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Abstract
Understanding the usage patterns for bike-sharing sys-
tems is essential in terms of supporting and enhancing
operational planning for such schemes. Studies have
demonstrated how factors such as weather conditions
influence the number of bikes that should be available
at bike-sharing stations at certain times during the day.
However, the influences of these factors usually vary
over the course of a day, and if there is good temporal
resolution, there could also be significant effects only for
some hours/minutes (rush hours, the hours when shops
are open and so forth). Thus, in this paper, an analysis
of Helsinki’s bike-sharing data from 2017 is conducted
that considers full temporal and spatial resolutions. The
station hire data are analysed in a spatiotemporal func-
tional setting, where the number of bikes at a station
is defined as a continuous function of the time of day.
For this completely novel approach, we apply a func-
tional spatiotemporal hierarchical model to investigate
the effect of environmental factors and the magnitude
of the spatial and temporal dependence. Challenges in
computational complexity are faced using a Monte Carlo
subsampling approach. The results show the neces-
sity of splitting the bike-sharing stations into two clus-
ters based on the similarity of their spatiotemporal
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functional observations in order to model the station
hire data of Helsinki’s bike-sharing system effectively.

K E Y W O R D S

bike-sharing system, functional data analysis, spatiotemporal
statistics, subsampling

1 INTRODUCTION

Bicycle-sharing systems have become popular in all the cities in which they have been imple-
mented. Among these cities is the capital of Finland, Helsinki, where a station-based system has
provided a flexible transport option since 2016 (City of Helsinki, a; Helsinki Region Transport, a).
That is, a bike can be taken from a bike-sharing station and returned to any other station. The
extension of the existing system to neighbouring cities and the rebalancing of the bike-sharing sta-
tions are challenging tasks for the operator and city planners (cf. Schuijbroek et al., 2017). Support
can be provided via empirical research examining the demand at all stations over time, and deter-
mining the factors that influence the usage of a bike-sharing system is one of the main research
interests. Furthermore, the environmental impact of implementing bike-sharing schemes is an
important question in current research (e.g. Maranzano et al., 2020; Zhang & Mi, 2018).

In studies concerning bike-sharing systems in other cities, a variety of influential factors have
been discussed and analysed using different statistical models (El-Assi et al., 2017; Wang et al.,
2020; Yang et al., 2016). The significance and magnitudes of such factors have been analysed by
Eren and Uz (2020) in a review. Moreover, Yang et al. (2020) focused on the analysis and pre-
diction of the bike-sharing usage at different points in time. In these studies, the amount of data
is often reduced through the aggregation of the observations in time spans consisting of a set
number of hours (e.g. El-Assi et al., 2017) or a day (e.g. Buck & Buehler, 2012). So far, no study
has analysed how factors’ influences vary by time of day. Additionally, no study has utilised an
entire dataset in its analyses, that is, all the studies to date have aggregated the data or reduced
the dimensionality.

This gap in knowledge is addressed in this paper by means of a comprehensive analysis of
the freely available station hire data for the bike-sharing system in Helsinki from 2017. The sta-
tion hire data are meant to represent spatiotemporal functional observations. Thus, we apply
a complex spatiotemporal functional hierarchical model implemented in the software package
D-STEM (cf. Fassò et al., 2018; Finazzi & Fassò, 2014; Wang et al., 2021). This model can be used
to predict and map the spatiotemporal process and its uncertainty over a geographical region
across time. Applications of such dynamic coregionalisation models are used in Fassò et al. (2016),
Fassò and Finazzi (2013), Finazzi et al. (2013) and Taghavi-Shahri et al. (2019) to assess the air
quality in Europe and model the concentrations of several airborne pollutants in a multivariate
setting or for land use regression in Teheran, Iran. In contrast to previous approaches, which
handle the purely temporal dynamics separately from the purely spatial correlation component,
the approach presented in Calculli et al. (2015) combines the spatial and temporal dependen-
cies in an autoregressive spatial component. It is known as hidden dynamic geostatistical model
(HDGM). The parameters are estimated using the maximum likelihood approach and an EM
algorithm (cf. Finazzi & Fassò, 2014). Alternatively, Bayesian approaches can also be used (cf. Rue
et al., 2009). These approaches are mostly based on computationally efficient integrated nested
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Laplace approximations (INLA). In this paper, we focus on the EM estimation for functional
HDGM implemented in D-STEM, because there is no prior information about the model param-
eters (in this case, non-informative priors would be appropriate). Moreover, functional data can
efficiently be handled. Although this technique was originally developed to handle spatiotem-
poral functional data from environmental sciences, such as atmospheric radiosonde profiles, its
potential for modelling the number of allocated bikes at the bike-sharing system in Helsinki is
demonstrated in this paper.

Because of the large amount of data from 140 stations (measured in 5-min intervals), we pro-
pose to combine this estimation with a Monte Carlo subsampling approach. That is, we repeatedly
draw a smaller subset from all available spatial locations, bike-sharing stations. Using all func-
tional observations of these stations over time, the spatiotemporal model was estimated. Thus, we
will be able to estimate the standard errors of the estimated functional model parameters in a very
efficient way, allowing a rich interaction model with spatiotemporal interactions to be estimated
from the full data. Moreover, all results are validated in a cross-validation study.

The remainder of the paper is structured as follows. First, we provide an overview on dif-
ferent bike-sharing systems and previous empirical findings. Moreover, we briefly introduce the
bike-sharing service in Helsinki and present some descriptive statistics for a first exploratory anal-
ysis. In the ensuing section, we introduce the spatiotemporal functional model from a theoretical
perspective and explain the applied subsampling principle. The concept of functional data and
the construction of a continuous function from discrete observations are described. These the-
oretical sections are followed by the empirical analysis of the data from Helsinki. Initially, we
discuss several descriptive statistics and figures in detail to provide a comprehensive understand-
ing of the data, which is highly complex (i.e. spatial, temporal domain; daily, weekly periodicity;
high frequency; and so forth). Eventually, the estimated functional parameters are shown and
the results are discussed in Section 5. In this section, we also explain how the specific model
(hyper-)parameters are chosen. Section 6 concludes the paper.

2 BIKE-SHARING SYSTEMS

Many of the larger cities across the world have expanded their public transport systems by
introducing bike-share schemes, which provide an alternative and sustainable transport mode.
Starting in 2000, the number of bike-share systems worldwide has increased rapidly, and many
studies have been conducted to improve these services and understand their usage patterns
(Fishman, 2016; Gervini & Khanal, 2019).

The systems differ in the way they handle bike usage (Eren & Uz, 2020). On the one hand,
there are station-based systems, where users retrieve a bike from a particular station, take a ride
and return it to any other station. Here, a positive effect is that the station locations are fixed and
thus users know where to search for bikes. However, a bike station may already be full when a
user wants to return a bike, as there are only a limited number of docks at each station. Then
the bike can only be returned to another station. On the other hand, dockless sharing systems
offer more flexibility, as users can return bikes anywhere and they are not bound to stations.
However, the disadvantage is that users who want to pick up a bike need to be lucky to find
a bike close by. Bike-sharing systems have become popular for various reasons (O’brien et al.,
2014). City administrations aim at increasing the number of cyclists and reducing the car traffic
in the cities (Fishman, 2016). Shared bikes can be used to overcome distances between public
transport options, such as the metro or train, to reach specific destinations, such as the workplace
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or recreational areas. Hence, bike sharing improves the public transport network and helps users
cover gaps in that network or the last miles (Willberg et al., 2019).

Research in this area proceeds in various directions but mainly aims to understand users’
behaviour and the different facets of bike-sharing demand. The knowledge gained from the inves-
tigations helps improve bike-sharing systems and support operators in operational planning.
Understanding usage patterns of, and dependencies between, stations may help when introducing
similar systems to other cities (Tran et al., 2015). Martinez et al. (2012) and García-Palomares et al.
(2012) address finding appropriate station locations and determining bike fleet size. Data from
user registrations or from user surveys provide the users’ perspective and give insights into the
socio-demographic factors influencing the usage of bike-sharing systems (Willberg et al., 2019).

A different focus is set by data-driven demand analysis. On the one hand, there is station hire
data, which give either the number of bikes or the number of check-outs and check-ins at each
station at a certain point in time. On the other hand, trip-based data give information about the
origin, destination and duration of each bicycle trip. Thus, there are several studies that inves-
tigate spatial and temporal factors influencing the demand on a station level or trip basis that
try to predict future usage (Li et al., 2015; Rixey, 2013; Yang et al., 2016). However, station-based
bike-sharing systems suffer from an unbalanced spatial distribution of bikes at the stations due
to different levels of demand across space and time. Hence, this optimization problem must find
the most effective rebalancing strategy for the bikes in the network (Shi et al., 2019).

A recently published literature review by Eren and Uz (2020) on the factors influencing
bike-sharing demand focuses on six categories. The categories used are weather conditions, built
environment, public transport and temporal factors that are used in many studies on station hire
data. One of the main findings is that precipitation affects bike-sharing demand the most among
the meteorological covariates. Its negative correlation with demand was found in almost all exam-
ined studies. Furthermore, increases in the humidity and wind speed decrease the demand,
whereas air temperatures between 0 and 30◦C lead to more bicycle trips. The strongest positive
correlation was found for temperatures between 20 and 30◦C, but the demand is less for temper-
atures under 0◦C and over 30◦C. Infrastructure and land use are widely investigated factors in
the built environment category. Bicycle lanes and the proximity of bike-sharing stations to them
are found to have high positive impacts on a station’s demand. Furthermore, changes in the ele-
vation across the area of a bike-sharing service are correlated with its demand. From trip-based
data, it can be seen that users tend to use shared bikes to go downhill more than uphill. More-
over, considerable differences in demand are found for bike-sharing stations in commercial and
residential areas, and a station’s proximity to infrastructure, such as museums, shopping cen-
tres, schools, universities and restaurants, is investigated by many studies. Also, public transport
options seem to be related to the bike-sharing demand. The more train, tram, bus and metro
stations near a station, the higher its demand. Moreover, many studies have shown that the
bike-sharing demand varies along the temporal dimension, with the most apparent differences
occurring between weekdays and weekends due to different user travel motivations. The usage
of bike sharing for commuting to work becomes visible via the peak usage during morning and
afternoon rush hours on weekdays. On the other hand, trips during the weekend are more often
for recreational purposes.

Most of the studies use linear models (e.g. generalised linear models (Chastenet de Castaing,
2017), hierarchical linear mixed effect models (El-Assi et al., 2017) or negative binomial models
(Gebhart & Noland, 2014; Nair et al., 2013)) without explicitly addressing spatial dependence.
Yang et al. (2020), Ji et al. (2018) and Wang et al. (2020) model the demand using ordinary
least squares regression, which is inconsistent in the presence of spatial dependence, but they
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subsequently check residuals for spatial autocorrelation using Moran’s I (Lee & Li, 2017). In other
studies, spatial dependence is mostly addressed via cluster analyses (e.g. Froehlich et al., 2009;
Lathia et al., 2012; Li et al., 2015; Raninen, 2018; Vogel et al., 2011; Zhou, 2015). In contrast, tem-
poral dependence has been studied more accurately. For instance, Shi et al. (2018) studied metro
riderships explicitly addressing its temporal dimension, while El-Assi et al. (2017) consider a
first-order temporal autoregressive model. In some studies, temporal dependence has been ruled
out for the dependent/independent variables through aggregation over time, for example, aver-
age number of trips per month (Rixey, 2013), per day (Buck & Buehler, 2012) or during the peak
hours in the morning or afternoon (Nair et al., 2013; Tran et al., 2015; Wang et al., 2020).

The city of Helsinki introduced the station-based public bike sharing scheme in 2016 with
50 stations and further expanded it in 2017 with 100 additional stations (see City of Helsinki, a
and Jäppinen et al., 2013). As a consequence of its high usage and popularity, the system was
extended to the neighbouring cities Espoo (2018) (Helsinki Region Transport, a) and Vantaa
(2019) (Helsinki Region Transport, b). Hence, the bike-sharing system covers wide areas of the
larger Helsinki region and has become a dense network of bike-sharing stations, making this sys-
tem an alternative transport mode. Helsinki’s bike-sharing scheme has been addressed before in
a few studies (see Chastenet de Castaing, 2017; Raninen, 2018; Tarnanen, 2017).

3 HELSINKI’S BIKE-SHARING SYSTEM AND DATA
DESCRIPTION

The City of Helsinki is located at the coast, the Gulf of Finland, and is characterised by a pri-
marily flat area with a few hills. In our empirical study, we exploited the data from the bike
sharing season 2017 for which the bike sharing service was already operational in Helsinki
city centre shown in Figure 1. In general, the area shown is widely covered with bike shar-
ing stations, although they are denser and more evenly distributed in the city centre. In the
north of Helsinki city centre, where there are more residential areas, coverage becomes sparse
and rather irregular. Moreover, a public transport network connects the city centre with the
greater Helsinki area (outside the map extent) consisting of its suburbs and neighbouring
cities Vantaa and Espoo. In Figure 1, the metro and train lines are indicated by the orange
and purple lines, respectively, with the markers indicating the stations. In addition, there is
a dense tram and bus network in Helsinki, but this is not shown on the map. The back-
ground colours of the map correspond to the four city land use categories assigned by the 2016
Helsinki master plan for city development (City of Helsinki, b). These four categories consist of
the city centre (orange), shops (red), recreational areas (green) and predominantly residential
areas (yellow).

The company Helsinki Region Transport has provided an API to enable individuals and
organizations to develop their own applications and investigate the data related to transport in
Helsinki and neighbouring municipalities (cf. Kainu, 2017 Helsinki Region Transport, c). We
selected 176 days in 2017, starting on May 9, which was the first day with full records, and ending
on October 31, which appears to have been the end of the biking season that year. However, the
data are incomplete, as shown in Figure 2, where black entries depict missing values. It is worth
noting that the functional HDGM can be estimated even when the responses are not available for
all stations and/or time points.

The station hire data contain information on the observed number of bikes recorded every
5 min at 140 bike-share stations in Helsinki. Thus, there are over 7 million bicycle counts in
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F I G U R E 1 Map of Helsinki’s city centre showing bike sharing stations (blue dots), metro (orange line) and
train (purple line). The coloured areas indicate different land use as provided by Helsinki’s master plan for city
development 2016 (City of Helsinki, b). Please note that the metro is shown in the status of 2017 before the western
extension of the metro line. Two triangles indicate the location of the bike-sharing stations (a) Itämerentori and (b)
Haukilahdenkatu which are further analysed in Figure 4 [Colour figure can be viewed at wileyonlinelibrary.com]

total. In a preliminary analysis, the time series for the stations were analysed in the frequency
domain (cf. Brockwell & Davis, 2016; Cooley & Tukey, 1965). The Fourier transform was applied
to decompose the time series of each individual bike sharing station into the weighted sum of its
underlying periodic signals. The resulting periodograms depict the magnitude for each tempo-
ral frequency present in each time series. Analysing the time series of the bike sharing stations
in this frequency domain shows us that the stations differ with respect to their magnitudes of
the dominating temporal frequencies. Periodograms were computed for all the stations sepa-
rately and are depicted in Figure 3c via a glyph-map (Eden et al., 2010; Wickham et al., 2012)
with the station Arabiankatu shown in Figure 3a to illustrate the scale and axes definition of the
glyphs. The periodograms are shown as small glyphs at the locations of the respective bike-sharing
stations.

The glyph-map reveals differences in the periodograms that appear to be spatially correlated.
In the city centre close to the main station, the magnitudes are higher than in most parts in the
north of Helsinki. Moreover, the bike-sharing stations in the city centre have periodograms with
several dominant peaks. However, most of the periodograms for the stations have one outstanding
peak in common. This dominant peak corresponds to the daily frequency. This finding is further
highlighted in the histogram for the relative magnitudes in Figure 3b. The histogram shows an
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F I G U R E 2 Missing data in the station hire dataset from 2017 in Helsinki. Black lines show the data gaps
over time (horizontal) and for certain bike-sharing stations (vertical). The width of the horizontal lines
corresponds to the length of the period that the data are missing

aggregation of all the periodograms from the glyph-map. Here, the magnitude M(fr) [%] of the
r-th frequency fr relative to the total signal of all stations is computed with

M(fr) [%] =
∑n

i=1Mi(fr)
∑n

i=1
∑Nf

j=1Mi(fj)
⋅ 100, (1)

where n is the number of stations, and Nf is the number of frequencies in the periodogram.
According to the histogram in Figure 3b, the daily cycle is most prominent, representing over 2%
of the total signal from all stations.

In general, time series can be subdivided into linear time granularities, for example, a
sequence of subsequent days, and cyclic time granularities, for example, daily, weekly or yearly
periodicities (Andrienko et al., 2010; Gupta et al., 2021). Moreover, cyclic data are often classified
into regular and irregular cycles. For regular cycles, the time series are constructed by subdivid-
ing the linear time into pieces, and stacking them to match the cycles, for example, days, weeks,
years, etc. The station hire data contain both temporal types of data, that is, linear time as the
sequence of days and regular cyclic patterns on each weekday/weekend.

There are two predominant periodicities that can be understood as cyclic time. The most
prominent cycle is the length of one day. Its prominence could be due to daily activity and sleep
periods. Moreover, there is a cycle with a length of one week that is connected to the transition
between workdays (Monday through Friday) and the weekend (Saturday and Sunday). Neverthe-
less, these repetitive structures appear for a sequence of days, which represents linear time. Both
types of time have to be considered in the analysis of the bike-sharing data in order to cover all
spatial and temporal dependencies within the data.

Therefore, this study makes the novel proposal that the cyclic time of one day should be treated
as a functional observation (cf. Ferraty & Vieu, 2006; Ramsay & Silverman, 2007). To be precise,
the number of bikes is one continuous function of time across a day, that is, a function that maps
h ∈ [0, 24] to the non-negative integer y ∈ N0. Thus, the daily cycle is incorporated into the func-
tional observations for every day at every station. This daily cycle is denoted by h (time during the
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(a) (b)

(c)

F I G U R E 3 Glyph-map of the periodograms of all the bike-sharing stations in Helsinki, with an additional
periodogram of the bike-sharing station Arabiankatu and the histogram showing relative magnitudes. (a)
Periodogram of bike-sharing station Arabiankatu illustrating scale and axes definition of the glyphs in the
glyph-map. (b) Histogram of relative magnitudes of each frequency computed from the data for all bike-sharing
stations. (c) Glyph-map [Colour figure can be viewed at wileyonlinelibrary.com]
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(a)

(b)

F I G U R E 4 Functional boxplots of two bike-sharing stations summarizing their spatiotemporal functional
observations. The spatial location of the two stations are marked with triangles in Figure 1. (a) Station
Itämerentori. (b) Station Haukilahdenkatu [Colour figure can be viewed at wileyonlinelibrary.com]

day), whereas the day will be denoted by t below. It is important to note that h is not restricted to
full hours, but can be any time point within the day.

To analyse the temporal dependence, functional boxplots are used (cf. Sun & Genton,
2011). Figure 4 show these plots for the stations Itämerentori (Figure 4a) and Haukilahdenkatu
(Figure 4b). Both functional boxplots highlight the periodic behaviour belonging to the cycle
of one day. The stations are characterised by a change in the number of bikes allocated dur-
ing the morning hours from 7 to 10 and another major change in the afternoon hours from
about 14 to 18 o’clock. However, the directions of change, as well as the ranges of observed
bikes, are different. At Itämerentori station, the number of bikes increases in the morning and
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decreases in the afternoon. In addition, up to 58 bikes were observed at maximum. The oppo-
site happens at Haukilahdenkatu station. There is a decrease in the number of bikes in the
morning and an increase in the afternoon. Here, the maximum number of bikes observed was
32 bikes.

Because we observed these two different type of stations, we performed a preliminary
cluster analysis. We found no evidence for including more than two clusters. The analysis
of the explained variance shows that only very weak improvements are possible by includ-
ing more clusters. To be precise, k-means clustering was applied to the median function
of all observations, ensuring that these clusters are robust against outliers. Moreover, we
chose Pearson’s correlation as a distance measure between the median curves and the cluster
centres.

The clustering was conducted separately for each day of the week. Hence, the clustering
yielded k = 2 cluster centres �̃�k(h) for each day of the week. These centres are shown in Figure 5a.
The solid lines represent the cluster centres �̃�k(h) for Monday through Friday, and the cluster cen-
tres for the weekend are denoted by dashed lines. The weekend’s dashed lines are similar to each
other but differ from the solid lines for Monday through Friday by a positive shift on the time axis
of approximately 4 h. Additionally, the magnitude of change in the function is less for the clus-
ter centres for the weekend than for the cluster centres �̃�k(h) for Monday through Friday. Due to
doing separate clusters for all days of the week, a station could be assigned to different clusters
over the course of one week. However, for all days, the numbers of stations assigned to the clus-
ters are similar, with roughly 40% of the stations belonging to the first cluster and consequently
about 60% to the second cluster.

The assignments are shown in Figures 5b and c, where the sizes of the symbols denoting the
locations of the stations are scaled by the number of assignments out of seven to that respective
cluster. Looking more closely at the locations of both clusters, we can see that type 1 stations
are mostly located in the centre, in areas where people work, while type 2 stations are located in
regions where people live. We therefore interpret these main characteristic temporal patterns of
the two clusters as the users commuting from home to work places and back. Hence, the clusters
are hereafter named ‘Work’ and ‘Home’ respectively.

4 MODELLING SPATIOTEMPORAL DEPENDENCE IN
FUNCTIONAL DATA

Functional data analysis deals with a functional random variable Y that is continuously defined,
as in, for example, Ferraty and Vieu (2006). Observations y of a functional random variable are
either measured on a regular grid or at random discrete points, thus leading to a set of q discrete
measurements yi,1, … , yi,q of the functional data i ∈ 1, … , m. It is worth noting that q can
be different for different functional data yi. However, for functional data analysis, a continuous
function is needed to evaluate the function y(h) for any argument h. Hence, the functional form
is reconstructed, for instance, using the basis function expansion (cf. Ndongo, 2017; Wang et al.,
2016). That is, the reconstruction is accomplished with a set of K known basis functions 𝜙k with
respective coefficients ck, y(h) that can be expressed as

y(h) =
K∑

k=1
𝜙k(h)ck = 𝝓T(h)c. (2)
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(a)

(b) (c)

F I G U R E 5 Assignment of the bike-sharing stations to the two clusters. The sizes of the markers are
proportional to the number of assignments out of 7 weekdays to the corresponding cluster. (a) Centres of the two
clusters for each day of the week. Monday through Friday centres are shown with solid lines, while the Saturday
and Sunday centres are depicted by dashed lines. (b) Spatial allocation of cluster ‘Work’. (c) Spatial allocation of
cluster ‘Home’ [Colour figure can be viewed at wileyonlinelibrary.com]
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Typical choices for the basis functions are the Fourier series for periodic data or the B-splines
for non-periodic data (Ramsay & Silverman, 1997). For this analysis, we focus on the B-spline
approach, where the number of free parameters is given by the order of the piecewise polyno-
mials and the number of interior knots. The compact support of the B-spline basis functions
has the advantage that the computational complexity increases only linearly with K. Further-
more, B-spline basis functions are flexible in the sense that the location of the break points
can be chosen in order to approximate the function better in segments where it changes more
frequently.

Let the number of available bikes in a bike-sharing station be described by a functional
space–time random variable Y (s, t, h), and let y(s, t, h) be the observed functions from h ∈
[0, 24] ⊆ R to R at day t and station s ∈ D, with D ⊂ S2 and S2 being a sphere in R3 (surface of
the Earth). For this application, we consider that D is a discrete set of N bike-sharing stations.
Even though the curvature of the Earth might be neglectable in this case because of the small
extent of the city of Helsinki, we have used spherical coordinates. Thus, all distance measures
reported below correspond to great-circle distances (in metres). Time is assumed to be discrete,
with t ∈ {1,… ,T}. Furthermore, the actual observations of Y (s, t, h) are made at q discrete points
along the dimension of the function y(s, t, h), meaning, in the course of the day. More pre-
cisely, the number of available bikes is available in a 5-min frequency. Hence, the observation at
(s, t) is the q-dimensional vector y(s, t) = (y1(s, t), … , yq(s, t))T , where q equals 288 5-min inter-
vals within 24 h. In this paper, we do not explicitly account for integer-valued observations of
Y (s, t, h), because this would result in non-smooth function over the day, but we consider the
number of available bikes in a station as continuous variable. The sample size m of the dataset is
then given by the number of functional observations m = NT = 24,640 with N = 140 being the
number of stations and T = 176 the number of days. The spatiotemporal functional variable Y (s,
t, h) is assumed to be first-order stationary (i.e. the mean of the spatiotemporal process does not
depend on the location).

A hierarchical model is used to model the mean spatiotemporal functional process and its
variation by splitting up the total uncertainty into separate components. For multivariate data,
the model is commonly known as hidden dynamic geostatistical model (HDGM, cf. Calculli et al.,
2015; Wang et al., 2021). The first level is given by

y(s, t, h) = 𝜇(s, t, h) + 𝜔(s, t, h) + 𝜖(s, t, h), (3)

where the 𝜇(s, t, h) are fixed effects, and the 𝜔(s, t, h) are spatially and temporally correlated
random effects. The model errors 𝜖(s, t, h) are assumed to be from independent Gaussian white
noise processes with a constant variance that is allowed to vary over the functional domain. More
precisely,

𝜖(s, t, h) ∼ N(0, �̃�2(h)), (4)

with

�̃�

2(h) = 𝝓T
𝜖

(h)𝝈2
𝜖
. (5)

It is important to note that the spline basis functions could be chosen differently for each term.
Hence, the basis functions 𝜙T

a and their dimension pa are denoted by the subscript corresponding
to the terms a ∈ {𝜇, 𝜔, ε} of the hierarchical model given in Equation (3).
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1306 PITER et al.

The fixed effect model

𝜇(s, t, h) =
d∑

i=1
x
𝜇,i(s, t, h)𝝓T

𝜇

(h)𝜷 i (6)

consists of d space–time varying functional covariates x
𝜇,i(s, t, h), where the unknown coefficients

𝜷 i must be estimated. It is worth noting that these covariates could also be constant across space
or time and/or in the functional dimension. Furthermore, the random effects model is given by

𝜔(s, t, h) = 𝝓T
𝜔

(h)z(s, t). (7)

For each time step and each location a function is sampled from the estimated random effect
model. It covers both spatial and temporal dependencies by modelling the respective variation
using a basis function expansion. Specifically, the spatiotemporal latent component z(s, t) has the
Markovian dynamics

z(s, t) = Gz(s, t − 1) + 𝜼(s, t). (8)

Thus, the random effect merely depends on the previous time step and the innovation 𝜼(s, t).
The degree of dependence from the previous time step is specified by the transition matrix G that
is assumed to be stable. Here, G is a diagonal matrix G = diag(g1, … , gp

𝜔

) and accordingly the
latent components z(s, t) are not cross-correlated across the functional dimension. For each day
t an innovation 𝜼(t) = vec(𝜼(t, s1), … , 𝜼(t, sN)) is sampled from the following spatially dependent
Gaussian process

𝜼(t) ∼ N
(
0,V⊗ 𝜌

(
||s − s′||,𝜽, 𝜈

))
. (9)

Here, ⊗ stands for the Kronecker product and vec is the vectorisation operator. While the
cross-covariance matrix V describes the correlation between all components, the spatial covari-
ance function 𝜌(||s − s′||,𝜽, 𝜈) captures the correlation across space. For instance, this function
could be a Matérn covariance function, which is an isotropic covariance function depending
on the distance ||s − s′|| between spatial locations only. The range of the spatial dependence is
described by the coefficients 𝜽 and 𝜈 cover potential further parameters. Moreover, the variance
of the random effects is given by the matrix V = diag(𝜎2

𝜂1
, … , 𝜎

2
𝜂p
𝜔

). It is worth noting that the
cross-covariance matrix V is restricted to a diagonal matrix in order to reduce computational
effort and, hence, it acts as a scaling matrix of the random effects. To estimate the parameters,
we follow the maximum likelihood approach using an EM algorithm implemented in D-STEM
(see Wang et al., 2021), which uses a functional hierarchical model called the f-HDGM model.
For more details on the closed form and the numerical computations of the parameters in the
EM algorithm, we refer the reader to Wang et al. (2021), Calculli et al. (2015), Fassò and Finazzi
(2011) and Fassò and Cameletti (2009).

However, for this approach, the computational costs (in particular, for the computation of
variance–covariance matrix of the estimated parameters) increase drastically with the number of
spatial locations N and the number of splines pa chosen for the basis function expansion. In our
study of Helsinki’s bike-sharing system, the number of bikes at 140 stations was observed every
5 min for 176 days. Thus, we propose to use the following subsampling procedure to estimate the
standard errors of the model parameters more efficiently.
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First, B independent samples of bike-sharing locations, b1, … ,bB ∈ {s ∈ D ∶ y(s, t, h)}, are
generated, each consisting of M locations that are randomly drawn without replacement from all
locations where the process is being observed. To reduce the computational costs, we have chosen
M ≪ N. Moreover, we followed a stratified sampling technique (see, e.g. Cochran, 2007), such
that the stations of each cluster appear in their correct proportions in the subsamples b1, … ,bB
(i.e. 40% of cluster ‘Work’, 60% of cluster ‘Home’). Then the parameter of interest is estimated
separately for each of the B samples.

The estimator of the i-th sample {y(s, t, h) ∶ s ∈ bi} is denoted by �̂� i. Lastly, �̂� is given by

�̂� = 1
B

B∑

i=1
�̂� i. (10)

Furthermore, the standard error

�̂� =

√
√
√
√ 1

B − 1

B∑

i=1
(�̂� i − �̂�)2 (11)

is the estimate of the true standard error of the reduced sample. Finally, the confidence interval
of the estimate �̂� can be computed using the percentile method (see, e.g. Efron & Hastie, 2016).
Here, the (1−𝛼) confidence interval is approximated by the respective empirical quantiles of the
distribution of {�̂� i}.

Since we have reduced the total number of stations in each subsample (i.e. M locations in
each sample vs. N locations of the full sample) to make the calculation of the standard errors
of the parameters computationally feasible, the estimated standard error must be interpreted
as an upper bound of the true standard error of the whole sample. That is, all statistically
significant results which we will report below would stay significant for full sample as well,
while insignificant effects might be significant (but probably weak) when considering the full
sample.

5 EMPIRICAL RESULTS AND INTERPRETATION

In the following section, the focus is on the results of the empirical analysis. That is, the
bike-sharing usage in Helsinki is analysed in the spatiotemporal functional framework to gain
insights into the influence of functional covariates and interaction effects on the number of allo-
cated bikes. This knowledge can be used to understand and predict the number of bikes at existing
stations over the course of the day due to the functional setting. Moreover, rebalancing strategies
could be improved based on our empirical results. To a limited degree, the model could also be
used for predicting the bikes at new locations, that is, kriging. However, one has to keep in mind
that the overall demand is not arbitrarily scalable by introducing new stations.

All included covariates with the notation of their corresponding coefficients are listed in
Table 1. More precisely, we have fitted a model with two intercepts corresponding to the two
cluster types ‘Work’ and ‘Home’. Note that the cluster assignment was based on the preliminary
analysis of the response variable. Moreover, a set of nine covariates varying either in space, in
both time and the functional domain, or in time were included as interactions with each inter-
cept. That is, the fixed effects models are considered like independent models for each cluster.
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However, these two models are linked by the common random effects model, which accounts for
the spatiotemporal dependence of the data.

In the final model, we selected several meteorological covariates. Three observatories are
located within the spatial extent of the bike-sharing stations in Helsinki, but we only have
used data from the Kaisaniemi observatory located in the central city. The spatial differ-
ences in these weather covariates are neglectable; hence, the observations are assumed to
be constant over space but not time. Figure 6 shows the four weather covariates for the
period from May 9 to the October 31, 2017. Furthermore, the respective histogram shows the
distribution of the meteorological observations with the relative frequencies of occurrence.
The histograms on the right-hand side of Figure 6 are aligned with the observations over
time on the left-hand side.

In summary, we included dummy variables for Saturday and Sunday showing the weekend
effects, meteorological variables (i.e. temperature in [◦C], cloud coverage in [%], wind speed in
[m∕s], precipitation in [mm]), a geographical variable, namely the elevation of the station in [m],
and two infrastructure variables (i.e. first, the distance of a bike-sharing station to its closest metro
and second, to its closest train station in [km]). Doing so leads to two intercept functions and nine
interactions for each cluster; in total, 20 parameter functions must be estimated (each consisting
of several spline coefficients).

The model set-up (i.e. the choice of the spatial covariance function, splines basis, knots and
so on) was determined via a cross-validation study using B = 1000 subsamples and a sample size
of 30 stations for both the in-sample and out-of-sample cases. Note that the choice of size is a
trade-off between reliability and computational complexity. The stations were drawn from the
first and the second cluster according to the proportions described above (i.e. 41.4% for cluster
‘Work’, and 58.6% for cluster ‘Home’) to obtain distinct in-sample and out-of-sample sets in each
subsample.

F I G U R E 6 Time series and histograms for four meteorological variables from May 9 to October 31, 2017.
The histograms on the right-hand side refer to the time series on the left-hand side. A cumulative histogram is
shown for precipitation
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In our case, an exponential covariance function fits the data the best. Hence, there are no
anisotropic dependencies, which would indicate a prevalent direction of bike usage. Furthermore,
for the basis function expansion, the B-splines approach was chosen, although the spectral time
series analysis revealed periodic structures in the time series for all the stations. However, the
B-splines allow the knot positions to be adapted according to the variation in the data along the
functional dimension. For this study, we have determined the knot positions in such a manner
that the standard deviation �̃�(h) of the modelling error 𝜖(s, t, h) remained less than three bikes.
To be precise, the position of the break points was set to

break points = {0, 5, 7.14, 9.29, 11.43, 13.57, 15.71, 17.86, 20, 24} o’ clock

with only a few B-splines supporting the morning and evening hours, as there is little variation in
the spatiotemporal functional observations during these periods. In contrast, there is high varia-
tion in the functional observations during the middle of the day; thus, the splines basis functions
are denser during this period.

5.1 Fixed effects

The two intercepts referring to the stations’ cluster memberships are shown in Figure 7. The mean
curve of ̂𝜷Work(h) shows about seven bikes during the night and in the evening, while the number
of bikes increases during the day and has a first peak at approximately 11 o’clock, with about 17
bikes, and a second peak at 15 in the afternoon, with 19 bikes. The confidence interval has the
widest range at the peaks. As expected, ̂𝜷Home(h) shows the opposite shape. In the beginning and
the end of the day, approximately 17 bikes are located at stations from cluster ‘Home’. The number
grows smaller during the day, with the minimum of nine bikes occurring at approximately 9 in the
morning. Between 10 and 14 o’clock, there are 10 bikes; afterwards, the number of bikes increases
again. For both intercepts, the 95%-confidence interval along the entire function indicates a range
of possible values of up to ±2 bikes around the mean. However, these intercept curves represent
the expected number of bikes in the case that all other covariates would be zero. Thus, they have
to be rather interpreted along with the regressive effects.

F I G U R E 7 Intercept: estimated functional intercepts for ̂𝜷Work(h) (left) and ̂𝜷Home(h) (right) [Colour figure
can be viewed at wileyonlinelibrary.com]
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PITER et al. 1311

For instance, in Figure 8, the temperature effects in both clusters are depicted (i.e.
̂𝜷Work∗Temperature(h) and ̂𝜷Home∗Temperature(h)). In the areas for working, we observe that the
number of allocated bikes changes by −0.2 bikes∕◦C in the night and evening. Between 8
and 15 o’clock, the influence of the temperature is not significantly different from zero.
As a consequence, the higher the temperature in Helsinki, the fewer bikes are located at
the stations from cluster ‘Work’ in the evening and night, while a temperature change
between 8 and 15 o’clock has no significant effect on the number of bikes. Regarding resi-
dential areas, the interaction starts in the night at around 0.1 bikes∕◦C, decreases rapidly to
−0.15 bikes∕◦C from 11 to 16 o’clock and increases afterwards up to 0.14 bikes∕◦C. The shape
of the function is similar to the valley-like shape of the intercept ̂𝜷Home(h). Consequently, the
higher the temperature in Helsinki, the more bikes are located at the stations from cluster
‘Home’ in the night and evening, while the number of allocated bikes decreases during the
daytime.

Both interactions of the temperature with the cluster effects yield functions with shapes
similar to that of the function of the intercept itself, meaning that an increase in the tem-
perature amplifies the already existing mountain- and valley-like shape of the intercepts. The
effect of the temperature shows that usage of the bike-sharing scheme is higher when it is
warmer, as the change in the number of allocated bikes at stations from both clusters increases.
This effect becomes more clear when combining each estimated functional interaction covari-
ate ̂𝜷Work∗Temperature(h) and ̂𝜷Home∗Temperature(h) with their corresponding functional intercepts
̂𝜷Work(h) and ̂𝜷Home(h) respectively. Figure 9 illustrates the predicted number of bikes of a sta-
tion at cluster ‘Work’ or ‘Home’ depending on the temperature. Importantly, all other covariates
and the random effects are considered to be zero. The solid black lines show the respective inter-
cept curves. For example, the number of allocated bikes at a station from cluster ‘Home’ at noon
(indicated by the vertical black line) ranges from roughly 7 to 9 bikes, merely due to temperature
variation when at noon temperature is realistically assumed to range between 10 and 25◦C.

The influence of a bike-sharing station’s elevation on the number of allocated bikes is given
by ̂𝜷Work∗Elevation(h) and ̂𝜷Home∗Elevation(h), as shown in Figure 10. Both functions are significant
and have negative signs along their entire domains. The influence of the interaction of elevation
with the cluster ‘Home’ is around −0.4 bikes/m. There is little variation around the mean, which
does not change significantly. In comparison, the interaction ̂𝜷Work∗Elevation(h) varies more. Due

F I G U R E 8 Temperature: estimated functional influences of ̂𝜷Work∗Temperature(h) (left) and
̂𝜷Home∗Temperature(h) (right) [Colour figure can be viewed at wileyonlinelibrary.com]
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1312 PITER et al.

F I G U R E 9 Temperature: combination of the estimated functional influences ̂𝜷Work∗Temperature(h) (left) and
̂𝜷Home∗Temperature(h) (right) with their functional intercepts ̂𝜷Work(h) and ̂𝜷Home(h), respectively, for temperature in
the range of −5 to 25◦C. All other interaction covariates and the random effects are considered to be zero [Colour
figure can be viewed at wileyonlinelibrary.com]

F I G U R E 10 Elevation: estimated functional influences of ̂𝜷Work∗Elevation(h) (left) and ̂𝜷Home∗Elevation(h)
(right) [Colour figure can be viewed at wileyonlinelibrary.com]

to the negative sign, the number of allocated bikes at a station decreases as the elevation of the
station increases, showing empirically that cyclists prefer cycling downhill over cycling uphill.
The change in ̂𝜷Work∗Elevation(h) in the afternoon emphasises that cyclists might use the bikes even
less for cycling uphill in their free time.

Most surprising are the results regarding the effect of precipitation as no effects could be iden-
tified from the data. However, bear in mind that only 8 % of all precipitation observations were
non-zero. Including precipitation as a dummy variable could perhaps enable to see an effect for
precipitation. Furthermore, public transport was included in the model, as Jäppinen et al. (2013)
suggested that it was one of the major factors influencing bike-sharing usage. The influence of the
distance of a bike-sharing station to public transport varies as shown in Figure 11. While the esti-
mate ̂𝜷Home∗Train(h) is not significantly different from zero, ̂𝜷Work∗Train(h) shows significant effects
from 6 to 8 in the morning and from 15 to 17 in the afternoon. In the morning, the number of
bikes increases by about 3 bikes/km with increasing distance from the closest train station. The
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F I G U R E 11 Distance to train station: estimated functional influence of ̂𝜷Work∗Train(h) (left) and
̂𝜷Home∗Train(h) (right) [Colour figure can be viewed at wileyonlinelibrary.com]

opposite is the case in the afternoon, with−2.2 bikes/km with increasing distance from the closest
train station. The intercept of the cluster ‘Work’ increases during the respective morning period
and decreases in the afternoon. This change is amplified by the interaction ̂𝜷Work∗Train(h), mean-
ing that more bikes are allocated to bike-sharing stations further away from the train stations.
This finding supports the hypothesis that commuters use the public bike-share scheme to over-
come distances from the train station to their destinations, also known as the last-mile problem.
Moreover, the greater the distance of a bike-sharing station from the closest metro station, the
more bikes are allocated to this station during the morning until the mid-afternoon. Thus, sta-
tions closer to the public transportation system are used more frequently (i.e. there are fewer bikes
allocated during the day). Interestingly, the influence of the distance to metro stations is only less
than half the effect of the distance to train stations.

5.2 Random effects

Below, we discuss the results of random effects and the error term briefly. The random effects
model explains the random variation in the data that is not explained by the fixed effects, that
is, the mean of the process and the covariates. First, the temporal autoregressive dependence is
estimated with the diagonal elements of the transition matrix ̂G. The median values of the esti-
mates of these diagonal elements range from roughly 0.45 to 0.50, where all elements are similar.
The minimal and maximal values are in the ranges of [0.27, 0.38] and [0.54, 0.64] respectively.
Consequently, about half of the random variation observed in a day is explained by the previous
day. To analyse the spatial dependence, Figure 12 shows the estimated range parameters ̂𝜽. Their
median values are around 160 m. Since the exponential covariance function declines rapidly and
the covariance is about 0.37 at distance 𝜃, the spatial dependence of the process is weak in most
cases—the largest values are in the range [264, 415] m. Considering the distances between the
bike-sharing stations in Helsinki, where the median distance is 3 km, the estimated range param-
eters ̂𝜽 reveal that the spatial dependence is constrained to stations that are very close together.
Whereas, the diagonal elements of the matrix ̂V indicate a smaller random effect at night than
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F I G U R E 12 Distribution of the estimated range parameters ̂𝜽. The boxplots show the median in red, the
50%-central region is shown in blue and the whiskers denote the minimum and maximum values of the
distribution [Colour figure can be viewed at wileyonlinelibrary.com]

during the day, it seems that the degree of the spatial dependence is mostly stable, with slightly
more variability occurring during the day.

5.3 Out-of-sample forecasts

Finally, one question remains open—how well does the model fit the data? To answer this ques-
tion, an out-of-sample study was conducted for each of the 1000 subsamples. More precisely,
30 randomly chosen locations which were not included for estimation are used to compute the
out-of-sample fit. The out-of-sample RMSE is depicted in Figure 13 with an orange line. For
comparison, two alternative models (i.e. a simple intercept-only model, and a model with all
regressors but no interactions with the clusters) are shown with blue and red curves. Inter-
estingly, the three functions have roughly the same shape but are shifted. The RMSE is the
lowest from midnight to 7 o’clock and increases drastically between 7 and 9 o’clock. After reach-
ing a maximum at 9 in the morning, it decreases until 16 o’clock and has a local maximum
between 17 and 19 o’clock. The range is ±1.5 bikes over the course of the day. Considering the
daily out-of-sample RMSE, we observe median values varying between 5 and 9 bikes. More-
over, the estimated functional error variance ̂�̃�2(h) is shown in Figure 13. Across the entire day,
the maximal standard error is less than two bikes. During the night from about 1 o’clock to
5 o’clock, the variance is the smallest, showing that the variation in the data for all bike-sharing
stations is low in the night. Also, from 22 in the evening until midnight, the standard devia-
tion is less than one bike. In contrast, the variance is higher in the morning from 6 to 9 and in
the afternoon from 15 to 19 o’clock. Here, the corresponding standard deviation is up to about
1.9 bikes.
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F I G U R E 13 Comparison of the functional RMSE(h) (left) values for three selected models (blue:
intercept-only, red: full model without interactions and orange: full model with interactions) and the estimated
functional measurement variances ̂�̃�2(h) (right) [Colour figure can be viewed at wileyonlinelibrary.com]

6 CONCLUSION

This paper focused on station hire data from the bike-sharing system in Helsinki. With over
7 million observations from 140 bike-sharing stations taken at 5-min intervals, the analysis of
bike-sharing station usage was brought to a new level, as the entire complex dataset was consid-
ered and knowledge about the changes in the influencing factors over the course of a day was
inferred. We simultaneously accounted for spatial, temporal and spatiotemporal dependence by
applying a geostatistical model in a functional framework. The model parameters were estimated
using the implemented maximum-likelihood approach of the software package D-STEMv2 (see
Wang et al., 2021). To supply computationally efficient estimated standard errors and guarantee
a certain robustness against outliers, a subsampling approach was applied.

Most findings about the influencing factors were in line with the results from existing liter-
ature, although comparability is limited due to the use of a different methodology and data. We
have shown that the bike-sharing stations can be divided into two clusters depending on the sim-
ilarities in their spatiotemporal functional observations. It is important to note that these similar
functional observations cluster together in space too. The estimated parameters have shown that
the morning rush hour is particularly difficult to model and predict. There is a mountain-like
shape to the daily available bikes for stations belonging to predominantly working areas. By con-
trast, we observe a valley-like shape in living areas. This behaviour is different on weekends, where
the daily peaks are also shifted towards the afternoon. Furthermore, we examined which weather
conditions could have an influence. According to Eren and Uz (2020), precipitation should affect
bike-sharing station usage the most among the weather conditions. Here, however, the influence
of precipitation was not significant.

A drawback of the model can be seen in the out-of-sample RMSE values, which ranged
between seven and nine bikes, giving it a range similar to that for the random effects. The random
effects covered the unexplained variation in the station hire data. Unfortunately, out-of-sample
validation of models from the literature was not found, meaning that the error mentioned above
could not be compared and evaluated. Moreover, a spatiotemporal integer-valued model might
improve the prediction accuracy, especially for less frequently used stations. To better understand
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the implications of different types of the bike-sharing station usage, future studies could address
spatially varying covariates, perhaps providing insights into the cause of the separation into clus-
ters. On the other hand, bike-sharing system station usage is governed by the decisions made by
individuals and maybe even pure coincidences in their behaviour. In general, analysing the rela-
tionship between the number of allocated bikes at the bike-sharing stations and the proposed
covariates produces a correlation and does not necessarily imply causality.

It is worthwhile to develop and apply complex models to spatiotemporal functional data
from bike-sharing systems, as detailed knowledge can be gained and perhaps lead to future
improvements in implemented bike-sharing systems.
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