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Abstract: In spatial econometrics, we usually assume that the spatial dependence structure is known
and that all information about it is contained in a spatial weights matrix W. However, in practice, the
structure of W is unknown a priori and difficult to obtain, especially for asymmetric dependence. In
this paper, we propose a data-driven method to obtain W, whether it is symmetric or asymmetric.
This is achieved by calculating the area overlap of the adjacent regions/districts with a given shape
(a pizza-like shape, in our case). With W determined in this way, we estimate the potentially
asymmetric spatial autoregressive dependence on irregular lattices. We verify our method using
Monte Carlo simulations for finite samples and compare it with classical approaches such as Queen’s
contiguity matrices and inverse-distance weighting matrices. Finally, our method is applied to model
the evolution of sales prices for building land in Brandenburg, Germany. We show that the price
evolution and its spatial dependence are mainly driven by the orientation towards Berlin.

Keywords: spatial autoregressive model (SAR); weights matrix; model selection; Akaike information
criterion (AIC); maximum likelihood estimation

1. Introduction

Geospatial analysis is based on Tobler’s first law of geography, which points out that
everything is connected to everything else, but that nearby objects dominate (Tobler [1]).
Not every process can be described by applying this rule, and there is no precise and unique
definition of “nearby”. Therefore, it is often assumed that the dependence structure is
known through underlying physical systems (e.g., river flows) or geographical information
or network structures (e.g., public transport connections), or assumptions such as symmetry
are made. Generally, to model spatial data, one needs to know the n(n − 1) potential
interactions among the system’s n objects. A major challenge is to obtain these interactions
from the n data points in the sample.

There are various attempts to model such spatial dependence. For instance, the spatial
covariance could directly be described by a parametric covariance function that has fewer
parameters than all possible links. This approach is commonly known as the geostatistical
approach (see, e.g., Cressie and Wikle [2]). Alternatively, spatial dependence could be
modeled by explicitly including spatially lagged variables. These models are often referred
to as spatial econometrics models. Processes in which the objects/regions influence each
other can be modeled with spatial autoregressive (SAR) models (LeSage [3], LeSage and
Pace [4]). SAR models describe processes in which the observed value of one region
influences the observed value in other regions and vice versa. An exemplary question
that such models attempt to answer is whether the average salary in one region influences
the average salary in adjacent regions, and if so, to what extent. Such interplay among n
regions is described by an n× n spatial weights matrix W.
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These autoregressive-type approaches involving the specification of a weights matrix
have been widely used in different areas. For instance, in environmental statistics, the
effects of weather conditions on fertilizer application were modelled (Billé and Rogna [5])
and environmental expenditure interactions among OECD countries were investigated. In
addition, the impact of COVID on financial returns was investigated (Billé and Caporin
[6]), and studies of the labour market have employed spatial weight matrices (Billé [7]).
Furthermore, in health economics, Donegan et al. [8] used spatial econometrics approaches
for modelling community health.

There are different methods for obtaining a suitable W. One is to assume that all
regions sharing a common border influence each other. This method is also called the
Queen’s contiguity matrix, alluding to the chessboard (LeSage and Pace [4]). If region A and
region B share a common border, the Queen’s contiguity matrix is then constructed with
WAB = WBA = 1. Other methods involve geographical distances such as those used
in Lin Lawell [9] to model air pollution. They assume that the first-neighbour regions
are the regions within 500 km of each other. Another method for constructing W is to
assume that the regions’ influences on each other declines as the distance between them
increases. The so-called ‘inverse-distance W’ was used by Boly et al. [10] to model real-
estate valuation and by Zhao et al. [11] to describe air pollution in China. The inverse-
distance matrix is constructed with WAB = WBA = 1/distance(A, B). An advanced method
also takes geographical or economical connections into account when constructing W.
Krisztin et al. [12] described the worldwide spread of the coronavirus by assuming that
countries with a common border influence each other, as well as countries connected by
an airline. Other suggested methods for constructing W include the parametric or semi-
parametric estimation method proposed by Pinkse et al. [13], the method of Stakhovych and
Bijmolt [14], where W was selected from a set of possible candidates with a goodness-of-fit
criterion, requiring that the true W is in the set of candidates, and that of Bhattacharjee and
Jensen-Butler [15], where W was selected from an estimated spatial autocovariance matrix
under the conditions of symmetry and a finite sample size of n.

Ahrens and Bhattacharjee [16] proposed to estimate W in two steps with a least
absolute shrinkage and selection operator (lasso) approach. An alternative penalized
estimation approach was proposed by Lam and Souza [17]. They selected W from a linear
combination of different weights matrices by setting irrelevant components to zero. This
linear combination could involve higher-order spatial lags (see, e.g., Cohen and Paul [18]).
A method for selecting the best weights matrix from a set of candidates was also proposed
by Debarsy and LeSage [19] or by Debarsy and Ertur [20]. Zhang and Yu [21] showed that
the true weights matrix can consistently be selected from the set of candidates (if included)
using Mallow’s Cp criterion. If the true matrix is not in the set of candidates, the selection
is still optimal, and they proposed a model averaging technique over different candidates.
In addition, the method was illustrated by an analysis of historical rice prices in China.

Most of the studies have in common the fact that they apply symmetric weighting
schemes (if A influences B, then B influences A, but with a potentially different magni-
tude). To the best of our knowledge, there are only a few references that deal with the
construction of weights matrices accounting for asymmetry. Exceptions include, for in-
stance, Zhou et al. [22], who constructed their asymmetric weights matrix by element-wise
multiplication of a nearest-neighbour weights matrix (mostly symmetric) with a matrix
that indicated whether the influence flowed from A to B or vice versa. The direction of the
influence must be known in advance. A similar method for constructing an asymmetric
weights matrix was proposed by Merk and Otto [23], to model PM2.5 concentrations. In
their approach, the directional component depended on the wind direction and wind speed,
which strongly influenced the spatial dependence structure.

However, in practice, we often do not have prior knowledge about the asymmetrical
or directional influences. Therefore, in this paper, we develop a data-driven method to
estimate the interactions directly from the sample data and explicitly allow asymmetric
dependence for irregular lattice data. We assume that the interactions are not dependent on
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the location of the region but are equal over the entire sample area. With this approach for
irregular lattice data, we extend the work of Merk and Otto [24], who proposed a similar
approach for obtaining the interactions for regular lattice data based on a lasso procedure.
The proposed method respects the interactions from close neighbours, like the Queen’s
contiguity matrix or the inverse-distance matrix, but allows asymmetric interactions (if
A influences B, B does not necessarily influence A). It is worth noting that the proposed
method provides a method of obtaining a flexible weights matrix. This weights matrix
can be an additional candidate for the selection of the weights matrix described above, for
which good candidates must be available.

This paper is structured as follows. Section 2 describes the theoretical model. Section 3
covers a Monte Carlo simulation study. In Section 4, we apply our method to real-world
data and analyse the evolution of land sale prices in Brandenburg, Germany, to show that
the short-distance directional influences are coming from Berlin. We conclude by discussing
new research directions in Section 5.

2. Theoretical Model

Let {Y(s) ∈ R : s ∈ B} be a univariate process in the spatial domain B. We explicitly
consider B to be an irregular lattice, as would be the case for spatial polygon data. Shapes
like this can be found in countries, states, and districts. An artificial example can be seen in
Figure 1.
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Figure 1. Example of simulated values for an n = 200 Voronoi map. The simulation is based on
8-setting-4 (see Figure 3).

Furthermore, suppose that the process is observed for a finite set of locations
B = {s1, . . . , sn} and Y = (Y(s1), . . . , Y(sn))t. We consider that the process follows a
spatial autoregressive model, i.e.,

Y = WY + Xβ + ε, (1)

where W is an unknown spatial weights matrix and β is a vector of p exogenous influences.
Furthermore, X is a (p + 1)× n matrix and ε is a random error vector, which is assumed
to have zero mean with a diagonal, homoscedastic covariance matrix σ2

ε I. The identity
matrix is denoted by I. Since W consists of n(n− 1) unknown parameters, which must
be estimated, and only n values of the response are observed, W is typically replaced
by a multiple of a pre-specified matrix W̃, i.e., W = φW̃, where φ is an unknown scalar
parameter to be estimated (Anselin [25]).

In the following, we aim to estimate the full spatial dependence structure W. To obtain
a meaningful and easy-to-interpret representation, suppose that the spatial dependence
can be separated into k directions and d distances (see Figure 2a). Furthermore, suppose
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that there is a unique weighting for each segment of the sectors such that W can be
decomposed as

1, k
2, k

..., k
d, k

1, 1

1, 2

1, ...

1, ...

1, ...

S

2

1

3

1

2
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Figure 2. Left: schematic representation of dividing a spatial dependence structure into k directions
and d distances. Right: evaluation of an arbitrary segment (φij) of the spatial dependence structure
referring to district S1. Area 1 is not considered, since it is part of the region that is evaluated. The
relative sizes of the overlaps 2 and 3 give the positive weights and are row-normalized to one. Here,
we obtain approximations to the weights: wij,S1S2 = 0.6 and wij,S1S3 = 0.4.

W =
k

∑
i=1

d

∑
j=1

φijW̃ij, (2)

where each matrix W̃ij has positive weights for the (ij)th segment only (see Figure 2b). The
weights are chosen to be proportional to the overlapping areas. That is,

W̃ij =


0 wij,12 · · · wij,1n

wij,21 0 · · · wij,2n
...

...
. . .

...
wij,n1 wij,n2 · · · 0

 = (wij,ιη)ι,η=1,...,n (3)

where wij,ιη is the relative area of the ηth location lying in the (ij)th segment with respect
to region ι. For example, (see Figure 2b), one wij,ιη is the normalized area of 2. Due to
normalization, each W̃ij is bounded by 1 in the row sums. Each of these matrices contains
the relative overlapping areas of one segment with the n regions. Since a segment usually
overlaps with a small fraction of the regions only, all W̃ij are sparse.

Figure 2b depicts an artificial map of ten regions. An exemplary segment (φij) deter-
mines the spatial dependence of the region S1 towards the north by the relative sizes of its
overlap with the neighbouring regions S2 and S3. As we exclude self-influences, the overlap
with region S1 is ignored, and the weights for the spatial dependence are normalized with
respect to the two remaining intersections. Here, the weights are given by wij,12 = 0.6
and wij,13 = 0.4 for S2 and S3, respectively. With this construction, the matrix (wij,ιη) is
row-normalized, as wij,12 and wij,13 are the only non-zero entries in row ι = 1.

This leads to the classical autoregressive model with higher-order spatial lags, given by

Y =
k

∑
i=1

d

∑
j=1

φijW̃ijY + Xβ + ε. (4)

In the reduced form, we obtain with

S{φij : i = 1, . . . , k; j = 1, . . . , d} = I−
k

∑
i=1

d

∑
j=1

φijW̃ij (5)
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that

Y =

(
I−

k

∑
i=1

d

∑
j=1

φijW̃ij

)−1

(Xβ + ε) = S{φij}−1(Xβ + ε). (6)

In this paper, we consider that d and k are chosen to be large enough to obtain a flexible
model reflecting the true underlying spatial dependence precisely, generally leading to a
rich, parameterized description.

The inverse S−1 exists if the column-sum norm ‖ W ‖1< a or the row-sum norm
‖ W ‖∞< a is bounded by a finite number a. With the W̃ij row sums bounded by 1, this
can be ensured under the assumption that

k

∑
i=1

d

∑
j=1
|φij| < 1 . (7)

A more general condition is discussed by Elhorst et al. [26]. Since we only want to
describe the direction from which we see a stronger or weaker influence, we constrain
ourselves to the first condition.

Implementing the model demands a proper choice of the parameters k and d, which
determine the division of the direction and distance of the spatial dependence, respectively.
Moreover, the actual length of each distance step can be optimally chosen. We perform a
spatial partitioning analysis to obtain a robust choice of all three parameters.

Let lq be the distance between the qth and (q + 1)th distance steps. We suggest
selecting k ∈ K ⊂ N, d ∈ D ⊂ N, and lq ∈ L ⊂ R>0 using Akaike information criterion
(AIC) selection (Akaike [27]). Therefore, we calculate all W̃ij(k, d, lq) for different sets of
D× K× L. Then, we estimate the unknown parameters β, φij with maximum-likelihood
methods and select the best-performing model based on its AIC. Having obtained the
best-fitting (k̂, d̂, l̂q), we estimate the final model in the next step.

We estimate the parameters {β, φij} using the maximum-likelihood approach com-
bined with parameter selection using minimal AIC. For both symmetric and asymmetric
dependence, a large share of the φij values can be expected to be zero, because k and d are
large. For this reason, we repeat the estimation d× k times and, at every step, we drop the
least significant φij parameter (i.e., we set this particular φij to zero). Finally, from these
d× k estimations we choose the one with the lowest AIC.

In general, the unknown parameters {β, φij} can be estimated. For that reason, the
joint probability function, the log-likelihood function fY (Y), is maximized with respect to
parameters φij and β. Assuming that ε ∼ N(0, σ2

ε I), the log-likelihood is given by

L(Y |β, φij) =
n
2

log(2πσ2
ε )−

1
2σ2

ε
ε̃tε̃ + log det(S) (8)

with

ε̃ =

(
I−

k

∑
i=1

d

∑
j=1

φijW̃ij

)
Y − Xβ = SY − Xβ. (9)

The estimator is obtained by maximizing Equation (8) with respect to all parameters. For
the consistency of the resulting estimators, we refer to Lee [28] and Gupta and Robinson [29].

3. Monte Carlo Simulations

For the simulation study, we simulate the irregular spatial lattice as Voronoi cells
(Longley et al. [30], Sen [31]), where n ∈ {200, 500, 900} centroids are sampled from a
two-dimensional uniform distribution on the interval [0,

√
n]2 (see Figure 1). Eventually, Y

can be simulated as in Equation (6), with ε being uncorrelated realizations of a standard
normal distribution. We choose β = (3, 1, 2, 0, 5)t and X has only ones in the first column.
The remaining elements are standard normally distributed random values.



Symmetry 2022, 14, 1474 6 of 13

We consider four different specifications of the spatial dependence with k = 8 and
k = 16, as shown in Figures 3 and 4. First, an isotropic process is considered where only the
first lag has an influence, as in classical contiguity settings. Second, a directional process is
considered with a clear north-to-south dependence. Third, we consider a nearest-neighbour
dependence in the northwest direction only. Finally, the fourth setting is extended by adding
another level of dependence strength, while retaining the mainly northwest directional
dependence. Blue sections represent zero influence, orange sections represent the maximum
influence, and purple sections represent 50% of the maximum influence. The maximum
influence is obtained by setting ∑k

i=1 ∑d
j=1 |φij| = 0.95.

Figure 3. Four different spatial dependence structures implied by the parameters φij. In the following,
they will be denoted 8-setting-1 for the very left setting, to 8-setting-4 on the right. Blue: φij = 0,
orange: φij = max, and purple: φij =

max
2 . The value max comes from ∑k

i=1 ∑d
j=1 |φij| = 0.95.

Figure 4. Four different spatial dependence structures implied by the parameters φij. In the following,
they will be denoted 16-setting-1 for the very left setting, to 16-setting-4 on the right. Blue: φij = 0,
orange: φij = max, and purple: φij =

max
2 . The value max comes from ∑k

i=1 ∑d
j=1 |φij| = 0.95.

We carried out two types of simulation. In the first type, we used d = 2, k = 8
and l = 375, employing the spatial dependence structures depicted in Figure 3. We first
performed the spatial partitioning (results in Table 1 and Figure 5) to gain the best k̃ and
l̃ for the estimation of φ̂ij (we use k̃ to denote the optimal parameter and k̂ to denote an
estimator). The procedure to determine k̃ and l̃ is described below, and was repeated
103 times. Then, using the optimal (k̃, l̃) from each of the 1000 estimations, we estimated
φ̂ij and compared it to alternative estimations with the Queen’s contiguity matrix, the
inverse-distance neighbour matrix by AIC, and the sum of squared residuals (ε2). The
comparison can be found in Table 2, showing that our method works best.

In the second type of simulation, we show that we can re-estimate even higher-
dimensional specifications of the spatial dependence, as depicted in Figure 4. We simulated
Y with d = 2, k = 16 and l1 = l2 = 375 using this high-resolution spatial dependence
and estimated φ̂ij, conditionally upon selecting the true d, k and l as the best parameters.
The results are summarized in Table 3. One can see that we can re-estimate these higher-
dimensional settings with a true positive rate of at least 76%. The simulations were carried
out in R using the packages spdep and rgdal (Bivand et al. [32], Bivand et al. [33]).
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Table 1. Means and standard deviations of the best k̃ and l̃ for 103 estimations. For each setting, the
best values are printed in bold. The greater the value of n, the closer we approach to the true values
of k = 8 and l = 375.

8-Setting-1 8-Setting-2 8-Setting-3 8-Setting-4
n 200 500 900 200 500 900 200 500 900 200 500 900

mean(k̃) 5.34 6.17 6.29 6.8 6.43 7.51 7.99 8 8 6.26 6.59 7.36
sd(k̃) 1.31 1.39 1.35 1.37 1.44 1.07 0.16 0 0 1.31 1.47 1.22

mean(l̃) 325 336 347 382 393 376 377 375 374 379 389 375
sd(l̃) 86 65 66 58 37 30 18 7.1 4.5 69 36 37

The spatial partitioning algorithm to determine the optimal parameters (k̃, l̃) was
implemented as follows. Initially, we select the distance d = 2 and split the spatial
dependence into different lengths lq = l ∈ {225, 250, . . . , 525} and various numbers of
directions k ∈ {4, 5, 6, 7, 8, 9, 10}. For each spatial dependence structure, all d× k spatial
weights matrices Ŵij are calculated. We calculate 3× 1000 sets of Y with k = 8 and l = 375
(Yk=8,l=375) that differ by a random white noise element ε. Finally, we re-estimate Ŷkl for
all combinations of k and l and calculate their AIC values to select the best set of (k̃, l̃) for
each of the 1000 Yk=8,l=375. The results can be seen in Table 1 and Figure 5.

Figure 5 shows that for 8-setting-1, the symmetric setting, it is more difficult to estimate
the correct k, because the models are observationally equivalent. The directional influence
for this radially symmetric setting looks almost identical for k = 4 and k = 8. Since settings
with fewer variables benefit from AIC selection, observation of this pattern is to be expected.
The length of the slices (l; here the y-axis) can be identified.

However, 8-setting-2 is axially symmetric about the y-axis. Only the northern half of
the sections can provide spatial influence. In this case, the spatial partitioning algorithm is
less robust in determining the length parameter l̃. One plausible reason is the ambiguity
between the length and the number of distance steps, which occurs particularly for this spa-
tial dependence setting. For 8-setting-3, the true values of k and l are selected consistently.
For 8-setting-4, estimation is more difficult, but the results show reasonable consistency for
larger values of n. In general, k̃ was rarely selected to be too large, but the selection of l̃ was
more difficult.

For each of the previous 103 estimations, we obtained the best values for k̃ and l̃.
Now, using these k̃ and l̃ values, we estimate, 103 times, the values for the segments
φ̂ij, as described in Section 2. Finally, we compare the mean AIC values and the sum of
squared residuals (ε2) of those estimates to the commonly used Queen’s contiguity matrices
(Lin Lawell [9]) and inverse-distance weighting matrices (Boly et al. [10]).

The average AIC value and the sum of squared residuals are reported in Table 2. For
all settings and all n, our method outperforms the common procedure, i.e., smaller values
for AIC and ε2 are obtained.

For the final estimation, the spatial dependence is split into k = 16 directions and
d = 2 distances (see Figure 4), leading to d × k = 32 spatial weight matrices W̃ij with
dimension n× n. We assume knowledge of the true parameters of (k̃, d̃, l̃p), and we re-
estimate the parameters of φ̂ij. Table 3 shows the results of the simulation study for the
different dependence structures (see Figure 4), with 500 estimations for each n and for
each setting. Since we know the true values, we compare the BIAS and the RMSE of the
estimations. For the BIAS and RMSE results, we distinguish two cases. Either the true

values should be chosen to be zero ( !
= 0), or the true values should be chosen to be greater

than zero (
!
> 0).

The true positive values represent the rate at which φ̂ij was correctly identified as
positive. The false non-zero value represents the rate of falsely identifying zero values
as positive. From Table 3, we can see that the results improve when a larger n is chosen.
The minimal true positive rate was 76%, but, in most cases, the true positive rate exceeds
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90%. Furthermore, we chose up to only 7% of the values as falsely non-zero. From the true
positive and false non-zero values, one can see that, for a very simple dependence structure
such as 16-setting-3, the sections φ̂ij are identified almost perfectly.

n = 200 n = 500 n = 900

max0

4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10

4 5 6 7 8 9 104 5 6 7 8 9 104 5 6 7 8 9 10

4 5 6 7 8 9 10 4 5 6 7 8 9 10 4 5 6 7 8 9 10

4 5 6 7 8 9 104 5 6 7 8 9 104 5 6 7 8 9 10

Figure 5. Results for spatial partitioning to choose the best k̃ and l̃ using the four spatial depen-
dence structures from Figure 3. The 12 heatmaps show the best values for each estimation after
1000 realizations. Each heatmap depicts values of k ∈ {4, 5, 6, 7, 8, 9, 10} on the x-axis and values of
l ∈ {225, 250, . . . , 525} on the y-axis. The maximum of the colour scale is chosen for for each heatmap
individually to achieve optimal visualization. Especially in 8-setting-3, the selections of k̃ and l̃ are
very sharp. Therefore, every plot has its own scale, and we named the maximum value max. The blue
crosses indicate the true parameters k = 8 and l = 375.
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Table 2. One thousand estimations of ŷ using this method. The results are compared, using the
average AIC and ε2, to estimations with Queen’s contiguity matrices and inverse-distance weighting
matrices. The values of k̃ and l̃ are chosen from spatial partitioning.

8-Setting-1 8-Setting-2 8-Setting-3 8-Setting-4
n 200 500 900 200 500 900 200 500 900 200 500 900

AIC
Our Method 570 1431 2573 568 1426 2562 573 1439 2592 568 1425 2563
Queen 671 1541 2846 654 1569 2965 785 2015 3438 644 1612 2901
Inv. Dist. 652 1539 2859 652 1552 2868 775 2031 3445 636 1597 2815

ε2
Our Method 0.954 0.987 1.000 0.947 0.984 0.995 1.016 1.035 1.040 0.957 0.986 0.996
Queen 1.343 1.245 1.341 1.299 1.370 1.497 2.561 2.942 2.507 1.314 1.370 1.381
Inv. Dist. 1.201 1.225 1.337 1.256 1.293 1.321 2.377 3.111 2.515 1.229 1.314 1.268

Table 3. Mean of 500 estimates for each of the 4 different settings with 3 different values of n. We
compare the BIAS, RMSE, true positive selections, and false negative selections. The values for BIAS
and RMSE are to the power of 10−3 and are separated between values that should be estimated as

zero ( !
= 0) and values that should be estimated as greater than zero (

!
> 0).

16-Setting-1 16-Setting-2 16-Setting-3 16-Setting-4
n 200 500 900 200 500 900 200 500 900 200 500 900

BIAS !
= 0 1.835 0.892 0.595 1.920 1.103 0.729 0.668 0.323 0.243 2.113 1.107 0.757

(in 10−3)
!
> 0 −4.721 −3.934 −3.677 −4.961 −4.194 −3.824 −32.80 −28.74 −28.06 −5.091 −4.171 −3.855

RMSE !
= 0 1.861 0.910 0.609 2.636 1.445 0.940 0.888 0.407 0.331 2.571 1.430 0.967

(in 10−3)
!
> 0 5.125 4.102 3.815 6.721 5.062 4.151 32.80 28.75 28.06 7.490 5.101 4.363

True positive 0.86 0.97 0.99 0.78 0.95 0.99 1.0 1.0 1.0 0.76 0.92 0.98
False non-zero 0.07 0.06 0.05 0.06 0.05 0.04 0.03 0.02 0.02 0.06 0.05 0.05

4. Real-World Application

In this section, we apply our approach to the evolution of land prices in Brandenburg,
Germany. In general, spatial autoregressive or spatial lag models are widely applied to model
housing prices or the evolution of house prices (e.g., Fingleton [34], Osland [35], Baltagi
et al. [36,37], Jin and Lee [38]). Furthermore, Taşpınar et al. [39] showed that there are
spatial interactions in the volatility of house-price returns. Below, we focus on the spatial
dependence structure due to the specifics of the studied area. The state of Brandenburg,
with 2370 districts, completely surrounds Berlin. Berlin does not belong to Brandenburg
and is therefore not included in the dataset. It is to be expected that the distance to Berlin
has a strong influence on the evolution of Brandenburg’s sales prices. It is also to be
expected that the influences the districts have on each other is stronger in the vicinity
of Berlin.

We consider the sales prices of land that was sold as building land for the first time.
The dataset contains the sales prices from 2005 to 2014 for the 2370 districts of Brandenburg.
To model the evolution of the sales prices, we take the average prices per square metre for
all regions between 2005 and 2009 and compute the difference from the average price for
the regions from 2010 to 2014. For regions that do not have sufficient data, we replace the
difference in selling price with zero, that is, we assume no price changes between these
periods. The resulting map is plotted in Figure 6, on the right.

We wish to investigate whether the districts in the dataset exert a short-distance
influence on each other, whether this influence is directional, and in which direction the
influence flows. Therefore, we choose the setting such that our weights φij are oriented
towards Berlin (similarly to a compass pointing north, hence in Figure 6 the green pieces
are pointing to Berlin). Furthermore, we include the following regressors: (1) the distance
to Berlin for each district, (2) the squared distance to Berlin, (3) the inverse distance to
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Berlin, and (4) an intercept of 1. To find the optimal number of directions k and the best
length l, we calculate the K× L W̃ij for a subset of n0 = 58 of the n = 2370 districts to lower
the required computational effort (see Figure 6, left).

Figure 6. Brandenburg with its n = 2370 districts. Green cross: Berlin centre. Triangles: two example
settings of the φij with two different d and l. They are always chosen to be biased towards Berlin
centre. The inset shows the sub-region of Brandenburg with n0 = 58 districts which is used to
determine the parameters {d̃, k̃, l̃} by spatial partitioning.

The results of the spatial partitioning are plotted in Figure 7 for distances d = 1 and
d = 2. In both cases, the best number of directions is k̃ = 3. In the case where d = 1, the
optimal length of the pieces is l̃ = 7000 m, and in the case where d = 2, it is l̃ = 5250 m.
The global best choice, according to the AIC, is the latter setting. For the selection of the
optimal length we use step sizes of δl = 250 m.

Figure 7. Heatmap of AIC values for different k, l, d. Lighter colours represent a smaller AIC value.

With the optimal settings, we estimated the parameters for β̂ and φ̂ij as described in
Section 2. We estimated the model d× k + p times and, after each step, removed the least
significant parameter. Finally, we selected the best estimation according to the AIC. In
both cases, the estimation with only one parameter was selected via the AIC. In both cases,
the remaining parameter is the one pointing towards Berlin (see Figure 8). Furthermore,
β̂ = 0 is selected by our method, which shows that the evolution of the sales prices is not
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dependent on the distance to Berlin. The result from the real-world study shows that the
evolution of the sales prices can be described by a directional influence within the districts
of Brandenburg, coming mainly from Berlin.

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.1424
0.1317

Figure 8. Results of the estimation for Brandenburg. The values represent the estimated values. There
is only directional influence from Berlin. This plot visualizes the estimated directional influence
between the districts in Brandenburg.

5. Discussion

Spatial weights matrices for SAR models are of interest in many areas, e.g., for the
description of environmental processes such as air pollution or the description of the
evolution of housing prices. Numerous methods have therefore been introduced to estimate
the spatial weights matrix. However, methods applicable in asymmetric scenarios are
lacking.

In this paper, we presented a method for calculating the n× n spatial weights matrix W
for directional processes which can be symmetric as well as anti-symmetric. The directional
influence is assumed to be the same in all regions of a map and is described by the value of
the segments φij. The proposed method can be used to estimate the directional influence in
certain use-cases, such as in the modelling of PM2.5 in a windy area (see Zhou et al. [22]). In
other areas of application, spatial models are created in different environmental areas such
as regions of ocean currents (mostly from the same direction). To date, the models have
only allowed a symmetric influence or it was necessary to bias the directional influence by
knowingly setting certain directions of influence to zero.

In Section 3, we presented Monte Carlo simulations to show that we can re-estimate
the φ̂ij consistently. Additionally, we showed that weight matrices calculated with our
method outperformed a Queen’s contiguity matrix and an inverse-distance weighting
matrix in the selection of four directional settings.

In Section 4, we applied our method to real-world data and showed that there is a
short-distance influence in the evolution of land sales prices in Brandenburg, Germany.
This directional influence flows from Berlin, at the centre of Brandenburg.

One limitation of the proposed method is that the effort required to calculate the
overlapping areas of all pizza-like shapes for all regions is computationally demanding. For
larger numbers of regions or larger d and k, the proposed method needs to be improved.

In future work, we intend to decrease the computational effort required to calculate the
weights matrices Wij, to allow a larger number of distances d for the segment shapes. With
this in hand, one could investigate whether another means of selecting parameters—other
than the AIC—could boost the results, since selection using the AIC always promotes fewer
parameters. This could be achieved by predicting which area of which region overlap
needs to be calculated. Another suggestion is to try different segment shapes. In this paper,
we considered only a pizza-like slicing. It could also be worth investigating whether the
estimation itself could be enhanced by using a lasso technique.
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