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ABSTRACT

Many optically active systems possess spatially asymmetric electron orbitals. These generate permanent dipole moments, which can be
stronger than the corresponding transition dipole moments, significantly affecting the system dynamics and creating polarized Fock states of
light. We derive a master equation for these systems with an externally applied driving field by employing an optical polaron transformation
that captures the photon mode polarization induced by the permanent dipoles. This provides an intuitive framework to explore their
influence on the system dynamics and emission spectrum. We find that permanent dipoles introduce multiple-photon processes and a pho-
ton sideband, which causes substantial modifications to single-photon transition dipole processes. In the presence of an external drive, per-
manent dipoles lead to an additional process that we show can be exploited to control the decoherence and transition rates. We derive the
emission spectrum of the system, highlighting experimentally detectable signatures of optical polarons, and measurements that can identify
the parameters in the system Hamiltonian, the magnitude of the differences in the permanent dipoles, and the steady-state populations of
the system.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/5.0157714

I. INTRODUCTION

In general, the interaction of atomic systems with light through
transition dipoles is well understood, and the optical master equation
describing exciton creation and annihilation through photon emission
and absorption, respectively, is derived in many introductory texts
dedicated to open quantum systems.1–4 Atomic systems have highly
symmetric electron orbitals and so possess negligible permanent
dipoles. However, many physical systems do not share this property
and can possess permanent dipoles stronger than their transition
dipole moments. Such systems include molecules with parity mixing
of the molecular state,5–12 quantum dots with asymmetric confining
potentials,13–23 nanorods with non-centrosymmetric crystallographic
lattices,24–26 and superconducting circuits.27

Permanent dipoles introduce additional pure dephasing interac-
tions into the Hamiltonian. The non-additivity of the pure dephasing

and transition dipole interactions yields unique physical effects, includ-
ing modifications to decoherence,28,29 steady-state coherence,28,30,31

laser-driven population inversion,32 multiphoton conversion,33,34

entanglement generation,35,36 second-harmonic generation,37,38 and
bathochromic shifts.39,40 Understanding the role of strong permanent
dipoles and their influence on control schemes, such as external driving
fields, is highly relevant for the design of new quantum technologies, as
decoherence induced by the local electromagnetic field limits the capa-
bilities of quantum computation implementations. Studying the
impacts of permanent dipoles may provide additional channels for con-
trol over such quantum systems, as well as advancements in quantum
chemistry that may uncover novel biochemical processes.

Previous studies have either neglected the transition dipole
moments assuming only a pure dephasing interaction,12 have consid-
ered single-mode fields,29,34,41–43 or have treated the permanent
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dipoles in a perturbative manner.12,28,29,35,41–43 Furthermore, most
studies neglect an additional identity interaction also induced by the
permanent dipoles, which, as we show here, modifies the initial state
of the environment and can have a significant impact on the system
dynamics. Consequently, such treatments do not capture the role of
strong permanent dipoles in asymmetric systems under illumination
by multimode fields, such as common thermal fields.

In this paper, we utilize a polaron transformation to derive a
master equation for driven quantum dipole systems, possessing strong
permanent dipoles, interacting with a thermal electromagnetic field.
Importantly, we make no assumptions about the dipole matrix beyond
perturbative transition dipoles. The polaron transformation is a uni-
tary, state-dependent displacement transformation widely used when
dealing with strong, pure dephasing interactions. In the polaron frame,
pure dephasing interactions are absorbed into the definition of the
basis and treated to all orders in the coupling strength. The basis
describes an optical polaron quasiparticle, which is a hybridization of
the matter excitations and the displaced harmonic oscillator states of
the multimode photonic field. These photonic states, called polarized
Fock states, correspond to a non-zero (polarized) vector potential field
and were first introduced to explain how permanent dipoles can gen-
erate multiphoton conversion in a single-mode cavity34 and are useful
in polaritonic chemistry.44,45

The optical polaron formalism provides us with an essential intu-
ition for the very complex phenomena introduced by permanent
dipoles, allowing us to unpick the role of permanent dipoles in the
dynamics. We find that the formation of optical polarons results in
unique physical phenomena such as modifications to single-photon
transition dipole processes, entirely new multiple photon processes,
the appearance of photonic sidebands, and a novel interplay with
external driving that allows for control over the dynamics. By careful
choice of a driving field, we can strongly modulate the decoherence
rate of the system induced by the local environment by completely
suppressing the transition and dephasing rates, effectively decoupling
the system from the field. We also derive the emission spectrum for
the system, highlighting experimentally detectable signatures of the
optical polarons.

This paper is organized as follows. In Sec. II, we introduce the
Hamiltonian and transform it into the polaron frame, and in Sec. III,
we discuss realistic parameters. In Sec. IV, we derive the polaron frame
master equation (PFME) and discuss the new physical processes using
the analytical expressions. Following this, in Sec. V, we compare the
PFME to perturbative dynamics and to numerically exact dynamics
using the time-evolving matrix product operators (TEMPO)46–54 algo-
rithm, through the open source code OQuPy.55 In Sec. VI, we derive
the emission spectrum, and in Sec. VII, we briefly discuss the role of
the initial state and identity type interactions. Finally, in Sec. VIII, we
present concluding remarks.

II. THE MODEL AND POLARON FRAME

We consider a driven asymmetric emitter with a single quantized
dipole coupled to a long wavelength multimode field. After truncating
the material subsystem to its two lowest energy levels, the fundamental
multipolar-gauge Hamiltonian is

H ¼ �

2
rz þ Vrþ þ V�r� þ

X
k

�ka
†
kak þ d �Pþ Edip; (1)

where � is the transition energy of the emitter and V ¼ jV jei#V is
the complex valued amplitude of the external drive.56–58 P
¼ i
P

kekfkða†k � akÞ is the electric displacement field, where k ¼
fk; kg is a four-vector representing both the wavevector k and
polarization state k of the mode with polarization vector ek,
energy �k , and coupling strength fk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k=ð2VÞ

p
, where V is the

field volume. ak and a†k are the field mode annihilation and crea-
tion operators, and the dipolar self-energy term is

Edip ¼
X
k

f 2k
�k

d � ekð Þ2: (2)

In the truncated system Hilbert space, the dipole operator is

d ¼ dee deg
dge dgg

� �
¼ dDrz þ dDI þ dlrþ þ d�lr�; (3)

where the Pauli operators are rz ¼ jeihej � jgihgj; rþ ¼ jeihgj;
r� ¼ jgihej; I ¼ jgihgj þ jeihej, and dij ¼ hijdjji for i; j 2 fe; gg.
We have defined the following combinations of dipole matrix
elements:

dD ¼
dee � dgg

2
; dD ¼

dee þ dgg
2

; dl ¼ deg ; (4)

which play an essential role in our analysis. The dp vectors where p
2 fl;D;Dg are not guaranteed to be co-linear and Hermiticity of H
require that dp 2 R3 for p 2 fD;Dg and dl 2 C

3.
At this point, it is often assumed that either jdDj � jdDj � 0,

which leads to the standard optical master equation (SOME),1–4 or
that jdDj � jdlj � 0 leading to a pure dephasing interaction.12 In
both of those limits, the dipolar self-energy term is proportional to the
identity. In this study, we make no assumptions about the size of the
permanent dipoles.

Substituting Eq. (3) into Eq. (1) and absorbing the drive phase
into a basis je0i ¼ ei#V=2jei and jg 0i ¼ e�i#V=2 jgi, we find

H ¼ �

2
r0z þ jV jr0x þ

X
k

�ka
†
kak þ Edip þ pDDI0

þ pDDr0z þ pl�le
�i#V r0þ þ p�lle

i#V r0�; (5)

where primed operators are in the fje0i; jg 0ig basis and

ppq ¼
X
k

pka
†
k þ q�kak

� �
; (6)

pk ¼ ifk dp � ek
� �

; (7)

with p; q 2 fl; �l;D;Dg, and we denote d�l ¼ d�l. We refer to Eq. (5)
as the lab frame Hamiltonian, which is equivalent to Eq. (1).

The photon-only part of Eq. (5) can be diagonalized by the dis-
placement transformation Hd ¼ BðD=�ÞHBð�D=�Þ, where subscript
d denotes the displaced frame, and displacement operators are given by

BðaÞ ¼ e
P
k

aka
†
k
�a�kakð Þ

; (8)

and BðaÞ† ¼ Bð�aÞ. These act on photon operators by

Bð6aÞakBð7aÞ ¼ ak7ak; (9)

and we further analyze the displacement operators in Appendix A.
Ignoring constant terms, the resulting Hamiltonian is
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Hd ¼
�

2
r0zþjV jr0xþ

X
k

�ka
†
kakþpDDr0zþpl�le

�i#V r0þ þp�lle
i#V r0�:

(10)

Notice that the dipolar self-energy term has canceled exactly with the
terms that result from displacing the light–matter interactions, such
that Eq. (10) is independent ofDk. This is a remarkable result, as it tells
us that the standard perturbative master equation would be consider-
ably inaccurate for most values of dD as this term would have a non-
negligible contribution to the dynamics.

Throughout this paper, we make the standard assumption that
the transition dipole is small enough to permit an accurate second-
order perturbative expansion in its magnitude, jdlj. Even for perturba-
tive transition dipole moments, the master equation derived using Hd

in Eq. (10), referred to as the displaced frame master equation
(DFME), will become inaccurate if jdDj is large.

To overcome this challenge, we make a polaron transforma-
tion prior to deriving the Redfield master equation. In this frame,
the polarizing effect of the pure dephasing interaction on the field
is absorbed into the definition of a new basis, called the polarized
Fock states.34,44 The polarization direction of the Fock state is
dependent on the matter state, and it hybridizes with the excitation
to create an optical polaron quasiparticle. In Fig. 1, we illustrate
the various frames introduced and the optical polaron concept. A
Redfield master equation derived in the new basis, termed the
polaron frame master equation (PFME), will be robust to all mag-
nitudes of the permanent dipoles and will recover the DFME in
the limit of Dk ! 0.

The polaron frame Hamiltonian isHp ¼ UHdU†, where

U ¼ B
D
�

� �
je0ihe0j þ B �D

�

� �
jg 0ihg 0j: (11)

Using Eq. (9), and ignoring constant terms, we obtain

Hp ¼
�

2
r0z þ jjVjr0x þ

X
k

�ka
†
kak þ Cr

0
þ þ C†r0�; (12)

where the coupling operator is C ¼ C � hCi with

C ¼ B
D
�

� �
pl�lB

D
�

� �
e�i#V þ jV jB 2

D
�

� �
: (13)

We denote h�i ¼ TrEð�qEÞ, where

qE ¼
1
ZE

e
�bP

k
�ka

†
kak
; (14)

and ZE ¼ Tr½exp ð�b
P

k�ka
†
kakÞ� with b ¼ 1=ðkBTÞ the inverse

temperature. In Appendix B, we prove that hCi ¼ jjV j, where
j ¼ hBð62D=�Þi. In Eq. (12), we moved a factor of hCir0x from the
coupling operator and into the unperturbed part of Hp, which ensures
that the perturbation theory yields the Redfield equation.

In the polaron frame Hamiltonian in Eq. (12), we can now inter-
pret r06 as causing transitions between the optical polaron states in
Fig. 1(d). Compared to matter excitations, described by the
Hamiltonian in the displaced frame in Eq. (10), polarons experience a
more complicated interaction, albeit one without a pure dephasing
term. The polaron frame Hamiltonian is diagonal when the transition
dipoles and driving vanish indicating that permanent dipoles generate
trivial dynamics if considered in isolation, described by the indepen-
dent boson model.

Finally, the unperturbed polaron Hamiltonian can be diago-
nalized using a unitary rotation, ð�=2Þr0z þ jjV jr0x ¼ ðg=2Þsz ,
where

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4j2jV j2

q
; (15)

sz ¼ jþihþj � j�ih�j: (16)

The eigenbasis relates to the original basis by

je0i
jg 0i

 !
¼

cos
u
2

� �
�sin u

2

� �

sin
u
2

� �
cos

u
2

� �
0
BBB@

1
CCCA jþi
j�i

 !
(17)

with cos ðuÞ ¼ �=g and sin ðuÞ ¼ 2jjV j=g. In the eigenbasis, the
polaron frame Hamiltonian is

Hp ¼
g
2
sz þ

X
k

�ka
†
kak þ

X
a2fz;þ;�g

gasa; (18)

where we have defined sþ ¼ jþih�j; s� ¼ j�ihþj, and the coupling
operators

gz ¼
1
2
sin uð Þ C þ C†½ �; (19a)

gþ ¼ cos2
u
2

� �
C � sin2

u
2

� �
C†

� �
; (19b)

and g� ¼ g†þ.

FIG. 1. Illustration of the model and the optical polaron concept. (a)–(c) depicts the
molecular energies and interactions in the (a) lab frame, (b) displaced frame, and
(c) polaron frame. In the lab frame, the dipolar self-energy term Edip causes the
renormalizations �! �dip and V ! Vdip, which cancel out in the displaced and
polaron frames. (d) is an illustration of an optical polaron: a quasiparticle formed of
the matter excitation and the polarized Fock states of the displaced photon modes.
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To derive the master equation, we will take the continuum limit
of the photon modes, in which summations over an arbitrary function
Fð�Þ transform according to

X
k

f 2k Fð�kÞ dp � ek
� �

dq � ek
� �

! hpq

ð1
0
d�Jð�ÞFð�Þ; (20)

where Jð�Þ is the spectral density, p; q 2 fl; �l;Dg, and

hpq ¼
ð

Xk

dXk

X
k

~dp � ek
	 


~dq � ek
	 


; (21)

where
Ð
Xk
dXk ¼

Ð p
0 dhk sin ðhkÞ

Ð 2p
0 d/k .

2 We have defined dimen-

sionless dipole vectors ~dp ¼ dp=dref measured against an arbitrary ref-
erence value which for convenience we take to be dref ¼ 1D � 9
�10�6eV�1. The purpose of introducing dref is to ensure that the
spectral density has dimensions of energy. For free space and unpolar-
ized light,

hlD ¼ XlDe
i#l cos hlDð Þ; (22a)

hl�l ¼ Xll; (22b)

hll ¼ Xlle
2i#l ; (22c)

where Xpq ¼ Xqp ¼ ð8p=3Þj~dpjj~dqj; #l is the complex phase of
dl; hlD is the angle between dD and dl, and one can obtain, e.g.,
h�lD ¼ h�lD by suitable complex conjugation. Notice that the dynamics
only depend on the relative phase #lV ¼ #l � #V . Also, in the con-
tinuum limit j ¼ exp ½�/ð0Þ=2� where the photon propagator is

/ðsÞ ¼ 4XDD

ð1
0
d�

Jð�Þ
�2

coth
b�
2

� �
cos �sð Þ�i sin �sð Þ

� �
: (23)

III. REALISTIC PARAMETERS

Emitters in free space have weaker permanent dipole interactions
than, for example, those in solvents or cavities. However, solvent and
cavity models introduce substantial complexity to polaron type master
equations due to infrared divergences and non-Markovianity originating
from their Drude–Lorentz type spectral densities.12 Conversely, the
multipolar-gauge free-space spectral density

Jð�Þ ¼ S
�3

�2c
e�

�
�cHð�Þ; (24)

where Hð�Þ is the Heaviside step function and does not suffer from
these problems provided that the high-frequency cutoff �c is large. For
simplicity, in this paper, we use a free space model with permanent
dipole strengths inspired by realistic molecules embedded in solvents
and cavities.

As we derive in Appendix C, S ¼
Ð1
0 d�Jð�Þ=�2 ¼ s0ð�cdref Þ2=

½2ð2pÞ3� is a dimensionless Huang–Rhys parameter where s0 is a
Purcell enhancement factor. s0 ¼ 1 corresponds to free space, and
s0 > 1 to restricted environmental geometries and solvents.
Multiplying the spectral density by s0 is accurate within the weak field
regime.59 The cutoff frequency in Eq. (24) is required to enforce the
electric dipole approximation implicit in Eq. (1), such that �c � 1=rd ,
where rd � 502a0 is the size of the dipole, giving �c � ½1; 10� eV.57
Unless otherwise stated, we use �c ¼ 1 eV.

In all our numerical results—except when comparing to TEMPO
which we discuss in that section—we take parameter values using the
gamma-globulin protein as an example: jdDj � 100D; jdlj ¼ 0:1D,
and emitter energy � ¼ 3:16 eV.32,60 Taking the lifetime of an individ-
ual dipole—i.e., when jdDj ¼ 0 ¼ V—to be 1 ns, requires that s0
¼ 5:705� 106 for the values introduced so far.61 These values fix S
¼ 9:341� 10�7 and so the field remains weak, thus justifying our
introduction of the Purcell enhancement factor. Moreover, these values
predict that polaron formation (j	 1) will occur at jdDj � 100D.
Finally, we choose the inverse temperature as b ¼ 2 eV�1 correspond-
ing to T � 5800K.

To summarize, the important parameters in this model are the
dipole strengths jdlj and jdDj, their relative angle hlD, the eigenenergy
g, the driving strength jV j, the relative complex phase #lV , and the
cutoff frequency �c.

IV. EFFECTS OF STRONG PERMANENT DIPOLES

In this section, we derive the secularized PFME, provide a brief
analytical review of it, and analyze the population transfer rates, deco-
herence rate, and Lamb shift appearing in the master equation, which
are given by Fourier transforms of the environment correlation func-
tions (ECFs). This will allow us to analytically explore the role of per-
manent dipoles.

Following the analytical discussion of the PFME, we will com-
pare the PFME to the DFME, and to the numerically exact
TEMPO,46–54 which both serve as benchmarks. In the numerical
approach, we use the full non-secular Redfield master equations
derived in Appendix D for both frames. We emphasize that the
non-secular PFME depends only on the physical processes dis-
cussed in the main text. Moreover, the non-secular terms in the
PFME are perturbative in jV j=� and so are negligible when the
polaron transformation is valid.

In the eigenbasis, the secularized, time-local, Redfield master
equation is

@qþþðtÞ
@t

¼ �c#qþþðtÞ þ c"q��ðtÞ; (25a)

@qþ�ðtÞ
@t

¼ � cd þ i�g½ �qþ�ðtÞ; (25b)

and ð@=@tÞq��ðtÞ¼�ð@=@tÞqþþðtÞ;ð@=@tÞq�þðtÞ¼ð@=@tÞqþ�ðtÞ†,
where qijðtÞ¼hijqSðtÞjji for i;j2fþ;�g and qSðtÞ¼TrE½qðtÞ�.
Equations (25) describe population transfer from jþi to j�i at decay
rate c#, vice versa at an excitation rate c", decoherence at a rate cd, and
oscillations in the coherence at frequency �g. The transition and deco-
herence rates are

c
"
# ¼ 2< C77ð6gÞ½ �; (26a)

cd ¼
1
2

c" þ c#½ � þ 4< Czzð0Þ½ �; (26b)

where

CabðxÞ ¼
ð1
0
dseixshg†aðsÞgbð0Þi; (27)

for a;b 2 fz;þ;�g and gaðsÞ is the interaction picture form of ga in
Eqs. (19). Finally, the Lamb shifted eigenenergy is
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�g ¼ gþ = C��ðgÞ � Cþþð�gÞ½ �: (28)

Equation (27) includes an assumption that the environment is
Markovian, which is accurate for free space fields—described by the
spectral density in Eq. (24)—if the high-frequency cutoff is large.1

In the PFME, we choose the initial state to be qpð0Þ
¼ jgihgj 
 qE , where qE is given in Eq. (14) and assume that the envi-
ronment state does not change throughout the dynamics. We discuss
the implications of this initial state in Sec. VII.

Evaluating the ECFs in Eq. (27), hg†aðsÞgbð0Þi, is a laborious pro-
cess, and we present the full derivations in Appendix E. Here, we focus
the discussion on new physical processes introduced by the presence
of the strong permanent dipoles. The ECFs, hg†aðsÞgbð0Þi, depend on
linear combinations of hC†ðsÞCð0Þi; hCðsÞC†ð0Þi; hC†ðsÞC†ð0Þi, and
hCðsÞCð0Þi, with the relative weighting of each dependent on the
eigenbasis angle u. Importantly, as we show in Appendix E, each of
these correlation functions describes the same physics. Therefore, for
the analytics in the main text, we focus the discussion on

CðxÞ ¼
ð1
0
dseixshC†ðsÞCð0Þi: (29)

This function has contributions from four distinct processes

CðxÞ ¼ C1ðxÞ þ C2ðxÞ þ CV ;1ðxÞ þ CV ;0ðxÞ: (30)

The number in the subscripts of each term on the right-hand side of
Eq. (30) denotes how many photons are involved in the process (in
the absence of the sideband), and terms with a subscript V are induced
by the driving. The other three Fourier transforms of the CðsÞ two-
time correlation functions also depend on these four contributions,
except that hC†ðsÞC†ð0Þi and hCðsÞCð0Þi do not have a CV;1ðxÞ-type
contribution. The prefactor of each term is dependent on the relative
dipole angle hlD, the driving amplitude jV j, the relative phase #lV ,
and dipole magnitudes Xpq, as

C1ðxÞ / Xll; (31a)

C2ðxÞ / X2
lD cos2ðhlDÞ; (31b)

CV;1ðxÞ / XlDjV j cos #lVð Þcos ðhlDÞ; (31c)

CV;0ðxÞ / jV j2: (31d)

Equations (31) show that when the system is driven, CðxÞ is not an
even function of hlD or #lV . We will later show that this can be uti-
lized to control the system, for example, to prevent decoherence and
transitions. Moreover, for perpendicular dipoles cos ðhlDÞ ¼ 0, so
CðxÞ becomes equivalent to the analogous function in the driven spin
boson model where the transition dipole and permanent dipole inter-
actions are with independent baths. Therefore, processes dependent
on hlD arise because the interactions are non-commutative.

For additional context, when jV j 	 �—the parameter regime in
which polaron theory is valid—the eigenbasis angle is u � 0 and so
gz � 0 and gþ � C. In this limit, the secular approximation used in
the master equation in Eqs. (25) becomes exact, and c"�2<½Cð�gÞ�
with CðxÞ in Eq. (30) and c# �

Ð1
0 ds eigshCðsÞC†ð0Þi which, as we

show in Appendix E, evaluates to c#�2<½�CðgÞ� where �CðxÞ is equal
to Eq. (30) but with CV;1ðxÞ ! �CV ;1ðxÞ.

We will now discuss the four contributions to Eq. (30) in turn.
Each is derived in Appendix E.

A. One photon processes, C1(x)

The function describing driving-independent one photon pro-
cesses is

C1ðxÞ ¼ pXll
Ð1
0 d� JAð�ÞKðxþ �Þ þ JEð�ÞKðx� �Þ½ �; (32)

where

KðeÞ ¼ 1
p

ð1
0
dseiese/ðsÞ�/ð0Þ (33)

contains the influence of the permanent dipoles within this term, and
we have introduced the absorption and emission spectral densities

JAð�Þ ¼ Jð�ÞNð�Þ; (34a)

JEð�Þ ¼ Jð�Þ~N ð�Þ; (34b)

where Nð�Þ ¼ 1=½exp ðb�Þ � 1� is the Bose–Einstein distribution and
~N ð�Þ ¼ Nð�Þ þ 1 will be a useful notation throughout this paper.

To understand the physical processes associated with this term, it
is convenient to temporarily ignore the factor of exp ½/ðsÞ � /ð0Þ� in
Eq. (33). The resulting term is the typical function appearing in the
standard optical master equation (SOME)1—our model in the absence
of permanent dipoles and driving—which is

CSOMEðxÞ¼Xll p JAð�xÞþ JEðxÞð Þþ iP
ð1
0
d�

JAð�Þ
xþ�þ

JEð�Þ
x��

� �" #
;

(35)

where P denotes the principal value. Clearly, when x ¼ �g, twice the
real part of CSOMEðxÞ describes excitation-by-absorption at a rate
2pXllJAðgÞ, and when x ¼ g, it describes decay-by-emission at a rate
2pXllJEðgÞ. The imaginary part of CSOMEðxÞ will determine the
Lamb shift.

We now return to Eq. (32). In Ref. 62, an analytic solution to Eq.
(33) was found by exploiting the fact that KðeÞ only depends on Jð�Þ
through its moments lm ¼ 4XDD

Ð1
0 d�½Jð�Þ=�2��m for m ¼ 1;

2;…;1, and that moments of lower order contribute relatively more.
We can then evaluate KðeÞ by replacing Jð�Þ with a truncated spectral
density J 0ð�Þ ¼

PN�
k¼1 jf 0kj

2dð� � �0kÞ, as long as we choose the cou-
pling strengths ff 0kg and energies f�0kg of the modes such that
J 0ð�Þ=�2 has the same lowest moments as lm for m ¼ 1; 2;…; 2N�.
The solution converges rapidly for increasing N�, and a single-mode
truncation is often very accurate, with truncation mode parameters:

�01 � �s ¼ l2=l1 and f 01 � fs ¼ l1=2
2 / X1=2

DD . A single-mode trunca-
tion captures all of the essential physics described by KðxÞ. Thus, for
the analytical analysis in this work, we use a single-mode truncation to
evaluate Eq. (33); however, in all of the simulations in this paper, we
use converged values.

From Ref. 62, the single-mode solution of Eq. (33) is

KðeÞ ¼
X1
‘¼�1

A‘ dðe� ‘�sÞ þ
i
p
P

e� ‘�s

� �
; (36)

where

A‘ ¼
X10
n¼j‘j

Xn
m¼n�‘

2

n
m

� � m

m� n� ‘
2

 !
WnVm; (37)
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and the prime on the first summation indicates that only every other
term is included, i.e., n ¼ j‘j; j‘j þ 2;…; and Wn ¼ Sns exp ½�Ss�=n!
is the Franck–Condon factor of the mode in the
truncation, Ss ¼ jfsj2=�2s ¼ l2

1=l2 is its Huang–Rhys factor, and
Vm ¼ Nð�sÞm exp½�2SsNð�sÞ�. A‘ has the normalization propertyP1

‘¼�1 A‘ ¼ 1, is maximized for ‘ ¼ RoundðS0Þ, and becomes A‘ ¼
d‘0 if jdDj ¼ 0, and at zero temperature Vm ¼ dm0, which leads to
A‘<0 ¼ 0 and A‘�0 ¼W‘.

Substituting Eq. (36) into Eq. (32) yields

C1ðxÞ ¼
1
2
c1ðxÞ þ iS1ðxÞ; (38)

where

c1ðxÞ ¼ 2pXll

X1
‘¼�1

A‘ JAð‘�s � xÞ þ JEðx� ‘�sÞ½ � (39)

and

S1ðxÞ ¼ iXll

X1
‘¼�1

A‘P
ð1
0
d�

JAð�Þ
xþ � � ‘�s

þ JEð�Þ
x� � � ‘�s

� �
:

(40)

Equations (39) and (40) show that the effect of the permanent dipoles
within C1ðxÞ is to introduce manifolds of harmonic levels [in the
single-mode truncation of KðeÞ, there is only one manifold] to/from
which transitions can occur, and which influence the Lamb shift value.
This is commonly observed when vibrational displacement interac-
tions occur simultaneously with transition dipole interactions and
manifest in spectra as vibrational side bands and Stokes’s shift.
However, in our model, this is a purely photonic effect and it results in
a photon sideband in the spectrum of the system. CSOMEðxÞ in Eq.
(35) is recovered from C1ðxÞ in the limit of no permanent dipoles
because A‘ ! d‘0.

In Fig. 2, we illustrate decay-by-emission transitions correspond-
ing to ‘ ¼ 1, and decay-by-absorption transitions for ‘ ¼ ‘� where
Roundðg=�sÞ < ‘� < Roundðg=�sÞ þ 1. The A‘ values can be inter-
preted as the probabilities for a decay between levels with energy dif-
ference g� ‘�s to occur.

B. Two-photon processes, C2(x)

We now consider the two-photon processes in Eq. (30) that
occur independent of the driving, C2ðxÞ. These processes require that
the rz and r6 interactions do not commute, and so are unique to per-
manent dipole interactions. The rate function is

C2ðxÞ ¼ 4j2X2
lD cos 2 hlDð Þ

X
n;m2f�1;1g

ð1
0
dseixsþ/ðsÞ~vn;mðsÞ; (41)

where

~vn;mðsÞ ¼
ð1
0
d�
ð1
0
d�0vn;mð�; �0Þein�seim�

0s (42)

is the inverse Fourier transform of vn;mð�; �0Þ which we write in
matrix notation as

vð�; �0Þ ¼ �J ð�Þ�J ð�0Þ
~N ð�Þ~N ð�0Þ �~N ð�ÞNð�0Þ
�Nð�Þ~N ð�0Þ Nð�ÞNð�0Þ

 !
; (43)

where, for example, v�1;1ð�; �0Þ ¼ ��J ð�Þ�J ð�0Þ~N ð�ÞNð�0Þ. We have
introduced the polarized spectral density

�J ð�Þ ¼ Jð�Þ
�
; (44)

which will be relevant to all transitions resulting from permanent
dipole interactions.

The two-frequency Fourier transform in Eq. (42) indicates that
C2ðxÞ describes two simultaneous processes. From the phase factors
in Eq. (42), when n or m indices are equal to �1, we deal with emis-
sion processes, and when they are equal to þ1, we deal with absorp-
tion, into the frequency channel � and �0 for n and m, respectively.
This interpretation is reinforced by the positions of the factors of
Nð�Þ; Nð�0Þ; ~N ð�Þ, and ~N ð�0Þ in the matrix in Eq. (43). Similar to
the case of the one photon processes, the factor of exp ½/ðsÞ � /ð0Þ�
in Eq. (41) will introduce a photon sideband to the overall process,
again enabling processes with more photons.

Before we move onto the processes induced by driving, in Fig. 3,
we plot the decay rate c# as a function of �c and jdDj for V¼ 0. Since
V¼ 0, the eigenbasis coincides with the fjei; jgig basis and the decay
rate is c#¼ 2<½Cð�Þ�, where CðxÞ is in Eq. (30).

FIG. 2. Illustration of decay processes (x ¼ þg) captured by the ‘ ¼ 1 and
‘ ¼ ‘� terms in Eq. (39), within the single-mode truncation of KðeÞ. Decay-by-
emission processes have dotted–dashed arrows, and decay-by-absorption pro-
cesses have solid arrows. The type of decay that occurs for a given value of ‘
depends on the sign of g� ‘�s. In the absence of permanent dipoles, A‘ ¼ d‘0
and so only the ‘ ¼ 0 decay processes are possible.
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Figure 3 shows that strong permanent dipoles suppress one pho-
ton transition rates and, for large enough jdDj, cause two photon pro-
cesses to dominate the rate. However, for the parameter regime
shown, corresponding to gamma-globulin, two-photon processes only
dominate at �c values smaller than are permitted by the electric dipole
approximation, indicated by the gray region. As we will show later, if
the transition energy is reduced to �� 1 eV, two-photon processes can
contribute significantly and negatively for realistic values of �c and
jdDj � 100D.

C. Driving-induced one-photon processes, CV,1(x)

We nowmove onto the processes in Eq. (30) induced by the driv-
ing. The function for such one-photon processes is

CV;1ðxÞ ¼ 4pXlDjV j cos #lVð Þcos hlDð Þ

�
ð1
0
d�ð��J Að�ÞKðxþ �Þ þ �J Eð�ÞKðx� �ÞÞ; (45)

where KðeÞ is given in Eq. (33) and, analogously to Eqs. (34), we have
introduced the polarized absorption and emission spectral densities

�J Að�Þ ¼ �J ð�ÞNð�Þ; (46)

�J Eð�Þ ¼ �J ð�Þ~N ð�Þ; (47)

where �J ð�Þ is in Eq. (44). Similarly to the driving-independent two-
photon processes, C2ðxÞ in Eq. (41), these processes also arise due to
the non-commutativity of the permanent and transition dipole inter-
actions and vanish when dl � dD ¼ 0.

Using the single-mode truncation solution of KðeÞ in Eq. (36),
we can decompose CV ;1ðxÞ into real and imaginary parts

CV;1ðxÞ ¼
1
2
cV ;1ðxÞ þ iSV;1ðxÞ; (48)

which we do not write explicitly. Therefore, driving the system gener-
ates additional one photon (plus sideband photons) transitions, similar
in nature to the transitions described by C1ðxÞ but here scaling with
XlDjV j, and dependent on the phase #lV and polarized spectral
density.

Importantly, the prefactor in Eq. (45) is proportional to
cosð#lVÞ cosðhlDÞ, which allows one to control whether this function
suppresses or enhances the rates and Lamb shifts. As we discuss later, this
control could be easy to achieve in practice by tuning the driving phase.

D. Driving-induced zero-photon processes, CV,0(x)

Finally, the zero-photon processes induced by the driving in Eq.
(30) are described by

CV;0ðxÞ ¼ j2jVj2
ð1
0
dseixs e/ðsÞ � 1ð Þ: (49)

This term vanishes when /ðsÞ ¼ 0 and so is generated entirely
through the photon sideband. Equation (49) also appears in the driven
spin boson model where it describes phonon mediated transfer
between eigenstates and so is an effect of pure dephasing.

E. Numerical analysis of the rates

In Fig. 4, panel (a) shows the total decay rate for different driving
strengths V as a function of jdDj, and panel (b) shows the four contri-
butions to the rate with V ¼ 10�4 eV. Due to detailed balance, the
excitation rate can be obtained from Fig. 4 by c" ¼ e�bgc# and, pro-
vided pure dephasing is negligible (which is true for the parameters in
Fig. 4 because 2jjV j 	 �), the decoherence rate can be obtained from
Fig. 4 by cd ¼ ð1þ e�bgÞc#=2. The key points resulting from the anal-
ysis of Fig. 4 are as follows: (1) one can both increase and decrease
rates through the physical mechanisms enabled by the presence of per-
manent dipoles and driving, particularly by controlling CV;1ðxÞ pro-
cesses, and (2) all physical processes found in the polaron ECFs
contribute non-negligibly to the total rates.

Through control of jdDj and V, one can completely suppress the
transition and decoherence rates. The decay rate at each of the minima
in the curves for V 2 f�10�4; 10�4; 2� 10�4g eV in Fig. 4(a) is zero
to within numerical error, and one can show that the excitation and
decoherence rates are also zero at these minima. As well as tuning
jdDj, similar control can be achieved through the phase of the driving.
In Fig. 5, we demonstrate this by varying #lV with V ¼ 10�4 eV and
the jdDj values marked in Fig. 4(b) and given in the legend of Fig. 5.
Maximum suppression is achieved when the driving is in, or out
of, phase with the transition dipole moment, depending on the align-
ment of the dipole moments. This is because of the factor of
cosðhlDÞ cosð#lVÞ in Eq. (45).

Figures 4 and 5 exemplify the impact of permanent dipoles on
the ability to control quantum systems. Beyond reducing the decoher-
ence in the quantum system, another critical challenge in quantum
computing is the ability to relax systems faster to be reset for computa-
tion. The inverse optimization of maximizing the decay rate can also
be achieved, allowing for a scheme for faster relaxation of such sys-
tems. For example, let us take the jdDj ¼ 50D case in Fig. 5 with
aligned dipoles. During computation, one could drive the system with
phase #lV ¼ 0 so that decoherence from optical sources is minimized.
Once computation is complete, one could then increase the drive

FIG. 3. Polaron frame decay rate without driving. The total decay rate (dashed
black), and the contributions of the one photon processes (solid green) and two
photon processes (dot–dashed purple) vs �c. In (a)–(d), the value of jdDj is
0 D; 100 D; 200 D, and 400 D, respectively. Additionally, V¼ 0, � ¼ 3:16 � eV,
and hlD ¼ 0 (parallel dipole moments). For the other parameters, see the discus-
sion in Sec. III. When varying �c, we keep S fixed to its value that ensures a bare
emitter lifetime of 1 ns at �c ¼ 1 eV, and the gray shaded region corresponds to
realistic values of �c.
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phase to #lV ¼ p so that the decay rate is maximized. Moreover, this
same control could be used to operate an energy storage device: by
changing the phase of the drive, one can change the operation of the
device from storage to discharge.

V. COMPARISON TO EXACT DYNAMICS

In this section, we compare the predictions for the system density
operator found using the PFME to those with the DFME and a
numerically exact approach, TEMPO. (See Refs. 46–54 for discussions
on the TEMPO algorithm.) In Fig. 6, we plot the population of the
ground state and the coherence between the excited and ground state
against time calculated using the three methods. For this comparison,
we do not use the dipole moments and emitter energies discussed in
Sec. III, and instead choose these to emphasize the accuracy of the
PFME in a strong coupling regime.

Since the DFME does not capture many of the unique processes
attributed to the permanent dipoles, we expect it to break down when
these are strong. Motivated by the Hamiltonian in Eq. (10), an approx-
imate boundary of this regime is

X
k

f 2k dD � ekð Þ2 ¼ XDD

ð1
0
d�Jð�Þ� g2: (50)

For the parameters used in Figs. 6(a) and 6(b) (see the caption), the
inequality in Eq. (50) reads 0:69 > 0:36 and 1:4 > 1:0, respectively.
Thus, both parameter sets constitute strong permanent dipole interac-
tions. Despite this, the PFME predicts qualitatively correct dynamics
and agrees well with TEMPO, and, as expected, the DFME does not.

This emphasizes that each new process in Fig. 4 is required to correctly
describe strong permanent dipoles.

A phenomenon not captured by the PFME or anyMarkovian mas-
ter equation is the so-called “slip”63 at short times, which is most evident
in the coherence evolution in panel (d). However, as shown by the cyan
dotted curve, if this is artificially accounted for in the PFME by starting
in a coherent initial state, the PFME again agrees well over the long time
duration, indicating it captures the main decoherence mechanisms.

VI. EMISSION SPECTRUM

Due to the many new physical processes generated by the pres-
ence of permanent dipoles discussed in Sec. IV, we expect alterations
to the emission spectrum. In the absence of permanent dipoles, the
spectrum consists of a Mollow triplet with peaks at frequencies
�g; 0; g. When V¼ 0, the triplet becomes a single peak at frequency �
with a width determined by the decoherence rate in the standard opti-
cal master equation: pJð�Þ½1þ 2Nð�Þ�. In the presence of strong per-
manent dipoles, we expect that there will be a photon sideband
extending to negative frequencies. Moreover, the positions of the
Mollow triplet peaks will shift from 6g to 6�g given in Eq. (28), and
the widths of the peaks will be determined by cd in Eq. (26b).

As we prove in Appendix G, the emission spectrum is given by

IðxÞ ¼ apropðr;R;xÞI0ðxÞ; (51)

where apropðr;R;xÞ ¼ jdl � Gðr;R;xÞj2 and Gðr;R;xÞ is the
Green’s function of the medium.64–68 apropðr;R;xÞ accounts for prop-
agation and filtering of the light from the dipole to the detector at posi-
tions r and R, respectively.64 The polarization spectrum is

I0ðxÞ ¼ lim
t!1
<
ð1
0
dshrþðt þ sÞr�ðtÞie�ixs

� �
: (52)

In the following, we focus on evaluating the polarization spectrum,
which captures entirely the effects associated with the permanent
dipoles. The specifics of the experimental setup, for example, whether

FIG. 4. Polaron frame decay rate for different permanent dipole and driving
strengths. (a) shows the total decay rate for different driving strengths. In all curves,
#l ¼ 0 and #V 2 f0;pg control the sign of V given in the legend. (b) shows the
four contributions (colored curves) to the total rate (dashed black), given in Eq. (30),
for the V ¼ 10�4 eV parameter set. The dashed black curves in both panels (a)
and (b) are the same. The markers in panel (b) refer to jdDj values used in Fig. 5.
The left-hand side of each panel has anti-parallel dl and dD, while the right-hand
side has parallel dipole moments, which is indicated by the arrows at the top of the
figure. � ¼ 0:1 � eV and other parameters are discussed in Sec. III.

FIG. 5. Phase control of the polaron frame decay rate. The relative phase #lV is
varied with jdlj ¼ 0:1 D and jV j ¼ 10�4 eV fixed. Each curve has a different
value of jdDj indicated in the legend, which correspond to the markers in Fig. 4(b).
Other parameters are discussed in Sec. III.
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the dipole is coupled to a cavity or a waveguide, are described by the
apropðr;R;xÞ term, which can be calculated separately.

The expectation value in Eq. (52) is taken with respect to the lab
frame density operator ql. Using ql ¼ Bð�D=�ÞU†qpUBðD=�Þ, where
U is the polaron transformation in Eq. (11), Bð6D=�Þ are displace-
ment operators, and qp is the polaron frame density operator, we have

hrþðt þ sÞr�ðtÞi ¼ j2e/ðsÞTr rþðt þ sÞr�ðtÞqpð0Þ
� �

� j2e/ðsÞhrþðt þ sÞr�ðtÞip; (53)

where /ðsÞ is defined in Eq. (23). Substituting Eq. (53) into Eq. (52)
yields

Ip;0ðxÞ ¼ j2 limt!1 <
ð1
0
dse/ðsÞhrþðt þ sÞr�ðtÞipe�ixs

� �
: (54)

The two-time correlation function in Eq. (54) can be calculated
using the quantum regression theorem (QRT).1,69 The QRT utilizes
the cyclicity of the trace to rewrite the two-time expectation value as

lim
t!1
hrþðt þ sÞr�ðtÞip ¼ Tr rþKpðsÞ

� �
; (55)

where KpðsÞ ¼ U†
0 ðsÞKpð0ÞU0ðsÞ is a modified density operator with

the initial state

Kpð0Þ ¼ r�U0ð1Þqpð0ÞU†
0 ð1Þ; (56)

and, because U0ðsÞ is the time evolution operator defined by the
polaron frame Hamiltonian [see Eq. (12)], the PFME we have derived
holds identically for the KpðsÞ operator but with the initial condition

given in Eq. (56). The QRT allows one to convert two-time correlation
functions into one-time expectation values of density operators with
modified initial conditions.

Due to the polaron transformation, Eq. (54) captures the pho-
tonic sideband. However, the QRT contains an implicit Born approxi-
mation69 as well as any approximations used in the derivation of the
master equation. Moreover, the QRT produces spectral lines at the
Lambshifted eigenenergies of HS because the ground-excited coher-
ence qeg oscillates at these frequencies [see Eq. (25b)]. This means that
the QRT is unable to capture spectral lines associated with multipho-
ton transitions. However, multiphoton transitions scale with the
square of the spectral density, and so for weak light–matter coupling,
we expect the associated spectral lines to be much smaller than the
photonic sideband.

Owing to the modified initial state in Eq. (56), the power of the
polarization spectrum contains information about the steady state of
the system

P ¼
ð1
�1

dxIp;0ðxÞ ¼ pqeeð1Þ: (57)

Additionally, by noting that the polarization spectrum without the
photon sideband, denoted by Ip;�ðxÞ, is given by Eq. (54) with the
replacement exp ½/ðsÞ� ! 1, one can show thatð1

�1
dxIp;�ðxÞ

P
¼ j2: (58)

Hence, j2 can be interpreted as the fractional emission into the side-
band. Remarkably, an integrated spectrum measurement can be used
to determine j, which in turn provides an effective measurement of

FIG. 6. Comparison of the PFME predictions to exact numerical approach and the DFME. (a) and (c) are a comparison of qggðtÞ calculated using the PFME (green), TEMPO
(dot-dashed black), and the DFME (dashed orange). (b) and (d) are a similar comparison but for jqegðtÞj and note the discontinuity in the time axis. In (d), the cyan dotted
curve is the polaron prediction for the coherence when artificially accounting for the initial non-Markovian slip. In (a) and (b), � ¼ 0:363 eV; V ¼ �0:006 37 eV, and
jdDj ¼ 292 D, and in (c) and (d), � ¼ 1 eV; V ¼ 0 eV, and jdDj ¼ 584 D. In all plots, #lV ¼ hlD ¼ 0 and jdlj ¼ 5:84 D, and other parameters are discussed in Sec. III.
To make the comparison to TEMPO easier, we have assumed that the field aligns with the dipole moments such that all dipoles are parallel and we have ignored the factor of
8p=3 in the Xpq in Eqs. (22). We have taken this into account when evaluating the inequality in Eq. (50) in the text for these parameter sets. We use the non-secular PFME
and DFME in our results, although the non-secular terms merely introduce oscillations to the population dynamics that cannot be resolved on the scales shown.
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XDD and, therefore, of the strength of the jdDj dipole moment. In mea-
surements, Ip;�ðxÞ cannot be separated from Ip;0ðxÞ, but as we show
in the following,

Ð1
�1 dxIp;�ðxÞ can be accurately approximated as

the integral of the measured spectrum over the Lorentzian parts of the
dominant peak(s).70

In Fig. 7, we plot the polarization spectrum calculated in the
polaron frame [Ip;0ðxÞ], the spectrum for the same parameters but
without the photonic sideband [Ip;�ðxÞ� which serves to highlight the
sideband, and the polarization spectrum in the absence of permanent
dipoles [Ip;npdðxÞ]. Notably, the photon sideband substantially
changes the emission spectrum. As seen in the inset, the widths of the
peaks are increased by the permanent dipoles; however, the effect of
the permanent dipoles on the Lamb shifts is small.

We now introduce a procedure of directly obtaining essential
information about the system from the experimentally measurable
spectrum, Ip;0ðxÞ, and compare the values obtained for the data
shown in Fig. 7 to analytic values in Table I. We show that it is possible
to evaluate qeeð1Þ and j from Ip;0ðxÞ using Eqs. (57) and (58) and,
provided that the temperature of the experiment is known, these val-
ues can be used to obtain � and jVj. If the spectral density is also
known, it is also possible to obtain jdDj from j.

As shown in Eq. (57), the steady-state population of the excited
state can straightforwardly be obtained by integrating Ip;0ðxÞ over all
frequencies. j can be approximately found using Eq. (58) withÐ1
�1 dxIp;�ðxÞ �

Ð
Rdx Ip;0ðxÞ, where R are the frequency regions for

which the dominant peaks in the spectrum are approximately
Lorentzian before the photon sideband begins. In the example in Fig. 7,
this region is between the vertical dashed lines in the inset. One could
increase the accuracy of the j2 estimation in Fig. 7 by integrating over
the other two peaks, but these contributions are small. If the spectral
density of the photon bath is known, the relation j ¼ exp ½�/ð0Þ=2�

can be inverted to obtain jdDj. The remaining parameters of the sys-
tem, � and jV j, can be estimated by assuming that the system thermal-
izes with respect toHS ¼ gsz=2, yielding the steady state

qeeð1Þ ¼
1
2

1� �
g
tanh

bg
2

� �" #
: (59)

Using Eq. (59), the measured value of qeeð1Þ, and assuming negligible
Lamb shifts such that the frequency of the peak in the spectrum
�g � g, one can estimate �. Then, using �g � g ¼ ð�2 þ 4j2jV j2Þ1=2,
one can estimate jVj.

VII. IMPORTANCE OF INITIAL CONDITIONS

It is typical in theoretical quantum optics to consider the system
and environment initially in an uncorrelated state,

qð0Þ ¼ qSð0Þ 
 qE; (60)

where the environment is assumed to be in a thermal Gibbs state
qE ¼ exp ð�bHEÞ=ZE with HE ¼

P
k�ka

†
kak. This assumption is

valid in weakly coupled systems where the system and the environ-
ment are only weakly correlated even after thermalization. However,
for strongly coupled systems, this assumption is invalidated, and the
total Gibbs state qb ¼ exp ð�bHÞ=Z should be used as the initial state,
where H now refers to the total Hamiltonian. Due to the interaction
term, this will no longer be a separable state and so is difficult to model.

A benefit of the polaron transformation is that the separable ini-
tial state qSð0Þ 
 qE in the polaron frame models an initial state in the
lab frame that is more similar to qb. For example, in our calculations
in Fig. 6, qSð0Þ ¼ jgihgj and so qSð0Þ 
 qE in the polaron frame
becomes qlð0Þ ¼ jgihgj 
 Bð½Dþ D�=�ÞqEBð�½Dþ D�=�Þ in the lab
frame, which is equal to qb in the limit of negligible transition dipoles
and projected onto the ground state. This is the state of the system
after decaying to the ground state from a thermalized state, and so is a
good initial state in which to model excitation.

Therefore, to compare the PFME to TEMPO (which operates in
the lab frame), we must use the Hamiltonian in Eq. (5) with the initial
state qlð0Þ. However, most numerical techniques, including TEMPO,
assume that the initial state is qSð0Þ 
 qE . This discrepancy can be
overcome by deriving an effective Hamiltonian to use in TEMPO
such that the environment appears to be in the correct state. For
qSð0Þ ¼ jgihgj in the polaron frame, we show in Appendix I that the
required Hamiltonian is ~H ¼ ~H 0 þ ~HI , where

FIG. 7. Polarization spectrum of the system. The total polarization spectrum Ip;0ðxÞ
is shown in solid blue, the polarization spectrum without the photon sideband
Ip;�ðxÞ in dotted purple, and the polarization spectrum with jdDj ¼ 0 (and other
parameters unchanged) Ip;npdðxÞ is shown in dot-dashed green. For clarity,
Ip;npdðxÞ is only shown in the inset, which is a zoom-in of the peaks plotted on a
logarithmic scale. We use jdDj ¼ 100 D; V ¼ 0:01 eV, and � ¼ 0:1 eV, and other
parameters discussed in Sec. III. The vertical dashed lines in the inset indicate the
boundaries of R in the approximation

Ð1
�1 dxIp;�ðxÞ �

Ð
Rdx Ip;0ðxÞ used to esti-

mate j. We use the secularized master equation to produce the spectra, which
eliminates a known inconsistency near to the negative frequency peak and has no
other impact (see Appendix H).

TABLE I. Values of parameters obtained from the measurable spectrum. Each column
shows analytic values, obtained directly from the equations in this paper, and
“measured” values obtained from Ip;0ðxÞ in Fig. 7.

Param. Analytic Meas.

j2 0.632 0.621
qeeð1Þ 0.450 0.450
�=eV 0.100 0.100
jV j =eV 0.010 0.010
jdDj=D 100 101
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~H 0 ¼
~�

2
rz þ ~Vrþ þ ~V

�
r� þ

X
k

�ka
†
kak; (61a)

~HI ¼ pDD I þ rzð Þ þ pl�lrþ þ p�llr�; (61b)

and ppq is given in Eq. (6), ~� ¼ �þ 2GDD; ~V ¼ V þ Gl�l , where
Gpq ¼

P
kðpkD

�
k þ q�kDkÞ=�k . We note that because the displacement

direction of the polaron transformation is state dependent, the neces-
sary effective Hamiltonian depends on qSð0Þ.

By comparing the Hamiltonians in Eqs. (61) and (5), we see stark
differences if both are assumed to have the initial state qSð0Þ 
 qE .
This includes a renormalization of the transition energy �! ~� and the
driving term V ! ~V . We can understand these differences by noting
that the environment is far from equilibrium for a strongly coupled
system, and initially, no optical polarons exist in our system.
Dynamically created optical polarons effectively introduce a strong
restoring force in the system that scales with the strength of the perma-
nent dipoles. The ensuing dynamics are thus considerably different,
exacerbating the need for careful consideration of the initial conditions
of the physical models we deploy.

Identity type interactions, such as pDDI0 in Eq. (5), have a similar
effect. As we showed in Eq. (10), this type of interaction can be
removed through a displacement transformation and so, ultimately,
the role of an identity interaction is to change the initial environment
state from a thermal Gibbs state to a displaced one.

VIII. CONCLUSION

We have studied a driven quantum optical system with strong per-
manent dipole moments associated with molecular orbital asymmetry.
The optical polaron transformation, which captures the polarization of
photonic modes caused by the permanent dipoles, allows for the con-
struction of an optical master equation perturbative only in the transi-
tion dipole moment and driving strength and provides an intuitive
formalism to understand the effects associated with the presence of the
permanent dipoles on the system dynamics and emission spectrum.

We have shown three key results. (1) In Sec. IV, we showed
that transition and decoherence rates can be engineered for practical
application by exploiting permanent dipoles, for example, to elimi-
nate optical decoherence and transitions. By using the novel physical
processes explicit in the polaron rate equations we derive, one can
design systems to exploit these effects. The novel physical processes
arising from the permanent dipoles are as follows: a photon side-
band with a relative contribution to the emission spectrum scaling as
j2, two-photon processes scaling as X2

lD, and a term linear in the
driving amplitude scaling as jV jXlD cosð#lXÞ. (2) In Sec. V, we
proved that the optical polaron description provides a much more
accurate master equation by comparing it to the DFME and
TEMPO. (3) In Sec. VI, we indicated distinguishable features of per-
manent dipoles in emission spectra and described possible measure-
ments to obtain qeeð1Þ, j, �g and by extension the bare energy
splitting �, the driving strength jVj, and the permanent dipole mag-
nitude jdDj. The distinguishable features are the photonic sideband
and the altered widths and positions of peaks.

Furthermore, two of the processes we identified, namely, the
C2ðxÞ and CV;1ðxÞ processes, originate from the non-commutativity
of the bosonic operators on the transition and permanent dipole inter-
actions. These vanish if dl and dD are perpendicular and are unique to
pure dephasing interactions that are induced by permanent dipoles, as

opposed to vibrational environments. The linear driving term,
CV;1ðxÞ, may be particularly useful for quantum technologies. As we
have shown, one could engineer devices in which the optical decoher-
ence and transition rates can be varied from essentially zero to faster
than those in the same system but without permanent dipoles, by sim-
ply changing the driving phase by p. This has potential applications in
quantum computing and energy storage.

There are many interesting features of optical polarons that war-
rant future exploration. For example, how the transition rates are
affected by embedding the dipole in a structured,71 or anisotropic,72

dielectric medium, common to many biological systems. As discussed
in the main text, such systems usually possess stronger permanent
dipoles but have more complicated spectral densities, requiring more
sophisticated theories—such as variational polaron theory69—to model.
Moreover, many asymmetric systems couple strongly to vibrational
baths and the interplay between photonic and vibrational physics leads
to non-additive and non-equilibrium phenomena such as population
inversion.50,73 How permanent dipoles affect these phenomena are still
an open question. Additionally, it has been shown in Refs. 28, 30, and
31 that the interplay between the pure dephasing and dissipative inter-
actions leads to non-zero coherences in the steady state. It would be of
great interest to explore the nature of the steady-state coherences in the
optical polaron formalism.
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APPENDIX A: DISPLACEMENT OPERATORS

Within the appendixes, we will regularly use many identities
involving displacement operators, which are proven in Ref. 75. This
appendix is dedicated to listing the necessary displacement operator
identities. For the purpose of this appendix, we use displacement
operators with a single-photon mode

BðaÞ ¼ exp aa† � a�a½ �; (A1)

and note that BðaÞ† ¼ Bð�aÞ and Bð�aÞBðaÞ ¼ I . The first iden-
tity is the action of a displacement operator on harmonic operators

Bð6aÞa†Bð7aÞ ¼ a†7a�; (A2a)

Bð6aÞaBð7aÞ ¼ a7a: (A2b)

The second is that the product of two displacement operators is

Bða1ÞBða2Þ ¼ Bða1 þ a2Þe
1
2 a1a�2�a�1a2ð Þ: (A3)

The third is the action of a displacement operator on the vacuum
state to generate a coherent state

BðaÞj0i ¼ jai: (A4)

Fourth, that the expectation value of an operator with respect to the
thermal state qE ¼ exp ½�b�a†a�=ZE can be written as an integral
over coherent states as

TrE OqE½ � ¼
1

pNð�Þ

ð1
�1

d2a e�
jaj2
Nð�ÞhajOjai; (A5)

where
Ð1
�1 d2a ¼

Ð1
�1 d=½a�

Ð1
�1 d<½a� and Nð�Þ ¼ ðeb� � 1Þ�1 is

the Bose–Einstein distribution. The final identity is the expectation
value of a displacement operator with respect to the vacuum state

h0jBðaÞj0i ¼ e�
1
2jaj

2

: (A6)

APPENDIX B: CALCULATION OF hCi

Recall from Eq. (13) that C ¼ BðdÞpl�lBðdÞe�i#V þ jV jBð2dÞ,
where dk ¼ Dk=�k . Using the properties of displacement operators
listed in Appendix A, this can be written as

C ¼ Bð2dÞ
X
k

lk a†k þ d�k
� �

þ �l�k ak þ dkð Þ
� �

e�i#V þ jV j
� �

: (B1)

To calculate hCi ¼ TrE½CqE�, we require hBð2dÞi; hBð2dÞa†ki, and
hBð2dÞaki. We will perform these calculations explicitly, because the
polaron frame environment correlation functions require analogous,
but more algebraically involved, mathematics. We do the calculations
with a single photonic mode, where BðaÞ ¼ exp ½aa† � aa�, and rein-
state the multimode summations at the end. To calculate the expecta-
tion values, we aim to use Eq. (A5).

Starting with hBð2dÞi, we first evaluate the integrand of Eq.
(A5) as

hajBð2dÞjai ¼ h0jBð�aÞBð2dÞBðaÞj0i
¼ h0jBð2dÞj0ie2da��2d�a

¼ e�2jdj
2

e2da��2d�a; (B2)

where in the first equality, we have used Eq. (A4) twice, in the sec-
ond equality Eq. (A3) twice, and in the final equality Eq. (A6).
Substituting Eq. (B2) into Eq. (A4) then yields

hBð2dÞi ¼ e�2jdj
2coth b�=2ð Þ � j: (B3)

Evaluating hBð2dÞa†i follows a similar procedure; however,
one must now use Eqs. (A2) to move the creation operator such
that it annihilates with the vacuum bra-state h0j. That is,

hajBð2dÞa†jai ¼ h0jBð�aÞBð2dÞa†jai
¼ h0jBð�aÞ a† � 2d�½ �Bð2dÞjai
¼ a� � 2d�½ �hajBð2dÞjai

¼ a� � 2d�½ �e�2jdj
2

e2da��2d�a: (B4)

Substituting Eq. (B4) into Eq. (A5) and performing the integrations
yields

hBð2dÞa†i ¼ �2jd� 1þ Nð�Þ½ �: (B5)

The final expectation value, hBð2dÞai, is easier to calculate because
a annihilates with j0i. One finds that

hajBð2dÞajai ¼ ae�2jdj
2

e2da��2d�a; (B6)

and so,

hBð2dÞai ¼ 2jdNð�Þ: (B7)

Collecting the expectation values in Eqs. (B3), (B5), and (B7)
and substituting these into hCi with C given in Eq. (B1) yield

hCi ¼ j coth
b�
2

� �
�l�d� ld�ð Þe�i#V þ jV j

� �
: (B8)

Since dD 2 <, we find that �l�d� ld� ¼ 0, and so, hCi ¼ jjV j as
stated in the main text.

APPENDIX C: THE HUANG–RHYS PARAMETER

In the main text, we write the dipole vectors in terms of a refer-
ence value, as dp ¼ dref ~dp, which ensures that the spectral density in
Eq. (24) has dimensions of energy. Consequently, the value of S is a
function of dref , and in this appendix, we derive this relationship.

The proof starts from the free space continuum limit

X
k

! V
ð2pÞ3

X
k

ð1
0
d�
ð

Xk

dXk; (C1)

which can be found, for example, in Eq. (2.30) of Ref. 2. Consequently,
the continuum limit of the left-hand side of Eq. (20) is
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X
k

f 2k Fð�kÞ dp � ek
� �

dq � ek
� �

! hpq
d2ref

2ð2pÞ3
ð1
0
d��3e�ð�=�cÞFð�Þ

¼ hpqA0: (C2)

We have used that fk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k=ð2VÞ

p
exp ½��=ð2�cÞ� where the expo-

nential factor accounts for the phenomenological high-frequency
cutoff, and defined the spectral area

A0 ¼
ð1
0
d�Jð�Þ ¼ 6S�2c : (C3)

The other parameters are defined in the main text. By comparing
the right-hand sides of Eqs. (20) and (C2), one finds that the
Huang–Rhys parameter in the free space spectral density must be
related to the reference dipole magnitude by

S ¼ ð�cdref Þ
2

2ð2pÞ3
: (C4)

In the main text, we multiply the Huang–Rhys parameter by the
dimensionless Purcell enhancement factor s0, which is justified for
weak field interactions.

APPENDIX D: NON-SECULAR MASTER EQUATIONS

The non-secular master equations in both the polaron and dis-
placed frames have the same forms, only differing by which opera-
tors enter the two-time correlation functions, and therefore, the
rates and energies in the master equation below will be different.
We find that

@tqþþðtÞ ¼ �c#qþþðtÞ þ c"q��ðtÞ þ �cq�þðtÞ þ �c�qþ�ðtÞ;
(D1a)

@tqþ�ðtÞ ¼ � cd þ i�g½ �qþ�ðtÞ þ k1q�þðtÞ þ k�q��ðtÞ
þ k�þqþþðtÞ; (D1b)

and @tq��ðtÞ ¼ �@tqþþðtÞ and @tq�þðtÞ ¼ @tq�þðtÞ†. As defined
in the main text, the secular terms are

c
"
# ¼ 2< C77ð6gÞ½ �; (D2)

cd ¼
1
2

c" þ c#½ � þ 4< czzð0Þ½ �; (D3)

�g ¼ gþ = C��ðgÞ � Cþþð�gÞ½ �: (D4)

These are written in terms of the Markovian ECFs as

CabðxÞ ¼
ð1
0
dseixshg†aðsÞgbð0Þi; (D5)

for a 2 fz;þ;�g, and it is the expressions for ga that vary between
the PMFE and DFME, and these are given in the main text in Eqs.
(19) and Appendix F, respectively. The non-secular rates are

�c ¼ C�zð0Þ þ Cþzð0Þ�; (D6a)

k1 ¼ C�þð�gÞ þ Cþ�ðgÞ�; (D6b)

k6 ¼ 7C6zð0Þ6C7zð0Þ�62Cz7ð6gÞ: (D6c)

We evaluate CabðxÞ for the polaron frame in Appendix E and for
the displaced frame in Appendix F.

Notice that if the coherences are initially zero
(qþ�ð0Þ ¼ q�þð0Þ ¼ 0), then if k� ¼ kþ ¼ 0 as well, the coher-
ences will be zero at all times t. This occurs in the polaron frame if
V ! 0 since gz / sin ðuÞ ! 0, i.e., the eigenstates fully localize,
but this does not happen in the displaced frame in the same limit
because gdz does not become zero.

APPENDIX E: CALCULATION OF THE POLARON FRAME
TWO-TIME CORRELATION FUNCTIONS

The environment correlation functions, which determine the
second-order Born–Markov rates, depend on the two-time correla-
tion functions hg†aðsÞgbð0Þi for a; b 2 fz;þ;�g where recalling
from Eq. (19),

gz ¼
1
2
sin uð Þ C þ C†½ �; (E1a)

gþ ¼ cos2
u
2

� �
C � sin2

u
2

� �
C†

� �
; (E1b)

and g� ¼ g†þ where C ¼ C � jjV j and

C ¼ Bþ
X
k

lk a†k þ d�k
� �

þ �l�k ak þ dkð Þ
� �

e�i#V þ jV j
� �

; (E2)

and B6 � Bð62dÞ with dk ¼ Dk=�k . The interaction picture forms
of the relevant operators are

akðsÞ ¼ ake
�i�ks; (E3)

B6ðsÞ ¼ B 62dei�sð Þ: (E4)

1. Preliminary calculations

All hg†aðsÞgbð0Þi depend on four two-time correlation func-
tions: hC†ðsÞCð0Þi; hCðsÞC†ð0Þi; hCðsÞCð0Þi, and hC†ðsÞC†ð0Þi. Each
of these in turn depends on either seven or nine unique two-time
correlation functions involving ak, a

†
k , and B6. In this appendix, we

list the results of all necessary two-time correlation functions, which
are each derived using the same mathematics as in the explicit
examples in Appendix B.

a. hCyðsÞCð0Þi

To calculate this two-time correlation function, we require

hB�ðsÞBþð0Þi ¼ j2e/; (E5a)

ha†kB�ðsÞBþð0Þi ¼ �Nkx
�
kj

2e/; (E5b)

hakB�ðsÞBþð0Þi ¼ ~N kxkj
2e/; (E5c)

hB�ðsÞBþð0Þa†ki ¼ �~N kx
�
kj

2e/; (E5d)

hB�ðsÞBþð0Þaki ¼ Nkxkj
2e/; (E5e)
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ha†kB�ðsÞBþð0Þa
†
qi ¼ Nk ~N qx

�
kx
�
qj

2e/; (E5f)

hakB�ðsÞBþð0Þaqi ¼ ~N kNqxkxqj
2e/; (E5g)

ha†kB�ðsÞBþð0Þaqi ¼ �NkNqx
�
kxq þ Nkdkq

� �
j2e/; (E5h)

hakB�ðsÞBþð0Þa†qi ¼ �~N k ~N qxkx
�
q þ ~N kdkq

	 

j2e/; (E5i)

where, for brevity, Nk � Nð�kÞ is the Bose–Einstein distribution,
~N k � ~N ð�kÞ ¼ 1þ Nð�kÞ; / � /ðsÞ given in Eq. (23), j2

¼ exp ½�/ð0Þ�, and finally,

xk � xkðsÞ ¼ 2dk 1� ei�ksð Þ: (E6)

Substituting Eqs. (E5) into the two-time correlation function, we
find the form

hC†ðsÞCð0Þi ¼ C
ð†;�Þ
1 ðsÞ þ C

ð†;�Þ
2 ðsÞ þ C

ð†;�Þ
V;1 ðsÞ þ C

ð†;�Þ
V;0 ðsÞ; (E7)

where the subscripts denote the same processes as in Eq. (29), and

C
ð†;�Þ
1 ðsÞ ¼ j2e/ðsÞ

X
k

f 2k l0
k Nke

i�k s þ ~N ke
�i�ks

� �
; (E8a)

C
ð†;�Þ
2 ðsÞ ¼ 4j2e/ðsÞ

X
n;m2f�1;1g

X
kq

l0�
k l0

qD
0
kD

0
q vnmðk; qÞein�kseim�qs;

(E8b)

C
ð†;�Þ
V;1 ðsÞ ¼ 2jVjj2e/ðsÞ

X
n2f�1;1g

X
k

D0
k e�i#V l0

k þ ei#V l0�
k

	 

nnðkÞein�k s;

(E8c)

C
ð†;�Þ
V;0 ðsÞ ¼ j2jVj2 e/ðsÞ � 1ð Þ; (E8d)

where we have written lk ¼ il0
kfk; �lk ¼ il0�

k fk , and Dk ¼ iD0
kfk

with l0
k ¼ dl � ek and D0

k ¼ dD � ek. The values of vnmðk; qÞ and
nnðkÞ are written in matrix notation for brevity, using the format

vðk; qÞ ¼
v�1;�1ðk; qÞ v�1;1ðk; qÞ
v1;�1ðk; qÞ v1;1ðk; qÞ

 !
; (E9)

nðkÞ ¼ fn�1ðkÞ; n1ðkÞg (E10)

with the elements

vðk; qÞ ¼ f 2k
�k

f 2q
�q

~N k ~N q �~N kNq

�Nk ~N q NkNq

 !
; (E11a)

nðkÞ ¼ f 2k
�k

~N k;�Nk

 �
: (E11b)

We now take the continuum limit of the photon wavenumber [see
Eq. (20)] to obtain

C
ð†;�Þ
1 ðsÞ ¼ j2e/ðsÞXll

ð1
0
d�Jð�Þ Nð�Þei�s þ ~N ð�Þe�i�s

� �
; (E12a)

C
ð†;�Þ
2 ðsÞ ¼ 4j2e/ðsÞX2

lD cos2 hlDð Þ

�
X

n;m2f�1;1g

ð1
0
d�
ð1
0
d�0vnmð�; �0Þein�seim�

0s; (E12b)

C
ð†;�Þ
V;1 ðsÞ ¼ 4jV jj2e/ðsÞXlD cos hlDð Þcos #lVð Þ

�
ð1
0
d��J ð�Þ ~N ð�Þe�i�s � Nð�Þei�s

� �
; (E12c)

C
ð†;�Þ
V;0 ðsÞ ¼ j2jV j2 e/ðsÞ � 1ð Þ; (E12d)

where in the continuum limit, vnmð�; �0Þ are given in Eq. (42). The
Fourier transform of Eq. (E12a) leads to C1ðxÞ in the main text, of
Eq. (E12b) to C2ðxÞ, of Eq. (E12c) to CV;1ðxÞ, and of Eq. (E12d) to
CV;0ðxÞ. Lastly, we note that upon expansion of the summation in
Eq. (E12b), one obtains

C
ð†;�Þ
2 ðsÞ¼ 2je

1
2/ðsÞXlDcos hlDð Þ

ð1
0
d��J ð�Þ ~N ð�Þe�i�s�Nð�Þei�s

� �� �2
:

(E13)

b. hCðsÞCyð0Þi

To calculate this two-time correlation function, we require

hBþðsÞB�ð0Þi ¼ j2e/; (E14a)

hBþðsÞa†kB�ð0Þi ¼ �2d
�
k � ~N ky

�
k

� �
j2e/; (E14b)

hBþðsÞakB�ð0Þi ¼ �2dk þ Nkykð Þj2e/; (E14c)

hBþðsÞa†ka
†
qB�ð0Þi ¼ �2d�k � ~N ky

�
k

� �
�2d�q � ~N qy

�
q

	 

j2e/;

(E14d)

hBþðsÞakaqB�ð0Þi ¼ �2dk þ Nkykð Þ �2dq þ Nqyq
� �

j2e/; (E14e)

hBþðsÞa†kaqB�ð0Þi¼ Nkdkqþ �2d�k� ~N ky
�
k

� �
�2dqþNqyq
� �h i

j2e/;

(E14f)

hBþðsÞaka†qB�ð0Þi¼ ~N kdkqþ �2dkþNkykð Þ �2d�q� ~N qy
�
q

	 
h i
j2e/;

(E14g)

where

yk � ykðsÞ ¼ 2dk ei�k s � 1ð Þ: (E15)

Substituting Eqs. (E14) into the two-time correlation function, one
finds the general form

hCðsÞC†ð0Þi ¼ C
ð�;†Þ
1 ðsÞ þ C

ð�;†Þ
2 ðsÞ þ C

ð�;†Þ
V;1 ðsÞ þ C

ð�;†Þ
V;0 ðsÞ; (E16)

where, Cð�;†Þ1 ðsÞ¼C
ð†;�Þ
1 ðsÞ; C

ð�;†Þ
2 ðsÞ¼C

ð†;�Þ
2 ðsÞ; C

ð�;†Þ
V;1 ðsÞ ¼�C

ð†;�Þ
V ;1 ðsÞ,

and C
ð�;†Þ
V;0 ðsÞ¼C

ð†;�Þ
V ;0 ðsÞ.

c. hCyðsÞCyð0Þi

To calculate this two-time correlation function, we require

hB�ðsÞB�ð0Þi ¼ j2e�/; (E17a)

ha†kB�ðsÞB�ð0Þi ¼ �Nkz
�
kj

2e�/; (E17b)

hakB�ðsÞB�ð0Þi ¼ ~N kzkj
2e�/; (E17c)

hB�ðsÞa†kB�ð0Þi ¼ �~N kz
�
k � 2d�k

� �
j2e�/; (E17d)
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hB�ðsÞakB�ð0Þi ¼ Nkzk � 2dkð Þj2e�/; (E17e)

ha†kB�ðsÞa
†
qB�ð0Þi ¼ �Nkz

�
k �~N qz

�
q � 2d�q

	 

j2e�/; (E17f)

hakB�ðsÞaqB�ð0Þi ¼ ~N kzk Nqzq � 2dq
� �

j2e�/; (E17g)

ha†kB�ðsÞaqB�ð0Þi ¼ Nkdkq � Nkzk Nqzq � 2dq
� �� �

j2e�/; (E17h)

hakB�ðsÞa†qB�ð0Þi ¼ ~N kdkq þ ~N kzk Nqzq � 2dq
� �h i

j2e�/; (E17i)

where

zk � zkðsÞ ¼ �2dk ei�k s þ 1ð Þ: (E18)

Substituting Eqs. (E17) into the two-time correlation function and
taking the continuum limit, one finds the general form

hC†ðsÞC†ð0Þi ¼ C
ð†;†Þ
1 ðsÞ þ C

ð†;†Þ
2 ðsÞ þ C

ð†;†Þ
V;0 ðsÞ; (E19)

which does not have a driving-induced one-photon process. The
components of the correlation functions are the same as for
hC†ðsÞCð0Þi except for overall phase and the replacement /ðsÞ
! �/ðsÞ. Explicitly,

C
ð†;†Þ
1 ðsÞ ¼ j2e�/ðsÞXlle

2i#lV

ð1
0
d�Jð�Þ Nð�Þei�s þ ~N ð�Þe�i�s

� �
;

(E20a)

C
ð†;†Þ
2 ðsÞ ¼ 4j2e�/ðsÞX2

lD cos2 hlDð Þe2i#lV

�
X

n;m2f�1;1g

ð1
0
d�
ð1
0
d�0vnmð�; �0Þein�seim�

0s; (E20b)

C
ð†;†Þ
V;0 ðsÞ ¼ j2jV j2 e�/ðsÞ � 1ð Þ: (E20c)

The Fourier transform of Eq. (E20a) will depend on the function,

K�ðeÞ ¼
1
p

ð1
0
dseiese�/ðsÞ�/ð0Þ; (E21)

which is equivalent to Eq. (33) except that /ðsÞ ! �/ðsÞ. The
finite-mode truncation method solution to Eq. (E21) is the same as
for Eq. (33) but with the replacement Wn ¼ Sn exp ð�SÞ=n!
! ð�1ÞnSn exp ð�SÞ=n!.

d. hCðsÞCð0Þi

To calculate this two-time correlation function, we require

hBþðsÞBþð0Þi ¼ j2e�/; (E22a)

hBþðsÞa†kBþð0Þi ¼ z�k ~N k þ 2d�k
� �

j2e�/; (E22b)

hBþðsÞakBþð0Þi ¼ �zkNk þ 2dkð Þj2e�/; (E22c)

hBþðsÞBþð0Þa†ki ¼ ~N kz
�
kj

2e�/; (E22d)

hBþðsÞBþð0Þaki ¼ �Nkzkj
2e�/; (E22e)

hBþðsÞa†kBþð0Þa
†
qi ¼ ~N kz

�
k

~N qz
�
q þ 2d�q

	 

j2e�/; (E22f)

hBþðsÞakBþð0Þaqi ¼ Nkzk Nqzq � 2dq
� �

j2e�/; (E22g)

hBþðsÞa†kBþð0Þaqi ¼ Nkdkq � z�k ~N k þ 2d�k
� �

Nqzq
h i

j2e�/; (E22h)

hBþðsÞakBþð0Þa†qi ¼ ~N kdkq þ �zkNk þ 2dkð Þ~Nqz
�
q

h i
j2e�/;

(E22i)

where zk � zkðsÞ is given in Eq. (E18). Substituting Eqs. (E22) into
the two-time correlation function and taking the continuum limit,
one finds that hCðsÞCð0Þi is equal to hC†ðsÞC†ð0Þi with the replace-
ment #lV ! �#lV .

2. Two-time correlation functions hg†
aðsÞgbð0Þi

With the expressions for hC†ðsÞCð0Þi; hCðsÞC†ð0Þi; hC†ðsÞC†ð0Þi,
and hCðsÞCð0Þi, we can now write down the two-time correlation
functions hg†aðsÞgbð0Þi for a;b 2 fz;þ;�g. We will write these
expressions in the continuum limit using the generic operators

ga ¼ aaC þ baC†; (E23)

and the equivalent for a! b. One can recover the desired two-time
correlation functions of g�; gþ, and gz by using the coefficients writ-
ten in Table II. The Fourier transforms of the two-time correlation
functions are

CabðxÞ �
ð1
0
dseixshg†aðsÞgbð0Þi

¼ aaabC
ð†;�ÞðxÞ þ babbC

ð�;†ÞðxÞ þ aabbC
ð†;†ÞðxÞ

þ baabC
ð�;�ÞðxÞ; (E24)

where, for example,

Cð†;�ÞðxÞ ¼
ð1
0
dseixshC†ðsÞCð0Þi: (E25)

In the main text, we demonstrate how to evaluate Cð†;�ÞðxÞ [there
denoted CðxÞ] and the remaining Fourier transforms follow simi-
larly, but with the addition of the various minus signs we have
already mentioned.

APPENDIX F: CORRELATION FUNCTIONS
IN THE DISPLACED FRAME MASTER EQUATION

If one does not make the polaron transformation of the
Hamiltonian in Eq. (10) and instead moves straight to the eigenba-
sis, one finds the displaced frame Hamiltonian

H ¼ gd

2
sdz þ

X
k

�ka
†
kak þ

X
l2fz;þ;�g

gdlsdl; (F1)

TABLE II. The coefficients used in ga in Eq. (E23) to obtain the polaron frame coupling
operators g�; gþ, and gz. Recall that cos2ðu=2Þ ¼ ð1þ �=gÞ=2 and
sin2ðu=2Þ ¼ ð1� �=gÞ=2.

a � þ z

aa �sin2 u
2

� �
cos2

u
2

� �
sin2

u
2

� �
cos2

u
2

� �

ba cos2
u
2

� �
�sin2 u

2

� �
sin2

u
2

� �
cos2

u
2

� �
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where gd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4jV j2

q
[there is no j renormalization of V] and

gdz ¼ cos2
ud

2

� �
� sin2

ud

2

� �� �
pDD

þ cos
ud

2

� �
sin

ud

2

� �
pl�le

�i#V þ p�lle
i#V

h i
; (F2a)

gdþ ¼ �2 cos
ud

2

� �
sin

ud

2

� �
pDD þ cos2

ud

2

� �
pl�le

�i#V

� sin2
ud

2

� �
p�lle

i#V ; (F2b)

and gd� ¼ gd†þ , where

ppq ¼
X
k

pka
†
k þ q�kak

� �
: (F3)

The Pauli matrices in the eigenbasis are sd6 ¼ j6dih7dj and sdz
¼ jþdihþdj � j�dih�dj where

jei
jgi

 !
¼

cos
ud

2

� �
�sin ud

2

� �

sin
ud

2

� �
cos

ud

2

� �
0
BBBB@

1
CCCCA
jþdi
j�di

 !
(F4)

with cos ðudÞ ¼ �=gd and sin ðudÞ ¼ 2jV j=gd .
Since Eq. (F1) has the same structure as Eq. (12), the master

equation in the displaced frame has the same algebraic form as in
the polaron frame, i.e., given within the secular approximation
by Eqs. (C1) and in full in Appendix C, but the environment
correlation functions (ECFs) are different. The displaced frame
ECFs depend on linear combinations of Fourier transforms of the
form

Cd
pq;rsðxÞ ¼

ð1
0
dseixshp†

pqðsÞprsð0Þi �
1
2
cdpq;rsðxÞ þ iSdpq;rsðxÞ:

(F5)

Substituting Eq. (F3) into the ECF and using that ha†kak0 i
¼ dkk0Nð�kÞ; haka†k0 i ¼ dkk0 ~N ð�kÞ, where ~N ð�Þ ¼ 1þ Nð�Þ and
that other combinations equal zero, leads to

cdpq;rsðxÞ ¼ 2p
h
cos hpr
� �

eið#r�#pÞXprJðxÞ~N ðxÞ

þ cos hqs
� �

eið#q�#sÞXqsJð�xÞNð�xÞ
i
; (F6a)

Sdpq;rsðxÞ ¼ P
ð1
0
d�Jð�Þ

�
cos hpr
� �

eið#r�#pÞXpr

~N ð�Þ
x� �

þ cos hqs
� �

eið#q�#sÞXqs
Nð�Þ
xþ �

�
: (F6b)

To exemplify how these functions relate to the rates in Eqs.
(C1), we will derive cd��ðgdÞ explicitly. This function is given by

cd��ðgdÞ ¼ 2<
ð1
0
dseig

dshgd†� ðsÞgd�ð0Þi: (F7)

Substituting in gd� and using Eqs. (F6), we find that [ignoring argu-
ments ðgdÞ on the right-hand side and temporarily denoting
cos ðud=2Þ ¼ c and sin ðud=2Þ ¼ s],

cd��ðgdÞ ¼ 4c2s2cdDD;DD þ 2cs3e�i#lV cdDD;ll � 2c3sei#lV cdDD;ll

þ2cs3ei#lV cdll;DD þ s4cdll;ll � s2c2e2i#lV cdll;ll

�2c3se�i#lV cdll;DD � c2s2e�2i#lV cdll;ll þ c4cdll;ll: (F8)

Using the symmetry that Xab ¼ Xba and that dD 2 <, we can read
off from Eq. (F6a) that

cdDD;DDðgdÞ ¼ XDDc0ðgdÞ; (F9)

cdll;llðgdÞ ¼ Xllc0ðgdÞ; (F10)

cdll;DDðgdÞ ¼ cdDD;llðgdÞ ¼ cos hlDð ÞXlDc0ðgdÞ; (F11)

where c0ðxÞ ¼ 2p½JðxÞ~N ðxÞ þ Jð�xÞNð�xÞ]. Using these, we
find that

cd��ðgdÞ ¼ k0��c0ðgdÞ; (F12)

where the rate coefficient is

k0�� ¼ c4 þ s4½ �Xll þ 4c2s2XDD � s2c2 Xlle
�2i#lV þ Xlle

2i#lV

h i
� 2sc c2 � s2½ � XlDe

�i#lV þ XlDe
i#lV

h i
cos hlDð Þ: (F13)

This is rather complicated but only because of the transition dipole
and driving phases. If we assume that #l ¼ #V such that #lV ¼ 0,
then k0�� ¼ ð8p=3Þðd� � d�Þ where we have defined a new dipole
vector

d� ¼ c2 � s2½ �dl þ 2csdD: (F14)

A final limit worth checking is when the eigenstates fully
localize, jþdi ! jei and j�di ! jgi, i.e., c! 1 and s! 0. In this
case, k0�� ! Xll, and so the decay rate is cd��ðgdÞ
¼ cd��ð�Þ ¼ Xllc0ð�Þ, which is the decay rate in the standard opti-
cal master equation.

APPENDIX G: DERIVATION OF THE EMISSION
SPECTRUM

In this appendix, we derive Eq. (51), which gives the emission
spectrum for the single emitter system. Our derivation closely fol-
lows those provided for single emitter systems without permanent
dipoles in Refs. 2, 64–66, and 68. Due to the permanent dipoles,
there are additional light–matter interaction terms in the
Hamiltonian in Eq. (5), and so, the derivation is slightly more cum-
bersome. However, as we show here, these additional terms do not
affect the expression for the emission spectrum of the emitter
within the standard approximations.

The emission spectrum is given exactly by

IðxÞ ¼ lim
t!1
<
ð1
0
dse�ixshE� R; t þ sð Þ � Eþ R; tð Þi; (G1)

where R is the position of the detector and the positive frequency
component of the electric field is
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Eþ R; tð Þ ¼ i
X
k

ekfkake
�ik�R; (G2)

and E�ðR; tÞ ¼ EþðR; tÞ†. Our aim is to express the expectation
value ha†kaqi in terms of dipole operators r6, which is achieved
through the Heisenberg equation of motion

@

@t
akðtÞ ¼ �i H; akðtÞ½ �; (G3)

where H is the lab frame Hamiltonian in Eq. (1). By obtaining
ha†kaqi in terms of r6, we will have arrived at the form of the
emission spectrum in Eq. (51).

Using ½ak; a†q� ¼ dkq, one can show that

@

@t
akðtÞ ¼ �i�kakðtÞ � DkrzðtÞ � lkrþðtÞ � l�kr�ðtÞ; (G4)

where raðtÞ ¼ UðtÞ†raUðtÞ and UðtÞ ¼ exp ð�iHtÞ, which can be
solved to yield

akðtÞ ¼ akð0Þe�i�k t �
ðt
0
dsei�k s�tð Þ�DkrzðsÞ

þ lkrþðsÞ � l�kr�ðsÞ
�
: (G5)

The first term in Eq. (G5) is the free field term, which does not con-
tribute to the spectrum of the emitter and is henceforth ignored.
After substituting the second term of Eq. (G5) into Eq. (G2) and
taking the continuum limit, we obtain

Eþ R; tð Þ ¼
ð1
0
d�

ffiffiffiffiffiffiffiffiffi
Jð�Þ

p ðt
0
dsei�k s�tð Þ�OzrzðsÞ

þOlrþðsÞ þO�lr�ðsÞ
�
; (G6)

where

Op ¼
ð
dXk

dXk

X
k

ek dp � ek
� �

eik� r�Rð Þ; (G7)

where we briefly use the notation dz ¼ dD for convenience.
To progress analytically, we need to know how the emitter

operators raðtÞ evolve in time. However, this is very complicated.
Instead, we make the so-called harmonic decomposition (see Chap.
2.2 of Ref. 2) in which we assume that the timescale over which the
emitter evolves unitarily is much faster than the timescale over
which spontaneous emission occurs. Within this approximation, we
write that

rþðsÞ � rþðtÞei� s�tð Þ; r�ðsÞ � r�ðtÞe�i� s�tð Þ;

and

rzðsÞ � rzðtÞ: (G8)

Making the harmonic decomposition in Eq. (G6) yields

EþðR; tÞ ¼
ð1
0
d�

ffiffiffiffiffiffiffiffiffi
Jð�Þ

p �
OzrzðtÞj0ð�; tÞ

þOlrþðtÞjþð�; tÞ þO�lr�ðtÞj�ð�; tÞ
�
; (G9)

where

jað�; tÞ ¼
ðt
0
dsei s�tð Þ �þa�ð Þ ¼ �i 1� e�it �þa�ð Þ

� þ a�
: (G10)

The function jað�; tÞ is dominated by the contribution near to
� ¼ �a� and so we approximate it as a delta function,
jað�; tÞ � 2pdð� þ a�Þ.2 After performing this approximation, one
finds that the delta function corresponding to jþð�; tÞ lies out with
the integration domain � 2 ½0;1�, and so, the term going as rþðtÞ
in Eq. (G9) vanishes. Moreover, the term proportional to j0ð�; tÞ
provides a delta function at zero frequency, leading to the term
going as rzðtÞ in Eq. (G9) to be proportional to

ffiffiffiffiffiffiffiffi
Jð0Þ

p
, which is

equal to zero for any well-defined spectral density. Therefore,
within the standard approximations outlined in this derivation, the
presence of permanent dipoles does not change the expression of
the emission spectrum from Eq. (51). Thus, the only surviving term
in Eq. (G9) is proportional to r�ðtÞ, and so, we obtain

Eþ R; tð Þ � 2p
ffiffiffiffiffiffiffiffi
Jð�Þ

p
O�l r;Rð Þr�ðtÞ; (G11)

where we have made the dependence of O�l on r and R explicit.
After substituting Eq. (G11) and its Hermitian conjugate into Eq.
(G1), one obtains Eq. (52), and an explicit expression for the
Green’s function apropðr;R;xÞ.

APPENDIX H: NON-SECULAR MASTER EQUATION
PRODUCES A NONPHYSICAL POLARIZATION
SPECTRUM

In this appendix, we show that if a non-secular master equa-
tion is used, then the standard optical master equation can produce
a nonphysical (negative) polarization spectrum. We will show that,
for an isolated transition dipole without external drive, the negative
frequency peak occurs with a negative magnitude for the non-
secular master equation, proportional to the square of the Lamb
shift.

The Hamiltonian for the standard optical master equation is

H ¼ �

2
rz þ

X
k

�ka
†
kak þ rx

X
k

gka
†
k þ g�kak

� �
; (H1)

where gk ¼ ifkðdl � ekÞ and other symbols are defined in the main
text. The non-secular master equation (the standard optical master
equation) is

_qeeðtÞ ¼ �c#qeeðtÞ þ c"qggðtÞ; (H2)

_qgeðtÞ ¼ ix0 � cdð Þqge þ cvqegðtÞ; (H3)

and _qggðtÞ ¼ � _qeeðtÞ and _qegðtÞ ¼ _qgeðtÞ†. The transition and
decoherence rates are

c" ¼ 2pXllJð�ÞNð�Þ; (H4)

c# ¼ 2pXllJð�Þ 1þ Nð�Þð Þ; (H5)

cd ¼
1
2

c" þ c#ð Þ; (H6)

and the Lamb shifted transition energy is

x0 ¼ �þ Sþ � S�; (H7)

where S6 ¼ Sð6�Þ and
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SðxÞ ¼ P
ð1
0
d�Jð�Þ Nð�Þ

xþ � þ
1þ Nð�Þ
x� �

� �
: (H8)

Finally, the non-secular rate is

cv ¼ cd þ i Sþ � S�ð Þ: (H9)

To recover the secular theory, one just sets cv ¼ 0. Note that for
this system, cv ¼ 0 is also obtained if one makes the rotating wave
approximation in the interaction Hamiltonian.

Using the quantum regression theorem, we find that the polariza-
tion spectrum is the real part of the Fourier transform of qgeðtÞ with
the initial conditions qgeð0Þ ¼ 0 and qgeð0Þ ¼ qeeð1Þ ¼ Nð�Þ=
ð1þ 2Nð�ÞÞ. The solution to the non-secular master equation is

qgeðtÞ ¼ e�tcdqeeð1Þ cosh t
ffiffiffi
n

p	 

þ ix0sinh t

ffiffiffi
n
p� �

ffiffiffi
n
p

 !
; (H10)

where n2 ¼ jcvj2 � x2
0. Notice that, as expected, if cv ¼ 0 we

recover the secular result that qgeðtÞ / exp ½ðix0 � cdÞt�. The polar-
ization spectrum is then

Ip;SOMEðxÞ ¼ <
ð1
0
dte�ixtqgeðtÞ ¼ qeeð1Þ<

cd þ i xþ x0ð Þ
cd þ ixð Þ2 � n2

" #
;

(H11)

which has the secular limit

lim
cv!0

Ip;SOMEðxÞ ¼ qeeð1Þ
cd

c2d þ ðx� x2
0Þ

(H12)

that is always positive valued. Conversely, the value of the non-
secular spectrum at the negative frequency peak, x ¼ �x0, is

Ip;SOMEð�x0Þ ¼ �qeeð1Þ
cdL

2

L4 þ 4c2dx
2
0
� � qeeð1Þ

4cd�2
L2 þOðL3Þ;

(H13)

where L ¼ Sþ � S� is the Lamb shift. Equation (H13) shows that the
non-secular spectrum is nonphysical at the negative peak if the Lamb
shift is finite, while the secular spectrum in Eq. (H12) is always physi-
cal. This effect is small for weak light–matter coupling (L=�	 1) and
low temperatures (b�	 1) but is nevertheless present. However,
within this regime, the secular and non-secular spectra are otherwise
very similar and only start to deviate very close to x ¼ �x0.
Therefore, in the main text where our results are well within this
regime, we use the secular master equation to produce the spectra. By
doing this, we avoid a narrow and negative peak at x ¼ �x0 when
the driving is small, but otherwise leave the spectra unchanged.

APPENDIX I: EFFECTIVE HAMILTONIAN

In many numerical schemes to solve the open quantum
dynamics of systems coupled to thermal environments, it is
assumed that the environment is in a free Gibbs state at the temper-
ature T ¼ 1=b. In the polaron framework, the lab frame environ-
ment is not in such a convenient form. As such, we derive here an
effective Hamiltonian that encapsulates the polaron thermalized
state but has the effective environment in a free Gibbs state.

We start with the lab frame Hamiltonian,

H ¼ �

2
rz þ Vrþ þ V�r� þ Edip þ

X
k

�ka
†
kak

þ pDDI þ pDDrz þ pl�lrþ þ p�llr�; (I1)

where

ppq ¼
X
k

pka
†
k þ q�kak

� �
; (I2)

pk ¼ i dp � ek
� �

; (I3)

with p; q 2 fl; �l;D;Dg. In our calculations, the polaron frame ini-
tial state is

q0
p ¼ jgihgj 
 qE; (I4)

where qE ¼ exp ½�b
P

k�ka
†
kak�=ZE is a thermal state. Performing

the inversion of the unitary transformations to go from the polaron
frame to the displaced frame, the initial state is q0

d ¼ U†q0
pU where

the polaron transformation is U ¼ BðdÞjeihej þ Bð�dÞjgihgj and
dk ¼ Dk=�k and BðaÞ ¼ exp ½

P
kðaka†k � a�kakÞ�. Therefore,

q0
d ¼ jgihgj 
 gðdÞ; (I5)

where we have defined a displaced thermal state as gðaÞ
¼ BðaÞqEBð�aÞ. We can then obtain the lab frame initial state via
q0
l ¼ Bð�dÞq0

dBðdÞ, where dk ¼ Dk=�k , leading to

q0
l ¼ jgihgj 
 gðd� dÞ: (I6)

The expression for gðaÞ can be rewritten by making use of the
identity

exp eSXe�Sð Þ ¼ eSeXe�S; (I7)

which holds if eSe�S ¼ I . Using this identity yields

gðaÞ ¼ exp �b
X
k

�k a†k � a�k
� �

ak � akð Þ
� �

: (I8)

We now rewrite the lab frame Hamiltonian using new ladder
operators bk, which we will relate to the ak to ensure we model our
desired initial state, gðd� dÞ. The initial environment state in the
effective lab frame will be �qE ¼ exp ½�b

P
k�kb

†
kbk�=ZE , and so by

comparison with Eq. (I8), we know that

bk ¼ ak � ðdk � dkÞ: (I9)

Substituting this into our actual lab frame Hamiltonian in Eq. (I1)
and ignoring any terms that are identity operators in both Hilbert
spaces, we arrive at the effective Hamiltonian

�H ¼ �H 0 þ �HI ; (I10)

where

�H 0 ¼
�

2
þ GDD

� �
rz þ Vrþ þ V�r� þ Gl�lrþ þ G�llr�

þ
X
k

�kb
†
kbk; (I11)

�HI ¼ p0DD I þ rzð Þ þ p0l�lrþ þ p0�llr�; (I12)
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and

p0pq ¼
X
k

pkb
†
k þ q�kbk

� �
; (I13)

Gpq ¼
X
k

pkd
�
k þ q�kdk

� �
: (I14)

In order to get numerical agreement between TEMPO and the
PFME, both of which assume separable initial states but crucially in
different frames, we, therefore, must use �H in Eq. (I10) for TEMPO
calculations.
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