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Abstract
We study the 2-parity conjecture for Jacobians of hyper-
elliptic curves over number fields. Under some mild
assumptions on their reduction, we prove the conjecture
over quadratic extensions of the base field. The proof
proceeds via a generalisation of a formula of Kramer and
Tunnell relating local invariants of the curve, whichmay
be of independent interest. A new feature of this general-
isation is the appearance of termswhich governwhether
or not the Cassels–Tate pairing on the Jacobian is alter-
nating, which first appeared in work of Poonen–Stoll.
We establish the local formula in many instances and
show that in remaining cases, it follows from standard
global conjectures.
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1 INTRODUCTION

Let 𝐾 be a number field and 𝐴∕𝐾 an abelian variety. Conjecturally, the corresponding completed
𝐿-function of 𝐴∕𝐾, 𝐿⋆(𝐴∕𝐾, 𝑠), has an analytic continuation to the whole of the complex plane
and satisfies a functional equation

𝐿⋆(𝐴∕𝐾, 𝑠) = 𝑤(𝐴∕𝐾)𝐿⋆(𝐴∕𝐾, 2 − 𝑠),

where 𝑤(𝐴∕𝐾) ∈ {±1} is the global root number of 𝐴∕𝐾. The Birch and Swinnerton-Dyer con-
jecture asserts that the Mordell–Weil rank of 𝐴∕𝐾 agrees with the order of vanishing at 𝑠 = 1 of
𝐿⋆(𝐴∕𝐾, 𝑠):

ord𝑠=1𝐿
⋆(𝐴∕𝐾, 𝑠)=rk(𝐴∕𝐾).

If𝑤(𝐴∕𝐾) = 1 (resp.−1), then𝐿⋆(𝐴∕𝐾, 𝑠) is an even (resp. odd) function around 𝑠 = 1 and as such
its order of vanishing there is even (resp. odd). Thus, a consequence of the Birch and Swinnerton-
Dyer conjecture is the parity conjecture:

𝑤(𝐴∕𝐾)=(−1)rk(𝐴∕𝐾).

Essentially, all progress towards the parity conjecture has proceeded via the 𝑝-parity conjec-
ture. For a fixed prime 𝑝, denote by rk𝑝(𝐴∕𝐾) the 𝑝-infinity Selmer rank of 𝐴∕𝐾. Under the
conjectural finiteness of the Shafarevich–Tate group (or indeed, under the weaker assumption
that its 𝑝-primary part is finite), rk𝑝(𝐴∕𝐾) agrees with rk(𝐴∕𝐾). The 𝑝-parity conjecture is the
assertion that

𝑤(𝐴∕𝐾) = (−1)rk𝑝(𝐴∕𝐾).

Note that without knowing finiteness of the Shafarevich–Tate group, these conjectures are
inequivalent for different primes 𝑝.

1.1 Known cases of the 𝒑-parity conjecture

For elliptic curves over ℚ, Dokchitser–Dokchitser [16] have shown that the 𝑝-parity conjecture
holds for all primes 𝑝. Subsequently, Nekovář [44] extended this result to all totally real number
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1509

fields, excluding some elliptic curves with potential complex multiplication; these exceptional
cases have recently been treated by Green–Maistret [22]. For a general number field 𝐾, Čes-
navičius [8] has shown that the 𝑝-parity conjecture holds for elliptic curves over 𝐾 possessing
a 𝑝-isogeny, whilst work of Kramer–Tunnell [27] and Dokchitser–Dokchitser [17] proves that
the 2-parity conjecture holds for an arbitrary elliptic curve 𝐸∕𝐾, not over 𝐾 itself, but over any
quadratic extension of 𝐾.
For higher dimensional abelian varieties, much less is known. The most general result at

present is due to Coates, Fukaya, Kato and Sujatha, who prove in [11] that for odd primes
𝑝, the 𝑝-parity conjecture holds for any abelian variety possessing a suitable 𝑝-power degree
isogeny, subject to some further technical conditions. For 𝑝 = 2, the main result is due
to Dokchitser–Maistret [19], who prove the 2-parity conjecture for quite general semistable
abelian surfaces.

1.2 Main result

Following on from thework of Kramer–Tunnell andDokchitser–Dokchitser for elliptic curves, we
consider the 2-parity conjecture for Jacobians of hyperelliptic curves over quadratic extensions of
their field of definition. Our main result is the following.

Theorem 1.1. Let 𝐾 be a number field and 𝐿∕𝐾 a quadratic extension. Let 𝐶∕𝐾 be a hyperelliptic
curve of genus g ⩾ 2 and let 𝐽∕𝐾 be the Jacobian of 𝐶. Suppose that 𝐽 has semistable reduction at
each prime 𝔭 ∤ 2 of 𝐾 which ramifies in 𝐿∕𝐾, and assume moreover that:

∙ for each prime 𝔭 ∣ 2 of 𝐾 which is inert in 𝐿∕𝐾, 𝐽 has good reduction at 𝔭,
∙ for each prime 𝔭 ∣ 2 of 𝐾 which ramifies in 𝐿∕𝐾, 𝐽 has good ordinary reduction at 𝔭 and

𝐾𝔭(𝐽[2])∕𝐾𝔭 has odd degree.

Then the 2-parity conjecture holds for 𝐽∕𝐿.

Remark 1.2. Theorem 1.1 gives a large supply of hyperelliptic curves satisfying the 2-parity con-
jecture over every quadratic extension of their field of definition; see Lemma 16.5 for explicit
conditions on aWeierstrass equation defining 𝐶 that ensure that the conditions of Theorem 1.1 at
primes dividing 2 are satisfied.

Remark 1.3. If the genus of 𝐶 is 2, then one can weaken the assumption that 𝐽 has good reduction
at each inert prime dividing 2 to assume only that 𝐽 has semistable reduction at such primes; see
Proposition 9.1.

1.3 Reduction to a local question

The proof of Theorem 1.1 proceeds by reducing to a purely local question, as we now explain.
In the notation of Theorem 1.1, for each place 𝑣 of 𝐾 which is non-split in 𝐿, denote by 𝔳 the

unique place of 𝐿 extending 𝑣. Since 𝐽 is defined over 𝐾, the root number 𝑤(𝐽∕𝐿) decomposes as

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12565 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1510 MORGAN

a product of local terms indexed by places of 𝐾 which are non-split in 𝐿∕𝐾:

𝑤(𝐽∕𝐿) =
∏

𝑣 place of 𝐾
𝑣 non-split in 𝐿

𝑤(𝐽∕𝐿𝔳), (1.4)

where 𝑤(𝐽∕𝐿𝔳) ∈ {±1} is the local root number of 𝐽∕𝐿𝔳. The strategy to prove Theorem 1.1 is to
similarly decompose the parity of the 2-infinity Selmer rank of 𝐽 over 𝐿 into local terms, and
compare these place by place. Specifically, results of [41] combined with work of Poonen–Stoll
[51] give a decomposition of the parity of rk2(𝐽∕𝐿) into local terms as detailed below, generalising
a theorem of Kramer [26, Theorem 1] for elliptic curves. Before stating this decomposition, we
need to introduce some notation.

Notation 1.5. For each place 𝑣 of 𝐾 which does not split in 𝐿, define the local norm map

𝑁𝐿𝔳∕𝐾𝑣
∶ 𝐽(𝐿𝔳) → 𝐽(𝐾𝑣)

sending 𝑃 ∈ 𝐽(𝐿𝔳) to

𝑁𝐿𝔳∕𝐾𝑣
(𝑃) =

∑
𝜎∈Gal(𝐿𝔳∕𝐾𝑣)

𝜎(𝑃).

Note that, as a quotient of 𝐽(𝐾𝑣)∕2𝐽(𝐾𝑣), the cokernel of this map is a finite-dimensional
𝔽2-vector space.
Define also the invariant 𝜖(𝐶∕𝐾𝑣) ∈ {0, 1} by setting

𝜖(𝐶∕𝐾𝑣) =

{
1 𝐶∕𝐾𝑣 is deficient,
0 otherwise.

Here, following [51, Section 8], we say that 𝐶∕𝐾𝑣 is deficient if 𝐶 has no 𝐾𝑣-rational divisor of
degree g − 1.

The relevance of the invariant 𝜖(𝐶∕𝐾𝑣) comes from a result of Poonen and Stoll [51, Theorem
8] characterising the failure of the Shafarevich–Tate group of 𝐽∕𝐾 to have square order (if finite)
in terms of the 𝜖(𝐶∕𝐾𝑣). Denoting by 𝐶𝐿∕𝐾 the quadratic twist of 𝐶 by 𝐿, we define 𝜖(𝐶𝐿∕𝐾𝑣)

similarly. We then have the following decomposition of the parity of rk2(𝐽∕𝐿) into local terms.

Theorem 1.6 (=Theorem 2.1).We have

(−1)rk2(𝐽∕𝐿) =
∏

𝑣 place of 𝐾
𝑣 non-split in 𝐿

(−1)𝜖(𝐶∕𝐾𝑣)+𝜖(𝐶𝐿∕𝐾𝑣)+dim 𝐽(𝐾𝑣)∕𝑁𝐿𝔳∕𝐾𝑣
𝐽(𝐿𝔳).

Ideally, one might hope that the local terms contributing to 𝑤(𝐽∕𝐿) and (−1)rk2(𝐽∕𝐿) simply
agree place by place. However, this turns out not to be the case, and so, the strategy hinges on
identifying the discrepancy between these local terms as a quantity which vanishes globally. To
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1511

this end, we conjecture the following, generalising a formula of Kramer–Tunnell [27] for elliptic
curves.

Conjecture 1.7. Let 𝐾 be a local field of characteristic different from 2. Let 𝐿∕𝐾 be a quadratic
extension, let 𝐶∕𝐾 be a hyperelliptic curve and denote by 𝐽∕𝐾 the Jacobian of 𝐶. Then we have

𝑤(𝐽∕𝐿) = (Δ𝐶, 𝐿∕𝐾)(−1)𝜖(𝐶∕𝐾)+𝜖(𝐶𝐿∕𝐾)+dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿).

Here, the quantity Δ𝐶 is the discriminant of 𝑓(𝑥) for anyWeierstrass equation 𝑦2 = 𝑓(𝑥) defin-
ing 𝐶, and (Δ𝐶, 𝐿∕𝐾) ∈ {±1} is the Hilbert/Artin symbol of Δ𝐶 with respect to the extension
𝐿∕𝐾.†
Returning now to the case where 𝐿∕𝐾 is a quadratic extension of number fields and 𝐶 is a

hyperelliptic curve defined over 𝐾, by the product formula for Hilbert symbols, we have∏
𝑣 place of 𝐾

𝑣 non-split in 𝐿

(Δ𝐶, 𝐿𝔳∕𝐾𝑣) = 1.

In particular, we see from (1.4) and Theorem 1.6 that Conjecture 1.7 implies the 2-parity conjecture
for 𝐽∕𝐿. We will prove Conjecture 1.7 under the assumptions on the reduction of 𝐶 appearing in
the statement of Theorem 1.1, hence proving that result. Specifically, our secondmain result is the
following.

Theorem 1.8. Conjecture 1.7 holds in the following cases:

∙ 𝐾 = ℝ,
∙ 𝐾 has odd residue characteristic, and either 𝐿∕𝐾 is unramified or 𝐽∕𝐾 has semistable reduction,
∙ 𝐾 is a finite extension of ℚ2, 𝐿∕𝐾 is unramified and either 𝐽∕𝐾 has good reduction or g = 2 and

𝐽∕𝐾 has semistable reduction,
∙ 𝐾 is a finite extension of ℚ2, 𝐽∕𝐾 has good ordinary reduction, and 𝐾(𝐽[2])∕𝐾 has odd degree.

Remark 1.9. More generally, Conjecture 1.7 holds if there is an odd degree Galois extension 𝐹∕𝐾

over which 𝐶 satisfies the conditions of Theorem 1.8 with 𝐿∕𝐾 replaced by 𝐹𝐿∕𝐹; see Section 4.

As further evidence for Conjecture 1.7, we show that the cases above (and, in fact, substantially
fewer) are sufficient to deduce Conjecture 1.7 from the 2-parity conjecture via a global-to-local
argument, at least for curves arising via base change from a number field.

Theorem1.10 (=Theorem 8.1). Let𝐾 be a number field,𝐶∕𝐾 a hyperelliptic curve, 𝐽∕𝐾 its Jacobian
and 𝑣0 a place of 𝐾. If the 2-parity conjecture holds for 𝐽 over every quadratic extension of 𝐾, then
Conjecture 1.7 holds for 𝐽∕𝐾𝑣0

and every quadratic extension 𝐿∕𝐾𝑣0
.

Remark 1.11. We remark that Conjecture 1.7 makes sense (and, surprisingly, is not entirely vac-
uous) in genus 0. Indeed, for a quadratic extension 𝐿∕𝐾 of local fields of characteristic different
from 2, consider a hyperelliptic curve 𝐶 ∶ 𝑦2 = 𝑓(𝑥) where 𝑓(𝑥) ∈ 𝐾[𝑥] is a squarefree polyno-

†Given another Weierstrass equation 𝑦2 = ℎ(𝑥) for 𝐶, the discriminants of 𝑓(𝑥) and ℎ(𝑥) differ by a square in 𝐾, and
hence, the term (Δ𝐶, 𝐿∕𝐾) is independent of the choice of Weierstrass equation.
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1512 MORGAN

mial of degree 1 or 2. The Jacobian of 𝐶 is trivial, so the root number and cokernel of the local
norm map are trivial also. Further, 𝐶∕𝐾 (resp. 𝐶𝐿∕𝐾) is deficient if and only if it has no 𝐾-point.
It is then easy to check that (Δ𝐶, 𝐿∕𝐾) = (−1)𝜖(𝐶∕𝐾)+𝜖(𝐶𝐿∕𝐾) for any quadratic extension 𝐿∕𝐾.

1.4 Comparison with work of Kramer–Tunnell

Conjecture 1.7 has its origins in work of Kramer–Tunnell. Specifically, for a local field 𝐾, a sep-
arable quadratic extension 𝐿∕𝐾 and an elliptic curve 𝐸∕𝐾, Kramer–Tunnell [27] conjectured the
formula

𝑤(𝐸∕𝐾)𝑤(𝐸𝐿∕𝐾) = (−Δ𝐸, 𝐿∕𝐾)(−1)dim𝐸(𝐾)∕𝑁𝐿∕𝐾𝐸(𝐿), (1.12)

and proved it in many cases, including in every instance when 𝐾 has odd residue characteristic.
This conjecture is now known in all cases thanks to subsequent work of Dokchitser–Dokchitser
[17] and Česnavičius–Imai [10].
By [8, Proposition 3.11], we have

𝑤(𝐸∕𝐿) = 𝑤(𝐸∕𝐾)𝑤(𝐸𝐿∕𝐾)(−1, 𝐿∕𝐾),

whilst 𝜖(𝐸∕𝐾) = 0 for every local field 𝐾 and elliptic curve 𝐸∕𝐾. Thus, Conjecture 1.7 specialises
to Equation 1.12 when 𝐶∕𝐾 is an elliptic curve.
The presence of the new terms 𝜖(𝐶∕𝐾) and 𝜖(𝐶𝐿∕𝐾) in the purely local Conjecture 1.7, which are

‘forced’ by global considerations concerning the possible failure of the Shafarevich–Tate group of
a principally polarised abelian variety to have square order (see Section 2), is a key new feature of
this work. These terms also place constraints on possible proofs of Conjecture 1.7. Indeed, 𝜖(𝐶∕𝐾)

is not a function purely of the Jacobian of 𝐶 (as in Remark 1.11, 𝜖(𝐶∕𝐾) can be non-trivial even for
curves of genus 0!). A lot of the technical difficulty in this work is involved in relating invariants
defined in terms of the Jacobian of𝐶, such as the cokernel of the local normmap, to the invariants
𝜖(𝐶∕𝐾), 𝜖(𝐶𝐿∕𝐾) and (Δ𝐶, 𝐿∕𝐾), which have no obvious meaning for general abelian varieties.
As above, the Kramer–Tunnell formula (1.12) is known to hold for local fields of characteristic 2

and separable quadratic extensions 𝐿∕𝐾. It is thus tempting to extend the scope of Conjecture 1.7
to include such extensions (especially in light of the work of Česnavičius–Imai [10] who reduce
(1.12) over local fields of characteristic 2 to the corresponding conjecture for finite extensions of
ℚ2). However, since we prove no instances of Conjecture 1.7 over local fields of characteristic 2 in
this work, we have elected not to do this.

1.5 Overview of the paper

In Section 2, we explain how to deduce Theorem 1.6 by combining results of [41] with work of
Poonen–Stoll [51].
In Section 3, we recall and prove some basic properties of the local norm map for general

abelian varieties. Of particular use later is Lemma 3.4 which, for non-archimedean local fields of
odd residue characteristic, expresses the order of the cokernel of the local norm map in terms of
Tamagawa numbers, generalising a result of Kramer–Tunnell [27, Corollary 7.6] for elliptic curves.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1513

In Section 4, we prove some compatibility results concerning the behaviour of Conjecture 1.7
under quadratic twist, and under odd-degree Galois extension of the base field.
Across Sections 5, 6, we collect and prove some basic results concerning, respectively, 2-torsion

in Jacobians of hyperelliptic curves, and criteria for determining when a hyperelliptic curve over a
local field 𝐾 is deficient. Whilst much of this material is standard, Proposition 6.7, which charac-
terises deficiency for a particular class of hyperelliptic curves (essentially those with a 𝐾-rational
theta characteristic), may be of independent interest.
In Section 7, we combine the results of Sections 5, 6 to deduce some simple cases of Conjec-

ture 1.7. Namely, we establish Conjecture 1.7 when𝐾 is archimedean, andwhen𝐾 has odd residue
characteristic and 𝐽∕𝐾 has good reduction. Then, in Section 8, we show that these special cases
are already enough to deduce Theorem 1.10.
With the exception of the short Sections 16 and 17 (which, respectively, consider Conjecture 1.7

for finite extensions of ℚ2, and tie together results from previous sections to prove1.1, 1.8), the
remainder of the paper splits into two parts. Firstly, in Sections 9, 10, we consider Conjecture 1.7
when the extension 𝐿∕𝐾 is unramified, proving it completely in this case when𝐾 has odd residue
characteristic. We do this by analysing the minimal proper regular model of 𝐶. The key fact mak-
ing Conjecture 1.7 accessible here is that the formation of the minimal regular model commutes
with unramified base change; this enables a comparison between invariants of 𝐶 and those of its
unramified quadratic twist. The central technical result of these sections is Theorem 10.2, which
we formulate for general curves, and which shows that the quantity

2𝜖(𝐶∕𝐾) |Φ(�̄�)||Φ(𝑘)| ,
viewed as an element ofℚ×∕ℚ×2, behaves well under quite general twisting. Here, 𝑘 is the residue
field of𝐾 andΦ is theNéron component group of the Jacobian of𝐶.Wewould also like to advertise
Proposition 10.8, which is a by-product of the proof of Theorem 10.2, and which gives a relatively
simple way of computing the Tamagawa number of the Jacobian of an arbitrary curve, modulo
rational squares, as a function of its minimal regular model. This result plays a prominent role in
simplifying computations in Section 14.
Finally, across Sections 11–15, we prove Conjecture 1.7 when 𝐶∕𝐾 has semistable reduction and

when𝐿∕𝐾 is a ramified quadratic extension of local fieldswith odd residue characteristic. Roughly
speaking, once again, our strategy is to encode each of the invariants appearing in Conjecture 1.7
in terms of the minimal proper regular models of both 𝐶 and 𝐶𝐿. However, since now 𝐿∕𝐾 is ram-
ified, the minimal regular model of 𝐶𝐿 can be significantly different to that of 𝐶, making it hard
to relate the relevant invariants. We overcome this by fixing a Weierstrass equation 𝑦2 = 𝑓(𝑥) for
𝐶 and drawing on the explicit description of the minimal regular models of 𝐶 and 𝐶𝐿 in terms of
clusters (certain combinatorial objects encoding the distances between the roots of 𝑓(𝑥)) afforded
by the works [18] and [20]. This essentially reduces Conjecture 1.7 to a purely combinatorial ques-
tion about clusters, though one that still seems far from straightforward. We split the resulting
analysis into two parts. Firstly, in Proposition 13.20, we give an explicit description in terms of
clusters of the group 𝔅𝐶∕𝐾 introduced by Betts–Dokchitser in [4]; this group packages together
information about the Tamagawa number of the Jacobian of 𝐶 over both 𝐾 and 𝐿, but seems sim-
pler to describe than each of these quantities. Then, in Section 14, we study the minimal regular
model of 𝐶𝐿, describing in terms of clusters the Tamagawa number of the Jacobian of 𝐶𝐿 modulo
rational squares; see Corollary 14.31. Finally, in Section 15, we combine these results to establish
the sought case of Conjecture 1.7.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12565 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1514 MORGAN

Notation and conventions

For a field𝐾, we denote by �̄� a (fixed once and for all) algebraic closure of𝐾, and denote by𝐾𝑠 ⊆ �̄�

the separable closure of 𝐾. We denote by 𝐺𝐾 = Gal(𝐾𝑠∕𝐾) the absolute Galois group of 𝐾.

1.5.1 Hyperelliptic curves

By a hyperelliptic curve 𝐶 over a field 𝐾, we mean a smooth, proper, geometrically connected
curve of genus g ⩾ 2, defined over 𝐾, and admitting a finite separable morphism 𝐶 → ℙ1

𝐾
of

degree 2. When 𝐾 has characteristic different from 2, one can always find a separable polynomial
𝑓(𝑥) ∈ 𝐾[𝑥] of degree 2g + 1 or 2g + 2 such that 𝐶 is isomorphic to the curve given by gluing the
affine schemes

𝑈1 = Spec
𝐾[𝑥, 𝑦]

𝑦2 − 𝑓(𝑥)
and 𝑈2 = Spec 𝐾[𝑢, 𝑣]

𝑣2 − 𝑢2g+2𝑓(1∕𝑢)
,

via the relations 𝑥 = 1∕𝑢 and 𝑦 = 𝑥g+1𝑣. By an abuse of notation, we say that 𝐶 is given by the
Weierstrass equation 𝑦2 = 𝑓(𝑥), and refer to elements of 𝑈2(�̄�) ⧵ 𝑈1(�̄�) as the points at infinity.
There are two such points if deg(𝑓) is even, and 1 if deg(𝑓) is odd. We denote by 𝜄 the hyperelliptic
involution of 𝐶. For 𝐶 ∶ 𝑦2 = 𝑓(𝑥), this is the automorphism (𝑥, 𝑦) ↦ (𝑥,−𝑦).
When char(𝐾) ≠ 2, we define the discriminant Δ𝐶 ∈ 𝐾× of a hyperelliptic curve given by

a Weierstrass equation 𝐶 ∶ 𝑦2 = 𝑓(𝑥) by the formula given in [32, Seciton 2]. One sees from
that work that, up to squares in 𝐾×, this both agrees with the polynomial discriminant of 𝑓(𝑥)

and is independent of the choice of Weierstrass equation for 𝐶∕𝐾. In particular, we will often
consider Δ𝐶 ∈ 𝐾×∕𝐾×2 without reference to a Weierstrass equation for 𝐶. Further, if we write
𝑓(𝑥) = 𝑐𝑓𝑓0(𝑥) where 𝑐𝑓 is the leading coefficient of 𝑓(𝑥) and 𝑓0(𝑥) is monic, then the discrimi-
nants of 𝑓(𝑥) and 𝑓0(𝑥) differ by 𝑐

2deg(𝑓)−2

𝑓
, and hence agree modulo squares in 𝐾. In particular,

the class Δ𝐶 ∈ 𝐾×∕𝐾×2 does not feel the leading coefficient of 𝑓(𝑥).

1.5.2 Quadratic twists

Let 𝐾 be a field of characteristic different from 2, and 𝐿∕𝐾 a quadratic extension. For a hyperel-
liptic curve 𝐶∕𝐾, we denote by 𝐶𝐿∕𝐾 the quadratic twist of 𝐶 by 𝐿∕𝐾. This is the twist of 𝐶∕𝐾

corresponding to the 1-cocycle

Gal(𝐿∕𝐾)
∼

⟶ {1, 𝜄} ⩽ Aut𝐿(𝐶).

Suppose that𝐶∕𝐾 is given by aWeierstrass equation 𝑦2 = 𝑓(𝑥), and that 𝐿 = 𝐾(
√

𝑑) for some 𝑑 ∈

𝐾×. Then 𝐶𝐿∕𝐾 is given by theWeierstrass equation 𝑦2 = 𝑑𝑓(𝑥). In particular, it follows from the
discussion on hyperelliptic discriminants above that, as elements of 𝐾×∕𝐾×2, we have Δ𝐶 = Δ𝐶𝐿 .
For an abelian variety 𝐴∕𝐾, we similarly denote by 𝐴𝐿∕𝐾 the quadratic twist of 𝐴 by 𝐿∕𝐾,

which corresponds to the 1-cocycle

Gal(𝐿∕𝐾)
∼

⟶ {±1} ⩽ Aut𝐿(𝐴).
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1515

Denote by 𝜒 ∶ 𝐺𝐾 → {±1} the quadratic character corresponding to 𝐿∕𝐾. Then, there is a 𝐾𝑠-
isomorphism 𝜓 ∶ 𝐴

∼
⟶ 𝐴𝐿 such that, for all 𝜎 ∈ 𝐺𝐾 , the composition 𝜓−1◦𝜎𝜓 is multiplication

by𝜒(𝜎) on𝐴, where 𝜎𝜓 denotes the unique isomorphism𝐴 → 𝐴𝐿 acting as𝜎◦𝜓◦𝜎−1 on𝐾𝑠-points.
In particular, 𝜓 restricts to an isomorphism of 𝐺𝐾-modules 𝐴[2] ≅ 𝐴𝐿[2].
Since the hyperelliptic involution on 𝐶 induces multiplication by −1 on its Jacobian 𝐽∕𝐾, the

Jacobian of 𝐶𝐿∕𝐾 coincides with 𝐽𝐿∕𝐾.

1.5.3 Galois cohomology

For a profinite group 𝐺, a discrete 𝐺-module𝑀 and integer 𝑖 ⩾ 0, we denote by 𝐻𝑖(𝐺,𝑀) the 𝑖th
cohomology group of 𝐺 with coefficients in𝑀, as defined in, for example, [24]. We denote by𝑀𝐺

the subgroup of elements of𝑀 fixed by 𝐺. For g ∈ 𝐺, we denote by𝑀g the subgroup of elements
fixed by g .
When 𝐺 = 𝐺𝐾 for a field 𝐾, we will often write 𝐻𝑖(𝐾,𝑀) in place of 𝐻𝑖(𝐺𝐾,𝑀). Similarly, for

a Galois extension 𝐿∕𝐾 and a discrete Gal(𝐿∕𝐾)-module 𝑀, we often write 𝐻𝑖(𝐿∕𝐾,𝑀) in place
of𝐻𝑖(Gal(𝐿∕𝐾),𝑀).

1.5.4 Notation for number fields and local fields

For a number field𝐾, we denote by𝐾 the ring of integers of𝐾. For a place 𝑣 of𝐾,𝐾𝑣 will denote
the corresponding completion.
By a local field 𝐾, we mean a locally compact valued field. Thus, 𝐾 is isomorphic (as a val-

ued field) to one of ℝ, ℂ, or a finite extension of either ℚ𝑝 or 𝔽𝑝((𝑡)) for a prime 𝑝. For a
non-archimedean local field 𝐾, we take the following notation:

𝐾 ring of integers of 𝐾,

𝑘 residue field of 𝐾,

𝜋 a choice of uniformiser of 𝐾,

𝑣 ∶ �̄�× → ℚ valuation on �̄� normalised with respect to 𝐾, so that 𝑣(𝜋) = 1,

𝔪 maximal ideal of the ring of integers of �̄�,

𝐾nr maximal unramified extension of 𝐾,

(𝑎, 𝐿∕𝐾) Artin symbol of 𝑎 ∈ 𝐾× in a Galois extension 𝐿∕𝐾. We will usually take 𝐿∕𝐾

quadratic, in which case we regard this symbol as being valued in {±1}.

1.5.5 Notation for curves and abelian varieties

For a smooth, proper, geometrically connected curve 𝑋 over a local field 𝐾, we define 𝜖(𝑋∕𝐾) ∈

{0, 1} to be equal to 1 if 𝑋 is deficient over 𝐾, and equal to 0 else. Thus, 𝜖(𝑋∕𝐾) = 1 if and only if
𝑋 has a 𝐾-rational divisor of degree g − 1, where g is the genus of 𝑋.
Throughout the paper, for a field 𝐾, 𝐶∕𝐾 will almost always denote a hyperelliptic curve over

𝐾, g will denote the genus of 𝐶 and 𝐽∕𝐾 will denote the Jacobian of 𝐶.
For an abelian variety𝐴 over a field𝐾 (usually the Jacobian of a hyperelliptic curve 𝐶), we take

the following notation.
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1516 MORGAN

For 𝐾 a number field:

rk2(𝐴∕𝐾) the 2-infinity Selmer rank of 𝐴∕𝐾,

Sel2(𝐴∕𝐾) the 2-Selmer group of 𝐴∕𝐾,

Щ(𝐴∕𝐾) the Shafarevich–Tate group of 𝐴∕𝐾,

Щnd(𝐴∕𝐾) the quotient of Щ(𝐴∕𝐾) by its maximal divisible subgroup,
𝑤(𝐴∕𝐾) the global root number of 𝐴∕𝐾.

For 𝐾 a non-archimedean local field:

Φ the component group of the special fibre of the Néron model of 𝐴∕𝐾;

we often refer to this as the Néron component group of 𝐴,
𝑐(𝐴∕𝐾) the Tamagawa number of 𝐴∕𝐾. By definition, this is the order of the group Φ(𝑘)

of 𝑘-rational points of Φ,

𝑤(𝐴∕𝐾) the local root number of 𝐴∕𝐾,

𝑁𝐿∕𝐾 for 𝐿∕𝐾 separable quadratic, denotes the norm map 𝐴(𝐿) → 𝐴(𝐾)

sending 𝑃 ∈ 𝐴(𝐿) to 𝑁𝐿∕𝐾(𝑃) ∶=
∑

𝜎∈Gal(𝐿∕𝐾) 𝜎(𝑃).

2 2-SELMER GROUPS IN QUADRATIC EXTENSIONS

In this section, we combine results of [41] and [51] to deduce Theorem 1.6. Let 𝐿∕𝐾 be a quadratic
extension of number fields, let 𝐶∕𝐾 be a hyperelliptic curve and let 𝐽∕𝐾 denote the Jacobian of
𝐶. Further, denote by rk2(𝐽∕𝐾) the 2-infinity Selmer rank of 𝐽∕𝐾, and recall fromNotation 1.5 the
definitions of the local norm map and the invariant 𝜖(𝐶∕𝐾𝑣) for a place 𝑣 of 𝐾. Let 𝐶𝐿∕𝐾 (resp.
𝐽𝐿∕𝐾) denote the quadratic twist of 𝐶 (resp. 𝐽) by 𝐿∕𝐾.

Theorem 2.1 (=Theorem 1.6).We have

rk2(𝐽∕𝐿) ≡
∑

𝑣 place of 𝐾
𝑣 non-split in 𝐿∕𝐾

(
𝜖(𝐶∕𝐾𝑣) + 𝜖(𝐶𝐿∕𝐾𝑣) + dim 𝐽(𝐾𝑣)∕𝑁𝐿𝔳∕𝐾𝑣

𝐽(𝐿𝔳)
)

(mod 2).

Proof. By [41, Theorem 10.12], we have

dim Sel2(𝐽∕𝐾) + dim Sel2(𝐽𝐿∕𝐾) ≡
∑

𝑣 place of 𝐾
𝑣 non-split in 𝐿∕𝐾

dim 𝐽(𝐾𝑣)∕𝑁𝐿𝔳∕𝐾𝑣
𝐽(𝐿𝔳) (mod 2),

where here Sel2(𝐽∕𝐾) denotes the 2-Selmer group of 𝐽∕𝐾 (and similarly for 𝐽𝐿∕𝐾). Consequently
(cf. [41, proof of Theorem 10.20]), we have

rk2(𝐽∕𝐿) ≡ dim Щnd(𝐽∕𝐾)[2] + dim Щnd(𝐽
𝐿∕𝐾)[2]

+
∑

𝑣 place of 𝐾
𝑣 non-split in 𝐿

dim 𝐽(𝐾𝑣)∕𝑁𝐿𝔳∕𝐾𝑣
𝐽(𝐿𝔳), (mod 2),
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1517

where Щnd(𝐽∕𝐾) denotes the quotient of the Shafarevich–Tate group of 𝐽∕𝐾 by its maximal
divisible subgroup. It follows from [51, Theorem 11] that

dim Щnd(𝐽∕𝐾)[2] ≡
∑

𝑣 place of 𝐾
𝜖(𝐶∕𝐾𝑣) and

dim Щnd(𝐽
𝐿∕𝐾)[2] ≡

∑
𝑣 place of 𝐾

𝜖(𝐶𝐿∕𝐾𝑣),

where both congruences are modulo 2. For the second equality, we are using that the Jacobian of
𝐶𝐿 coincides with the quadratic twist 𝐽𝐿. Since 𝐶 and 𝐶𝐿 are isomorphic over 𝐾𝑣 for each place 𝑣

that splits in 𝐿∕𝐾, the result follows. □

Remark 2.2. One of the key reasons for working with Jacobians of hyperelliptic curves in this
paper is that the quadratic twist 𝐽𝐿 is again the Jacobian of an explicit curve: the quadratic twist
𝐶𝐿. This allows us to give an explicit description of the parity of both dim Щnd(𝐽∕𝐾)[2] and
dim Щnd(𝐽

𝐿∕𝐾)[2] in terms of deficiency.

3 BASIC PROPERTIES OF THE LOCAL NORMMAP

In this section, we prove some basic properties of the cokernel of the local norm map. Take 𝐾 to
be a local field of characteristic different from 2, and let 𝐿∕𝐾 be a quadratic extension. We work
with arbitrary principally polarised abelian varieties since everything goes through in this setting.
Thus, for now we fix a principally polarised abelian variety 𝐴∕𝐾, and denote by 𝐴𝐿 the quadratic
twist of 𝐴 by 𝐿∕𝐾. Denote by 𝑁𝐿∕𝐾 ∶ 𝐴(𝐿) → 𝐴(𝐾) the local norm map, sending 𝑃 ∈ 𝐴(𝐿) to∑

𝜎∈Gal(𝐿∕𝐾) 𝜎(𝑃). Further, denote by 𝜒 ∶ 𝐺𝐾 → {±1} the quadratic character corresponding to
𝐿∕𝐾.

Lemma 3.1. We have

dim𝐴(𝐾)∕2𝐴(𝐾) = dim𝐴𝐿(𝐾)∕2𝐴𝐿(𝐾).

Proof. Let 𝛿 ∶ 𝐴(𝐾)∕2𝐴(𝐾) ↪ 𝐻1(𝐾,𝐴[2]) be the connecting map associated to the
multiplication-by-2 Kummer sequence for 𝐴. By [49, Proposition 4.10], the image of 𝛿 is a
maximal isotropic subspace of 𝐻1(𝐾,𝐴[2]) with respect to the pairing coming from cup-product
and the local invariant map. Since 𝐴[2] ≅ 𝐴𝐿[2] as 𝐺𝐾-modules, this gives

dim𝐴(𝐾)∕2𝐴(𝐾) =
1

2
dim𝐻1(𝐾,𝐴[2]) = dim𝐴𝐿(𝐾)∕2𝐴𝐿(𝐾),

as desired. □

From the definition of the quadratic twist 𝐴𝐿, we have an 𝐿-isomorphism 𝜓 ∶ 𝐴
∼

⟶ 𝐴𝐿 such
that, for all 𝜎 ∈ 𝐺𝐾 , the composition 𝜓−1◦𝜎𝜓 is multiplication by 𝜒(𝜎) on𝐴. The map 𝜓−1 identi-
fies 𝐴𝐿(𝐿) with 𝐴(𝐿), and identifies 𝐴𝐿(𝐾) with ker(𝑁𝐿∕𝐾 ∶ 𝐴(𝐿) → 𝐴(𝐾)). The local norm map
𝐴𝐿(𝐿) → 𝐴𝐿(𝐾) then identifies with the map sending 𝑃 ∈ 𝐴(𝐿) to 𝑃 − 𝜎(𝑃). To avoid confusion,
we denote this map by 𝑁𝐿

𝐿∕𝐾
.
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1518 MORGAN

Lemma 3.2. The group 𝐴(𝐾)∕𝑁𝐿∕𝐾𝐴(𝐿) is a finite-dimensional 𝔽2-vector space and

dim𝐴(𝐾)∕𝑁𝐿∕𝐾𝐴(𝐿) = dim𝐴𝐿(𝐾)∕𝑁𝐿
𝐿∕𝐾

𝐴(𝐿).

Proof. That 𝐴(𝐾)∕𝑁𝐿∕𝐾𝐴(𝐿) is a finite-dimensional 𝔽2-vector space follows from the fact that
2𝐴(𝐾) ⊆ 𝑁𝐿∕𝐾𝐴(𝐿) alongwith thewell-known finiteness of𝐴(𝐾)∕2𝐴(𝐾). Next, consider themap

𝜃 ∶ 𝑁𝐿∕𝐾𝐴(𝐿)∕2𝐴(𝐾) ⟶ 𝑁𝐿
𝐿∕𝐾

𝐴(𝐿)∕2𝐴𝐿(𝐾)

sending 𝑁𝐿∕𝐾(𝑃) to 𝑁𝐿
𝐿∕𝐾

(𝑃). This is readily checked to be a (well-defined) isomorphism. The
result now follows from Lemma 3.1. □

Now let Res𝐿∕𝐾𝐴 denote the Weil restriction of scalars of 𝐴 from 𝐿 to 𝐾. This is an abelian
variety over 𝐾 of dimension 2dim𝐴 which represents the functor 𝑇 ↦ 𝐴(𝑇 ×𝐾 𝐿). As explained
in [38, Section 2] (see also [37, Proposition 4.1]), denoting by 𝛾 the involution of 𝐴 × 𝐴 swapping
the factors, Res𝐿∕𝐾𝐴 can be described as the twist of 𝐴 × 𝐴 corresponding to the 1-cocycle 𝐺𝐾 →

Aut𝐾𝑠 (𝐴 × 𝐴) defined by

𝜎 ↦

{
id 𝜒(𝜎) = 1,

𝛾 𝜒(𝜎) = −1.

This identifies (Res𝐿∕𝐾𝐴)(𝐾) with the 𝐿-points of 𝐴 diagonally embedded in 𝐴(�̄�) × 𝐴(�̄�),
realising the functor of points description for 𝑇 = 𝐾.
As above, bothRes𝐿∕𝐾𝐴 and𝐴 × 𝐴𝐿 are twists of𝐴 × 𝐴, and one checks that the endomorphism

of 𝐴 × 𝐴 given by (𝑃, 𝑄) ↦ (𝑃 + 𝑄, 𝑃 − 𝑄) descends to an isogeny 𝜙 ∶ Res𝐿∕𝐾𝐴 → 𝐴 × 𝐴𝐿. On
𝐾-points, this is just the map

(𝑁𝐿∕𝐾,𝑁𝐿
𝐿∕𝐾

) ∶ (Res𝐿∕𝐾𝐴)(𝐾) = 𝐴(𝐿) ⟶ 𝐴(𝐾) × 𝐴𝐿(𝐾). (3.3)

(See [37, Sections 4 and 5] for generalisations of this isogeny when 𝐿∕𝐾 is replaced by a general
finite Galois extension.)
We exploit the isogeny 𝜙 to prove the final lemma of this section, which expresses the coker-

nel of the local norm map in terms of Tamagawa numbers. The special case of this for elliptic
curves is due to Kramer and Tunnell [27, Corollary 7.6], although the proof is different. Recall
from Section 1.5.5 that 𝑐(𝐴∕𝐾) denotes the Tamagawa number of 𝐴∕𝐾.

Lemma 3.4. Assume that the residue characteristic of 𝐾 is odd. Then

dim𝐴(𝐾)∕𝑁𝐿∕𝐾𝐴(𝐿) = ord2

𝑐(𝐴∕𝐾)𝑐(𝐴𝐿∕𝐾)

𝑐(𝐴∕𝐿)
.

Proof. To ease notation, write 𝑋 = Res𝐿∕𝐾𝐴 and 𝑌 = 𝐴 × 𝐴𝐿. With 𝜙 as above, since 𝐾 has odd
residue characteristic, it follows from a formula of Schaefer [56, Lemma 3.8] that

ord2

||𝑌(𝐾)∕𝜙𝑋(𝐾)||||𝑋(𝐾)[𝜙]|| = ord2

𝑐(𝑌∕𝐾)

𝑐(𝑋∕𝐾)
= ord2

𝑐(𝐴∕𝐾)𝑐(𝐴𝐿∕𝐾)

𝑐(𝐴∕𝐿)
, (3.5)
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1519

the last equality following from [33, Proposition 3.19] (see also [38, Proof of Proposition 2]). From
the description (3.3) of the map 𝜙 on 𝐾-points, one sees that𝑋(𝐾)[𝜙] ≅ 𝐴(𝐾)[2] and that we have
a short exact sequence

0 ⟶ 𝐴𝐿(𝐾)∕2𝐴𝐿(𝐾) ⟶ 𝑌(𝐾)∕𝜙𝑋(𝐾) ⟶ 𝐴(𝐾)∕𝑁𝐿∕𝐾𝐴(𝐿) ⟶ 0, (3.6)

the first map induced by inclusion into the second factor, and the secondmap being the projection
onto the first factor. Since𝐾 has odd residue characteristic, we have (cf. [56, Proposition 3.9], e.g.)

dim𝐴𝐿(𝐾)∕2𝐴𝐿(𝐾) = dim𝐴𝐿(𝐾)[2] (= dim𝐴(𝐾)[2]).

The result now follows by combining this last observation with (3.5) and (3.6). □

4 COMPATIBILITY RESULTS

In this section, we prove several compatibility results for Conjecture 1.7. These provide some evi-
dence in favour of the conjecture and will also be used to make some reductions as part of the
proof of Theorem 1.8.
In what follows,𝐾 denotes a local field of characteristic different from 2. Let 𝐿∕𝐾 be a quadratic

extension and let 𝐶∕𝐾 be a hyperelliptic curve.

4.1 Odd degree Galois extensions

Lemma 4.1. Every individual term in Conjecture 1.7 is unchanged under odd degree Galois exten-
sion of the base field. In particular, if 𝐹∕𝐾 is an odd degree Galois extension, then Conjecture 1.7
holds for 𝐶∕𝐾 and the extension 𝐿∕𝐾 if and only if it holds for 𝐶∕𝐹 and the extension 𝐿𝐹∕𝐹.

Proof. That the term (Δ𝐶, 𝐿∕𝐾) is invariant under odd degree extensions (not necessarily Galois)
is standard. Similarly, it is not hard to show that the terms involving deficiency of 𝐶 and its twist
are also individually invariant under arbitrary odd degree extensions (cf. Lemma 6.4 for a more
general result which implies this). The statement for each of the root numbers is also standard;
see, for example, [15, Lemma A.1 and Proposition A.2] or [27, Proposition 3.4]. For the cokernel of
the local normmap, the statement for elliptic curves is [27, Proposition 3.5] and the argument for
general abelian varieties is identical. □

4.2 First compatibility with quadratic twist

Lemma 4.2. Conjecture 1.7 holds for 𝐶∕𝐾 and the extension 𝐿∕𝐾 if and only if it holds for 𝐶𝐿∕𝐾

and the same extension.

Proof. Since the root number and terms involving deficiency appear symmetrically between 𝐽 and
𝐽𝐿 in Conjecture 1.7, it suffices to show that

(Δ𝐶, 𝐿∕𝐾) = (Δ𝐶𝐿 , 𝐿∕𝐾)
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1520 MORGAN

and

dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) ≡ dim 𝐽𝐿(𝐾)∕𝑁𝐿
𝐿∕𝐾

𝐽(𝐿) (mod 2).

For the first equality, one checks readily that Δ𝐶 and Δ𝐶𝐿 lie in the same class in 𝐾×∕𝐾×2 (cf.
Section 1.5.2). The second statement follows from Lemma 3.2. □

4.3 Second compatibility with quadratic twist

The second compatibility result involving quadratic twist ismore subtle. That such a compatibility
result should exist for elliptic curves was discussed in the original paper of Kramer and Tunnell
[27, remark following Proposition 3.3] and the result was later proven (again for elliptic curves)
by Klagsbrun, Mazur and Rubin [25, Lemma 5.6]. The key step in that proof is to establish the
following congruence. In order to state it, fix distinct quadratic extensions 𝐿1∕𝐾 and 𝐿2∕𝐾, and
denote by 𝐿3∕𝐾 the third quadratic subextension of 𝐿1𝐿2∕𝐾.

Lemma 4.3. Let 𝐴∕𝐾 be a principally polarised abelian variety. Then we have

dim𝐴(𝐾)∕𝑁𝐿1∕𝐾
𝐴(𝐿1) + dim𝐴(𝐾)∕𝑁𝐿2∕𝐾

𝐴(𝐿2) ≡ dim𝐴𝐿1(𝐾)∕𝑁𝐿3∕𝐾
𝐴𝐿1(𝐿3) (mod 2).

Proof. The case where 𝐴∕𝐾 is an elliptic curve is [25, Lemma 5.6] and the argument is essentially
the same. Let 𝐿0 = 𝐾 and for each 𝑖 = 1, 2, 3 identify𝐴𝐿𝑖 [2]with𝐴[2] as 𝐺𝐾-modules in the usual
way. For each 𝑖, let 𝑋𝑖 denote the image of 𝐴𝐿𝑖 (𝐾)∕2𝐴𝐿𝑖 (𝐾) under the map

𝐴𝐿𝑖 (𝐾)∕2𝐴𝐿𝑖 (𝐾)
𝛿𝐿𝑖

⟶ 𝐻1(𝐾,𝐴𝐿𝑖 [2]) = 𝐻1(𝐾,𝐴[2]),

where 𝛿𝐿𝑖 is the connecting homomorphism associated to the multiplication-by-2 Kummer
sequence for 𝐴𝐿𝑖 . By [36, Proposition 5.2], for 𝑖 = 1, 2, 3, we have

𝐴(𝐾)∕𝑁𝐿𝑖∕𝐾
𝐴(𝐿𝑖) ≅ 𝑋0∕(𝑋0 ∩ 𝑋𝑖).

Similarly, we have

𝐴𝐿1(𝐾)∕𝑁𝐿3∕𝐾
𝐴𝐿1(𝐿3) ≅ 𝑋1∕(𝑋1 ∩ 𝑋2).

In the elliptic curve case treated in [25], it is shown that each 𝑋𝑖 is a maximal isotropic subspace
with respect to a certain quadratic form on 𝐻1(𝐾,𝐴[2]). The result is then deduced from [25,
Corollary 2.5] which is a general result concerning the parity of the dimension of intersections of
maximal isotropic subspaces. For general principally polarised abelian varieties, the fact that each
𝑋𝑖 is a maximal isotropic subspace for the natural generalisation of this quadratic form is detailed
in [41, Section 10.1]. The one difference from the case of elliptic curves is that now the quadratic
form (in general) takes values in ℤ∕4ℤ, rather than just ℤ∕2ℤ as is assumed in [25, Corollary
2.5]. However, one readily verifies that this assumption is not used in the proof of [25, Corollary
2.5]. □
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1521

We now return to the case where 𝐶∕𝐾 is a hyperelliptic curve and 𝐽∕𝐾 is its Jacobian.

Corollary 4.4. Conjecture 1.7 for 𝐽∕𝐾 and the extensions 𝐿1∕𝐾 and 𝐿2∕𝐾 implies Conjecture 1.7 for
𝐽𝐿1∕𝐾 and the extension 𝐿3∕𝐾.

Proof. By [8, Proposition 3.11], for any quadratic extension 𝐿∕𝐾, we have

𝑤(𝐽∕𝐿) = ((−1)g , 𝐿∕𝐾)𝑤(𝐽∕𝐾)𝑤(𝐽𝐿∕𝐾), (4.5)

where g is the genus of𝐶 (the cited result is only stated for elliptic curves, but the proof generalises
verbatim to give the claimed formula). From (4.5), it follows that

𝑤(𝐽∕𝐿1)𝑤(𝐽∕𝐿2) = 𝑤(𝐽𝐿1∕𝐿3).

Further, by standard properties of Hilbert symbols and the fact that the discriminants of 𝐶 and
any quadratic twist of 𝐶 differ by squares, we have

(Δ𝐶, 𝐿1∕𝐾)(Δ𝐶, 𝐿2∕𝐾) = (Δ𝐶𝐿1 , 𝐿3∕𝐾).

Since we also have

𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿1∕𝐾) + 𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿2∕𝐾) ≡ 𝜖(𝐶𝐿1∕𝐾) + 𝜖(𝐶𝐿2∕𝐾) (mod 2)

= 𝜖(𝐶𝐿1∕𝐾) + 𝜖((𝐶𝐿1)𝐿3∕𝐾),

the result follows from Lemma 4.3. □

Remark 4.6. For a local field𝐾 and hyperelliptic curve𝐶∕𝐾, it follows from Lemma 4.2 and Corol-
lary 4.4 that, in order to prove Conjecture 1.7 for 𝐶∕𝐾 and all quadratic extensions of 𝐾, it suffices
to prove the same result but with 𝐶 replaced by an arbitrary quadratic twist.

5 TWO TORSION IN THE JACOBIAN OF A HYPERELLIPTIC
CURVE

For this section, let𝐾 be a field of characteristic different from 2. Let 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) be a hyper-
elliptic curve of genus g and let 𝐽∕𝐾 be its Jacobian. Denote by the𝐺𝐾-set of ramification points
of the 𝑥-coordinate morphism 𝐶 → ℙ1. Thus, consists of the points (𝑟, 0) for 𝑟 a root of 𝑓(𝑥),
along with the unique point at infinity on 𝐶 if deg(𝑓) is odd. As 𝐺𝐾-modules, we then have

𝐽[2] ≅ ker

(
𝔽
2

Σ
⟶ 𝔽2

)
∕𝔽2𝐷. (5.1)

Here, 𝔽
2
denotes the permutation representation over 𝔽2 on the elements of  , Σ ∶ 𝔽

2
→ 𝔽2

denotes the sum-of-coefficients map, and 𝐷 =
∑

𝑤∈ 𝑤. See [50, Section 6] for more details. Not-
ing that g ⩾ 2, hence || > 4, we see from the above description that 𝐾(𝐽[2])∕𝐾 is the splitting
field of 𝑓(𝑥).
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1522 MORGAN

We now compute the dimension of the rational 2-torsion 𝐽(𝐾)[2]. The case where 𝐾(𝐽[2])∕𝐾 is
cyclic is treated in [12, Theorem 1.4] (but note the erratum [13]) whilst the case where 𝑓(𝑥) has an
odd degree factor over 𝐾 is [50, Lemma 12.9]. We will require a slightly more general statement.
In what follows we write 𝑓(𝑥) = 𝑐𝑓𝑓0(𝑥), where 𝑐𝑓 ∈ 𝐾× is the leading coefficient of 𝑓(𝑥), and

𝑓0(𝑥) ∈ 𝐾[𝑥] is monic. To clean up the statement, we also make the following convention.

Convention 5.2. In what follows, if deg(𝑓) is odd, the rational point at infinity on 𝐶 is to be
interpreted as an odd degree irreducible factor of 𝑓(𝑥) over 𝐾.

Lemma 5.3. Let 𝑛 be the number of irreducible factors of 𝑓(𝑥) over𝐾 (see Convention 5.2 above). If
𝑓(𝑥) has an odd degree factor over 𝐾, then

dim 𝐽(𝐾)[2] = 𝑛 − 2.

Otherwise, if each irreducible factor of 𝑓(𝑥) has even degree, let 𝐹∕𝐾 be the splitting field of 𝑓(𝑥) and
let 𝑚 be the number of quadratic subextensions of 𝐹∕𝐾 over which 𝑓0(𝑥) factors as a product of 2
distinct conjugate polynomials. Then

dim 𝐽(𝐾)[2] =

{
𝑛 − 1 g even,
𝑛 − 1 + ord2(1 + 𝑚) g odd.

Proof. Denote by 𝐺 the Galois group of 𝐹∕𝐾 and let 𝑀 be the 𝐺-module 𝑀 = ker(𝔽
2

Σ
⟶ 𝔽2).

Then, by (5.1), we have an exact sequence

0 ⟶ 𝔽2𝐷 ⟶ 𝑀𝐺 ⟶ 𝐽[2]𝐺 ⟶ ker
(
𝐻1(𝐺, 𝔽2𝐷) → 𝐻1(𝐺,𝑀)

)
⟶ 0. (5.4)

Now

dim𝑀𝐺 = ker

(
(𝔽

2
)𝐺

Σ
⟶ 𝔽2

)
=

{
𝑛 − 1 𝑓(𝑥) has an odd degree factor over 𝐾,

𝑛 else.

Consequently, we must show that ker(𝐻1(𝐺, 𝔽2𝐷) → 𝐻1(𝐺,𝑀)) has dimension 0 or ord2(1 + 𝑚)

according, respectively, to whether g is even or odd (note that if 𝑓(𝑥) has an odd degree factor
over 𝐾 then𝑚 = 0).
Now𝐻1(𝐺, 𝔽2𝐷) = Hom(𝐺, 𝔽2𝐷), and the non-trivial homomorphisms from 𝐺 into 𝔽2𝐷 corre-

spond to the quadratic subextensions of 𝐹∕𝐾. Let 𝜙 be such a homomorphism, corresponding to
a quadratic subextension 𝐸∕𝐾. Then 𝜙 maps to 0 in 𝐻1(𝐺,𝑀) if and only if there is 𝜂 ∈ 𝑀 with
𝜎(𝜂) + 𝜂 = 𝜙(𝜎)𝐷 for each 𝜎 ∈ 𝐺. Now an element 𝜂 ∈ 𝔽

2
satisfying this equation corresponds

to a factor of 𝑓0(𝑥) over 𝐸, ℎ(𝑥) say, for which 𝑓0(𝑥) = ℎ(𝑥) ⋅ 𝜏ℎ(𝑥), where 𝜏 denotes the generator
of Gal(𝐸∕𝐾). Since 1

2
|| = g + 1, such an 𝜂 is in the sum-zero part of 𝔽

2
if and only if g is odd.

We conclude from this that the number of non-identity elements in ker(𝐻1(𝐺, 𝔽2𝐷) → 𝐻1(𝐺,𝑀))

is equal to 0 if g is even, and𝑚 if g is odd. This gives the result. □

Now let Δ𝑓 be the discriminant of 𝑓(𝑥). It is a square in 𝐾 if and only if the Galois group of
𝑓(𝑥) is a subgroup of the alternating group 𝐴𝑛 where 𝑛 = deg 𝑓. As a corollary of Lemma 5.3, we
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1523

observe that if 𝐾(𝐽[2])∕𝐾 is cyclic, then whether or not the discriminant of 𝑓(𝑥) is a square in
𝐾 can essentially be detected from the rational 2-torsion in 𝐽. In the statement, we continue to
impose Convention 5.2.

Corollary 5.5. Suppose that 𝐾(𝐽[2])∕𝐾 is cyclic. Then Δ𝑓 is a square in 𝐾 if and only if one of the
following holds:

(i) (−1)dim 𝐽(𝐾)[2] = 1 and either g is odd or 𝑓(𝑥) has an odd degree factor over 𝐾,
(ii) (−1)dim 𝐽(𝐾)[2] = −1, g is even, and all factors of 𝑓(𝑥) over 𝐾 have even degree.

Proof. Let 𝜎 be a generator of Gal(𝐾(𝐽[2])∕𝐾). Then Δ𝑓 is a square in 𝐾 if and only if 𝜖(𝜎) =

1, where 𝜖(𝜎) is the sign of 𝜎 as a permutation on the roots of 𝑓(𝑥). Suppose that 𝜎 has cycle
type (𝑑1, … , 𝑑𝑛), so that the 𝑑𝑖 are the degrees of the irreducible factors of 𝑓(𝑥) over 𝐾. Then we
have 𝜖(𝜎) = (−1)

∑𝑛
𝑖=1(𝑑𝑖−1) = (−1)deg𝑓−𝑛. Now 𝐽[2]𝜎 = 𝐽(𝐾)[2]. Moreover, 𝐾(𝐽[2])∕𝐾 contains at

most one quadratic subextension, which yields a factorisation of 𝑓0(𝑥) into two distinct conjugate
polynomials if and only if each 𝑑𝑖 is even. The result now follows from Lemma 5.3. □

6 DEFICIENCY

Let 𝐾 be a local field. Recall from Section 1.5.5 that a (smooth, proper, geometrically connected)
curve 𝑋∕𝐾 of genus g is said to be deficient if 𝑋 has no 𝐾-rational divisor of degree g − 1 . In
this section, we collect some results on deficiency which will be of use later. Firstly, we determine
the behaviour of deficiency in field extensions. Next, we give some criteria for determining when
a hyperelliptic curve is deficient, which apply in particular when 𝐾(𝐽[2])∕𝐾 is cyclic. Finally,
for non-archimedean base fields, we recall a criteria due to Poonen and Stoll which describes
deficiency of a general curve in terms of its minimal proper regular model.
The first two results mentioned above are a consequence of the following description of defi-

ciency, which arises as part of the proof of [51, Theorem 11]. Consider the short exact sequences
of 𝐺𝐾-modules

0 ⟶ 𝐾𝑠(𝑋)×∕𝐾𝑠× div
⟶ Div(𝑋𝐾𝑠 ) ⟶ Pic(𝑋𝐾𝑠 ) ⟶ 0 (6.1)

and

0 ⟶ 𝐾𝑠× ⟶ 𝐾𝑠(𝑋)× ⟶ 𝐾𝑠(𝑋)×∕𝐾𝑠× ⟶ 0. (6.2)

Here, 𝐾𝑠(𝑋) is the function field of 𝑋 over the separable closure of 𝐾, Div(𝑋𝐾𝑠 ) is the group of
divisors on the base change of 𝑋 to 𝐾𝑠, Pic(𝑋𝐾𝑠 ) is the Picard group of 𝑋𝐾𝑠 and the map div sends
a rational function on 𝑋𝐾𝑠 to its associated divisor.
As explained in the proof of [51, Theorem 11], combining the associated long exact sequences

for Galois cohomology, we obtain an exact sequence

0 ⟶ Pic(𝑋) ⟶ Pic(𝑋𝐾𝑠 )𝐺𝐾 ⟶ Br(𝐾),

where Br(𝐾) = 𝐻2(𝐾, 𝐾𝑠×) denotes the Brauer group of 𝐾.
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1524 MORGAN

Notation 6.3. We denote by 𝜙𝐾 the composition

𝜙𝐾 ∶ Pic(𝑋𝐾𝑠 )𝐺𝐾 ⟶ Br(𝐾)
inv𝐾
⟶ ℚ∕ℤ,

where the first map is the one constructed above, and the second is the local invariant map.

By a result of Lichtenbaum [28] (see also [51, Section 4]), 𝑋 has a 𝐾-rational divisor class of
degree g − 1. Fix such a class  ∈ Picg−1(𝑋𝐾𝑠 )𝐺𝐾 . In the proof of [51, Theorem 11], Poonen–Stoll
show that (g − 1)𝜙𝐾() ∈ {0, 1∕2}, and that𝑋 is deficient over𝐾 if and only if (g − 1)𝜙𝐾() = 1∕2.

6.1 Deficiency in field extensions

Recall that 𝜖(𝑋∕𝐾) ∈ {0, 1} is defined to be equal to 1 if 𝑋 is deficient over 𝐾, and equal to 0
otherwise.

Lemma 6.4. For any finite extension 𝐿∕𝐾, we have

𝜖(𝑋∕𝐿) ≡ [𝐿 ∶ 𝐾]𝜖(𝑋∕𝐾) (mod 2).

Proof. Fix a rational divisor class  of degree g − 1 in Pic(𝑋𝐾𝑠 )𝐺𝐾 , so that (g − 1)𝜙𝐾() ∈ ℚ∕ℤ

is equal to 1

2
(resp. 0) if 𝑋 is deficient over 𝐾 (resp. is not deficient over 𝐾). Then  also gives a

rational divisor class of degree g − 1 in Pic(𝑋𝐾𝑠 )𝐺𝐿 , and commutativity of the diagram

(6.5)

(see, e.g. [57, Proposition XIII.3.7]) shows that (g − 1)𝜙𝐿() = [𝐿 ∶ 𝐾](g − 1)𝜙𝐾(). □

6.2 Deficiency for hyperelliptic curves

Now suppose that the characteristic of𝐾 is different from 2. Take𝐶∕𝐾 to be a hyperelliptic curve of
genus g and fix aWeierstrass equation 𝑦2 = 𝑓(𝑥) for 𝐶. Since 𝐶 has𝐾-rational divisors of degree 2
(arising as the pull-back of rational points onℙ1

𝐾
), if g is odd, then𝐶 is not deficient. Consequently,

we impose the following assumption.

Assumption 6.6. For the rest of this subsection, suppose that g is even.

Again using that𝐶 has𝐾-rational divisors of degree 2, we see under this assumption that having
a 𝐾-rational divisor of degree g − 1 is equivalent to having a 𝐾-rational divisor of any odd degree,
which is, in turn, equivalent to having a rational point over some odd degree extension of 𝐾. In
particular, if 𝑓(𝑥) has an odd degree factor over 𝐾, then 𝐶 is not deficient.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1525

Now write 𝑓(𝑥) = 𝑐𝑓𝑓0(𝑥), where 𝑐𝑓 is the leading coefficient of 𝑓(𝑥) and 𝑓0(𝑥) is monic. The
following proposition gives a convenient criterion for testing deficiency in the special case that
𝑓0(𝑥) factors as a product of two conjugate polynomials over some quadratic extension of 𝐾.

Proposition 6.7. Suppose that 𝑓0(𝑥) factors over a quadratic extension 𝐹∕𝐾 as a product of 2 poly-
nomials conjugate under the action of Gal(𝐹∕𝐾). Then 𝐶 is deficient if and only if (𝑐𝑓, 𝐹∕𝐾) = −1.

Remark 6.8. Proposition 6.7 and the discussion before it gives simple criteria for determining
whether or not 𝐶 is deficient under the condition that the polynomial 𝑓0(𝑥) either has an odd
degree factor over 𝐾, or factors as a product of two conjugate polynomials over some quadratic
extension of 𝐾. This condition can be expressed intrinsically as saying that 𝐶 has a 𝐾-rational
theta characteristic. Indeed, as in Section 5, let  denote the 𝐺𝐾-set of ramification points of
the 𝑥-coordinate morphism 𝐶 → ℙ1

𝐾
. Further, let  denote the quotient of the sum-1 part of the

permutation module 𝔽
2
by the diagonal action of 𝔽2. We see from (5.1) that  is a torsor under

𝐽[2]. By [42, Section 4] (recall that g is assumed even), the torsor  can be identified as a 𝐺𝐾-set
with the collection of theta characteristics on 𝐶𝐾𝑠 , from which the claim follows readily.

Proof of Proposition 6.7. Over 𝐹, write 𝑓0(𝑥) = 𝑓0𝑎(𝑥)𝑓0𝑏(𝑥) where 𝑓0𝑎(𝑥) and 𝑓0𝑏(𝑥) are monic
and conjugate under the action of Gal(𝐹∕𝐾). As g is assumed even, both 𝑓0𝑎(𝑥) and 𝑓0𝑏(𝑥) nec-
essarily have odd degree g + 1. For each root 𝑟 of 𝑓(𝑥), write 𝑃𝑟 = (𝑟, 0) ∈ 𝐶(𝐾𝑠). For ⋆ ∈ {𝑎, 𝑏},
consider the degree g + 1 divisor

𝐷⋆ =
∑

𝑟 root of 𝑓0⋆(𝑥)

𝑃𝑟 ∈ Div(𝐶𝐾𝑠 ).

Denote by 𝜒 ∶ 𝐺𝐾 → {±1} the quadratic character corresponding to 𝐹∕𝐾. Then, for all 𝜎 ∈ 𝐺𝐾 ,
we have

𝜎(𝐷𝑎) =

{
𝐷𝑎 𝜒(𝜎) = 1,

𝐷𝑏 𝜒(𝜎) = −1.

Since div(𝑦∕𝑓0𝑏(𝑥)) = 𝐷𝑎 − 𝐷𝑏, we see that the class of 𝐷𝑎 in Pic(𝐶𝐾𝑠 ), which we
denote [𝐷𝑎], is invariant under 𝐺𝐾 . Further, we see that under the connecting map
Pic(𝐶𝐾𝑠 )𝐺𝐾 → 𝐻1(𝐾,𝐾𝑠(𝐶)×∕𝐾𝑠×) associated to (6.1), the class [𝐷𝑎] maps to the class of the
1-cocycle 𝜌 defined by

𝜌(𝜎) =

{
1 𝜒(𝜎) = 1,

𝑦∕𝑓0𝑏(𝑥) 𝜒(𝜎) = −1.

This lifts via the same formula to a 1-cochain valued in 𝐾𝑠(𝐶)×. The image of 𝜌 under the con-
necting map 𝐻1(𝐾,𝐾𝑠(𝐶)×∕𝐾𝑠×) → 𝐻2(𝐾,𝐾𝑠×) = Br(𝐾) associated to (6.2) is thus represented
by the class of the 2-cocycle 𝛼 defined by 𝛼(𝜎, 𝜏) = 𝜌(𝜎) ⋅ 𝜎𝜌(𝜏) ⋅ 𝜌(𝜎𝜏)−1. A straightforward
computation shows that 𝛼(𝜎, 𝜏) = 1 unless 𝜒(𝜎) = −1 = 𝜒(𝜏), in which case it is equal to

𝑦

𝑓0𝑏(𝑥)
⋅

𝑦

𝑓0𝑎(𝑥)
=

𝑦2

𝑓0(𝑥)
= 𝑐𝑓.
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1526 MORGAN

Under inv𝐾 ∶ Br(𝐾) → ℚ∕ℤ, the class of this 2-cocycle is mapped to 0 if 𝑐𝑓 is a norm from 𝐹×,
and to 1∕2 otherwise. Thus, (g + 1)𝜙𝐾([𝐷𝑎]) = 1∕2 if and only if (𝑐𝑓, 𝐹∕𝐾) = −1. □

Corollary 6.9. Suppose that 𝐾(𝐽[2])∕𝐾 is cyclic. If 𝐶 is deficient over 𝐾, then (g is even and) every
irreducible factor of 𝑓(𝑥) over 𝐾 has even degree. When this is the case, denote by 𝐹∕𝐾 the unique
quadratic subextension of 𝐾(𝐽[2])∕𝐾. Then 𝐶 is deficient if and only if (𝑐𝑓, 𝐹∕𝐾) = −1.

Proof. As noted above, wemay assume that each irreducible factor of 𝑓(𝑥) over𝐾 has even degree,
in which case 𝑓(𝑥) has degree 2g + 2. The assumption that 𝐾(𝐽[2])∕𝐾 is cyclic now ensures that
there is indeed a unique quadratic subextension of𝐾(𝐽[2])∕𝐾,𝐹∕𝐾 say, and that 𝑓0(𝑥) factors into
two conjugate polynomials over 𝐹. The result now follows from Proposition 6.7. □

Remark 6.10. Suppose that we are in the situation of Corollary 6.9, so that (g is even and)
𝐾(𝐽[2])∕𝐾 is cyclic. Let 𝐿∕𝐾 be a quadratic extension, say 𝐿 = 𝐾(

√
𝑑) for some 𝑑 ∈ 𝐾×. Then

the quadratic twist of 𝐶 by 𝐿∕𝐾 has Weierstrass equation 𝐶𝐿 ∶ 𝑦2 = 𝑑𝑓(𝑥). As above, we have
𝜖(𝐶∕𝐾) = 0 = 𝜖(𝐶𝐿∕𝐾) unless every irreducible factor of 𝑓(𝑥) over 𝐾 has even degree. In this
latter case, with 𝐹∕𝐾 as in the statement of Corollary 6.9, we see from that result that

(−1)𝜖(𝐶∕𝐾)+𝜖(𝐶𝐿∕𝐾) = (𝑐𝑓, 𝐹∕𝐾)(𝑑𝑐𝑓, 𝐹∕𝐾) = (𝑑, 𝐹∕𝐾).

6.3 Deficiency in terms of the minimal proper regular model

Now suppose that𝐾 is a non-archimedean local field, possibly of characteristic 2, and that𝑋∕𝐾 is
a (not necessarily hyperelliptic) curve of genus g . To conclude the section, we recall a character-
isation of deficiency in terms of the minimal proper regular model of 𝑋. We will make extensive
use of this criterion later.
Let ∕𝐾 denote the minimal proper regular model of 𝑋, and let �̄� denote the base change

to �̄� of its special fibre. Let {Γ𝑖}𝑖∈𝐼 denote the set of irreducible components of �̄�. For each 𝑖 ∈ 𝐼,
let 𝑑𝑖 denote the multiplicity of Γ𝑖 in �̄�, and let orb𝐺𝑘

(Γ𝑖) denote the 𝐺𝑘-orbit of Γ𝑖 .

Lemma 6.11. The curve 𝑋 is deficient over 𝐾 if and only if

gcd𝑖∈𝐼

{
𝑑𝑖 ⋅ ||orb𝐺𝑘

(Γ𝑖)
||}

does not divide g − 1.

Proof. This is observed by Poonen–Stoll; see [51], remark following the proof of Lemma 16. □

Remark 6.12. When 𝑋∕𝐾 is a hyperelliptic curve, we have gcd𝑖∈𝐼{𝑑𝑖 ⋅ |orb𝐺𝑘
(Γ𝑖)|} ∈ {1, 2}. This

follows from [5, Corollary 1.5] and the fact that all hyperelliptic curves have closed points of degree
dividing 2.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1527

7 FIRST CASES OF CONJECTURE 1.7

In this section, we prove Conjecture 1.7 in two cases: when𝐾 is archimedean, andwhen𝐾 has odd
residue characteristic and 𝐽∕𝐾 has good reduction. It will turn out that these are the only cases
needed to prove Theorem 1.10 (in fact, even the case of archimedean 𝐾 is not necessary for this).

7.1 Archimedean local fields

Here, we consider Conjecture 1.7 for archimedean local fields. Clearly, the only case of interest is
the extension ℂ∕ℝ. Let 𝐶∕ℝ be a hyperelliptic curve of genus g and let 𝐽∕ℝ be its Jacobian.

Proposition 7.1. Conjecture 1.7 holds for 𝐶∕ℝ and the extension ℂ∕ℝ.

Proof. We have 𝑤(𝐽∕ℂ) = (−1)g (see, e.g. [54, Lemma 2.1]). Further, by [41, Lemma 10.9 (ii)], we
have |𝐽(ℝ)∕𝑁ℂ∕ℝ𝐽(ℂ)| = 2−g |𝐽(ℝ)[2]|. Denote by 𝐽−1 the quadratic twist of 𝐽 by ℂ∕ℝ, and and
denote by 𝐶−1 the quadratic twist of 𝐶 by ℂ∕ℝ similarly. To verify Conjecture 1.7, we must show
that

(−1)dim 𝐽(ℝ)[2] = (Δ𝐶, ℂ∕ℝ)(−1)𝜖(𝐶∕𝐾)+𝜖(𝐶−1∕𝐾).

Now ℝ(𝐽[2])∕ℝ is cyclic, and (Δ𝐶, ℂ∕ℝ) = 1 if and only if Δ𝐶 is a square in ℝ. Consequently,
Corollary 5.5 gives (−1)dim 𝐽(ℝ)[2] = (Δ𝐶, ℂ∕ℝ), except when g is even and all irreducible factors
of 𝑓(𝑥) over ℝ have even degree. In this latter case, the two expressions differ by a sign. Since
by Corollary 6.9 (cf. also Remark 6.10), this is exactly the case where 𝜖(𝐶∕𝐾) + 𝜖(𝐶−1∕𝐾) = 1, we
have the result. □

7.2 Good reduction in odd residue characteristic

Suppose now that 𝐿∕𝐾 is a quadratic extension of non-archimedean local fields of odd residue
characteristic. Let 𝐶∕𝐾 be a hyperelliptic curve and 𝐽∕𝐾 its Jacobian. We denote by 𝑣 the
normalised valuation on 𝐾.

Proposition 7.2. Suppose that 𝐽 has good reduction over 𝐾. Then Conjecture 1.7 holds for 𝐶 and
the extension 𝐿∕𝐾.

Proof. Since 𝐽 has good reduction over𝐾, we have𝑤(𝐽∕𝐿) = 1, so we are reduced to showing that

(−1)dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = (Δ𝐶, 𝐿∕𝐾)(−1)𝜖(𝐶∕𝐾)+𝜖(𝐶𝐿∕𝐾).

Suppose first that𝐿∕𝐾 is unramified. Then [41, Lemma 10.9 (i)] gives (−1)dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = 1 (this
goes back to a result of Mazur [35, Corollary 4.4]). Moreover, the assumption on the reduction of
𝐽 implies that 𝐾(𝐽[2])∕𝐾 is unramified. Thus, adjoining a square root of Δ𝐶 to 𝐾 produces an
unramified extension. In particular, 𝑣(Δ𝐶) is even and (Δ𝐶, 𝐿∕𝐾) = 1. Finally, Corollary 6.9 gives
(−1)𝜖(𝐶∕𝐾)+𝜖(𝐶𝐿∕𝐾) = 1 also.
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1528 MORGAN

Now suppose that 𝐿∕𝐾 is ramified. This time, [41, Lemma 10.9 (i)] gives

(−1)dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = (−1)dim 𝐽(𝐾)[2].

Moreover, as 𝑣(Δ𝐶) is even, we have (Δ𝐶, 𝐿∕𝐾) = 1 if and only if Δ𝐶 is a square in 𝐾. We now
conclude by Corollary 5.5 and Corollary 6.9. □

8 GLOBAL CONJECTURES IMPLY INSTANCES OF CONJECTURE
1.7

We have already proven enough cases of Conjecture 1.7 to prove Theorem 1.10.

Theorem8.1 (=Theorem 1.10). Let𝐾 be a number field,𝐶∕𝐾 a hyperelliptic curve, 𝐽∕𝐾 its Jacobian
and 𝑣0 a place of 𝐾. If the 2-parity conjecture holds for 𝐽 over every quadratic extension 𝐹∕𝐾, then
Conjecture 1.7 holds for 𝐽∕𝐾𝑣0

and every quadratic extension 𝐿∕𝐾𝑣0
.

Proof. Let 𝐿∕𝐾𝑣0
be a quadratic extension, and write 𝐿 = 𝐾𝑣0

(
√

𝛼). Let 𝑆 be a finite set of places
of 𝐾 containing all places where 𝐽 has bad reduction, all places dividing 2, and all archimedean
places. Set 𝑇 = 𝑆 − {𝑣0}.
Now let 𝐹∕𝐾 be a quadratic extension such that:

∙ each place 𝑣 ∈ 𝑇 splits in 𝐹∕𝐾,
∙ there is exactly one place 𝔳0 of 𝐹 extending 𝑣0,
∙ we have 𝐹𝔳0

= 𝐿.

Explicitly, we may take 𝐹 = 𝐾(
√

𝛽) where 𝛽 ∈ 𝐾 is chosen, by weak approximation, to be
sufficiently close to 𝛼 𝑣0-adically, and sufficiently close to 1 𝑣-adically for all 𝑣 ∈ 𝑇.
With such an extension 𝐹∕𝐾 chosen, for a place 𝑣 of 𝐾 which is non-split in 𝐹∕𝐾, denote by 𝔳

the unique place of 𝐹 extending 𝑣. Then (cf. Theorem 2.1), the products∏
𝑣 place of 𝐾

non-split in 𝐹∕𝐾

𝑤(𝐽∕𝐹𝔳) and
∏

𝑣 place of 𝐾
non-split in 𝐹∕𝐾

(Δ𝐶, 𝐹𝔳∕𝐾𝑣)(−1)dim 𝐽(𝐾𝑣)∕𝑁𝐹𝔳∕𝐾𝑣
𝐽(𝐹𝔳)+𝜖(𝐶∕𝐾𝑣)+𝜖(𝐶𝐹∕𝐾𝑣)

are equal to 𝑤(𝐽∕𝐹) and (−1)rk2(𝐽∕𝐹), respectively, and hence, agree under the assumption that
the 2-parity conjecture holds for 𝐽 over 𝐹.
On the other hand, by Proposition 7.2 and our assumptions on 𝐹∕𝐾, the individual contribu-

tions to these products at a place 𝑣 agree, save possibly at 𝑣 = 𝑣0. Thus, the contributions at 𝑣 = 𝑣0

must agree as well. □

9 UNRAMIFIED EXTENSIONS

Let𝐾 be a non-archimedean local field of characteristic different from 2. In this section, we begin
the study of Conjecture 1.7 for unramified quadratic extensions. Thus, we fix a hyperelliptic curve
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1529

𝐶∕𝐾, and denote by 𝐿∕𝐾 the unique unramified quadratic extension of𝐾. As usual, we denote by
𝐽∕𝐾 the Jacobian of 𝐶. Across Sections 9 and 10, we will prove the following:

Proposition 9.1. Conjecture 1.7 for 𝐶∕𝐾 and the extension 𝐿∕𝐾 holds in each of the following
cases:

(i) the residue characteristic of 𝐾 is odd,
(ii) the residue characteristic of 𝐾 is 2 and 𝐽∕𝐾 has good reduction,
(iii) the residue characteristic of 𝐾 is 2, 𝐶 has genus 2 and 𝐽∕𝐾 has semistable reduction.

To prove this, the key fact we will exploit is that the formation of Néron models and mini-
mal regular models commutes with unramified base change. As 𝐿∕𝐾 is assumed unramified, this
makes the quantities appearing in Conjecture 1.7 comparatively easy to describe and relate to one
another (in particular, it allows us to readily relate invariants of 𝐶 to invariants of the quadratic
twist of 𝐶 by 𝐿∕𝐾). This enables us to reduce Conjecture 1.7 to a statement which depends only on
the curve 𝐶 considered over the maximal unramified extension of 𝐾; see Corollary 9.9. We then
prove this statement under the conditions of Proposition 9.1.
Denote by 𝑘 the residue field of 𝐾, and denote by 𝑘𝐿 the residue field of 𝐿. Further, denote by

𝔣(𝐽∕𝐾) the conductor of 𝐽, and denote byΦ the component group of the special fibre of the Néron
model of 𝐽.

Lemma 9.2. We have

𝑤(𝐽∕𝐿) = (−1)𝔣(𝐽∕𝐾)

and

dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = dim𝐻1(𝑘𝐿∕𝑘, Φ(𝑘𝐿)).

Proof. For the statement about root numbers, see [9, Corollary 4.6]. The statement concerning the
norm map follows from Lemma 3.2 and [35, Proposition 4.3]. □

Lemma 9.2 describes two of the terms appearing in Conjecture 1.7. Moreover, as 𝐿∕𝐾 is
unramified, we have

(Δ𝐶, 𝐿∕𝐾) = (−1)𝑣(Δ𝐶), (9.3)

where 𝑣 denotes the normalised valuation on 𝐾. We thus see that Conjecture 1.7 for 𝐶 and 𝐿∕𝐾 is
equivalent to the assertion

𝔣(𝐽∕𝐾)
?
≡ 𝑣(Δ𝐶) + dim𝐻1(𝑘𝐿∕𝑘, Φ(𝑘𝐿)) + 𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿∕𝐾) (mod 2). (9.4)

Since 𝔣(𝐽∕𝐾) and 𝑣 are unchanged under unramified extension, this predicts that the quantity

dim𝐻1(𝑘𝐿∕𝑘, Φ(𝑘𝐿)) + 𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿∕𝐾) (mod 2) (9.5)
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1530 MORGAN

is unchanged upon replacing 𝐾 by a finite unramified extension 𝐹, and replacing 𝐿 by the unique
quadratic unramified extension 𝐹′∕𝐹. In fact, we can use this observation to predict a simpler
expression for (9.5). We begin with some notation.

Notation 9.6. Denote by  theminimal regular model of𝐶 over𝐾 . For each irreducible compo-
nent Γ of �̄�, write 𝑑(Γ) for its multiplicity. Further, denote by 𝜄 the automorphism of �̄� induced
from the hyperelliptic involution on 𝐶 (which extends to an automorphism of  by uniqueness of
the minimal regular model). We then define

𝜂(𝐶) =

{
1 g even and |orb𝜄(Γ)| ⋅ 𝑑(Γ) ≡ 0 (mod 2) for each irreducible component Γ of �̄� ,

0 otherwise,

where here orb𝜄(Γ) denotes the orbit of an irreducible component Γ under the action of 𝜄.

Now suppose that 𝐹∕𝐾 is a sufficiently large even-degree unramified extension so that𝐺𝑘𝐹
acts

trivially on both Φ(�̄�) and on the set of irreducible components of �̄�. Let 𝐹′∕𝐹 be the unique
quadratic unramified extension. Then we have

𝐻1(𝑘𝐹′∕𝑘𝐹, Φ(𝑘𝐹′)) ≅ Φ(�̄�)[2], 𝜖(𝐶∕𝐹) = 0 and 𝜖(𝐶𝐹′
∕𝐹) = 𝜂(𝐶). (9.7)

The first equality follows from our assumptions on the𝐺𝑘𝐹
-action onΦ(�̄�), alongwith the descrip-

tion of the cohomology of cyclic groups given in [1, Section 8]. The second equality follows from
Lemma6.4 since𝐹∕𝐾 is assumed to have even degree. The third equality follows fromLemma6.11,
our assumptions on the 𝐺𝑘𝐹

-action on the irreducible components of �̄�, and the fact that the for-
mation of the minimal regular model commutes with unramified base change. Indeed, this last
fact allows us to identify the geometric special fibre of the minimal regular model of 𝐶𝐿∕𝐾 with
that of 𝐶∕𝐾, save with 𝐺𝑘-action twisted by 𝜄.
From (9.7), we find

dim𝐻1(𝑘𝐹′∕𝑘𝐹, Φ(𝑘𝐹′)) + 𝜖(𝐶∕𝐹) + 𝜖(𝐶𝐹′
∕𝐹) = dimΦ(�̄�)[2] + 𝜂(𝐶).

Consequently, the discussion precedingNotation 9.6 predicts the following identity, whichwewill
give an unconditional proof of.

Proposition 9.8. With the notation above, we have

dim𝐻1(𝑘𝐿∕𝑘, Φ(𝑘𝐿)) + 𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿∕𝐾) ≡ dimΦ(�̄�)[2] + 𝜂(𝐶) (mod 2).

The proof of Proposition 9.8 that we will give is somewhat lengthy and we postpone it to the
next section.
An immediate corollary of Proposition 9.8 is the following.

Corollary 9.9. Conjecture 1.7 holds for 𝐶∕𝐾 and the extension 𝐿∕𝐾 if and only if

𝔣(𝐽∕𝐾) ≡ 𝑣(Δ𝐶) + dimΦ(�̄�)[2] + 𝜂(𝐶) (mod 2). (9.10)
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1531

Proof. Combine (the discussion surrounding) (9.4) with Proposition 9.8. □

Remark 9.11. In the statement of Proposition 9.8, it is not simply true that

dim𝐻1(𝑘𝐿∕𝑘, Φ(𝑘𝐿)) ≡ dimΦ(�̄�)[2] (mod 2)

and

𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿∕𝐾) ≡ 𝜂(𝐶) (mod 2),

as the following example shows.

Example 9.12. Consider the genus 2 hyperelliptic curve

𝐶∕ℚ3 ∶ 𝑦2 = (𝑥2 + 3)((𝑥 − 𝑖)2 − 32)((𝑥 + 𝑖)2 − 32),

where 𝑖 is a square root of−1. Reducing the defining equation modulo 3 gives a semistable curve.
In fact, the above equation viewed as a scheme over ℤ3, along with the usual chart at infinity,
gives the stable model of 𝐶. After base changing to ℤnr

3
, its special fibre consists of two rational

curves, intersecting transversally at the three points (0,0), (𝑖, 0) and (−𝑖, 0). The final two inter-
section points are swapped by the Frobenius element 𝐹 ∈ 𝐺𝑘, whilst the hyperelliptic involution
𝜄 ∶ (𝑥, 𝑦) ↦ (𝑥,−𝑦) fixes each intersection point but swaps the two components. The minimal
proper regular model of 𝐶 over ℤnr

3
is obtained by blowing up once each at the intersection points

(𝑖, 0) and (−𝑖, 0). Its special fibre, along with the actions of 𝐹 and 𝜄, is thus as pictured:

Here, each component pictured is a rational curve of multiplicity 1. Write 𝐿 = ℚ3(𝑖) for the
unique unramified quadratic extension of ℚ3. Since 𝐹 fixes the two components drawn horizon-
tally, we see from Lemma 6.11 that 𝜖(𝐶∕ℚ3) = 0. Similarly, we have 𝜂(𝐶) = 0 since 𝜄 fixes the two
components drawn vertically. However, each 𝜄◦𝐹-orbit of components has size 2, so appealing to
Lemma 6.11 once more, we find 𝜖(𝐶𝐿∕ℚ3) = 1. Thus,

𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿∕𝐾) ≢ 𝜂(𝐶) (mod 2).

However, one can also show (e.g. using the description of Φ(�̄�) detailed later in Section 10.1)
that Φ(�̄�) ≅ ℤ∕8ℤ with 𝐹 acting as multiplication by 5. Thus, we have

dimΦ(�̄�)[2] = 1 and dim𝐻1(𝑘𝐿∕𝑘, Φ(𝑘𝐿)) = 0.

In particular, Proposition 9.8 holds in this example, even though neither of the individual
congruences in Remark 9.11 holds.
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1532 MORGAN

9.1 Establishing Equation 9.10 in odd residue characteristic

Assume that the residue characteristic of 𝐾 is odd. Under this assumption, we now establish the
congruence Equation 9.10.

Lemma 9.13. We have

𝔣(𝐽∕𝐾) = 𝔣(𝐽[2]) + dimΦ(�̄�)[2],

where here 𝔣(𝐽[2]) denotes the Artin conductor of the 𝐺𝐾-module 𝐽[2].

Proof. This is observed by Česnavičius in [9, Lemma 4.2] (we remark that the cited result uses the
assumption that 𝐾 has odd residue characteristic). □

In light of Lemma 9.13, to establish Equation 9.10, it remains to show that

𝔣(𝐽[2]) ≡ 𝑣(Δ𝐶) + 𝜂(𝐶) (mod 2). (9.14)

Fix a Weierstrass equation 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) for 𝐶, where 𝑓(𝑥) ∈ 𝐾[𝑥] is a squarefree polyno-
mial. After a change of variables to ensure that the resulting ‘𝑥-coordinate’ morphism from 𝐶

to ℙ1 is unramified over the point at infinity, we can assume that 𝑓(𝑥) has even degree 2g + 2.
Let 𝐸∕𝐾nr be the field extension 𝐸 = 𝐾nr(𝐽[2]), and set 𝐺 = Gal(𝐸∕𝐾nr). As explained in Sec-
tion 5, 𝐸 coincides with the splitting field of 𝑓(𝑥) over 𝐾nr (recall that we are assuming g ⩾ 2).
Let 𝐺 = 𝐺0 ⊳ 𝐺1 ⊳ 𝐺2 ⊳ … be the ramification filtration on 𝐺, and write g𝑖 = |𝐺𝑖|. Thus, 𝐺1 is the
wild inertia group of 𝐸∕𝐾nr and is a 𝑝-group where 𝑝 = char(𝑘) (so, in particular, has odd order),
and 𝐺∕𝐺1 is cyclic. Let denote the 𝐺-set of roots of 𝑓(𝑥) in 𝐸. By definition, we have

𝔣(𝐽[2]) =

∞∑
𝑖=0

g𝑖
g0
codim𝔽2

𝐽[2]𝐺𝑖 ,

the codimension being taken in 𝐽[2].

Notation 9.15. With 𝑓(𝑥) ∈ 𝐾[𝑥] as above, define 𝜂(𝑓) ∈ {0, 1} to be equal to 1 if the genus g of
𝐶 is even and each irreducible factor of 𝑓(𝑥) over 𝐾nr has even degree. Otherwise, set 𝜂(𝑓) = 0.

Lemma 9.16. Let 𝑉 = ℂ[] be the complex permutation representation of 𝐺 associated to the set
of roots of 𝑓(𝑥). Then we have

𝔣(𝐽[2]) ≡ 𝔣(𝑉) + 𝜂(𝑓) (mod 2).

Proof. This will follow from the definitions of 𝔣(𝐽[2]) and 𝔣(𝑉), along with a comparison between
codimℂ𝑉

𝐺𝑖 and codim𝔽2
𝐽[2]𝐺𝑖 for each 𝑖 (afforded by Lemma 5.3).

First let 𝑖 ⩾ 1 so that 𝐺𝑖 has odd order. Then necessarily, 𝑓(𝑥) has an odd degree fac-
tor over 𝐸𝐺𝑖 , so it follows from Lemma 5.3 that dim𝔽2

𝐽[2]𝐺𝑖 = dimℂ 𝑉𝐺𝑖 − 2. Since also

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12565 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1533

dim𝔽2
𝐽[2] = dimℂ 𝑉 − 2, we see that

∞∑
𝑖=1

g𝑖
g0
codim𝔽2

𝐽[2]𝐺𝑖 =

∞∑
𝑖=1

g𝑖
g0
codimℂ𝑉

𝐺𝑖 .

It remains to show that

codim𝔽2
𝐽[2]𝐺 ≡ codimℂ𝑉

𝐺 + 𝜂(𝑓) (mod 2).

When g is even, Lemma 5.3 gives dim𝔽2
𝐽[2]𝐺 = dimℂ 𝑉𝐺 − 2 + 𝜂(𝑓) and we are done. So, sup-

pose that g is odd. If 𝑓(𝑥) has an odd degree factor over𝐾nr, then again, we conclude immediately
from Lemma 5.3. Finally, suppose that each irreducible factor of 𝑓(𝑥) over 𝐾nr has even degree.
Write 𝑓(𝑥) = 𝑐𝑓𝑓0(𝑥) where 𝑐𝑓 is the leading coefficient of 𝑓(𝑥) and 𝑓0(𝑥) is monic. Applying
Lemma 5.3, once again it suffices to show that there is a unique quadratic subextension of 𝐸∕𝐾nr

over which 𝑓0(𝑥) factors into two distinct, conjugate polynomials. To see this, firstly note that
there is a unique quadratic subextension of 𝐸∕𝐾nr. Indeed, any such extension must necessarily
be contained in𝐸𝐺1 , and𝐸𝐺1∕𝐾nr is cyclic and (by the assumption on the degrees of the irreducible
factors of 𝑓(𝑥) over 𝐾nr) has even degree. To see that 𝑓0(𝑥) admits the required factorisation over
this extension, let 𝑆 = {ℎ1, … , ℎ𝑙} be the set of irreducible factors of 𝑓0(𝑥) over 𝐸𝐺1 , each of which
necessarily has odd degree. The cyclic group𝐺∕𝐺1 acts on 𝑆 and since each factor of𝑓0(𝑥) over𝐾nr

has even degree, each orbit of 𝐺∕𝐺1 on 𝑆 has even order. Denote these disjoint orbits by 𝑆1, … , 𝑆𝑡,
and for 1 ⩽ 𝑖 ⩽ 𝑡, write 𝑆𝑖 = {ℎ𝑖,1(𝑥), … , ℎ𝑖,𝑑𝑖

(𝑥)}. Fix a generator 𝜎 of 𝐺∕𝐺1 and assume without
loss of generality that 𝜎ℎ𝑖,𝑗(𝑥) = ℎ𝑖,𝑗+1(mod 𝑑𝑖)

(𝑥). Then the polynomial

ℎ(𝑥) =

𝑡∏
𝑖=1

∏
𝑗 odd

ℎ𝑖,𝑗(𝑥)

is fixed by 𝜎2, has 𝜎ℎ(𝑥) ≠ ℎ(𝑥) and is such that 𝑓0(𝑥) = ℎ(𝑥) ⋅ 𝜎ℎ(𝑥). □

Next, we relate the Artin conductor of 𝑉 = ℂ[] to the discriminant Δ𝑓 of 𝑓(𝑥).

Lemma 9.17. Let 𝑉 = ℂ[] be as above. Then

𝔣(𝑉) ≡ 𝑣(Δ𝑓) (mod 2).

Proof. Write 𝑓(𝑥) = 𝑓1(𝑥)…𝑓𝑡(𝑥) as a product of irreducible polynomials over𝐾, andwrite𝑖 for
the set of roots of𝑓𝑖(𝑥) in𝐸. Then𝑉 is a direct sumof the permutationmodules𝑉𝑖 = ℂ[𝑖], so 𝔣(𝑉)

is the sum of the 𝔣(𝑉𝑖). Further, since for polynomials ℎ1, ℎ2, we have Δℎ1ℎ2
= Δℎ1

Δℎ2
Res(ℎ1, ℎ2)

2

(here Res(ℎ1, ℎ2) denotes the resultant of ℎ1, ℎ2), we see that the discriminant of 𝑓(𝑥) is, up to
squares in 𝐾, the product of the discriminants of the 𝑓𝑖(𝑥). In this way, we reduce to the case
where 𝑓(𝑥) is irreducible, which we treat now.
Assuming that 𝑓(𝑥) is irreducible, let 𝐹∕𝐾 be the splitting field of 𝑓(𝑥) and let 𝐻 be the sta-

biliser in Gal(𝐹∕𝐾) of a root 𝑟 ∈ . Then𝑉 ≅ ℂ[Gal(𝐹∕𝐾)∕𝐻], so by the conductor-discriminant
formula [57, VI.2 corollary to Proposition 4], we have 𝔣(𝑉) = 𝑣(Δ𝐹𝐻∕𝐾), where Δ𝐹𝐻∕𝐾 denotes the
discriminant of 𝐹𝐻∕𝐾. Since 𝐹𝐻 = 𝐾(𝑟), we have 𝑣(Δ𝐹𝐻∕𝐾) ≡ 𝑣(Δ𝑓) (mod 2), as desired. □
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1534 MORGAN

Combined,9.16, 9.17 establish the congruence

𝔣(𝐽[2]) ≡ 𝑣(Δ𝑓) + 𝜂(𝑓) (mod 2). (9.18)

To prove Equation 9.10, it remains to reinterpret the ‘correction’ term 𝜂(𝑓).

Lemma 9.19. Let 𝐹∕𝐾 be a finite unramified extension and denote by 𝐹′∕𝐹 the unique quadratic
unramified extension of 𝐹. Then, provided that 𝐹∕𝐾 is sufficiently large, we have 𝜂(𝑓) = 𝜖(𝐶𝐹′

∕𝐹).
In particular, we have 𝜂(𝑓) = 𝜂(𝐶).

Proof. Arguing as in the proof of Lemma 9.16, we see that 𝑓(𝑥) either has an odd degree factor over
𝐾nr, or factors as a product of two conjugate polynomials over the unique quadratic extension of
𝐾nr (whilst this is shown in the proof of Lemma 9.16 under a running assumption that g is odd,
the argument given there works verbatim when g is even also). From this, we deduce that for
every sufficiently large unramified extension 𝐹∕𝐾, either 𝑓(𝑥) has an odd degree factor over 𝐹,
or 𝑓(𝑥) factors as a product of two conjugate polynomials over some totally ramified quadratic
extension 𝐿∕𝐹 (the latter happening if and only if each irreducible factor of 𝑓(𝑥) over 𝐾nr has
even degree). In the latter case, by enlarging 𝐹∕𝐾 further if necessary we may also assume that
the leading coefficient of 𝑓(𝑥) is a norm from this quadratic extension. Since the quadratic twist
𝐶𝐹′

∕𝐹 is given by the equation 𝐶𝐹′
∶ 𝑦2 = 𝑢𝑓(𝑥)where 𝑢 is a non-square unit in 𝐹, the claim that

𝜂(𝑓) = 𝜖(𝐶𝐹′
∕𝐹) follows from Proposition 6.7 and the fact that (𝑢, 𝐿∕𝐹) = −1. That 𝜂(𝑓) = 𝜂(𝐶)

now follows from (9.7). □

Corollary 9.20. Under the assumption that 𝐾 has odd residue characteristic, (9.10) holds for 𝐶.

Proof. Lemma 9.19 allows us to replace 𝜂(𝑓) with 𝜂(𝐶) in (9.18), hence establishing (9.14).
Combining this with Lemma 9.13 gives the result. □

9.2 Residue characteristic 2

Wenow give certain conditions under which the congruence (9.10) holds (or rather, can be shown
to hold) when the residue characteristic of 𝐾 is 2. Thus, for the rest of this subsection, we assume
that 𝐾 is a finite extension of ℚ2.

9.2.1 Good reduction of the Jacobian

If the Jacobian 𝐽∕𝐾 of 𝐶 has good reduction, then we have

𝔣(𝐽∕𝐾) = 0 and Φ(�̄�) = 0. (9.21)

Moreover, we have the following.

Proposition 9.22. Under the assumption that 𝐽∕𝐾 has good reduction, we have

𝑣(Δ𝐶) ≡ 0 (mod 2).
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1535

Proof. Let  ∕𝐾 be the Néron model of 𝐽. The assumption that 𝐽 has good reduction over
𝐾 implies that  [2] is a finite flat group scheme over 𝐾 [39, Proposition 20.7]. Letting 𝑒

denote the absolute ramification index of 𝐾, it is a theorem of Fontaine that 𝐺𝑢
𝐾
acts trivially on

 [2](�̄�) = 𝐽[2] provided 𝑢 > 2𝑒 − 1 [21, Théorème A]. Note that we are using Serre’s upper
numbering for the higher ramification groups. Let 𝐹 = 𝐾(

√
Δ𝐶) and 𝐺 = Gal(𝐹∕𝐾), noting that

𝐹 ⊆ 𝐾(𝐽[2]). Combining the above discussion with Herbrand’s theorem (see, e.g. [57, IV, Lemma
3.5]), we see that 𝐺𝑢 is trivial for 𝑢 ⩾ 2𝑒. In particular, the conductor of 𝐹∕𝐾, which we denote
𝔣(𝐹∕𝐾), satisfies 𝔣(𝐹∕𝐾) ⩽ 2𝑒.
Now suppose, for contradiction, that 𝑣(Δ𝐶) is odd. We thus have 𝐹 = 𝐾(

√
𝜋) for some

uniformiser 𝜋 of 𝐾. Letting 𝜎 denote the non-trivial element of 𝐺, this gives

𝑣𝐹

(
𝜎
(√

𝜋
)

−
√

𝜋
)

= 𝑣𝐹(2) + 1 = 2𝑒 + 1,

where 𝑣𝐹 denotes the normalised valuation on 𝐹. From this, we obtain 𝔣(𝐹∕𝐾) = 2𝑒 + 1,
contradicting the bound above. Thus, 𝑣(Δ𝐶) is even. □

Remark 9.23. This proposition is trivially true also if 𝐽 has good reduction and the residue char-
acteristic of 𝐾 is odd. Indeed, then 𝐽[2] is unramified, so Δ𝐶 is a square in 𝐾nr. In particular, Δ𝐶

has even valuation.

Lemma 9.24. Under the assumption that 𝐽∕𝐾 has good reduction, we have 𝜂(𝐶) = 0.

Proof. Let ∕𝐾 denote the minimal regular model of 𝐶. Since 𝐽 has good reduction, the curve
𝐶∕𝐾 is semistable and the dual graph of �̄� is a tree [29, Proposition 10.1.51].† Moreover, as there
are no exceptional curves in �̄�, each leaf corresponds to a positive genus component (which nec-
essarily has multiplicity 1). Since the quotient of �̄� by the hyperelliptic involution has arithmetic
genus zero, the hyperelliptic involution necessarily fixes every leaf, and hence acts trivially on the
dual graph. □

Corollary 9.25. If 𝐽∕𝐾 has good reduction, then (9.10) holds for 𝐶.

Proof. Combine (9.21) with Proposition 9.22 and Lemma 9.24. □

9.2.2 Semistable curves of genus 2

When the genus of 𝐶 is 2, we can draw on results of Liu [30] to establish additional cases of (9.10).

Proposition 9.26. Suppose that 𝐶∕𝐾 is semistable and has genus 2. Then (9.10) holds for 𝐶.

Proof. This follows from Liu’s genus 2 version of Ogg’s formula [30, Theorem 1]. Specifically,
combining Theorem 1, Theorem 2 and Proposition 1 of [30], one obtains (independently of the

† By definition, the dual graph of �̄� is the finite connected graph with a vertex for each irreducible component of �̄� , and
such that vertices corresponding to components Γ1 and Γ2 are joined by one edge for each ordinary double point of �̄�

lying on both Γ1 and Γ2.
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1536 MORGAN

residue characteristic of 𝐾)

𝔣(𝐽∕𝐾) ≡ 𝑣(Δ𝐶) + 𝑛 − 1 +
𝑑 − 1

2
(mod 2),

where 𝑛 is the number of irreducible components of �̄� (as usual  denotes the minimal reg-
ular model of 𝐶 over 𝐾) and where 𝑑 is defined in the statement of Liu’s Theorem 1. In [30,
Section 5.2], Liu computes the term 𝑑−1

2
in a large number of cases, though not all in residue

characteristic 2, in terms of the structure of �̄� (more specifically, in terms of the ‘type’ of �̄� as
classified in [43] and [47]). This includes in particular all cases where 𝐶∕𝐾 has semistable reduc-
tion. It is then easy to establish Equation 9.10 for all semistable curves of genus 2 by combining
this with the description, detailed in [31, Section 8], of the component group of a genus 2 curve in
terms of its type. □

9.3 Proof of Proposition 9.1

The above results combine to prove Proposition 9.1, conditional on the soon to be proven
Proposition 9.8.

Proof of Proposition 9.1 (Conditional onProposition 9.8). CombineCorollary 9.9withCorollary 9.20
in Case (i), Corollary 9.25 in Case (ii) and Proposition 9.26 in Case (iii). □

10 THE PROOF OF PROPOSITION 9.8

Maintaining the setup of the previous section, we now turn to proving Proposition 9.8. We will
deduce this from Theorem 10.2. This is a result applying to arbitrary curves, and which may
be of independent interest. We begin by recalling a well-known description of the component
group Φ(�̄�) of the Jacobian of a (not necessarily hyperelliptic) curve in terms of its minimal
regular model.

10.1 The component group via the minimal regular model

See [5, Section 1] and [6, Chapter 9] for details of what follows. Let 𝑋 be a smooth, proper, geo-
metrically connected curve of genus g over 𝐾, let ∕𝐾 be its minimal proper regular model and
let �̄� denote the special fibre of  , base-changed to �̄�. Let {Γ𝑖}𝑖∈𝐼 be the set of irreducible com-
ponents of �̄�. For each 𝑖 ∈ 𝐼, denote by 𝑑𝑖 the multiplicity of Γ𝑖 . Let ℤ𝐼 denote the free ℤ-module
on the Γ𝑖 ’s and define 𝛼 ∶ ℤ𝐼 → ℤ𝐼 by

𝛼(𝐷) =
∑
𝑖∈𝐼

(𝐷 ⋅ Γ𝑖)Γ𝑖,

where 𝐷 ⋅ Γ𝑖 is the intersection number between 𝐷 and Γ𝑖 . Further, define 𝛽 ∶ ℤ𝐼 → ℤ by setting
𝛽(Γ𝑖) = 𝑑𝑖 and extending linearly. The natural action of𝐺𝑘 on�̄� makesℤ𝐼 into a𝐺𝑘-module, and
𝛼 is equivariant for this action. Endowing ℤ with trivial 𝐺𝑘-action, the same is true of 𝛽. In this
way, both im(𝛼) and ker(𝛽) become 𝐺𝑘-modules.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1537

Let 𝐽∕𝐾 be the Jacobian of 𝑋, and denote by Φ its Néron component group. As explained in [5,
Theorem 1.1], by work of Raynaud, we have an exact sequence of 𝐺𝑘-modules

0 ⟶ im(𝛼) ⟶ ker(𝛽) ⟶ Φ(�̄�) ⟶ 0. (10.1)

Denoting by 𝐹 ∈ 𝐺𝑘 the Frobenius element, we thus have

||Φ(𝑘)|| = |||(ker(𝛽)∕im(𝛼))
𝐹|||.

Note that 𝐹 acts on ℤ𝐼 as a permutation of 𝐼, commuting with 𝛼 and 𝛽, and preserving the
arithmetic genus of components.
We recall also from Lemma 6.11 that 𝑋 is deficient over 𝐾 if and only if

gcd𝑖∈𝐼{𝑑𝑖 ⋅ |orb𝐹(Γ𝑖)|}
does not divide g − 1, where orb𝐹(Γ𝑖) denotes the 𝐹-orbit of Γ𝑖 (for the application of Lemma 6.11,
note that since 𝐹 topologically generates 𝐺𝑘 and �̄� has only finitely many irreducible
components, we have orb𝐹(Γ𝑖) = orb𝐺𝑘

(Γ𝑖) for every 𝑖 ∈ 𝐼).

10.2 The result for general curves: Statement

Maintaining the notation of the previous subsection, denote by 𝔊 the group of all permutations
of 𝐼 commuting with the maps 𝛼 and 𝛽 and preserving the arithmetic genus of components. By
assumption,𝔊 acts on im(𝛼) and ker(𝛽). Via the sequence (10.1), we have an induced action of𝔊
on Φ(�̄�). For 𝜎 ∈ 𝔊, we define

𝑞(𝜎) =

{
1 gcd𝑖∈𝐼{𝑑𝑖 ⋅ |orb𝜎(Γ𝑖)|} divides g − 1,

2 otherwise.

In particular, viewing the Frobenius 𝐹 ∈ 𝐺𝑘 as an element of𝔊, we have 𝑞(𝐹) = 2𝜖(𝑋∕𝐾).
We will obtain Proposition 9.8 as a consequence of the following.

Theorem 10.2. Let𝔊 be as above. Then, the map 𝐷 ∶ 𝔊 → ℚ×∕ℚ×2 defined by

𝐷(𝜎) = 𝑞(𝜎) ⋅
||Φ(�̄�)||||Φ(�̄�)𝜎||

is a homomorphism.

Before proving Theorem 10.2, we explain how to use it to deduce Proposition 9.8.

10.3 Deducing Proposition 9.8 from Theorem 10.2

Proof of Proposition 9.8 (conditional on Theorem 10.2). Maintaining the notation above, sup-
pose 𝑋 = 𝐶 is a hyperelliptic curve over 𝐾. The hyperelliptic involution 𝜄 of 𝐶 extends to an
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1538 MORGAN

automorphism of the minimal regular model of 𝐶, and may therefore be viewed as an element
of𝔊. Moreover, as the induced automorphism 𝜄∗ of the Jacobian of 𝐶 is multiplication by −1, the
action on Φ induced by 𝜄 is multiplication by −1 also (cf. proof of [5, Theorem 1.1]). Thus,

Φ(�̄�)[2] = Φ(�̄�)𝜄.

Let 𝐿 denote the unique quadratic unramified extension of 𝐾 and, as usual, denote by 𝐹 the
Frobenius element in 𝐺𝑘. Then, we have

|||𝐻1(𝑘𝐿∕𝑘, Φ(𝑘𝐿))
||| =

|||||||
ker

(
1 + 𝐹|Φ(�̄�)𝐹

2
)

im
(
1 − 𝐹|Φ(�̄�)𝐹2

) ||||||| =
||Φ(�̄�)𝜄◦𝐹|| ⋅ ||Φ(�̄�)𝐹|||||Φ(�̄�)𝐹2 ||| .

Here, for the first equality, we are using the description of the cohomology of cyclic groups given
in [1, Section 8].
From Lemma 6.4, we have 𝜖(𝐶∕𝐿) = 0, hence 𝑞(𝐹2) = 1. Moreover, we have 𝜂(𝐶) = ord2 𝑞(𝜄),

𝜖(𝐶∕𝐾) = ord2 𝑞(𝐹), and 𝜖(𝐶𝐿∕𝐾) = ord2 𝑞(𝜄◦𝐹). To obtain the last equality, we note that, since
the formation of minimal regular models commutes with unramified base change, we may iden-
tify the geometric special fibre of the minimal regular model of 𝐶𝐿∕𝐾 with that of 𝐶∕𝐾, save with
𝐺𝑘-action twisted by the hyperelliptic involution.
On the other hand, it follows from Theorem 10.2 that

𝐷(𝐹)𝐷(𝜄◦𝐹)𝐷(𝐹2) = 𝐷(𝜄)

as elements of ℚ×∕ℚ×2. Taking 2-adic valuations of this equation, and interpreting the resulting
terms via the discussion above, we obtain the congruence of Proposition 9.8. □

10.4 Proof of Theorem 10.2

In what follows we take the notation introduced in the statement of Theorem 10.2.

Lemma 10.3. For each 𝜎 ∈ 𝔊, we have

𝐷(𝜎) =
|||det (𝛼|(𝜎 − 1)ℚ𝐼

)|||.
(That is, as elements of ℚ×∕ℚ×2, 𝐷(𝜎) is the absolute value of the determinant of 𝛼 viewed as an
endomorphism of (𝜎 − 1)ℚ𝐼 .)

Proof. Fix𝜎 ∈ 𝔊, define𝑑 = gcd𝑖∈𝐼{𝑑𝑖} and𝑑′(𝜎) = gcd𝑖∈𝐼{|orb𝜎(Γ𝑖)| ⋅ 𝑑𝑖}. By [5, Proof of Theorem
1.17], we have

||Φ(�̄�)𝜎|| ⋅ 𝑞(𝜎) =
||||ker(𝛽)𝜎im(𝛼)𝜎

|||| ⋅ 𝑑′(𝜎)

𝑑
.

We remark that, in order to apply the cited result, we are using the assumption that 𝔊 preserves
the arithmetic genus of components.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1539

In what follows, to ease notation, we write Λ for the ℤ[𝔊]-module ℤ𝐼 . Now

ker(𝛽)𝜎∕im(𝛼)𝜎 ≅ ker
(
𝛽 ∶ Λ𝜎∕im(𝛼)𝜎 ⟶ 𝑑′(𝜎)ℤ

)
.

We now apply the snake lemma to the commutative diagram with exact rows

where each vertical arrow is induced by 𝛽. Noting that all vertical arrows are surjective, this gives

𝐷(𝜎) =
𝑑𝑞(𝜎)2

𝑑′(𝜎)
| ker(𝛽3)| = 𝑞(𝜎)2

𝑑2

𝑑′(𝜎)2

|||| Λ

im(𝛼) + Λ𝜎

||||.
Thus, as a function𝔊 → ℚ×∕ℚ×2, we have

𝐷(𝜎) =
|||| Λ

im(𝛼) + Λ𝜎

||||.
Now 𝜎 − 1 induces an isomorphism

Λ

im(𝛼) + Λ𝜎

∼
⟶

(𝜎 − 1)Λ

(𝜎 − 1)𝛼(Λ)
=

(𝜎 − 1)Λ

𝛼((𝜎 − 1)Λ)
,

where for the last equality, we use that 𝜎 commutes with 𝛼.
To conclude, note that (𝜎 − 1)Λ is a free ℤ-module of finite rank, and 𝛼 is a linear

endomorphism of this group. By properties of Smith normal form, the order of the group

(𝜎 − 1)Λ

𝛼((𝜎 − 1)Λ)

is equal to the absolute value of the determinant of 𝛼 as an endomorphism of the ℚ-vector space
(𝜎 − 1)ℚ𝐼 . This gives the result. □

The passage from ℤ[𝔊]-modules to ℚ[𝔊]-modules provided by Lemma 10.3 allows us to make
use of representation theory in characteristic zero. Note that thematrix representing 𝛼 onℚ𝐼 with
respect to the natural permutation basis is symmetric (it is just the intersection matrix associated
to �̄�). We thus see that the minimal polynomial of 𝛼 as an endomorphism of ℚ𝐼 splits over ℝ.
Moreover, the kernel of 𝛼 is (

∑
𝑖∈𝐼 𝑑𝑖Γ𝑖) ⋅ ℚ, which is fixed by𝔊. These observationsmotivate (and

allow us to apply) the following lemmas.

Lemma 10.4. Let 𝐺 be a finite cyclic group with generator 𝜎, and let 𝑉 be a ℚ[𝐺]-representation.
Let 𝛼 ∈ Endℚ[𝐺]𝑉 be a 𝐺-endomorphism of 𝑉 whose minimal polynomial splits over ℝ and is such
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1540 MORGAN

that ker(𝛼) ⊆ 𝑉𝐺 . Then

det (𝛼|(𝜎 − 1)𝑉) ≡ det
(
𝛼|𝑉−1,𝜎

)
(mod ℚ×2),

where 𝑉−1,𝜎 is the (−1)-eigenspace for 𝜎 on 𝑉.

Proof. Let 𝑉 =
⨁𝑛

𝑖=1 𝑉
𝑑𝑖

𝑖
be an isotypic decomposition of 𝑉, so that each 𝑉𝑖 is an irreducible

ℚ[𝐺]-representation and 𝑉𝑖 ≇ 𝑉𝑗 for 𝑖 ≠ 𝑗. Suppose, without loss of generality, that 𝑉1 is the
trivial representation. Now 𝛼 preserves this decomposition and (𝜎 − 1)𝑉 =

⨁𝑛
𝑖=2 𝑉

𝑑𝑖

𝑖
. Since

ker(𝛼) ⊆ 𝑉𝐺 , the restriction of𝛼 to each𝑉
𝑑𝑖

𝑖
is non-singular. Thus,we reduce to the casewhere𝛼 is

non-singular and𝑉 = 𝑊𝑑 for an irreducible non-trivialℚ[𝐺]-representation𝑊. Let𝜒 be the char-
acter of a complex irreducible constituent of𝑊. We can suppose that 𝜒 is non-real (so that 𝜒(𝜎) ∉

{±1}), in which case we wish to show that det(𝛼) ∈ ℚ×2. Now Endℚ[𝐺]𝑉 ≅ Mat𝑑(Endℚ[𝐺]𝑊) is a
finite-dimensional simple algebra over ℚ. Set 𝐷 = Endℚ[𝐺]𝑊 so that 𝐷 is a division algebra, and
let 𝐾∕ℚ be the centre of 𝐷. We have 𝐾 ≅ ℚ(𝜒) as ℚ-algebras, where ℚ(𝜒) is the character field
of 𝜒. See, for example, [53] for proofs of the representation-theoretic facts used above. Note that
𝐾∕ℚ is abelian.
Now via the diagonal embedding of 𝐾 into Endℚ[𝐺]𝑉, 𝑉 becomes a 𝐾[𝐺]-module. Since 𝐾 is

the centre of Endℚ[𝐺]𝑉, each ℚ[𝐺]-endomorphism of 𝑉 is in fact 𝐾-linear, so we may view 𝛼 as a
𝐾[𝐺]-endomorphism of𝑉. Denoting det𝐾(𝛼) the determinant of 𝛼 viewed as a𝐾-endomorphism,
we have

det(𝛼) = 𝑁𝐾∕ℚ(det𝐾(𝛼))

(see, e.g. [7, Theorem A.1]).
As 𝜒 is assumed non-real, the field 𝐾 in not totally real, and hence, there is an index 2 totally

real subfield 𝐾+ of 𝐾 (recall that 𝐾∕ℚ is abelian). We claim that det(𝛼) is in 𝐾+. Indeed, since
the minimal polynomial of 𝛼 as a ℚ-endomorphism of 𝑉 splits over ℝ, each root of the minimal
polynomial of 𝛼 as a 𝐾-endomorphism of 𝑉 is totally real. It follows that det(𝛼) is a product of
totally real numbers, hence in 𝐾+. Thus,

det(𝛼) = 𝑁𝐾∕ℚ(det𝐾(𝛼)) = 𝑁𝐾+∕ℚ(det𝐾(𝛼))2 ∈ ℚ×2

as desired. □

Lemma 10.5. Let 𝐺 be a finite group and 𝑉 a ℚ[𝐺]-representation. Let 𝛼 ∈ Endℚ[𝐺]𝑉 be a 𝐺-
endomorphism of 𝑉 whose minimal polynomial splits over ℝ and is such that ker(𝛼) ⊆ 𝑉𝐺 . Then
the function 𝜙 ∶ 𝐺 → ℚ×∕ℚ×2 defined by

𝜙(𝜎) = det
(
𝛼|𝑉−1,𝜎

)
is a homomorphism.

Proof. Similarly to the proof of Lemma 10.4, by considering an isotypic decomposition of 𝑉,
we reduce to the case where 𝛼 is non-singular and 𝑉 = 𝑊𝑑 for some 𝑑 ⩾ 1 and irreducible
ℚ[𝐺]-representation 𝑊. As in that proof, let 𝐷 be the division algebra 𝐷 = Endℚ[𝐺]𝑊 so that
Endℚ[𝐺]𝑉 ≅ Mat𝑑(𝐷), let 𝐾∕ℚ be the centre of 𝐷 and let 𝜒 be the character of a complex
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1541

irreducible constituent of𝑊. Once again, we have 𝐾 ≅ ℚ(𝜒), 𝐾∕ℚ is abelian and we may view 𝛼

as a 𝐾[𝐺]-endomorphism of 𝑉. Moreover, we similarly have

det
(
𝛼|𝑉−1,𝜎

)
= 𝑁𝐾∕ℚ

(
det𝐾

(
𝛼|𝑉−1,𝜎

))
for all 𝜎 ∈ 𝐺. Denoting by 𝜙𝐾 the function 𝐺 → 𝐾×∕𝐾×2 given by

𝜙𝐾(𝜎) = det𝐾
(
𝛼|𝑉−1,𝜎

)
,

we thus have 𝜙 = 𝑁𝐾∕ℚ◦𝜙𝐾 .
First suppose that 𝐾 is not totally real. Then there is an index 2 totally real subfield 𝐾+ of 𝐾.

Since the minimal polynomial of 𝛼 as aℚ-endomorphism of 𝑉 splits over ℝ, det𝐾(𝛼|𝑉−1,𝜎) lies in
𝐾+. Thus,

𝜙(𝜎) = 𝑁𝐾∕ℚ◦𝜙𝐾(𝜎) =
(
𝑁𝐾+∕ℚ◦𝜙𝐾(𝜎)

)2
∈ ℚ×2,

hence 𝜙 is trivial in this case.
Now assume that 𝐾 is totally real, or equivalently that 𝜒 is real valued. Let 𝑚 be the Schur

index of 𝜒 (over ℚ or equivalently 𝐾). Suppose first that 𝜒 is realisable over ℝ. Then, via a chosen
embedding𝐾 ↪ ℝ, wehave𝑉 ⊗𝐾 ℝ ≅ 𝑈𝑚𝑑 for some absolutely irreducible real representation𝑈.
Fix 𝜎 ∈ 𝐺. Then𝑉−1,𝜎 ⊗𝐾 ℝ = (𝑉 ⊗𝐾 ℝ)−1,𝜎 = (𝑈−1,𝜎)

𝑚𝑑. View 𝛼 as amatrix𝑀 ∈ Mat𝑚𝑑(ℝ) via
the identificationEndℝ[𝐺](𝑈

𝑚𝑑) ≅ Mat𝑚𝑑(Endℝ[𝐺]𝑈) = Mat𝑚𝑑(ℝ). The determinant of𝛼, viewed
as a 𝐾-endomorphism of (𝑈−1,𝜎)

𝑚𝑑, is then equal to det(𝑀)dim𝑈−1,𝜎 . In fact, one sees that det(𝑀)

is equal to Nrd(𝛼) ∈ 𝐾× where here Nrd denotes the reduced norm on the central simple algebra
𝐴 = Endℚ[𝐺]𝑉 over 𝐾.
We claim that the congruence

dim𝑈−1,𝜎 + dim𝑈−1,𝜏 ≡ dim𝑈−1,𝜎𝜏 (mod 2) (10.6)

holds for all 𝜎 and 𝜏 in 𝐺. Combined with the above discussion, this shows that 𝜙𝐾 , hence 𝜙,
is a homomorphism in this case. To prove the claim, we note that 𝑈 is a real vector space and
each 𝜎 ∈ 𝐺 acts on 𝑈 as a finite order matrix 𝑁𝜎 which is hence diagonalisable over ℂ. Base-
changing toℂ, diagonalising𝑁𝜎 and noting that the eigenvalues of𝑁𝜎 are roots of unity appearing
in complex-conjugate pairs, one sees that for each 𝜎 ∈ 𝐺, we have

(−1)dim𝑈−1,𝜎 = det(𝑁𝜎).

The congruence (10.6) now follows from multiplicativity of the determinant.
Finally, suppose that 𝜒 is not realisable over ℝ. Then we have 𝑉 ⊗𝐾 ℂ ≅ 𝑈𝑚𝑑 where 𝑈 is an

irreducible representation overℂ such that𝑈, hence𝑈𝑚𝑑, possesses a non-degenerate𝐺-invariant
alternating form. Denote by ⟨ , ⟩ such a form on 𝑈𝑚𝑑. The argument for the previous case again
gives det𝐾(𝛼|𝑉−1,𝜎) = Nrd(𝛼)dim𝑈−1,𝜎 . We claim that dim𝑈−1,𝜎 is even for each 𝜎 ∈ 𝐺, fromwhich
it follows that 𝜙𝐾 , hence 𝜙, is trivial. Indeed, the pairing ⟨ , ⟩ gives a 𝐺-equivariant isomorphism
from 𝑈 to its dual 𝑈∗. This isomorphism respects the 𝜎-eigenspace decomposition on each side
and hence restricts to an isomorphism𝑈−1,𝜎

∼
⟶ 𝑈∗

−1,𝜎
whose associated bilinear pairing is non-

degenerate and alternating. Thus, dim𝑈−1,𝜎 is even. □
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1542 MORGAN

Proof of Theorem 10.2. In the notation of Section 10.1, let 𝑉 denote the ℚ[𝔊]-representation ℚ𝐼 .
For 𝜎 ∈ 𝔊, combining Lemma 10.3 with Lemma 10.4, we see that we have

𝐷(𝜎) = det
(
𝛼|𝑉−1,𝜎

)
∈ ℚ×∕ℚ×2.

(That the assumptions of Lemma 10.4 are satisfied follows from the discussion preceding the
statement of that lemma.) The result now follows from Lemma 10.5. □

10.5 Computing Tamagawa numbers modulo squares

The proof of Theorem 10.2 facilitates the computation of Tamagawa numbers of hyperelliptic
curves, at least up to squares, and to end the section, we record this in the following proposition.
To make the statement more self-contained, we summarise now the notation used.

Notation 10.7. We take the following notation:

∙ 𝐾 a non-archimedean local field,
∙ 𝑋∕𝐾 a smooth, proper, geometrically connected curve of genus g ,
∙ Φ the Néron component group (scheme) of the Jacobian of 𝑋,
∙ ∕𝐾 the minimal proper regular model of 𝑋,
∙ �̄� the special fibre of  base-changed to �̄�,
∙ Γ1, … , Γ𝑛 the irreducible components of �̄�, and 𝑟𝑖 the size of the 𝐺𝑘-orbit of Γ𝑖 ,
∙ 𝜖(𝑋∕𝐾) ∈ {0, 1}, defined to be equal to 1 if 𝑋 is deficient over 𝐾, and 0 otherwise,
∙ 𝐹 the Frobenius element in 𝐺𝑘.

Proposition 10.8. Take the notation above. Moreover, let 𝑆1, … , 𝑆𝑡 be the even-sized orbits of
𝐺𝑘 on the set {Γ1, … , Γ𝑛} of irreducible components. For each 1 ⩽ 𝑖 ⩽ 𝑡, let 𝑚𝑖 = |𝑆𝑖|, let Γ𝑖,1 be a
representative of the orbit 𝑆𝑖 and define

𝜖𝑖 =

𝑚𝑗−1∑
𝑗=0

(−1)𝑗𝐹𝑗(Γ𝑖,1).

Then

2𝜖(𝑋∕𝐾) ⋅
|Φ(�̄�)||Φ(𝑘)| ≡

||||||det
(

1

𝑚𝑗

⟨
𝜖𝑖, 𝜖𝑗

⟩)
1⩽𝑖,𝑗⩽𝑡

|||||| (mod ℚ×2),

where ⟨⋅, ⋅⟩ denotes the intersection pairing on �̄� .

Proof. Lemma 10.3 combined with Lemma 10.4 gives

2𝜖(𝑋∕𝐾) ⋅
|Φ(�̄�)||Φ(𝑘)| ≡ ||det(𝛼|𝑉−1)

|| (mod ℚ×2), (10.9)

where 𝑉−1 denotes the (−1)-eigenspace of 𝐹 on the permutation module 𝑉 = ℚ𝐼 , and 𝛼 is the
linear map defined from the intersection pairing, as detailed in Section 10.1. Now {𝜖1, … , 𝜖𝑡} forms
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1543

a basis for 𝑉−1 and, using 𝐺𝑘-invariance of the intersection pairing, for each 1 ⩽ 𝑖 ⩽ 𝑡, we have

𝛼(𝜖𝑖) =

𝑡∑
𝑗=1

⟨
𝜖𝑖, Γ𝑗,1

⟩
𝜖𝑗 =

𝑡∑
𝑗=1

1

𝑚𝑗

⟨
𝜖𝑖, 𝜖𝑗

⟩
𝜖𝑗.

Combined with Equation 10.9, this gives the result. □

11 RAMIFIED EXTENSIONS IN ODD RESIDUE CHARACTERISTIC:
GENERALITIES

Let 𝐾 be a non-archimedean local field of odd residue characteristic. In this section, we consider
Conjecture 1.7 when the quadratic extension 𝐿∕𝐾 is ramified. Specifically, across Sections 11–15,
we will prove the following.

Proposition 11.1 (=Proposition 15.1). Let 𝐶∕𝐾 be a hyperelliptic curve and let 𝐿∕𝐾 be a rami-
fied quadratic extension. If 𝐶∕𝐾 has semistable reduction, then Conjecture 1.7 holds for 𝐶 and the
extension 𝐿∕𝐾.

Thus, for this section, we fix a ramified quadratic extension 𝐿∕𝐾, and fix a hyperelliptic curve
𝐶∕𝐾with semistable reduction.As usual,we denote by 𝐽 the Jacobian of𝐶. Recall fromLemma3.4
that since 𝐾 has odd residue characteristic, we can express the cokernel of the local norm map in
terms of Tamagawa numbers:

dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = ord2

𝑐(𝐽∕𝐾)𝑐(𝐽𝐿∕𝐾)

𝑐(𝐽∕𝐿)
. (11.2)

We begin by describing a method for computing the ratio 𝑐(𝐽∕𝐿)

𝑐(𝐽∕𝐾)
up to rational squares for general

semistable curves. Separately, we will compute 𝑐(𝐽𝐿∕𝐾) up to squares by analysing the minimal
regular model of the quadratic twist of 𝐶 by 𝐿. Since 𝐶𝐿∕𝐾 is not semistable, we use results from
Section 10 to facilitate this computation. As we shall see, the terms in Conjecture 1.7 involving
deficiency and root numbers will naturally appear along the way. For a more precise description
of the strategy for proving Proposition 11.1, see Section 11.3 below.

11.1 The minimal proper regular model of a semistable curve

For proofs and more details of what follows we refer to [23]. For the specific formulation detailed
below, we refer to [18, Section 2] and the references therein.
Denote by ∕𝐾 the minimal proper regular model of 𝐶, and denote by �̄� the special fibre of

, base-changed to �̄�. Since 𝐶∕𝐾 is assumed semistable, �̄� is a semistable curve over �̄�. Let Υ𝐶

denote the dual graph �̄�; by definition, this is the finite connected graph with a vertex for each
irreducible component of �̄�, and such that vertices corresponding to components Γ1 and Γ2 are
joined by one edge for each ordinary double point of �̄� lying on both Γ1 and Γ2 (in particular,
Υ𝐶 may have loops and multiple edges). We view Υ𝐶 as a metric space where we give each edge
length 1. Denote by𝐻1(Υ𝐶, ℤ) the first singular homology group ofΥ𝐶 . Since �̄� is the base change
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1544 MORGAN

from 𝑘 to �̄� of the special fibre of , 𝐻1(Υ𝐶, ℤ) carries a natural 𝐺𝑘-action.† Moreover, 𝐻1(Υ𝐶, ℤ)

carries a natural non-degenerate, symmetric, 𝐺𝑘-invariant bilinear pairing

𝑃 ∶ 𝐻1(Υ𝐶, ℤ) × 𝐻1(Υ𝐶, ℤ) → ℤ

(informally, 𝑃(𝛾, 𝛾′) is the signed length of 𝛾 ∩ 𝛾′). The pairing 𝑃 induces an injection

𝐻1(Υ𝐶, ℤ) ↪ 𝐻1(Υ𝐶, ℤ)∨ ∶= Hom(𝐻1(Υ𝐶, ℤ), ℤ), (11.3)

sending 𝛾 to 𝑃(−, 𝛾). The component group Φ(�̄�) of 𝐽∕𝐾 is then 𝐺𝑘-equivariantly isomorphic to
the cokernel of this map:

Φ(�̄�) = 𝐻1(Υ𝐶, ℤ)∨∕𝐻1(Υ𝐶, ℤ). (11.4)

In particular, we have

𝑐(𝐽∕𝐾) =
|||||
(

𝐻1(Υ𝐶, ℤ)∨

𝐻1(Υ𝐶, ℤ)

)𝐺𝑘 |||||. (11.5)

Moreover, the root number 𝑤(𝐽∕𝐾) of 𝐽 is encoded in the 𝐺𝑘-invariants of𝐻1(Υ𝐶, ℤ):

𝑤(𝐽∕𝐾) = (−1)rk𝐻1(Υ𝐶,ℤ)𝐺𝑘
.

If we replace 𝐾 by 𝐿 and repeat the above constructions for the base change 𝐶𝐿 of 𝐶 to 𝐿, then the
dual graph Υ𝐶𝐿

is obtained from Υ𝐶 by replacing each edge by a path consisting of two edges.‡ In
particular, the homology of the new dual graph with its 𝐺𝑘-action is unchanged, but the pairing
gets multiplied by 2. Thus, we have

𝑐(𝐽∕𝐿) =
|||||
(

𝐻1(Υ𝐶, ℤ)∨

2𝐻1(Υ𝐶, ℤ)

)𝐺𝑘 ||||| and 𝑤(𝐽∕𝐿) = (−1)rk𝐻1(Υ𝐶,ℤ)𝐺𝑘 . (11.6)

11.2 The group𝕭𝑪∕𝑲

Following work of Betts–Dokchitser [4], the quantities appearing in (11.5) and (11.6) can be neatly
packaged together in the following way. Temporarily writing Λ = 𝐻1(Υ𝐶, ℤ), define the finite

†Due to the possible presence of loops andmultiple edges in Υ𝐶 , the𝐺𝑘-action on𝐻1(Υ𝐶, ℤ) need not be fully determined
by the 𝐺𝑘-action on the irreducible components of �̄� . When there is ambiguity, one needs some additional information
concerning the ordinary double points to pin down the action; see, for example, [18, Section 2.1] for more details.
‡ To see this, one can argue as follows. Firstly, the base change of  to the ring of integers𝐾nr coincides with the minimal
regular model ′∕𝐾nr of 𝐶 over 𝐾nr ; hence, �̄� coincides with the special fibre of ′. Since ′ is both semistable and
regular, each singular point 𝑥 of �̄� is a split ordinary double point of thickness 1 (in the sense of [29, Definition 10.3.23]).
After base-changing ′ to 𝐿nr , the point 𝑥 becomes an ordinary double point of thickness 2 in ′ ×𝐾nr

𝐿nr , as follows
from the description of the completed local ring at 𝑥 given in [29, Corollary 3.22] (the factor 2 arising as the ramification
index of 𝐿∕𝐾). Theminimal regular model of 𝐶𝐿 over𝐿nr is then obtained by blowing up ′ ×𝐾nr

𝐿nr once at each such
𝑥, which has the claimed effect on the dual graph (cf. [29, Lemma 10.3.21, Corollary 10.3.25]).
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1545

abelian group𝔅𝐶∕𝐾 by

𝔅𝐶∕𝐾 = im
(
𝐻1(𝐺𝑘, Λ) ⟶ 𝐻1

(
𝐺𝑘, Λ

∨
))

, (11.7)

where themap is induced by (11.3). Combining (11.5) and (11.6) with [4, Theorem 1.4.2] then gives

𝑤(𝐽∕𝐿) ⋅ (−1)
ord2

𝑐(𝐽∕𝐿)

𝑐(𝐽∕𝐾) = (−1)dim𝔅𝐶∕𝐾[2]. (11.8)

Remark 11.9. If  denotes the toric part of the Raynaud parametrisation of 𝐽∕𝐾, and𝑋( ) denotes
its character group, then𝑋( ) carries a natural𝐺𝑘-action and anon-degenerate symmetric pairing
𝑋( ) ⊗ 𝑋( ) → ℤ (see [23, 52]). As explained in [18, Section 2], it follows from work of Raynaud
that 𝑋( ) ≅ 𝐻1(𝐺𝑘, ℤ) as 𝐺𝑘-modules with a pairing. One can then alternatively obtain (11.8)
directly from [4, Theorem 1.1.1 (i)].

11.3 Strategy for the proof of Proposition 11.1

In light of (11.2) and (11.8), Conjecture 1.7 for 𝐶 and 𝐿∕𝐾 is the equivalent to the assertion

(−1)dim𝔅𝐶∕𝐾[2] ?
= (−1)ord2𝑐(𝐽

𝐿∕𝐾)(Δ𝐶, 𝐿∕𝐾)(−1)𝜖(𝐶∕𝐾)+𝜖(𝐶𝐿∕𝐾). (11.10)

In Section 12 below, we give a general result, Proposition 12.18, which facilitates the computation
of the parity of the dimension of the 2-torsion of the group

𝔅Λ ∶= im
(
𝐻1(𝐺𝑘, Λ) ⟶ 𝐻1

(
𝐺𝑘, Λ

∨
))

associated to an arbitrary𝐺𝑘-latticeΛ equippedwith a non-degenerate symmetric bilinear pairing.
In Section 13, we summarise results from [18] which give an explicit description of the lattice

𝐻1(Υ𝐶, ℤ) attached to a semistable hyperelliptic curve 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) in terms of combinato-
rial data associated to the 𝑝-adic distances between the roots of 𝑓(𝑥). Combined with the results
of Section 12 mentioned above, this enables the explicit computation of dim𝔅𝐶∕𝐾[2] (mod 2)

for arbitrary semistable hyperelliptic curves; we present the result of this computation as Corol-
lary 13.25. (Strictly speaking, we only carry out these computations over a suitably large odd degree
unramified extension of𝐾. This suffices for the application to Conjecture 1.7 thanks to Lemma 4.1,
and has the advantage that several statements in [18] simplify after such an extension.)
Separately, in Section 14, we present an explicit combinatorial description of the minimal

proper regular model of a ramified quadratic twist of a semistable hyperelliptic curve. This will be
deduced from work of Faraggi–Nowell [20] which more generally describes the minimal regular
strict normal crossings (SNC) model of a hyperelliptic curve 𝑋 over a local field of odd residue
characteristic, under the assumption that 𝑋 attains semistable reduction after a tamely ramified
extension of the base field.We combine this descriptionwith Proposition 10.8 to describe explicitly
the quantity (−1)ord2𝑐(𝐽

𝐿∕𝐾)+𝜖(𝐶𝐿∕𝐾); we present this result as Corollary 14.31.
Finally, in Section 15, we combine Corollaries 13.25 and 14.31 to establish (11.10).
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1546 MORGAN

12 THE PARITY OF 𝐝𝐢𝐦𝕭𝚲[𝟐]

The aim of this section is to prove Proposition 12.18, which gives an explicit criterion for determin-
ing the parity of dim𝔅Λ[2], where𝔅Λ is the group defined in Section 12.1 below and considered
by Betts–Dokchitser in [4]. This can be viewed as a complement to the results of [4, Section 2].
Let 𝑘 be a finite field. Take Λ to be a (discrete) ℤ[𝐺𝑘]-module, free and of finite rank as a

ℤ-module, and equipped with a non-degenerate 𝐺𝑘-invariant symmetric bilinear pairing

⟨ , ⟩ ∶ Λ × Λ ⟶ ℤ. (12.1)

We extend ⟨ , ⟩ bilinearly to a pairing on the ℚ[𝐺𝑘]-module 𝑉 ∶= Λ ⊗ℤ ℚ and write Λ∨ for the
dual lattice

Λ∨ = {𝑣 ∈ 𝑉 ∶ ⟨𝑣, 𝜆⟩ ∈ ℤ for all 𝜆 ∈ Λ}. (12.2)

Themap 𝑣 ↦ ⟨𝑣, −⟩ identifiesΛ∨ withHom(Λ, ℤ). We denote byΦ the finite abelian groupΛ∨∕Λ,
the discriminant group of the lattice. The pairing on𝑉 restricts to a𝐺𝑘-invariant pairingΛ∨ × Λ →

ℤ, and further induces a non-degenerate symmetric bilinear pairing

⟨ , ⟩ ∶ Φ × Φ ⟶ ℚ∕ℤ. (12.3)

12.1 The group𝕭𝚲

Define the finite abelian group

𝔅Λ ∶= im
(
𝐻1(𝐺𝑘, Λ) ⟶ 𝐻1(𝐺𝑘, Λ

∨)
)
= ker

(
𝐻1(𝐺𝑘, Λ

∨) ⟶ 𝐻1(𝐺𝑘, Φ)
)
.

Consider the pairing

𝐻1(𝐺𝑘, Λ) ⊗ 𝐻1(𝐺𝑘, Λ) ⟶ 𝐻2(𝐺𝑘, ℤ)
∼

⟶ 𝐻1(𝐺𝑘, ℚ∕ℤ)
eval. at 𝐹
⟶ ℚ∕ℤ. (12.4)

Here, the first map is composition of cup-product with the pairing (12.1), and the second is
the inverse of the coboundary map 𝛿 ∶ 𝐻1(𝐺𝑘, ℚ∕ℤ) → 𝐻2(𝐺𝑘, ℤ) arising from the short exact
sequence

0 ⟶ ℤ ⟶ ℚ ⟶ ℚ∕ℤ ⟶ 0. (12.5)

The final map is given by evaluating cocycles at the Frobenius element 𝐹 ∈ 𝐺𝑘.
We have the following result of Betts–Dokchitser.

Proposition 12.6. Lifting to 𝐻1(𝐺𝑘, Λ) and applying the pairing (12.4) induces a non-degenerate
antisymmetric bilinear pairing

( , ) ∶ 𝔅Λ × 𝔅Λ ⟶ ℚ∕ℤ.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12565 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1547

Proof. This is [4, Proposition 2.2.2]. The key point is the anti-symmetry of the top pairing, and
non-degeneracy of the bottom pairing, in the commutative diagram

(12.7)

where 𝛼 is induced by the inclusion of Λ into Λ∨. See [4, Proposition 2.2.2] for a proof of these
facts. □

Corollary 12.8. The order of𝔅Λ is either a square or twice a square. Moreover,𝔅Λ has square order
if and only if dim𝔅Λ[2] is even.

Proof. This is a formal consequence of the existence of a non-degenerate antisymmetric ℚ∕ℤ-
valued bilinear pairing on𝔅Λ; see [4, Theorem 2.4.1] for a proof. □

Now consider the map 𝔅Λ → ℚ∕ℤ given by 𝑥 ↦ (𝑥, 𝑥). This is a homomorphism by
antisymmetry of ( , ), so by non-degeneracy, there is a unique 𝔠 ∈ 𝔅Λ such that

(𝑥, 𝑥) = (𝔠, 𝑥) for all 𝑥 ∈ 𝔅Λ. (12.9)

It follows from the arguments of [51, Section 6] that one has

dim𝔅Λ[2] ≡ 0 (mod 2) if and only if (𝔠, 𝔠) = 0. (12.10)

In Lemma 12.15 below, we give an explicit description of this class 𝔠. The construction involves
quadratic refinements of the pairings (12.1) and (12.3).

12.2 Quadratic refinements of the pairings (12.1) and (12.3)

We begin with some notation.

Notation 12.11. For abelian groups 𝐴 and 𝑀, call a function 𝑞 ∶ 𝐴 → 𝑀 a quadratic map if the
function 𝐵𝑞 ∶ 𝐴 × 𝐴 → 𝑀 defined by 𝐵𝑞(𝑎1, 𝑎2) = 𝑞(𝑎1 + 𝑎2) − 𝑞(𝑎1) − 𝑞(𝑎2) is bilinear. We call
𝑞 a quadratic form if, moreover, for all 𝑎 ∈ 𝐴 and 𝑛 ∈ ℤ, we have 𝑞(𝑛𝑎) = 𝑛2𝑞(𝑎). We say that 𝑞
is a quadratic refinement of 𝐵𝑞. Denote by Λ the set of ℤ-valued quadratic refinements of (12.1),
and by Φ, the set of ℚ∕ℤ-valued quadratic refinements of (12.3).

Now define the subset 𝑆 ⊆ 𝑉 as

𝑆 =
{
𝑣 ∈ Λ∨ ∶ ⟨𝜆, 𝜆⟩ ≡ ⟨𝜆, 𝑣⟩ (mod 2) for all 𝜆 ∈ Λ

}
. (12.12)
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1548 MORGAN

One checks using the fact that 𝜆 ↦ ⟨𝜆, 𝜆⟩ (mod 2) is a homomorphism that 𝑆 is non-empty. For
𝑣 ∈ 𝑆, denote by 𝑞𝑣 ∶ Λ → ℤ the quadratic map

𝑞𝑣(𝜆) = 1

2
(⟨𝜆, 𝜆⟩ + ⟨𝜆, 𝑣⟩). (12.13)

Sending 𝑣 to 𝑞𝑣 gives a bijection from 𝑆 toΛ. Moreover, taking 𝜆 ∈ Λ∨ in the formula (12.13), and
then reducing modulo ℤ, gives a quadratic refinement 𝑞𝑣 ∶ Φ → ℚ∕ℤ of the pairing (12.3). This is
a quadratic form if and only if 𝑣 ∈ Λ. The map 𝑣 ↦ 𝑞𝑣 is a bijection between 𝑆∕2Λ (the quotient
of 𝑆 by the action of 2Λ) and Φ.

12.3 Cohomology classes associated to quadratic refinements

Since the pairing (12.1) is 𝐺𝑘-invariant, 𝐺𝑘 acts on Λ. Explicitly, for 𝜎 ∈ 𝐺𝑘 and 𝑞 ∈ Λ, we
define 𝜎𝑞 ∶ Λ → ℤ by setting 𝜎𝑞(𝜆) = 𝑞(𝜎−1𝜆). Given 𝑞1, 𝑞2 ∈ Λ, we have 𝑞1 − 𝑞2 ∈ Hom(Λ, ℤ) =

Λ∨; thus, Λ∨ acts simply transitively on Λ. In particular, associated to Λ is a class 𝔮Λ ∈

𝐻1(𝐺𝑘, Λ
∨), explicitly represented by the 1-cocycle 𝜎 ↦ 𝜎𝑞 − 𝑞 for any 𝑞 ∈ Λ. We similarly have

𝔮Φ ∈ 𝐻1(𝐺𝑘, Φ) associated to Φ.†

Remark 12.14. The discussion in Section 12.2 above provides a more explicit description of the
classes 𝔮Λ and 𝔮Φ. Let 𝑣 ∈ 𝑆 and let 𝑞𝑣 (resp. 𝑞𝑣) be the associated element of Λ (resp. Φ).
Computing the associated cocycles, one sees that 𝔮Λ and 𝔮Φ are represented by the 1-cocycles

𝜎 ↦ 1

2
(𝜎𝑣 − 𝑣) ∈ Λ∨ and 𝜎 ↦ 1

2
(𝜎𝑣 − 𝑣) (mod Λ),

respectively. Note, in particular, that 𝔮Λ maps to 𝔮Φ under the natural map 𝐻1(𝐺𝑘, Λ
∨) →

𝐻1(𝐺𝑘, Φ).

Lemma 12.15. With the notation above, we have the following.

(i) The element 𝔮Λ ∈ 𝐻1(𝐺𝑘, Λ
∨) lies in𝔅Λ.

(ii) We have (𝑥, 𝑥) = (𝔮Λ, 𝑥) for all 𝑥 ∈ 𝔅Λ. Thus, 𝔮Λ is the class 𝔠 of Section 12.1.

Proof. It follows from [48, Corollary 2.8] that for all 𝜌 ∈ 𝐻1(𝐺𝑘, Λ), we have

𝔮Λ ∪ 𝜌 = 𝜌 ∪ 𝜌 inside𝐻2(𝐺𝑘, ℤ). (12.16)

Here, both cup-products are induced by the pairing ⟨ , ⟩. From this identity and commutativity of
(12.7), it follows that 𝔮Λ ∪ 𝜌 = 0 for all 𝜌 ∈ ker(𝐻1(𝐺𝑘, Λ) → 𝐻1(𝐺𝑘, Λ

∨)). It now follows formally
from the stated properties of the pairings in (12.7) that 𝔮Λ ∈ 𝔅Λ. This proves part (i), and part (ii)
now follows from (12.16) and the definition of the pairing ( , ) on𝔅Λ. □

Remark 12.17. Since 𝔮Λ is a lift of 𝔮Φ to 𝐻1(𝐺𝑘, Λ
∨), it follows from Lemma 12.15 (i) that the class

𝔮Φ ∈ 𝐻1(𝐺𝑘, Φ) is trivial. In particular, the pairing (12.3) on Φ admits a 𝐺𝑘-invariant quadratic

† To be more precise, mimicking the construction of 𝔮Λ yields a class in 𝐻1(𝐺𝑘, Φ
∗) where Φ∗ = Hom(Φ,ℚ∕ℤ); we

transport this class to𝐻1(𝐺𝑘, Φ) via the isomorphism Φ
∼
→ Φ∗ provided by the pairing (12.3).
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1549

refinement. From the discussion in Section 12.2, such a quadratic refinement is necessarily of the
form 𝑞𝑣 for some 𝑣 ∈ 𝑆. The 𝐺𝑘-invariance of 𝑞𝑣 means that such a 𝑣 satisfies 𝜎𝑣 − 𝑣 ∈ 2Λ for all
𝜎 ∈ 𝐺𝑘.

12.4 The order of𝕭𝚲 modulo squares

We now give the promised criterion for determining the parity of dim𝔅Λ[2]. As usual, 𝐹 ∈ 𝐺𝑘

denotes the Frobenius element. The set 𝑆 is as defined in (12.12).

Proposition 12.18. There exists 𝑥 ∈ 𝑆 such that 1

2
(𝐹𝑥 − 𝑥) ∈ Λ. For any such 𝑥, we have

dim𝔅Λ[2] ≡
⟨
𝑥, 1

2
(𝐹𝑥 − 𝑥)

⟩
(mod 2).

Proof. For existence, take any 𝑥 ∈ 𝑆 for which the associated quadratic form 𝑞𝑥 is 𝐺𝑘-invariant
(cf. Remark 12.17).
Now fix such an 𝑥 and denote by 𝑎 ∶ 𝐺𝑘 → Λ the 1-cocycle 𝑎(𝜎) = 1

2
(𝜎𝑥 − 𝑥). Its class in

𝐻1(𝐺𝑘, Λ) is a lift of 𝔮Λ ∈ 𝔅Λ to𝐻1(𝐺𝑘, Λ). Consider the commutative diagram

(12.19)

Here, the coboundary maps 𝛿 arise from the short exact sequence (12.5) and the corresponding
sequence given by tensoring (12.5) by Λ∨, and both cup-products are induced by the pairing ⟨ , ⟩.
The element 1

2
𝑥 ∈ 𝑉∕Λ∨ defines an element of 𝐻0(𝐺𝑘, 𝑉∕Λ∨) which maps under 𝛿 to 𝔮Λ. From

commutativity of (12.19) and the definition of the pairing ( , ) on𝔅Λ, we find

(𝔮Λ, 𝔮Λ) =
⟨

1

2
𝑥, 𝑎(𝐹)

⟩
= 1

2

⟨
𝑥, 1

2
(𝐹𝑥 − 𝑥)

⟩
∈ 1

2
ℤ∕ℤ.

The result now follows from (12.10) and Lemma 12.15 (ii). □

Remark 12.20. Identifying Λ∨ with Hom(Λ, ℤ) via the map 𝑣 ↦ ⟨𝑣, −⟩ leads to the following
rephrasing of Proposition 12.18: given 𝜙 ∈ Hom(Λ, ℤ) such that ⟨𝜆, 𝜆⟩ ≡ 𝜙(𝜆) (mod 2) for all
𝜆 ∈ Λ, and such that 1

2
(𝐹𝜙 − 𝜙) = ⟨𝜆, −⟩ for a (necessarily unique) 𝜆 ∈ Λ, we have

dim𝔅Λ[2] ≡ 𝜙(𝜆) (mod 2).

Indeed, the unique 𝑥 ∈ Λ∨ for which 𝜙 = ⟨𝑥,−⟩ satisfies the conditions of Proposition 12.18.

 1460244x, 2023, 5, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s.12565 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1550 MORGAN

13 CLUSTERS AND THE GROUP𝕭𝑪∕𝑲 FOR SEMISTABLE
HYPERELLIPTIC CURVES

We take the notation of Section 11. In particular, 𝐾 denotes a non-archimedean local field with
residue field 𝑘 of odd characteristic, and𝐶∕𝐾 denotes a hyperelliptic curve with semistable reduc-
tion. We henceforth fix aWeierstrass equation 𝑦2 = 𝑓(𝑥) for 𝐶, where 𝑓(𝑥) ∈ 𝐾[𝑥] is a squarefree
polynomial of degree 2g + 1 or 2g + 2 for g ⩾ 2 the genus of 𝐶. We denote by the set of roots of
𝑓(𝑥) in 𝐾𝑠 and denote by 𝑐𝑓 the leading coefficient of 𝑓(𝑥). Thus,

𝑓(𝑥) = 𝑐𝑓
∏
𝑟∈

(𝑥 − 𝑟).

13.1 Clusters

We now recall several results from [18], which provide a framework for studying invariants of
hyperelliptic curves over local fields of odd residue characteristic. We refer to that work for
more details (cf. also [2]). The central object is that of a cluster. In what follows we denote by
𝑣 ∶ �̄� → ℚ ∪ {∞} the extension to �̄� of the normalised valuation on 𝐾.

Definition 13.1. A cluster is a non-empty subset 𝔰 ⊂  of the form 𝔰 = 𝐷 ∩ for some disc
𝐷 = {𝑥∈�̄� ∣ 𝑣(𝑥 − 𝑧)⩾𝑑} where 𝑧 ∈ �̄� and 𝑑 ∈ ℚ. If |𝔰| > 1, then 𝔰 is said to be proper and its
depth 𝑑𝔰 is defined as

𝑑𝔰 = min
𝑟,𝑟′∈𝔰

𝑣(𝑟 − 𝑟′).

We call any element 𝑧𝔰 of the minimal disc cutting out a proper cluster 𝔰 a centre for 𝔰.

We summarise some terminology for clusters.

Definition 13.2. Given clusters 𝔰1 ≠ 𝔰2 with 𝔰1 a maximal subcluster of 𝔰2, we say that 𝔰1 is a
child of 𝔰2, denote this 𝔰1 < 𝔰2, and refer to 𝔰2 as the parent of 𝔰1. Any cluster 𝔰 ≠  has a unique
parent 𝑃(𝔰). We define the relative depth of a proper cluster 𝔰 ≠  as

𝛿𝔰 ∶= 𝑑𝔰 − 𝑑𝑃(𝔰) ⩾ 0.

We call a cluster even (resp. odd) if it contains an even (resp. odd) number of roots, and call it
übereven if it is even and all its children are even also. We call a cluster 𝔰 principal if |𝔰| ⩾ 3, save
when either 𝔰 =  is even and has exactly two children, or when 𝔰 has a child of size 2g . A cluster
of size 2 is called a twin, and a non-übereven cluster that has a child of size 2g is called a cotwin.
For a principal cluster 𝔰 which is not übereven, its genus g(𝔰) is defined as

g(𝔰) =
⌊
1

2
(#{odd children of 𝔰} − 1)

⌋
.

We define the genus of an übereven cluster to be 0. Finally, for clusters 𝔰1, 𝔰2, we write 𝔰1 ∧ 𝔰2 for
the smallest cluster containing both 𝔰1 and 𝔰2.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1551

Example 13.3. Take 𝐶 to be the hyperelliptic curve

𝐶∕ℚ3 ∶ 𝑦2 = (𝑥2 + 3)((𝑥 − 𝑖)2 − 32)((𝑥 + 𝑖)2 − 32)

considered in Example 9.12, where 𝑖 is a square root of −1. The proper clusters are

 =
{
± 𝑖
√

3, 𝑖 ± 3, −𝑖 ± 3
}
, 𝔱1 =

{
± 𝑖
√

3
}
, 𝔱2 =

{
𝑖 ± 3

}
, 𝔱3 =

{
− 𝑖 ± 3

}
.

The unique principal cluster is  and it is übereven, has depth 0 and genus 0. There are three
twins: 𝔱1, 𝔱2 and 𝔱3, and we have 𝛿𝔱1

= 1∕2, 𝛿𝔱2
= 𝛿𝔱3

= 1. We display this information pictorially
as shown:

Here we draw roots as and draw ovals around roots to represent a proper cluster. The subscript
on the outer cluster is its depth, and on all other clusters, it is the relative depth. We refer to this
diagram as the cluster picture of 𝐶.
We remark that the description of the minimal regular model of 𝐶 given previously in

Example 9.12 now follows immediately from [18, Theorems 1.11 and 8.6].

For the rest of this section, we make the following assumption, which will lead to several
simplifications in the results of [18].

Assumption 13.4. Weassume that || = 2g + 2 and that there are no clusters of size 2g or 2g + 1.

Remark 13.5. By [18, Theorem 15.2], any semistable hyperelliptic curve over 𝐾 is isomorphic to
a curve satisfying Assumption 13.4 over any suitably large odd degree unramified extension of 𝐾
(the key point being that if the residue field of 𝐾 is sufficiently large, then one can make a change
of variables to force Assumption 13.4 to be satisfied).

We now summarise certain results from [18], using Assumption 13.4 to simplify several state-
ments. Firstly, the fact that 𝐶 is semistable forces several constraints on the possible clusters and
their depths. Specifically, we have the following.

Theorem 13.6 [18] Theorem 1.8. Semistability of𝐶 is equivalent to the following three conditions:

(1) the extension 𝐾()∕𝐾 has ramification degree at most 2,
(2) every proper cluster is invariant under the action of the inertia group of 𝐾,
(3) every principal cluster 𝔰 has 𝑑𝔰 ∈ ℤ and 𝜈𝔰 ∈ 2ℤ,

where 𝜈𝔰 is the quantity

𝜈𝔰 = 𝑣(𝑐𝑓) + |𝔰|𝑑𝔰 +
∑
𝑟∉𝔰

𝑑{𝑟}∧𝔰. (13.7)
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1552 MORGAN

Note that by part (1) of Theorem 13.6, each inertia orbit of roots has size at most 2 (i.e. the
irreducible factors of 𝑓(𝑥) over 𝐾nr are linear or quadratic), and every cluster 𝔰 has 𝑑𝔰 ∈ 1

2
ℤ. The

set of proper clusters 𝔰 with 𝑑𝔰 ∉ ℤ will be of particular importance.

Notation 13.8. Let 𝑇 denote the set of proper clusters 𝔰 with 𝑑𝔰 ∉ ℤ.

Lemma 13.9. If 𝑟 ≠ 𝑟′ are inertia conjugate elements of, then 𝔰 = {𝑟, 𝑟′} is a cluster with 𝑑𝔰 ∉ ℤ.
Moreover, every proper cluster 𝔰 with 𝑑𝔰 ∉ ℤ takes this form.

Proof. If 𝑟 and 𝑟′ are inertia conjugate roots, then 𝑣(𝑟 − 𝑟′) ∈ 1∕2 + ℤ (cf. [18, Lemma C.2]), so
the minimal cluster containing both 𝑟 and 𝑟′ has non-integer depth. In light of Assumption 13.4,
it follows from [18, Lemma 4.2] that {𝑟, 𝑟′} is a cluster. Moreover, [18, Lemma 4.2] shows further
that any proper cluster 𝔰 with 𝑑𝔰 ∉ ℤ takes this form. □

A consequence of Lemma 13.9 is that 𝑇 is naturally in bijection with the set of inertia-conjugate
pairs of roots of 𝑓(𝑥).

13.2 Signs associated to clusters

By Theorem 13.6(2), the assumption that 𝐶 is semistable means that Gal(𝐾nr∕𝐾) = 𝐺𝑘 acts on the
set of proper clusters. We will augment this action by adding in certain signs associated to even
clusters (cf. [18, Definition 1.12]).

Notation 13.10. For a cluster 𝔰, we write 𝔰∗ for the smallest cluster 𝔰∗ ⊇ 𝔰 whose parent is not
übereven, and set 𝔰∗ =  if no such cluster exists.

Definition 13.11. For even clusters 𝔰, fix a choice of 𝜃𝔰 =
√

𝑐𝑓
∏

𝑟∉𝔰(𝑧𝔰 − 𝑟), where 𝑧𝑠 is any
centre for 𝔰. Still assuming 𝔰 is even, define 𝜖𝔰 ∶ 𝐺𝐾 → {±1} by

𝜖𝔰(𝜎) ≡
𝜎(𝜃𝔰∗)

𝜃(𝜎𝔰)∗
mod𝔪.

Here,𝔪 denotes the maximal ideal of the ring of integers of �̄�, so that ‘mod𝔪’ denotes reduction
to the residue field �̄�.

Remark 13.12. If 𝔰 ≠  is an even cluster, or 𝔰 =  is übereven, then

𝑣

(
𝑐𝑓
∏
𝑟∉𝔰

(𝑧𝔰 − 𝑟)

)
= 𝜈𝔰 − |𝔰|𝑑𝔰

is an even integer (here 𝜈𝔰 is as defined in the statement of Theorem 13.6). Indeed, by [18, Lemma
C.5], we have 𝜈𝔰 − |𝔰|𝑑𝔰 = 𝜈𝑃(𝔰) − |𝔰|𝑑𝑃(𝔰), and by Lemmas 4.2 and 4.9 of op. cit., we see that one
of 𝔰 or 𝑃(𝔰)must have both integral depth and even 𝜈. In particular, it follows that 𝜃𝔰 ∈ 𝐾nr. Thus,
𝜖𝔰 descends to a function 𝐺𝑘 → {±1}.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1553

Remark 13.13. As explained in [18, Remark 1.14], although the function 𝜖𝔰 depends on the choice
of 𝜃𝔰, the restriction of 𝜖𝔰 to the stabiliser of 𝔰 does not. In fact, if 𝐾𝔰 denotes the fixed field of �̄�
by the stabiliser of 𝔰, then 𝐾𝔰 is a finite unramified extension of 𝐾, 𝜃2

𝔰∗ ∈ 𝐾𝔰, and 𝜖𝔰 restricted to
the stabiliser of 𝔰 is the quadratic character associated to the extension 𝐾𝔰(𝜃𝔰∗)∕𝐾𝔰.

Example 13.14. Let 𝐶 be as in Example 13.3 and let 𝔰 be any of the four even clusters. Then, we
have 𝔰∗ = . We can take 𝑧 = 0 and 𝜃 = 1. Then 𝜖𝔰(𝜎) = 1 for all 𝜎.
We remark that the description of the Frobenius action on the special fibre of the minimal

regular model of 𝐶 detailed previously in Example 9.12 can be read off from this data, coupled
with the Frobenius action on the set of proper clusters; see [18, Theorems 8.6].

13.3 Description of the lattice

We retain the notation from Section 11.1. In particular,Υ𝐶 denotes the dual graph of the (geometric
special fibre of the) minimal proper regular model of 𝐶. Here, we recall from [18] a description of
the ℤ[𝐺𝑘]-module𝐻1(Υ𝐶, ℤ) along with its associated pairing. It will be convenient to first define
an auxiliary lattice Π which is closely related to𝐻1(Υ𝐶, ℤ), but which is simpler to describe.

Definition 13.15. Let A be the set of even non-übereven clusters excluding , and define Π to
be the free ℤ-module with basis {𝓁𝔰 ∶ 𝔰 ∈ 𝐴}, so that

Π =
⨁
𝔰∈A

ℤ𝓁𝔰.

Further, let B be the subset of A consisting of clusters 𝔰 with 𝔰∗ = . We endow Π with the
symmetric pairing

⟨ , ⟩ ∶ Π × Π ⟶ ℤ

given by

⟨𝓁𝔰1
,𝓁𝔰2

⟩ =

⎧⎪⎨⎪⎩
0 𝔰∗

1
≠ 𝔰∗

2
,

2
(
𝑑𝔰1∧𝔰2

− 𝑑𝑃(𝔰∗
1
)

)
𝔰1, 𝔰2 ∉ B, 𝔰∗

1
= 𝔰∗

2
,

2
(
𝑑𝔰1∧𝔰2

− 𝑑
)

𝔰1, 𝔰2 ∈ B.

(13.16)

We further endow Π with the 𝐺𝑘-action given by 𝜎 ⋅ 𝓁𝔰 = 𝜖𝔰(𝜎)𝓁𝜎𝔰. Note that the pairing ⟨ , ⟩ is
invariant for this action.

It will be useful to note that the pairing on Π∕2Π induced from that on Π has a very simple
form.

Lemma 13.17. For all clusters 𝔰1, 𝔰2 ∈ A, we have

⟨
𝓁𝔰1

,𝓁𝔰2

⟩
≡

{
1 (mod 2) 𝔰1 = 𝔰2 ∈ 𝑇,

0 (mod 2) else.
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1554 MORGAN

Proof. Combine Lemma 13.9 with the formula (13.16). □

Definition 13.18. Define the lattice

Λ =

{∑
𝔰∈A

𝑎𝔰𝓁𝔰 ∈ Π
||| ∑

𝔰∈B

𝑎𝔰 = 0

}
along with the pairing and 𝐺𝑘-action induced from that on Π.

Theorem 13.19 [18] Theorem 1.14. We have Λ ≅ 𝐻1(Υ𝐶, ℤ) as ℤ[𝐺𝑘]-modules equipped with
a pairing.

13.4 The group𝕭𝑪∕𝑲 for semistable hyperelliptic curves

Let 𝔅𝐶∕𝐾 be the group defined in (11.7). Let Λ be as in Definition 13.18 above, and let 𝔅Λ be
the associated group defined in Section 12.1. By Theorem 13.19, we have𝔅𝐶∕𝐾 ≅ 𝔅Λ. Recall from
Notation 13.8 the definition of the set 𝑇. We denote by 𝐹 ∈ 𝐺𝑘 the Frobenius element, and for a
cluster 𝔰, we denote by Orb𝔰 its 𝐺𝑘-orbit.

Proposition 13.20. Let𝑁 be the number of 𝐺𝑘-orbits 𝑂 ∈ 𝑇∕𝐺𝑘 with
∏

𝔰∈𝑂 𝜖𝔰(𝐹) = −1.
Then, we have

dim𝔅𝐶∕𝐾[2] ≡

{
𝑁 + 1 (mod 2) 𝜖(𝐹) = −1, g even, all 𝔰 ∈ B ⧵ 𝑇 have |Orb𝔰| even,
𝑁 (mod 2) otherwise.

We begin with the following lemma which will be needed during the proof.

Lemma 13.21. Suppose that B ≠ ∅ and that all 𝔰 ∈ B ⧵ 𝑇 have |Orb𝔰| even. Then
|B ∩ 𝑇| ≡ g − 1 (mod 2).

Proof. Note that the assumption that 𝐵 is non-empty means that  is übereven. Let 𝔰 ≠  be a
proper cluster with 𝔰 ∉ B ∩ 𝑇. We claim that |Orb𝔰| is even. Indeed, the assumptions on 𝔰mean,
in particular, that 𝔰 is contained in a child 𝔰′ of . Clearly, 𝔰′ cannot be in 𝑇. Thus, 𝔰′ ∈ 𝐵 ⧵ 𝑇;
hence, |Orb𝔰′ | is even by assumption. Since 𝔰 ⊆ 𝔰′, it follows that |Orb𝔰| is even also, proving the
claim. Next, combining Theorem 13.19 and [18, Theorem 1.10] with [29, Lemma 10.3.18] gives

g = rkΛ +
∑

𝔰 principal
g(𝔰). (13.22)

The assumption thatB ≠ ∅means that either is non-principal or g() = 0. Thus, each principal
cluster of positive genus has an even-sized 𝐺𝑘-orbit, so the second term on the right-hand side of
Equation 13.22 is an even integer. We therefore have

|A| − 1 = rkΛ ≡ g (mod 2).
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1555

By the initial claim, every cluster 𝔰 ∈ A has |Orb𝔰| even, save possibly for those clusters in B ∩ 𝑇.
Thus, |A| ≡ |B ∩ 𝑇| (mod 2) and the result follows. □

Proof of Proposition 13.20. We will deduce the result from Proposition 12.18.
Case 1: either B = ∅, or B ≠ ∅ and 𝜖(𝐹) = 1. Consider the element 𝑡 =

∑
𝔰∈𝑇 𝓁𝔰 of Π. By

Lemma 13.17, for all 𝜆 ∈ Λ, we have

⟨𝜆, 𝜆⟩ ≡ ⟨𝜆, 𝑡⟩ (mod 2).

Further, we have

𝐹𝑡 − 𝑡 =
∑
𝔰∈𝑇

(𝜖𝐹−1𝔰(𝐹) − 1)𝓁𝔰.

It follows that 𝐹𝑡 − 𝑡 ∈ 2Λ (note that if B ≠ ∅, then for any 𝔰 ∈ 𝑇 ∩ B, we have
𝜖𝐹−1𝔰(𝐹) = 𝜖(𝐹) = 1). Taking 𝑥 = 𝑡 in Proposition 12.18 then gives

dim𝔅𝐶∕𝐾[2] ≡

⟨∑
𝔰∈𝑇

𝓁𝔰 ,
∑
𝔰∈𝑇

1

2
(𝜖𝐹−1𝔰(𝐹) − 1)𝓁𝔰

⟩
(mod 2)

≡ #{𝔰 ∈ 𝑇 ∶ 𝜖𝔰(𝐹) = −1} (mod 2),

the last congruence following from Lemma 13.17.† Thus, we have the result in this case.
Case 2: B ≠ ∅, 𝜖(𝐹) = −1, |B ∩ 𝑇| even. Write B ∩ 𝑇 = {𝔰1, … , 𝔰2𝑘}. This time we set

𝑡 =
∑

𝔰∈𝑇⧵B 𝓁𝔰 +
∑2𝑘

𝑖=1(−1)𝑖𝓁𝔰𝑖
, noting that 𝑡 ∈ Λ. As with the previous case, taking 𝑥 = 𝑡 in

Proposition 12.18 gives the result (note that by Lemma 13.21, we are trying to show that
dim𝔅𝐶∕𝐾[2] ≡ 𝑁 (mod 2) in this case).
Case 3: B ≠ ∅, 𝜖(𝐹) = −1, |B ∩ 𝑇| odd, |Orb𝔰| odd for some 𝔰 ∈ B ⧵ 𝑇. Choose some

𝔰1 ∈ B ⧵ 𝑇 with𝑚1 = |Orb𝔰1
| odd, and write𝑚2 = |B ∩ 𝑇|. This time, take

𝑡 =
∑

𝔰∈𝑇⧵B

𝓁𝔰 + 𝑚1 ⋅
∑

𝔰∈𝑇∩B

𝓁𝔰 − 𝑚2 ⋅
∑

𝔰∈Orb𝔰1

𝓁𝔰1
,

which lies in Λ by construction. Again, we conclude by taking 𝑥 = 𝑡 in Proposition 12.18.
Case 4: B ≠ ∅, 𝜖(𝐹) = −1, |B ∩ 𝑇| odd, all 𝔰 ∈ B ⧵ 𝑇 have |Orb𝔰| even.Note that in this case,

wehave g even byLemma 13.21, sowewant to show that dim𝔅𝐶∕𝐾[2] ≡ 𝑁 + 1 (mod 2). Since each
𝔰 ∈ B ⧵ 𝑇 has |Orb𝔰| even, we can partitionB ⧵ 𝑇 into two disjoint setsB0 andB1 with𝐹(B0) = B1.
For 𝔰 ∈ A, write 𝓁∨

𝔰
for the element of Hom(Λ, ℤ) sending 𝓁𝔰 to 1, and sending 𝓁𝔰′ to 0 for each

𝔰′ ≠ 𝔰. Consider the element

𝜙 =

⟨ ∑
𝔰∈𝑇⧵B

𝓁𝔰, −

⟩
+
∑
𝔰∈B0

𝓁∨
𝔰
−
∑
𝔰∈B1

𝓁∨
𝔰

∈ Hom(Λ, ℤ).

†When |𝑇 ∩ 𝐵| is odd, the element 𝑡 ofΠ is not inΛ, so Proposition 12.18 does not naively apply. However, in this case, we
can take 𝜙 = ⟨𝑡, −⟩ ∈ Hom(Λ, ℤ) in Remark 12.20 to see that the conclusion concerning dim𝔅𝐶∕𝐾[2] remains valid.
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1556 MORGAN

Then we have ⟨𝜆, 𝜆⟩ ≡ 𝜙(𝜆) (mod 2), as follows from Lemma 13.17 upon noting that Λ is by
definition the collection of elements

∑
𝔰 𝑛𝔰𝓁𝔰 ∈ Π for which

∑
𝔰∈B 𝑛𝔰 = 0. Moreover, we have

𝐹𝜙 − 𝜙 =

⟨ ∑
𝔰∈𝑇⧵B

(𝜖𝐹−1𝔰(𝐹) − 1)𝓁𝔰, −

⟩
.

Since
∑

𝔰∈𝑇⧵𝐵(𝜖𝐹−1𝔰(𝐹) − 1)𝓁𝔰 ∈ 2Λ, we can apply Remark 12.20 to 𝜙, giving

dim𝔅𝐶∕𝐾[2] ≡ 𝜙

(
1

2

∑
𝔰∈𝑇⧵B

(𝜖𝐹−1𝔰(𝐹) − 1)𝓁𝔰

)
(mod 2)

≡ #{𝔰 ∈ 𝑇 ⧵ B ∶ 𝜖𝔰(𝐹) = −1} (mod 2).

This latter quantity is congruent to𝑁 + 1modulo 2. Indeed, every element ofB ∩ 𝑇 has 𝜖𝔰(𝐹) = −1

by assumption. Since moreover |B ∩ 𝑇| is assumed odd, the claimed congruence follows. □

Remark 13.23. Instead of appealing to Proposition 12.18, an alternative approach to proving Propo-
sition 13.20 might be to draw on work of Betts [3, Section 3] (see also [2, Section 10]), which gives
a description in terms of clusters for the individual Tamagawa numbers 𝑐(𝐽∕𝐿) and 𝑐(𝐽∕𝐾). From
this, one might then hope to prove the result by computing explicitly the quotient 𝑐(𝐽∕𝐿)∕𝑐(𝐽∕𝐾)

and appealing to (11.8). However, the description of Tamagawa numbers given in that work
becomes sufficiently complicated in the presence of übereven clusters that we have elected to
avoid this approach.

Before stating the final result of the section, we require one further piece of notation.

Notation 13.24. Define 𝜅(𝐶) ∈ {0, 1} as follows.We set 𝜅(𝐶) = 1 if = 𝔰1 ⊔ 𝔰2 is a disjoint union
of 2 odd 𝐺𝑘-conjugate clusters 𝔰1 and 𝔰2 with both 𝛿𝑠1

and 𝛿𝑠2
odd (note in particular that this

forces 𝐶 to have even genus). We set 𝜅(𝐶) = 0 otherwise.

Corollary 13.25. We have

dim𝔅𝐶∕𝐾[2] + 𝜖(𝐶∕𝐾) ≡ 𝜅(𝐶) + #

{
𝐺𝑘-orbits 𝑂 ⊆ 𝑇 with

∏
𝔱∈𝑂

𝜖𝔱(𝐹) = −1

}
(mod 2).

Proof. CombineProposition 13.20with [18, Theorem 1.23] (the cited result gives an explicit descrip-
tion of deficiency in terms of clusters; to apply it, recall that we have a running assumption that
 has no cotwins). □

14 RAMIFIED QUADRATIC TWISTS OF SEMISTABLE
HYPERELLIPTIC CURVES

We retain the notation and setup of the previous section. Thus,𝐾 is a non-archimedean local field
of odd residue characteristic, and 𝐶∕𝐾 ∶ 𝑦2 = 𝑓(𝑥) is a semistable hyperelliptic curve over 𝐾. We
continue to impose Assumption 13.4, so that 𝑓(𝑥) has even degree and the set of roots of 𝑓(𝑥)
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1557

in �̄� has no cotwins in the sense of Definition 13.2. Let 𝐿∕𝐾 be a ramified quadratic extension of
𝐾, and write 𝐿 = 𝐾(

√
𝜋) for some uniformiser 𝜋 ∈ 𝐾.

14.1 The minimal regular model of 𝑪𝑳

We now give an explicit ‘cluster picture’ description of the special fibre of the minimal regular
model of the quadratic twist 𝐶𝐿 ∶ 𝑦2 = 𝜋𝑓(𝑥) of 𝐶 by 𝐿. As we shall see, even though 𝐶𝐿 is no
longer semistable over 𝐾, one can still give a simple description of its minimal regular model in
terms of clusters. To avoid confusion when comparing invariants of 𝐶 with invariants of 𝐶𝐿 later,
we will make the following convention.

Convention 14.1. Unless stated otherwise, in this section, we will view all clusters as being asso-
ciated to the polynomial 𝑓(𝑥) defining 𝐶, as opposed to the polynomial 𝜋𝑓(𝑥) defining 𝐶𝐿. Since
both the clusters themselves and the associated functions 𝑑𝔰 and 𝛿𝑠 (depth and relative depth) are
functions purely of the set of roots, they are unchanged under replacing 𝑓(𝑥) by 𝜋𝑓(𝑥). Thus,
the distinction here is irrelevant. However, for a cluster 𝔰, the functions 𝜈𝔰 and 𝜖𝔰 (see (13.7), Def-
inition 13.11) are defined with reference to the leading coefficient of the polynomial in question,
and hence may change upon replacing 𝑓(𝑥) by 𝜋𝑓(𝑥). For example, for a proper cluster 𝔰, 𝜈𝔰 is
one larger when 𝔰 is viewed as a cluster for 𝐶𝐿 than when it is viewed as a cluster for 𝐶.

In several statements below, we will need to distinguish the following special case.

Notation 14.2. We say that is atypical if = 𝔰1 ⊔ 𝔰2 is a disjoint union of 2 odd proper clusters
𝔰1 and 𝔰2, with both 𝛿𝔰1

and 𝛿𝔰2
odd.

The description of the special fibre of the minimal regular model of 𝐶𝐿 that we present below
follows from work of Faraggi–Nowell [20], which more generally gives an explicit description
of the special fibre of the minimal regular SNC model for hyperelliptic curves with tame reduc-
tion (i.e. attaining semistable reduction after a tamely ramified extension of the base field). As is
apparent from the statement of Proposition 14.5 below, their description simplifies significantly
for quadratic twists of semistable hyperelliptic curves. We caution that [20] contains some minor
errors. These are discussed and corrected in the PhD thesis of Nowell [45] (see also [2, Section 9]).

Remark 14.3. For an alternative, but related, approach to constructing regular models of hyper-
elliptic curves over non-archimedean local fields of odd residue characteristic, see the works of
Srinivasan [59] and Obus–Srinivasan [46].

In what follows we denote by  the minimal regular model of 𝐶𝐿 over 𝐾 , and denote by �̄�

its special fibre, base-changed to �̄�.

Notation 14.4. In describing�̄�, wewill use the following terminology; see [20, Definition 3.1] for
more details. By a chain of 𝑛 rational curves of multiplicity 𝑑, 𝑛 ⩾ 0, 𝑑 ⩾ 1, we mean a collection
of irreducible components Γ1, . . . , Γ𝑛 of �̄�, each isomorphic to ℙ1

�̄�
, such that Γ𝑖 intersects Γ𝑖+1

transversally for each 𝑖, and such that each Γ𝑖 has multiplicity 𝑑 in �̄�. We depict this situation
below. By a crossed tail, we mean a chain of rational curves Γ1, . . . , Γ𝑛, along with two additional
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1558 MORGAN

irreducible components, the ‘crosses’, both isomorphic to ℙ1
�̄�
and intersecting Γ𝑛 transversally.

Again, this situation is depicted below. In all the crossed tails we consider, each Γ𝑖 hasmultiplicity
2, whilst the crosses have multiplicity 1.

The promised description of �̄� is as follows.

Proposition 14.5. All irreducible components of�̄� intersect transversally, andno three components
intersect at a point. Moreover:

∙ every principal cluster 𝔰 for 𝐶 contributes to �̄� a single component Γ𝔰 of genus 0 and multiplicity
2,

∙ components corresponding to principal clusters 𝔰′ < 𝔰 are linked by:
◦ a chain of 1

2
𝛿𝔰′ rational curves of multiplicity 1 if 𝔰′ is odd,

◦ a chain of (2𝛿𝔰′ − 1) rational curves of multiplicity 2 if 𝔰′ is even,
∙ for 𝔰 principal, each twin 𝔱 < 𝔰 contributes a crossed tail 𝑇𝔱 whose first component intersects Γ𝔰,
and which consists of 2𝛿𝔱 rational curves of multiplicity 2, with the crosses having multiplicity 1,

∙ if = 𝔰1 ⊔ 𝔰2 and both 𝔰1 and 𝔰2 are odd, then Γ𝔰1
and Γ𝔰2

are linked by a chain of 1

2
(𝛿𝔰1

+ 𝛿𝔰2
)

rational curves of multiplicity 1,
∙ if  = 𝔰1 ⊔ 𝔰2 and both 𝔰1 and 𝔰2 are even, then Γ𝔰1

and Γ𝔰2
are linked by a chain of 2𝛿𝔰1

+

2𝛿𝔰2
− 1 rational curves of multiplicity 2,

∙ for a principal cluster 𝔰, each child of size 1, {𝑟} < 𝔰 say, contributes a single rational curve 𝑇𝑟 of
multiplicity 1, intersecting Γ𝔰.

Asmentioned, Proposition 14.5 will follow from results of Faraggi andNowell, specifically from
[20, Theorems 7.12 and 7.18] and [45, Theorems 9.23, 9.31 and 9.32]. These results take as input
several invariants of hyperelliptic curves. In the case in hand, we describe these invariants in
Lemma 14.7 below.

Caution 14.6. In Lemma 14.7 only, we view clusters as being associated to 𝜋𝑓(𝑥) rather than
𝑓(𝑥), since it is invariants of the former which constitute the required input for the results of [20]
and [45].

See [20, Table 3] and the references therein for the definitions of the invariants appearing
in the statement of Lemma 14.7 below. Briefly, for a proper cluster 𝔰 for 𝐶𝐿, the quantities
𝑑𝔰, 𝜈𝔰 and 𝛿𝔰 are as defined in Section 13.1, but with 𝜋𝑓(𝑥) in place of 𝑓(𝑥). By definition, we
have 𝜆𝔰 = 1

2
𝜈𝔰 − 𝑑𝔰

∑
𝔰′<𝔰⌊ |𝔰′|

2
⌋ (we caution that this is the function denoted as �̃�𝔰 in [18, Nota-

tion 1.19]). The quantity 𝑒𝔰 is theminimal positive integer such that both 𝑒𝔰𝑑𝔰 ∈ ℤ and 𝑒𝔰𝜈𝔰 ∈ 2ℤ.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1559

When 𝔰 is even, the invariant 𝜖𝔰 ∈ {±1} in the statement is given by evaluating the function 𝜖𝔰
of Definition 13.11 (which no longer factors through 𝐺𝑘 in general since 𝐶𝐿∕𝐾 is not semistable)
at any topological generator of the tame inertia group of 𝐾. For our purposes, we may take as a
definition that 𝜖𝔰 = (−1)𝜈𝔰∗−|𝔰∗|𝑑𝔰∗ for 𝔰∗ as in Notation 13.10. We will not use this variant of 𝜖𝔰
anywhere else in the paper. Recall from Notation 13.8 the definition of the set 𝑇.

Lemma 14.7. Let 𝔰 be a proper cluster for 𝐶𝐿 (i.e. for the polynomial 𝜋𝑓(𝑥)). Then 𝔰 is fixed by the
inertia group 𝐼𝐾 of 𝐾, and all of the following hold:

(i) we have 𝑑𝔰 ∈ ℤ unless 𝔰 ∈ 𝑇, in which case 𝑑𝔰 ∈ 1∕2 + ℤ,
(ii) 𝜈𝔰 is odd unless either 𝔰 =  and is atypical, or 𝔰 ∈ 𝑇. In these cases, 𝜈𝔰 is even.
(iii) if 𝔰 is even, then 𝜖𝔰 = −1 unless 𝔰 =  is atypical, in which case 𝜖𝔰 = 1,
(iv) if |𝔰| ⩾ 3, then 𝑒𝔰 = 2 unless 𝔰 =  is atypical, in which case 𝑒𝔰 = 1,
(v) if 𝔰 is principal, then 𝜆𝔰 ∈ 1

2
+ ℤ,

(vi) if 𝔰′ < 𝔰 are principal clusters with 𝔰′ odd, then 𝛿𝔰′ is even.

Proof. As noted above, the proper clusters for 𝐶𝐿 and their associated depths are the same as
those for 𝐶 (and whether or not a cluster 𝔰 is proper/principal/odd/even/übereven is similarly
independent of whether we view 𝔰 as a cluster for 𝐶 or 𝐶𝐿). However, given a cluster 𝔰 for 𝐶,
when we view it as a cluster for 𝐶𝐿 the quantity 𝜈𝔰 increases by 1 since the leading coefficient
of 𝜋𝑓(𝑥) has valuation one greater than that of 𝑓(𝑥). All claims are now a formal consequence
of Theorem 13.6, which applies since 𝐶 ∶ 𝑦2 = 𝑓(𝑥) is semistable. Explicitly, the claim that each
𝐼𝐾-orbit of proper clusters has size 1 is part (2) of Theorem 13.6. Part (i) is Lemma 13.9. Part (ii)
for 𝔰 ∉ 𝑇 is [18, Lemma 4.7], whilst for 𝔰 ∈ 𝑇, this follows from [18, Lemma C.5], combined with
[18, Lemma 4.7] applied to the parent of 𝔰. Parts (iii) and (iv) follow from parts (i) and (ii). Part (v)
follows from (ii). Finally, for part (vi), see [18, Lemma C.7]. □

Proof of Proposition 14.5. It suffices to show that the special fibre of the minimal regular SNC
model of𝐶𝐿, base-changed to �̄�, admits the description given in the statement. Indeed, the claimed
description of the special fibre visibly contains no exceptional curves, thus having shown that the
special fibre of theminimal regular SNCmodel admits this description, it follows that theminimal
regular SNC model coincides with the minimal regular model in this case.
With the relevant invariants being described by Lemma 14.7, that the minimal regular SNC

model takes the desired form now follows from specialising [20, Theorems 7.12 and 7.18] to the
case in hand, save for the fact that the statements of these results contain some minor errors. A
corrected version of the relevant results appears in the PhD thesis of Nowell [45, Theorems 9.23,
9.31 and 9.32] (see also [2, Section 9]), from which one obtains the claimed description of the
minimal regular SNC model. □

It is convenient to package the description of �̄� given in Proposition 14.5 in terms of the
following graph.

Notation 14.8. Define  to be the graph consisting of one vertex for each irreducible component
of �̄�, with vertices 𝑣 and 𝑣′ joined by an edge if and only if the corresponding components inter-
sect. We give each vertex a weight 𝑑𝑣 ∈ {1, 2} according to the multiplicity of the corresponding
component in �̄�.
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1560 MORGAN

Remark 14.9. We see from Proposition 14.5 that  is a connected tree. Note that any vertex of  of
degree at least 3 has weight 2. The leaves of  correspond to the components Γ𝑟 for 𝑟 ∈  not in a
twin, along with the ‘crosses’ on the crossed tails 𝑇𝔱 for twins 𝔱. In particular,  has || = 2g + 2

leaves. Moreover, each leaf has weight 1.

Example 14.10 (Ramified quadratic twist of good reduction). Suppose 𝑓(𝑥) ∈ 𝐾[𝑥] is monic,
has degree 2g + 2 for some g ⩾ 2 and is such that the reduction 𝑓(𝑥) (mod 𝜋) is separable. Then
𝐶 ∶ 𝑦2 = 𝑓(𝑥) has good reduction, and 𝐶𝐿∕𝐾 is the hyperelliptic curve 𝐶𝐿 ∶ 𝑦2 = 𝜋𝑓(𝑥). We now
use Proposition 14.5 to describe �̄� in this case. The assumptions mean that 𝑓(𝑥) has a single
proper cluster, given by the full set of roots . This cluster has depth 0 and has 2g + 2 children,
with each individual root 𝑟 ∈  contributing a child {𝑟} <  of size 1. The cluster picture is thus
the following:

By Proposition 14.5, �̄� consists of one component Γ of genus 0 and multiplicity 2, intersected
transversely by 2g + 2 rational curves of multiplicity 1, one for each root 𝑟 ∈ , as depicted below.
The graph  consists of 2g + 2 vertices of weight 1, each joined to a common vertex 𝑣 of weight 2,
as shown below also. In the picture, we do not label multiplicities/weights unless they are greater
than 1.

This description of �̄� is consistent with work of Sadek [55, Theorem 3.7].

Example 14.11. Take 𝐶 to be the semistable genus 2 hyperelliptic curve over ℚ3 considered
previously in9.12, 13.3, and take 𝐿 = ℚ3(

√
3), so that 𝐶𝐿 is the curve

𝐶𝐿∕ℚ3 ∶ 𝑦2 = 3(𝑥2 + 3)((𝑥 − 𝑖)2 − 32)((𝑥 + 𝑖)2 − 32)

for 𝑖 a square root of −1. As in Example 13.3, the cluster picture is as shown:

As explained previously in Example 13.3, the full set of roots is the unique principal cluster, and
(as shown in the picture) there are three twins 𝔱1, 𝔱2 and 𝔱3, with 𝛿𝔱1

= 1∕2 and 𝛿𝔱2
= 𝛿𝔱3

= 1. By
Proposition 14.5,�̄� consists of one component Γ of multiplicity 2, along with three crossed tails,
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1561

as depicted below. The corresponding graph  is pictured also.

In particular, in the terminology of the Namikawa–Ueno classification [43], 𝐶𝐿∕𝐾 has type
𝐼∗
1−2−2

.

Returning to the general case, we now describe the 𝐺𝑘-action on the set of irreducible com-
ponents of �̄� (equivalently the induced 𝐺𝑘-action on  ). To do this, we introduce the following
notation.

Notation 14.12. For each twin 𝔱 = {𝑟1, 𝑟2}, let 𝜂𝔱 ∈ 𝐾𝑠× be a choice of square root of

(𝑟1 − 𝑟2)
2

(−𝜋)2𝑑𝔱
,

noting that 𝑑𝔱 = 𝑣(𝑟1 − 𝑟2) so that the displayed quantity is a unit (we can have 𝑑𝔱 ∈ 1

2
+ ℤ, so

we need not have a canonical choice of square root). In particular, 𝜂𝔱 ∈ ×
𝐾nr . Define the function

𝛾𝔱,𝐿 ∶ 𝐺𝐾 → {±1} by the formula

𝛾𝔱,𝐿(𝜎) =
𝜎(𝜂𝔱)

𝜂𝜎𝔱

.

The function 𝛾𝔱,𝐿 factors through Gal(𝐾nr∕𝐾). Thus, we view 𝛾𝔱,𝐿 as a function on 𝐺𝑘 as well. In
particular, we can speak about 𝛾𝔱,𝐿(𝐹) where 𝐹 ∈ 𝐺𝑘 is the Frobenius element. The function 𝛾𝔱,𝐿

may depend on the choice of square root 𝜂𝔱, but its restriction to the stabiliser of 𝔱 does not. We
remark that we include 𝐿 in the notation for 𝛾𝔱,𝐿 since, when 𝑑𝔱 ∈ 1∕2 + ℤ, it depends on the class
of the uniformiser 𝜋 in 𝐾×∕𝐾×2.

We stress that Convention 14.1 is in place, which is relevant for the function 𝜖𝔰.

Proposition 14.13. Let 𝜎 ∈ 𝐺𝑘 . The action of 𝜎 on the set of irreducible components of �̄� is
determined by:

∙ for 𝔰 principal, the component Γ𝔰 is sent to Γ𝜎𝔰,
∙ for each 𝑟 ∈  not in a twin, the component Γ𝑟 is sent to Γ𝜎𝑟,
∙ for a twin 𝔱 with 𝔱 ∉ 𝑇, the crossed tail 𝑇𝔱 is sent to 𝛾𝔱(𝜎)𝑇𝜎𝔱,†
∙ for a twin 𝔱 ∈ 𝑇, the crossed tail 𝑇𝔱 is sent to 𝜖𝔱(𝜎)𝛾𝔱(𝜎)𝑇𝜎𝔱.

†Here −𝑇𝔱 denotes the crossed tail 𝑇𝔱 with crosses swapped; strictly speaking we should fix a labelling ± of the crosses to
pin down the action, and this choice is closely related to the choices of square root in Notation 14.12 above. However, it
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1562 MORGAN

Proof. This essentially follows from [20, Theorem 7.21]; however, in some cases, the Frobenius
action is not correctly computed in that work. The argument given in loc. cit. applies to show that
the action is as claimed in the first two bullet points. However, for a crossed tail 𝑇𝔱 corresponding
to a twin 𝔱, the computation given there is incorrect. We explain now how to correctly compute
the action in this case.
Since 𝐶 is semistable over 𝐾, the curve 𝐶𝐿 becomes semistable over 𝐿. The results of [18] then

apply to give an explicit description of the minimal proper regular model ̃∕𝐿ur of 𝐶𝐿∕𝐿ur in
terms of clusters for 𝐶𝐿 and their associated invariants. In particular, equations for the compo-
nents of the special fibre ̃�̄� can be read off from [18, Proposition 5.20]. By uniqueness of the
minimal regular model, the full Galois group 𝐺𝐾 acts semilinearly on ̃�̄�, and this action factors
through Gal(𝐿ur∕𝐾). This action is described explicitly in terms of clusters in [18, Theorem 6.2].
Writing 𝐺 = Gal(𝐿ur∕𝐾nr), the quotient ̃∕𝐺 is an 𝐾nr -model for 𝐶𝐿, closely related to its mini-
mal regular model. In particular, as explained in the proof of [20, Theorem 7.21], the 𝐺𝑘-action on
the crossed tails of�̄� can be read off from the𝐺𝑘-action on the singular points of the special fibre
of ̃∕𝐺, which can, in turn, be calculated using the results of [18] mentioned above. To carry out
this calculation, fix a twin 𝔱 = {𝑟1, 𝑟2}. We take as a centre for 𝔱 the quantity 𝑧𝔱 ∶=

𝑟1+𝑟2
2

∈ 𝐾nr. As
described in [18, Proposition 5.20], associated to 𝔱 is the componentΓ𝔱 of ̃�̄�, given by the equation

Γ𝔱 ∶ 𝑦2 = 𝑐𝔱

(
𝑥2 −

(𝑟1 − 𝑟2)
2

4𝜋2𝑑𝔱
mod𝔪

)
for 𝑐𝔱 =

𝑐𝑓

𝜋𝑣(𝑐𝑓)

∏
𝑟∈⧵𝔱

(
𝑧𝔱 − 𝑟

𝜋𝑣(𝑧𝔱−𝑟)

)
mod𝔪.

Here 𝔪 denotes the maximal ideal in �̄� and ‘mod𝔪’ denotes reduction to the residue field �̄�.
Recall that 2𝑑𝔱 ∈ ℤ is odd if 𝔱 ∈ 𝑇, and is even otherwise. Using the description of the invariant
𝜈𝔱 afforded by Lemma 14.7 (ii), we see from [18, Theorem 6.2] that the generator 𝜏 of 𝐺 acts on Γ𝔱

as the automorphism

(𝑥, 𝑦) ⟼

{
(𝑥, −𝑦) 𝔱 ∉ 𝑇,

(−𝑥, 𝑦) 𝔱 ∈ 𝑇.

The relevant singular points of the special fibre of ̃∕𝐺 arise as the image under the quotient map
of the fixed points of the action of 𝜏 on Γ𝔱. These are the points 𝑃

±
𝔱

∈ Γ𝔱 given by

𝑃±
𝔱

=
(
±1

2
𝜂𝔱, 0

)
if 𝔱 ∉ 𝑇 and 𝑃±

𝔱
=
(
0, ±1

2
𝜂𝔱

√
𝑐𝔱

)
if 𝔱 ∈ 𝑇,

where here 𝜂𝔱 ∶= 𝜂𝔱 mod𝔪. Since the points 𝑃±
𝔱
are fixed by 𝐺, the action of Gal(𝐿ur∕𝐾) on

these points descends to an action of Gal(𝐾nr∕𝐾) = 𝐺𝑘, and appealing to [18, Theorem 6.2] once
more to determine this action, we see that 𝜎 ∈ 𝐺𝑘 sends 𝑃±

𝔱
∈ Γ𝔱 to the point on Γ𝜎𝔱 given by

acting coordinatewise on the expression for 𝑃±
𝔱
given above. Now the points 𝑃±

𝔱
can be identi-

fied with the ‘crosses’ on the crossed tail 𝑇𝔱 (cf. proof of [20, Theorem 7.21]). We thus see that
the action is as claimed upon noting that, after making compatible choices of square roots, we
have 𝜖𝔱(𝜎) = 𝜎(

√
𝑐𝔱)∕

√
𝑐𝜎𝔱 (to justify this final equality, see [18, Lemma 6.7] and the surrounding

discussion). □

will only be relevant in what follows to know whether the stabiliser of a twin 𝔱 fixes or swaps the crosses on 𝑇𝔱, and for
this, we can safely ignore this subtlety.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1563

Remark 14.14. In Remark 14.9, we described the leaves of  . From Proposition 14.13, we see that
leaves corresponding to roots 𝑟 ∈  not lying in a twin are permuted by 𝐺𝑘 as the corresponding
roots are. Further, let us temporarily denote by  the subset of consisting of roots lying in twins
𝔱 with 𝔱 ∉ 𝑇, noting that  ⊆  ∩ 𝐾nr. If we further denote by  the set of leaves corresponding
to the ‘crosses’ on the crossed tails 𝑇𝔱 for 𝔱 ∉ 𝑇, then we see from Proposition 14.13 that  and 

are isomorphic as 𝐺𝑘-sets.

Example 14.15. Returning to Example 14.11, for all 𝜎 ∈ 𝐺𝑘, we have 𝜖𝔱1(𝜎) = 𝜖𝔱2(𝜎) = 𝜖𝔱3(𝜎) = 1

(cf. Example 13.14). One checks that we may take the functions 𝛾𝔱1
, 𝛾𝔱2

and 𝛾𝔱3
to be identically 1

also. Finally, the Frobenius element in 𝐺𝑘 fixes 𝔱1 but swaps 𝔱2 and 𝔱3. We thus see from Proposi-
tion 14.13 that 𝐹 fixes the crossed tail corresponding to 𝔱1 (the leftmost one in the picture) and
swaps the crossed tails corresponding to 𝔱2 and 𝔱3. Moreover, 𝐹2 acts trivially on the full set
of components, and hence the stabiliser in 𝐺𝑘 of 𝔱𝑖 , 𝑖 = 2, 3, acts trivially on the crosses of the
corresponding crossed tail.

14.2 The Tamagawa number up to squares

We now use the description of  along with its 𝐺𝑘-action, afforded by14.5, 14.13, to compute
the Tamagawa number of 𝐽𝐿∕𝐾 up to rational squares. We begin by describing the order of the
component group over �̄�.

Lemma 14.16. We have |Φ(�̄�)| = 22g .

Proof. Since  is a tree, [6, Proposition 9.6.6] gives

|Φ(�̄�)| = ∏
𝑣∈

𝑑
deg(𝑣)−2
𝑣 =

∏
𝑣∈ 2deg(𝑣)−2∏
𝑣∈
𝑑𝑣=1

2deg(𝑣)−2
,

where deg(𝑣) denotes the degree of the vertex 𝑣. Since  is a connected tree, we have∏
𝑣∈

2deg(𝑣)−2 = 2
∑

𝑣∈ (deg(𝑣)−2) = 1∕4.

Since any vertex of  of degree at least 3 has multiplicity 2, we find∏
𝑣∈
𝑑𝑣=1

2deg(𝑣)−2 = 2−#{leaves of  } = 2−2g−2,

the second equality following from Remark 14.9. □

We now turn to computing the size of the 𝐺𝑘-invariants of Φ(�̄�) up to rational squares, which
we will do with the aid of Proposition 10.8. We remark that an alternative approach might be to
use the recipe [58, Section 4.2] of Srinivasan for computing the Tamagawa number of a curve in
terms of its minimal proper regular model.
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1564 MORGAN

In what follows it will be convenient to work exclusively with the graph  . To facilitate this,
we transfer the intersection pairing between the components of �̄� to a pairing on the vertices
of  . Since by Proposition 14.5, all components intersect transversally, this pairing has a simple
combinatorial description.

Definition 14.17. For vertices 𝑣 and 𝑣′ of  , define

𝑣 ∙ 𝑣′ =

⎧⎪⎨⎪⎩
0 𝑣 not adjacent to 𝑣′,

1 𝑣 ≠ 𝑣′ and 𝑣, 𝑣′ adjacent,
− 1

𝑑𝑣

∑
𝑤≠𝑣 𝑑𝑤 𝑣 ∙ 𝑤 𝑣 = 𝑣′.

Note that if vertices 𝑣, 𝑣′ of  correspond to components Γ𝑣 and Γ𝑣′ , respectively, then 𝑣 ∙ 𝑣′ is the
intersection number between Γ𝑣 and Γ𝑣′ . We extend this product bilinearly to the ℚ-vector space
𝑉 with basis the vertices of  .

Notation 14.18. For 𝑣 ∈  , denote by 𝑟𝑣 the size of the 𝐺𝑘-orbit of 𝑣. If 𝑟𝑣 is even, write

𝜖𝑣 = 𝑣 − 𝐹𝑣 +⋯ − 𝐹𝑟𝑣−1𝑣 ∈ 𝑉.

Wenowdefine amatrix𝑀with rows and columns indexed by the even length𝐺𝑘-orbits of vertices
of 𝑇 as follows. For each even length 𝐺𝑘-orbit 𝑂, pick a representative 𝑣𝑂 ∈ 𝑂. Then the (𝑂, 𝑂′)-
entry of𝑀 is defined as

𝑀𝑂,𝑂′ =
1

𝑟𝑣𝑂
𝜖𝑣𝑂 ∙ 𝜖𝑣𝑂′

.

The relevance of the above definitions is that, by Proposition 10.8, we have

| det𝑀| ≡ 2𝜖(𝐶𝐿∕𝐾) ⋅
|Φ(�̄�)||Φ(𝑘)| (mod ℚ×2). (14.19)

Taking 2-adic valuations in (14.19) and noting that we have |Φ(𝑘)| = 𝑐(𝐽𝐿∕𝐾) by definition, it
follows from Lemma 14.16 that we have

ord2| det𝑀| ≡ 𝜖(𝐶𝐿∕𝐾) + ord2𝑐(𝐽
𝐿∕𝐾) (mod 2). (14.20)

Proposition 14.21. Suppose that either is a principal cluster, or = 𝔰1 ⊔ 𝔰2 is a disjoint union
of two proper clusters 𝔰1 and 𝔰2 which are not swapped by 𝐺𝑘 . Then

| det𝑀| = 2#{ even-sized 𝐺𝑘-orbits of leaves of  }.

We begin with a lemma, which is a variant of [6, Lemma 9.6.7].

Lemma 14.22. Let 𝕋 be a rooted tree with root 𝑅. Let𝑁 be a matrix with rational coefficients whose
rows and columns are indexed by the vertices of 𝕋. Suppose that 𝑁𝑣,𝑣′ = 0 save possibly when either
𝑣 = 𝑣′ or when 𝑣 and 𝑣′ are adjacent in 𝕋. Further, suppose that all rows of𝑁 sum to 0, save possibly
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1565

the row corresponding to the root 𝑅. Then

det 𝑁 =

( ∏
𝑣∈𝕋,𝑣≠𝑅

−𝑁𝑣,𝑣parent

)(∑
𝑣∈𝕋

𝑁𝑅,𝑣

)
,

where here for a vertex 𝑣 ≠ 𝑅 of 𝕋, 𝑣parent denotes the parent of 𝑣 in 𝕋 (i.e. the vertex adjacent to 𝑣 on
the unique path in 𝕋 from 𝑣 to the root 𝑅).

Proof. The strategy of proof is the same as that of [6, Lemma 9.6.7], and is by induction on 𝑛 = |𝕋|.
If 𝑛 = 1, the result is clear, so assume 𝑛 > 1. Let 𝑣 ≠ 𝑅 be a leaf of 𝕋 and order the vertices of 𝕋
so that 𝑣 is the first vertex, and its parent 𝑣′ is the second (the determinant is independent of the
ordering of vertices, this is just to enable us to write down the matrix explicitly). The assumptions
on 𝑁 mean that it has the form

𝑁 =

⎛⎜⎜⎜⎜⎜⎜⎝

−𝑁𝑣,𝑣′ 𝑁𝑣,𝑣′ 0 0 0

𝑁𝑣′,𝑣 𝑁𝑣′,𝑣′ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠
.

If𝑁𝑣,𝑣′ = 0, then det𝑁 = 0 is as claimed, so suppose𝑁𝑣,𝑣′ ≠ 0. Adding column 1 to column 2 and
then adding

𝑁𝑣′,𝑣

𝑁𝑣,𝑣′
⋅ (row 1) to row 2 does not change the determinant, and transforms the matrix

above into the matrix

⎛⎜⎜⎜⎜⎜⎜⎝

−𝑁𝑣,𝑣′ 0 0 0 0

0 𝑁𝑣′,𝑣′ + 𝑁𝑣′,𝑣 ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

0 ∗ ∗ ∗ ∗

⎞⎟⎟⎟⎟⎟⎟⎠
.

Here, all entries indicated by a ∗ remain unchanged from the corresponding entries of 𝑁. Let �̃�
be the matrix obtained by removing the first row and column from this matrix, so that det𝑁 =

−𝑁𝑣,𝑣′det�̃�. Letting �̃� be the rooted tree obtained from 𝕋 by removing the leaf 𝑣 (with root equal
to the root 𝑅 of 𝕋), we see that �̃� satisfies the hypothesis of the statement with respect to �̃�. By
induction, we have

det𝑁 = −𝑁𝑣,𝑣′det�̃� = −𝑁𝑣,𝑣′

⎛⎜⎜⎝
∏

𝑥∈�̃�,𝑥≠𝑅

−𝑁𝑥,𝑥parent

⎞⎟⎟⎠
(∑

𝑥∈�̃�

�̃�𝑅,𝑥

)

=
⎛⎜⎜⎝

∏
𝑥∈�̃�,𝑥≠𝑅

−𝑁𝑥,𝑥parent

⎞⎟⎟⎠
(∑

𝑥∈�̃�

�̃�𝑅,𝑥

)
.
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1566 MORGAN

The conclude, we claim that ∑
𝑥∈�̃�

�̃�𝑅,𝑥 =
∑
𝑥∈𝕋

𝑁𝑅,𝑥.

Indeed, when 𝑣′ ≠ 𝑅, we have 𝑁𝑅,𝑣 = 0, and �̃�𝑅,𝑥 = 𝑁𝑅,𝑥 for each 𝑥 ≠ 𝑣. From this, the claim
follows readily. On the other hand, when 𝑣′ = 𝑅, the identity follows from the fact that �̃�𝑣′,𝑣′ =

𝑁𝑣′,𝑣′ + 𝑁𝑣′,𝑣, whilst �̃�𝑣′,𝑥 = 𝑁𝑣′,𝑥 for all 𝑥 ∉ {𝑣, 𝑣′}. □

Proof of Proposition 14.21. If  is principal, denote by 𝑅 the vertex of  corresponding to the
component Γ. If  = 𝔰1 ⊔ 𝔰2, denote by 𝑅 the vertex of  corresponding to Γ𝔰1

. In either case,
𝑅 is fixed by 𝐺𝑘 and 𝑑𝑅 = 2. We view  as a rooted tree with root 𝑅. For a vertex 𝑣 ≠ 𝑅, we denote
by 𝑃(𝑣) the parent of 𝑣 in  . We say that 𝑣 is a child of a vertex 𝑤 if 𝑤 = 𝑃(𝑣).
Now take a vertex 𝑣 of  with 𝑟𝑣 even, noting that this forces 𝑣 ≠ 𝑅. If 𝑣′ is a child of 𝑣, then 𝑟𝑣

divides 𝑟𝑣′ . In particular, 𝑟𝑣′ is even also. In this case, we write 𝑟𝑣′ = 𝑚𝑣′𝑟𝑣, noting that𝑚𝑣′ is the
number of vertices in the𝐺𝑘-orbit of 𝑣′ having parent 𝑣. One then computes 𝜖𝑣 ∙ 𝜖𝑣′ = 𝑚𝑣′𝑟𝑣 = 𝑟𝑣′ ,
so we have

1

𝑟𝑣
𝜖𝑣 ∙ 𝜖𝑣′ = 𝑚𝑣′ and 1

𝑟𝑣′

𝜖𝑣′ ∙ 𝜖𝑣 = 1. (14.23)

Moreover, we have 𝜖𝑣 ∙ 𝜖𝑣 = 𝑟𝑣𝑣 ∙ 𝑣, giving

1

𝑟𝑣
𝜖𝑣 ∙ 𝜖𝑣 = −

𝑑𝑃(𝑣)

𝑑𝑣

−
1

𝑑𝑣

∑
𝑣′ child of 𝑣

𝑑𝑣′ . (14.24)

To make use of these computations, pick compatibly a representative for each even-sized 𝐺𝑘-
orbit of vertices in  in such a way that if 𝑣 is picked, then for each 𝐺𝑘-orbit containing a child
of 𝑣, the chosen representative of that orbit is itself a child of 𝑣. The subgraph of  generated
by all chosen representatives is a finite disjoint union of connected trees, 1, … , 𝑠 say. Each 𝑖 is
naturally a rooted tree, with root 𝑅𝑖 the unique vertex of 𝑖 closest to 𝑅, and we extend the notion
of child/parent to 𝑖 . We caution, however, that we reserve the notation 𝑃(𝑣) for the parent of a
vertex 𝑣 in the tree  . Now for 1 ⩽ 𝑖 ⩽ 𝑠, define 𝑁𝑖 to be the matrix whose rows and columns are
indexed by the vertices of 𝑖 , and such that the (𝑣, 𝑣′)-entry of 𝑁𝑖 is given by

(𝑁𝑖)𝑣,𝑣′ =
𝑑𝑣𝑑𝑣′

𝑟𝑣
𝜖𝑣 ∙ 𝜖𝑣′ =

⎧⎪⎪⎨⎪⎪⎩

𝑑𝑣𝑑𝑣′ 𝑣 a child of 𝑣′ in 𝑖 ,

𝑚𝑣′𝑑𝑣𝑑𝑣′ 𝑣 parent of 𝑣′ in 𝑖 ,

−𝑑𝑣𝑑𝑃(𝑣) −
∑

𝑤 child of 𝑣 in 𝑖
𝑚𝑤𝑑𝑣𝑑𝑤 𝑣 = 𝑣′,

0 otherwise,

(14.25)

the second equality following from (14.23) and (14.24). By construction, we have

| det𝑀| = 𝑠∏
𝑖=1

⎛⎜⎜⎝| det𝑁𝑖| ∏
𝑣∈𝑖

𝑑−2
𝑣

⎞⎟⎟⎠.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1567

Applying Lemma 14.22 to each of the matrices 𝑁𝑖 , we find

| det𝑀| = 𝑠∏
𝑖=1

∏
𝑣∈𝑖

𝑑𝑃(𝑣)

𝑑𝑣

. (14.26)

Claim. For each 1 ⩽ 𝑖 ⩽ 𝑠, we have

∏
𝑣∈𝑖

𝑑𝑃(𝑣)

𝑑𝑣

=
𝑑𝑃(𝑅𝑖)

2
2#{leaves of  appearing in 𝑖 }.

Proof of claim. Firstly suppose that 𝑖 consists of the single vertex 𝑅𝑖 . Then 𝑅𝑖 is necessarily a leaf
in  , hence has weight 1 and parent (in  ) of weight 2. Thus, the formula holds in this case.
Now assume that 𝑖 consists of at least two vertices, and for a vertex 𝑣 in 𝑖 , let deg𝑖 (𝑣) denote

the degree of 𝑣when viewed as a vertex of 𝑖 (as opposed to a vertex of  ). Note that a vertex 𝑣 ≠ 𝑅𝑖

of 𝑖 is the parent of (deg𝑖 (𝑣) − 1)-many vertices of 𝑖 , whilst 𝑅𝑖 is the parent of deg𝑖 (𝑣)-many
vertices of 𝑖 . Consequently, we have

∏
𝑣∈𝑖

𝑑𝑃(𝑣)

𝑑𝑣

= 𝑑𝑅𝑖
𝑑𝑃(𝑅𝑖)

∏
𝑣∈𝑖

𝑑
deg𝑖 (𝑣)−2

𝑣 = 𝑑𝑅𝑖
𝑑𝑃(𝑅𝑖)

∏
𝑣∈𝑖

2
deg𝑖 (𝑣)−2∏

𝑣∈𝑖
𝑑𝑣=1

2
deg𝑖 (𝑣)−2

.

Since 𝑖 is a connected tree, we have∏
𝑣∈𝑖

2
deg𝑖 (𝑣)−2

= 2
∑

𝑣∈𝑖
(deg𝑖 (𝑣)−2)

= 1∕4.

On the other hand, if 𝑣 ∈ 𝑖 has deg𝑖 (𝑣) ⩾ 3, then 𝑣 necessarily has degree at least 3 when viewed
as a vertex of  . It then follows from the description of  afforded by Proposition 14.5 that 𝑑𝑣 = 2.
All together, this gives

∏
𝑣∈𝑖

𝑑𝑃(𝑣)

𝑑𝑣

=
𝑑𝑅𝑖

𝑑𝑃(𝑅𝑖)

4
2
#{𝑣∈𝑖 ∶ deg𝑖 (𝑣)=1, 𝑑𝑣=1}

. (14.27)

Under the assumption that 𝑖 has at least two vertices, we see that a vertex 𝑣 ∈ 𝑖 is a leaf in
 if and only if deg𝑖 (𝑣) = 1 and 𝑣 ≠ 𝑅𝑖 . When this is the case, 𝑣 necessarily has weight 1. This
observation combined with (14.27) proves the claim (note that if deg𝑖 (𝑅𝑖) > 1, then, since 𝑅𝑖 ≠ 𝑅,
we see that 𝑅𝑖 must have degree at least 3 in  , hence weight 2). □

Returning to the proof of the proposition, note that the number of leaves of  which appear in
some 𝑖 is precisely the number of even-sized 𝐺𝑘-orbits of leaves of  . Combining the claim with
(14.26) thus gives

| det𝑀| = 2#{even-sized 𝐺𝑘-orbits of leaves of  } ⋅
𝑠∏

𝑖=1

𝑑𝑃(𝑅𝑖)

2
. (14.28)
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1568 MORGAN

For each 1 ⩽ 𝑖 ⩽ 𝑠, the parent of 𝑅𝑖 lies in an odd sized 𝐺𝑘-orbit and has a child lying in an even-
sized 𝐺𝑘-orbit. In particular, either 𝑅𝑖 = 𝑅 or 𝑅𝑖 has degree at least 3 in  . Either way, 𝑑𝑅𝑖

= 2 and
the result follows. □

In the remaining case, when = 𝔰1 ⊔ 𝔰2 is a disjoint union of two principal clusters swapped
by 𝐺𝑘, the result is the following.

Proposition 14.29. Suppose that  = 𝔰1 ⊔ 𝔰2 is a disjoint union of two principal clusters 𝔰1 and
𝔰2 that are swapped by 𝐺𝑘 . Then

| det𝑀| = {
2#{even-sized 𝐺𝑘-orbits of leaves of  } g odd, or g even and not atypical,
1

2
⋅ 2#{even-sized 𝐺𝑘-orbits of leaves of  } g even and atypical.

Proof. We indicate how to adapt the proof of Proposition 14.21 to these cases.
Firstly suppose that g is odd. Then both 𝔰1 and 𝔰2 are even. The vertices of  corresponding to

Γ𝔰1
and Γ𝔰2

are joined by a path consisting of an odd number of vertices of multiplicity 2. Let 𝑅 be
the middle vertex in this path, which is fixed by 𝐺𝑘 and has multiplicity 2. With this definition of
𝑅, the proof of Proposition 14.21 applies verbatim to give the desired result.
Now suppose that g is even, so that 𝔰1 and 𝔰2 are both odd. Since 𝔰1 and 𝔰2 are swapped by

𝐺𝑘, we have 𝛿𝔰1
= 𝛿𝔰2

, and the vertices of  corresponding to Γ𝔰1
and Γ𝔰2

are joined by a path
consisting of 𝛿𝔰1

vertices of weight 1. If is atypical, then this path consists of an odd number of
vertices, and we take as a root 𝑅 the middle vertex in this path. This is fixed by 𝐺𝑘 and has weight
1. Following the proof of Proposition 14.21, (14.30) becomes

| det𝑀| = 2#{even-sized 𝐺𝑘-orbits of leaves of  } ⋅
𝑑𝑅

2
. (14.30)

To see this, note that every vertex of  other than 𝑅 has an even-sized 𝐺𝑘-orbit, so that 𝑠 = 1 in
the proof of Proposition 14.21. The result now follows immediately.
Finally, suppose that g is even but that 𝑅 is not atypical, so that the vertices of  corresponding

to Γ𝔰1
and Γ𝔰2

are joined by a path consisting of a (positive since 𝛿𝔰1
⩾ 1) even number of vertices.

Let 𝑅1 and 𝑅2 be the middle vertices on this path, noting that they have degree 2 in  and weight
1. Note that every vertex of  has an even-sized 𝐺𝑘-orbit. As in the proof of Proposition 14.21, we
compatibly pick a representative for each (even sized) 𝐺𝑘-orbit of vertices in  , starting with 𝑅1,
and in such a way that if 𝑣 is picked, then, for each 𝐺𝑘-orbit containing a child of 𝑣, the chosen
representative of the orbit is itself a child of 𝑣. Let 1 be the subtree of  generated by the chosen
vertices. This is a connected tree andwe take𝑅1 as a root for 1. As in the proof of Proposition 14.21,
define 𝑁1 to be the matrix whose rows and columns are indexed by the vertices of 1 and such
that the (𝑣, 𝑣′)-entry of 𝑁1 is given by (𝑁1)𝑣,𝑣′ =

𝑑𝑣𝑑𝑣′

𝑟𝑣
𝜖𝑣 ∙ 𝜖𝑣′ . One then has | det𝑀| = | det𝑁1| ⋅∏

𝑣∈1
𝑑−2
𝑣 . This time, the formula (14.25) is valid provided (𝑣, 𝑣′) ≠ (𝑅1, 𝑅1). Noting that 𝜖𝑅1

=

𝑅1 − 𝑅2, one computes

(𝑁1)𝑅1,𝑅1
=

𝑑2
𝑅1

2
(𝑅1 − 𝑅2) ⋅ (𝑅1 − 𝑅2) = −2𝑑2

𝑅1
−

∑
𝑣 child of 𝑅1 in 1

𝑚𝑣𝑑𝑣𝑑𝑅1
.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1569

Again, the matrix 𝑁1 satisfies the conditions of Lemma 14.22, and the row corresponding to 𝑅1

sums to 2𝑑2
𝑅1
. Thus,

| det𝑀| = 2 ⋅
∏

𝑣∈1, 𝑣≠𝑅1

𝑑𝑃(𝑣)

𝑑𝑣

.

Now 1 consists of at least two vertices, 𝑅1 has degree 1 in 1 and weight 1 and leaves of 1 other
than 𝑅1 correspond bijectively to (necessarily even sized) 𝐺𝑘-orbits of leaves in  , all of which
have weight 1. Arguing as in the claim in the proof of Lemma 14.22 now gives the result. □

Recall from Notation 13.24 that we set 𝜅(𝐶) = 1 if  = 𝔰1 ⊔ 𝔰2 is a disjoint union of two odd
𝐺𝑘-conjugate clusters with both 𝛿𝑠1

and 𝛿𝑠2
odd, and set 𝜅(𝐶) = 0 otherwise. Putting everything

together, we obtain the following.

Corollary 14.31. We have

𝜖(𝐶𝐿∕𝐾) + ord2𝑐(𝐽
𝐿∕𝐾) ≡ 𝜅(𝐶) + #

{
even-sized 𝐺𝑘-orbits on ∩ 𝐾nr} +

#
{
𝐺𝑘-orbits 𝑂 ⊆ 𝑇 with

∏
𝔱∈𝑂

𝜖𝔱(𝐹)𝛾𝔱,𝐿(𝐹) = −1
}

(mod 2).

Proof. Combining (14.20) with14.21, 14.29 gives

𝜖(𝐶𝐿∕𝐾) + ord2𝑐(𝐽
𝐿∕𝐾) ≡ 𝜅(𝐶) + #{even-sized 𝐺𝑘-orbits of leaves of  } (mod 2). (14.32)

As in Remark 14.9, there are 2g + 2 leaves of  . By Remark 14.14, the leaves corresponding to ele-
ments 𝑟 ∈ , together with leaves arising as the crosses on the crossed tails 𝑇𝔱 for twins 𝔱 ∉ 𝑇,
form a 𝐺𝑘-set isomorphic to ∩ 𝐾nr. These leaves give rise to the second term on the right-hand
side of the statement. The remaining leaves arise as the crosses on the crossed tails 𝑇𝔱 corre-
sponding to twins 𝔱 ∈ 𝑇. Using Proposition 14.13, we see that each 𝐺𝑘-orbit 𝑂 ⊆ 𝑇 gives rise to
a single even sized 𝐺𝑘-orbit of leaves if

∏
𝔱∈𝑂 𝜖𝔱(𝐹)𝛾𝔱,𝐿(𝐹) = −1, and either 0 or 2 such orbits if∏

𝔱∈𝑂 𝜖𝔱(𝐹)𝛾𝔱,𝐿(𝐹) = 1 (according to whether |𝑂| is odd or even). This gives the result. □

15 PROOF OF PROPOSITION 11.1

For this section, we take 𝐾 to be a non-archimedean local field of odd residue characteristic, take
𝐿 = 𝐾(

√
𝜋) to be a ramified quadratic extension of 𝐾 and let 𝐶∕𝐾 be a semistable hyperelliptic

curve. We now combine the results of Sections 11–14 to prove Proposition 11.1. For convenience,
we recall the statement.

Proposition 15.1 (=Proposition 11.1). Conjecture 1.7 holds for 𝐶 and 𝐿∕𝐾.

Proof. By Lemma 4.1, we are at liberty to replace 𝐾 with an arbitrarily large odd-degree unram-
ified extension. In particular, we can without loss of generality assume that 𝐶∕𝐾 is given by
an equation of the form 𝑦2 = 𝑓(𝑥) where 𝑓(𝑥) satisfies Assumption 13.4 (see Remark 13.5 for a
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1570 MORGAN

justification of this). This allows us to use the results of Sections 13.4 and 14 which were proven
under this simplifying assumption.
Combining Corollary 13.25 and Corollary 14.31 with (11.2) and (11.8) gives

𝑤(𝐽∕𝐿) ⋅ (−1)𝜖(𝐶∕𝐾)+𝜖(𝐶𝐿∕𝐾)+dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = (−1)#
{
even-sized 𝐺𝑘-orbits on∩𝐾nr

}
⋅(−1)#

{
𝐺𝑘-orbits 𝑂⊆𝑇 with

∏
𝔱∈𝑂 𝛾𝔱,𝐿(𝐹)=−1

}
.

Here, we are using the notation of Sections 13, 14, so that denotes the set of roots of 𝑓(𝑥) in 𝐾𝑠,
the set 𝑇 is as defined in Notation 13.8 and the signs 𝛾𝔱,𝐿 are as defined in Notation 14.12. To prove
Conjecture 1.7, we see that it suffices to establish the equality

(Δ𝐶, 𝐿∕𝐾)
?
= (−1)#

{
even-sized 𝐺𝑘-orbits on∩𝐾nr

}
+#
{
𝐺𝑘-orbits 𝑂⊆𝑇 with

∏
𝔱∈𝑂 𝛾𝔱,𝐿(𝐹)=−1

}
. (15.2)

Recall from Lemma 13.9 that we have ∪𝔱∈𝑇𝔱 =  ⧵ ∩ 𝐾nr, and that each 𝔱 = {𝑟𝔱,1, 𝑟𝔱,2} is an
inertia orbit of roots of 𝑓(𝑥). In particular, we can factor 𝑓(𝑥) over 𝐾 as a product

𝑓(𝑥) = 𝑓nr(𝑥) ⋅
∏

𝑂∈𝑇∕𝐺𝑘

𝑓𝑂(𝑥)

where 𝑓nr(𝑥) ∈ 𝐾[𝑥] splits over 𝐾nr and where, for a 𝐺𝑘-orbit 𝑂 ⊆ 𝑇, we have

𝑓𝑂(𝑥) =
∏
𝔱∈𝑂

(𝑥 − 𝑟𝔱,1)(𝑥 − 𝑟𝔱,2) ∈ 𝐾[𝑥].

In what follows, for a polynomial g(𝑥), we write Δg for its discriminant. From the above
factorisation, we find

(Δ𝐶, 𝐿∕𝐾) = (Δ𝑓nr
, 𝐿∕𝐾) ⋅

∏
𝑂∈𝑇∕𝐺𝑘

(Δ𝑓𝑂
, 𝐿∕𝐾).

This follows from the fact that, for coprime polynomials ℎ1(𝑥), ℎ2(𝑥) ∈ 𝐾[𝑥], we have Δℎ1ℎ2
=

Δℎ1
Δℎ2

Res(ℎ1, ℎ2)
2 where Res(ℎ1, ℎ2) ∈ 𝐾× denotes the resultant of ℎ1(𝑥) and ℎ2(𝑥).

Since 𝐿∕𝐾 is ramified whilst 𝑓nr(𝑥) splits over an unramified extension, we see that
(Δ𝑓nr

, 𝐿∕𝐾) = 1 if and only if Δ𝑓nr
is a square in 𝐾, which, in turn, happens if and only if the

Frobenius element 𝐹 ∈ 𝐺𝑘 acts as an even permutation of the roots of 𝑓nr(𝑥). Thus, we have

(Δ𝑓nr
, 𝐿∕𝐾) = (−1)#

{
even-sized 𝐺𝑘-orbits on∩𝐾nr

}
.

To conclude, we claim that for each 𝐺𝑘-orbit 𝑂 ⊆ 𝑇, we have (Δ𝑓𝑂
, 𝐿∕𝐾) =

∏
𝔱∈𝑂 𝛾𝔱,𝐿(𝐹). Indeed,

from the definition of 𝛾𝔱,𝐿 given in Notation 14.12, we see that
∏

𝔱∈𝑂 𝛾𝔱,𝐿(𝐹) is equal to 1 if and only
if the quantity ∏

𝔱∈𝑂

(𝑟𝔱,1 − 𝑟𝔱,2)
2(−𝜋)−2𝑑𝔱 ∈ ×

𝐾
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1571

is a square in 𝐾. We thus have

∏
𝔱∈𝑂

𝛾𝔱,𝐿(𝐹) =

(∏
𝔱∈𝑂

(𝑟𝔱,1 − 𝑟𝔱,2)
2(−𝜋)−2𝑑𝔱 , 𝐿∕𝐾

)
=

(∏
𝔱∈𝑂

(𝑟𝔱,1 − 𝑟𝔱,2)
2, 𝐿∕𝐾

)
,

where for the second equality, we note that−𝜋 is a norm from 𝐿 = 𝐾(
√

𝜋) (recall that, since 𝔱 ∈ 𝑇,
the quantity 2𝑑𝔱 is an odd integer). For 𝔱 ≠ 𝔱′ ∈ 𝑂, write 𝑅(𝔱, 𝔱′) =

∏
𝑟∈𝔱,𝑟′∈𝔱′ (𝑟 − 𝑟′), noting that

this quantity lies in 𝐾nr and that 𝑅(𝔱, 𝔱′) = 𝑅(𝔱′, 𝔱). Then, we have

Δ𝑓𝑂
=
∏
𝔱∈𝑂

(𝑟𝔱,1 − 𝑟𝔱,2)
2 ⋅

∏
{𝔱,𝔱′}⊆𝑂

𝑅(𝔱, 𝔱′)2,

where the second product runs over all unordered pairs of distinct elements of 𝑂. The prod-
uct

∏
{𝔱,𝔱′}⊆𝑂 𝑅(𝔱, 𝔱′) is visibly fixed by 𝐺𝐾 , and hence lies in 𝐾. We conclude that Δ𝑓𝑂

and∏
𝔱∈𝑂(𝑟𝔱,1 − 𝑟𝔱,2)

2 are congruent modulo squares in 𝐾×, proving the claim. □

16 RESIDUE CHARACTERISTIC 2

In this section, we consider Conjecture 1.7 when 𝐾 is a finite extension of ℚ2 and when the
quadratic extension 𝐿∕𝐾 is ramified. Let 𝐶∕𝐾 be a hyperelliptic curve with Jacobian 𝐽. We sup-
pose henceforth that 𝐽∕𝐾 has good ordinary reduction. Let 𝐽(𝐾)1 denote the kernel of reduction
on 𝐽(𝐾), and define 𝐽(𝐿)1 similarly. We begin by considering the norm map from 𝐽(𝐿)1 to 𝐽(𝐾)1.

Lemma 16.1. We have

|||𝐽(𝐾)1∕𝑁𝐿∕𝐾𝐽(𝐿)1
||| = ||𝐽(𝐾)1[2]

||.
Proof. Let 𝐺 = Gal(𝐿∕𝐾) ≅ ℤ∕2ℤ. Let g be the genus of 𝐶 so that by [34, Theorem 1], there is a
matrix 𝑢 ∈ Matg (ℤ2) (the 𝑡𝑤𝑖𝑠𝑡𝑚𝑎𝑡𝑟𝑖𝑥 associated to the formal group of 𝐽) such that

𝐽(𝐾)1∕𝑁𝐿∕𝐾𝐽(𝐿)1 ≅ 𝐺g∕(1 − 𝑢)𝐺g .

Moreover, denoting by 𝑇 the completion of 𝐾nr, we have (see [34, Lemma])

𝐽(𝐾)1 ≅
{
𝛼 ∈

(
×

𝑇

)g
∶ 𝐹𝛼 = 𝑢𝛼

}
,

where 𝐹 denotes the Frobenius automorphism of 𝑇. In particular, we have

𝐽(𝐾)1[2] ≅
{
𝛼 ∈ {±1}g ∶ (1 − 𝑢)𝛼 = 1

}
.

Identifying the groups 𝐺 and {±1} in the obvious way, 𝐽(𝐾)1[2] is identified with the kernel of
multiplication by 1 − 𝑢 on 𝐺g . We now conclude by noting that the cokernel and kernel of an
endomorphism of a finite abelian group have the same order. □
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1572 MORGAN

Lemma 16.2. Suppose that 𝐾(𝐽[2])∕𝐾 has odd degree. Then we have

dim𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) ≡ 0 (mod 2).

Proof. Lemma 4.1 reduces to the case 𝐾(𝐽[2]) = 𝐾. In this case, we claim that

dim𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = 2g .

To see this, consider the commutative diagram with exact rows

where 𝐽∕𝑘 denotes the special fibre of the Néron model of 𝐽. The assumption that all 2-torsion is
defined over 𝐾 means that reduction to the special fibre is a surjection from 𝐽(𝐾)[2] to 𝐽(𝑘)[2].
In particular, in the exact sequence arising from applying the snake lemma to the diagram above,
the connecting homomorphism is trivial. Thus, the sequence

0 ⟶ 𝐽(𝐾)1∕𝑁𝐿∕𝐾𝐽(𝐿)1 ⟶ 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) ⟶ 𝐽(𝑘)∕2𝐽(𝑘) ⟶ 0

is short exact. As 𝐽 is ordinary (and all its 2-torsion is defined over 𝐾), we have

||𝐽(𝑘)∕2𝐽(𝑘)|| = ||𝐽(𝑘)[2]|| = 2g .

On the other hand, by Lemma 16.1, we have

||𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿)|| = ||𝐽(𝐾)1[2]
|| = 2g

also, from which the result follows. □

Corollary 16.3. Suppose that 𝐾(𝐽[2])∕𝐾 has odd degree. Then Conjecture 1.7 holds for 𝐶∕𝐾 and
the extension 𝐿∕𝐾.

Proof. Again by Lemma 4.1, we can assume that all the 2-torsion of 𝐽 is defined over 𝐾. Under
this assumption, 𝑓(𝑥) splits over 𝐾, so (Δ𝐶, 𝐿∕𝐾) = 1. Similarly, both 𝐶 and 𝐶𝐿 have a 𝐾-rational
Weierstrass point, so 𝜖(𝐶∕𝐾) + 𝜖(𝐶𝐿∕𝐾) = 0. By Lemma 16.2, we have (−1)dim 𝐽(𝐾)∕𝑁𝐿∕𝐾𝐽(𝐿) = 1,
and, for example, by [15, Proposition 3.23], we have 𝑤(𝐽∕𝐿) = 1. □

For the purpose of giving examples, we now describe how to construct hyperelliptic curves
over ℚ whose Jacobians are good ordinary over ℚ2 and have all their 2-torsion defined over an
odd degree extension on ℚ2. Let g ⩾ 2 be an integer.
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2-SELMER PARITY FOR HYPERELLIPTIC CURVES IN QUADRATIC EXTENSIONS 1573

Lemma 16.4. Let 𝑓(𝑥) ∈ �̄�2[𝑥] be a monic separable polynomial of degree g + 1 and let ℎ(𝑥) ∈

�̄�2[𝑥] be a polynomial of degree ⩽ g , coprime to 𝑓(𝑥). Then the hyperelliptic curve

𝐶∕�̄�2 ∶ 𝑦2 − 𝑓(𝑥)𝑦 = ℎ(𝑥)𝑓(𝑥)

is ordinary.

Proof. One readily checks that the equation defining 𝐶 is smooth, and hence defines a hyperel-
liptic curve over �̄�2 of genus g . Let 𝐽 be the Jacobian of 𝐶. As in the proof of [14, Theorem 23], one
sees that dim 𝐽(�̄�2)[2] = g , and hence 𝐽 is ordinary. □

Lemma 16.5. Suppose 𝑓(𝑥) ∈ ℤ[𝑥] has odd leading coefficient and degree g + 1, and suppose that
𝑓(𝑥) (mod 2) is separable with each irreducible factor having odd degree. Further, let ℎ(𝑥) ∈ ℤ[𝑥]

have degree ⩽ g be such that ℎ(𝑥) (mod 2) is coprime to 𝑓(𝑥) (mod 2). Then the Jacobian 𝐽 of the
hyperelliptic curve

𝐶 ∶ 𝑦2 = 𝑓(𝑥)(𝑓(𝑥) + 4ℎ(𝑥))

has good ordinary reduction over ℚ2. Moreover, ℚ2(𝐽[2])∕ℚ2 has odd degree.

Proof. A change of variables over ℚ2 brings 𝐶 into the form 𝑦2 − 𝑓(𝑥)𝑦 = ℎ(𝑥)𝑓(𝑥), so 𝐽 has
good ordinary reduction overℚ2 by Lemma 16.4. Moreover, both 𝑓(𝑥) and 𝑓(𝑥) + 4ℎ(𝑥) reduce to
separable polynomials over 𝔽2 whose irreducible factors have odd degree. It follows fromHensel’s
lemma that 𝑓(𝑥)(𝑓(𝑥) + 4ℎ(𝑥)) splits over an odd degree unramified extension of ℚ2, and hence
ℚ2(𝐽[2])∕ℚ2 has odd degree (and is unramified). □

17 PROOF OF THEOREMS 1.1 AND 1.8

We have now established enough cases of Conjecture 1.7 to deduce1.1, 1.8. For completeness, we
explain these deductions below.

Proof of Theorem 1.8. The case where 𝐾 is non-archimedean is Proposition 7.1. The case where
the quadratic extension is unramified is Proposition 9.1. For the remaining cases, combine
Proposition 11.1 (=Proposition 15.1) and Proposition 16.3. These deal, respectively, with ramified
extensions in odd residue characteristic, and ramified extensions in residue characteristic 2. □

Proof of Theorem 1.1. As explained in Section 1.3, this follows by combining Theorem 1.6
(=Theorem 2.1) with Theorem 1.8. □
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