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Towards A Unified Understanding of Uncertainty
Quantification in Traffic Flow Forecasting

Weizhu Qian, Yan Zhao⇤, Dalin Zhang, Member, IEEE , Bowei Chen, Kai Zheng, Senior Member, IEEE ,
and Xiaofang Zhou, Fellow, IEEE

Abstract—Uncertainty is an essential consideration for time series forecasting tasks. In this work, we focus on quantifying the
uncertainty of traffic forecasting from a unified perspective. We develop a novel traffic forecasting framework, namely Deep
Spatio-Temporal Uncertainty Quantification (DeepSTUQ), which can estimate both aleatoric and epistemic uncertainty. Specifically, we
first leverage a spatio-temporal model to model the complex spatio-temporal correlations of traffic data. Subsequently, two independent
sub-neural networks maximizing the heterogeneous log-likelihood are developed to estimate aleatoric uncertainty. To estimate
epistemic uncertainty, we combine the merits of variational inference and deep ensembling by integrating the Monte Carlo dropout and
the Adaptive Weight Averaging re-training methods, respectively. Furthermore, to relax the Gaussianity assumption, mitigate overfitting,
and improve horizon-wise uncertainty quantification performance, we define a new calibration method called Multi-horizon Conformal
Calibration (MHCC). Finally, we provide a theoretical analysis of the proposed unified approach based on the PAC-Bayes theory.
Extensive experiments are conducted on four public datasets, and the empirical results suggest that the proposed method outperforms
state-of-the-art methods in terms of both point prediction and uncertainty quantification.

Index Terms—traffic forecasting, uncertainty quantification, variational inference, deep ensembling, model calibration, PAC-Bayes

F

1 INTRODUCTION

Traffic forecasting is one of the essential elements in modern
Intelligent Transportation Systems (ITS). The predicted data,
including but not limited to traffic flow, speed, and volume,
can help municipalities manage urban transportation more
efficiently. In terms of traffic forecasting, the road segments
in a road network interact with each other spatially, and the
current state of a road segment depends on previous states,
which results in complicated spatio-temporal correlations.
Modelling the spatial-temporal correlations of traffic data is
non-trivial [5], [17], [30], [39], [52], [54], [57].

Thanks to the recent advances of deep learning
techniques, a number of deep learning-based
spatio-temporal models have been proposed in the
field of traffic forecasting [44], [47]. Since the topology
of a typical road network can be described by a graph
in which each node represents a sensor and each edge
represents a road segment, the spatial dependency of traffic
data can be naturally extracted by Graph Neural Networks
(GNNs) [20]. Correspondingly, the temporal dependency
of traffic data can be modelled by Convolutional Neural
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Networks (CNNs), Recurrent Neural Networks (RNNs), or
their variants [5], [30], [39], [52].

Despite the fact that existing methods regarding
traffic forecasting have been shown successful [47], most
of them only provide point traffic prediction without
quantifying uncertainty — a critical component in traffic
data. Uncertainty quantification can be used to estimate the
possible minimum and maximum values of the predicted
traffic flow, speed, and volume. Such reliability information
can be imperative for municipalities to manage urban traffic
systems in real-world scenarios (e.g., emergency rescue and
disaster evacuation) where unreliable deterministic point
prediction may lead to catastrophic consequences [48].
Traffic forecasting can help improve traffic conditions and
consequently reduce traffic incidents [34], [38]. However,
unexpected events, e.g., accidents, will affect the accuracy
of the traffic forecasting [2], [11]. Therefore, from a safety
perspective, it is necessary to provide predictions with
reliability information. Moreover, traffic forecasting models
with uncertainty quantification can be used to develop
proactive intelligent traffic control systems to prevent
possible future traffic congestion.

In this paper, we aim to attain both future traffic
forecasting and its corresponding uncertainty. More
specifically, the research goal includes the estimation of both
epistemic and aleatoric uncertainties, which refer to model
uncertainty and data uncertainty, respectively. Aleatoric
uncertainty can be obtained by two independent neural
networks by estimating means and variances, respectively
[35]. As for epistemic uncertainty, both variational inference
and ensembling are possible solutions. However, these
two types of approaches both have their own limitations.
Variational approaches, e.g., Bayesian Neural Networks
(BNNs) [21], [33], are prone to modal collapse [14]. Deep
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ensembling is capable of finding multiple local minimums
by training a set of deterministic models, but the prediction
of each trained deterministic model lacks diversity [14].
To circumvent this problem, it needs to find a set of local
minimums/solutions with certain amount of diversities.

To this end, we carefully design an epistemic uncertainty
quantification method integrating the merits of both
variational inference and deep ensembling. Due to the
high flexibility and efficiency of Monte Carlo dropout
(MCDO) [12], we adopt it as the variational inference
method. To implement MCDO in the proposed approach,
we place the dropout operations in the base model with
careful design to ensure the model performance. Despite
the success of Stochastic Weight Averaging (SWA) [19]
on approximating deep ensembling, we find that the
original SWA method cannot guarantee the convergence
of the training process of traffic forecasting tasks. In
this light, we propose a new re-training method, called
Adaptive Weight Averaging (AWA), to better approximate
deep ensembling. Compared with SWA that uses SGD
for training, AWA utilizes a new learning rate scheduler
with Adam, which can approximate deep ensembling
more efficiently on traffic forecasting. In addition, a
post-processing calibration method is proposed to mitigate
the overfitting issue in uncertainty quantification. We
design the above building blocks to tackle different aspects
of the uncertainty quantification problem, achieving an
effective and efficient traffic forecasting framework. Finally,
a unified uncertainty quantification approach called Deep
Spatio-Temporal Uncertainty Quantification (DeepSTUQ) is
formulated for both epistemic and aleatoric uncertainty
estimation. Compared to existing approaches, DeepSTUQ
has the following advantages: 1) DeepSTUQ can predict
future traffic while providing both epistemic and aleatoric
prediction uncertainty; and 2) DeepSTUQ requires training
only one single model, which as a result, is fast-training,
low-memory-footprint, and fast-inferring.

In the conference version of this work [36], Gaussian
assumption was used in the calibration method. However,
it may not be valid empirically with the real traffic
data in many cases. The other issue of the original
calibration method [36] is that it cannot guarantee
horizon-wise uncertainty quantification performance. To
mitigate overfitting, relax the Gaussianity assumption,
and improve horizon-wise uncertainty quantification
performance, we propose a novel conformal inference
based calibration method, called Multi-horizon Conformal
Calibration (MHCC), where the target significance can be
corrected according to the proposed empirical equation.
Moreover, we provide an in-depth theoretical analysis
for uncertainty quantification to show that the proposed
method can strengthen the point prediction performance
and the horizon-wise prediction coverage performance.

The major value-added extensions over our preliminary
work [36] are three-fold.

• We identify and study in depth a limitation
in our previous approach, thus enabling
improved horizon-wise uncertainty quantification
performance.

• We propose a horizon-wise post-processing

calibration method that relaxes the Gaussianity
assumption and reduces overfitting, achieving better
performance of uncertainty quantification in traffic
flow forecasting.

• Extensive experiments are conducted on four public
datasets, and the results show that the proposed
DeepSTUQ advances the state of the art in terms of
point prediction and uncertainty quantification.

The remainder of this paper is organized as follows.
Section 2 surveys the related work, and Section 3 gives
preliminary concepts. We then present the DeepSTUQ
model in Section 4, followed by an empirical study in
Section 5. Section 6 offers conclusions.

2 RELATED WORK

Our study relates to spatio-temporal traffic forecasting
regarding its application and uncertainty quantification
regarding the methodology. In the following, we review
the state-of-the-art methods from these two aspects in this
section.

2.1 Spatio-Temporal Traffic Forecasting

Traffic data can be regarded as multivariate time series.
Hence, for traffic forecasting tasks, both spatial and
temporal correlation are critical data features to learn from.
In terms of spatial correlations, Graph Neural Network,
such as Graph Convolutional Networks (GCNs) [25],
ChebNet [9], and Graph Attention Networks (GATs) [43],
have become the de facto deep learning techniques. As
for temporal dependency, deep architectures like Gated
Recurrent Networks (GRUs) [7], Gated Convolutional
Neural Networks (GCNNs) [8], and WaveNet [42],
have been widely applied to traffic prediction. Base
on these two types of methods, a number of deep
spatio-temporal models have been proposed in the context,
such as Diffusion Convolutional Recurrent Neural Network
(DCRNN) [30], Temporal Graph Convolutional Network
(T-GCN) [56], Spatio-Temporal Graph Convolutional
Networks (ST-GCN) [54], and GraphWaveNet [52].
These methods are capable of learning spatio-temporal
correlations but fail to capture multi-scale or hierarchical
dependency.

More recently, Li et al. [29] proposed Spatial-Temporal
Fusion Graph Neural Network (STFGNN), in which a
spatial-temporal fusion graph module and a gated dilated
CNN module were used to capture local and global
correlations simultaneously. Zheng et al. [55] proposed
Spatial-Temporal Graph Diffusion Network (ST-GDN) that
adopted a hierarchical graph neural network architecture
and a multi-scale attention network to learn spatial
dependency from local-global perspectives and multi-level
temporal dynamics, respectively. Qu et al. [37] used
contrastive self-supervision to learn the spatio-temporal
correlations within the coarse-grained urban traffic flows.
Liang et al. [31] proposed a physics-informed approach
for spatio-temporal forecasting. Additionally, the attention
mechanism has been applied to address this issue as
well. For instance, Attention-based Spatial-Temporal Graph
Convolutional Network (ASTGCN) [17] uses spatial and
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temporal attention to model the spatial patterns and
dynamic temporal correlations, respectively.

Nevertheless, in a practical real-world case where the
knowledge of a graph is missing, the physical road
connectivity may not necessarily represent the real data
correlation in a graph. It is therefore beneficial to learn
the graph structure from the data. To this end, methods
such as Multivariate Time Series Forecasting with Graph
Neural Network (MTGNN) [51] and Adaptive Graph
Convolutional Recurrent Network (AGCRN) [5] can learn
the unknown adjacency matrix in a data-driven manner
and consequently improve the prediction performance.
However, all these aforementioned methods only focus on
providing point estimation without computing prediction
intervals.

2.2 Uncertainty Quantification

Uncertainty quantification has recently become an actively
researched area and widely applied to solve various
real-world problems [1], [14]. In general, uncertainty can
be classified into two categories, namely, aleatoric and
epistemic.

Aleatoric uncertainty refers to the data uncertainty
caused by noise or intrinsic randomness of processes, which
is irreducible but can be computed via predictive means
and variances [22] using negative log-Gaussian likelihood
as the loss function. When data distribution is unknown,
distribution-free methods such as quantile regression [26]
and conformal inference [4] can be used to estimate aleatoric
uncertainty by computing the upper and the lower bounds
of the prediction intervals with respect to the predefined
significance level.

Epistemic uncertainty refers to model uncertainty caused
by data sparsity or lack of knowledge, which is learnable
and reducible. A widely-used method for estimating
epistemic uncertainty is Bayesian Neural Networks
(BNNs) [21], in which a Gaussian distribution is imposed
on each weight to generate model uncertainty. However, a
typical BNN doubles the number of model parameters and
requires to compute the Kullback-Leibler (KL) divergence
explicitly [6], which raises the model complexity and slows
down the training process. Alternatively, a simple approach
called Monte Carlo (MC) dropout [12] performs Bayesian
approximation by turning on dropout at both training and
test time as opposed to standard dropout [40].

Apart from Bayesian methods, ensembling-based
approaches can be applied to uncertainty quantification as
well [27], [49]. However, vanilla ensembling methods is time
and memory consuming because it is required to train and
store multiple models. To address this issue, Fast Geometric
Ensembling (FGE) [13] and Stochastic Weight Averaging
(SWA) [19] are proposed, which use varying learning
rates during training to find different local minimums.
In addition, model calibration methods, e.g., Temperature
Scaling [16], are also used to estimate prediction uncertainty.

Although uncertainty quantification has been quite
popular in many deep learning domains, such as Computer
Vision [22], Medical Imaging [1] and Reinforcement
Learning [14], it is less explored in traffic prediction. Wu
et al. [50] analyzed different Bayesian and frequentist

v1

v3 v2

xt+2

v1

v3 v2

xt+1

v1

v3 v2

xt

Tim
e

…

Fig. 1. Spatio-temporal dependency modelling for traffic data, where
grey lines and green dash lines represent spatial and temporal
dependency, respectively.

uncertainty quantification approaches for spatio-temporal
forecasting. They figured that Bayesian methods were
more robust in point prediction, whilst frequentist
methods provided better coverage over ground truth
variations. Other works also focus on deep learning-based
spatio-temporal uncertainty quantification, e.g., [60], [58],
[46], [45], [60].

In this paper, we specifically study the uncertainty
quantification problem for spatio-temporal traffic
prediction. The proposed approach is based on the
spatio-temporal architecture [5] and combines Monte Carlo
dropout, Adaptive Weight Averaging re-training, and
model calibration to provide both point prediction and
uncertainty estimation advancing the state of the art.

3 PROBLEM STATEMENT

In this section, we will describe the task of traffic forecasting
and its corresponding uncertainty quantification problem.

3.1 Traffic Forecasting

Traffic flow data can be regarded as multivariate time series.
Let xt 2 RN be the values of all the sensors in a road
network at time t and X<t = {xt�Th+1, xt�Th+2, . . . , xt} 2

RN⇥Th be the corresponding historic input sequence with
Th steps. Similarly, X̂>t = {xt+1, xt+2, . . . , xt+⌧} 2 RN⇥⌧

represents the prediction sequence, where ⌧ denotes the
prediction horizon.

Fig. 1 describes a spatio-temporal correlation modelling
problem in traffic forecasting.

Instead of treating the forecasting as deterministic, we
aim to compute a conditional distribution to predict the
traffic flow as well as the prediction uncertainty X̂>t ⇠

P (X̂>t|X<t), which can improve the accuracy of the
prediction, enhance the generalization ability of the model,
and provide uncertainty estimation as well.

We consider the uncertainty assumptions on the traffic
data from two aspects. The first one is the Gaussianity
assumption, and the other is the distribution-free
assumption.

3.2 Uncertainty Quantification for Traffic Forecasting

The assumptions for the predictive likelihoods in traffic
forecasting can be either Gaussian or distribution-free, and
we will study both in this work.
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3.2.1 Gaussian Uncertainty Assumption
Although multi-modality and seasonality do exist in traffic
data [17], for simplicity, we do not consider multi-modality
or seasonality, and consequently treat the predictive
distribution of each node at each time point as a conditional
univariate Gaussian distribution. A similar assumption can
also be found in a previous study [59]. To this end,
P (X̂>t|X<t) can be represented by a set of predictive
mean-variance pairs, and the problem can be given as
follows:

✓ = argmax
✓

NX

i=1

logN (X̂i

>t
; µ̂✓(X

i

<t
), �̂✓(X

i

<t
)
2
), (1)

where ✓ is the model parameters, N is the number of total
training data points, N denotes the Gaussian likelihood, and
µ̂(X<t) and �̂(X<t)

2 represents the estimated mean and
variance, respectively.

3.2.2 Distribution-free Uncertainty Assumption
From a distribution-free perspective, the uncertainty
quantification task aims to obtain prediction interval
C✓(Xi

<t
) = [ŷLi , ŷUi ], such that a future ground truth

datapoint X̂i

>t
falls into C✓(Xi

<t
) with a sufficiently high

probability, where ŷLi and ŷUi denote the upper and the
lower bounds of the predicted interval, respectively. Let ↵
be the significance level, and then the first optimization goal
is to ensure

P
�
X̂i

>t
2 C✓(X

i

<t
)
�
� 1� ↵, (2)

where P
�
X̂i

>t
2 C✓(Xi

<t
)
�

can be any continuous
probability distribution. Hence, the Gaussianity assumption
aforementioned is relaxed.

Apart from satisfying Equation (2), the width of the
prediction interval should be as small as possible as well.
Let q be the uncertainty scalar correspondent to ↵. The
new prediction intervals can be rendered via using the
means and variances of the learned Gaussian likelihoods.
Subsequently, the upper and the lower bounds of the new
constructed prediction interval are ŷUi = µ̂i(xi) + q�̂i(xi),
and ŷLi = µ̂i(xi) � q�̂(xi), respectively. Accordingly,
the second optimization goal is shown in the following
equation.

✓ = argmin
✓

NX

i=1

2q�̂✓(X
i

<t
), (3)

where �̂✓ is the estimated stand deviation under the model
parameters ✓. Note that the distribution-free uncertainty
quantification paradigm can be compatible with the
Gaussianity based uncertainty quantification paradigm as
it can provide adaptive un-calibrated predictive intervals,
i.e., stand deviations.

4 DEEP SPATIO-TEMPORAL UNCERTAINTY

QUANTIFICATION

We first briefly give an overview of the proposed Deep
Spatio-Temporal Uncertainty Quantification (DeepSTUQ).
The DeepSTUQ model architecture is illustrated in Fig. 2,
which follows the principle of the previous study [5].

Specifically, the architecture includes an encoder and a
decoder sub-neural network. The encoder is composed of
a GCN and a GRU module to capture both the spatial
and temporal dependencies, respectively. To estimate the
aleatoric uncertainty, the decoder employs two independent
convolutional layers computing means and variances,
respectively. Moreover, dropout operations are deployed in
both sub-networks to estimate the epistemic uncertainty.

In terms of model training, conventional training
procedures are only capable of providing uni-modal
solutions, which lacks diversity for quantifying
uncertainty [14]. Moreover, the conventional calibration
methods cannot guarantee horizon-wise prediction
coverage.

To address the above issues, a four-stage uncertainty
quantification approach is proposed, which can be briefed
as follows.

• Stage 1: Pre-train the base spatial-temporal model
with dropout on the training dataset to perform
variational learning;

• Stage 2: Re-train the pre-trained model on the
training dataset to proceed ensemble learning;

• Stage 3: Calibrate the re-trained model on the
calibration dataset to further improve the aleatoric
variance estimation;

• Stage 4: Update the calibration dataset and inference.

The major nations in this paper are listed in Table 4.
In the following sections, we will introduce DeepSTUQ in
detail.

TABLE 1
Main variables and their definitions in this paper.

Variable Definition

xt value of all sensors in a road network at time t
✓ model parameters
↵ target significance level
lr learning rate

lr1, lr2 largest & smallest learning rates of AWA
T calibration temperature
sh
c

nonconformality score at prediction horizon h
qh
c

uncertainty scalar at prediction horizon h
XTrain training dataset
XTest testing dataset
XCali calibration dataset
XTemp temporary calibration dataset
NCali calibration dataset size

NUpdate calibration dataset update step

4.1 Spatio-Temporal Dependency

4.1.1 Graph Convolution
A typical road network consists of a number of road
segments. The spatial relationships within a road network
with NR road segments can be described through a graph
G(V, E), where the nodes V = {v1, v2, v3, · · · , v|V|} denote
the sensors and the edges E denotes the road segment.
A 2 R|V|⇥|V| is the corresponding adjacency matrix.
Subsequently, GCN [25] is utilized to model the spatial
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Fig. 2. Architecture of DeepSTUQ.

relationships of the traffic data. The output of the l-th GCN
layer, Z(l+1), can be computed by

Z(l+1)
= f(Z(l), A), (4)

where Z(l) is the input. More specifically, the GCN first uses
a degree matrix D to avoid changing the scale of feature
vectors by multiplying it with A. Afterwards, an identity
matrix I is used to sum up the neighboring nodes of a node
as well as the node itself. As a result, the propagation rule
of the GCN is described as follows:

Z(l+1)
= S

�
(I +D� 1

2AD� 1
2 )Z(l)W (l)

+ b(l)
�
, (5)

where W (l) is the weight matrix, b(l) is the bias, and S is an
activation function, e.g., a sigmoid function.

4.1.2 Graph Structure Learning
In many real-world cases, we do not have the real spatial
correlation knowledge of the multivariate traffic data.
In such cases, the graph structure needs to be learned
from data. To this end, the adaptive learning approach
proposed in the study [5] is adopted to directly generate
Â = D� 1

2AD� 1
2 , which is easier than generating the

adjacency matrix during the training process. Particularly,
Â is developed by

Â = softmax
�
ReLU(EET

)
�
, (6)

where E 2 R|V|⇥d (the embedding dimension d ⌧ |V|) is a
learnable matrix representing the embedding of the nodes,
and the softmax function is to normalize the learned matrix.
To facilitate the graph learning process, a Node Adaptive
Parameter Learning (NAPL) module [5] is also utilized to
reduce the computational cost. As a result, Equation (5)
becomes

Z(l+1)
= S

�
(I + Â)Z(l)EW (l)

g
+ Eb(l)

g

�
. (7)

Moreover, by using NAPL, the model is capable of
learning the time-dependent graph structure of the traffic
signals.

4.1.3 Temporal Dependency
Apart from the spatial dependency, the temporal
dependency of traffic data also needs to be captured. To this
end, the aforementioned graph convolutional operations
and the adaptive graph learning module are integrated
into a Gated Recurrent Unit (GRU) [7]. Subsequently,

the obtained spatio-temporal model can be formulated as
follows:

zt = S
�
(I + Â)[xt, ht�1]EWz + Ebz

�
, (8a)

rt = S
�
(I + Â)[xt, ht�1]EWr + Ebr

�
, (8b)

ct = tanh
�
(I + Â)[xt, rt � ht�1]EWc + Ebc

�
, (8c)

ht = zt � ht�1 + (1� zt)� ct, (8d)

where z stands for the update gate, r stands for the
reset gate, h denotes the hidden state, [·] denotes the
concatenation operation, c denotes the memory cell, and W
and b represent the weights and bias, respectively.

Finally, the model introduced in Equation (8) serves
as the spatio-temporal architecture in DeepSTUQ. Note
that though the above base model is employed in this
work, DeepSTUQ has the potential to be applied to
other spatial-temporal structures as well. In the following
sections, we explain how to leverage this base model to
forecast traffic and quantify the corresponding forecasting
uncertainty.

4.2 Uncertainty Quantification

Generally, uncertainty can be classified into two types,
i.e., epistemic and aleatoric. The former represents model
uncertainty, while the latter represents data uncertainty. If
variance is used to render uncertainty, the total uncertainty
can be decomposed and approximated as follows:

�2
Total ⇡ E✓⇠p(✓)[�

2
✓
]

| {z }
Aleatoric uncertainty

+ V✓⇠p(✓)[µ✓]| {z }
Epistemic uncertainty

, (9)

where p(✓) stands for a probability distribution over the
model parameters ✓, and �2

✓
and µ✓ refer to the predicted

variance and mean, respectively.

4.2.1 Aleatoric Uncertainty

Aleatoric uncertainty is caused by the intrinsic randomness
of data, which is irreducible but learnable [1]. Based
on Equation (9), we assume that the lower and upper
bounds of the forecasting are symmetric due to the
regressive nature of the prediction. Subsequently, the
distribution of a sensor’s value, e.g., traffic flow, at each
time point can be modeled by a Gaussian distribution
with predicted mean µ(x) and variance �(x)2. However,
directly maximizing the predictive Gaussian likelihood is
numerically unstable. Instead, we choose to maximize the
following log-likelihood:

log p(y|µ(x),�(x))

= �
1

2
log(�(x)2)�

1

2
log(2⇡)�

(y � µ(x))2

2�(x)2
, (10)

where log(�(x)2) and µ(x) are obtained directly via two
independent neural networks.

In practice, to accelerate the training process and ensure
convergence, we devise the following weighted loss by
adding an L1 loss as the regularization term based on
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Equation (10):

LAleatoric =
1

N

NX

i=1

�
�
log(�(xi)

2
) +

(yi � µ(xi))
2

�(xi)
2

 

+ (1� �)|yi � µ(xi)|, (11)

where � is the relative weight with 0 < �  1.

4.2.2 Epistemic Uncertainty

Epistemic uncertainty represents model uncertainty, which
arises from that lack of data or model mis-specification.
Fortunately, as opposed to aleatoric uncertainty, epistemic
uncertainty can be reduced by estimation. There are two
general classes of approaches to do so: Bayesian variational
inference and deep ensembling. However, they both have
their pros and cons. Fig. 3 illustrates the relationships
between different solutions and corresponding model
performance. The solid and dashed lines represent the
model performance during training and testing processes,
respectively. The green line and blue dots represent the
performance that can be obtained by variational inference
and deterministic model, respectively. As it can be seen
from the figure, deep ensembling can find a set of different
deterministic model parameters (local minimums), e.g., W1,
W2, and W3, which may have equally good performance
in the solution space [10]. On the other hand, variational
inference can find a set of sub-optimal solutions near one
local minimum in the loss space. However, it may fail
to find other local minimums, which potentially leads to
modal collapse. Therefore, a better way is to explore as
many as local minimums as well as their corresponding
nearby solutions. To this end, we propose to combine deep
ensembling and variational inference to estimate epistemic
uncertainty.

Deep ensembles

Space of Solutions 

Variational inference
Testing

Deterministic

Training

Lo
ss

W1 W2 W3

Generalization 
gap

Fig. 3. Performance demonstration of deterministic model, deep
ensembles, and variational inference in solution space.

Variational Inference. Let D = {X,Y } be the training
dataset. From a Bayesian perspective, we assume that
each weight parameter of the neural network w obeys a
probabilistic distribution to represent model uncertainty,
e.g., Gaussian distribution. However, in practice, the true
posterior of the the neural network weights p(w|D) is
intractable. Therefore, a variational distribution q(w) is
used to approximate p(w|D). Accordingly, the optimization
goal is to minimize the following Kullback-Leibler (KL)

divergence:

DKL(q(w)||p(w|D))

=

Z
q(w) log

q(w)

p(w)p(D|w)
dw,

= DKL(q(w)||p(w))� Ew⇠q(w)[log p(D|w)], (12)

where p(w) is the prior and log p(D|w) is the predictive
log-likelihood.

To solve Equation (12), MC dropout [12] is adopted as
it performs Bayesian approximation in a simple and flexible
manner. The variational distribution q(w) formulated in MC
dropout can be described as follows. Let Wi be a matrix of
shape Kj ⇥Kj�1 for layer i, we have

q(Wi) = Mi · (diag[zi,j ]
Ki
j=1), (13a)

zi,j ⇠ Bernoulli(pi) (13b)

where Wi denotes the masked weight matrices, pi is the
dropout rate used in both training and testing processes (as
opposed to standard dropout), Mi is the parameters of the
neural network in the i-th layer , and zi,j is a binary variable
indicating whether unit j at layer i � 1 (as the input of
layer i) is dropped. As a result, minimizing Equation (12)
is equivalent to minimizing the following loss function:

LDropout = Ew⇠q(w)E[Y, fW (X)] +DKL(q(w)||p(w)),

⇡
1

N

NX

i=1

E(yi, f(xi, wi)) +
�W

2pi
||wi||

2, (14)

where E is the loss function, e.g., Root Mean Squared Error
(RMSE) or Mean Absolute Error (MAE), �W is the weight
decay, and �W

2p ||w||2 can be computed through applying the
L2 regularization during the training process.

In terms of implementation, dropout operations are
deployed at two places within the spatial-temporal model:
the graph convolutional layers in the encoder and the
dropout convolutional layers in the decoder. Therefore,
Equation (7) becomes

Z(l+1)
= sigmoid

⇣
M �

�
(I + Â)Z(l)EW (l)

g
+ Eb(l)

g

�⌘
.

(15)

Note that the dropout rate here should be small when the
adjacency matrix dimension is small, and vice versa.

Combined Uncertainty. Finally, Equations (11) and (14)
are combined to estimate both aleatoric and epistemic
uncertainty jointly. The combined loss function is
formulated by

LCombined =
1

N

NX

i=1

�
�
log(�(xi)

2
) +

(yi � µ(xi))
2

�(xi)
2

 

+ (1� �)|yi � µ(xi)|+
�W

2p
||w||2. (16)

Equation (16) is utilized to pre-train the spatio-temporal
model in DeepSTUQ .

Deep Ensembling. In contrast to variational inference,
deep ensembling aims to find a set of different local
minimums and averages the output of each trained model
as the final prediction. Deep ensembling is shown to be quite
effective in practice, yet it is computationally expensive as
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W3 W2

W1

Adam

Adam

WAWA

Epoch n
Epoch n+1

Fig. 4. Demonstration of relationship between test MAEs and model
weights during AWA re-training.

multiple models are trained [27]. FGE [13] tackles this issue
by using cycling learning rate to produce a set of different
trained models in one learning process. However, FGE still
needs to store multiple models for inference, which may
result in high memory cost. To address this issue, SWA [19]
adjusts the learning rate and averages the weights during
the learning process to generate only one trained model
to approximate FGE. In SWA, the model parameters are
updated by

wSWA =
wSWA · nmodels + w

nmodels + 1
, (17)

where wSWA is the parameters of the SWA model and nmodels
is the number of averaged models during training.

Inspired by SWA, we devise a re-training method
called Adaptive Weight Averaging (AWA) to approximate
deep ensembling. As depicted in Fig. 4, we vary the
learning rate during the re-training process to find different
local minimums and average those local minimums in
the final stage to attain better solutions. The proposed
AWA re-training approach includes two steps. Let the
re-training learning rate be lr, the maximum learning rate
be lr1, the minimum learning rate be lr2, and niteration
be the total iteration number within each epoch/total
batch number, then the learning rate at the ni-th iteration
changes according to the following rules. The first step is to
enable the trained model to escape from the current local
minimum. To this end, the learning rate of the optimizer
decreases from lr1 to lr2 via a cosine learning rate scheduler
at epoch n. The scheduler is described by

lr = lr2 +
1

2
(lr1 � lr2)

�
1 + cos(

niteration

ni

⇡)
�
. (18)

Following that, the model is fine tuned by using the
constant learning rate lr2 at epoch n+ 1, then at the end of
the epoch the model parameters are averaged according to
Equation (17) and perform batch normalization. Specifically,
we find that in practice using Adam [24] as the optimizer
works more effectively than using Stochastic Gradient
Decent (SGD) which is adopted in the original SWA
method. In terms of finding different local minimums,
Adam escapes saddles points where the gradients are close
to 0 more efficiently than SGD, but these minimums found
are sharp ones [53]. Therefore we average those sharp

Fig. 5. Learning rate change during the AWA re-training, each black dot
indicates the start of a new epoch.

minimums to obtain the flat minimum to finally achieve
better generalization [23]. The learning rate change during
the AWA re-training is illustrated in Fig. 5. The whole
re-training process is summarized in Algorithm 1.

Algorithm 1: AWA Re-training Method
Require: training dataset {X}; pre-trained model

parameters w; AWA model parameters wAWA; learning
rates lr1 and lr2; total epoch epochAWA; total
iteration/batch number niteration.

1: while epoch < epochAWA:
2: while n < niteration:
3: compute the loss function according to Equation

(16) and update w;
4: if epoch mod 2 = 0:
5: lr decreases from lr1 to lr2 according to

Equation (18);
6: else: lr = lr2;
7: end while

8: if epoch mod 2 = 0 and epoch 6= 0:
9: update wAWA according to Equation (17);

10: perform batch normalization.
11: end while

12: Return wAWA

For testing, we quantify the epistemic uncertainty by
drawing multiple Monte Carlo samples from the learnt
posterior distribution, then use the means and variances
of the samples as the predictive mean and variances,
respectively.

4.2.3 Model Calibration

To prevent the uncertainty estimation of the trained models
being overconfident with respect to the training dataset, it
is necessary to calibrate the trained model on the held-out
validation/calibration dataset via post-processing.

To do so, we propose two calibration methods. One is
based on the Gaussian likelihood assumption, and the other
is based on the distribution-free assumption. See Section 3.

Temperature Scaling Calibration. If the Gaussian
likelihood assumption is still assumed to be held, a
positive learnable variable T is imposed on the learned
variance. Subsequently, the following log-likelihood similar
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to Equation (10) is maximized:

log p(y|µ(x),�(x)/T )

= log(
T

�(x)
p
2⇡

e�
1
2 ((

T (y�µ(x))
�(x) )2

)

= log(
T

�(x)
p
2⇡

) + log(e�
1
2 (

T (y�µ(x))
�(x) )2

)

= �
1

2
log(

�(x)2

T 2
)�

1

2
log(2⇡)�

T 2
(y � µ(x))2

�(x)2

=
1

2
log(T 2

)�
1

2
log(�(x)2)�

T 2
(y � µ(x))2

2�(x)2
�

1

2
log(2⇡),

(19)

where T is the only learnable parameter. Accordingly, the
calibration objective is

T = argmin
T

1

NCali

NX

i=1

� log(T 2
) +

T 2
(yi � µ(xi))

2

�(xi)
2

, (20)

where µ(xi) and �(xi)
2 can be obtained via one

deterministic forward pass or Monte Carlo estimation.
Limited-memory Broyden Fletcher Goldfarb Shanno
algorithm (L-BFGS) is used as the optimizer to find the
optimal value of T .

Multi-horizon Conformal Calibration. Time series
forecasting, e.g., traffic forecasting, may not rigorously
comply with conditional Gaussian assumption on the
predictive likelihood. Hence, it is necessary to relax the
Gaussianity assumption to quantify the uncertainty in a
distribution-free fashion. Furthermore, it can be found
that for multi-horizon forecasting, the predicted intervals
obtained at farther horizons may undercover the future
ground truth datapoints. This makes the uncertainty
quantification performance less reliable. Therefore, to
address the above two issues, we propose the Multi-horizon
Conformal Calibration (MHCC) approach via a split
conformal inference fashion [28] to calibrate the trained
model.

As a conformal inference method, MHCC calibrates
the trained model by computing the quantiles without
proceeding any optimization procedure, which makes it
fast-computing. To obtain the quantile, we first need to
compute the nonconformity scores to rank the prediction
residuals. We do not use the absolute prediction error, i.e.,
|x̂i � xi|, to compute the nonconformity scores as it is not
adaptive. Instead, we leverage the predicted means and
variances obtained by the Gaussian predictive likelihoods
to compute nonconformity scores. The advantage of doing
so is that we do not need to train an auxiliary model to
calculate the prediction residuals. MHCC does not adopt the
Bonferroni correction [41] to obtain corrected significance
level ↵c as its assumption is too conservative (↵c  ↵/⌧ ),
which results in overlarge predictive intervals.

Instead, a novel significance level correction method is
proposed in MHCC, which can be described as follows.
We first assume that the Gaussianity assumption holds for
each horizon h (h 2 {1, 2, . . . ⌧}), i.e., if ↵ is set to 0.05,
then q = 1.96. As a result, the empirical horizon-wise
prediction interval coverage rate on the calibration dataset

pc on horizon h can be computed by

ph
c
=

1

NCali

NX

i=1

kh
i
, (21)

where NCali is the number of datapoints of the calibration
dataset. Next, kh

i
= 1 if X̂h

i
2 C(Xh

i
); otherwise, kh

i
= 0.

Then, the empirical significance level for each horizon
is 1 � ph

c
. Afterwards, to reach the ideal significance level,

1� ph
c

needs to be corrected to ↵. To this end, the corrected
horizon-wise significance level ↵c on horizon h can be
attained by the following empirical equation.

↵h

c
= (ph

c
+ 2↵� 1) + �(p1

c
� pH

c
)(h� 1)

2, (22)

where � is a positive scalar. The first term, ph
c
+ 2↵ � 1,

is to compute the corrected significance level according to
the empirical PICP. The second term, �(p1

c
� pH

c
)(h � 1)

2,
represents the time-decay, where p1

c
� pH

c
and (h � 1)

2 are
the data-dependent and horizon-dependent decay scalars,
respectively.

Afterwards, the new horizon-wise uncertainty scalar qh
can be obtained using conformal inference. Therefore, for
the h-th horizon, the new upper and lower bounds become
ŷ
U

h
i
= µ̂h

i
+ qh�̂h

i
and ŷ

L
h
i
= µ̂h

i
� qh�̂h

i
, respectively. The

MHCC approach is summarized in Algorithm 2.

Algorithm 2: MHCC Method
Require: calibration dataset Xc; trained model fw;

significance level: ↵ = 0.05; uncertainty scalar q = 1.96;
number of calibration datapoints: NCali; horizon: h = 0;
number of prediction horizons: ⌧ .

1: initialize µ̂c = {}, �̂c = {}, and nonconformity scores
sc = {}, and calibrated horizon-wise significance level
qh = {};

2: while inference:
3: µ̂i, �̂i  fw(xi

c
);

4: µ̂c  µ̂c [ µ̂i, �̂c  �̂c [ �̂i;
5: end while

6: while h < ⌧ :
7: compute ph

c
based on µ̂h, �̂h, and ground truth xi

>t
;

8: compute ↵h

c
using Equation (22);

9: while i < NCali:
10: sh

c
 sh

c
[

|µ̂h
i �y

h
i |

�̂
h
i

;
11: qh

c
 [(NCali + 1)(1 + ↵h

c
)]-th smallest residual in

sh
c
{compute new horizon-wise uncertainty scalar}.

12: h = h+ 1.
13: end while

14: qc = qc [ qh
c

15: end while

16: Return qc

Furthermore, conformal inference relies on i.i.d.
assumption which may become weaker as time pass for time
series data. To address this issue, we propose the Online
MHCC by updating the calibration in an online fashion,
which is illustrated in Fig 6. Finally, the Online MHCC
approach is summarized in Algorithm 3.

4.3 Unified Approach

Finally, combining the spatio-temporal correlation
modelling method, Monte Carlo dropout, AWA re-training,
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Algorithm 3: Online MHCC Method
Require: testing dataset XTest; calibration dataset XCali;

trained model fw; significance level: ↵ = 0.05; initial
uncertainty scalar qc; step: i = 0; calibration dataset
update size: NUpdate.

1: initialize temporary calibration dataset XTemp = {};
2: while testing:
3: inference using fw, Xi, and qc;
4: i = i+ 1;
5: XTemp  XTemp [Xi;
6: if i mod NUpdate = 0;
7: update XCali with XTemp;
8: calculate empirical PICP on XCali;
9: re-correct qc with XCali using Equation (22);

10: reset XTemp = {}.
11: end while

t0 t1 t2 t3 t4

t1 t2 t3 t4 t5

…

…

t5 t6

t6 t7

t2 t3 t4 t5

…
t6 t7 t8

✕
✕ ✕
t0

t0 t1

…

…

…

Training data Calibration data Testing data

Removed data

Fig. 6. Visualization of data splitting in Online MHCC.

and model calibration, the pipeline of the proposed unified
uncertainty quantification method is shown in Fig. 7, which
can be summarized as follows.

• First, the spatio-temporal model introduced
in Sections 4.1 and 4.1.3 is pre-trained using
Equation (16) as the training loss function on
the training dataset to estimate the aleatoric and
epistemic uncertainty.

• Afterwards, the pre-trained model is re-trained
via the AWA method on the training dataset to
approximate deep ensembling.

• Finally, the predicted �2 obtained via the re-trained
model on the validation dataset is calibrated
according to Equation (20).

The graphical probabilistic model representation of
DeepSTUQ is visualized in Fig. 8. The figure shows that
ht is extracted from xt via a spatio-temporal structure
with a learnable variable Â. The model weights are drawn
repeatedly to estimate the epistemic uncertainty, which is
implemented in an efficient manner by using MC dropout
and AWA. The variance �(xi)

2 and mean µ(xi) are obtained
via NMC Monte Carlo samples. Finally, �(xi)

2 is calibrated
through learning an auxiliary variable q.

For testing, according to Equation (9), we draw NMC

Monte Carlo samples to estimate the predictive mean µ̂t+1

and variance �̂2
t+1 by

µ̂t+1 =
1

NMC

NMCX

j=1

µj
(xt), (23a)

�̂2
t+1 = q2

NMCX

j=1

�j
(xt)

2

NMC

+

NMCX

j=1

�
µj

(xt)� µ̂t+1

�2

NMC � 1
, (23b)

where µ̂t+1 is used as the point prediction of the proposed
approach, and q2 =

1
T

when using the TS calibration
method.

4.4 Theoretical Analysis: A PAC-Bayesian Perspective

We adopt the Probabilistic Approximate Correct
(PAC)-Bayes theory [3], [32] to explain the proposed
method. To this end, we first assume that the datapoints
in the training, calibration, and testing datasets are all
i.i.d. Once the model architecture is specified, we have
the hypothesis/parameter space H. Consequently, the
learning goal is to obtain a hypothesis h ⇠ H. Let D
be some unknown data distribution over X ⇥ Y and
L : X ⇥ Y ⇥H ! R be the loss function. Then true risk is
defined as follow:

R(h) = E(x,y)⇠D

h
L
�
(x, y), h

�i
. (24)

Pre-training. In practice, R(h) cannot be computed as
we do not know the distribution of D. Instead, we have the
training dataset DTrain ⇠ D. Therefore, R(h) is estimated by
computing the following empirical risk:

r(h) =
1

NTrain

X

(x,y)⇠DTrain

h
L
�
(x, y), h

�i
. (25)

Since our problem is a regression task with a Gaussian
likelihood loss function, the parameter space H has to be
restricted to only consider variances higher than a given
constant [15]. Then we have the following theorem.
Theorem 1. For all probability measure Q supported on H,

with at least probability of 1��, the following PAC-Bayes
bound holds [15]:

R(h)  r(h) +
1

NTrain

�
DKL(Q||P ) + log(1/�)

�
+ const,

(26)

where NTrain is the number of training datapoints. The
above PAC-Bayes bound is minimized as the DKL(Q||P )

is minimized. Hence, we do not minimize the PAC-Bayes
bound such that the KL divergence does not need to be
computed explicitly. Instead, we minimize the evidence
lower bound (ELBO) as in Equation 12 using Mote Carlo
dropout.

Re-training. Furthermore, note that unlike Bayesian
learning, PAC-Bayes does not need to know the exact form
of the prior. Thus, we can formulate a delicate posterior
by combining variational inference and deep ensembling to
obtain better generalization through training. To this end, a
mixture of Dirac-delta distributions is constructed:

q(h|DTrain) =
1

NM

NMX

i=1

�(h|DTrain), (27)
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Fig. 7. Pipeline of the proposed method.
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NMC
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ht

q

Fig. 8. Graphical model representation of DeepSTUQ, where shaded
circles represent observable variables, arrows denote dependencies,
variables within rectangles appear repeatedly, NMC is the number of
Monte Carlo samples, and M is the number of models for ensembling.

where q(h|DTrain) is the mixed Dirac delta posterior
distribution over the model parameters. The PAC-Bayes
bound (see Equation (26)) holds for all q ⇠ Q(H) in
a set of Dirac masses {� ⇠ h 2 H}. In the proposed
method, AWA is used to generate a mixture of Dirac-delta
distributions sequentially in a computationally efficient
manner. By approximating Bayesian model averaging via
AWA, we can attain wider minima, which consequently
leads to better generalization [19], [23].

Offline calibration. The proposed calibration method is
in a split conformal fashion. Once the training process is
finished, a fixed hypothesis h is rendered. Let DCali ⇠ D be
a held-out calibration dataset, and h is independent of DCali.
Then, we have the theorem as follows.

Theorem 2. With at least probability of 1 � �, the following
PAC bound holds [18]:

R(h)  rDCali(h) +

s
1

2NCali
log(2/�), (28)

where NCali is the number of calibration samples. The above
bound suggests that the true risk can be approximated by
validation using sufficient number of datapoints. We can see
that the proposed calibration method based on conformal
inference is essentially attained via this validation PAC
bound.

Online re-calibration. For time series data, the i.i.d.
assumption may become weaker as time passes, which
is detrimental to conformal methods. Therefore, the
i.i.d. assumption can be re-enforced by updating the
calibration dataset such that the validation PAC bound (cf.
Equation (28)) will continue to hold during inference.

5 EXPERIMENTS

To compare the performance of DeepSTUQ with other
state-of-the-arts, extensive experiments are conducted on
real-world datasets in terms of point prediction, uncertainty
quantification, and ablation study.

In terms of the hardware environment, the CPU and
GPU used for the experiments are AMD EPYC 7302

and NVIDIA Tesla T4, respectively. And for the software
environment, all the methods are implemented via Python,
CUDA 10.6, and Pytorch 1.7.

5.1 Datasets

Four different public datasets collected from the Caltrans
Performance Measurement System (PEMS), i.e., PEMS03,
PEMS04, PEMS07, and PEMS08 [39] are used for evaluation.
We believe this type of data can be used to access
the performance our approach on real-world traffic flow
forecasting tasks and for fair comparison with other
state-of-the-art methods.

The time interval of the traffic flow data is 5 minutes. For
each prediction, we use the historic data of one-hour time
range (12 time steps) as the input to predict the future traffic
data of one-hour time range (12 time steps). All the datasets
are split into three parts with ratio 6 : 2 : 2 for training,
validation/calibration, and testing, respectively.

5.2 Settings

Pre-training. The total number of training epochs is 100.
The optimizer is Adam with learning rate 0.003 and weight
decay 10

�6. The batch size is 64. The relative weight � in
Equation (11) for computing the aleatoric uncertainty is 0.1.
The dropout rates of the graph convolutional operations in
the encoder are 0.1 for PEMS03, PEMS04, and PEMS07 (the
adjacency matrice are relatively large), and 0.05 for PEMS08
(the adjacency matrix is relatively small). The dropout rate
at the final dropout layer in the decoder for all the datasets
is 0.2.

AWA Re-training. The optimizer of the AWA re-training
process is Adam, and the maximum and minimum learning
rates are 0.003 and 0.00003, respectively. The total number
of re-training epochs is 20, which means that ten models are
averaged.

Model Calibration. The number of Monte Carlo samples
for calculating �2 is 10. In TS, the steps and numbers
of iterations of the L-BFGS optimizer are 0.02 and 500,
respectively. In offline and online MHCC, � is set to 0 for
PEMS03 and 0.03 for PEMS04, PEMS07, and PEMS08. The
number of datapoints for online updating is 1, 000.

Inference. To balance the inference time and model
performance, we generate ten Monte Carlo samples for
Bayesian model averaging.
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5.3 Baselines

To compare the proposed DeepSTUQ with the
state-of-that-art methods on point prediction and
uncertainty quantification, two groups of recent traffic
prediction methods are adopted as the baselines,
respectively.

5.3.1 Point Prediction Baselines
• DCRNN [30] adopts diffusion convolution and

sequence-to-sequence learning.
• GraphWaveNet (GWN) [52] adopts a self-adaptive

adjacency matrix and dilated casual convolution.
• ST-GCN [54] utilizes a GNN and a GCNN to

forecast traffic.
• ASTGCN [17] employs Attention mechanism to

model spatio-temporal dependency.
• STSGCN [39] forecasts traffic by synchronously

extracting spatial-temporal correlations.
• STFGNN [29] employs a spatial-temporal fusion

module and a gated dilated CNN.
• AGCRN [5] leverages a Node Adaptive Parameter

Learning module and a Data Adaptive Graph
Generation module to enhance traffic prediction
performance.

• DeepSTUQ/S refers to the proposed method with
single deterministic forward pass (dropout is turned
off in testing).

5.3.2 Uncertainty Quantification Baselines
Representative approaches of different uncertainty
estimation paradigms (namely, frequentist, quantile
prediction, Bayesian, and ensembling) are used as the
baselines. Note that all the following methods employ the
same base model structure for fair comparison.

• Point prediction refers to the AGCRN model which
is used here to compare with other uncertainty
quantification methods.

• Quantile regression [26] is a distribution-free
method which directly computes the mean, lower
and upper bounds using the corresponding quantile
(0.025, 0.5, 0.975).

• Mean Variance Estimation (MVE) [35] refers to
the method that estimates heterogeneous aleatoric
uncertainty through computing Equation (11).

• Monte Carlo dropout (MCDO) [12] performs
dropout at both training and test time, where the
number of Monte Carlo samples for inference is 10.

• Combined refers to the method that calculates
both epistemic and aleatoric uncertainty using
Equation (16) [22], where the number of Monte Carlo
samples for inference is 10.

• Temperature Scaling (TS) [16] calibrates the aleatoric
uncertainty obtained by MVE.

• Fast Geometric Ensembling (FGE) [13] performs fast
ensembling via varying the learning rate, where the
number of the stored trained models is 10.

• Locally Weighted Conformal Inference [4], [28]
calibrates the aleatoric uncertainty obtained by MVE
via conformalization.

• Conformal Forecasting Recurrent Neual Network
(CFRNN) [41] computes the multi-horizon
uncertainty using conformal prediction.

5.4 Metrics

Two groups of metrics are employed to evaluate the point
prediction and uncertainty quantification performance,
respectively.

5.4.1 Point Prediction Metrics
The point traffic forecasting performance are evaluated by
the following metrics.

1) Root Mean Squared Error (RMSE):

RMSE =

vuut 1

N

NX

i=1

(ŷi � yi)2, (29)

where yi is the ground truth, and ŷi is the
prediction.

2) Mean Absolute Error (MAE):

MAE =
1

N

NX

i=1

|ŷi � yi| . (30)

3) Mean Absolute Percentage Error (MAPE):

MAPE =
1

N

NX

i=1

����
ŷi � yi

yi

���� . (31)

5.4.2 Uncertainty Quantification Metrics
The uncertainty quantification performance are evaluated
by the following metrics.

1) Mean Negative Log-Likelihood (MNLL):

MNLL =
1

N

NX

i=1

� logN (yi; µ̂i, �̂
2
i
), (32)

where µ̂i and �̂2
i

are the predicted mean and
predicted variance, respectively.

2) Prediction Interval Coverage Probability (PICP).
The predicted lower and upper bounds of the
prediction interval are denoted by ŷL and ŷU ,
respectively. Let the significance level ↵ be 5%,
which means that the expected probability of a
ground truth data point falling into the range [ŷL,
ŷU ] is 95% (100% � ↵ = 95%). Accordingly, under
Gaussianity assumption, we have ŷUi = µ̂i+1.96�̂i,
and ŷLi = µ̂i � 1.96�̂i. Let kj

i
indicate whether the

real speed value of a road segment j at time i is
captured by the estimated prediction interval, and
we have

ki =

(
1, if ŷLi  yi  ŷUi

0, else.
(33)

Then PICP can be formulated by

PICP =
1

N

NX

i=1

ki. (34)

Ideally, PICP should be equal or greater than 95%.
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3) Mean Prediction Interval Width (MPIW):

MPIW =
1

N

NX

i=1

ŷUi � ŷLi . (35)

5.5 Point Prediction Results

The point prediction results of DeepSTUQ are compared
with the aforementioned state-of-the-art methods for
performance evaluation. The obtained point prediction
results are demonstrated in Table 2. As it can be seen
from the results, with only ten Monte Carlo samples,
DeepSTUQ achieves the smallest RMSEs, MAEs, and
MAPEs, which suggests that DeepSTUQ has the best
performance on point traffic flow prediction. In addition, the
proposed method — even with only one single deterministic
forward pass, namely DeepSTUQ/S — also outperforms
other state-of-the-art methods, which indicates that the
proposed method is competitive on point prediction at
nearly the same inference time cost as other deterministic
approaches. This is because that variational inference
can obtain a set of solutions around on one local
minimum, and deep ensembling can find multiple local
minimums in the solution space. By combining these
two approaches, DeepSTUQ is capable of finding better
sub-optimal solutions and has better generalization ability
compared to deterministic methods, and consequently
has better performance regarding point prediction. Fig. 9
shows the point prediction performance with respect to
different horizons, which suggests that DeepSTUP has
better performance than AGCRN at each time step for all
the datasets.

5.6 Uncertainty Quantification Results

To evaluate the uncertainty quantification performance,
DeepSTUQ is compared with the uncertainty quantification
baselines, whose results are demonstrated in Table 3
and Figs. 10–12. According to the results in the table,
the proposed approach has the best overall performance
regarding both the point prediction and uncertainty
quantification results compared with others. As it is
observed from Fig. 10, DeepSTUQ can forecast traffic
flow accurately and provide valid coverage for future
ground truth. Fig. 11 illustrates that in traffic flow
forecasting, the aleatoric uncertainty is much larger than the
epistemic uncertainty. Hence, considering total uncertainty
can provide better uncertainty estimation than considering
either one alone. Fig. 12 shows that, for all the datasets,
generally, both aleatoric and epistemic uncertainty increase
as the prediction horizons extend, which implies that
short-term traffic flow forecasting is more reliable than
long-term one. The conclusion accords with the intuition
and results in the literature [5], [29], [30]

In terms of uncertainty quantification, the aleatoric
uncertainty-aware approaches, i.e., MVE and TS,
outperform the epistemic uncertainty-aware approaches,
which suggests that the traffic uncertainty is mainly
data-related. The results indicate that only considering
epistemic uncertainty improves the estimation of the
predicted mean (which results in better point estimation)
but underestimates the variance significantly. This

conclusion is supported by the study [50] as well.
Although we have made a strong Gaussianity assumption
on the likelihood of the aleatoric uncertainty, the obtained
experimental results indicate that the methods using this
assumption (i.e., MVE, Combined, TS, and DeepSTUQ)
outperform the distribution-free method, Quantile.
Additionally, the PICPs obtained by DeepSTUQ on
the four datasets are very close to or larger than 95%,
which implies that the Gaussian distribution assumption is
credible.

According to the experimental results, we can also see
that when only the epistemic uncertainty is considered
using variational inference (MCDO) or deep ensembling
(FGE), the traffic flow point prediction performance is
improved compared to deterministic methods but the
uncertainty quantification performance is poor. If merely
the aleatoric uncertainty is taken into account (MVE, TS,
Conformal, and CFRNN), the uncertainty quantification
performance is satisfying while the point prediction slightly
decreases compared to deterministic methods. On the other
hand, if both the epistemic and aleatoric uncertainties
are estimated, e.g., Combined and DeepSTUQ, the point
prediction and uncertainty quantification performance are
both improved.

5.7 Model Calibration Results

We compare the proposed calibration approaches, MHCC
and online MHCC, to Split Conformal Prediction (SCP) [28],
Local Weighted Conformal Inference (LWCI) [28] and
TS. The results demonstrated in Table 4 imply that
online MHCC has the best overall (marginal) uncertainty
quantification calibration performance.

In addition, we propose a new metric for evaluating
the horizon-wise (conditional) uncertainty quantification
performance, which is called Mean Horizon-wise Prediction
Interval Coverage Error (MHPICE). Let eh be the
horizon-wise prediction interval coverage error at horizon
h, then MHPICE can be expressed as follows:

eh =

(
0, if ph � 1� ↵

1� ↵� ph, else.
(36)

Accordingly, MHPICE is defined as follows:

MHPICE =
1

⌧

⌧X

h=1

eh. (37)

Naturally, lower MHPICE means better performance.
From the results demonstrated in Fig. 13 and Table 5,

it can be seen that before MHCC, the test PICPs decrease
as the horizon increase, which makes the uncertainty
quantification results less reliable. After MHCC, the test
PICPs at each horizon are closer to the target significance
level, 95%, than before. This implies that MHCC can
improve the credibility of the horizon-wise uncertainty
quantification results.

5.8 Robustness Test

We report the MAE, RMSE, MAPE, MNLL, PICP, and MPIW
results of the methods under Gaussian and non-Gaussian
noises on PEMS04 to evaluate their robustness. From the
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TABLE 2
Point prediction results on PEMS03, PEMS04, PEMS07, and PEMS08, where best and second best results are highlighted in bold and underlined,

respectively.

Dataset Metrics DCRNN ST-GCN GWN ASTGCN STSGCN STFGNN AGCRN DeepSTUQ/S DeepSTUQ

PEMS03
MAE 18.18 17.49 19.85 17.69 17.48 16.77 16.05 15.38 15.1315.1315.13
RMSE 30.31 30.12 32.94 29.66 29.21 28.34 28.61 27.03 26.7726.7726.77

MAPE (%) 18.91 17.15 19.31 19.40 16.78 16.30 15.19 14.45 14.0314.0314.03

PEMS04
MAE 24.70 22.70 24.14 22.93 21.19 19.83 19.83 19.42 19.1119.1119.11
RMSE 38.12 35.55 37.60 35.22 33.65 31.88 32.26 32.07 31.6831.6831.68

MAPE (%) 17.12 14.59 17.93 16.56 13.90 13.02 12.97 12.98 12.7112.7112.71

PEMS07
MAE 25.30 25.38 26.85 28.05 24.26 22.07 20.94 20.76 20.3620.3620.36
RMSE 35.58 38.78 42.78 42.57 39.03 35.80 34.98 34.12 33.7133.7133.71

MAPE (%) 11.66 11.08 12.12 19.32 10.21 9.21 8.85 8.90 8.638.638.63

PEMS08
MAE 17.86 18.02 19.13 18.61 17.13 16.64 15.95 15.74 15.4415.4415.44
RMSE 27.83 27.83 31.05 28.16 26.80 26.22 25.22 24.93 24.6024.6024.60

MAPE (%) 11.45 11.40 12.68 13.08 10.96 10.60 10.09 10.31 10.0610.0610.06

TABLE 3
Uncertainty quantification results on PEMS03, PEMS04, PEMS07, and PEMS08, the best results are highlighted in bold. The results are

evaluated according to the following criteria. Any PICP � 95% is the best and the smallest corresponding MPIW is the best. If all the PICP < 95%,
then the largest PICP is the best. MPIW only assessed when the corresponding PICP � 95%. ”-” means void values, i.e., the corresponding

method cannot estimate uncertainty or likelihoods.

Dataset Metrics Point Quantile MVE MCDO Combined TS FGE Conformal CFRNN DeepSTUQ

PEMS03

MAE 16.05 16.06 15.97 15.23 15.29 15.97 15.23 15.97 16.05 15.1315.1315.13
RMSE 28.61 28.40 28.17 26.95 27.13 28.17 26.99 28.17 28.61 26.7726.7726.77

MAPE(%) 15.19 15.50 15.08 14.39 14.60 15.08 14.36 15.08 15.19 14.0314.0314.03
MNLL � � 3.53 12.32 3.39 3.49 25.94 3.53 � 3.383.383.38

PICP(%) � 89.49 92.06 43.92 93.64 93.51 31.15 93.21 93.00 94.9894.9894.98
MPIW � 65.60 74.04 19.73 73.26 79.79 12.81 76.72 82.79 79.86

PEMS04

MAE 19.83 20.08 19.86 19.15 19.23 19.86 19.0819.0819.08 19.86 19.83 19.11
RMSE 32.26 32.76 32.30 31.4931.4931.49 31.73 32.30 31.59 32.30 32.26 31.68

MAPE(%) 12.97 13.06 13.25 12.77 12.87 12.97 12.6912.6912.69 13.25 12.97 12.71
MNLL � � 3.71 23.17 3.63 3.70 15.47 3.71 � 3.573.573.57

PICP(%) � 91.87 93.10 34.18 95.1695.1695.16 94.86 42.60 94.33 94.65 95.0095.0095.00
MPIW � 91.72 102.97 17.30 108.44 115.48 21.95 109.74 118.83 103.76103.76103.76

PEMS07

MAE 20.94 21.28 21.07 20.61 20.37 21.07 20.42 21.07 20.94 20.3620.3620.36
RMSE 34.98 35.76 34.94 34.20 33.6433.6433.64 34.94 34.13 34.94 34.98 33.71

MAPE(%) 8.85 8.95 8.88 8.73 8.68 8.88 8.622 8.88 8.85 8.638.638.63
MNLL � � 3.80 9.88 3.603.603.60 3.78 22.31 3.80 � 3.603.603.60

PICP(%) � 91.83 93.86 53.74 95.8095.8095.80 95.5395.5395.53 38.05 94.78 94.65 95.0395.0395.03
MPIW � 96.63 112.99 31.16 112.36 127.00 19.03 118.79 118.83 106.65106.65106.65

PEMS08

MAE 15.95 16.40 16.29 15.87 15.51 16.29 15.79 16.29 15.95 15.4415.4415.44
RMSE 25.22 25.79 25.71 25.05 24.64 25.71 24.96 25.71 25.22 24.6024.6024.60

MAPE(%) 10.09 10.56 10.36 10.0510.0510.05 10.14 10.36 10.17 10.36 10.09 10.06
MNLL � � 3.63 11.77 3.45 3.62 11.58 3.63 � 3.443.443.44

PICP(%) � 93.95 94.79 49.91 95.8895.8895.88 97.1597.1597.15 50.15 95.3795.3795.37 95.1695.1695.16 95.3595.3595.35
MPIW � 82.13 93.13 23.53 91.45 113.34 23.57 96.94 96.34 87.9087.9087.90

TABLE 4
Model calibration results on PEMS03, PEMS04, PEMS07, and PEMS08.

Dataset Metrics No Calibration TS SCP LWCI MHCC Online MHCC

PEMS03
MNLL 3.39 3.383.383.38 - - - -

PICP(%) 94.22 94.75 93.25 94.27 94.97 94.9894.9894.98
MPIW 74.51 76.91 88.02 75.89 79.58 79.86

PEMS04
MNLL 3.573.573.57 3.573.573.57 - - - -

PICP(%) 94.90 95.2395.2395.23 94.72 95.0995.0995.09 95.0295.0295.02 95.0095.0095.00
MPIW 103.35 105.42 127.04 104.38 103.91 103.76103.76103.76

PEMS07
MNLL 3.603.603.60 3.603.603.60 - - - -

PICP(%) 95.3895.3895.38 95.7495.7495.74 94.27 95.6195.6195.61 95.2595.2595.25 95.0395.0395.03
MPIW 108.85 111.68 127.90 111.81 108.37 106.65106.65106.65

PEMS08
MNLL 3.45 3.443.443.44 - - - -

PICP(%) 96.2896.2896.28 95.6595.6595.65 95.0095.0095.00 95.9495.9495.94 95.5595.5595.55 95.3595.3595.35
MPIW 94.25 89.63 100.34 91.76 89.23 87.9087.9087.90
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(a) MAE (b) RMSE (c) MAPE
Fig. 9. Point prediction results with respect to various forecast horizons, where solid and dashed lines denote DeepSTUQ and AGCRN, respectively.

(a) PEMS03 (b) PEMS04

(c) PEMS07 (d) PEMS08
Fig. 10. Uncertainty quantification results on randomly selected road segments from different datasets.

Fig. 11. Quantification results of different uncertainties on partial data
from a randomly selected segment of PEMS08.

(a) Aleatoric uncertainty (b) Epistemic uncertainty

Fig. 12. Uncertainty quantification results with respect to different
horizons.

results illustrated in Table 6, it can be seen that the
proposed method are more resilient to noise in terms of
point prediction performance. Besides, the online MHCC
method has the best uncertainty quantification performance
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(a) PEMS03 (b) PEMS04

(c) PEMS07 (d) PEMS08
Fig. 13. PICPs with respect to various forecast horizons, where solid and
dashed lines denote MHCC and the uncalibrated model, respectively.

TABLE 5
MHPICE on PEMS03, PEMS04, PEMS07, and PEMS08.

Dataset No Calibration MHCC Online MHCC

PEMS03 0.646 0.120 0.0800.0800.080

PEMS04 0.196 0.028 0.0210.0210.021

PEMS07 0.341 0.036 0.0330.0330.033

PEMS08 0.101 0.0000.0000.000 0.0000.0000.000

compared to other calibration methods.

5.9 Ablation Study

Three groups of experiments are conducted to verify
the effects of the proposed AWA training, the proposed
calibration method, and different numbers of Monte Carlo
samples, respectively.

5.9.1 Effect of AWA Re-training
The prediction performance of the same pre-trained model
prior to and following AWA post-processing re-training are
compared. Table 7 demonstrates that after AWA re-training,
the point prediction performance has improved, indicating
that the proposed AWA re-training method can approximate
the deep ensembling method using only one single model
with mere 20 additional epochs. The results suggest that
the proposed AWA retraining method can also improve
the performances of other methods, i.e., Point, MVE,
and MCDO. Therefore, compared to conventional deep
ensembling, DeepSTUQ requires less time and memory.

5.9.2 Effect of Monte Carlo Sample Number
To investigate how the number of Monte Carlo samples
affects the model performance, the sample number is set

(a) MAE (b) RMSE

(c) MAPE
Fig. 14. Prediction results with respect to different numbers of Monte
Carlo samples.

to 1, 3, 5, 10 and 15. As shown in Fig. 14, the performance
of the proposed method enhances as the number of Monte
Carlo samples rises, and only a small number of Monte
Carlo samples are required to provide high prediction
performance. The performance gradually saturates when
the sample size approaches 15. Accordingly, for the trade-off
between the model performance and the inference time cost,
the testing sample number can be fixed to 10 at test time.

5.10 Memory Cost and Computation Time

The quantitative results of the memory cost and
computation time on PEMS08 are reported in Table 8.
From the results, we can be see that DeepSTUQ has
almost same model sizes and training time with the
Point prediction model, which is significantly efficient than
the standard Deep Ensembles. The inference time and
memory cost of DeepSTUQ are lightly larger than standard
Deep Ensembles, but the inference time per step is less
than 7.80 ms. Therefore, DeepSTUQ is scalable for large
traffic forecasting datasets and applicable for the potential
practical applications.

6 CONCLUSION

In this paper, we introduce a novel and unified
uncertainty quantification method for traffic forecasting
called DeepSTUQ. The proposed method consists of three
components. In the first component, to model the aleatoric
uncertainty, a hybrid loss function is used to train a
base spatio-temporal model. The second component aims
to model the epistemic uncertainty, where the merits of
variational inference and deep ensembling are combined
through the dropout pre-training and AWA re-training.
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TABLE 6
Robustness test results with different perturbations on PEMS4.

Noise Metrics Point MVE No Calibration MHCC Online MHCC

Gaussian(0,10)

MAE 20.43 20.05 19.1819.1819.18 19.1819.1819.18 19.1819.1819.18
RMSE 33.01 32.40 31.7531.7531.75 31.7531.7531.75 31.7531.7531.75

MAPE(%) 13.78 13.61 12.8712.8712.87 12.8712.8712.87 12.8712.8712.87
MNLL � 3.73 3.583.583.58 � �

PICP(%) � 92.9 95.0695.0695.06 95.1895.1895.18 95.0295.0295.02
MPIW � 102.99 103.98 104.89 103.72103.72103.72

Gaussian(0,20)

MAE 20.82 20.52 19.3119.3119.31 19.3119.3119.31 19.3119.3119.31
RMSE 33.30 32.71 31.8131.8131.81 31.8131.8131.81 31.8131.8131.81

MAPE(%) 14.52 14.50 13.2313.2313.23 13.2313.2313.23 13.2313.2313.23
MNLL � 3.78 3.603.603.60 � �

PICP(%) � 92.21 95.4395.4395.43 95.4495.4495.44 95.1795.1795.17
MPIW � 103.02 106.65 106.79 104.72

Log-Gaussian(2,1)

MAE 23.23 22.38 21.6221.6221.62 21.6221.6221.62 21.6221.6221.62
RMSE 35.48 34.18 33.7033.7033.70 33.7033.7033.70 33.7033.7033.70

MAPE(%) 18.97 19.30 18.2818.2818.28 18.2818.2818.28 18.2818.2818.28
MNLL � 3.91 3.733.733.73 � �

PICP(%) � 90.41 94.04 94.39 94.4994.4994.49
MPIW � 105.96 108.09 104.98 111.14

TABLE 7
Ablation study results on AWA re-training.

Dataset Metrics Point MVE MCDO DeepSTUQ
No AWA AWA No AWA AWA No AWA AWA No AWA AWA

PEMS03
MAE 15.83 15.68 15.79 15.66 15.33 15.37 15.29 15.1315.1315.13
RMSE 27.94 27.91 27.98 27.86 27.30 27.50 27.13 26.7726.7726.77

MAPE(%) 14.79 14.66 14.71 14.52 14.29 14.25 14.60 14.0314.0314.03

PEMS04
MAE 19.98 19.96 19.74 19.66 19.24 19.12 19.23 19.1119.1119.11
RMSE 32.64 32.72 31.99 32.04 31.66 31.59 31.73 31.6831.6831.68

MAPE(%) 13.07 13.04 13.04 12.99 12.85 12.76 12.87 12.7112.7112.71

PEMS08
MAE 16.45 16.32 16.17 15.98 15.93 15.83 15.51 15.4415.4415.44
RMSE 25.90 25.88 25.43 25.34 25.15 25.05 24.64 24.6024.6024.60

MAPE(%) 10.59 10.37 10.70 10.20 10.28 10.10 10.14 10.0610.0610.06

TABLE 8
Memory cost and computation time on PEMS08 (CPU: AMD EPYC

7302, GPU: NVIDIA Tesla T4).

Point Deep Ensembles DeepSTUQ

Model size (MB) 0.57 5.73 0.75
Training time (s/epoch) 25.46 254.63 29.67
Total inference time (s) 3.30 27.30 33.48
Memory cost (MB) 475.63 1, 063.37 1, 165.78

Finally, the model is calibrated on the validation dataset
using a post-processing calibration method based on
Temperature Scaling to further improve the uncertainty
estimation performance. Four distinct public datasets are
then subjected to thorough experiments. The results indicate
that DeepSTUQ outperforms contemporary state-of-the-art
spatio-temporal models and uncertainty quantification
methods. Moreover, the proposed DeepSTUQ can achieve
high robustness against noise.

In terms of future work, we plan to explore other
techniques to design novel model architectures. Another
possible direction is to study data interpolation and
imputation in traffic forecasting.
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