ω0(u, v) = 0 for all v ∈ V}.

This further defines splittings in the smooth category of any tensor on X and,
following [14, Section 3.1], to any tensor we shall refer to the components purely
from V and H as the vertical and horizontal components, respectively. We will also
let ωb denote the metric on V induced by ω0.

Given a function ϕ on X one obtains a function
∫
X/B

ϕωm by integrating over

the fibres, i.e. (∫
X/B

ϕωm

)
(b) =

∫
Xb

ϕ|Xb
ωmb ,

where m is the fibre dimension. One can generalise this as follows. For a (p, p)-form
η on X one obtains a (p−m, p−m) form

∫
X/B

η on B by first using the submersion

structure to write η = ψ ∧ π∗κ for κ a (p−m, p−m)-form on B, and then defining∫
X/B

η =

(∫
X/B

ψ

)
κ.

As in Fine’s work [14, 15], applying this to the horizontal component of ρ gives a
(1, 1)-form α on B, which is closed. Setting ρH to be the horizontal component of
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ρ, explicitly we have

α = −

∫
X/B

(ρH ∧ ωm0 )∫
X/B

ωm0
.

From this one obtains a splitting

C∞(X) ∼= C∞0 (X)⊕ C∞(B),

where C∞0 (X) denotes the functions which integrate to zero over the fibres (i.e.
ϕ ∈ C∞0 (X) is equivalent to

∫
X/B

ϕωm = 0).

2.2. Twisted extremal metrics. Let B be a Kähler manifold endowed with an
ample line bundle L. We say that a Kähler metric ω ∈ c1(L) is a constant scalar
curvature Kähler (cscK) metric if

S(ω) = Λω Ricω = c,

where

c = n
−KX .L

n−1

Ln
= n

∫
X

Ricω ∧ ωn−1∫
X
ωn

is the only possible topological constant and n = dimB. We say further that ω is
extremal if ∂̄∇1,0S(ω) = 0.

Remark 2.1. If π : X → B is a holomorphic submersion and H is a line bundle
on X with restriction Hb = H|Xb

to a fibre Xb, then the intersection number

−KXb
.Hn−1

b

Hn
b

is actually independent of b. There are various ways of seeing this, one of which
is to note that Hn

b and −KXb
.Hn−1

b are coefficients of the Hilbert polynomial

h(r) = χ(Xb, H
⊗r
b ) and to use that the Hilbert polynomial is constant in flat

families. More directly, one could similarly note that intersection numbers are also
constant in flat families. Another more differential-geometric proof is to note that,
if ω ∈ c1(H) is relatively Kähler, then

∫
Xb
ωnb is continuous as one varies b ∈ B, but

since it is also an integer it must be independent of b. In particular, if ωb is a cscK
metric on Xb for all b ∈ B, then the scalar curvature of ωb is independent of b.

Suppose in addition that α is a semipositive (1, 1) form on B. The typical case
we shall consider is when α is the pullback of a Kähler metric from a map B →M .
We say that ω ∈ c1(H) is a twisted cscK metric if

S(ω)− Λωα = c,

where c is the appropriate topological constant. In this form these metrics were
first studied by Fine [14], though the study of the special case of twisted Kähler-
Einstein metrics goes back at least to Yau. More generally we say that ω is twisted
extremal if ∂̄∇1,0(S(ω)−Λωα) = 0. Clearly a twisted cscK metric is extremal, and
conversely we shall see that a twisted extremal metric is twisted cscK if B admits
no holomorphic vector fields.

For a Kähler manifold manifold (X,A) with an ample line bundle A, we define
Aut(X,A) to be the automorphisms of X which lift to A. Its Lie algebra h con-
sists of holomorphic vector fields whose flows lift to L. By a well known result of
LeBrun-Simanca [26, Theorem 1], these vector fields are precisely those which van-
ish somewhere, and in particular are independent the choice of ample line bundle
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A. Fixing a metric ω ∈ c1(A) with induced Riemannian metric g, each element
ξ ∈ h can be written in coordinates, and using the obvious notation, as

ξj = gjk̄∂k̄f,

for some f ∈ C∞(X,C), unique up to the addition of a constant, called a holomor-
phy potential for ξ. We denote by h the holomorphy potentials of the holomorphic
vector fields in h.

The isomorphism T 1,0X ∼= TX between the holomorphic and real tangent bun-
dles gives a correspondence

gjk̄∂k̄f →
1

2
(∇u+ J∇v),

where f = u+iv is the decomposition of f into real and imaginary parts and J is the
complex structure. We also denote by t ⊂ h the vector fields in h which correspond
to Killing vector fields under this isomorphism, which by above are vector fields
with purely imaginary holomorphy potential.

Denote by

Dω : C∞(X,C)→ Γ(T 1,0X ⊗ Ω0,1(X)),

Dω = ∂̄∇1,0,

and recall the Lichnerowicz operator is defined as D∗ωDω. We shall use two key
facts regarding this operator: firstly, it is the linearisation of the scalar curvature
if ω is a cscK metric; secondly, the kernel kerD∗ωDω = kerDω consists precisely
of holomorphy potentials f , see [7]. Denoting ker0D∗ωDω the kernel restricted to
functions which integrate to zero with respect to the volume form induced by ω, it
follows that this operator induces an isomorphism

ker0D∗ωDω → h,

f → gjk̄∂k̄f.

Using this operator one sees that a Kähler metric is extremal precisely if its scalar
curvature is a holomorphy potential, or equivalently DωS(ω) = 0. Similarly a
Kähler metric on B is a twisted extremal metric if and only if S(ω) − Λωα is a
holomorphy potential, i.e. it lies in b and so corresponds to an element of the Lie
algebra b of Aut(B,L).

The twisted extremal equation can therefore be written

S(ω)− Λωα− f = 0,

where f is the potential of some holomorphic vector field ν ∈ b with respect to the
Kähler metric ω. If we consider a perturbation ω+i∂∂ϕ of ω within its Kähler class,
then the potential for ν changes by ν(ϕ) = 1

2 〈∇f,∇ϕ〉, where the inner product
and gradient is taken using ω (see for example [31, Lemma 12] or [3]). Writing the
twisted extremal equation as an equation for ϕ gives

S(ω + i∂∂ϕ)− Λω+i∂∂ϕα−
1

2
〈∇f,∇ϕ〉 − f = 0.

Thus to solve the extremal equation, we must find a zero of the map

P : C4,α(B)× b→ C0,α(B),

P (ϕ, f) = S(ω + i∂∂ϕ)− 1

2
〈∇f,∇ϕ〉 − f.
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A standard elliptic regularity argument then implies a C4,α-extremal metric is
actually smooth.

3. Lifting vector fields

3.1. Linearising the twisted extremal operator. One of the key links between
cscK metrics and the geometry of Kähler manifolds is through the Lichnerowicz
operator, whose kernel is precisely given by the holomorphy potentials of the Kähler
manifold. The goal of this section is to prove an analogous result for twisted cscK
and extremal metrics. We begin with the following calculation of the linearisation
of the twisted extremal operator:

Proposition 3.1. The linearisation of the twisted extremal operator P is given as

dP(0,f)(ϕ, h) = −D∗ωDω(ϕ) +
1

2
〈∇
(
S(ω)− f

)
,∇ϕ〉+ 〈i∂∂ϕ, α〉ω − h.(3.1)

Proof. Recall that the linearisation of the extremal operator Q : C4,α(B) × h →
C0,α(B)

(3.2) Q(ϕ, f) = S(ω + i∂∂ϕ)− 1

2
〈∇f,∇ϕ〉 − f

is given by

dQ(0,f)(ϕ, h) = −D∗ωDω(ϕ) +
1

2
〈∇
(
S(ω)− f

)
,∇ϕ〉 − h.

Thus all that remains is to subtract the linearisation of the operator ϕ→ Λωϕα,

where ωϕ = ω + i∂∂̄ϕ. Writing

(Λωϕα)ωnϕ = nα ∧ ωn−1
ϕ

and expanding one sees that the linearisation is given by

ϕ→ n(n− 1)i∂∂ϕ ∧ α ∧ ωn−2

ωn
− Λωα ·∆(ϕ).

We claim that

−〈i∂∂ϕ, α〉ω =
n(n− 1)i∂∂ϕ ∧ α ∧ ωn−2

ωn
− Λωα ·∆(ϕ).

Using the formula

n(n− 1)β1 ∧ β2 ∧ ωn−2 =
(
Λωβ1Λωβ2 − 〈β1, β2〉ω

)
ωn

for (1, 1)-forms β1, β2 [32, Lemma 4.7], together with ∆(ϕ) = Λω(i∂∂ϕ), gives

(3.3) − 〈i∂∂ϕ, α〉ωωn = n(n− 1)i∂∂ϕ ∧ α ∧ ωn−2 − Λωα ·∆(ϕ)ωn,

as required. �

While the above results holds without any assumptions on α, it will now be useful
to assume α is semipositive. Recall from Section 2.2 that D∗Dϕ = 0 if and only if
ϕ is a holomorphy potential, and so the kernel of the linearisation of the extremal
operator (3.2) at an extremal metric consists precisely of holomorphy potentials.
The analogue of this statement for the twisted extremal operator is the following,
which is the operator obtained by choosing f = S(ω)−Λωα and restricting to h = 0
in the operator (3.1).
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Proposition 3.2. Define an operator

Lα(ϕ) = −D∗ωDω(ϕ) +
1

2
〈∇Λωα,∇ϕ〉+ 〈i∂∂ϕ, α〉.

Suppose α is semipositive. Then the kernel of Lα consists of holomorphy potentials
satisfying |∇ϕ|α = 0.

Proof. First note that Lα(ϕ) = 0 if and only if for all ψ ∈ C∞(X) we have

0 =

∫
B

Lα(ϕ)ψωn =

∫
B

(
−D∗ωDω(ϕ) +

1

2
〈∇Λωα,∇ϕ〉+ 〈i∂∂ϕ, α〉

)
ψωn.

The Lichnerowicz operator D∗ωDω is self-adjoint and hence satisfies∫
B

D∗ωDω(ϕ)ψωn =

∫
B

〈Dω(ϕ),Dω(ψ)〉ωn.

Using equation (3.3), the remaining part of the integral equals∫
B

(Lα(ϕ) +D∗ωDω(ϕ))ψωn =

∫
B

1

2
〈∇Λωα,ψ∇ϕ〉ωn +

∫
B

ψ∆(ϕ)Λωαω
n−(3.4)

− n(n− 1)

∫
B

ψi∂∂ϕ ∧ α ∧ ωn−2.

Applying the Leibniz rule for ∇∗, we see that∫
B

〈∇Λωα,ψ∇ϕ〉ωn =

∫
B

Λωα · ∇∗(ψ∇ϕ)ωn

=

∫
B

Λωα · (ψ∇∗∇ϕ−∇ψ · ∇ϕ)ωn

= −2

∫
B

ψ∆(ϕ)Λωαω
n −

∫
B

∇ψ · ∇ϕΛωαω
n

since ∇∗∇ = −2∆ on functions. Thus in equation (3.4), the two first terms equal
− 1

2

∫
B
∇ψ · ∇ϕΛωαω

n.
For the remaining term, we begin with

n(n− 1)

∫
B

ψi∂∂ϕ ∧ α ∧ ωn−2 = −n(n− 1)

∫
B

i∂ψ ∧ ∂ϕ ∧ α ∧ ωn−2.

As above using [32, Lemma 4.7] gives

n(n− 1)i∂ψ ∧ ∂ϕ ∧ α ∧ ωn−2 =
(
Λω(i∂ψ ∧ ∂ϕ) · Λωα− 〈i∂ψ ∧ ∂ϕ, α〉ω

)
ωn.

For the first term, note that

Λω(i∂ψ ∧ ∂ϕ) = gpq∂pψ∂qϕ =
1

2
〈∇ψ,∇ϕ〉ω.

Similarly for the second term

〈i∂ψ ∧ ∂ϕ, α〉ω = gpqgrs∂pψ∂sϕαrq = (∇ϕ)r(∇ψ)qαrq = 〈∇ψ,∇ϕ〉α.
So

n(n− 1)i∂ψ ∧ ∂ϕ ∧ α ∧ ωn−2 =

(
1

2
〈∇ψ,∇ϕ〉ω · Λωα− 〈∇ψ,∇ϕ〉α

)
ωn.

It follows that

−n(n− 1)

∫
B

ψi∂∂ϕ ∧ α ∧ ωn−2 =

∫
B

(
1

2
〈∇ψ,∇ϕ〉ω · Λωα− 〈∇ψ,∇ϕ〉α

)
ωn,
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and summing up gives

(3.5)

∫
B

Lα(ϕ)ψωn = −
∫
B

〈Dω(ϕ),Dω(ψ)〉ωn −
∫
B

〈∇ψ,∇ϕ〉αωn.

Setting ψ = ϕ, we see that
∫
B
ψLα(ϕ)ωn = 0 implies

∫
B
|Dω(ϕ)|2ωn = 0 and∫

B
|∇ϕ|2αωn = 0. These respectively imply Dω(ϕ) = 0 and |∇ϕ|α = 0; remark that

the first is equivalent to ϕ being a holomorphy potential.
Conversely suppose Dω(ϕ) = 0 and |∇ϕ|α = 0. Since α is semipositive, one has

|∇ϕ|α = 0 if and only if 〈∇ϕ,∇ψ〉α = 0 for all ψ ∈ C∞(X). But this clearly implies∫
B
ψLα(ϕ)ωn = 0 for all ψ, proving the result. �

Remark 3.3. It seems unlikely that there is any reasonable interpretation for the
kernel when α is not semipositive.

3.2. Automorphisms of maps. As described in the introduction, the most nat-
ural situation in which to study twisted extremal metrics is when one has a map
of Kähler manifolds p : (B,ω) → (M,α). Specialising to this case, we relate the
relevant kernel to automorphisms of p.

Definition 3.4. We say that g ∈ Aut(B,L) is an automorphism of p : B → M
if p(g(b)) = p(b) for all b ∈ B. We write the subgroup of automorphisms of p as
Aut(p), and denote its Lie algebra by p.

Proposition 3.5. Suppose ρ(t) ∈ Aut(B) is the flow of a holomorphic vector field
µ ∈ b. Then ρ(t) ∈ Aut(p) if and only if the holomorphy potential ϕ of v is in the
kernel of Lα. The same result holds if α is a smooth (1, 1)-form which is Kähler
on a Zariski open locus of M .

Proof. A holomorphy potential is, in particular, a smooth function. Thus a holo-
morphy potential ϕ is in the kernel of Lα if and only if Lα(ϕ) = 0 holds on a
Zariski open locus of B. Similarly for a given g ∈ Aut(B), by definition g ∈ Aut(p)
if p(g(b)) = p(b) for all b ∈ B, which is true if and only if p(g(b)) = p(b) for all b
in a Zariski open subset of B, since g is a holomorphic map, and Zariski open sets
are dense in the analytic topology.

Thus to prove the result we can work on a Zariski open subsets of B and similarly
M . By replacingM with its image we assume p is surjective. The Stein factorisation

of the map p : B →M is B
p1→M ′

p2→M where p1 is a contraction and p2 is finite.
Note that the automorphisms of p are equivalent to the isomorphisms of p1. As p2

is finite, it is unramified in codimension one, hence the pullback p∗2α is positive on
a Zariski open locus of M ′. Thus we may assume p is actually a contraction.

We next work on the Zariski open locus of B on which p : B → M is a holo-
morphic submersion, which exists by [18, p106]. In fact working first on the Zariski
open locus of M which is smooth, it is then clear p is a submersion on a Zariski
open locus as the condition is simply that the Jacobian of the derivative of the map
has its largest rank. Let Bo ⊂ B be such a Zariski open submanifold.

As p : Bo →M is a submersion, locally around any point there are holomorphic
coordinates such that p is a projection onto some of the subset of the coordinates.
In a neighbourhood of b ∈ Bo, pick coordinates x1, . . . , xi, xi+1, . . . , xn such that
p(x1, . . . , xi, xi+1, . . . , xn) = (xi+1, . . . , xn). Since α is pulled back from M , α is
strictly positive in the coordinates (xi+1, . . . , xn) and zero in the other directions.
Thus |∇ϕ|α = 0 if and only if the flow of ϕ acts only on (x1, . . . , xi). But this
happens for all b ∈ Bo if and only if ρ(t) ∈ Aut(p), as required. �
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Remark 3.6. It should come as no surprise that one only needs α to be positive
on a Zariski open locus of M in the above result. The typical situation in which
this occurs is when q : M → M ′ is a birational morphism, so that q∗α′ is positive
away from the exceptional locus of q. But in this situation, the automorphisms of a
map p : B →M are equal to the automorphisms of p◦q, justifying the expectation.

Slightly more generally, Proposition 3.5 holds in the situation that one has a
map p : Mo → Bo where Mo ⊂ M and Bo ⊂ B are Zariski open loci of M and B
respectively, with α a Kähler metric on Bo which extends to a continuous metric
on M .

Remark 3.7. Using these ideas, one can give a geometric interpretation of the
uniqueness of twisted cscK and extremal metrics. It is proven by Berman-Berndtsson
that an extremal metric is unique up to isometries [5, Section 4]. In Section 4 we
shall see that a twisted extremal metric automatically has isometry group which
is a maximal compact subgroup of Aut(p). Thus it is natural to ask if the same
uniqueness holds for twisted extremal metrics. Absolute uniqueness is proved by
Berman-Berndtsson in the case that α is positive, which is the case that p is an
embedding.

In fact, the techniques of Berman-Berndtsson apply more generally. We consider
first the (twisted) cscK case. The key tool used in [5] is the Mabuchi functional,
which is a functional on the space of Kähler metrics ω + i∂∂̄ϕ, and has a natural
twisted analogue as follows. Consider a path ωt = ω + i∂∂̄ϕt with ω0 = ω. The
twisted Mabuchi functional is then

Mα(ϕ) = −
∫ 1

0

∫
B

ϕ̇t(S(ωt)− Λωtα− C)ωnt .

Berman-Berndtsson show that, in a suitable sense, this functional is convex along
geodesics in the space of weak Kähler metrics with L∞-coefficients (this is proven
when α is strictly positive, but the same result holds by approximating α by positive
forms, or by an examination of the proof in the positive case). One calculates, using
the same ideas as Proposition 3.1, that the Hessian H(ϕ,ψ) of the twisted Mabuchi
functional is given as:

H(ϕ,ψ) =

∫
B

Dω(ψ)Dω(ϕ)ωn +

∫
B

〈∇ψ,∇ϕ〉αωn.

Thus from Proposition 3.5 one sees that the Hessian of the Mabuchi functional is
non-negative, and degenerates precisely along the holomorphy potentials p which
preserve the map p. This infinitesimal non-degeneracy, together with convexity
along geodesics, is exactly what Berman-Berndtsson use to obtain uniqueness of
cscK metrics up to automorphisms. Then the same argument applies to give unique-
ness of twisted cscK metrics in the following sense: if ω, ω′ are two twisted cscK
metrics, then there is an element g ∈ Aut(p) such that ω = g∗ω′.

The argument for uniqueness of twisted extremal metrics is similar, the main
difference is one works only on Kähler metrics invariant under the imaginary part
of the extremal vector field, and modifies the Mabuchi functional by adding an
extra term. We refer to [5, Section 4] for further details in the untwisted case,
which apply in a straightforward manner in the twisted setting.

Using this allows one to give a geometric interpretation to Fine’s uniqueness
assumption [14]. Indeed, we shall see in Remark 3.23 that ωB is the unique twisted
cscK metric if and only if Aut(X, kL+H) is discrete.
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Corollary 3.8. If ω, ω′ ∈ c1(L) are both twisted cscK, then there is a g ∈ Aut(p)
with g∗ω = ω′. If ω, ω′ are twisted extremal metrics with the same extremal vector
field v, then denoting by Autv(p) the automorphisms of p which commute with the
flow of v, there is a g ∈ Autv(p) with g∗ω = ω′.

Since, as we will later show in Corollary 4.2 , twisted extremal metrics are
invariant under a maximal compact subgroup of Autv(p), it follows that one could
take a g ∈ Autv(p) to be in the connected component of the identity.

3.3. The Weil-Petersson metric. We consider to a fibration X → B such that
H is a relatively ample line bundle with ω0 ∈ c1(H), such that each fibre (Xb, Hb) is
a smooth projective manifold with discrete automorphism group and the restriction
ωb of ω0 to each fibre is cscK with scalar curvature S(ωb) (which is independent of
b). For the moment we allow B to be non-compact. As in Section 2.1, the metric
ω0 form ρ ∈ c1(KX/B) in the relative anticanonical class.

Definition 3.9. [16, Theorem 7.8] Denote by [ωb]
m =

∫
Xb
ωmb the volume of the

fibres. We define the Weil-Petersson metric of X → B to be the (1, 1)-form on B
given as

ωWP =
S(ωb)

(m+ 1)

∫
X/B

ωm+1∫
X/B

ωm
−

∫
X/B

ρ ∧ ωm∫
X/B

ωm
,

where m is the dimension of the fibres, and the fibre integrals are simply the push-
forwards of Section 2. Note that

∫
X/B

ωm is independent of b ∈ B and is simply

the volume of any fibre.

Remark 3.10. Similarly one can define the Weil-Petersson metric over a submer-
sion X → B where X and B are reduced complex spaces; we refer to [16] for further
details.

Remark that ωWP is closed since the differential d commutes with pushforward,
see e.g. [16]. Since the pushforward is of an (m + 1,m + 1)-form and each fibre
is m-dimensional, the resulting form on B is a (1, 1)-form. The above is not the
main representation of the Weil-Petersson metric used by Fujiki-Schumacher, but
is equivalent by their results [16].

Lemma 3.11. The form α is the Weil-Petersson metric induced from the fibration
X → B.

Proof. This is essentially proved in [15, Lemma 2.3]; we recall Fine’s argument for
the reader’s convenience.

Recall that α is defined by first taking the horizontal component ρH of ρ and
defining

α = −

∫
X/B

(ρH ∧ ωm)∫
X/B

ωm
.

On each fibre, the vertical component ρV of ρ is the Ricci curvature of ωb [14,
Lemma 3.3]. Since ωb is cscK we therefore have

mρV ∧ ωm−1
b = S(ωb)ω

m
b .
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From here the result is a simple computation. Indeed∫
X/B

ρV ∧ ωm =

∫
X/B

mρV ∧ ωm−1
b ∧ ωH ,

=

∫
X/B

ωmb ∧ ωH ,

=
S(ωb)

m+ 1

∫
X/B

ωm+1.

But then ∫
X/B

(ρ ∧ ωm) =

∫
X/B

(ρV + ρH) ∧ ωm,

= −

(∫
X/B

ωm

)
α+

S(ωb)

m+ 1

∫
X/B

ωm+1,

giving the result. �

Remark 3.12. When the fibres Xb are curves, Lemma 3.11 was noticed by Fine
[14, Theorem 3.5]. In general Fine remarks in [15] that [α] = [ωWP ], what we wish
to point out here is that even the forms themselves are equal.

The first result of Fujiki-Schumacher regarding the Weil-Petersson metric we
shall use is the following.

Theorem 3.13. [16, Theorem 7.4] The Weil-Petersson metric is semi-positive. If
the fibres of X → B are pairwise biholomorphically distinct, then ωWP is Kähler.

Remark 3.14. Fujiki-Schumacher prove the above under the somewhat more gen-
eral hypothesis that the family is effective, which means that the Kuranishi map is
injective (i.e. the fibres locally have distinct holomorphic structures).

The second result of Fujiki-Schumacher we shall use concerns the existence of a
moduli space of polarised manifolds admitting cscK metrics. We remark that while
it is expected that such a manifold is a quasi-projective variety, this is far from
known.

Theorem 3.15. [16, Theorem 6.6] There exists a reduced complex space M which
is a moduli space of polarised manifolds which admit cscK metrics and have discrete
automorphism group. The Weil-Petersson metric is a Kähler metric on this space.

The result above should be understood as follows. A given point x ∈ M rep-
resents a polarised manifold which may have discrete, non-trivial automorphism
group. Using this, Fujiki-Schumacher giveM the structure of an analytic Deligne-
Mumford stack (also called “orbi-spaces” or “V-spaces”). That is, around each
x ∈ M there is an open set U ⊂ M, a group G and a quotient V/G ∼= U , where
V is a (genuine) analytic space. In our case G is the automorphism group of the
polarised manifold which x represents. Morphisms of such spaces of are defined to
be ones which lift to the finite covers locally. The Weil-Petersson metric is then a
Kähler orbi-metric on M (i.e. a G-invariant metric on the covers), which is possi-
ble since a cscK metric is invariant under the (finite) automorphism group of the
polarised manifold. We refer to [16, Definition 1.5] for further details on this con-
struction, including a discussion of Kähler geometry on analytic spaces (the main
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point being that a Kähler metric is one which, under a local embedding in some
CN , locally extends to a Kähler metric on CN ).

Since our techniques allow one to restrict to Zariski open subsets, one can typi-
cally ignore the orbi-structure onM by restricting to a subset. In any case we shall
give another construction of the moduli space relevant to our work using algebro-
geometric techniques, which in particular make the universal properties of such a
moduli space that we shall require more transparent.

Remark 3.16. From moduli considerations, we expect in Proposition 3.5 that the
situation that α is merely positive on a Zariski open locus is rather fundamental
in the study of twisted cscK metrics. For example, a typical situation in algebraic
geometry is a fibration X → B where the fibres Xb are only smooth on a Zariski
open locus of B, and the other fibres can be very singular. In this case there is no
hope to extend a Weil-Petersson metric as a Kähler metric over a relevant moduli
space (as the map to the moduli space exists only on a Zariski open locus of B), and
the Weil-Petersson metric may only extend to a current on X. Nevertheless for our
proof above we need the Weil-Petersson metric to at least extend to a continuous
metric over B, which happens for example when X → B is a fibration where the
general fibre is a smooth curve but where a special fibre may be nodal.

The existence of the moduli space, together with Lemma 3.11, allow us to view
the fibration X → B as induced from a map p : B → M, with M endowed with
the Weil-Petersson metric.

3.4. Chow stability and lifts. The goal of this section is to give another con-
struction of a moduli space which parametrises the fibres of the fibration X → B.
This construction uses Geometric Invariant Theory (GIT), and from this construc-
tion we will obtain some useful properties from the general theory of GIT [28].
More precisely, we will construct the moduli space as a quotient of a Chow variety,
which parametrises certain subvarieties in projective space.

We begin with a brief discussion of the Chow variety, referring to [24, Section
1.3] for more details. Fixing some Y ⊂ Pn = P(V ), we only show how to associate
a point in another projective space. When this is done in families, this yields a
moduli space, namely the Chow variety, which can be compactified naturally by
adding certain cycles at the boundary. We denote by m the dimension of Y and
d the degree of Y , which means (OPn(1)|Y )m = d. The set Z of (n − m − 1)-
dimensional planes intersecting Y nontrivially is by definition a subvariety of the
Grassmanian Grass(n−m,n+1). One shows that Z is a codimension one subvariety
of this Grassmanian, and hence Z = V(f) is the vanishing locus of some section
f ∈ H0(Grass(n−m,n+ 1),O(d)) unique up to scaling. Thus associated to Y , we
have a section f ∈ H0(Grass(n −m,n + 1),O(d)) unique up to scaling, and so a
corresponding point [f ] ∈ P(H0(Grass(n−m,n+1),O(d))), called the Chow point.
We denote by Ch(Pm) ⊂ P(H0(Grass(n−m,n+1),O(d))) the Chow variety induced
from this construction, and note that it admits an ample line bundle induced from
the line bundle OCh(1) on P(H0(Grass(n−m,n+ 1),O(d))).

For any Y ⊂ Pm, for any g ∈ G := SL(m) the variety g · Y ⊂ Pm is clearly
isomorphic to Y . Thus to obtain a moduli space which parametrises subvarieties
of Pm, we wish to take a quotient of Ch(Pm) by the group SL(m + 1), which acts
on P(H0(Grass(n − m,n + 1)) in a natural way. In order to do this, we use the
machinery of GIT, for which we refer to [28] for an introduction. This general
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theory then produces a moduli space (M,L) = (Ch(Pm),OCh(1)) // SL(m + 1),
which is a projective variety. In fact, this quotient is constructed by taking M =
Proj⊕r≥1H

0(Ch(Pm),OCh(r))G, where for a vector space W , we denote by WG

the G-invariant sections. Clearly the induced rational map Ch(Pm) 99K M is only
defined on points x ∈ Ch(Pm) for which there exists an r and a G-invariant section
of H0(Ch(Pm),OCh(r)) which does not vanish at x; let us call x Chow stable if this
holds and further the stabiliser of x is finite. The fundamental result of GIT is that
M is a coarse moduli space when restricted to the stable locus of Ch(Pm), which
is Zariski open (of course this holds for any projective variety, not just the Chow
variety) [28]. We denote by Mst the quasi-projective scheme which parametrises
Chow stable varieties in Pm.

Remark 3.17. Mst being a coarse moduli space means that a map B → M is
associated to each family X → B where each fibre Xb corresponds to a Chow stable
variety in Pm. Remark that in general no universal family U →Mst can exist owing
to the presence of points x ∈Mst which have finite but non-trivial stabiliser. If one
restricts to the locus of Mst for which the stabiliser is trivial, then such a universal
family exists (which means that on this locus, Mst is a fine moduli space).

Definition 3.18. We say that a polarised variety (Y,H) is asymptotically Chow
stable if Y is Chow stable under the Kodaira embeddings Y ↪→ P(H0(Y,Hr)) for
r � 0.

The key result we need linking the moduli theory of cscK manifolds and polarised
varieties is the following, due to Donaldson [13].

Theorem 3.19. [13] Suppose (Y,H) is a smooth polarised variety which has dis-
crete automorphism group. If (Y,H) in addition admits a cscK metric, then (Y,H)
is asymptotically Chow stable.

The situation we are interested in is that of a holomorphic submersion X → B,
with a relatively ample line bundle L, such that (Xb, Lb) admits a cscK metric
for each b ∈ B. Thus by the above, each Xb is Chow stable when embedded in
projective space using global sections of kLb for some k = k(b) which a priori
depends on b. We claim that in fact k can be chosen independently of b (which is
well known to experts). This follows since k is a function of the “geometry bounds”
of (Xb, Lb) which are bounded independently of b since B is compact and the cscK
metrics and complex structures vary smoothly among the fibres (see [13] for the
notion of R-bounded geometry which we are using).

Corollary 3.20. There exists a projective space Pm such that each Xb is embedded
in Pm using global sections of kLb with Xb Chow stable for all b ∈ B.

We now take the GIT quotient of Ch(Pm) by SL(m + 1) as above to obtain a
coarse moduli space Mst which parametrises Chow stable varieties in Pm. The
family X → B then corresponds to a morphism p : B → M . We set M = p(B) to
be the image of B under p, which is a variety.

We wish to endowM with a Weil-Petersson metric. Since a given fibre (Xb, Lb)
may have non-trivial automorphism group, there is no universal family U →M in
general. Instead of endowingM with an orbifold Weil-Petersson metric, analogous
to Fujiki-Schumacher’s construction, we give a simpler and more direct argument
as follows. We first replace M with the image p(B) of B in M. While in general
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there is no universal family over M, by a result of Kollár [25, Section 2] there is a
universal family after passing to a finite coverM′ →M. Denote by U ′ →M′ this
universal family. Since M′ → M is finite, there are codimension one subschemes
D′ and D of M′ and M respectively, such that M ′ → M is étale. Let Bo be the
Zariski open locus of B which maps to M′.

The universal family U ′ →M′ induces a Weil-Petersson metric onM ′ by Remark
3.10, which is Kähler onM′\D′. Picking a connected component Z ofM′\D′, the
map p : B → M induces a map p : B0 → Z. The Weil-Petersson metric is now
a positive Kähler metric on Z, and by the construction of Section 2, extends to a
smooth (1, 1)-form on B. Of course, one can think of Z as a subvariety of M.

This is all we need to obtain the main result of this section.

Proposition 3.21. With all notation as above, kerLα corresponds to the holo-
morphic vector fields on B which lift to holomorphic vector fields on X, i.e. induce
elements of h. In particular there is a natural identification h ∼= p, and the extremal
vector field on B lifts to X if and only if its flow preserves the map, or equivalently
is an element of p.

Proof. We first show that elements g ∈ Aut(p) lift to an automorphism of X. Just
as above, we obtain a map on a Zariski open locus B0 of B to a moduli space M′
with a universal family U →M′. We begin with the case that B0 = B, so that we
may assume M′ =M. Then the moduli map

p : B →M

satisfies p ◦ g = p, by definition of an automorphism of p. SinceM is a fine moduli
space, the family X → B is isomorphic to the pullback family p∗U → B. We also
obtain a pullback family g∗X → B by the fibre product construction, so that the
following diagram commutes:

g∗X X

B B

gX

π

g

But since p ◦ g = p, it follows that g∗p∗U = p∗U , so that gX is an isomorphism of
X covering π.

In the general case, we still obtain a fibre product morphism gX : g∗X → X
constructed in the same manner as above. On B0, we obtain that π−1(B0) ∼= p|∗B0U .
Similarly, after perhaps replacing B0 with a Zariski open subset, we obtain that
g∗XX → B0 is given as the pullback g∗p∗U = p∗U . Thus the morphism gX : g∗X →
X is an isomorphism on B0, so in particular it is a birational morphism. The same
construction gives a birational morphism (g−1)X : X → g∗X, with (g−1)X◦gX = Id
on B0, perhaps again after replacing B0 with a Zariski open subset. In summary,
we have produced a birational morphisms gX : g∗X → X and (g−1)X : X →
g∗X, which are isomorphisms over B0. But this is impossible unless these maps
are isomorphisms by elementary reasoning: a morphism which is birational must
extend to a codimension two locus in the target, and strictly codimension one in
the domain. More precisely, consider the map gX ◦ (g−1)X : X → X. Then
gX ◦ (g−1)X must be the identity, as it is the identity on a dense set in X. Hence
if gX is an isomorphism away from a codimension at least two subscheme Z of X,
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the preimage g−1
X (Z) must have codimension one, hence (gX ◦ (g−1)X)−1(Z) must

have codimension one, which contradicts that gX ◦ (g−1)X is an isomorphism.
Thus in both cases, automorphisms g ∈ Aut(p) lift to an automorphisms of X.

It follows that elements of the Lie algebra p = Lie(Aut(p)) give holomorphic vector
fields on X, and moreover if such a vector field has a zero on B it certainly has a
zero on X. This gives a natural inclusion p ⊂ h.

We next return to the short exact sequence

0→ V → TX → π∗TB → 0,

with V the vertical tangent bundle. A global holomorphic vector field v on X which
has a zero and is in the image of H0(X,V) in the long exact sequence

0→ H0(X,V) ↪→ H0(X,TX)→ H0(X,π∗TB)→ . . .

must have a zero on some fibre. We have assumed that the polarised automorphism
group Aut(Xb, Hb) of each fibre (Xb, Hb) is discrete, so there are no such vector
fields. Thus we obtain an inclusion h ↪→ H0(X,π∗TB) ∼= H0(B, TB), which then
sends a vector field with a zero to a vector field with a zero. Hence this provides
an isomorphism p ∼= h.

Finally, Remark 3.6 states that as α is a smooth form on B which is pulled
back from a Kähler metric on Z ⊂ M , the kernel of Lα can be identified with the
holomorphic vector fields whose flow preserves the map p. This gives the sequence
of isomorphisms kerLα ∼= p ∼= h, as required. �

Remark 3.22. It is crucial in the above that we assume the automorphism group
of the fibres is discrete. In general, when the fibres have continuous automorphisms,
it is not the case that all automorphisms of the map to the moduli space lift to the
total space of fibrations. As an example, consider a vector bundle E → (B,L) with
induced projective bundle π : P(E) → (B,L). Then all automorphisms of (B,L)
preserve the moduli map, as the moduli space is just a point. On the other hand,
Aut(B,L) lifts to an action on (B,L) if and only if E is Aut(B,L)-equivariant,
which is not always the case.

Remark 3.23. Using this we can clarify the uniqueness statement in Fine’s result
[14], as promised in Remark 3.7. Indeed, a twisted cscK metric on p : B → M is
unique if and only if Aut(p) is discrete. But this is equivalent to Aut(X, rL + H)
being discrete by Proposition 3.21.

In particular, when the map has no automorphisms, kerLα is invertible modulo
constants. In [14, Theorem 8.1], Fine assumes that the solution of the twisted cscK
equation is unique in its cohomology class, and claims as a general principle that if
a solution to a nonlinear PDE with elliptic linearisation is unique, then its lineari-
sation has to be invertible modulo constants [14, p431]. This is not actually true,
and so for Fine’s proof to hold, the necessary assumption is that the linearisation
is invertible modulo constants. It follows from our results above that that unique-
ness of solutions of the twisted cscK equation does actually imply invertibility of the
linearisation, through our geometric characterisation of uniqueness and our calcula-
tion of kerLα, and thus Fine’s invertibility assumption does actually hold when the
twisted cscK metric is unique. When the base of the fibration has complex dimen-
sion one, Fine uses a different, valid argument to obtain the necessary invertibility
[14, Lemma 3.12]. We thank J. Fine for advice on this point.
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Although the following two results are not needed in the remainder of the present
work (and are possibly known to some experts), we feel they are worth describing
since they are rather fundamental to the moduli theory of manifolds admitting cscK
metrics and are simple consequences of the approach we have taken. The first result
is first due to Fujiki-Schumacher, whose proof uses positivity of the Weil-Petersson
metric on the CM-line bundle [16, Theorem 6.6].

Theorem 3.24. Any proper analytic subspace of the moduli space of polarised
manifolds with discrete automorphism group admitting cscK metrics is projective.

Proof. Let D be such a space. We can assume D is reduced and irreducible since
this does not affect projectivity. Again as taking a finite cover does not affect
projectivity, we can assume D is normal and admits a universal family. Then the
fibres satisfy the “geometry bounds” required to apply Donaldson’s theorem [13],
and realise D as a subvariety of a moduli space of Chow stable varieties just as
we did above. For this, one can take a resolution of singularities D′ → D, which
still admits a universal family, but for this universal family it is clear that the
complex structures and cscK metrics vary smoothly, and compactness gives the
desired geometry bounds. But then since D is a subvariety of a moduli space
constructed as above, the ample line bundle on the Chow variety descends to one
on the moduli space, and hence restricts to an ample line bundle on D. Thus D is
projective, as required. �

The second is the separatedness of the moduli space of polarised manifolds with
discrete automorphism group admitting cscK metrics, again originally due to Fujiki-
Schumacher [16, Theorem 6.3], whose proof uses the unique extension property of
cscK metrics.

Theorem 3.25. The moduli space of polarised manifolds with discrete automor-
phism group admitting cscK metrics is separated.

Proof. Consider a pointed curve Co = C\{p} with a family (Xo, Lo) → Co of
polarised manifolds admitting cscK metrics. Separatedness means that there is at
most one extension to a family (X,L) → C with the extension cscK with discrete
automorphism group. Suppose not, so that one had two such extensions (X,L) and
(X ′, L′). Then by Donaldson’s result and the arguments above, these would induce
maps to an appropriate moduli space of Chow stable varieties. But the machinery of
GIT ensures that a moduli space of Chow stable varieties is automatically separated,
giving a contradiction. �

4. Isometries of twisted extremal metrics on maps

Here we establish that if p : (B,L)→ (M, H) admits a twisted extremal metric
ω, then the metric is invariant under a maximal compact subgroup of Aut(p).
This is a consequence of the structure of the automorphism group of Aut(B,L),
analogous to the structure of the automorphism group of a manifold admitting an
extremal metric due to Calabi.

Recall that Aut(p) consists of automorphisms of p : B → M which lift to L.
These are precisely those which have a zero somewhere, and hence also lift to any
other line bundle on B. Let p denote the Lie algebra of Aut(p), so that p consists
of holomorphic vector fields whose flow fixes p and which vanish somewhere.
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Fixing a metric ω with induced Riemannian metric g, as in Section 3 each element
µ ∈ p can be written as

∑
j µ

j ∂
∂zj , where

µj = gjk̄∂k̄f,

for some f ∈ C∞(X,C), unique up to the addition of a constant. The isomor-
phism T 1,0X ∼= TX between the holomorphic and real tangent bundles gives a
correspondence

gjk̄∂k̄f →
1

2
(∇u+ J∇v),

where f = u + iv is the decomposition of f into real and imaginary parts. Recall
that t ⊂ p denotes the vector fields in p which correspond to Killing vector fields
under this isomorphism, which by above are vector fields with purely imaginary
holomorphy potential.

In order to state the structure theorem, we suppose B admits a twisted extremal
metric, giving an extremal vector field ν. Denote by pλ the elements of p which sat-
isfy Lνµ = λµ. The argument is a variant of the classical argument of Lichnerowicz,
and especially of Calabi’s extension to extremal metrics [7, Theorem 1.1].

Theorem 4.1. Suppose p admits a twisted extremal metric. Then one has a de-
composition

p ∼= t⊕ it⊕λ>0 p
λ,

and moreover if pν denotes the elements of p which commute with ν then t⊕it ∼= hν .
In particular if ω is a twisted cscK metric, then p is reductive.

Proof. Recall from Section 3 the operator

(4.1) Lα(ϕ) = −D∗ωDω(ϕ) +
1

2
〈∇Λωα,∇ϕ〉+ 〈i∂∂ϕ, α〉,

which was shown to induce an isomorphism

ker0 Lα → p,

f → gjk̄∂k̄f

where ker0 denotes the functions with mean value zero with respect to the volume
form induced by ω. Lα is simply the linearisation of the twisted scalar curvature
at a twisted cscK metric.

Suppose first that ω is a twisted cscK metric. In coordinates Lichnerowicz op-
erator takes the form

D∗ωDω(ϕ) = ∆2ϕ+Rk̄j∇j∇k̄ϕ+ gjk̄∇jS(ω)∇k̄ϕ.

In general this is not a real operator due to the third term. This implies

(4.2) Lα(ϕ) = (∆2ϕ+Rk̄j∇j∇k̄ψ − 〈i∂∂ϕ, α〉) + gjk̄∇j(S(ω)− Λωα)∇k̄ϕ.

Since the last term then vanishes, this is a real operator when ω is twisted cscK.
Thus u+iv ∈ kerLα for real functions u, v if and only if u, v ∈ kerLα. Since a vector
field µ corresponds to a Killing vector field under the isomorphism T 1,0X ∼= TX if
and only if its holomorphy potential is purely imaginary, this implies that ker0 Lα
induces an isomorphism p ∼= t⊕ it, which means that p is reductive.

In the general case Lα is no longer a real operator, and in particular we have

Lα(ϕ)− L̄α(ϕ) = gjk̄
(
∇j(S(ω)− Λαω)∇k̄ϕ−∇jϕ∇k̄(S(ω)− Λαω)

)
.
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If ω is a twisted extremal metric, then ν = gjk̄∂k̄(S(ω)−Λαω) ∈ p. If f is another
holomorphy potential with corresponding vector field µf , then the Lie bracket can
be computed as

[ν, µf ] = gqr̄∇r̄gjk̄ ((S(ω)− Λαω)∇k̄f −∇j(S(ω)− Λαω)∇k̄f) .

Thus if [ν, µf ], or equivalently the Lie derivative Lνµf = 0, then Lα(ϕ) = L̄α(ϕ).
Denote by pκ the elements of p which commute with ν. Since elements of t auto-
matically commute with ν as they correspond to Killing vector fields, as above we
obtain a decomposition pν ∼= t⊕ it.

The conjugate L̄α acts on ker0 Lα since L̄α and Lα commute by equation (4.2).
The spectrum of L̄α is non-negative, since if ϕ is an eigenfunction, λ

∫
B
|ϕ|2ωn =∫

B
ϕ̄Lαϕωn ≥ 0 by equation (3.5). The space ker0 Lα thus splits as

ker0 Lα ∼= ⊕λ≥0Eλ,

where Eλ denotes the eigenspace of eigenvalue λ. If ϕ is an eigenfunction then

λϕ = L̄αϕ = (L̄α − Lα)ϕ.

But
gjk̄∂k̄(L̄α − Lα)ϕ = −[ν, µϕ],

where µϕ is the vector field corresponding to ϕ as above. In particular, the
eigenspaces can be characterised as satisfying

λµϕ = −[ν, µϕ],

thus there is a splitting
p ∼= pν ⊕λ>0 p

λ

as required. �

The proof of the automorphism invariance of a twisted extremal metric is now
a consequence of the above, proven in the same way as Calabi’s proof for extremal
metrics [7, Theorem 1.3]. We argue exactly as in Gauduchon’s slightly different
proof [17, Theorem 3.5.1] of the same statement. Denote by H the subgroup of the
Aut0(p) consisting of isometries of ω, where Aut0(p) is the identity component, so
that t is the Lie algebra of H.

Corollary 4.2. The isometry group H is a maximal, compact, connected subgroup
of Aut(p).

Proof. Suppose not, and let t̃ be the Lie algebra of a larger compact subgroup
of Aut(p). Let µ be a vector field in t̃\t, and write µ = µ0 +

∑
λ>0 µλ, so that

Lνµλ = −
∑
r λ

rµλ. It is clear that it is enough to assume µ = µλ for some λ.

First suppose µ ∈ pλ. If B is the Killing form of t̃, then the kernel of B coincides
with the centre of t̃ (see e.g. [17, Proof of Theorem 3.5.1]). We claim that µ ∈ kerB.
Recall that B(µ, ζ1) = tr(adµ ◦ adζ1). Let ζ1, ζ2 be of degree λ1, λ2 ≥ 0. Then
[µ, [ζ1, ζ2]] is of degree λ + λ1 + λ2. As λ > 0 and λ1 + λ2 ≥ 0, adµ ◦ adζ1 is a
linear operator on a graded vector space V = ⊕kVk which sends Vk to ⊕l 6=kVl (in
our situation, one can even take l > k). In particular, its trace has to be 0, and
hence B(µ, ζ1) = 0. Thus µ is in the centre of t̃, contradicting the fact that µ does
not commute with ν since λ > 0.

Thus we can assume µ ∈ p0, and hence can be taken to lie in it since µ is
not element of t by hypothesis. Then ν = ∇f for some f . But the flow of a
complete vector field cannot be simultaneously contained in a compact subgroup of
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the diffeomorphism group of X and be the gradient of a function [17, Proposition
3.5.1]. This gives a contradiction, and proves the result. �

We will also need the following result, which follows from a similar analysis as
Theorem 4.1.

Proposition 4.3. Suppose ωB is a twisted extremal metric, which by above is
invariant under a maximal torus T of the automorphism group of p. Then the
operator

L′α : C4,α(B,R)T × t→ C0,α(B,R)T

defined by

L′α(ϕ, f) = Lα − f.

Then L′α is well-defined and surjective. Here, the notation Ck,α(B,R)T means
real valued T -invariant functions on B, and t consists of the functions f such that
vf = J∇f is a Killing vector field with zeros on B, where the gradient is taken with
respect to the metric on B.

Proof. By well-defined, we mean that L′α sends real valued torus invariant func-
tions to real valued torus invariant functions. The torus invariance is an obvious
consequence of all the data involved being invariant. To prove that L′α(ϕ) is real if
ϕ is real, it is enough to prove the same statement for Lα.

We argue as in Arezzo-Pacard-Singer [3, p16]. Let v = vS(ω)−Λωα = J∇(S(ω)−
Λωα) denote the real holomorphic vector field induced by the extremal vector field.
Using equation (4.2), as in [3] the operator Lα can be written as

Lα(ϕ) = (∆2ϕ+Rk̄j∇j∇k̄ϕ− 〈i∂∂ϕ, α〉)− Jv(ϕ) + iv(ϕ).

Since ψ is assumed to be invariant under T , and hence invariant under v, we have
v(ψ) = 0, leaving a real operator as claimed.

Note that the operator Lα is self-adjoint by equation (3.5): we have∫
B

ψLα(ϕ)ωnB =

∫
B

Lα(ψ)ϕωnB .

Thus the image of Lα is orthogonal to its kernel. Since it has Fredholm index zero
by self-adjointness, it suffices to show that its kernel is simply t to prove the result.

Thus we suppose Lα(ϕ) = 0, with ϕ a real function. Then by Proposition 3.21,
we know that ϕ is a holomorphy potential for some holomorphic vector field which
preserves the map. Since ϕ is a real holomorphy potential, this vector field must
be J of a Killing field, proving the result.

�

Remark 4.4. In fact the observation that Lα is real valued is a rather general
moment map phenomenon, related to work of Kirwan in the finite dimensional
GIT setting [23, Corollary 6.11]. Without restricting to torus invariant functions,
the above Proposition has no hope of being true in general. This is the reason
we were required to prove a twisted extremal metric is invariant under a maximal
torus, as this allows us work with torus invariant functions above.
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5. Approximate solutions

The goal of this section is to construct an approximate extremal metric on X in
the class H + rL using an inductive approach. Recall that H is a line bundle on X
which is relatively ample over B and such that Aut(Xb) is discrete for all b ∈ B, and
H is an ample line bundle on B. Moreover we assume that ω0 restricts to a cscK
metric on each (Xb, Hb) and that ωB ∈ c1(H) is a twisted extremal metric on B,
where the twist is given by the Weil-Petersson metric induced by the cscK metrics
on the fibres of the map X → B. We also assume the extremal vector field on B
lifts, which simply means that it is an element of p. For our inductive approach,
we fix r and begin with the Kähler metric ωr = ω0 + rωB on X. By taking r large
enough, we can assume ω0 is actually ample. Recall that ωB is invariant under a
maximal (compact) torus of automorphisms T ⊂ Aut(p).

Theorem 5.1. In what follows, all data is taken to be invariant under the natural
lift of the torus T to X described in Section 3. For all p ≥ 0, there exist functions
f0, . . . , fp−1 ∈ C∞(B), l0, . . . , lp ∈ C∞0 (X) with

ϕp =

p−1∑
i=0

fir
−i+1, λp =

p∑
i=0

lir
−i

holomorphy potentials βp =
∑p
i=0 bir

−i with respect to ωr such that the Kähler
metric

ωr,p = ωr + i∂∂̄ϕp + i∂∂̄λp

satisfies

S(ωr,p)−
1

2
〈∇ωrβp,∇ωr (ϕp + λp)〉 − βp = O(r−p−1).

We prove this by induction on p. The main difficulty in constructing such a met-
ric is controlling the linearisation of the scalar curvature and the twisted extremal
operator. For the scalar curvature we can then apply the results of Fine [14]. For
the twisted extremal operator we apply the results of Section 3, which allow us to
identify the kernel of the linearisation. Another new difficulty occurring compared
to Fine’s work arises due to the fact are solving the extremal equation rather than
the cscK equation, leading to the inner products of gradients in the equation we
wish to solve. In fact this is relatively straightforward to deal with, as these terms
essentially do not affect the inductive step.

To handle the linearisation of the scalar curvature on the fibres, we introduce
some notation. The form ω0 restricts to a Kähler metric on each fibre Xb, and hence
one can define an operator Lb to be the linearisation of the map Φ→ S(ωb+ i∂∂̄Φ)
for Φ ∈ C∞(X). These glue to form an operator L0 which restricts to Lb on Xb for
all b ∈ B.

The relevant results from Fine’s work that we shall appeal to are then the fol-
lowing:

Proposition 5.2. [14, Section 3]

(i) The scalar curvature of ωr is given by

S(ωr) = S(ωb) + r−1θ +O(r−2),

where θ ∈ C∞(X) satisfies
∫
X/B

θωm0 = S(ωB)− ΛωB
α.



24 RUADHAÍ DERVAN AND LARS MARTIN SEKTNAN

(ii) The linearisation of the fibrewise scalar curvature at ωr is given by

Lr(ϕ) = L0(ϕ) +O(r−1).

(iii) Let Θ ∈ C∞0 (X). Then there exists a unique solution ψ ∈ C∞0 (X) of

L0(ψ) = Θ.

If moreover ωB is invariant under some maximal torus T ⊂ Aut(p), then
torus invariance of ψ implies torus invariance of Θ.

Proof. These are all proven in [14] except the automorphism invariance, which is a
simple corollary of Fine’s construction. �

This provides the zeroth step of our argument, precisely because we are assuming
the extremal vector field on B lifts, i.e. is an element of p.

Corollary 5.3. Theorem 5.1 holds for p = 0.

Proof. Set l0 = 0 and b0 = S(ωb). There are no fi-terms in this case. �

Note that the scalar curvature S(ωb) is a constant independent of b by Remark
2.1. The result for p = 1 follows from the following simple lemma, analogous to
[27, Lemma 4.12].

Lemma 5.4. Let η ∈ C∞(B), ψ ∈ C∞(X). Then

〈∇ωr
η,∇ωr

ψ〉 = O(r−1).

If moreover ψ ∈ C∞(B), then

〈∇ωrη,∇ωrψ〉 = r−1〈∇ωB
η,∇ωB

ψ〉+O(r−2).

Corollary 5.5. Theorem 5.1 holds for p = 1.

Proof. Applying Proposition 5.2 (iii) to
∫
X/B

θωm0 −θ gives a function l1 ∈ C∞0 (X).

Let b1 be the holomorphy potential of the extremal vector field ν on B, i.e.

S(ωB)− ΛωB
α = b1,

so that β1 = r−1b1. Then the result follows from Lemma 5.4 with f0 = 0. �

For p = 2 we begin the inductive argument. The new difficulty is that we are
no longer at a genuine cscK metric, and so one needs to vary the arguments. This
requires some new techniques and new notation, for which we follow [14, Section
3.3].

Let Ω0 ∈ c1(L) be relatively Kähler metric, with restriction Ωb to a fibre, and
let ΩB ∈ c1(H) be a Kähler metric on B. Denote by LΩ0

the operator which
glues the linearisation of the scalar curvature of the restriction Ωb for all b. Let

Ω̃r = Ω0 + rΩB , and let Ωr = Ω̃r + i∂∂̄(ϕr), where

ϕr =

d∑
j=1

ψjr
−j ,

for functions ψj ∈ C∞(X). With this notation in place, we require the following,
which is very similar to and mostly contained in the analogous work of Fine [14,
Section 3.3].

Proposition 5.6. The linearisations satisfy the following properties.
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(i) Letting LΩr
denote the linearisation of the scalar curvature at Ωr, we have

LΩr
= LΩ0

+ r−1D1 + r−2D2 +O(r−3),

where D1 only depends on ψ1 and D2 only depends on ψ1 and ψ2.
(ii) For a function π∗f pulled back from B we have

D1(π∗f) = 0,

∫
X/B

D2(π∗f)Ωm0 = DΩB
(f),

where

DΩB
= Lα +

1

2
〈∇
(
S(ΩB)− ΛΩB

(α)
)
,∇
(
·
)
〉.

From Proposition 3.1 together with the definition of Lα, the last point states that
the base component of D2 is the linearised operator of the twisted extremal operator
with respect to the original metric ΩB on the base, when making perturbations of
the type that we are making. Note that while D1, D2 themselves depend on some
of the ψj , their fibre integrals do not.

Proof. We begin with the proof in the case that ψj = 0 for j = 1, . . . , d, so that

Ωr = Ω̃r. Recall from Proposition 5.2 that before perturbing the metric, the scalar

curvature of Ω̃r satisfies

S
(
Ω̃r
)

= S(Ωb) + r−1θ +O(r−2),

where θ ∈ C∞(X) satisfies
∫
X/B

θΩm0 = S(ΩB)−ΛΩB
α. From this we see that the

initial term in the expansion of the linearisation is simply the fibrewise linearisation.
This shows the first statement in this case.

For the second statement, note that for a function f on B, we have

Ω̃r + i∂∂̄π∗f = Ω0 + r
(
π∗ΩB + r−1i∂∂̄π∗f

)
.

Since we are changing the base metric by r−1i∂∂̄f rather than i∂∂̄f , this shows
that the first non-zero component in the linearisation applied to such functions is
the D2-term. Moreover, the fibre integral of the linearisation of θ will then be the
linearisation of the operator

f 7→ S(ΩB + r−1i∂∂̄f)− ΛΩB+r−1i∂∂̄fα,

showing that the fibre integral of the D2-operator is the operator DΩB
, which proves

the second claim in the case Ωr = Ω̃r.
We now proceed to the general case. When perturbing the metric by ϕr, the

expansion of the scalar curvature changes, but we then use the linearisation as
above to identify the new terms. There is no change in the initial term, since ϕr is
of order r−1. Moreover, the change in the r−1-term is L0(ψ1). The linearisation of
this term in the direction of a function pulled back from the base is 0. This gives
the statement about the D1 operator. Similarly, there will be a change in the scalar
curvature (and consequently the linearised operator) in the r−2-term, which now
involves both ψ1 and ψ2. However, the change in the fibre integral of the scalar
curvature coming from the C∞(B) component π∗Φr of ϕr will be of order r−3. This
is because for this component, the change in fibre integral of the scalar curvature is

r−2DΩB
(Φr) +O(r−4) = r−3DΩB

(Ψ1) +O(r−4).
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Here Ψ1 ∈ C∞(B,R) is the base component of ψ1, namely its fibre integral. Thus
there will be no change in the fibre integral of the operator D2. This concludes the
proof of the general case. �

This is all that is needed to construct the approximate solution for all p.

Proof of Theorem 5.1. Torus invariance is automatic as all of the initial data is
torus invariant.

We suppose that an approximate solution has been produced for p − 1, so we
have ϕp−1, λp−1 and holomorphy potentials βp−1 such that the Kähler metric

ωr,p−1 = ωr + i∂∂̄ϕp−1 + i∂∂̄λp−1 = ωr + i∂∂̄

( p−2∑
i=0

fir
−i+1 +

p−1∑
i=0

lir
−i
)

satisfies

(5.1) S(ωr,p−1)− 1

2
〈∇ωr

βp−1,∇ωr
(ϕp−1 + λp−1)〉 − βp−1 = O(r−p).

For fp−1 ∈ C∞(B), we have

S(ωr,p−1+i∂∂̄fp−1r
−p+2) = S(ωr,p−1)+

(∫
X/B

D2(fp−1)ωmr,p−1 + Θp

)
r−p+O(r−p−1),

where Θp ∈ C∞0 (X), with the fibre integral measured with respect to ωr,p−1. Noting
ωr,p−1 = ωr +O(r−1), and using Proposition 5.6 to relate the fibre integral to Lα,
up to terms of O(r−p−1) we have

S(ωr,p−1+i∂∂̄fp−1r
−p+2) = S(ωr,p−1)+(Lαfp−1+

1

2
〈∇b1,∇fp−1〉+Θ′p)r

−p+O(r−p−1),

where Θ′p ∈ C∞0 (X) measured with respect to ωr. This follows from Proposition
5.6 and the fact that b1 = S(ωB)− ΛωB

(α).
Let wp be the O(r−p) term of equation (5.1). Write wp = Ψp + Φp, where

Ψp ∈ C∞(B) and Φp ∈ C∞0 (X). The operator L′α(ϕ, γ) = Lαϕ − γ , where γ is a
holomorphy potential, with respect to ωB , of some holomorphic vector field νp ∈ p,
is surjective by Proposition 4.3 (and recalling all data is torus invariant), so we

can solve Lαfp−1 − b̃p = −Ψp for b̃p a holomorphy potential with respect to ωB .
Now the holomorphy potential for the vector field corresonding to r−1νp on X with

respect to ωr = rωB + ω0 is of the form bp = b̃p + O(r−1). With this choice we
therefore have

S(ωr,p−1+i∂∂̄fp−1r
−p+2) = S(ωr,p−1)+

(
bp +

1

2
〈∇b1,∇fp−1〉 −Ψp + Θ′p

)
r−p+O(r−p−1).

Note that bp is certainly real valued, and the corresponding vector field certainly
vanishes on X since it vanishes on B, thus bp is of the desired form.

Continuing with functions from the base, since ϕp = ϕp−1 + fp−1r
−p+2, we have

〈∇ωr
βp,∇ωr

(
ϕp + λp−1

)
〉 =〈∇ωr

βp−1,∇ωr

(
ϕp−1 + λp−1

)
〉+ 〈∇ωr

r−pbp,∇ωr

(
ϕp + λp−1

)
〉

+ 〈∇ωr
βp−1,∇ωr

fp−1r
−p+2〉

=〈∇ωr
βp−1,∇ωr

(
ϕp−1 + λp−1

)
〉+ r−p〈∇ωB

b1,∇ωB
fp−1〉ωB

+O(r−p−1),

where we have used the expansion of ϕp, λp−1, βp and Lemma 5.4.
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Finally we choose lp. We have

S(ωr,p−1 + i∂∂̄fp−1r
−p+2+i∂∂̄lpr

−p) = S(ωr,p−1)

+

(
bp +

1

2
〈∇b1,∇fp−1〉 −Ψp + Θ′p + L0lp

)
r−p +O(r−p−1).

We can solve uniquely L0lp = −Θ′p − Φp, giving

S(ωr,p−1+i∂∂̄fp−1r
−p+2+i∂∂̄lpr

−p) = S(ωr,p−1)+
(
bp+

1

2
〈∇b1,∇fp−1〉−Ψp−Φp

)
r−p+O(r−p−1).

This removes the error term up to the change in the holomorphy potential. But by
Lemma 5.4, we have

〈∇ωr
βp,∇ωr

r−plp〉 = O(r−p−1)

and so no additional error terms to order r−p are caused by the inner products of
the new gradient terms. Summing the various terms proves the inductive step, and
hence the result. �

6. The implicit function theorem argument

This section proves the main result of the present work, namely a construction
of extremal metrics on certain fibrations. We recall the setup. We have a fibration
X → B, such that X is endowed a relatively ample line bundle H such that each
fibre (Xb, Hb) admits a cscK metric and Xb has discrete automorphism group.
We assume (B,L) admits a twisted extremal metric, where the twisting form α is
the Weil-Petersson metric induced from the cscK metrics on the fibres (Xb, Hb).
We proved in Section that in this situation (X, rL+H) admits an “approximately
extremal” metric. Here we prove the existence of a genuine solution of the extremal
equation:

Theorem 6.1. (X, rL+H) admits an extremal metric for all r � 0.

Fine’s work uses a quantitative inverse function theorem to perturb from an
“approximate cscK metric”, analogous to the metrics we have constructed in Section
5, to a genuine cscK metric [14]. Since the operator we consider only has a one-
sided inverse, we shall instead rely on a quantitive implicit function theorem as in
[6, Theorem 29].

Theorem 6.2. [6] Consider a differentiable map of Banach spaces F : B1 → B2

whose derivative at 0 is surjective with right-inverse P . Denote by

(i) δ′ the radius of the closed ball in B1 centred at 0 on which F−DF is Lipschitz
of constant (2‖P‖)−1,

(ii) δ = δ′(2‖P‖)−1.

For all y ∈ B2 such that ‖y − F (0)‖ < δ, there exists x ∈ B1 satisfying F (x) = y.

We shall apply this with F given by the extremal operator. Thus the main point
is to control both the non-linear terms of the extremal operator and to bound the
one-sided inverse of (a variant of) the linearisation. For this, we apply some esti-
mates due to Fine, as well as some estimates specific to our more general situation.

The result of Fine which we shall use is the following Schauder-type estimate.
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Lemma 6.3. [14, Lemma 6.8] Denote by gr the Riemannian metric corresponding
to the Kähler form ωr,p. For each k and p, there are constants C, r0 > 0 such that
for all r ≥ r0

‖ϕ‖L2
k+4(gr) ≤ C

(
‖ϕ‖L2(gr) + ‖D∗D(ϕ)‖L2

k(gr)

)
,

for all ϕ ∈ L2
k+4. Here D∗D denotes the Lichnerowicz operator D∗ωr,p

Dωr,p
defined

using ωr,p.

Fine proves this result for general fibrations X → B with metrics of the form
we have considered. We emphasise that the results of [14, Section 5], on which the
previous lemma is based, do not use any special metric metric on B and so also
apply directly to our situation.

While in Fine’s situation the operator D∗ωr,p
Dωr,p is invertible when restricting

to functions of mean value zero, this is no longer the case for us due to the presence
of automorphisms. In order to state the result we require in our situation, we begin
by describing the change in potentials for holomorphic vector fields on X, as this
space corresponds to the kernel and cokernel of the Lichnerowicz operator.

As in Section 5 we can assume ω0 is actually positive. Let ξ be a holomorphic
vector field on X. Let hX be its potential with respect to our initial metric ω0 on X.
Recall from Propositions 3.5 and 3.21 that ξ corresponds uniquely to a holomorphic

vector field ξ̃ on B. Let hB be the holomorphy potential of this metric with respect
to ωB , the twisted extremal metric on B. Then ιξπ

∗ωB = π∗(ιξ̃ωB) = π∗∂̄hB =

∂̄(π∗hB). Thus rπ∗hB + hX is a holomorphy potential for the vector field ξ on X
with respect to the metric ωr,0 = ωX + rπ∗ωB .

Let ϕr,p be the Kähler potential of ωr,p with respect to ωr,0 as in the construction
of the approximate solutions in Theorem 5.1, i.e. ωr,p = ωr,0 + i∂∂̄ϕr,p. Then as
described in Section 2.2, the holomorphy potential for ξ with respect to ωr,p is given
by rπ∗hB + hX + 1

2 〈∇ϕr,p, ξ〉.

Definition 6.4. For h = hB ∈ p, we define the lift of h, denoted by τr,p(h), to be
the element

τr,p(h) = rπ∗hB + hX +
1

2
〈∇ϕr,p,∇h〉 ∈ h.

Thus we have encoded the change in holomorphy potential with (r, p) as a se-
quence of maps

τr,p : p→ C∞(X).

It will be necessary to work with functions invariant under the fixed maximal
torus T , so we consider the space (L2

k)T of T -invariant functions in L2
k. Here T

is a maximal torus in Aut(X) corresponding to a maximal torus in Aut(p), the
automorphisms of the map. Then the pullback of invariant functions on B give
T -invariant functions on X, and all the approximate metrics ωr,p are T -invariant.
We are then also restricting the map τr,p to t, the Lie algebra of the maximal torus.

Lemma 6.5. The operator (L2
k+4)T × t→ (L2

k)T

(ψ, h) 7→ D∗D(ψ) + τr,p(h)

admits a right inverse Q satisfying the bound

‖Q(ψ)‖L2
k+4(gr) ≤ Kr3‖ψ‖L2

k(gr).

Here K is a constant independent of r.
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Note that in the statement above, the operator, and hence also its inverse, de-
pends on both r and p.

Proof. From the description of the kernel of the Lichnerowicz operator on X (and
hence of its cokernel), we get the existence of Q. For the bound on the L2

k+4-factor
of Q(ψ), we have to establish such a bound when ψ is assumed to be orthogonal to
τr,p(t) as this is the image of D∗D.

The bound follows as in [14, Lemma 6.5, 6.6, 6.7] which establishes a suitable
Poincaré inequality for the D. These three results go over exactly as in Fine’s work
in our setting, except that for the result of [14, Lemma 6.6], which gives a Poincaré
inequality for the ∂-operator on Γ(TX), we have to work orthogonally to the kernel
of this operator. This in turn gives the required Poincaré inequality for D, where
one has to work orthogonally to τr,p(t), not just the constants.

Thus the right-inverse mapQ that sends a function in the orthogonal complement
to τr,p(t) to the unique function mapping to it which is orthogonal to the kernel
of D∗D satisfies the required bound. On τr,p(t), Q sends a function τr,p(f) to the
corresponding function in f ∈ t. Since the map r−1τr,p is Id + O(r−1), so is its
inverse, so on this factor, Q satisfies a better bound than required. �

Combining these results, we obtain a bound on the right inverse of the extremal
operator.

Proposition 6.6. Fix a positive integer p and let ω = ωr,p. Denote

Gr,p : (L2
k+4)T × t→ (L2

k)T ,

Gr,p(ϕ, h) = −D∗ωDω(ϕ) +
1

2
〈∇
(
S(ω)− τr,p(h)

)
,∇ϕ〉 − τr,p(h).

Then there exists a C independent of r such that Gr,p has a right inverse Pr,p with
‖Pr,p‖op ≤ Cr3.

Proof. Apply the Lemmas above and note that Gr,p is −(D∗ωDω + τr,p(h)) plus
decaying terms which decay faster than (D∗ωDω − τr,p(h)). Thus for r sufficiently
large, Gr,p also admits a right invertible and satisfies a similar bound, with a pos-
sibly larger constant C. �

We next bound the nonlinear terms, analogously to Lemma 7.1 of [14]. The
operator we will use is the operator F = Fr,p defined by

F (ψ, h) = S(ωr,p + i∂∂̄ψ)− 1

2
〈∇ωr

βp,∇ωr
(ϕr,p)〉−(6.1)

−βp−
1

2
〈∇(τr,p(h)),∇ψ〉 − τr,p(h).

Note that a zero of F precisely gives a Kähler potential for an extremal metric.
Moreover, the linearisation of F is given by the operator Gr,p of Proposition 6.6.
The terms involving βp =

∑p
i=0 bir

−i are terms independent of ψ, added so that
F (0, 0) is an approximate solution to the extremal equation. We also remark that
βp is a potential with respect to ωr,0 of a holomorphic vector field on X, and so the

bi depend on r. However, they are of the form r−1τr,0(b̃i) = b̃i + O(r−1) for some

fixed b̃i ∈ t.
From now on we take the number of weak derivatives k to be large enough such

that L2
k+4 in particular embeds into C4,α. This ensures that a solution to the
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extremal equation (6.1) in L2
k+4 in fact is smooth. It is also assumed in order to

apply certain estimates from [14].

Lemma 6.7. Let Nr,p = Fr,p −Gr,p. Then there are constants c, C > 0 such that
for all sufficiently large r, if ϕ,ψ ∈ (L2

k+4)T satisfy ‖ϕ‖L2
k+4

, ‖ψ‖L2
k+4
≤ c then

‖Nr,p(ϕ)−Nr,p(ψ)‖L2
k
≤ C

(
‖ϕ‖L2

k+4
+ ‖ψ‖L2

k+4

)
‖ϕ− ψ‖L2

k+4
.

Proof. This follows from the Mean Value Theorem. Indeed, let χt = (1− t)ϕ+ tψ.
Then there is a t ∈ [0, 1] such that

Nr,p(ϕ)−Nr,p(ψ) =
(
DNr,p

)
χt

(
ψ − ϕ

)
.

Moreover,
(
DNr,p

)
χt

is the difference between the linearisations of the extremal

map at ωr,p and ωr,p + i∂∂̄χt. So the estimate reduces to a similar estimate for the
change in the linearised operator for a small change in the potential. This follows
as in Fine’s work from [14, Lemma 2.10], which can be applied provided k is chosen
sufficiently large. �

These are the necessary ingredients to prove our main result.

Proof of Theorem 6.1. The proof is an application of the quantitative implicit func-
tion theorem stated as Theorem 6.2 to the extremal operator F (ϕ, h) of equation
(6.1).

The first step is to find a Lipschitz constant for the non-linear terms of this
operator, namely Fr,p − DFr,p = Nr,p. From Lemma 6.7, we obtain a C > 0
such that for all balls of sufficiently small radius λ, the non-linear term Nr,p is
Lipschitz on the ball of radius λ with Lipschitz constant λC. Thus for r sufficiently
large, the radius δ′r of the ball on which the non-linear part of F is Lipschitz with
constant 1

2‖Pr,p‖ is bounded below by a constant multiple of r−3. It follows that

the corresponding δr in the statement of Theorem 6.2 is bounded below by Cr−6,
for some (possibly different) constant C > 0.

The next estimate that Theorem 6.2 requires is a bound in L2
k of order r−6−ε

for some ε > 0 on the approximate solution F (0, 0). For this, we use the bounds of
Theorem 5.1 on the metrics ωr,p. These estimates are pointwise estimates. However,
as in [14, Lemma 5.6 and 5.7], this implies a similar bound in the Ck-norm, by using
a patching argument that allows one to go from bounds in the local model to global
bounds. So in the Ck-norms, F (0, 0) is O(r−p−1). Note that here we think of the
bi in the expansion of βp as fixed functions, not depending on r, since they are of

the form r−1τr,p(b̃i) for fixed functions b̃i, and

r−1τr,p(b̃i) = b̃i +O(r−1).

We require similar bounds with respect to the L2
k-norms. For this note that the

O(r−p−1) bounds on F (0, 0) imply that the pth approximate solution is O(r−p−
1
2 ),

just as in [14, Lemma 5.7]. In particular, if p is chosen to be 6 or more, F (0, 0)
satisfies the required bound and the extremal equation has a solution for all r
sufficiently large. �
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