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Preface

This volume contains paper proceedings of the 12th International Conference on Geographic
Information Science (GIScience 2023), held at University of Leeds in collaboration with
University of Glasgow, 12–15 September 2023.

The conference attracted a large number of high quality submissions. Each submitted
paper received three to four reviews plus a summary review, and in total we accepted 11
long papers and 84 short papers. In addition to these papers, 60 poster lightning talks were
presented at the conference.

The accepted papers represent a wide range of topics at the forefront of GIScience
research including work on spatial networks, movement analysis, agent-based modelling,
spatial modelling and statistics, new forms of data and GeoAI, uncertainty representation,
reproducibility, as well as papers relating to the conference theme – Disrupting Society.
Separate to these contributions to the main conference was a suite of 14 pre-conference
workshops hosting talks, tutorials, and panel discussions on a wide range of topics in
GIScience.

The entire GIScience 2023 team would like to express their gratitude to the authors,
reviewers, workshop and tutorial organisers, and everyone else involved in the conference.
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Abstract
The demand for instructions during wayfinding, defined as the frequency of requesting instructions
for each decision point, can be considered as an important indicator of the internal cognitive processes
during wayfinding. This demand can be a consequence of the mental state of feeling lost, being
uncertain, mind wandering, having difficulty following the route, etc. Therefore, it can be of great
importance for theoretical cognitive studies on human perception of the environment. From an
application perspective, this demand can be used as a measure of the effectiveness of the navigation
assistance system. It is therefore worthwhile to be able to predict this demand and also to know what
factors trigger it. This paper takes a step in this direction by reporting a successful prediction of
instruction demand (accuracy of 78.4%) in a real-world wayfinding experiment with 45 participants,
and interpreting the environmental, user, instructional, and gaze-related features that caused it.
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1 Introduction

Human-computer interaction (HCI) in wayfinding and pedestrian navigation has attracted
much attention in recent years [27]. Reducing cognitive load in a complex task such as
wayfinding is an important goal in this domain. Efforts in this area range from working
on the structure, content, and presentation of navigation information to better adapting
it to the needs of users. The current research trend in navigation assistance systems
provides instructions in various modalities, from conventional turn-by-turn instructions
with map visualization to auditory instructions based on landmarks and, more recently,
visual instructions with augmented reality (e.g., [44, 10]). The performance of these different
modalities is evaluated using various metrics including travel time, number of errors, deviation
from shortest/fastest path, cognitive demand, subjective ratings, etc. (see Section 2). One
possible indicator which is less explored is how often the user asks for the instruction after
first receiving it, i.e., the instruction demand. The behavior of requesting more information
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or the same information again can also be considered as an indicator of how cognitively
demanding the processing of this information is. However, we still do not know whether such
behavior is caused by the complexity of the environment, the user’s personal characteristics or
spatial abilities, the content of the instructions and how they are conveyed, or a combination
of all these factors.

Being able to predict the overall demand for instructions shortly after receiving a nav-
igation instruction, can be very useful in developing more customized navigation aids. On
the other hand, knowing why people need more instructions and what factors trigger this
demand in users is of great importance for cognitive studies on human perception of the
environment. For instance, the need for repetition of navigation instructions can be seen
as a prototypical behavior of feeling lost or needing reassurance. Therefore, predicting this
need can as well help us predict these cognitive states during wayfinding. Theoretical studies
and empirical evidence suggest that cognitive demand in wayfinding is strongly influenced by
user-, environment-, and assistance-related factors [39, 15]. Requesting instructions is one of
the many activities performed during this process and can be considered a proxy for cognitive
demand. Machine learning (ML) has shown promising results, not only in predicting such
activities but also in partially explaining the predictions. The latter is crucial when it comes
to interpreting the results and extending knowledge about the causality of actions, here e.g.,
instructional needs.

In this paper, we show that instruction demand in a pedestrian wayfinding experiment
can be predicted with reasonably high accuracy using ML techniques. This prediction is not
a black box; rather, our results suggest that it can be interpreted by environmental features,
user- and instruction-related features, and gaze features. These findings are the result of
an outdoor wayfinding experiment conducted in the city with 45 participants navigating
to two different known and unknown destinations using an audio-assisted landmark-based
navigation system. Participants were allowed to ask for auditory instructions at any time and
as often as they wished. While walking, their behavioral data in the form of eye movements
and trajectory were recorded by eye-tracking glasses and a high-precision GNSS antenna
(see Section 3.1).

We trained several classifiers, namely Support Vector Machines (SVM), RandomForest,
and XGBoost on a variety of gaze features, environmental features, user- and instruction-
related features. Our analysis shows that instruction demand can be predicted shortly after
the first instruction (within two seconds), mainly based on the complexity of the environment
and user characteristics. Through several experimental setups, we found that a minimal
subset of 21 features (a combination of the above factors) leads to an accuracy of 78.9%
on unseen data, making our prediction approach beneficial for real-time applications and
giving us a better understanding of why people may need more informative assistance in
wayfinding.

2 Related Work

With the goal of predicting instruction needs in an auditory-aided wayfinding task, we
examined the existing literature from several perspectives: the evaluation and perception of
navigation instructions, the processing of instructional information using gaze analysis, and
exploring the use of machine learning in predicting wayfinding activities and states.
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2.1 Research on Navigational Instructions

Efforts have been made to optimize wayfinding support systems through the structure
of instructions [25, 41, 35], use of landmarks [34, 31, 12], and modality of information
presentation [20, 10]. One of the first papers to address the conceptualization of route
instructions is by Klippel et al. [24], who proposed a set of wayfinding choremes as mental
conceptualizations of route guidance elements used to simplify visualization of turn-by-turn
information. Another method to reduce instruction complexity is the Spatial Chunking
method, where unnecessary instructions are chunked together to reduce complexity [23]. A
second aspect besides simplifying instructions is how much spatial information they convey.
Krukar et al. [26], addressed this matter by introducing orientation instructions that combine
local and global route information. In a study with 84 participants, they evaluated the
performance of these instructions by measuring the memorability of the instructions and
showed that they conveyed survey information without interfering with the retrieval of
route information. A systematic review of navigation systems for people with dementia
was conducted by Pillette et al. [32] to compare common evaluation standards. They
reviewed 23 papers, including indoor, outdoor, and VR-based experimental designs, in terms
of presentation modality, navigation content, and timing of presentation. Most objective
measures introduced for evaluation were the number of errors, time to complete the navigation
task, arrival at destination, and the number of times participants asked questions or received
outside assistance. Most subjective measures were obtained either by experimenters observing
participants’ behavior, hesitation, or difficulty in completing the task, or by interviews and
questionnaires.

The work most closely related to ours is that of Golab et al. [17]. The authors used
survival analysis to model the times at which participants needed navigation instruction,
accounting for personal, environmental, and route-related variables. They reported that
“participants request a route instruction later as a function of their age, on segments longer
than 120m and in unfamiliar conditions if they score below average on the personality trait
extraversion.” This is initial evidence from a real-world wayfinding experiment, reporting
user-related and environmental aspects to be influential on the timing of the instructions.

2.2 Gaze Analysis in Instruction-based Wayfinding

Eye tracking provides insight into human cognitive processes [18, 11] complementing standard
behavioral responses. Previous work has shown the potential of gaze for user modeling,
such as including user’s attention [1], cognitive load assessment [6], and spatial decision
making [40, 22]. The knowledge obtained from user modeling can further be used for adapting
the system behavior [16]. An example of gaze analysis in wayfinding is Brügger’s study [8]
where they examined the impact of navigation system behavior on human navigation behavior
and performance in an outdoor experiment with 64 participants. They measured cognitive
function and scene complexity using fixation frequency and duration, finding that average
fixation duration varied across different tasks, i.e., incidental knowledge acquisition and
knowledge retrieval.

De Cock et al. [10] used gaze behavior analysis to investigate the nature of navigation
instructions in an indoor experiment with a VR-based adaptive route guidance system.
They focused on photos or icons at start and end points, and photos or 3D simulations at
turn junctions. They mainly used dwell time for their analysis and found that the detailed
information of a static photo instruction is more difficult to transfer to the environment.
Very recently in a paper by Ludwig et al. [29], the instruction needs in a real-world indoor
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multi-level wayfinding experiment were analyzed using the normalized mean square error
between the observed dwell time distribution and its estimation from the distribution of the
aggregated fixations between two routing instructions which were generated automatically
by their system incorporating the most salient landmark close to the user. Their result
suggested that instruction need tends to increase when there is a change in direction or level.
These papers show practical evidence that gaze analysis can reveal aspects of the cognitive
demands of processing navigation instructions.

2.3 Machine Learning for Wayfinding Activities’ Prediction
The use of ML techniques for prediction and classification tasks in wayfinding has become
increasingly important in recent years. Alinaghi et al. [4] predicted the direction in which
the wayfinder would like to turn a few seconds before the turn action is performed, based on
gaze behavior and environmental complexity. They tested several ML techniques, including
SVM, DecisionTree, and XGBoost, and reported that XGBoost outperformed the other
two with 91% accuracy. In another paper [3], the authors analyzed the effect of familiarity
with the environment using the pre-trained XGBoost model from their earlier work and
were able to show that the gaze behavior of familiar and unfamiliar wayfinders differed as
they approached a turn decision point. There, the authors introduced a terminology as
matching-to-action phase of wayfinding, which in their context refers to the part of the route
from the point where an instruction is given to the turn to which the instruction refers. We
have segmented our trial routes based on this notion (see Section 3.2). Liao et al. [28] trained
a RandomForest classifier with gaze features from 38 participants in a real-world outdoor
study to classify five common wayfinding tasks: Self-location and orientation, target search
in the local environment, target search on the map, route memorization, and walking to the
target, with an overall accuracy of 67%.

Another related experience with the RandomForest classifier is reported by Zhu et al. [44].
In a VR-based indoor study with 30 participants, the authors collected EEG recordings from
participants performing a series of 10 wayfinding trials of varying difficulty, each exploring a
portion of the virtual reality model (i.e., different sets of origin and destination locations
were defined at different distances and on multiple floors for each trial). Using a combination
of objective measurements (e.g., frequency of inputs to the VR controller) and behavioral
recordings from two independent observers, a classifier was trained to predict uncertainty
time segments during navigation trials. The overall predictive power of the model was
reported to be 0.70 as measured by the area under the Receiver Operating Characteristics
Curve (ROC-AUC). Although most work on activity recognition in the wayfinding domain
uses the RandomForest model due to its simplicity in training and explainability, higher
performance with other models is also reported in the broader domain of human activity
recognition. For example, XGBoost, as an ensemble model of tree-based architectures that
can better model more complex relationships and is as explainable as other tree-based models,
has been successfully used in the literature for many different tasks (see, e.g., [5, 43]).

3 Data Collection, Pre-processing and Feature Extraction

This section summarizes the details of the data collection procedure, the pre-processing steps,
and finally the feature extraction methods. The data we report on here was collected in
2020 and was first described in [17]1. Parts of the data have already been used for analyses

1 Parts of the data used in the current paper, will be made available at: https://geoinfo.geo.tuwien.
ac.at/resources/ (DOI: 10.5281/zenodo.4298703).

https://geoinfo.geo.tuwien.ac.at/resources/
https://geoinfo.geo.tuwien.ac.at/resources/
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published in [4], [3] and [2]. The original dataset has 104 trials recorded from 52 participants
(27 female and 25 males, M(age) = 26 years, SD(age) = 8.3). However, due to some sensor
malfunctioning and data loss in eye-tracking data, here we have analyzed 71 trials from 45
participants.

3.1 Data Collection
The study was a within-subject experiment with two phases: an online phase for registration,
demographic, Big Five personality traits [33], and the Spatial Strategies Questionnaire
(FRS) [30] data collection; and an in-situ phase for recording participants’ eye movements
(using PupilLabs Invisible glasses with 200 Hz recording frequency) and trajectory data
(using a PPM 10-xx38 GNSS receiver) as they walked familiar and unfamiliar routes2. The
familiar trial was conducted in a region and to a destination that the participant reported
being completely familiar with, as opposed to the unfamiliar trial. In both cases, however,
participants were asked to walk a pre-calculated route by following the auditory turn-by-turn,
German-language, landmark-based navigation instructions3 provided to them upon request.
Participants were given a clicking device that they held in their hands and could click on
when and as often as they wanted. The obligation to follow the predefined route (which was
unknown to participants) prompted all participants to request navigation instructions to
find their way, whether or not they were in the familiar condition. This design provided us
with the opportunity to examine primarily when they need instructions and then why they
need the same instruction more than once.

3.2 Data Pre-processing
To determine the motives behind instruction demand, we processed four of the data sources:
GPS tracks to obtain the environmental features, online-phase data to obtain the demograph-
ics, personality traits, and spatial strategy scales, eye-tracking records for gaze behavior, and
navigation instructions for their length and content. Of these, we only needed to preprocess
the GPS tracks to match them with the Open Street Maps (OSM) data and extract urban
complexity measures from them. Figure 1 depicts the six steps required for this preprocessing.
First, we cleaned the GPS data and smoothed it by preserving the timestamps. Then, using
the intersection framework [14], we extracted street intersections from the OSM data and
matched them to the GPS tracks. The instruction-request events were also matched to the
GPS tracks based on their timestamps. Then, we segmented the route based on the idea of
matching-to-action phase [3] (See Subsection 2.3) with the small difference that we do not
start this segment with the instruction request event, but with the previous turn intersection
to also track how far the request event is from the last turn decision point, and we call the
outcome chunks of the route “unified segments”. We also call the part of the route between
any two intersections (whether it is a turn or not) a “segment”. Finally, a buffer of 30m

(large enough to cover the buildings and Points of Interest (PoIs) from both sides of the road)
was considered around the unified segments to extract building footprints and their relative
attributes.

As for the prediction class, we labeled each event of the first request as “1-click”, “2-clicks”,
or “more-clicks”. The 1-click class means that the instruction was requested only once, while
the 2-clicks and more-clicks classes mean that the instruction was requested two or more

2 Participants indicated their familiarity in three levels (region, route, and landmark) in the online phase.
3 Route instruction pattern: Turn left [imperative] at Cafe Fabrik [landmark].

GISc ience 2023



1:6 Do You Need Instructions Again?

times. For example, in Figure 1, E1 and E2 events are marked as instances of class “1-click”,
E3 as an instance of class “more-clicks”, and E4 as an instance of class “2-clicks”. In total,
we had 234 samples of such first-request events in the unified segments, with an unbalanced
distribution across the classes (1-click = 68.803%, 2-clicks = 20.940%, and more-clicks =
10.256%).

Figure 1 Preprocessing steps applied to the GPS tracks: smoothing (green line), OSM junction
extraction and mapping to the route (black and yellow circles), instruction-event alignment (red
circles), segmentation into unified segments with class labels (E1–E4), and extraction of land use
and POI information from OSM in a 30m buffer around the route.

3.3 Feature Extraction
Selecting the right features for training a machine learning model is a very important step.
Of course, any algorithm trained on any set of features will yield a model, but according
to the principle of “garbage-in, garbage-out”, the model trained on inappropriate features,
even if it performs well on the training data, fails to generalize and thus explain the results.
Following the model of wayfinding decision situations [15], we selected features that reflect
the complexity of the environment and instructions, as well as the characteristics of the user.

We extracted four groups of features from our data sources: 41 Environmental, 16
Instruction-, 12 User-related, and six Gaze features, yielding a total of 75 features. Table 1
summarizes these features into subcategories. For the environment category, we extracted
seven features for the segments, including the length of the route and road segments, the
elapsed time since the start of the trial, the distance to the previous and next non-turn
intersections, and the distance to the previous and next turn intersections. The elapsed
time, while not a direct environmental feature, may serve as a proxy for length/speed and
may also be related to working memory (see Section 6). Based on the landcover codes of
Urban Atlas data4, we extracted 13 features describing land use in the buffer around the
unified segments. These features are in fact the proportion of buffer area for each land use.
For example, we calculated how much of the area is occupied by “Green-urban-areas” or
“Sports-and-leisure-facilities”. Using the same approach, we extracted from the OSM data
the semantic label of PoIs5 and their density along the unified segments. For example, by
counting the number of PoIs with the amenity tag “shop” per unit area along the unified
segments, we calculated the density of the PoI “shop”. In total, there were 10 amenities in
our experimental regions and we calculated the density for each. We also calculated the total
PoI density to have a measure of the visual complexity of the environment. This yields a
total of 21 PoI-related features for the environment category.

4 https://land.copernicus.eu/user-corner/technical-library/urban-atlas-mapping-guide/
view

5 https://wiki.openstreetmap.org/wiki/Key:amenity

https://land.copernicus.eu/user-corner/technical-library/urban-atlas-mapping-guide/view
https://land.copernicus.eu/user-corner/technical-library/urban-atlas-mapping-guide/view
https://wiki.openstreetmap.org/wiki/Key:amenity
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Table 1 Extracted features for predicting instruction demand: POIs (environmental and
instruction-related) are extracted from OSM with standard amenity types (e.g. shop, touristic, etc.).

Environmental Features 41
(7+13+21) Instruction Features 16

(2+14)
unified-segment 7 length-related 2

distance from/to previous/next turn junctions 2 number of words 1
distance from/to previous/next non-turn junctions 2 number of characters 1

segment-length 1 content-related 14
route-length 1 OSM PoI 11

time passed since start 1 landmark OSM type 1
landuse 13 contains-street-names (boolean) 1

PoI 21 last instruction (boolean) 1

User Features 12
(3+5+4) Gaze Features 6

demographics 3 fixation count 1
gender (binary) 1 min/max/sd fixation 3
age (in years) 1 mean fixation duration 1

familiarity (binary) 1 fixation duration skewness 1
Big Five Personality traits 5

Spatial Strategies Questionnaire FRS 4

For instructions, since we assumed that the length of the instruction may affect the
demand, we calculated the number of words and characters in the instructions. We also
extracted 11 OSM-PoI features as one-hot encoding (the 11 PoIs used as landmarks in the
instructions), and three features describing whether the instruction contains a street name,
whether it is the last instruction, or what kind of spatial object it refers to (e.g., point or an
area). In terms of user-related characteristics, we had age, gender, and a binary measure
of familiarity as demographic data from the online study; five values for personality traits
(openness, conscientiousness, extraversion, agreeableness, and neuroticism) obtained from the
Big Five personality test; and four values for spatial strategy scales (preference for egocentric,
allocentric, cardinal directions, and the sense of direction score).

Finally, for the gaze-based features, as one goal of our analysis was also to determine how
quickly we could predict instruction demand after the first request, we segmented the gaze
data into 1- to 10-second windows immediately after the first event, and extracted features
within these windows. In this way, we were able to find the minimal set of gaze data for the
prediction task. Eye-tracking datasets were collected in a mobile eye-tracking scenario with
free head/body movements. It is well known that head movements strongly influence the
calculation of saccade length and velocity [2], so no saccadic features were computed. We,
therefore, computed only basic fixation-based features. Fixations were extracted using the
Dispersion-Threshold Identification (I-DT) algorithm [36] (gaze-dispersion threshold: 1 deg;
duration threshold: 100 ms). Fixation count and five statistical measures from fixation
duration (mean, minimum, maximum, standard deviation, and skewness of the frequency
distribution), were extracted from the data.

By extracting all these features, we obtained a dataset of size 234 ∗ 75. These 75 features
were extracted based on our assumptions about influential factors on instruction demand.
After training the models and analyzing the feature importance (see Section 5), we were able
to prune this list and extract the most relevant features and interpret their effect.

GISc ience 2023



1:8 Do You Need Instructions Again?

4 Machine Learning Experiments

To predict instruction demand, i.e., how often a wayfinder requests an instruction, we trained
three classifiers: SVM, RandomForests, and XGBoost. The choice of models was based on
previous experience [4] and other successful reports of the performance of these models in the
literature of both human activity recognition and wayfinding (see Section 2.3). For instance,
our experience with the SVM-RBF, CART, Random Forest, and XGBoost algorithms for a
similar task of predicting pedestrians’ turning activity based on their gaze behavior (whether
they turn left/right at an intersection or continue straight ahead) yielded test accuracies of
.58 ±.05, .61 ±.06, .77 ±.06, and .91 ±.08, respectively. Before applying any of these models,
we first normalized the data and converted all categorical values to numerical values. To
deal with the imbalance of the data, we also compared two methods, sample weighting, and
oversampling. It is known that if the number of samples in the minority class is too small
and the samples are much farther away from the other classes, the highly weighted samples,
although drawing the edge of the decision function to themselves, may not be effective
enough to actually lie within the decision function [19]. However, we tried both methods
and obtained better results (≈ 5.6%) with Synthetic Minority Over-sampling Technique
(SMOTE) [9], which may also be an observation of the same phenomenon in sample weighting.
To find out how fast we can predict the demand, in a pilot testing, we trained an XGBoost
classifier for each of the 1- to 10- second windows gaze data and plotted the performance
metrics to select the optimal window size (see Section 5 for details).

Once we had the data ready, we set up the experimental pipeline in a way to avoid both
data leaks and unwanted effects of participants’ individuality in training and testing. We
split the data into 70% and 30% (train, test) using the leave-one-group-out (LOGO) method
to ensure that test participant samples were not part of the training. Then, oversampling
was applied as a pipeline separately on the test data and within the 10-fold cross-validation
to ensure that there was no data leakage not only between the training and test datasets
but also within the validation folds. The training results were checked for overfitting by
mlogloss and merror with cross-entropy loss function. Finally in order to interpret the
results and prune the features, and see how much the model’s predictions are influenced by
every feature, we applied both the Tree SHapley Additive exPlanations (SHAP) method
and feature importance by permutation (i.e., leaving the features one by one out ordered by
their importance and monitor the drop in accuracy). The interpretation of the results using
features’ importance is presented and discussed in Section 6.

5 Results

This section summarizes the results of our analysis. First, we report on the SVM and
RandomForest classifiers, which achieved test accuracy of 62.88% and 69.78%, respectively,
when trained on all the data, being the highest accuracy in both cases. However, the
XGBoost classifier outperformed both by an average of 11.2% across all feature combinations.
Therefore, only the XGBoost results are presented here in more detail.

We begin with the gaze window sizes. Figure 2 plots the train and test accuracies for 1- to
10-second windows, with the 8- and 2-second windows representing the best and second-best
prediction results for instruction demand. The fact that we can predict demand 6 seconds
faster while losing less than 1% in accuracy makes window size two more attractive for the
application domain. However, since the 8-second window still has the highest accuracy, we
continue to report results for this window size.
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Figure 2 Compares the XGBoost results trained on the gaze data of different window sizes.

As explained in Subsection 3.3, we extracted different categories of features to determine
which categories are most important for our prediction task. We conducted 15 experiments
in which the pipeline was set to different categories of features or combinations thereof.
Table 2 summarizes these results in terms of accuracy, f1 score, precision, recall, and Cohen’s
kappa. Exp. 1, 2, 3, and 4 are based on single categories with 6, 16, 12, and 41, gaze,
instruction, user, and environmental features, respectively. We also run some experiments
with the subcategories of these features, which are summarized in Table 1. These experiments
are labeled *.1 through *.3. For example, in Exp. 3.2, the model is trained with the five
features of the Big Five personality test to see how personality alone can define instruction
demand. In Exp. 6, the model was trained with 16 features that were among the top 4
features from Exp. 1, 2, 3, and 4. Exp. 7 is the result of applying the feature selection by
permutation approach. In each iteration of the permutation step, a subset of the features was
selected by removing each individual feature based on its importance rank and the model
was trained on that subset. The best feature set to report was defined as the smallest subset
with the least deviation from the best resulting model, in this case the model trained on all
75 features. As can be seen in Table 2, the three best performances of the model belong
to experiments using all features (Exp. 5), permutation-selected features (Exp. 7), and a
combination of the four most important features of individual categories (Exp. 6), with a
test accuracy of 79.1%, 78.9%, and 77.4%, respectively. However, the kappa values show
a better agreement result for the permutation-selected features. Using only gaze features,
the model achieves the lowest performance of 49.3%. After that, the instruction-related
features provide an accuracy of 58%. User-related features, despite having a smaller number
of features than instruction-related features, provide the model with an accuracy of 65.6%.
The environment-related features with the highest number of features among the individual
categories are close to the best-performing model with less than 4% difference in test accuracy
(i.e., 75.8%).

Figures 3 and 4 show the SHAP ranks of each feature category (i.e., Exp. 1, 2, 3, and 4)
and the top three best-performing experiments (i.e., Exp. 5, 6, and 7), respectively. In Figure
3, the top four features from each category are used to train the model in Exp. 6. These
features are distance to and from turn points and the nearest non-turn intersection, time
elapsed since the start of the experiment, familiarity, sense of direction, openness, egocentric
preference, length of the instruction, content of the instruction in terms of type of landmarks
used and turn direction (left or right), number of fixations, standard deviation of fixations,
average, and skewness of fixation duration. In Figure 4, environmental characteristics are
among the top four important features in all cases (Exp. 5, 6, and 7). Among user-related
features, which are the second most important category, gender, the personality trait of
openness, and sense of direction are the most important ones. Instruction length, measured
by the number of characters, and instruction content, measured by the type of landmark
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and turn direction, are as well present in the list of the most important features. Fixation
features are at the bottom of all three lists, with average duration and maximum fixation
being the most important ones. These results are further discussed in Section 6.

Table 2 Summarizes the results of the trained XGBOOST classifier for different combinations of
features in terms of accuracy, f1 score, precision, recall, and Cohen’s kappa. Experiment 7 with 21
features yields the best performance after experiment 5 with 75 features.

Exp. Features # Split
(LOGO)

Evaluation Metrics
Accuracy F1 Score Precision Recall Kappa

1 gaze 6 train
test

0.683
0.493

0.683
0.493

0.682
0.495

0.682
0.443

–
0.432

2 instruction 16 train
test

0.689
0.580

0.690
0.523

0.692
0.560

0.689
0.567

–
0.526

2.1 instruction length 2 train
test

0.513
0.44

0.506
0.394

0.511
0.393

0.512
0.469

–
0.413

2.2 instruction content 14 train
test

0.586
0.565

0.565
0.568

0.627
0.581

0.608
0.565

–
0.505

3 user 12 train
test

0.731
0.656

0.729
0.632

0.729
0.678

0.730
0.641

–
0.632

3.1 user demographics 3 train
test

0.537
0.527

0.527
0.485

0.529
0.492

0.536
0.584

–
0.415

3.2 user BigFive 5 train
test

0.682
0.530

0.683
0.505

0.689
0.528

0.683
0.529

–
0.531

3.3 user FRS 4 train
test

0.634
0.569

0.634
0.521

0.634
0.614

0.634
0.548

–
0.489

4 environment 41 train
test

0.855
0.758

0.854
0.711

0.855
0.744

0.854
0.757

–
0.752

4.1 environment segment 7 train
test

0.841
0.696

0.836
0.642

0.849
0.655

0.840
0.670

–
0.644

4.2 environment PoI 21 train
test

0.675
0.656

0.677
0.638

0.681
0.702

0.675
0.682

–
0.638

4.3 environment landuse 13 train
test

0.668
0.521

0.671
0.495

0.680
0.528

0.668
0.532

–
0.567

5 all 75 train
test

0.896
0.791

0.897
0.746

0.902
0.758

0.896
0.757

–
0.742

6 manual selection of features based on their
importance rank in experiments 1, 2, 3, and 4 16 train

test
0.879
0.774

0.879
0.764

0.882
0.784

0.879
0.792

–
0.763

7 selection by permutation 21 train
test

0.896
0.789

0.896
0.778

0.897
0.794

0.896
0.802

–
0.783

6 Discussion

Here we predicted the instruction demand in a pedestrian wayfinding scenario, after the first
instruction was given, based on a set of feature categories. In a real-world application scenario,
we assume that three of these categories, namely environmental features, user-related features,
and instruction-related features, are fixed once the route to be navigated is selected. That
is, once the navigation system computes the optimal route and generates the instructions
for it, the environment- and instruction-related features can be easily computed. Similarly,
user-related features can be collected in the sign-up information. In contrast, gaze behavior
is not static and is heavily influenced by the task, stimulus processing, movements, and so
on [11]. Gaze features should therefore be computed immediately after the first instruction.
To determine how much gaze data should be recorded for this prediction, we tested different
window sizes and found that as little as two seconds of fixation behavior recording can
support the prediction with slightly lower accuracy than 8 seconds (Exp. 1). It is well
known from the gaze analysis literature that fixation behavior can be interpreted in terms
of frequency and duration as a sign of cognitive load on information processing, attention,
and scene perception (see, e.g., [38, 21]). Our results are consistent with these findings, but
also show that in a real-world situation, these features do not by themselves encode enough
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Figure 3 The SHAP feature importance rank for Experiments 1 to 4. Top 4 features of each
category is manually selected for training the model in experiment 6.

Figure 4 The SHAP feature importance rank of the three best-performing feature sets: All
features, manually selected features, and permutation selected features. In all groups, environmental
features are among the most important features.
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information to predict instructional demand.
According to Table 2, instruction-related features (Exp. 2) are more informative for the

model than gaze alone. Among them, the length of the instruction, encoded with the number
of words as a language-independent proxy and the number of characters as a German-language
proxy, is more important. This is consistent with the well-known word length effect, which
states that longer words (which are common in German) are less well remembered [7]. We
assume that both length measures correlate with the memory and recall performance of
the instruction. This assumption is inline with previous findings suggesting that longer and
more complex navigation instructions may lead to increased cognitive load and decreased
wayfinding performance, making the instructions less memorable [23, 26]. The observation
that landmark type and turn direction (two important content-related features) are also
among the top five features, also supports this assumption. It means that what information
and how much information to be processed are important for predicting instruction needs.
This pattern is also found in the three best-performing experiments (Figure 4).

Exp. 3, was based on user-related characteristics only. Familiarity played the most
important role here, followed by the sense of direction and egocentric preference scores.
These observations are consistent with previous research on the importance of familiarity
in activity recognition in wayfinding [39, 3] and the fact that instructions were given in
an egocentric viewpoint. The same pattern for spatial strategy scores was also observed
in Exp. 3.3. Among the personality traits, openness, which correlates with eagerness
to learn and experience new things, is also the most important factor in Exp. 3.2. The
relationship between openness and need for instruction is not well studied, but some studies
have reported that individuals with higher openness tend to prefer more creative and less
structured tasks [37] and therefore may need less detailed instructions. Our results suggest
the same: Wayfinders with higher openness scores tend to show a lower need for instruction.
However, further research is needed to decipher the relationship between this personality
trait and prior experience (i.e., familiarity), task description and complexity, etc.

The result of Exp. 4 and its sub-experiments with environmental features shows that
segment-related features, including distance measurements to and from the immediate
non-turn intersections and the previous and next turn points (which are the target of the
instructions), as well as the time passed since onset, are the most important. This means that
the longer the distance to these decision points the more probable it is to need instructions
again. Analysis of this feature between the two familiarity conditions shows that distance to
and from turn points is equally relevant for both conditions, but the distance to and from
non-turn points is less dominant for familiar cases. These observations are consistent with
those of [17], in which the authors showed that unfamiliar participants ask for instructions
earlier on longer segments, and because the upcoming decision point is likely to be seen later
on long segments, unfamiliar wayfinders might experience higher levels of uncertainty due to
their less developed mental representation of the area. This explanation is also valid for our
observation. All these measures that somehow capture the distance to/from different points
on the route (time since start or length of segments) may also be related to the capacity of
the wayfinder’s working memory, which means that the longer the distance, the more likely
it is that someone will forget the instruction and need it again. However, in our study, we
did not control for this characteristic, and according to the psychological literature, working
memory as a cognitive process of temporarily storing and processing information in the mind
to perform tasks, while playing an important role in following instructions, is not the only
factor that provides an advantage in a complex task environment [42]. Other factors that
play a role in a complex task environment, such as problem-solving ability, creativity, or other
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cognitive skills, may provide an advantage beyond good working memory [13]. However, we
cannot relate our results to these explanations because our data do not provide corresponding
information on these merits. Secondly important are PoI-based features, including the overall
density of PoIs and shop in particular. Overall PoI density can be considered as a good
indicator of the density of the urban landscape, which affects human-environment interactions
including information seeking for wayfinding [31]. Our results suggest that the higher the
PoI density, the higher the cognitive effort required to match the received instruction to the
environment, and the greater the probability of requesting the same instruction again.

Finally, for the land use characteristics (e.g. green urban area, roads, etc.), which are
equally important as PoIs in Exp. 4 but not in Exp. 5, 6, and 7, no precise explanation
can be offered because land use is likely biased by the study design. The familiar trials were
conducted closer to the center of the city, while the unfamiliar trials were largely in the
outskirts with different land use. This may justify the absence of land use characteristics in
the experiments with combined features, as familiarity already encodes this difference. The
effect of this environmental aspect needs to be further explored.

None of the experiments with a single category achieved practically high accuracy, with
the exception of the environment category. Our combinatorial experiments aimed to find a
pruned list of features that are most informative for predicting instruction demand. Exp.
5, 6, and 7 are the best-performing experiments, and we consider the last experiment to
be the optimal one with one-third of the features and only less than 1% loss in accuracy.
In the last three experiments, we can see some similarities in the features. However, even
in terms of features, we consider the permutatively selected features (listed in Figure 4
Exp. 7) to be the most informative features for predicting instruction needs. This list of
features encodes well the wayfinding situation in terms of the instruction needs related to
the wayfinder’s relative position to the next and previous decision points (both turn and
non-turn points); the effect of cognitive load on fixation behavior caused by two factors:
the density of the urban landscape and PoIs in the environment and the processing of the
instructional information (length and content); and finally, the characteristics of the user,
from personality to preference for spatial strategies, gender, and familiarity.

7 Conclusion and Future Work

This paper presents the results of 15 ML experiments that predict the need for navigation
instructions with an accuracy of 78.4%. The predictions are based on a combination of factors
such as the wayfinder’s position, the next decision points, cognitive load, the amount of visual
information, the length and content of the instructions, and the user’s personality traits
and spatial strategies. The findings have theoretical and practical implications for better
understanding the cognitive aspects of wayfinding and for adapting navigation instructions
in real time.

The features used in the experiments encode several aspects of the wayfinder’s situation:
The wayfinder’s position with respect to the starting point, the previous and upcoming
decision points (both turn and non-turn), the cognitive load due to information processing
and environmental perception reflected in fixation behavior and caused by the density of
the landscape and the amount of visual information, the length and content of the given
instruction, and finally the user’s characteristics in terms of personality traits and spatial
strategies. In our experimental design, instruction demand was defined as the frequency with
which the same instruction is requested after it has been heard once. In other navigation
systems with different HCI components, this demand can be defined, for example, as the
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frequency of transition between the map screen and the environment, or as the number of
fixations on the augmented information in AR-based systems after a first viewing. In any case,
this prediction offers advantages from both theoretical and application perspectives: Behavior
before and after an instruction is retrieved contains valuable information about the cognitive
aspects of human-environment interaction and spatial perception. Knowing what external
and internal features affect this demand can help us better understand the spatial-cognitive
aspects of wayfinding and even mental states of uncertainty, being lost, or needing reassurance
that are common in wayfinding but not yet well explored. A further research question would
be when and in which stage of wayfinding we feel such needs more strongly and for which
purpose (e.g. self-localization or route planning), the repeated instructions may be useful.

Since our prediction results are based on unseen data, it is very likely that a pre-trained
model can perform on-the-fly predictions as a module of the navigation system, which can
be beneficial for real-time instruction adaptation. Off-line predictions can also be used as
a measurable metric for evaluating navigation instructions. However, further research is
needed to examine the generalizability of our observations for different modalities.
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Abstract
The labeling of point features on a map is a well-studied topic. In a static setting, the goal is to
find a non-overlapping label placement for (a subset of) point features. In a dynamic setting, the
set of point features and their corresponding labels change, and the labeling has to adapt to such
changes. To aid the user in tracking these changes, we can use morphs, here called transitions,
to indicate how a labeling changes. Such transitions have not gained much attention yet, and we
investigate different types of transitions for labelings of points, most notably consecutive transitions
and simultaneous transitions. We give (tight) bounds on the number of overlaps that can occur
during these transitions. When each label has a (non-negative) weight associated to it, and each
overlap imposes a penalty proportional to the weight of the overlapping labels, we show that it is
NP-complete to decide whether the penalty during a simultaneous transition has weight at most k.
Finally, in a case study, we consider geotagged Twitter data on a map, by labeling points with
rectangular labels showing tweets. We developed a prototype implementation to evaluate different
transition styles in practice, measuring both number of overlaps and transition duration.
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1 Introduction

Maps are ubiquitous in the modern world: from geographic to political maps, and from
detailed road networks to schematized metro maps, maps are used on a daily basis. Advances
in technology allow us to use digital maps on-the-fly and in a highly interactive fashion, by
means of panning, zooming, and searching for map features. Besides changes induced by the
user, maps can also change passively, for example automated panning during gps routing, or
changing points of interest when visualizing time-varying geospatial (point) data.

Important features on a map are often labeled. Examples of such features are areas
(such as countries and mountain ranges), curves (for example roads and rivers), and most
importantly points (of interest). The aforementioned interactions force map features and their
corresponding labels to change, by appearing, disappearing, or changing position. Instead of
swapping between the map before and after such changes, we can use morphs, here called
transitions, to allow the user to more easily follow changes in map features and labelings.
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Figure 1 A full visual scan of the individual labels is necessary to identify all changes [20].

Figure 1 shows why such transitions are important: even for two very similar point labelings,
a lot of mental effort can be required to identify the differences.

Automated map labeling is a well-researched topic within the geographic information
science (GIS) and computational geometry community. In recent years, the GIS community
has investigated the labeling of road networks [18], island groups [21], time-varying maps [2,
14], combining labeling with word clouds [5], and using human-in-the-loop approaches for
labeling [13]. Algorithms have mainly focused on (the complexity of) computing labelings, in
various static [1, 11, 22], interactive [3, 4, 12, 15], and dynamic or kinetic [6, 7, 9] settings.

In this paper we study transitions on maps that show point features P and their labels L.
Let P be a finite point set in R2, where each point pi ∈ P has a label li ∈ L associated
to it. Labels are axis-aligned rectangles in the frequently used four-position model, that
is, each point pi has four possible candidate positions to place label li [11] (see Figure 2a).
While labels are often modeled as arbitrary (axis-aligned) rectangles, we use squares with
side length σ = 1 for simplicity. In Appendix A we show how our results extend to arbitrary
rectangles. A labeling L ⊆ L of P consists of a set of pairwise non-overlapping labels, and
can be drawn on a map conflict-free, by drawing only the labels in L with their associated
points. If the label l ∈ L for a point p ∈ P is not contained in L, we do not draw p either.

Furthermore, we work in a dynamic setting, where points appear and disappear at
different moments in time, and the set P changes only through additions and deletions: the
data we consider later consists of geotagged tweets, for which we know only the location at
the moment they are tweeted, and hence data points do not move. Every time changes are
made to P , a new overlap-free labeling must be computed, thus resulting in a change from
labeling L1, before the changes, to labeling L2, afterwards. In this paper we study different
types of transitions from L1 to L2. During such a transition, the individual labels are allowed
to move in the sliding-position model [22] (see Figure 2b). Our aim is to find transitions that
achieve optimization criteria, such as minimizing the number of overlaps during a transition,
or minimizing the time required to perform a transition. To our knowledge, this is the first
time transitions have been studied in this way.

p p

(a) (b)

Figure 2 (a) The four candidate positions for label l of point p, with l placed in the top-right
position. (b) Labels continuously move between candidate positions using the sliding-position model.
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(a) (b)

Figure 3 (a) Minimizing overlaps by moving around the gray stationary label. (b) Minimizing
duration by using a single movement along the green arrow, instead of moving along the red arrows.

Problem description. Given two (overlap-free) labelings L1 and L2, we denote a transition
between them with L1 −→ L2. Such a transition consists of changes of the following types.
Additions If only label li of a feature point pi must be added, we denote this by L1

Ai−→ L2.
Removals If only label li of a feature point pi must be removed, we denote this by L1

Ri−→ L2.
Movements If only label li of a feature point pi must change from its position in L1 to a new

position in L2, we denote this by L1
Mi−−→ L2. Movements are unit speed and axis-aligned,

in the sliding-position model. Note that a diagonal movement, as in Figure 3a (left), is
composed of a horizontal and a vertical movement, and hence takes two units of time.

A label is stationary if it remains unchanged during a transition. Applying multiple transitions
consecutively is indicated by chaining the corresponding transition symbols: L1

MiMj−−−→ L2

denotes that label li moves before label lj . Furthermore, L1
M−→ L2 is a shorthand for

applying all movement-transitions simultaneously. All these notions extend to additions and
removals, using A and R, respectively, instead of M . A transition has no effect if no point
must be transformed with the respective transition, e.g., even if there are no additions, the
transition L1

A−→ L2 is still applicable; it simply does not modify the labeling.
We aim to identify types of transitions that try to achieve the following goals.

G1– Minimize overlaps While the two labelings are overlap-free, overlaps can occur during
the transition from L1 to L2. When too many overlaps happen at the same time, certain
labels may (almost) completely disappear behind others during a transition, which defeats
the purpose of the transition: allowing users to follow changes in the labeling. Thus,
those overlaps should be avoided as much as possible, by, for instance, adjusting the
movement direction of labels, as shown in Figure 3a.

G2– Minimize transition duration Our main goal is to show a map in a (mostly) static state.
However, we do not want to instantly swap L1 for L2, since the user will have difficulties
tracking all changes [20]. Though, a transition that takes too long can also cause users to
lose attention [19]. Hence, we want transitions that can be completed in a short amount
of time. This can be achieved by disallowing detours, as in Figure 3b, or by performing
the changes simultaneously.

Note that ideally, one would also try to minimize the number of moving labels, as studies
have showed that the amount of information humans can process is limited [17]. However, in
this paper, we assume that we are given the new labeling L2, which thus dictates the labels
that have to move. Therefore, we see the task of computing a stable labeling L2, i.e., one
where only a few labels move, as an interesting research question in its own right.

Optimizing both goals G1 and G2 simultaneously is often impossible as there can be a
trade-off: performing the transition as fast as possible to achieve G2 often leads to unnecessary
overlaps, while preventing as many overlaps as possible to achieve G1 may require more time.

GISc ience 2023
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However, to work towards both G1 and G2, we can perform all additions simultaneously, as
well as all removals. Furthermore, if we perform removals before movements, and movements
before the additions, we create free space for the movements, to reduce the number of overlaps
without wasting time. Let X be an arbitrary way of performing all movements required to
change from L1 to L2 (consecutively or simultaneously), then we can observe the following.

▶ Observation 1.1. A transition of the form L1
RXA−−−→ L2 aids in achieving both G1 and G2.

We introduce two overarching transition styles in this paper: consecutive transitions
and simultaneous transitions. Each such transition style is a variant of the style RXA, as
prescribed by Observation 1.1, and fills in the movement described by X in a unique way.
For a consecutive transition the movement X consists of a sequence of label movements,
whereas for a simultaneous transition we have X = M . These transition styles each incur
different transition durations. Since we expect a trade-off between G1 and G2, we specifically
analyze the number of overlaps during transitions of the two styles.

Related work. Our problem description resembles earlier work on point labeling, but it
also has subtle differences. For example, the optimization criteria we care for, minimizing
overlaps and time required for labels to move, were already investigated by de Berg and
Gerrits [9]. They showed that there often is a clear trade-off between these criteria when
dealing with moving labels. However, in their model, points are allowed to move (even
during label movement), while our points are static, and change only through additions and
deletions. Furthermore, in the pspace-hardness framework by Buchin and Gerrits [7] points
are often static and only labels move. Hence, their dynamic labeling instances are similar to
transitions. Though, a distinct difference is that labels must be allowed to move back and
forth in the dynamic labeling instances of the hardness reduction. Since we disallow detours
in transitions (see goal G2), this reduction is not easily transferred to our setting.

Finally, our analysis of the number of overlaps in transitions draws multiple parallels with
the analysis of topological stability, introduced in the framework for algorithm stability [16].
This framework provides various (mathematical) definitions of stability for algorithms on
time-varying data: Intuitively, small changes in the input of an algorithm should lead to small
changes in the output. Topological stability prescribes that the output changes continuously.
The (topological) stability ratio of an algorithm then measures how close to optimum the
stable output is: when an optimal solution undergoes a discrete change, a topologically
stable output has to continuously morph through suboptimal solutions. Similarly, we analyze
transitions with continuous movement of various styles. We then analyze how close to
overlap-free a labeling is during a transition by counting overlaps.

Contributions. In Sections 2 and 3 we analyze the worst-case number of overlaps of
consecutive and simultaneous transitions, respectively. In Section 3 we additionally consider
instances where we associate weights to the labels (and to their overlaps) and prove that it is
NP-hard to minimize the weight of overlaps in simultaneous transitions. Finally, in Section 4
we investigate in a case study how the transition styles perform on the described goals.

2 Consecutive Transitions

Naive transitions. Before we can propose more elaborate transition styles, we first evaluate
the potential overlaps for a single label performing its movement. Figure 4a shows how only
a single stationary square label can interfere with the moving label.
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(b)(a)

li

li

lj

Figure 4 (a) Since all labels are squares with side length σ, the moving blue label li can overlap
only a single gray stationary label lj . (b) The blue label li overlaps 14 other labels during the
movement transitions. The green labels move before li, red labels move after li.

▶ Lemma 2.1. In L1
RMiA−−−−→ L2, where only label li moves, at most one overlap can occur.

Proof. As we perform removals before the movement and additions afterwards, we can
guarantee that the start and end positions of label li are free. Thus any overlap can occur
only during diagonal movement of li, when li moves from one candidate position in L1, to a
non-adjacent candidate position in L2. Assume without loss of generality that li traverses
the lower-left label position, when moving from top-left to bottom-right. Only a single other
(stationary) label lj can be positioned such that both L1 and L2 are overlap-free and the
label overlaps with the area traversed by li (see Figure 4a). Any additional label overlapping
the traversed area, without overlapping lj , would overlap the start or end position of li. ◀

Next we consider an arbitrary order of all n moving labels in a transition. We define a
conflict graph, which has a vertex for each moving label, and an edge between overlapping
labels. With a packing argument we locally bound the degree of each of the n moving labels
to 14 by considering the start, intermediate, and end position of such a label (these overlaps
are achieved in Figure 4b). By the handshaking lemma this results in at most 7n overlaps.
For more details on the proof of Lemma 2.2 see the full version [10].

▶ Lemma 2.2. In L1
RM1 ...MnA−−−−−−−→ L2 at most 7n overlaps can occur.

DAG-based transitions. To refine the naive approach, we model dependencies between
movements in a movement graph, and use it to order movements and avoid certain overlaps.

▶ Definition 2.3 (Movement graph). Let M = {M1 , . . . , Mn} be a set of movements. Create
for each movement Mi ∈ M a vertex vi, and create a directed edge from vi to vj , vi → vj , if
some intermediate or end position of Mj overlaps with the start position of Mi, or the end
position of Mj overlaps with some intermediate position of Mi: In both cases movement Mi

should take place before movement Mj . If intermediate positions of Mi and Mj overlap, create
the edge vi → vj, i < j. This results in the movement graph GM (see Figure 5).

A feedback arc set in a movement graph is a subset of edges that, when removed, breaks all
cycles, resulting in a directed acyclic graph (DAG). We order movements using this DAG.
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Figure 5 (a) The blue label is added in this transition and forces n + m inevitable overlaps during
movement (n = 8 and m = 1). Gray labels are stationary. (b) The corresponding movement graph.

▶ Theorem 2.4. Movements in L1
RM1 ...MnA−−−−−−−→ L2 can be rearranged such that at most n + m

overlaps occur, if GM, with M = {M1 , . . . , Mn}, has a feedback arc set of size m.

Proof. By Lemma 2.1, we know that at most one overlap occurs when moving a single label
to a free end position. This leads to at most n overlaps for n consecutively moving labels, if
no label moves to (or through) a position occupied by a label, which starts moving later.

Let GM be a movement graph with M = {M1, . . . , Mn}. There are two cases:
Case (1) If GM is acyclic, then handling all movements according to any topological ordering

of the vertices of GM produces no additional overlaps.
Case (2) If GM contains cycles, then overlaps may be inevitable because each label in such

a cycle wants to move to or through a position that is occupied by another moving label.
Moreover, as the movements happen consecutively, one label in this cycle must move first
and therefore may cause an overlap. Let m be the smallest number of edges that must be
removed to break each cycle in GM, i.e., the size of a minimum feedback arc set S. As
GM is cycle-free after removing S, case (1) applies and m additional overlaps suffice. ◀

We can see in Figure 5 that this bound is tight. Furthermore, it is not always necessary to
perform all movements consecutively. We can observe that movements which are unrelated in
GM can be performed simultaneously: when no overlap is possible, there is no edge in GM.

3 Simultaneous Transitions

Figure 6 shows three timelines of different transition styles, (1) a naive consecutive transition,
(2) a DAG-based transition, and (3) a simultaneous transition. All transition styles start
at some time t0 and the order of the movements of the labels for (1) and (2) is indicated
with gray arrows. While (1) produces four overlaps and takes four units of time, (2) and (3)
produce no overlaps, and (3) only takes a single unit of time. This shows that it is sometimes
unnecessary to perform the movements consecutively to minimize overlaps. In this section,
we investigate both how simultaneous movements influence the number of overlaps, and the
complexity of minimizing overlaps.
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(1) Naive consecutive

(2) DAG-based

(3) Simultaneous

t0

t0

t0

Figure 6 Comparison of possible movement orderings with respect to G1 and G2.

▶ Theorem 3.1. In L1
RMA−−−→ L2 at most 6n overlaps can occur, where n is the number of

labels that must be moved, and all movements are performed at unit speed.

Proof. Let σ = 1 denote the side length of a label. To show that the total number of overlaps
is at most 6n, we model the overlaps in a graph and consider the neighborhood of individual
vertices. Let G be a conflict-graph where each vertex vi corresponds to a label li. If two
labels li and lj overlap during the transition, we create an edge (vi, vj), i.e., each edge
corresponds to an overlap. Observe that each edge is adjacent to at least one moving label
since two stationary labels cannot overlap. We proceed by evaluating in G the maximum
possible degree of a moving label l and restrict ourselves to a σ-wide border around the
bounding box of the movement area of l, that represents the area other labels must touch
(before the transition) to overlap with l. We call this area the overlapping region of l and it
is illustrated in Figure 7. Labels not intersecting the overlapping region of l by construction
cannot overlap with l. We proceed by considering the two possible types of movements for l.

Non-diagonal movement of l. For a label l that performs a non-diagonal movement, the
overlapping region is illustrated in Figure 7a. The light-orange area in the overlapping region
indicates that the start position of a label overlapping l cannot lie solely in this area. If a
labels starts in the area behind l, then such a label would never overlap with l, since labels
move simultaneously. The start position of labels overlapping l can neither overlap only the
σ × σ tiles diagonally adjacent to the end position of l, as the end position of those labels
would overlap the end position of l, for any movement that allows the labels to overlap l.

Next consider the remaining (white) area in the overlapping region, and see Figure 8 for
our construction. Consider first the end position w1 of l and the three σ × σ tiles w2, w3
and w4 adjacent to it. The total height of w1, w2 and w3 combined is 3σ, and hence the

l

σ
w1

w3

w2

w4

w5

w6

(a)

l
σ

w1

w2

w3

w4

w5 w6

w7

(b)

Figure 7 Overlapping regions for (a) non-diagonal and (b) diagonal movement of the blue label l.
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2:8 Transitions in Dynamic Point Labeling

(a) (b)

Figure 8 Labels overlapping with the blue label l that are located on the white tiles (a) w1 − w4

and (b) w5 − w6. The overlapping region of l is indicated in gray.

(a) (b)

Figure 9 Labels overlapping the blue label l that performs a (a) non-diagonal and a (b) diagonal
movement. The overlapping region of l is indicated in gray.

start positions of at most four labels can be stacked vertically to overlap this area (see the
labels with the color in Figure 8a). Similarly, w1 and w4 have a combined width of 2σ

and height σ. Since the end position of l is adjacent to the start position of l we can put at
most two labels horizontally next to each other in this area, while keeping L1 overlap free.
However, as the height is σ we can stack at most two layers of such labels vertically (the

labels in Figure 8a). As a result, w1, w2, w3 and w4 can together overlap with at most
six start positions of other labels. Each label results in at most one overlap, and there is a
movement direction for each label that achieves such an overlap, as shown in Figure 8a.

Now consider the σ×σ tiles w5 and w6 above and below the start position of l, respectively.
We can place two labels, the ones colored in Figure 8b, such that their start positions
overlap either of w5 and w6. For example, for w5 such labels can move diagonally down-left,
to overlap l. In this case, it is impossible for a label overlapping w6 to both overlap l and
have an overlap-free end position. Conversely, we can place one label on w5 and w6 each and
allow them both to move towards l, while ensuring overlap-free end positions (see Figure 8b).
Observe that it is impossible to place two labels on both w5 and w6 in the latter case, as the
vertical positioning that ensures overlap-free end positions of the labels, requires the labels
to start farther from l. Those labels have to move a vertical distance of at least σ/2 to reach
l, and hence also require a horizontal overlap of at least σ/2 with the start position of l, as l

will have moved σ/2 rightwards before the other labels reach the start position of l. Thus,
at most eight labels can overlap with l, and consequently the degree of the corresponding
vertex is bounded by eight. See Figure 9a for the complete situation.
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Diagonal movement of l. For diagonal movements, we consider w.l.o.g. the case where
l performs a diagonal movement from top-left to bottom-right through the bottom-left
corner. The overlapping region enlarges, as shown in Figure 7b. We can again eliminate
the light-orange areas, as they mark areas that the start position of other labels cannot
overlap exclusively, if they should overlap with l. As before, these areas are located behind
the start position of l, and diagonally adjacent to the end position of l. The red areas are
also eliminated, see the full version [10] for more details. We now repeat the process of filling
the remaining (white) σ × σ tiles, w1 to w7, with start positions for labels that can overlap
with l during movement. The analysis is very similar to the non-diagonal case, with one
exception: l can overlap with one stationary label, which can now occupy w6. We again do a
case distinction on the possible label placements, showing that at most nine moving labels
and one stationary label can overlap with l, or at most 12 moving labels can overlap with l.
The upper bound of 12 overlaps for one label is tight (as shown in Figure 9b). See the full
version [10] for the remaining details of this case.

Deriving an upper bound. To find an upper bound on the number of overlaps, consider
the subgraph G[VM ] induced by the set VM of vertices that represent moving labels. The
degree of one such vertex in G[VM ], which represents a label l, is bounded by nine, in case l

moves diagonally and a stationary label is present on the intermediate position of l, or by 12,
otherwise. Both these bounds are higher than in the non-diagonal movement case, which
would result in a degree of at most eight. Hence, in the worst case we have a degree sum
between 9n and 12n, respectively, since |VM | = n. By the handshaking lemma, we then have
between at most ⌈ 9

2 ⌉n and 6n edges in G[VM ], respectively.
If we consider the original graph G, we can observe that it differs from G[VM ], in terms

of edges, only by the edges that are incident to a moving label and a stationary label. This
means that the former case may result in more overlaps: As we have seen in one case of the
above proof, and due to Lemma 2.1, a moving label can overlap with at most one stationary
label. Since each of the edges in E(G) \ E(G[VM ]) is incident to exactly one vertex that
represents a moving label, and we have n of such labels, |E(G) \ E(G[VM ])| is bounded by
n and consequently, we have at most (⌈ 9

2 ⌉ + 1)n overlaps with the stationary label present.
However, in the worst case we still have an upper bound of at most 6n overlaps. ◀

3.1 Complexity of Computing Simultaneous Transitions
In this section, we show that it is NP-complete to minimize the number of overlaps in a
weighted L1

RMA−−−→ L2-transition by choosing the direction of diagonal movements.

▶ Definition 3.2 (Weighted Transition). Let L1
Σ−→ L2 be a transition, where Σ denotes

an arbitrary transition style of additions, movements, and removals, and let w be a weight
function that assigns to each label l ∈ L a non-negative weight w(l) ∈ R+

0 . A weighted
transition L1

Σ−→
w

L2 performs L1
Σ−→ L2, but when two labels li and lj overlap, a penalty of

weight w(li) · w(lj) is introduced. The total penalty W is equal to the sum of penalty weights.

▶ Problem 3.3. Given a weighted transition L1
RMA−−−→

w
L2 and k ∈ R+

0 , can we assign a
movement direction to each diagonal movement such that the total penalty W is at most k?

We sketch the proof of Theorem 3.4 here, details can be found in the full version [10].

▶ Theorem 3.4. It is NP-complete to decide whether W is at most k for L1
RMA−−−→

w
L2.
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Proof sketch. Given a movement direction for each label, it is easy to check whether W is
at most k by considering each pair of labels and checking for overlaps. Hence Problem 3.3 is
contained in NP. For NP-hardness, we reduce from an instance F of Planar Monotone
Max 2-Sat [8]. Figure 10 gives an overview of the required gadgets. Clause and variable
gadgets consist of two opposing labels at their core, corresponding, respectively, to the
assignments of the two literals in a clause, or the binary choice for a variable. For an
unsatisfied clause, an overlap occurs inside the clause gadget, whenever both labels move
towards each other (inwards). The corresponding labels have weight one, and hence such
an overlap would incur a penalty of weight one. A variable gadget has two opposing labels
for setting the variable to true or false. Choosing a movement direction outward from the
variable gadget, for example on the “true”-side, will cause a domino effect, propagating
towards the gadgets of clauses with negative occurrences of this variable. There it results in
inward movement, and hence this corresponds to setting the variable to not be false (and thus
be true). Choosing the outward movement for both variable states is never beneficial: that
variable is neither true nor false. The movement directions chosen in the variable gadgets are
propagated to the appropriate clauses using the (planar) embedding of the incidence graph
of F . All labels outside of clause gadgets have weight n + 1 and hence producing an overlap
outside of a clause gadget will result in a large penalty of weight greater than n. As such, we
either have movement directions that produce a total penalty of at most k for some positive
k < n, and overlaps correspond to unsatisfied clauses, or we have a total penalty of at least n,
and no clauses can be satisfied (or the variable assignment is inconsistent). Thus, n − k

clauses are satisfiable in F , if and only if we have k overlaps in our reduced instance. ◀

¬x ∨ ¬z

y z

x ∨ y x ∨ zy ∨ z

¬y ∨ ¬z

¬x
x ¬x

x

x

¬x ∨ ¬y

¬x

¬z

¬x

Figure 10 Reduced instance for the formula F = (¬x ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (x ∨ y) ∧
(y ∨ z) ∧ (x ∨ z). The weight of white and green labels is n + 1 and 1, respectively.

Figure 10 shows an example of the complete setup. There we reduce the formula
F = (¬x ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬y ∨ ¬z) ∧ (x ∨ y) ∧ (y ∨ z) ∧ (x ∨ z) onto our problem. Circles
with solid borders indicate the individual parts of the formula, while the dashed circle shows
part of a transportation gadget. The big empty circles represent the clauses and small empty
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Table 1 The Keywords and #Hashtags we used to query the tweets.

corona #corona covid #covid covid19 #covid19 covid-19
vaccine #vaccine quarantine #quarantine lockdown #lockdown moderna
outbreak #outbreak immune #immune immunity #immunity biontech
who #who desease #desease masks #masks pfizer
pandemic #pandemic mutation #mutation ffp2 #ffp2
#StaySave #StayAtHome #FlattenTheCurve astrazeneca johnson & johnson

circles represent the variables. The arrows outside circles represent the transportation-gadgets
that connect the individual parts according to the direction of the arrows. As there exists no
variable assignment which satisfies F , we cannot achieve W = k = 0 but must encounter at
least one overlap (and hence W ≥ 1). This overlap occurs, for example, in the clause gadget
for (¬x ∨ ¬z) to achieve W = 1. Note that if we would try to resolve this overlap by, for
instance, setting x to true and false at the same time, an overlap with penalty (n + 1)2 = 49
would occur, for example, in the variable-gadget for the variable x.

4 Case Study: Twitter Data

We implemented a prototype to analyze how the transition styles perform in a practical
setting. In this prototype, we show geotagged tweets (Section 4.1) as rectangular labels on an
interactive map (Section 4.3). In order to show an appropriate amount of information inside
the labels, we use uniform-sized axis-aligned rectangles for the labels instead of squares. As
all labels will have the same size, our theoretical results derived for square labels with side
length 1 carry over to this model (by scaling horizontally). Finally, we measure the number
of overlaps and the transition duration of the presented transition styles (Section 4.4).

4.1 Dataset
For our dataset, we queried 100,000 geotagged tweets related to the COVID-19 pandemic
during the month of May 2021, see Table 1. After filtering and cleaning this dataset, 99,982
usable tweets were left. A tweet will be represented as a point p ∈ P , and as its label we
display parts of the Tweet Text in a rectangular box, possibly truncating it if it is too long.
For the spatial and temporal property we use the Tweet Location and Tweet Date and Time
fields, respectively. The former field is a location attached to a tweet, which will determine
the coordinates of the point p ∈ P . This is not necessarily a concrete location, but can be a
(rectangular) area on the map. We choose an arbitrary location inside this area to prevent
artificial cluster creation. The latter field defines the date and time the tweet was posted.

4.2 Dynamic Labeling Model
The dataset described above has spatiotemporal properties: each point p ∈ P has a location
and a time associated to it. Starting from this point in time, we consider p (and its associated
tweet) relevant for three hours. The relevant tweets at a particular time of interest will form
the set P of points that we want to label. Changes to the time of interest (dynamically)
alter the set P of relevant tweets through additions and removals. Furthermore, in our
implementation not all points in P will be in view at all times: For example, when the user
zooms in on a particular part of the map, some points will be outside the view port. In such
cases, we label only the subset S ⊆ P of points that are inside the view port.
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1

2

3

4

5
6 7

Figure 11 Screenshot of the prototype.

4.3 Implementation Details
The prototype computes a labeling in the four-position model of the relevant points P .
Figure 11 shows a screenshot of our prototype. The main view area ( 1 ), in the center of
the screen, shows a map and a labeling overlay. Furthermore, it contains blue dots ( 2 )
indicating the locations of the subset S ⊆ P . Below the map, the time slider ( 3 ) shows
the currently selected time of interest. The side drawer on the right ( 4 ) shows further
information of a tweet, if the user selects one. The top bar ( 5 ) allows the user to retrieve
additional information about the map ( 6 ) and alter its state using the cogwheel ( 7 ).

The user can interact with the prototype by means of panning and zooming the map, as
well as changing the time of interest by using the time slider. Panning is done by dragging
the map using the mouse, while zooming is controlled using either the mouse wheel or the
zoom indicators in the upper-left corner of the map. Zoom level changes step-wise. The time
of interest is changed by dragging the indicator in the time slider, or using the + and −
buttons on either side of the slider. Panning and zooming change the subset S ⊆ P of points
in view, while changes to the time of interest alter the relevant points P .

Computing a labeling. For a given subset S ⊆ P of tweets that are both relevant and in
view, we compute a labeling as follows. We create a conflict graph of labels for S and use a
simple greedy approximation algorithm for a Maximal Independent Set I in this graph:
iteratively add a minimum-degree vertex to I, that shares no edge with vertices in I.

When the user now interacts with the map, we again perform the same algorithm to find
a new labeling, but we use two simple heuristics to improve the stability of the labeling. The
first heuristic is based on desideratum D1 from [3]. Among other things, it proposes that the
same labels should remain visible when zooming. To achieve this, we remove all neighbors of
the previously shown labels in the conflict graph, to ensure they are picked again.

The second heuristic attempts to prevent unnecessary changes in the labeling: Let I1 be
the subset of labeled points that remained relevant and visible after panning/zooming/time
change, and let I2 be the newly computed set of points to be labeled. If I2 is less than 2%
larger than I1, then we simply keep the labeling of I1 instead of swapping to a labeling of I2.
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When the subset S ⊆ P of relevant tweets in view is changed, through panning or
zooming, or when P is dynamically altered by changes in the time of interest, our prototype
will trigger a transition. Let L1, L2 be the computed labelings before and after the change,
respectively. Our prototype supports naive, DAG-based, and simultaneous transitions for
L1 −→ L2. In each of these transition styles, a removal, an addition, or a movement of a single
label has a duration of one second. A diagonal movement is split up into two non-diagonal
movements with a duration of one second each, starting with the horizontal movement.

Naive transitions. Movements in this transition are performed consecutively in arbitrary
order. Their order is based on the order in which we recognize the need for a movement.

DAG-based transitions. The movements in DAG-based transitions are also performed
consecutively, though ordered according to a topological ordering of the movement graph GM.
If GM contains cycles, we remove the vertex with the lowest in-degree and first move the label
of the removed vertex. Additionally, we perform unrelated movements in GM simultaneously.

Simultaneous transitions. The movements in this transition are all performed simultane-
ously, immediately after the removals. The direction of diagonal movement is not optimized
for minimum overlaps. Instead, we move horizontally first, to create a more uniform transition.

Implementation. The prototype is a three-tier-architecture, consisting of a graph-database
(Neo4j) storing the tweets together with their potential label candidates, an application tier
(Java Play Framework) computing the (new) labeling, and the presentation tier (Vue.js,
Leaflet, and GreenSock) with which the user can interact and which visualizes the transitions.

In our case study we measured the running times of the individual components, which we
report in Appendices B.1 and B.2. We can see that the majority of the time in the back-end
(between 60% and 85%) is spend on querying the database, while the remaining parts run in
less than 150ms in nearly all investigated cases. Computing the transitions in the front-end
takes on average below 10ms, and never more than 20ms, which is negligible.

4.4 Measuring Transition Time and Number of Overlaps
In our case study, we use our prototype to simulate twelve interaction settings in six scenarios.
The different scenarios we use in our case study are described in Table 2. In the first setting,
we use different interactions depending on the scenario we consider. For each interaction
type, we interact with the prototype by applying the following sequence of operations.

Table 2 The different scenario states of the case study.

Map center

Scenario Name Interaction Longitude Latitude Zoom level Time of interest

Italy (a) 14.45 41.30 7 2021-05-29T13:20:00
Lausanne (b) 6.37 46.45 7 2021-05-30T10:30:00
Leeds (b) -1.60 53.44 7 2021-05-29T13:00:00
Los Angeles (c) -117.78 33.84 9 2021-05-30T03:15:00
New Delhi (a) 71.18 30.20 7 2021-05-29T08:30:00
Sao Paolo (c) -45.00 -20.65 7 2021-05-29T02:30:00
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Interaction (a): (1) Increase the time of interest by 30 minutes, (2) zoom in by one zoom
level with the help of the zooming indicators, (3) increase the latitude of the map’s center
by 0.28 using the settings, and (4) increase the time of interest by five minutes with the
+ button next to the time slider.

Interaction (b): Interaction (a) in reverse order: (1) Increase the time of interest by five
minutes with the + button next to the time slider, (2) increase the latitude of the map’s
center by 0.28 using the settings, (3) zoom in by one zoom level with the help of the
zooming indicators, and (4) increase the time of interest by 30 minutes

Interaction (c): (1) Zoom in by one zoom level with the help of the zooming indicators,
decrease the time of interest by five minutes with the − button next to the time slider,
(3) decrease the longitude of the map’s center by 1.7 using the settings, and (4) increase
the time of interest by 20 minutes.

In Table 3, we report an overview of the most important results and refer to Appendix B for
additional measurements. Simultaneous transitions are the fastest, and the naive transitions
the slowest. Noteworthy is that the duration of the DAG-based transitions is close to the
simultaneous transitions. This suggests that there is significant benefit in simultaneously
performing movements that are unrelated in GM. Furthermore, we can see that the DAG-
based transitions produce around half as many overlaps as the other styles, on average less
than one overlap in each setting. Simultaneous transitions cause a similar number of overlaps
as naive transitions, but on average the total number of overlaps is slightly better.

This case study shows that DAG-based transitions find a good compromise between the
number of overlaps (G1) and the duration of the transitions (G2). However, simultaneous
transitions are more appealing, if one favours faster transitions over the number of overlaps.
Hence, we see a clear trade-off between the number of overlaps and transition duration,
similar to previous work [9]. Videos of the different transition styles can be found online1.

1 Link to videos: https://osf.io/hnsvu/?view_only=7703ba40643440f8958a9b0120dc32f0

Table 3 Evaluation results for each transition style in each setting, best scores per row are bold.

Naive transitions DAG-based transitions Simultaneous transitions

#Overlaps Duration [s] #Overlaps Duration [s] #Overlaps Duration [s]

Scenario Avg. Tot. Max Avg. Avg. Tot. Max Avg. Avg. Tot. Max Avg.

Italy, 1 0,40 2 6,50 2,20 0,20 1 4,49 1,40 0,60 3 2,50 1,00
Italy, 2 0,16 6 6,51 1,62 0,05 2 5,50 1,30 0,24 9 2,50 1,08
Lausanne, 1 0,40 2 16,49 6,50 0,40 2 4,51 2,30 0,40 2 2,51 1,50
Lausanne, 2 1,43 53 18,50 5,27 0,78 29 9,49 3,24 1,19 44 2,50 1,78
Leeds, 1 1,40 7 23,50 9,10 0,80 4 5,49 2,09 1,00 5 2,49 1,10
Leeds, 2 1,03 38 16,50 4,81 0,59 22 7,50 2,92 0,65 24 2,51 1,78
Los Angeles, 1 1,00 5 25,49 9,30 0,40 2 4,50 2,30 0,40 2 2,49 1,49
Los Angeles, 2 0,43 16 8,51 2,55 0,30 11 4,50 1,88 0,38 14 2,50 1,53
New Delhi, 1 1,20 6 22,48 10,80 0,60 3 8,49 4,60 1,40 7 2,50 2,00
New Delhi, 2 0,59 22 12,50 3,54 0,27 10 5,50 2,21 0,46 17 2,51 1,65
Sao Paolo, 1 0,20 1 25,50 9,70 0,00 0 8,49 3,30 0,60 3 2,50 1,50
Sao Paolo, 2 0,41 15 13,50 2,28 0,24 9 8,49 1,69 0,38 14 2,50 1,20

Avg. Setting 1 0.77 3.83 19.99 7.93 0.40 2.00 5.99 2.66 0.73 3.67 2.50 1.43
Avg. Setting 2 0.68 25.00 12.67 3.35 0.37 13.83 6.83 2.21 0.55 20.33 2.51 1.50

https://osf.io/hnsvu/?view_only=7703ba40643440f8958a9b0120dc32f0


T. Depian, G. Li, M. Nöllenburg, and J. Wulms 2:15

5 Conclusion

In this paper we performed a first investigation into the number of overlaps produced by
transitions on labelings of points, and started by proving tight upper bounds for various
transition styles. In addition, we implemented the transition styles in a prototype and
performed a case study that revealed the need for sophisticated transition styles that find a
good compromise between the number of overlaps and the duration of a transition. We see
this paper as a first step towards understanding such transitions in point labeling. Therefore
we have many open questions for future work, such as:

Should we develop new transition styles or improve the existing ones? Can we utilize more
structured movement, like performing all movements in the same direction simultaneously?
Is it sensible to try to formalize more perception-oriented desiderata for transitions, such
as the symmetry of transitions or the traceability of labels?
Is choosing label directions in simultaneous transitions still NP-hard with unit weights?
Can we compute a stable labeling L2, that minimizes the number of moving labels?
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A Arbitrary Rectangle Labels

While in the main text we considered only square labels, point labelings often use arbitrary
rectangles. If we allow our labels to be arbitrary rectangles, then it is no longer guaranteed
that only one (stationary) label can overlap with the area traversed by the moving label. If
we assume that the label with the largest side width (some σxmax) must perform a diagonal
movement, we can align σxmax

σxmin
stationary labels with a width of σxmin , the smallest label

width in our map, on the horizontal edge of the traversed area. As one label can always
extend out of that traversed area without resulting in an invalid labeling L1 or L2, we can
put up to ⌈ σxmax

σxmin
⌉ labels next to each other in the x-direction. The same holds for the y-axis,

with maximum and minimum height σymax and σymin , respectively. As we can put labels
anywhere inside the traverse area, we can place up to ⌈ σxmax

σxmin
⌉ · ⌈ σymax

σymin
⌉ labels intersecting

that area and therefore ⌈ σxmax
σxmin

⌉ · ⌈ σymax
σymin

⌉ overlaps occur during the movement (see Figure 12).
This results in the following corollary, as an extension of Lemma 2.1.

▶ Corollary A.1. When the labels are arbitrary rectangles with side length σxi
and σyi

, with
1 ≤ i ≤ n and n denotes the number of labels, performing transition L1

RMiA−−−−→ L2 for a label
of a point pi can result in at most ⌈ σxmax

σxmin
⌉ · ⌈ σymax

σymin
⌉ overlaps given that the end position of pi

is free, where σxmin = min{σxi
| 1 ≤ i ≤ n} and σxmax , σymin and σymax are defined similarly.

Corollary A.1 shows how upper bounds on the number of overlaps produced by square
labels can be extended to the setting of arbitrary rectangles. This introduces only a constant
factor, depending on the ratio between the largest and smallest side lengths in each dimension.
However, for many transitions adding the constant factor, as suggested by Corollary A.1,
does not yield a tight bound. This stems from the fact that many upper bounds require
overlaps with the start or end position of a label l, not just the traversed area of l. Since
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those positions are solely occupied at respectively the beginning and the end of the transition,
we cannot place ⌈ σxmax

σxmin
⌉ · ⌈ σymax

σymin
⌉ labels in those positions: many of those labels are unable

to move away completely.

3× 3 units each

8× 8 units

Figure 12 The 8 × 8 label wants to perform a counterclockwise diagonal movement and overlaps
with nine stationary 3 × 3 labels. The overlapping region is dotted, while the end position of the
moving label is indicated with the dashed rectangle.

B Detailed Case Study Results

In this case study we measure both the running times of our implementation, as well as
objective metrics (overlaps and transition duration) of the computed transitions. In the next
two sections, we outline these two measurements separately.

For this case study we used a standard laptop with the following specifications and
software versions.

Intel®Core™ i5-8265U CPU @ 1.60GHz with 16 Gigabyte RAM
Windows 11 Pro 21H2 (64 Bit) and Microsoft Edge Browser 109.0.1518.78
Neo4j 4.1.7, Java openjdk 11.0.2, vue 3.0.11, leaflet 1.7.1, and gsap 3.6.1
External 27” monitor with a resolution of 1920×1080px

B.1 Back-end computations
For the measurements of the back-end computations see Table 4.

B.2 Transition measurements
For the results of our measurements on the computed transitions see Table 5.
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Abstract
Given a set S of spatial feature types, its feature instances, a study area, and a neighbor relationship,
the goal is to find pairs <a region (rg), a subset C of S> such that C is a statistically significant
regional-colocation pattern in rg. This problem is important for applications in various domains
including ecology, economics, and sociology. The problem is computationally challenging due to
the exponential number of regional colocation patterns and candidate regions. Previously, we
proposed a miner [8] that finds statistically significant regional colocation patterns. However, the
numerous simultaneous statistical inferences raise the risk of false discoveries (also known as the
multiple comparisons problem) and carry a high computational cost. We propose a novel algorithm,
namely, multiple comparisons regional colocation miner (MultComp-RCM) which uses a Bonferroni
correction. Theoretical analysis, experimental evaluation, and case study results show that the
proposed method reduces both the false discovery rate and computational cost.
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1 Introduction

Regional-colocation patterns are (study sub-area R, feature-type subset C) pairs such that
instances of feature-types in C often are present in R in close proximity. Given a set S of
spatial features (e.g., coffee shops, restaurants), their feature instances, a study area, and
a neighbor relationship (e.g., geographic proximity), the goal is to identify pairs <region
rg, subset C of S> such that instances of C are statistically significant in that region rg.
Figure 1(a) shows a set of instances input into a regional-colocation miner, consisting of
three different spatial feature types, a neighborhood relation between feature instances, and a
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space partitioning. Figure 1 (b), shows the set of statistically significant regional colocations
identified after significance testing (described in Section 2.2). The output is a pair of regional
colocations: r1 showing a strong regional colocation between all three features (i.e., fA, fB ,
and fC) and r2 showing a strong regional-colocation between two features (i.e., fA and fB).
The rest of the area within the map shows less spatial interaction (low participation index)
between these features.

(a) Input: Instances of fA, fB, fC in a study area (SA) with a 
predefined grid partitioning. 

(b) Visual representation of a pair of statistically signifi-
cant regional colocations within which all or subsets of 
spatial features co-locate.

Figure 1 Regions where all or subsets of fA, fB and fC significantly co-locate in the study area.

The problem of mining statistically significant regional-colocation patterns is societally
important with applications in retail, public health, ecology, public security, transportation,
etc. For example, retail establishments (e.g., fast food chains and coffee shops) often colocate
to reach each other’s customers. Thus, finding statistically significant regional colocation
patterns among competing retail stores has tremendous value for retail analysis. When
identifying colocation patterns in societal domains, it’s important to minimize the chance
of false discoveries. A famous historical example was between 1900 and 1904 when urban
districts of San Francisco experienced an outbreak of bubonic plague, resulting in 119 deaths.
The federal and state authorities falsely identified the victims’ ethnicity as a highly correlated
feature to the plague. This false discovery brought an immense adverse impact on San
Francisco’s management of the plague. Even when we don’t unfairly stigmatize groups or
regions, false discoveries waste money, and resources. Comparing the city’s response to
the same plague between 1907 and 1908, where rats were correctly identified as a highly
correlated feature and the plague was swiftly contained, the negative impact of false discovery
was even more strongly felt [13]. Table 1 provides application domains and use cases.

Table 1 Regional-colocation applications.

Application Do-
main

Example

Retail <China, {McDonald’s and KFC}>, <USA, {McDonald’s and Jimmy
John’s}>

Public Health <Ports, {Plague and rats}>, <Middle East, {Middle East Respiratory
Syndrome (MERS) in 2012 and MERS-CoV}>

Ecology <Indian/Pacific Ocean, {Anemone and Clownfish}>, <Nile River delta,
{Nile Crocodile and Egyptian Plover}>

Public Safety <Region around bars, {Assault crimes and drunk driving}>

Transportation <Near bus depots, {High NOx concentrations and buses}>
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Figure 2 Comparison with Related Work.

The problem of statistically significant regional-colocation pattern detection (SSRCPD)
is computationally challenging due to the following reasons: (1) Significance testing in this
problem requires considering multiple statistical inferences simultaneously which leads to
an increase in Type-I error (i.e false discoveries). (2) There is an exponential number of
candidate regional patterns, e.g., the dataset used in the case study (Section 6) consists
of 1473 different retail brands and their locations in Minnesota, resulting in 21473 different
candidate patterns. (3) Spatial partitioning approach would lead to an infinite number of
candidate region subsets.

Figure 2 shows a decision tree that distinguishes our manuscript from previous works,
where SSRCPD refers to Statistically significant regional colocation pattern detection.
Earlier work on regional-colocation pattern detection either uses data unaware space parti-
tioning (e.g., Quadtree [4, 12]) or clustering of colocation instances [5, 7]. However, these
techniques lack statistical significance testing and depend on input parameters (e.g., par-
ticipation index threshold) which may vary geographically. Statistically significant global
colocation mining was introduced by [1], while statistically significant regional colocation
mining was first explored in [8]. In [8] we proposed SSRCM which utilizes a subgraph
enumeration approach to detect statistically significant regional colocation patterns where
the regions would be composed of one or more contiguous atomic partitions (smallest region
within which a candidate pattern is statistically significant). This algorithm was expensive
because expanding the region within which the pattern was statistically significant required
recalculating the p-value. Since detecting statistically significant regional colocation patterns
requires performing multiple simultaneous statistical inferences, this results in the multiple
comparisons problem [14], which risks false discoveries (a.k.a. Type-I errors). The problem
results in a rapid increase in the probability of Type-I error as the number of partitions
increases. To address the multiple comparisons problem, we propose a robust statistically
significant regional colocation miner (MultComp-RCM) using a Bonferroni correction [3].
The proposed approach recommends stricter p-values to reduce false discoveries (Type-I
errors), thus setting an upper bound on the overall significance level (α, which is 0.05 for a
95% statistical confidence).

Contributions.
We proposed a new approach Multiple comparisons regional colocation miner (MultComp-
RCM) to reduce false positives using a well-established statistical technique for multiple
comparisons correction, the Bonferroni test.
The paper provides a comparative analysis showing that the proposed MultComp-RCM
is computationally more efficient than SSRCM.
The paper describes a sensitivity analysis using synthetic data which shows that
MultComp-RCM requires an increasingly smaller number of significance tests and parti-
cipation index computations for an increasing number of regions.
We proposed a case study on retail establishments in Minnesota using the Safegraph POI
dataset [8]. The proposed method discovers new regional-colocation patterns involving
fast food and coffee retailer feature-type subsets in a Minnesota counties study area. We
also confirm that the Bonferroni correction in our method reduces false discoveries.
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Scope. For simplicity, this paper focuses on regional-colocation patterns consisting of two
or three different features. In our case study, we enumerated regions based on a contiguous
collection of counties. Nevertheless, this work can be extended to different types of regions
(e.g., ports). We also do not consider segregation patterns (negative spatial interaction) or
the temporal aspects of the patterns.

Organization. The paper is organized as follows. Section 2 reviews basic concepts and
formally defines the problem. In section 3 we briefly review SSRCM and decribe the proposed
approach (MultComp-RCM). Section 4 gives a theoretical analysis of MultComp-RCM. We
present the experimental evaluation in Section 5 and a case study in Section 6. Section 7
briefly surveys related work and discussion. Section 8 concludes the paper with future work.

2 Basic Concepts and Problem Definition

First, we review basic concepts related to colocation detection, statistical significance testing,
and the multiple comparisons problem. Then, we formally define statistically significant
regional colocation pattern detection.

2.1 Colocation detection
In this section, we briefly introduce some taxonomy and the basic concept used to define
colocation pattern detection with examples. The basic concepts are as follows:

A feature instance is a geo-located spatial entity which is a type of Boolean feature
f with a geo-reference point location p (e.g., latitude, longitude), represented as < f, p >.
Multiple instances of a feature are represented as fi and can be related to other feature
instances fj via a neighbor relation R. For example, geographic proximity is represented
as Rfi,fj ≤ θ, where θ is the neighbor relation threshold. In a neighbor graph, we represent
features that satisfy such relations as a node and their relationship as an edge.

A colocation candidate C is a set of features defined in the given study area (SA) or a
sub-region (rg) where rg ∈ SA. For example, Figure 1(a) shows 17 spatial objects of type fA

(circle), 12 spatial objects of type fB (triangle), and 9 instances of colocation pattern {fA,
fB}. An instance of a colocation satisfies the neighborhood relation R and forms a clique.

A participation ratio (pr) is the ratio of feature instances participating in a relation
R to the total number of instances inside the study region (SA). For a given colocation
candidate C and feature f , it is represented as pr(f, C) as shown in Equation 1:

pr(f, C) = participating_instances(f, C)
instance(f) . (1)

For the feature instances shown in Figure 1(a) the participation ratio values for the relation
{fA, fB} are pr(fA, {fA, fB}) = 9

17 and pr(fB , {fA, fB}) = 8
12 . Further, the participation

ratio within a region (rg) for a feature f is defined as pr(f, [rg, C]). For example, in Figure
1 pr(fA, [r2, {fA, fB}]) and pr(fB , [r2, {fA, fB}]) in region r2 and has the value 4

4 and 3
4

respectively.
A participation index (pi) is the minimal participation ratio of all feature types in a

colocation candidate as described in Equation 2:

pi(C) = min
f∈C

(pr(f, C)). (2)
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The participation index quantifies the spatial interaction within features. Figure 1(a)
shows participation index of features fA, fB which can be represented as pi({fA, fB}) which
is min( 9

17 , 8
12 ) or 9

17 . A regional participation index is the minimal participation ratio of
all feature types in the colocation candidate C within region rg as shown below

pi([rg, C]) = min
f∈C

(pr(f, [rg, C])) (3)

For instance in Figure 1, pi([r2, {fA, fB}]) = min( 4
4 , 3

4 ) = 3
4 .

Colocation patterns [16] is the set of prevalent colocation candidates (based on a
prevalence measure, e.g. pi), i.e., candidates comprised of features having a high positive
spatial interaction. A regional-colocation pattern [12] is a paired region (rg) and colocation
pattern (C), i.e., < rg, C > where the features in pattern C have a high positive spatial
interaction in rg.

2.2 Statistical Significance in Colocation Detection
A statistically significant colocation determines whether an assigned positive spatial interac-
tion between features is statistically significant or could have been observed if the features
were in complete spatial randomness (CSR). Other properties in CSR are as follows:

Every feature instance has an equal probability of existing at any point in the study area.
The locations of any feature instances in the study area are independent of each other.

A null hypothesis (H0) is a statement of “no effect” or “no difference”. In our problem, the
null hypothesis represents the scenario under which there is no spatial interaction between
the features in the dataset, i.e., their existence is completely independent of each other.
An alternative hypothesis (Ha) is a statement that is tested against a null hypothesis.
In our problem, an alternative hypothesis represents the scenario under which there is a
positive spatial interaction between the features in the dataset in a region of interest.
A Type-I error refers to the erroneous rejection of an actually true null hypothesis (or
a false positive). In our problem, this would refer to incorrectly assigning a candidate
regional-colocation pattern as statistically significant, even though there is a high probability
of this pattern being found in CSR or H0.
A Type-II error refers to the failure to reject a null hypothesis (H0) that is actually false
(or a false negative). This would translate into incorrectly assigning a candidate regional-
colocation pattern as not statistically significant.
A point distribution is a collection of geo-distributed points referring to an event (e.g.,
road accident) in a spatial domain. A point process (PP ) is a statistical process that
defines the probability distribution of a point over a region. Point processes are essential for
defining the null or alternative hypothesis for our statistical significance test.
A Poisson point process is defined in a generalized space SP with intensity Λ having the
following properties:
1. The number of points in a bounded Borel set (bounded sets that can be constructed from

open or closed sets by repeatedly taking countable unions and intersections) B ⊂ SP is a
Poisson random variable with mean Λ(B).

2. The number of points in n disjoint Borel sets forms n independent random variables.
This property results in independent scattering or complete independence.

Null hypothesis generation.
For an identical distribution, we generate an equal number of instances of each feature in
every partition using summary statistics of the constituent features of the pattern. This
ensures that the null hypotheses datasets (although in CSR) closely model the observed
dataset in each atomic partition.
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For independence, we sample instances from a Poisson point process [11]. To check for
acceptable auto-correlation, we use a pair correlation function (PCF) or g(d) up to a
distance d, where d is data-driven. When g(d) > 1, it suggests there is clustering at a
distance d within the feature instances, while g(d) = 1 represents CSR.

Statistical significance test. Since the participation index (pi) is used to quantify the
strength of spatial interaction, the objective is to determine the probability of a pattern’s pi

in the observed data. Let pi∅(C) denote the participation index for pattern C in the null
hypothesis and piobs(C) represent the participation index for candidate colocation C in the
observed data. Then, we compute the following probability [1]:

p = pr(pi∅(C) ≥ piobs(C)) = R≥piobs + 1
R + 1 (4)

where R≥piobs represents the number of Monte Carlo simulations within which the particip-
ation index (pi∅(C)) for pattern C is greater than in the observed data (piobs(C)) and R

refers to the total number of Monte Carlo simulations. If p ≤ α, we consider piobs(C) as
statistically significant at level α.

Regional statistical significance test. To test for regional significance, we use simulated
(i.e., computer-generated) candidate regions. For example, if we are trying to determine if fA

and fB are statistically significant in locality r2 (Figure 1(b)), we generate null hypothesis
samples within the locality’s boundaries and use the participation index result from each
sample to perform the significance test for rg. Figure 3(a) and 3(b) display two of the R

different null hypotheses which are used to compare the participation index of the regional-
colocation pattern [r2, {fA, fB}] in the observed data. As shown, the participation index
for the pattern [r2, {fA, fB}] is 1/3 in both null hypotheses respectively. For a statistical
confidence level of 95% the following inequality should hold:

[ R=99∑
r=1

1(piobs([rg, {fA, fB}]) ≤ pi∅r
([rg, {fA, fB}]))

]
< 5 (5)

where rg is the region of interest, and 1 is an indicator function. We can compute R from
α = 0.05 using α(R + 1) = 5 [2].

(a)  Null hypothesis 1 (b)  Null hypothesis 2

Figure 3 Two example null hypotheses for significance testing of the observed data in Figure 1.

The multiple comparisons problem [14] occurs when every inference in a set of statistical
inferences simultaneously has the potential to produce a discovery. The more inferences are
made on a particular data set, the more likely it is to incorrectly reject the null hypothesis.
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Most techniques to address this problem require a stricter significance threshold for individual
comparisons to compensate for the number of inferences being made. A stated confidence
level generally applies to individual tests. It is often desirable to have a confidence level for a
whole family of simultaneous tests.

The Bonferroni correction [3] is a method to address the multiple comparisons problem
and the simplest method for reducing Type-I errors. It is a conservative method with a
greater risk of failure to reject a false null hypothesis, thus resulting in Type-II errors.

2.3 Formal problem formulation
The problem of statistically significant regional-colocation pattern detection is as follows:
Input:

1. A set (F ) of spatial-features
2. N geo-located spatial feature instances.
3. A study area SA composed of space partitions (e.g., counties).
4. A statistical significance level α.
5. A neighbor relationship (R).

Output: Statistically significant regional-colocation patterns, < rg, C > where C ⊂ F .
Objective: Reducing Type-I error (false positives).
Constraints: Higher statistical confidence of output patterns.

Reasoning behind problem output. Testing for statistical significance on regional-colocation
outputs ensures that spurious patterns aren’t detected from the dataset. Otherwise, regions
may be enumerated due to a high density of feature instances or spatial auto-correlation. In
addition, significance testing for the union of many partitions leads to multiple statistical
inferences. Due to the union of partitions, the probability of finding chance patterns within
the bigger region (i.e., the union of partitions) is higher; this phenomenon is not accounted
for by the p-value threshold for a single partition. This leads to the multiple comparisons
problem, resulting in a higher false discovery rate. In application domains related to regional-
colocation pattern detection, reducing Type-I errors (false positives) takes higher priority
over reducing Type-II errors (false negatives). These Type-II errors might result in missing
the detection of certain patterns which might have a lower p − value.

In this situation, checking for a particular α level in the individual statistical inferences is
insufficient. We also need to control the family-wise error rate which represents the probability
of making one or more false discoveries (Type-I errors) [14]. We use the Bonferroni correction
in MultComp-RCM to tackle this problem arising from multiple hypothesis tests. This
conservative approach ensures that the pattern output has high statistical confidence while
ignoring patterns that might have comparatively lower confidence, which is our primary
objective. Another benefit of this method is the computational efficiency due to the smaller
number of significance tests and participation index computations required as compared to
the baseline [8]. The Bonferroni correction proposes stricter p−value thresholds which might
be a bottleneck for large scale applications, such as when dealing with hundreds of atomic
partitions. This may also lead to a higher possibility of false negatives (Type-II errors).

3 Methodology

To keep the paper self-contained, we first briefly review the SSRCM, our previous statistically
significant regional-colocation miner [8], and a sub-routine on significance testing. We then
describe the proposed approach in Section 3.2 and provide an example highlighting the
computational cost savings of the new approach.
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3.1 Statistically Significant Regional-Colocation Miner

Key idea. In [8], we started by considering partitions with at least 3 instances of each
feature which comprise the regional-colocation pattern. This ensures that the features
constituting the pattern all have a considerable presence in the enumerated partitions. We
then use the regional statistical significance test as described in Algorithm 1 to determine
the atomic footprints of the pattern, i.e., statistically significant pattern within individual
partitions. While computing the participation index, we limit our neighborhood to an
empirically determined distance (d) to mine meaningful colocated features.

Algorithm 1 Significance testing.

Input:
- A spatial dataset S consisting of features {fA, fB , ...}
- A study area (SA) and an atomic partition rg ⊂ SA

- Statistical significance level α
- A candidate colocation pattern C
- A set of R Null hypotheses (NH∅) data each modelled as colocation C in atomic partition rg

- Distance d for participation index (pi) calculation
Output:
1. < rg, C > is significant or not
2. p-value

rg

C

1: procedure Significance Testing
2: Statistically significant result SSR

rg

C ← False
3: Counter R≥piobs ← 0
4: Calculate piobs for C at d in rg

5: for i ∈ [1, R] do
6: Calculate the pi∅,i of C at d in the ith NH∅
7: if pi∅,i ≥ piobs then
8: R≥piobs ← R≥piobs + 1
9: p-value

rg

C = R≥piobs +1
R+1

10: if p-value
rg

C ≤ α then
11: SSR

rg

C ← True ▷ (i.e., < rg, C > is statistically significant)
12: else
13: SSR

rg

C ← False ▷ (i.e., < rg, C > is not statistically significant)
14: return SSR

rg

C , p-value
rg

C

For finding the union of partitions, we first form an undirected unweighted graph (G =
V, E) where each vertex (V ) refers to a partition within which the pattern is statistically
significant, and an edge (E) between two V s represents a shared boundary between them.
The graph representation allows the use of graph traversal algorithms (e.g., DFS) to find
statistically significant regions which are the union of partitions in V .

We note that the union of two atomic footprints within which a candidate regional
colocation pattern is statistically significant does not imply that the resultant footprint is a
significant regional-colocation pattern. Thus, we need to recompute the pi for the candidate
pattern in the new region and perform the significance test again. As we progress along the
edges of G, the final output is a larger region composed of contiguous atomic partitions such
that the candidate pattern is statistically significant, both within the atomic partitions as
well as in the region formed by the union of the output atomic footprints. This is represented
by the largest connected component. Algorithm 2 provides the pseudo-code of SSRCM

to find statistically significant regional colocations.
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Algorithm 2 Statistically Significant Regional-Colocation Miner (SSCRM).

Input:
- A Spatial dataset S consisting of features {fA, fB , ...}
- A study area (SA) and a space partitioning Rg

- Statistical significance level α
- Maximum pattern size N
- Lower bound LB (in meters)
- Upper bound UB (in meters)

Output:
1. List of statistically significant regional colocation patterns [< rg, C >]

Variables:
Distance between feature instances d

1: procedure Statistically Significant Regional-Colocation Miner
2: for each: fk in {fA, fB , ...} do
3: Generate R null hypotheses (NH∅) using summary statistics in each rg ∈ Rg.
4: for each: candidate pattern Cm ∈ {C1, C2, ..., CM} do
5: for distance d ∈ [LB, LB + 10,..., UB] do
6: for each: rg ∈ Rg do
7: SSR

rg

Cm
, p− value ← Significance Testing(S, rg, α, Cm, NH∅, d)

8: if SSR
rg

Cm
is True then

9: Insert rg in significant atomic partitions list
10: Compose Neighborhood graph (G) from significant atomic partitions list
11: rfinal

g ← rmaxP I
g ▷ atomic partition in G with highest pi

12: for each: rg ∈ Depth First Graph Traversal of G

13: from vertices adjacent to rmaxP I
g do ▷ rg ̸= rmaxP I

g

14: rtemp
g ← rfinal

g ∪ rg

15: SSR
rg

Cm
, p-value ← Significance Testing(S, rtemp

g , α, Cm, NH∅, d)
16: if SSR

rg

Cm
is True then

17: rfinal
g ← rtemp

g

18: Add < rfinal
g , Cm > to [< rg, C >]

19: return [< rg, C >]

3.2 Multiple Comparisons Regional Colocation Miner (MultComp-RCM)

Key Idea. We observe that the baseline SSRCM computes a significance test for every union
of statistically significant partitions, resulting in many participation index (pi) computations
and significance tests. We address this by using a Bonferroni correction, which selects
atomic partitions conservatively, increasing the chances that their union is also statistically
significant. The Bonferroni correction reduces the need to perform a regional statistical
significance test for each union operation.

A Bonferroni correction is used when several independent statistical inferences are being
performed simultaneously. Although a given significance threshold (α) on the p-value may be
appropriate for an individual test, it is not sufficient for the set of all comparisons. To reduce
many false positives, the α needs to be lowered to account for the number of comparisons
performed. The Bonferroni correction sets the statistical significance threshold for the entire
set of n comparisons to α/n or, equivalently, by multiplying the p-value by n, and then
applying the standard threshold α. This conservative correction works even under the most
extreme circumstances (e.g., when all n tests are independent of one another).

In the proposed approach we check for statistical significance in each input partition.
Then, we perform a graph traversal starting from the atomic partition with the highest pi

value for the candidate regional-colocation pattern. Then, instead of recomputing the pi and
testing the candidate pattern in the new bigger region (composed of atomic partitions) for
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statistical significance, we perform a Bonferroni correction. Thus if we were initially checking
for a threshold level of 0.05, then for the union of two partitions, we would be checking for
a threshold level of 0.05/2 in each atomic partition. This conservative threshold reduces
Type-I error by returning regions with much higher statistical confidence. The union of the
atomic partitions is sequential and every atomic partition must satisfy the adjusted p-value
threshold to be considered for the union.

Algorithm 3 provides a snippet of MultComp-RCM showing the use of the Bonferroni
correction. Lines 13-18 show the new steps in the refined approach.

Algorithm 3 MultComp-RCM snippet.

1: procedure MultComp-RCM

2:
...

12: n ← 1 ▷ Number of atomic partitions in the region.
13: for each: rg ∈ Depth First Graph Traversal of G

14: from vertices adjacent to rmaxP I
g do ▷ rg ̸= rmaxP I

g

15: Subgraph (SG) ← rfinal
g ∪ rg

16: flag ← 1
17: flag = BONF_CHECK(flag , SG, n)
18: if flag == 1 then
19: Update rfinal

g ← SG
20: n← n + 1
21: Add < rfinal

g , Cm > to < rC
g , C >

22:
...

23: procedure Bonf_Check(flag , SG, n)
24: p-valuethreshold ← α/(n + 1)
25: for each: node ∈ SG do
26: if p− value of pattern Cm in node ̸≤ p-valuethreshold then
27: flag ← 0
28: return flag

Figure 4 shows an execution trace of merging 4 neighboring partitions. Each region
has a participation index and a p-value computed individually. Then, Steps 1-4 show the
process of combining these partitions based on either additional statistical significance tests
and participation index computations (for SSRCM) or using a tighter p-value threshold for
MultComp-RCM. Table 2 compares the number of computations for the two approaches and
clearly shows the lower computational requirements of MultComp-RCM. When performing
the union of two regions using MultComp-RCM, the new threshold as per the Bonferroni cor-
rection is applied to each of the two regions (as in procedure BONF_CHECK in Algorithm 3)
for a successful union.

Figure 4 Execution trace of SSRCM and MultComp-RCM.
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Table 2 Comparing the cumulative number of statistical significance tests (C#), participation
index computation (pi cal.), and p-value thresholds (p-val th.) between SSRCM (denoted as S)
and MultComp-RCM (denoted as R).

Steps C#S C#R pi cal. S pi cal. R p-val. th. S p-val. th. R

0 4 4 4 4 0.05 0.05
1 5 4 5 4 0.05 0.05
2 6 4 6 4 0.05 0.025
3 7 4 7 4 0.05 0.0167
4 8 4 8 4 0.05 0.0125

4 Theoretical Analysis

▶ Lemma 1. MultComp − RCM has lower or equal Type-I error than SSRCM .

Proof. Algorithm 1 called by Algorithm 2 and 3 in line 7 extracts atomic partitions within
which a regional-colocation pattern is statistically significant.

The Bonferroni correction in procedure BONF_CHECK in Algorithm 3 controls the
experiment-wide false positive rate (π) by specifying the significance level (α) for each test,
where a test is significant if p−value ≤ α. The probability of no Type I error (false positives)
in n independent tests is (1 − α)n, if each test is at level α. Therefore, the probability of at
least one false positive π is 1− (1−α)n. For an experiment-wide false positive rate of π, the α

for each test should be α = 1 − (1 − π)1/n. Using binomial approximation, (1 − α)n ≃ 1 − nα,
which gives α = π/n. For an experiment-wide false positive value π = 0.05, the α (false
positive rate for each test) should be less than π, i.e. α ≤ π. Therefore each region and
sub-region output by MultComp-RCM has lower Type-I and a precision close to 1. ◀

▶ Lemma 2. MultComp-RCM has lower or equal computational cost than SSRCM for
all observed data, where Bonferroni-revised p-values eliminate lower confidence candidates
considered by the original p-value, i.e. CostMultComp−RCM ≤ CostSSRCM .

Proof. Let Cpi(d) be the complexity of participation index (pi) computation for a specific
region (dependent on the data d). Let Cst(piobs, pinull, d) be the complexity of significance
testing for a specific region (dependent on the pi in observed data d and the null hypothesis).
Assume N1 is the number of space partitions/regions in the dataset, N2 is the number of
space partitions extracted from Algorithm 1, and N2 ≤ N1. Further, assume d1 is the initial
dataset and d2 is the dataset in each iteration in the SSRCM. Then, the cost of SSRCM is

N1(Cpi(d1) + Cst(piobs, pinull, d1)) + N2(Cpi(d2) + Cst(piobs, pinull, d2)) (6)

By contrast, the cost of the proposed MultComp-RCM approach is only N1(Cpi(d1) +
Cst(piobs, pinull, d1))+N2. Here, N2 represents the number of significant partitions for which
the p-value needs a comparison against the threshold obtained from Bonferroni correction. ◀

5 Experimental Evaluation

We had three goals for the experiments: (1) To compare the time taken by SSRCM and
MultComp-RCM with varying numbers of regional-colocation instances, varying number
of atomic partitions, and change in the number of feature instances. (2) To compare the
number of significance tests, pi calculations for a varying number of regions. (3) To compare
solution quality between SSRCM and MultComp-RCM.
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Experiment design. Figure 5 shows the overall validation framework. The metric for
comparing the solution quality of SSRCM with MultComp-RCM was the false positive rate
(FPR), while the runtime comparisons were based on the execution time (in seconds) of
the individual algorithms. The experiments were done on both real (Safegraph POI) and
synthetic data to perform both comparative and sensitivity analysis.

Figure 5 Overall validation framework.

Synthetic data generation. We began with a space partitioning (Rg), a maximum union
(or traversal) of regions (Lmax), and a number of regional-colocation patterns i.e., pairs of
< rg, C >. We then generated reference points within the partitions using the Poisson point
process. At each reference point, we generated circles of diameter dg which was determined
empirically for each region in Rg in the observed dataset. The diameter signifies the smallest
distance between features in a colocation C at which they become statistically significant
regional colocations. We populated each circle with instances of C. We note that the circles
were only used to place colocated instances in a region and were not separate partitioning.
Figure 6 shows the process of synthetic data generation.

Figure 6 Synthetic data generation process.

Comparative Analysis. Figure 7a shows the time taken (in log scale) for different regional-
colocation instances. For this experiment, we varied the number of regional-colocation
instances in each atomic partition from 4 to 84 while keeping other parameters (like the
number of regions) constant and record the execution time of both algorithms. Figure 7b
compares the execution time with a varying number of atomic partitions (or regions) while
keeping the number of regional-colocation instances in each partition constant. Figure 7c
shows the time taken with a varying number of feature instances (which constitute the
regional-colocation pattern) in each region while keeping the number of regions constant. In
all experiments, MultComp-RCM is much faster than the baseline SSRCM . These results
are consistent with Lemma 2, which says that CostMultComp−RCM ≤ CostSSRCM .

Sensitivity Analysis. Figure 7d shows the number of significance tests performed by both
algorithms with varying number of regions, while keeping the number of regional-colocation
instances constant in each partition. Figure 7e shows the number of participation index
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(a) Number of reg. col.
instances.

(b) Number of regions. (c) Number of feature instances.

(d) Number of significance tests. (e) Number of PI calculations.

Figure 7 MultComp-RCM outperforms SSRCM [8].

computations performed with varying number of regions with the same constant parameters
as above. In both cases, the proposed MultComp-RCM requires lesser number of significance
tests and participation index computations for an increasing number of regions.

Solution Quality. We performed controlled experiments on synthetic datasets to compare
the solution quality of MultComp-RCM with SSRCM . Metric for comparison was the
false positive rate (FPR).
FPR = F P

F P +T N , where FP is the number of false positives, and TN is the number of true
negatives. Table 3 shows the experiment results. As shown MultComp-RCM exhibits a
lower rate for false pattern discovery than SSRCM . This is mainly because MultComp-
RCM eliminates regions which barely pass the atomic significance test (borderline statistical
confidence) in Algorithm 1, which SSRCM fails to reject in the final output.

Table 3 MultComp-RCM generates less false positives.

Pattern SSRCM False Positive
Rate

MultComp-RCM False
Positive Rate

A, B, C 0.15 0.03
A, B 0.17 0.01
B, C 0.14 0.01
A, C 0.19 0.04
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6 Case Study

We extended our previous case study [8] to show the effectiveness of the proposed approach.

Dataset. We used data from SafeGraph, a mobility data vendor who provides anonymized
aggregated location data to researchers studying the effects of COVID-19 on citizen mobility
patterns towards numerous Points Of Interest (POIs). The dataset consists of 1473 retail
brands in Minnesota. Experiments were performed on colocation patterns consisting of
two (e.g., Jimmy John’s, McDonald’s) or three (e.g., Jimmy John’s, McDonald’s, Subway)
features. Our null hypothesis generation followed the procedure described in Section 2.2.

Case Study Results. The pattern C := {JimmyJohn′s, McDonald′s, Subway} was found
to be statistically significant when the distance between feature instances was about 1400
meters. The regional footprint was the union of “Dakota” and “Hennepin” Counties. The pi

values in the counties were 0.34 and 0.45 respectively. The p-value for the pattern within the
counties were 0.02 and 0.01, satisfying the p-value threshold of 0.05

2 as per the Bonferroni
correction for the two partitions. A few additional significant patterns are shown in Table 4
(values rounded to two decimal places).

Table 4 Regional-colocation patterns found to be statistically-significant at distance d.

Colocated features Counties (participationindex, p − value) d

{Caribou coffee, Starbucks} Hennepin (0.34, 0.01) 200 m
{Caribou coffee, Starbucks} Carver (0.5, 0.02), Hennepin (0.51, 0.01), Wash-

ington (0.41, 0.01)
400 m

{Caribou coffee, Starbucks, Dunn Bros} Hennepin (0.52, 0.01) 1900 m
{Caribou coffee, Starbucks, Dunn Bros} Hennepin (0.72, 0.01), Washington (0.36, 0.02) 3000 m
{Jimmy John’s, McDonald’s} Hennepin (0.39, 0.01) 500 m
{Jimmy John’s, McDonald’s} Dakota (0.36, 0.02), Hennepin (0.51, 0.01) 700 m
{Jimmy John’s, McDonald’s, Subway} Dakota (0.34, 0.02), Hennepin (0.45, 0.01) 1400 m
{Jimmy John’s, McDonald’s, Subway} Dakota (0.47, 0.02), Hennepin (0.57, 0.01), Wash-

ington (0.43, 0.02)
1500 m

In our previous paper [8], we compared SSRCM with the Quad and QGFR algorithms [12]
whose data-aware space partitioning approach is based on the minimum orthogonal bounding
rectangle (MOBR). We found that the MOBR-based approach with a participation index
threshold of 0.6 produced 3368 potential localities for the pattern {rg, [Caribou Coffee,
Starbucks]}. With a confidence level of 95%, MOBR-based approach resulted in 2917
significant and 451 non-significant patterns. Hence, a regional-colocation miner without
statistical significance may enumerate output regions where colocations occurred by chance.

7 Related Work and Discussion

Related Work. The concept of colocation was introduced by Shekhar et al. [16]. Huang et
al. [10] provided extensive experiments and rigorous discussions regarding the topic and the
participation index as a prevalence measure between constituent features. Later, Barua et
al. [1] introduced statistical significance testing in global colocation and segregation pattern
detection to avoid enumeration of chance patterns in the dataset for both aggregation and
segregation patterns but did not mention patterns that are regional (or local). Regional
colocation with minimum orthogonal bounding rectangle (MOBR) based approach was studied
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by Li et al. [12] while [17] and [4] focused on shapes and zonal patterns, respectively. These
methods utilized a threshold on the participation index (pi) without statistical significance
testing, leading to the detection of spurious patterns (as discussed in [8]). We [8] recently
proposed a subgraph-based approach that incorporates statistical significance in detecting
regional colocation patterns. This approach reduced the number of spurious patterns
detected by previous methods. However, due to a large number of simultaneous statistical
inferences, an increase in false discoveries is also observed. Besides, other patterns [15] and
several statistical significance and false discovery reduction techniques have been studied
in association rule mining [18, 6]. However, these approaches do not address the inherent
variability in spatial data (i.e., different summary statistics of features in each atomic
partition). To find subgroups of items, which are generally observed to be statistically
significant associations, they compare a quality measure (which assigns to each itemset a
numeric value) on the subgroup against that in a statistical model (which corresponds to
the null hypothesis). These null hypotheses for significance testing are uniform and do not
address spatial variability. Thus these approaches are not directly applicable to regional
colocation patterns (more details in Appendix A).

8 Conclusion and Future Work

In this paper, we refined the problem of the statistically significant regional-colocation pattern
(SSCRP ). We proposed a robust MultComp-RCM approach that reduces the number of
false positives using a Bonferroni correction. We theoretically show that MultComp-RCM has
a lower or equal Type-I error and computational cost than SSRCM along with experimental
results. We extended the previous case study on retail establishments in Minnesota using
the proposed approach showing a contrast between significant and non-significant patterns.

Future Work. We plan to explore other methods to reduce Type-I errors (false positives)
while also addressing Type-II errors (false negatives) arising from the conservative Bonferroni
correction approach and further add temporal dimension to these patterns.
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In this appendix, we address the following questions:

A Why can’t we use existing false discovery reduction techniques
from local pattern mining?

Existing techniques for reducing false discoveries in local pattern mining cannot be applied to
this problem, because of spatial variability (i.e. constituent features of a regional colocation
pattern might have different summary statistics in different atomic partitions). Webb [18]
proposed a holdout approach where one divides the data into exploratory and holdout sets.
Patterns are generated using the exploratory data, while statistical tests are performed on the
generated patterns using the holdout data. This technique may apply to atomic partitions
with a large presence of constituent features (e.g., partition T41 in Figure 8). However, it
would be counterproductive in partitions where the number of feature instances is very low
(e.g., partition T42 in Fig. 8). In such partitions splitting the data points into exploratory
and holdout sets would result in very few instances for the pattern detection process.

Figure 8 Feature instances exhibit spatial variability within atomic partitions.
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B Why can’t this problem be cast as a modified version of frequent
itemset mining?

In frequent itemset mining, the task is to find subgroups of items that often occur together
in a transaction, e.g., laptop and antivirus software. Previous works have been done on
addressing false discoveries in this problem [6]. Such approaches assign the association in
the mined subgroup as the alternate hypothesis while the null hypothesis is formulated
using a randomized baseline subset. Thus these approaches do not address the independent
relationship between hypotheses in different spatial partitions in our problem. As noted
earlier, in regional colocation pattern detection, different features might have different
summary statistics in different atomic partitions. To model the complete spatial randomness
of these features, we generate the null hypotheses in each atomic partition as per the
summary statistics of the said features in that specific partition. Thus the null hypothesis
generated for the features in one atomic partition is independent of the null hypothesis in
other atomic partitions. Therefore, the problem of regional colocation pattern detection
cannot be considered a modified version of subgroup discovery in frequent itemset mining.

C How does spatial colocation mining differ from association rule
mining?

Data mining techniques have been widely developed to solve challenging problems in various
domains. Yet, the underlying assumption of these algorithms does not address the problem
of spatial variability. This leads to the detection of spurious patterns in spatial data, also
known as the modifiable aerial unit problem (MAUP [19]). Colocation pattern detection
resembles association rule mining, but the absence of transactions in colocation mining means
techniques in association rule mining cannot be used directly to mine colocation patterns.

(a) Map of 3 spatial feature
types.

(b) Spatial Partition 1. (c) Spatial Partition 2.

(d) Spatial Partition 3. (e) Transactions.

Figure 9 Association rule mining [9] returning different results depending on the spatial partition.
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Transactions in association rule mining refer to groups of items purchased together. An
itemset’s support is the fraction of transactions that contain the itemset. Itemsets greater
than a user-specified support value yield to the association rule. In spatial data mining, the
choice of partition affects the transaction. For example, Figure 9a below shows a dataset
with 3 feature types, i.e. <squares>, <triangles>, <circles>. In partition P1 (Figure 9b)
<squares, triangles, circles> is a transaction, while in partitions P2 (Figure 9c) and P3
(Figure 9d) <triangles, circles> and <squares, triangles> are the transactions respectively.
This is known as the MAUP problem. In colocation pattern detection this is addressed using
a neighborhood graph as shown in Figure 10a. A user-defined neighbor relationship R is
used to find subsets of features in close geographic proximity. Thus the colocation miner
provides a transaction-free approach to mine prevalent patterns.

(a) Neighbor graph based
on relation R.

(b) PI of candidate patterns.

Figure 10 Colocation pattern detection [8].
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Abstract
Land use allocation optimization is essential to identify ideal landscape compositions for the future.
However, due to the solution encoding, standard land use allocation algorithms cannot cope with
large land use allocation problems. Solutions are encoded as sequences of elements, in which each
element represents a land unit or a group of land units. As a consequence, computation times
increase with every additional land unit. We present an alternative solution encoding: functions
describing a variable in space. Function encoding yields the potential to evolve solutions detached
from individual land units and evolve fields representing the landscape as a single object. In this
study, we use a genetic programming algorithm to evolve functions representing continuous fields,
which we then map to nominal land use maps. We compare the scalability of the new approach with
the scalability of two state-of-the-art algorithms with standard encoding. We perform the benchmark
on one raster and one vector land use allocation problem with multiple objectives and constraints,
with ten problem sizes each. The results prove that the run times increase exponentially with the
problem size for standard encoding schemes, while the increase is linear with genetic programming.
Genetic programming was up to 722 times faster than the benchmark algorithm. The improvement
in computation time does not reduce the algorithm performance in finding optimal solutions; often,
it even increases. We conclude that evolving functions enables more efficient land use allocation
planning and yields much potential for other spatial optimization applications.
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1 Introduction

Land is scarce, and the competition for land is increasing [4] and continues to increase in
the future. Efficient planning can serve social, economic and ecological needs at the same
time [4]. In contrast, inefficient and inconsiderate planning has much potential to cause
future problems [15]. One aspect of land use planning is the allocation of land use activities.

In order to efficiently allocate land uses, land use planners specify the land use context
by defining the land units, the land use categories, the scale, the benefits and undesired
outcomes associated with the activities of future land use allocation. Land use modellers
can translate these specifications into a solvable model: a land use allocation problem. The
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modeller has to define the decision variable, the constraints, and the objective functions.
The decision variable of the optimization is what land use category is assigned to which land
unit. Land units can vary in their spatial representation, i.e. vector or raster, and in their
encoding scheme.

Currently, the solution scheme in land use allocation optimization is a linear sequence
of elements in which every element is one decision variable and is assigned one land use
category. One encoding scheme is associating one land use category with one element in
the sequence representing one land unit [2, 26]. Another option is to combine multiple
neighbouring land units into patches and associate each patch with one element in the
sequence [22, 29]. Then, benefits and undesired outcomes are formulated as objective and
constraint functions. Constraint functions validate whether a solution violates the defined
constraint(s), and objective function(s) quantify the solution’s expected benefits.

Optimization algorithms identify solutions to the land use allocation problem. The
problem specification determines whether exact algorithms are applicable to solve the
problem or whether heuristic approaches are required. If the effort for solving the problem
increases exponentially with the number of decision variables, the problem is NP-hard, and
heuristic optimization methods are used [27]. Most land use allocation problems fall into
the category of NP-hard problems: The number of land units u and the number of land
uses categories luc defines the number of possible combinations n of the land use allocation
problem: n = lucu. Land use allocation algorithms using the standard encoding are slow
when landscapes are complex [28], and face exponentially increasing computation times with
increasing problem sizes [27].

Another encoding scheme, yet uncommon in spatial optimization, is a tree that organizes
the elements recursively [24]. Since the choice of a suitable encoding has been proven to
improve optimization [12] and land use allocation optimization encounters scaling problems
with increasing numbers of land units, we propose using the recursive tree encoding. Trees
can represent functions, and functions can represent fields [14]: If a function contains two
variables, it is possible to represent continuous fields with longitude, latitude, and a variable.
Therefore, the tree representation offers an alternative solution encoding scheme to represent
spatial objects. Functions describe spatial patterns in the field of geostatistics [23], why
should it not be possible to evolve continuous fields as functions to produce favourable land
use patterns, for example, patterns that involve spatial compactness, or specific shapes of
contiguous land uses?

Much research has been conducted to improve land use allocations with the standard
solution encoding, but none on evolving functions to generate land use maps. This study
aims to fill the research gap by opening the research domain to using functions as solution
encoding. We propose a new method to map functions to nominal land use maps. We
compare the new approach with state-of-the-art allocation algorithms on two multi-objective
land use allocation problems, one raster and one vector land use allocation problem. In the
remainder of this work, we are going to answer the following research questions:

1. How does the computation time of optimizing land use maps represented as functions
scale with an increasing number of land units?

2. How does the function-evolving algorithm perform in comparison to state-of-the-art land
use allocation algorithms in terms of computation time and the optimal solution quality?
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2 Background

Heuristic search algorithms are most often used to solve land use allocation problems [26].
Heuristic search algorithms identify solutions that are not guaranteed to be truly optimal
but help find “good enough solutions” for hard problems in finite time [27]. In contrast to
exact optimization algorithms, heuristic optimization algorithms explore the search space of
possible solutions until reaching a termination criterion [21].

Common heuristic optimization algorithms for solving land use allocation problems are
population-based algorithms, e.g., Genetic Algorithms (GAs) and Particle Swarm Optimiza-
tion (PSO). GAs and single-objective PSO are commonly applied [26] for single-objective
land use allocation problems, and the Non-dominated Sorting Genetic Algorithm II (NSGA 2)
[6] is the most often used algorithm for solving multi-objective land use allocation problems
[26]. Its successor, the NSGA 3 algorithm, leads to better distributed optimal solutions
between conflicting objectives [18]. These algorithms use different search strategies: Genetic
Algorithms mimic evolutionary processes by utilizing fitness proportionate selection and
genetic recombinations of individuals within a population [10]. In PSO, the equivalent of an
individual in a population is a particle in a swarm of particles, moving within the problem
space [17] to find the best positions.

The algorithms evolve solutions by manipulating the solution. In land use allocation
algorithms, the manipulation procedures of the algorithms are either applied on the sequences
containing single land units [1] or of land use patches [16]. One advantage of using patches
in comparison to single land units is the lower number of decision variables [29]. Another
advantage of evolving patches is the higher likelihood of obtaining solutions with innate
spatial relationships like adjacency or connectivity [17], which are often desired characteristics
in land use allocation [26]. Numerous operators have been developed to steer the optimization
process towards patches with certain characteristics such as compactness [17], or validity
[29]. It is important to notice that some manipulations are computationally more demanding
than others, but all manipulations of solutions with the common land use map encoding lead
to an increased computational effort when considering more land units.

On the other hand, genetic programming (GP) is an evolutionary algorithm that evolves
solutions with a different encoding: program trees that build functions [13]. The encoding
yields the potential to evolve solutions detached from single land units by evolving fields that
represent the whole landscape as one object: If the functions incorporate spatial variables,
e.g. the latitude and longitude, the function produces an output variable for any given
position. Other components of the function cans influence the output variable. Combined,
the spatial and non-spatial components define how the variable varies in space. Therefore,
it is possible to optimize the spatial variation of the output variable by manipulating the
non-spatial components. Since the output variable is detached from land units, the number
of land units does not affect the computational effort when manipulating the solutions.

The algorithm has been applied to a wide variety of non-spatial problems [20], but neither
to land use allocation problems nor to spatial optimization problems in general. GP yields
better results than GA in related applications, e.g. for generating grids of a continuous
variable for photomosaics [19]. One identified reason is the higher flexibility due to the
encoding of solutions, where little adaptions of the program trees can lead to many changes in
the produced grid and potentially towards favourable patterns [19]. In addition to producing
optimal grids of a continuous variable, genetic programming also proved to perform well
on discrete variable classification [11]. The promising results of these studies suggest that
genetic programming is applicable to allocating land use.
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Figure 1 Two exemplary individuals with the function, the program tree, and the resulting field.
The primitives are sine, cosine, addition, subtraction, multiplication, and division. The terminals
are 10 and 100, and the x and y inputs range from 1 to 100, resulting in a continuous z value.

3 Methods

3.1 Land use allocation optimization using genetic programming
Generating fields with genetic programming

In genetic programming, every individual of the population is a “hierarchical composition
of primitive functions and terminals” [13]. Typically, arithmetic operations, mathematical
functions, or conditional logical operations constitute the functions [13]. The terminals and
numeric constants are inputs to the problem. In our case, where solutions to the problems
are two-dimensional fields, the inputs are x and y coordinates. The coordinates are two input
variables that can repeatedly appear in the program trees (Fig. 1). When incorporating
the coordinates within into mathematical functions, spatial For illustration purposes, the
individuals are visualized as program trees (Fig. 1).

Mapping continuous fields to nominal land use maps

First, we retrieve the input coordinates from the land units. In the case of a raster representa-
tion of land uses, the row and column IDs serve as the x and y inputs of the program trees. In
the case of a vector land use representation, the centroid coordinates of the land units serve
as x and y inputs. Applying the function on the x and y inputs of the program trees defines
the output variable z (Fig. 1). We use the mean of z per patch for the patch representation.
Then z is min-max normalized to a range that matches the land use categories. Finally,
rounding the normalized z-values to integers generates the desired nominal values.

This mapping procedure suffices to retrieve nominal values per land unit. However, the
continuous variable contains an order, and mapping the continuous variable to a nominal
variable propagates an order. It is not particularly meaningful to define an order between land
uses urban, forest, or pasture. If this order were ignored, then the likelihood of neighbouring
land uses would be influenced by the predefined land use order. To avoid this artifact, we
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Figure 2 A continuous field (a), mapped to two nominal maps (b,c) with different land use
category orders.

actively handle the orders of land use orders categories in the optimization. Every individual
gets assigned a land use order element that contains randomly shuffled land use category
IDs (Fig. 2, b and c). The obtained integer values are re-mapped with each individual’s
land use order (Fig. 2). With this approach, the same function (Fig. 1, b) results in the
same continuous field (Fig. 2, a), but the nominal values differ. Without re-mapping, land
use with id 1 would always have a higher likelihood of neighbouring to land use 2 than to
land use 5. An association of different land use orders to individuals within the population
leaves the potential to find an optimal combination of land use orders and functions in the
optimization.

GP procedure for the multi-objective land use allocation

The algorithm procedure starts with a random initialization of individuals until reaching the
population size. This study uses the standard initialization called ramped half and half. It is
a combination of two tree-generation algorithms grow and full, and in both the primitives
and terminals are generated at random [13]. The grow initialization creates a sub-tree with
a tree depth that is also randomly selected between a minimum and a maximum tree depth
threshold. In contrast, the full algorithm generates a sub-tree with a depth that equals a
depth threshold. Then, until a termination criterion is reached, in every generation, the
algorithm evaluates the individuals with the objective function(s) and constraint(s), selects
individuals for reproduction with a selection operation, generates offspring individuals in a
crossover operation, and mutates the individuals in a mutation operation.

Since the algorithm is applied to multi-objective land use allocation problems, the
selection operation selects individuals based on multiple objective values. We use the
selection procedure from the NSGA 3 algorithm [7] that is based on the principle of Pareto
efficiency and is designed to find individuals close to desired reference points. Reference
points can be user-defined or distributed strategically, for example, using equal distances on
the hyper-plane [5]. We refer to the original paper for a detailed description for details [7].

We use the standard GP operators one-point crossover and one-point mutations for
the crossover and mutation. For example, in the one-point crossover, a common crossover
point in the parent solutions is selected randomly, and then the corresponding sub-trees are
exchanged [25]. In the one-point mutation, a random point of the tree is selected and then
replaced with a newly generated sub-tree.

3.2 Land use allocation test problems
We use two land use allocation problems (Tab. 1) for testing the proposed method. The
first test problem is a synthetic raster land use problem with 8 land use categories, two
constraints, and four maximization objectives. Both problems are multi-class combinatorial
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Table 1 Land use problem specifications. The raster problem is re-used; for more details see [29].
The vector problem is designed for this study.

Raster problem Vector problem
Data and spatial representation

Synthetic raster data serves as an initial land
use map. The problem can be approached
with single raster cell representation and raster
patches.

Real-world parcels (vector) serve as spatial
units and for the initial land use map. Six-
teen land use categories associated with the
parcels are mapped into seven land uses.

Land use categories
Cropland 1-5, representing five different levels of
agricultural productivity, pasture, forest, urban

Civil, rural non-forest, industrial, agriculture,
forest, residential, and the last combines trans-
port and water.

Constraints
Land use transition constraint Land use transition constraint
The transition of urban land use is restricted,
forests can only be converted to pasture, and
pasture cannot be converted.

Transitions of civil, and water and transport
land uses are restricted; only rural-non forest
be converted to forest.

Area proportion constraint Area proportion constraint
Permitted ranges of 10-25% for forest, 10-30%
for pasture. No area proportion constraint for
other land uses.

Permitted ranges of 0-50% for industrial, 10-
80% for agriculture, 15-100% for forest, 10-100%
for residential. No area proportion constraint
for other land uses.

Objective functions
Max. species richness (SR) Max. urban compactness (UC)
An empiric value that changes with the total
forest area (unitless)

Count of adjacencies between land units of the
categories civil, residential, and industrial.

Max. habitat heterogeneity (HH) Max. agriculture within water range (AW)
Sum over edges between different land use types,
where low-intensity land uses get higher weights
than high-intensity land uses (unitless)

Area in ha of land use agriculture that intersects
with 500-meter buffers around waters.

Max. water yield (WY) Max. Contiguous agriculture size (AS)
Relative differences in evapotranspiration rates
between land use types (unitless)

Average patch size in ha of contiguous agricul-
ture.

Max. crop yield (CY) Max. distance residential to wind plants (DRW)
Sum of all logarithmic products of cropland in-
tensity and soil fertility over all cells (unitless).

Average distance of residential areas to the
closest wind plant point in km.

problems; the decision variables are elements in a sequence with a length that equals the
number of land units. Each element is associated with one land use category, represented as
an integer value. For more specifications about the problem background and formulation, we
refer to Tab. 1 and [29]. Both problems have initial land use maps. The problem instance
classes and the initial land use maps are available online 2.

The second test problem is a vector land use problem with 7 land use categories, two
constraints and four maximization objectives [30]. We constructed the problem for testing
the algorithm’s performance with parcels located in Germany.

2 https://data.mendeley.com/datasets/4tw223jvjv

https://data.mendeley.com/datasets/4tw223jvjv
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Furthermore, we generate the single objective optimal land use configurations per objective.
For example, we allocated only land use Cropland 5 while not violating the constraints to
generate the optimal solution for the objective Crop Yield, and only the land uses Civil,
Industrial and Residential for the objective Urban Compactness. The only exception is
the objective Habitat Heterogeneity, for which we approximate the single objective optimal
solution. These single objective optima are the extreme ends of the Pareto fronts. Therefore,
they are insufficient to determine whether an algorithm finds the true Pareto front. However,
it serves as an indicator to determine whether or not an algorithm can find optimal solutions
or how far it is off from the known optima.

3.3 Design of simulation experiments and software availability

Table 2 Simulation experiment with a) Run time analysis over 10 problem sizes. b) Single-
objective best solutions found by the algorithms and the known optima.

a) Run time analysis
Problem type Problem size Algorithm Nr. of generations Pop. size
Raster 100 - 22500 GP 10 40

Raster 100 - 22500
NSGA 2
with repair
mutation

10 40

Raster 100 - 22500
NSGA 2
no repair
mutation

10 40

Vector 2075 - 13687 GP 10 40
Vector 2075 - 13687 NSGA 3 10 40
b) Single-objective solution comparison
Problem type Problem size Algorithm Nr. of generations Pop. size
Raster 100 GP 100 200

Raster 100
NSGA 2
with repair
mutation

100 200

Raster 10,000 GP 100 200
Raster 1,000,000 GP 100 200
Vector 13687 GP 100 200
Vector 13687 NSGA3 100 200

In the first experiment, we perform a benchmark between GP and the most commonly
multi-objective land use allocation algorithm NSGA 2 on the multi-objective raster land
use problem (Tab. 3). The NSGA 2 can not be applied without adaptations for solving
land use allocation problems. Therefore, we compare GP to a land use allocation algorithm
that bases on NSGA 2 on the multi-objective raster land use problem defined in [29]. The
authors suggest a multi-objective land use allocation algorithm (CoMOLA) to solve the
land use problem. The algorithm offers the option to use a repair mutation operation for
patches. The spatially explicit repair functions can improve the search for optimal solutions
by repairing infeasible individuals. We perform a run time benchmark on 10 problem sizes
with raster dimensions from 10*10 to 150*150 cells with a step size of 10. Then, to indicate
the algorithm performance of finding optimal solutions, we compare the best solutions of
the single objectives from both algorithms on the 10*10 problem size to the known single
objective optima.
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In the second simulation experiment, we test the algorithm performance on the multi-
objective vector land use problem with features representing land units. We select the
NSGA 3 algorithm, the successor of NSGA 2, as benchmark algorithm for two reasons. First,
we use the same selection procedure [7]. Second, NSGA 3 has proven its ability to find
better-distributed solutions in Pareto fronts and has been successfully applied to solving
land use allocation problems [18]. We perform a run time benchmark on 10 problem sizes
ranging from 2075 to 13687 land units and compare the single objective optimal solutions for
2075 and for 13687 land units to the known single objective optima. The software used is
open source and the results are fully reproducible.

The code, input data, and results files are available at Mendeley Data2.

4 Results

4.1 Raster land use allocation problem
The scaling potential of the run times is promising. While CoMOLA with the patch repair
mutation took 171 minutes to evaluate 200 individuals in 100 generations, GP needed 5
seconds for the same number of evaluations. The larger the problem instances, the larger
the difference between the run times. While the run times of the CoMOLA based on the
NSGA 2 algorithm increase exponentially with increasing raster problem sizes, GP run times
increase linearly (Fig. 3, a).

a b

Figure 3 Total run times of with increasing land use problem sizes. a) Raster land use problem
ranging from 100 (10x10) to 22500 (150x150). b) Vector land use problem with problem sizes from
2075 to 13687 land units.

The highest difference, therefore, was observed on the largest raster problem instance
with 22500 (150 * 150) grid cells: here, NSGA 2 required 325 minutes, whereas GP required
27 seconds, which is 722 times faster. When applying the repair mutation on CoMOLA, the
difference is even higher. The spatially explicit repair function lead to computation times
that exceeded 5 hours at a problem size with 80*80 cells. In comparison: When testing GP
on the problem with 1000*1000 cells leading to one million decision variables, the algorithm
took 742 minutes.

The single-objective optimal solutions derived with GP (Fig. 4 and Tab. 3) prove that
the algorithm can and does find global optima and solutions close to the global optimum.
For obtaining the optimal solution for objective Crop yield, only one pixel (Fig. 4 a, top left
corner) is off, where cropland 4 is allocated instead of cropland 5. All other non-constrained
land uses are set to the optimal land use cropland 5. The same applies to the finer resolution
of 100 * 100 pixels, where 15 out of 10000 pixels are not set to the optimal land use (Fig. 4b,
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Table 3 Single objective extreme values obtained with the algorithms with the known global
optima.

Raster Size CY [-] HH [-] SR [-] WY [-]
NSGA 2 with repair mutation 10*10 125.7 84.2 9.51 97.7
GP 10*10 134.7 282.2 9.51 98.0
Known optimum 10*10 138.2 354 9.51 98.9
NSGA 2 with repair mutation 100*100 - - - -
GP 100*100 13,574 24,903 23.9 9,890
Known optimum 100*100 13,615 34,778 23.9 9891
NSGA 2 with repair mutation 1000*1000 - - - -
GP 1,000*1,000 1,359,403 2,703,280 60.0 989,107
Known optimum 1,000*1,000 1,359,404 3,471,380 60.0 989,108

Vector Size UC [-] AS [ha] DRW [km] AW [ha]
NSGA3 2075 313 755 0.021 725
GP 2075 347 738 0.023 770
Known optimum 2075 372 1144 0.027 982
NSGA3 13,687 1,659 7,074 0.894 2,787
GP 13,687 1907 6,257 1.135 2,731
Known optimum 13,687 2,211 9,321 1.23 3,830

top left corner). The global optimum was obtained on both spatial resolutions for objective
Water yield with Cropland 1 being the best land use. For objective Species Richness, the
global optimum is obtained, but this is comparatively easy to obtain by reaching 25% of
land use forest since it corresponds to the upper area constraint for land use forest. More
remarkable is the produced cluster in optimal solutions for objective Habitat heterogeneity.
For this objective, the perfect land use pattern is produced when the number of neighbours
between the constrained land use forest, pasture and cropland use 1 is maximized, followed
by neighbours to cropland 2 etc. GP found this pattern (Tab. 3) that seems impossible to
find by CoMOLA: The best objective value obtained with GP is 3.35 times higher than the
best objective value obtained by CoMOLA.

Moreover, GP is not negatively affected by larger problem instances; the convergence to
the single objective optima is even better on the larger problem with 100*100 cells compared
to the small problem with 10*10 cells. Even on the largest problem with 1000*1000 cells,
GP found one single objective global optima and two solutions that deviate 0.001% and
0.00001% from the global optima (Tab. 3). This observation indicates the scaling potential
of the algorithm’s performance on a finer spatial resolution.

The single objective optima show that GP can find optimal spatial patterns for objective
functions based on adjacency and connectivity for small and large land use allocation problem
instances.

4.2 Vector land use allocation problem
The optimization of the vector problem requires more computation time compared to the raster
problem. The computationally more expensive fitness evaluations, in which intersections,
distance, and adjacency operations on features are used, are the reason for the longer run
times. However, the field-evolving GP is considerably faster than the NSGA 3, and the
difference increases with more land units (Fig. 3, b). On average, GP is 138% faster regardless
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a b
Max. crop yield

Max. habitat heterogeneity

Max. species richness

Max. water yield

c

d

Figure 4 Single objective optimal solutions for raster land use problems with problem sizes 10x10
cells (a), 100x100 cells (b), and 1000*1000 cells (c). Close-ups (d) show produced patterns from
selected regions of the 1000*1000 cell maps: The red frame shows the close-up for objective Max.
habitat heterogeneity, the blue frame shows the close-up for objective Max. species richness and the
purple frame shows the close-up for the objective Max. water yield.

of the problem size. However, the run time of the GP also scales well on larger problems. On
the larger problem size with 13687 land units, GP took, on average, 61% less computation
time per land unit than on the problem with 2075 land units.

GP did not find the global optima for the objectives in the vector problem (Tab. 3).
However, GP also outperforms the NSGA 3 algorithm on the land use problem with 2075
land units (Tab. 3). The single objective optimal values of Urban Compactness (UC), and
Agriculture in water range (AW) are 9.2%, 9.5%, and 6.2% better. NSGA 3 found a 2.3%
better single objective optima for the Contiguous agriculture size. The number of optimal
solutions is also higher, with 57 compared to just 7 obtained with the NSGA 3. Furthermore,
GP found solutions (Fig. 5) that show spatial patterns, such as contiguous agriculture land
uses, or the seemingly ordered land uses along horizontal (Fig. 5 b, last row) and the vertical
axis (Fig. 5 a, last row, and b, third row)3.

3 Additional results, including Pareto frontiers, are available with a DOI at figshare.

https://figshare.com/s/9f5385b7e1d28b347ff4
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a bMax. Urban compactness

Agriculture within water range

Max. Con�guous agriculure area size

Max. distance to wind plants

Civil Rural non-forest Industrial

Forest Residen�al Transport and water

Agriculture Water

Wind plants

Figure 5 Single objective optimal solutions for vector land use problems with two problem sizes
2075 parcels (run time: 246 minutes) and 13687 parcels (run time: 761 minutes).

5 Discussion

5.1 Potential of encoding spatial objects as functions
The results of this study show that optimizing functions that generate continuous fields
can lead to more optimal land use configurations in shorter computation times compared
to using algorithms with standard encoding. The optimal land use maps produced with
functions in the GP algorithms are closer to the global optima, and in many cases, GP even
found the global optima. The observed scaling shows the potential for high-resolution land
units and/or larger study areas, which is promising for other land use allocation problems
than the ones shown here. Another example is uncertainty analysis of land use allocation
optimizations, which require many optimization executions and benefit even more from the
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decreased computational cost [8]. Other spatial optimization problems might also be solved
with the GP algorithm, e.g. 3D routing optimizations for which a sequence of 3D points is
optimized instead of evolving functions [9], or facility location planning [3]. Possibly, GP can
be applied to solve spatial problems that change over time by including a time dimension
variable as part of the functions.

5.2 Limitations and future work
In this work, we used functions that include spatial dependencies in both x and y directions in
the encoding of solutions, while a sequence of elements that represent spatial units does not.
This yields a great advantage for spatial optimization problems that handle spatial objects
and offers much potential for future investigation. This approach comes with disadvantages,
too, e.g. the necessity to attach a random land use order to every solution to mitigate
the effect of translating a continuous to a nominal variable. Investigating the random land
use order association with individuals in more detail is, therefore, important for future
research. For example, in our results, the portion of unique land use orders decreases over
the generation and stabilizes at 40 after 50 generations. Finding out whether the observed
behaviour is an anomaly or whether some land use orders are particularly suitable for solving
the problem may yield important insights.

In this study, we used standard GP initialization, crossover and mutation operators and
no hyper-parameter tuning to prove the general applicability of the GP algorithm on land use
allocation problems. Many different initializations of trees, mutations, or crossover exist for
which many parameter settings are possible, and some operators and parameter settings may
yield better results for land use allocation problems or other spatial optimization problems.
One parameter that should be tuned is the maximum tree depth. This parameter was set to
8, but the maximum tree depth in the optimal solutions was 5. In the vector problem, the
tree depth was even shallower; some only had one terminal (Fig. 5). The parameter tuning
is, therefore, future work to further improve the algorithm performance.

Lastly, the better performance on the raster problem compared to the vector problem
leaves room for further analysis. The static boundaries of the features might be the reason
for this observation: While GP could generate patterns and clusters that potentially benefit
objectives in the raster case, that positive characteristic of the algorithm can not be realized
in the vector case where the object extents are set. Another reason may be the usage of
polygon centroids as x and y inputs to the function. A different mapping is possibly better
for considering the whole feature’s extent, e.g., using multiple points per polygon as input.

6 Conclusion

Standard land use allocation optimization algorithms cannot cope with large land use
allocation problems due to the solution encoding. Using function as solution encoding proved
to solve land use problems more efficiently. The functions represent spatial fields that are
mapped to nominal land use maps. We solve the identified mapping problem from continuous
fields to nominal maps by associating random land use orders with the individuals of the GP
population.

GP proved its ability to alleviate exponentially increasing run times of the standard
encoding scheme on a raster and a vector problem. While the computation time using the
standard solution encoding increased exponentially, the computation time using GP increased
linearly. As a consequence, the reduction of computation time increases exponentially with
larger problem instances, too. On the largest raster problem instance, GP was up to 722
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times faster than the NSGA 2 land use allocation algorithm. The difference in computation
time further increases when comparing GP to the standard encoding coupled with spatially
explicit operators.

Moreover, the improvement in computation time does not affect the algorithm’s per-
formance in finding better solutions than the benchmark algorithms. GP obtained better
single-objective solutions than NSGA 2 and NSGA 3 on six out of eight objectives of the
two benchmark problems. Moreover, GP found the global single objective optima for three
objectives of the raster problem with 10*10 cells and 100*100 cells. Even on the 1000*1000
single-cell raster problem, one global optimum was found and two near-optimal (deviation of
0.001% and 0.00001% from global optima). The highest increased performance was obtained
for the objective Habitat Heterogeneity of the raster problem that requires finding a highly
complex spatial pattern of adjacent land uses. Also, GP found contiguous clusters required
to find optimal solutions to four other objectives. This shows that GP can produce land use
maps with spatial patterns that involve adjacency and connectivity.

We conclude that evolving functions enable more efficient land use allocation optimizations
in the future and that the approach is a promising method for other spatial optimization
problems.
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Abstract
A geophylogeny is a phylogenetic tree where each leaf (biological taxon) has an associated geographic
location (site). To clearly visualize a geophylogeny, the tree is typically represented as a crossing-
free drawing next to a map. The correspondence between the taxa and the sites is either shown
with matching labels on the map (internal labeling) or with leaders that connect each site to the
corresponding leaf of the tree (external labeling). In both cases, a good order of the leaves is
paramount for understanding the association between sites and taxa. We define several quality
measures for internal labeling and give an efficient algorithm for optimizing them. In contrast,
minimizing the number of leader crossings in an external labeling is NP-hard. We show nonetheless
that optimal solutions can be found in a matter of seconds on realistic instances using integer linear
programming. Finally, we provide several efficient heuristic algorithms and experimentally show
them to be near optimal on real-world and synthetic instances.

2012 ACM Subject Classification Human-centered computing → Geographic visualization; Applied
computing → Biological networks; Theory of computation → Discrete optimization

Keywords and phrases geophylogeny, boundary labeling, external labeling, algorithms

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.5

Related Version Full Version: https://arxiv.org/abs/2306.17348 [16]

Supplementary Material Software (Source Code): https://www.github.com/joklawitter/geophylo

Funding Jonathan Klawitter : Beyond Prediction Data Science Research Programme (MBIE grant
UOAX1932).
Thomas C. van Dijk: DFG grant Di 2161/2-1.

1 Introduction

A phylogeny describes the evolutionary history and relationships of a set of taxa such as
species, populations, or individual organisms [25]. It is one of the main tasks in phylogenetics
to infer a phylogeny for some given data and a particular model. Most often, a phylogeny is
modelled and visualized with a rooted binary phylogenetic tree T , that is, a rooted binary tree
T where the leaves are bijectively labeled with a set of n taxa. For example, the phylogenetic
tree in Figure 1a shows the evolutionary species tree of the five present-day kiwi (Apteryx)
species. The tree is conventionally drawn with all edges directed downwards to the leaves and
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(c) Visualization of the geophylogeny.

Figure 1 To visualize Weir et al.’s geophylogeny of the five present-day kiwi species [27], we
combine the phylogenetic tree (a) with the distribution map (b) into a single figure (c).

without crossings (downward planar). There exist several other models for phylogenies such
as the more general phylogenetic networks and unrooted phylogenetic trees; here we only
consider rooted binary phylogenetic trees and refer to them simply as phylogenetic trees.

In the field of phylogeography, geographic data is used in addition to genetic data. We
may thus have spatial data associated with each taxon such as the distribution range of each
species or the sampling site of each voucher specimen used in a phylogenetic analysis. For
example, Figure 1b shows the distributions of the kiwi species from Figure 1a. We speak of
a geophylogeny (or phylogeographic tree) if we have a phylogenetic tree T , a map region R,
and a set P of features on R that correspond one-to-one with the taxa in T ; see Figure 1c
for a geophylogeny of the kiwi species. In this paper, we focus on the case where P is a set
of points, called sites.

Visualizing Geophylogenies

When visualizing a geophylogeny, we may want to display its tree and its map together in
order to show the connections (or the non-connections) between the leaves and the sites. For
example, we may want to show that the taxa of a certain subtree are confined to a particular
region of the map or that they are widely scattered. In the literature, we mainly find three
types of drawings of geophylogenies. In a side-by-side drawing, the tree is drawn planar
directly next to the map. To show the correspondences between the taxa and their sites,
the sites are either labeled or color coded (as in Figure 2a and Figure 1c, respectively), or
the sites are connected with leaders to the leaves of the tree (as in Figure 2b). We call this
internal labeling and external labeling, respectively. There also exist overlay illustrations
where the phylogenetic tree is drawn onto the map in 2D or 3D with the leaves positioned at
the sites [15, 29], but for brevity we omit further discussion of this style.

Drawing a geophylogeny involves various subtasks, such as choosing an orientation for
the map, a position for the tree, and the placement of the labels. Several existing tools
support drawing geophylogenies but we suspect that in practice many drawings are made
“by hand”. The tools GenGIS by Parks et al. [23, 22], a tool by Page [20], and the R-package
phytools by Revell [24] can generate side-by-side drawings with external labeling. The
former two try to minimize leader crossings by testing random leaf orders and by rotating
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(a) Internal labeling with labels and colors [6]. (b) External labeling with s-leaders [13].

Figure 2 Side-by-side drawings of geophylogenies from the literature.

the phylogenetic tree around the map; Revell uses a greedy algorithm to minimize leader
crossings. The R package phylogeo by Charlop-Powers and Brady [8] uses internal labeling
via colors. Unfortunately, none of the articles describing these tools formally defines a quality
measure being optimized or studies the underlying combinatorial optimization problem from
an algorithmic perspective. In this paper, we introduce a simple combinatorial definition for
side-by-side drawings of geophylogenies and propose several quality measures.

Labeling Geophylogenies

Following standard map-labeling terminology, internal labeling places the labels inside or in
the direct vicinity of a feature; external labeling [5] places the labels in the margin next to the
map and a label is connected to the corresponding feature with a leader. An s-leader is drawn
using a single (straight) line segment as in Figures 2b and 3b. Alternatively, a po-leader (for:
parallel, orthogonal) consists of a horizontal segment at the site and a vertical segment at
the leaf; see Figure 3c. In the literature, we have only encountered s-leaders in geophylogeny
drawings, but argue below that po-leaders should be considered. In a user study on external
labeling, Barth, Gemsa, Niedermann, and Nöllenburg [1] showed that s-leaders perform well
when users are asked to associate sites with their labels and vice versa, but that po-leaders
(and “diagonal, orthogonal” do-leaders) are among the aesthetic preferences.

For internal labeling, a common optimization approach is to place the most labels possible
such that none overlap; see Neyer [18] for a survey on this topic. Existing algorithms can be
applied to label the sites in a geophylogeny drawing and it is geometrically straight-forward to
place the labels for the leaves of T . However, a map reader must also be aided in associating
the sites on the map with the leaves at the border based on these labels (and potentially
colors). Consider the drawing in Figure 1c, which uses color-based internal labeling: the
three kiwi species A. australis, A. rowi, and A. mantelli occur in this order from South to
North. When using internal labeling, we would thus prefer, if possible, to have the three
species in this order in the tree as well – as opposed to their order in Figure 1a.

External labeling styles conventionally forbid crossing the leaders as such crossings could
be visually confusing (cf. Figure 2b). Often the total length of leaders is minimized given
this constraint; see the survey by Bekos, Niedermann, and Nöllenburg [5]. If one allows a
many-to-one correspondence between sites and labels, the literature typically seeks a drawing
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(a) Internal labeling. (b) s-leaders and 1 crossing. (c) po-leaders and no crossings.

Figure 3 We place T above R and use either internal or external labeling to show the mapping
between P and L(T ). Figures (b) and (c) minimize the number of crossings for their leader type.
Note the difference in embedding of T and that not all permutations of leaves are possible.

that minimizes the number of crossings between the leaders, and this is NP-hard [17]. The
problem remains NP-hard even when leaders can share segments, so-called hyper-leaders [2].
Even though our drawings of geophylogenies have a one-to-one correspondence, the planarity
constraint on the tree restricts which leaf orders are possible and it is not always possible to
have crossing-free leaders in a geophylogeny. In order to obtain a drawing with low visual
complexity, our task is thus to find a leaf order that minimizes the number of leader crossings.

Results and Contribution

We formalize several graph visualization problems in the context of drawing geophylogenies.
We propose quality measures for drawings with internal labeling and show that optimal
solutions can be computed in quadratic time (Section 3). For external labeling (Section 4),
we prove that although crossing minimization of s- and po-leaders is NP-hard in general,
it is possible to check in polynomial time if a crossing-free drawing exists and to solve a
certain class of instances efficiently in practice. Furthermore, we introduce an integer linear
program (ILP) and several heuristics for crossing minimisation. We evaluate these solutions
on synthetic and real-world examples and find that the ILP can solve realistic instances
optimally in a matter of seconds and that the heuristics, which run in a fraction of a second,
are often (near-)optimal as well (Section 5). We close the paper with a discussion and open
problems; in particular, we point out further similarities between problems with geophylogeny
drawings and with external labeling.

A longer version of this paper containing all proofs is available on arXiv [16]. Fur-
thermore, implementations of the algorithms and the experiments are available online at
github.com/joklawitter/geophylo.

2 Definitions and Notation

For a phylogenetic tree T , let V (T ) be its vertex set, E(T ) its edge set, L(T ) its leaves,
and I(T ) its internal vertices. As size of an instance we let n = |L(T )| be the number of
leaves. Let T (v) be the subtree rooted at v and n(v) = |L(T (v))|.

A map R is an axis-aligned rectangle and a site is a point on R. A geophylogeny G

consists of a phylogenetic tree T , a map R, a set of points P on R, as well as a 1-to-1 mapping
between L(T ) and P . Call the elements of L(T ) = {ℓ1, . . . , ℓn} and P = {p1, . . . , pn} so that
without loss of generality the mapping is given by the indices.

We define a drawing Γ of G as consisting of drawings of R and T in the plane with the
following properties (see Figure 3). We assume that T is always drawn at a fixed position
above R such that the leaves of T lie at evenly spaced positions on the upper boundary

https://www.github.com/joklawitter/geophylo
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of R. Furthermore, we require that T is drawn downward planar, that is, all edges of T point
downwards from the root towards the leaves, and no edges of T cross. (In our examples
we draw T as a “rectangular cladogram”, but the exact drawing style is irrelevant given
downward planarity.) The points of P are marked on R and the drawing uses either internal
labeling as in Figure 3a or external labeling with s- or po-leaders as in Figures 3b and 3c.
For drawings with external labeling, we use si to denote the leader that connects ℓi and pi.

Since the tree is drawn without crossings and the sites have fixed locations, the only
combinatorial freedom in the drawing Γ is the embedding of T , i.e.w̃hich child is to the left
and which is to the right. Furthermore, since we fixed the relative positions of the map and
the leaves, note that there is also no “non-combinatorial” freedom. Hence, an embedding of T

corresponds one-to-one with a left-to-right order of L(T ) and we call this the leaf order π

of Γ. For example, if a leaf ℓi is at position 4 in Γ, then π(ℓi) = 4. Further, let x(v) denote
the x-coordinate of a site or leaf v of T in Γ.

3 Geophylogenies with Internal Labeling

A good order of the leaves is crucial for internal labeling, since it can help the reader associate
between L(T ) and P . It is in general not obvious how to determine which leaf order is best
for this purpose; we propose three quality measures and a general class of measures that
subsume them. Any measure in this class can be efficiently optimized by the algorithm
described below. In practice one can easily try several quality measures and pick whichever
suits the particular drawing; a user study of practical readability could also be fruitful.

3.1 Quality Measures
When visually searching for the site pi corresponding to a leaf ℓi (or the opposite direction), it
seems beneficial if ℓi and pi are close together. Our first quality measure, Distance, sums the
Euclidean distances over all pairs (pi, ℓi). Since the tree organizes the leaves from left to right,
it might be better to consider only the horizontal distances, i.e.

∑n
i=1|x(pi) − x(ℓi)|, which

we call XOffset. Finally, instead of the geometric offset, IndexOffset considers how much the
leaf order permutes the geographic left-to-right order of the sites. Assuming without loss of
generality that the sites are indexed from left to right, we sum how many places each leaf ℓi

is away from leaf position i, i.e.
∑n

i=1|π(ℓi) − i|. See Figure 4.
These measures have in common that they sum over some “quality” of the leaves, where

the quality of a leaf depends only on its own position and that of the sites (but not the other
leaves). We call such quality measures leaf additive. Unfortunately not all sensible quality
measures are leaf additive (such as for example the number of inversions in π).
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(c) IndexOffset (position shift).

Figure 4 Orange arrows indicate what the three quality measures for internal labeling consider.
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3.2 Algorithm for Leaf-Additive Quality Measures
Let f : L(T ) × {1, . . . , n} → R be a quality measure for placing one particular leaf at a
particular position; the location of the sites is constant for a given instance, so we do not
consider it an argument of f . This uniquely defines a leaf additive objective function on
drawings by summing over the leaves; assume w.l.o.g. that we want to minimize this sum.

Now we naturally lift f to inner vertices of T by taking the sum over leaves in the subtree
rooted at that vertex – in the best embedding of that subtree. More concretely, note that any
drawing places the leaves of any subtree at consecutive positions and they take up a fixed
width regardless of the embedding. Let F (v, i) be the minimum, taken over all embeddings
of T (v) and assuming the leftmost leaf is placed at position i, of the sum of quality of
the leaves of T (v). Then by definition the optimal objective value for the entire instance
is F (w, 1), where w is the root of T .

▶ Theorem 1. Let G be a geophylogeny on n taxa and let f be a leaf additive objective
function. A drawing that minimizes (or maximizes) f can be computed in O(n2) time.

Proof. For a vertex v with children x and y, we observe the following equality, since the
embedding has only two ways of ordering them and those subtrees are then independent.

F (v, i) = min{ F (x, i) + F (y, i + n(x)), F (y, i) + F (x, i + n(y)) } (1)

Using dynamic programming on F allows us to calculate F (w, 1) in O(n2) time and space,
since there are 2n vertices, n possible leaf positions, and Equation (1) can be evaluated in
constant time by precomputing all n(v). The optimal embedding of T can be traced back
through the dynamic programming table in the same runtime. ◀

Note that we can still define leaf additive quality measures when P contains regions
(rather than just points) as in Figure 1. For example, instead of considering the distance
between ℓi and pi, we could consider the smallest distance between ℓi and any point in the
region pi.

With the above algorithm, we can restrict leaves and subtrees to be in a certain position
or a range of positions, simply by marking all other positions as prohibitively expensive in F ;
the rotation of an inner vertex can also be fixed by considering only the corresponding term
of Equation (1). This can be used if there is a conventional order for some taxa or to ensure
that an outgroup-taxon is placed at the leftmost or rightmost position. Furthermore, this
enables an interactive editing experience where a designer can inspect the initial optimized
drawing and receive re-optimized versions based on their feedback – for example “put the
leaves for the sea lions only where there is water on the edge of the map”. (This is leaf
additive.)

4 Geophylogenies with External Labeling

For external labeling, the optimization goal is to embed the tree such that the number of
crossings between leaders is minimized. Unless otherwise stated, we use s-leaders.

For brevity, we omit proofs1 of following foundational complexity results and move on to
more practical algorithms.

1 Proofs are available in the long version of this paper [16].
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(a) A geometry-free instance for s-leaders:
no site lies inside the s-area of another site.
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(b) A geometry-free instance for po-leaders:
no site lies inside the po-area of another site.

Figure 5 In a geometry-free instance the leaf order π fully determines if any two leaders cross.

▶ Proposition 2. Given a geophylogeny G and an integer k, it is NP-hard to decide, for both
s- and po-leaders, if G admits a drawing with external labels and at most k leader crossings.

▶ Proposition 3. Given a geophylogeny G on n taxa, it can be decided in O(n6) time, for both
s- and po-leaders, whether G admits a drawing with external labels and no leader crossings.

4.1 Geometric Structure and Geometry-Free Instances
We start by making some observations about the structure of geophylogeny drawings. This
leads to an O(n log n)-time algorithm for crossing minimization on a particular class of
“geometry-free” instances and forms the basis for our ILP.

Let B be the line segment between leaf position 1 (left) and leaf position n (right); let
the s-area of a site pi be the triangle spanned by pi and B. Note that the leader si lies
within this triangle in any drawing. Now consider two sites pi and pj that lie outside each
other’s s-area. Independently of the embedding of the tree, si always passes pj on the same
side: see Figure 5 where, for example, s2 passes left of p4 in any drawing. As a result, if pi

lies left of pj , then si and sj cross if and only if the leaf ℓi is positioned right of the leaf ℓj

(cf. Figure 5). The case where pi is right of pj is flipped. We call such a pair (pi, pj) geometry
free since purely the order of the corresponding leaves suffices to recognize if their leaders
cross: the precise geometry of the leaf positions is irrelevant.

Conversely, consider a site pk that lies inside the s-area of pi. Whether the leaders si

and sk cross depends on the placement of the leaves ℓi and ℓk in a more complicated way than
just their relative order: si might pass left or right of pk. In this case, we call pi undecided
with respect to pk. See Figure 6, where p1 is undecided with respect to p2.

We call a geophylogeny geometry free if all pairs of sites are geometry free. Such instances
are not entirely implausible: for example, researchers may have taken their samples along
a coastline, a river, or a valley, in which case the sites may lie relatively close to a line.
Orienting the map such that this line is horizontal could result in a geometry-free instance.
Furthermore, unless two sites share an x-coordinate, increasing the vertical distance between
the map and the tree eventually results in a geometry-free drawing for s-leaders; however,
the required distance might be impractically large.

Concerning po-leaders, we can analogously define the po-area of a site (see Figure 5b).

▶ Theorem 4. Given a geometry-free geophylogeny G on n taxa, a drawing with the minimum
number of leader crossings can be found in O(n log n) time, for both s- and po-leaders.
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Figure 6 Drawings of the same geophylogeny with different leaf orders. Whether s1 and s2 cross
depends on the position of ℓ1 and ℓ2, whereas s1 and s3 cross if and only if ℓ3 is left of ℓ1. We call
the pair (p1, p2) undecided and the pair (p1, p3) geometry-free.

1 2 3 4 5

Tfix

T = Tvari

Figure 7 A geometry-free geophylogeny and a one-sided tanglegram (Tfix, Tvari) that have the
same combinatorics (in terms of leader crossings) as the two geometry-free instances in Figure 5.

Proof. We transform G into a so-called one-sided tanglegram (Tfix, Tvari) that is equivalent
in terms of crossings; see Figure 7. In a tanglegram [11] two phylogenetic trees on the same
taxa are drawn planar opposite each other and the matching taxa are connected with straight
line segments; the goal is to find leaf orders that minimize the number of crossings. In a
one-sided tanglegram, the leaf order for one tree is given and fixed.

We take the sites P as the leaves of Tfix and embed the tree so that the points are ordered
from left to right; the topology of Tfix is arbitrary. As the tree Tvari with variable embedding,
we take the phylogenetic tree T . Since G is geometry-free, the crossings in the tanglegram
correspond one-to-one with those in the geophylogeny drawing with the same embedding.

The number of crossings of (Tfix, Tvari) can be minimized in O(n log n) time using an
algorithm of Fernau et al. [11]: the resulting leaf order for Tvari then also minimizes the
number of leader crossings in Γ. ◀

4.2 Optimal Drawings with Integer Linear Programming

For the following ILP, we consider an arbitrary embedding of the tree as neutral and describe
all embeddings in terms of which internal vertices of T are rotated with respect to this
neutral embedding, i.e. for which internal vertices to swap the left-to-right order of their two
children. For two sites pi and pj , we use pi ≺ pj to denote that ℓi is left of ℓj in the neutral
embedding. Let U be the set of undecided pairs, that is, all ordered pairs (p, q) where q lies
inside the s-area of p; note that these are ordered pairs.
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Variables and Objective Function

ρi ∈ {0, 1} ∀i ∈ I(T ). Do we rotate internal vertex i (1) or keep its neutral embedding (0)?
Note that rotating the lowest common ancestor of ℓi and ℓj is the only way to flip their
order, so for convenience we write ρij to mean ρlca(i,j).

dpq ∈ {0, 1} ∀(p, q) ∈ U . For each undecided pair (p, q): should p’s leader pass to the
left (0) or to the right (1) of site q? (This is well-defined since the pair is undecided.)

χpq ∈ {0, 1} ∀p, q ∈ P, p < q. For each set of two sites: are the leaders of p and q allowed
to cross? There is no requirement that noncrossing pairs have χpq = 0, but that will be
the case in an optimal solution.

To minimise the number of crossings, minimize the sum over all χpq.

Constraints

We handle geometry-free pairs and undecided pairs separately.
Consider a geometry-free pair of sites: if the leaders cross in the neutral embedding, we

must either allow this, or rotate the lowest common ancestor. Conversely, if they do not cross
neutrally, yet we rotate the lowest common ancestor, then we must allow their leaders to
cross. Call these sets of pairs Frotate and Fkeep respectively, for how to prevent the crossing.

χij + ρij ≥ 1 ∀(i, j) ∈ Frotate; χij − ρij ≥ 0 ∀(i, j) ∈ Fkeep (2)

For undecided pairs (p, q), a three-way case distinction on [p ≺ q], ρpq and dpq reveals the
following geometry: pairs with p ≺ q have crossing leaders if and only if ρpq + dpq = 1; pairs
with p ≻ q have crossing leaders if and only if ρpq + dpq ̸= 1. Recall that we do not force χ to
be zero if there is no intersection, only that it is 1 if there is an intersection; we implement
these conditions in the ILP as follows. Let Uleft ⊆ U be the undecided pairs with p ≺ q.

ρpq − dpq ≤ χpq ∀(p, q) ∈ Uleft; dpq − ρpq ≤ χpq ∀(p, q) ∈ Uleft (3)

Conversely, let Uright ⊆ U be the undecided pairs with p ≻ q.

ρpq + dpq − 1 ≤ χpq ∀(p, q) ∈ Uright; 1 − ρpq − dpq ≤ χpq ∀(p, q) ∈ Uright (4)

Finally, we must ensure that each leader si respects the d variables: the s-leader from pi

to ℓi must pass by each other site in the s-area on the correct side. This does not affect
geometry-free pairs, but we must constrain the leaf placement for undecided pairs.

Observe that the ρ variables together fix the leaf order, since they fix the embedding
of T . Let Li(ρ) be the function that gives the x-coordinate of ℓi given the ρ variables. Note
that Li is linear in each of the ρ variables: rotating an ancestor of ℓi shifts its leaf location
by a particular constant, and rotating a non-ancestor does not affect it.

For an undecided pair (pi, pj), let x∗(i, j) be the x-coordinate of where the ray from pi

through pj intersects the top of the map and note that this is a constant. If dij = 0, then ℓi

must be to the left of this intersection; if dij = 1, it must be to the right. We model this in
the ILP with two constraints and the big-M method, where we can set M = n.

Li(ρ) − dijM ≤ x∗(i, j), Li(ρ) + (1 − dij)M ≥ x∗(i, j); ∀(pi, pj) ∈ U (5)

The number of variables and constraints in the ILP are both quadratic in n.

4.3 Heuristics
Since the ILP from the previous section can be slow in the worst case and requires advanced
solver software, we now suggest a number of heuristics.
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Bottom-Up. First, we use a dynamic program similar to the one in Section 3 and commit to
an embedding for each subtree while going up the tree. At this point we note that counting
the number of crossings is not a leaf additive objective function in the sense of Section 3.
However, Equation (1) does enable us to introduce an additional cost based on where an
entire subtree is placed and where its sibling subtree is placed – just not minimized over
the embedding of these subtrees. More precisely, for an inner vertex v of T with children x

and y, let C(x, y, i) be the number of crossings between T (x) and T (y) when placed starting
at position i and i + n(x) respectively; this can be computed in O(n(v)2) time. Note that
this ignores any crossings with leaders from other subtrees. With base case H(ℓ, i) = 0 for
every leaf ℓ, we use

H(v, i) = min{ H(x, i)+H(y, i+n(x))+C(x, y, i), H(y, i)+H(x, i+n(y))+C(y, x, i) }

to pick a rotation of T (v). Since this can be evaluated in O(n2) time, the heuristic runs
in O(n4) time. In the example in Figure 8 this does not minimize the total number of crossings.

yx
v

(a) When T (x) and T (y) each
have zero crossings, . . . .

xy
v

(b) . . . then T (v) has two cross-
ings.

yx
v

(c) The optimal leaf order has
one crossing in T (x).

Figure 8 The bottom-up heuristic is not always optimal.

Top-Down. The second heuristic traverses T from top to bottom (i.e. in pre-order) and
chooses a rotation for each inner vertex v based on how many leaders would cross the vertical
line between the two subtrees of v; see Figure 9. More precisely, suppose that T (v) has its
leftmost leaf at position i based on the rotations of the vertices above v. For x and y the
children of v, consider the rotation of v where T (x) is placed starting at position i and T (y)
is placed starting at position i + n(x). Let s be the x-coordinate in the middle between the
last leaf of T (x) and the first leaf T (y). We compute the number of leaders of T (v) that
cross the vertical line at s and for the reserve rotation of v; the smaller result is chosen and
the rotation fixed. This procedure considers each site at most O(n) times and thus runs
in O(n2) time.

y
x

v

s

(a) T (x) and T (y) have one site each on the
other side of the vertical line through s.

v

x
y

s

(b) T (x) has one and T (y) has two sites on the
other side of the vertical line through s.

Figure 9 The top-down heuristic tries both rotations of v and here would pick (a).
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Leaf-Additive Dynamic Programming. Thirdly, we could optimize any of the quality
measures for interior labeling (Section 3). These measures produce generally sensible leaf
orders in quadratic time and we may expect the number of leader crossings to be low.

Greedy (Hill Climbing). Finally, we consider a hill climbing algorithm that, starting from
some leaf order, greedily performs rotations that improve the number of crossings. This
could start from a random leaf order, a hand-made one, or from any of the other heuristics.
Evaluating a rotation can be done in O(n2) time and thus one round through all vertices
runs in O(n3) time.

5 Experimental Evaluation

This section is based on our implementation of the ILP and the heuristics. The code is
available online at github.com/joklawitter/geophylo, and data from the corresponding
authors upon request.

5.1 Test Data
We use three procedures to generate random instances. For each type and with 10 to 100
taxa (in increments of 5), we generated 10 instances; we call these the synthetic instances.
We stop at 100 since geophylogeny drawings with more taxa are rarely well-readable.
Uniform. Place n sites on the map uniformly at random. Generate the phylogenetic tree by

repeating this merging procedure. Pick an unmerged site or a merged subtree uniformly
at random, then pick a second with probability distributed by inverse distance to the first,
and merge them; as position of a subtree, we take the median coordinate on both axis.

Coastline. Initially place all sites equidistantly on a horizontal line, then slightly perturb
the x-coordinates. Next, starting at the central site and going outwards, change the
y-coordinate of each site randomly (up to 1.5 times the horizontal distance) from the
y-coordinate of the previous site. Construct the tree as before.

Clustered. These instances group multiple taxa into clusters. First a uniformly random
number of sites between three and ten is allocated for a cluster and its center is placed at
a uniformly random point on the map. Then for each cluster, we place sites randomly in
a disk around the center with size proportional to the cluster size. Construct T as before,
but first for each cluster separately and only then for the whole instance.

In addition, we consider three real world instances derived from published drawings. Fish is
a 14-taxon geophylogeny by Williams and Johnson [28]. Lizards is 20-taxon geophylogeny by
Jauss et al. [13], where the sites are mostly horizontally dispersed (see Figure 2b). Frogs is a
64-taxon geophylogeny by Ellepola et al. [10], where the sites are rather randomly dispersed
on the map; the published drawing with s-leaders has over 680 leader crossings.

5.2 Experimental Results
The ILP is fairly quick. Our implementation uses a Python script to generate the ILP
instance and Gurobi 10 to solve it; we ran the experiments on a 10-core Apple M1 Max
processor. As expected, we observe that the runtime is exponential in n, but only moderately
so (Figure 10). Instances with up to about 50 taxa can usually be solved optimally within
a second, but for Clustered and Uniform instances the ILP starts to get slow at about 100
taxa. We note that geophylogenies with over 100 taxa should probably not be drawn with
external labeling: for example, the Frogs instance can be drawn optimally by the ILP in
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Figure 10 Computing optimal drawings with the ILP.

about 0.5 s, but even though this improves the number of crossings from the published 680
to the optimal 609, the drawing is so messy as to be unreadable (Figure 12b). We further
observe that Coastline instances are solved trivially fast, since with fewer undecided pairs
the ILP is smaller and presumably easier to solve.

The synthetic instances have a superlinear number of crossings. The Clustered instances
can be drawn with significantly fewer crossings than Uniform: this matches our expectation,
as by construction there is more correlation between the phylogenetic tree and the geography
of the sites. More surprisingly we find that the Coastline instances require many crossings.
We may have made them too noisy, but this does warn of the generally quadratic growth
in number of crossings, which makes external labeling unsuitable for large geophylogenies
unless the geographic correlation is exceptionally good.

The heuristics run instantly and Greedy is often optimal. The heuristics are implemented
in single-threaded Java code. Bottom-Up, Top-Down and Leaf-Additive all run instantly,
and even the Greedy hill climber runs in a fraction of a second. Of the first three heuristics,
Bottom-Up consistently achieves the best results for both s- and po-leaders. Comparing the
best solution by these heuristics with the optimal drawing (Figure 11), we observe that the
number crossings in excess of the optimum increases with the number of taxa, in particular
for Uniform and Clustered instances; Coastline instances are always drawn close to optimally
by at least one heuristic. The Greedy hill climber often improves this to an optimal solution.

For the number of crossings, po-leaders are promising. In addition to s-leaders, our
implementation of the heuristics can handle po-leaders. (The ILP cannot.) Our heuristics
require on average only about 73% as many crossings when using po-leaders compared to
s-leaders (55% for Coastline instances); the Lizard example in Figure 2b requires 11 s-leader
crossings but only 2 po-leader crossings. We therefore propose that po-leaders deserve more
attention from the phylogenetic community.

Algorithmic recommendations. Our results show that the ILP is a good choice for geophylo-
geny drawings with external labeling. If no solver is at hand or it is technically challenging
to set up (for example when making an app that runs locally in a user’s web browser), then
the heuristics offer an effective and efficient alternative, especially Bottom-Up and Greedy.
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Figure 11 Number of crossings made by the best heuristic minus the number of crossings in the
optimal drawing, averaged over 10 random instances per value of n.
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(a) Drawing of Fish with 17 crossings. (b) Drawing of Frogs with 609 crossings.

Figure 12 Crossing-optimal drawings of Fish and Frogs with s-leaders.

For the Fish instance, for example, we found that the drawing with s-leaders and 17
crossings in Figure 12a is a good alternative to the internal labeling used in the published
drawing [28]. However, for instances without a clear structure or with many crossings, it
might be better to use internal labeling. Alternatively, the tree could be split like Tobler
et al. [26], such that different subtrees are each shown with the map in separate drawings.

6 Discussion and Open Problems

In this paper, we have shown that drawings of geophylogenies can be approached theoretically
and practically as a problem of algorithmic map labeling. We formally defined a drawing style
for geophylogenies that uses either internal labeling with text or colors, or that uses external
labeling with s/po-leaders. This allowed us to define optimization problems that can be
tackled algorithmically. For drawings with internal labeling, we introduced a class of quality
measures that can be optimized efficiently and even interactively constrained. In practice,
designers can thus try different quality measures, pick their favorite, and make further
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adjustments easily even for large instances. For external labeling, minimizing the number of
leader crossings is NP-hard in general, but we provide multiple algorithmic approaches to
solve this problem and demonstrated experimentally that they perform well in practice.

Even though we have provided a solid base of results, we feel the algorithmic study of
geophylogeny drawings holds further promise by varying, for example, the type of leader
used, the objective function, the composition of the drawing, or the nature of the phylogeny
and the map. We finish this paper with several suggestions for future work.

One might consider do- and pd-leaders, which use a diagonal segment and can be
aesthetically pleasing. We expect that some of our results (such as the NP-hardness of
crossing minimization and the effectiveness of the heuristics) should hold for these leaders.
The boundary labeling literature [5] studies even further types, such as opo and Bézier, and
these might be more challenging to adapt.

For external labeling we have only considered the total number of crossings. If different
colors are used for the leaders of different clades or if the drawing can be explored with an
interactive tool, one might want to minimize the number of crossings within each clade (or
a particular clade). Furthermore, one might optimize crossing angles. While we provided
heuristics to minimize leader crossings, the development of approximation algorithms, which
exist for other labeling problems [17, 3], could also be of interest.

Our model of a geophylogeny drawing can be expanded. One might allow the orientation
of the map to be freely rotated, the extent of the map to be changed, or the leaves to be
placed non-equidistantly. Optimizing over these additional freedoms poses new algorithmic
challenges. Straying further from our model, some drawings in the literature have a circular
tree around the map [21, 14]. (This is similar to contour labeling in the context of map
labeling [19].) Also recall that Figure 1 has area features. Our quality measures for
internal labeling are easily adapted to handle this, but (as is the case with general boundary
labeling [4]) area features provide additional algorithmic challenges for external labeling.
The literature contains many drawings where multiple taxa correspond to the same feature
on the map [7], where we might want to look to many-to-one boundary labeling [17, 2].
Furthermore, one can consider non-binary phylogenetic trees and phylogenetic networks.

Lastly, we note that side-by-side drawings can also be used for a phylogenetic tree together
with a diagram other than a map: Chen et al. [9] combine it with a scatter plot; Gehring
et al. [12] even combine three things (phylogenetic tree, haplotype network, and map).
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Abstract
Reproducibility is a core element of the scientific method. In the Geosciences, the insights derived
from geodata are frequently communicated through maps, and the computational methods to create
these maps vary in their ease of reproduction. In this paper, we present the results from a study
where we tried to reproduce the maps included in geoscientific publications. Following a systematic
approach, we collected 27 candidate papers and in four cases, we were able to successfully reproduce
the maps they contained. We report on the approach we applied, the issues we encountered and the
insights we gained while attempting to reproduce the maps. In addition, we provide an initial set
of criteria to assess the success of a map reproduction attempt. We also propose some guidelines
for improving map reproducibility in geoscientific publications. Our work sheds a light on the
current state of map reproducibility in geoscientific papers and can benefit researchers interested in
publishing maps in a more reproducible way.
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1 Introduction

The reproducibility of research results is a critical aspect across all scientific disciplines, and
the domain of Geosciences is no exception. It is widely accepted by the scientific community
that the ability to reproduce results by other working groups enhances the trust and the
reliability of the respective research. In an effort to clarify the different existing terminologies
for reproducibility and reproducible research, Barba [1] defines reproducible research as the
case when “authors provide all the necessary data and the computer codes to run the analysis
again, re-creating the results”, while scientific replication can be achieved when a study
produces the same results using different methods or different data. This distinction is also
known as the Claerbout [3]/ Donoho [4]/ Peng [28] convention.

In recent years, reproducibility has rapidly gained relevance in different areas of
Geosciences. In the Forum on Reproducibility and Replicability in Geography introduced by
Goodchild et al. [8], the discussed topics range from the theoretical dimension of reprodu-
cibility and replicability in Geography [34], to more tangible matters, such as the review of
current technological solutions [25] in this context.
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Figures are key elements of geoscientific publications and play an important role in the
dissemination of scientific findings. Konkol and Kray [15] focused on the role of figures
as a means of communicating research results and conducted a survey to identify the
nature of the incorporated figures (e.g., maps, time series, histograms, etc.), as well as the
frequency that they are used in geoscientific papers. The survey showed that maps were most
frequently mentioned, which seems reasonable for this domain. Although there are several
definitions for what a map is, most of them agree that maps are abstract representations of
the real world [18], in which certain attributes of reality are highlighted, while others are
deemphasised or completely left out. In line with fundamental scientific principles and the
core role maps play in communicating societally relevant scientific outcomes (e.g., climate
change, epidemiological spread), it is essential to be able to reproduce them. This capacity
to reproduce results builds trust [10], which is essential for the uptake of scientific outcomes
in society.

The aim of the research reported in this paper is thus to investigate the reproducibility
of maps that are published as part of scientific publications. For this purpose, we screened
27 open access papers from the Geosciences and tried to reproduce the maps contained
therein. In doing so, our objectives were (i) to investigate the current practice of creating
maps for scientific publications, (ii) to assess the material availability, (iii) to analyse the
complexities of map reproduction, and (iv) determine the degree of reproducibility of recently
published maps in geoscientific articles. Our findings show that reproducing maps from recent
papers is rarely easy, frequently requires extensive efforts and can even fail despite data and
code being available. The fact that currently there are no well-defined success criteria for
map reproduction further hampers it. Our main contributions are an initial set of criteria
for assessing the success of map reproduction, insights into challenges arising during map
reproduction and a set of guidelines for making map reproduction easier. These contributions
pave the way for further research into map reproduction and can help researchers in making
the maps they publish more reproducible.

The rest of the paper is structured as follows. Section 2 contextualises our work, reviews
related studies and initiatives, and defines the term reproducible map making. In section 3, we
motivate and describe the methodological workflow that we followed for the reproduction study.
Section 4 presents the results of the study, including the obstacles that were encountered
and the reproduced maps next to the original ones. Section 5 discusses the insights that
were revealed and proposes a set of initial guidelines for making maps more reproducible.
Section 6 summarises our key findings and outlines future work.

2 Background

In this section, we briefly summarise related work on map creation, open science practices,
reproducibility in the Geosciences in general and in map production in particular.

2.1 Map Production
The International Cartographic Association (ICA) defines Cartography as the science, art,
and technology of map making and map use [17]. Taylor [35] describes cartography in
the context of Geographic Information Systems (GIS) as “the organization, presentation,
communication and utilization of geo-information in graphic, digital or tactile form. It can
include all stages from data preparation to end use in the creation of maps and related spatial
information products”. In the context of map reproduction, it is important to note that this
definition also takes into account the technological aspect in the cartographic process and
highlights the importance of it in the creation of spatial information products beyond maps.
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According to MacEachren [20], apart from their obvious role of visualising geodata, maps
also serve as interfaces to the underlying computations, connect human reasoning to complex
sources of information and facilitate the understanding of spatial relations. The current
map making practices in academia use various software products for different tasks, from
spreadsheets to specialized statistical software to specialised cartographic packages and
geographic information systems. Frequently, the cartographic process is broken down into
multiple steps [6], which are not always connected in a straightforward way. These steps can
include data management, statistical analyses, geoprocessing and graphical display of the
results. While there is a lot of variability involved – in particular in a scientific context, each
step needs to be validated for its objectivity and ideally should be reproducible [7].

2.2 Open Science Practices
A fundamental requirement for enabling the reproduction of maps or computational workflows
in general is access to all components necessary to carry out the reproduction (e.g., data,
code, instructions) [23]. The central importance of the availability of research materials
(especially data) is reflected in the several initiatives to standardise the way in which they
are publicly shared. The FAIR Data Principles are guidelines for making data Findable,
Accessible, Interoperable, and Reusable and have received considerable support by many
scientific communities [36]. The Force11 community [2] also introduced the Principles for
Data [9] and for Software Citation [33], acknowledging the significance of making these assets
accessible. These principles are slowly being adopted by publishers as well.The publisher
Copernicus Publications2, for example, enforces the citation of data and encourages the
citation of software, referencing the aforementioned principles.

The Transparency and Openness Promotion (TOP) Committee defined a set of standards
with increasing levels of stringency to facilitate and motivate an open culture in scholarly
communication [22]. These standards, namely the TOP Guidelines, deal with the topics of
data, code and other materials citation and sharing, as well as the transparency of study
design (among others). They indicate the extent to which a journal considers them as a
requirement for publishing. Based on the TOP Guidelines, the Center for Open Science uses
the TOP Factor3 rating to rank journals [31]. Journals from the disciplines of Geography,
Planning and Development, and Earth and Planetary Sciences score seven at maximum in
this scale (Cartography and Geographic Information Science, Nature Geoscience, Nature
Sustainability), while the highest achieved score across all disciplines is 27.

2.3 Reproducible Research in the Geosciences
Researchers have started to address the issue of reproducibility in the Geosciences and
have recognised that open data and methods and open source software are prerequisites
for achieving the full potential in transparency [24]. However, Ledermann and Gartner
[19] argue that acquiring the source code of an experiment is not enough to reproduce
it and rather argue that a well defined and clearly structured programming workflow in
an ontological fashion contributes to the transparency, reproducibility and extensibility of
scientific experiments. Giraud and Lambert [6] encourage the use of literate programming
reports, e.g., Jupyter notebooks or R Markdown, because such programming solutions provide
complete instructions from raw data to the cartographic product. In a later work, the same

2 https://publications.copernicus.org/
3 https://topfactor.org/
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authors [7] provide an example of reproducible cartographic workflow, which is implemented
by combining different geospatial R packages in a single R Markdown script. Knoth and
Nüst [14] leverage containers for describing the computational environment of the experiment
and for facilitating the reuse of their workflow by others. In more complex visualisation
cases, such as terrain representation, Kennelly et al. [13] commented on the usefulness of 3D
reference models for evaluating and comparing reproduced visualizations and stated that in
the field of cartography such data models do not exist.

Reproducing and replicating visualizations in general is not an easy task. Fekete and
Freire [5] consider interactive features as an additional complexity for scientific replication, but
emphasize the importance of interactivity in data exploration. A data-centric approach for
reproducible visualizations has been proposed by Silva et al. [32], where the authors highlight
the significance of a well-defined data flow pipeline. Irrespective of the implementation tools
and description mechanisms of the data flow, the purpose of the visualization process is
always to gain insights from the data.

2.4 Reproducible Map Making
Even though reproducibility is a topic of rising concern for the scientific community, the
term “reproducible cartography” is not frequently encountered in the literature. Giraud and
Lambert [6] place reproducible maps on a spectrum, ranging from non-reproducible, when
they come as a simple print-out, to fully reproducible, when they are clearly linked with
executable code, data and metadata. Although many suggestions have been made regarding
the enhancement of map reproducibility in different contexts (terrain representation [13],
knowledge graphs [21], etc.), core terms such as “reproducible cartography” and “map
reproducibility” so far have not been clearly specified, let alone formally defined.

Since the widely used ICA definition of cartography as a discipline also includes an
artistic dimension [17], we prefer to use the terms “map production” and “map making” in
the context of this paper and map reproducibility in general. Based on the definition of
Barba [1] for reproducible research outlined in Section 1 and on the definition of Taylor [35]
for cartography, we propose the following definition:

Reproducible map production/making refers to the provision, organisation, and
processing of all materials used in the cartographic process in such a way that a map
as a cartographic product can be recreated in an independent experiment.

This process thus aims to create a visual copy of the original map without introducing any
significant variations that alter the maps’s interpretation. Although the term map can refer
to a variety of representational artifacts, in the context of this work we focus solely on maps
with an apparent geographical reference.

3 Methodological Approach

The main goal of our approach was to assess the degree to which map making practices
in scientific publications allow for successful reproduction of the included maps. For this
purpose, we collected a set of papers and subsequently attempted to reproduce their map
figures. During this process, we screened which tools and programming languages were
commonly used for map creation. We also collected information about the effort we had to
invest during our reproduction attempts. All the reproductions were run on laptop running
Linux Ubuntu 20.04 with 16 GB RAM and an i7-1185G7 @ 3.00GHz with 8 cores.
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3.1 Creating the Paper Collection
Selecting a good sample of publications for our study was not an easy task due to the diversity
of geoscientific papers and the maps used therein. In order to capture current practices from
a broad range of journals, we limited our search to recent articles that were available via
Open Access (OA) and were published within the 12 months prior to the beginning of our
study (June 2022). The selection workflow that we eventually implemented is illustrated in
Figure 1. Although maps can in principle be a part of any paper that reports on research
in a geographical context, our investigation targeted journals with an explicit geographical
or geoscientific scope. Aligning with the findings outlined in Subsection 2.2, we considered
journals that support either the FAIR Data Principles or comply with the TOP Guidelines
for Data, Code and Materials Transparency in order to maximise our chances of obtaining
all the necessary components for map reproduction. In addition, eligible journals should
require a data and/or software availability statement for publishing.

After selecting a journal, the research articles and data description papers were screened
chronologically starting from the most recently published and working backwards until
the cut-off date (June 2021). More recent works were preferred assuming that the related
materials, namely code and data, are more probable to be available and the authors’ contacts
up-to-date when we ran the study. We excluded technical reports, briefings and reviews to
ensure a consistent body of core scientific publications. In order for an article to qualify as
suitable candidate for reproduction, we also required it to be OA so that anyone would be
able to reproduce the illustrated maps. The next step was scanning the articles to confirm
that geographical maps are included. Finally, the data and software availability statement
had to clearly mention sources for acquiring the data and the code. If all the aforementioned
conditions were met, we added this paper as a reproduction candidate to the list of papers
we tried to reproduce.

Figure 1 Flowchart of the paper selection process.

3.2 Reproduction Protocol
The procedure that we followed for the actual map reproduction is shown in Figure 2. The
process started by reading and following the instructions in the availability statement to
obtain the datasets and the software that were used in the paper analysis. This first stage
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could involve several different steps. In the simplest scenario, the statement contained links
where datasets and software could be directly downloaded. The data was found either in
a repository maintained by the authors or in a public data portal such as the Copernicus
Climate Data Store4. In the first case, the data was usually (pre)processed to some extent
by the authors, while in the latter, the reproducing researcher had to perform all the data
processing stages again. In some cases, the statement briefly explained why the datasets
cannot be publicly shared, optionally encouraging the reader to get in contact with the
authors or with a third person that is responsible for the distribution. The code was shared in
the same repository as the data or in a different one, for example a public website specialising
in hosting code such as Github5. The repositories occasionally contained directions for
connecting the different components to setup the computational environment and re-run
the map generation process. After collecting all the necessary materials, we identified the
datasets and the parts of the code that corresponded to the creation of every map in the
paper. This step required a deeper understanding of the paper and its maps. In particular,
this involved reading the figure-related parts of the paper carefully to comprehend the map’s
purpose in the paper (e.g., exploratory data analysis, presenting results, placeholder map for
GUI demonstration) and to determine its role in the computational pipeline.

As a next step, we then attempted to setup the computational environment by installing
the required applications, libraries and plugins. If the attempt failed, we investigated the
underlying issues and tried to solve them. Potential reasons for failure at this stage were
missing data and unclear or incomplete instructions. When all the components were properly
assembled and the computing pipeline was set up, we ran the analysis. We considered this
step successful if it led to a map output. If running the analysis failed, we repeated the
troubleshooting process. Possible reasons could be again missing data files, different library
versions and different data processing results in preceding steps.

As a final step in the reproduction process, we assessed how well the generated map
reproduced the map published in the original paper. For this purpose, we used a set
of assessment criteria, which are described in Subsection 3.2.1. If a generated map was
considered a successful reproduction according to these criteria, we added it to the list
of successfully reproduced maps. Otherwise, we investigated the reasons for failure and
attempted to address them until we ran out of options. If during the entire reproduction
process information was unclear, we first tried to infer it from information in the paper and
on from online sources, and then contacted the corresponding author to ask for their help. In
general, we minimized the amount of intervention in the map production process and avoided
adding data transformation steps or visualisation adjustments that were not explicitly stated
by the authors of the paper.

3.2.1 Assessing Reproduction Success

To confirm if a map reproduction was successful, initially we used the utility compare from
the package ImageMagick6 to perform this image-based comparison, but the differences in
image resolution, file types and file sizes led to quite large deltas between the original and
the reproduced maps, even when they were visually and/or semantically very similar. This
was partially due to the fact that the scripts frequently did not generate the same file types

4 https://cds.climate.copernicus.eu/
5 https://github.org
6 https://imagemagick.org/

https://cds.climate.copernicus.eu/
https://github.org
https://imagemagick.org/
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Figure 2 Flowchart of the reproduction process.

as the ones we found in the embedded figures on the publisher’s website. For this reason, we
avoided the use of any tool for our final assessment and visually compared the reproduced
figures with the original ones in a side-to-side fashion.

It is important to emphasise that even when two maps (the original and the reproduced
one) are not exactly identical, they still can manage to convey the same message. Any criteria
for assessing map reproduction should therefore go beyond simple pixel-based comparison.
Based on these considerations, previous work on the reproducibility of figures in scientific
publications [16] and the experiences gained during our reproduction study, we used a three
by two matrix to assess the success of map reproduction (see Table 1). In this matrix, we
categorised the observed differences based on the map element which they concern: the
map body, the legend and other elements. The map body refers to the actual depiction of a
geographic region in the map, e.g. a visual abstraction of a country. The legend contains
complementary information that define the meaning of entities visualised in the map body.
This includes, for example, a table explaining the meaning of symbols shown in the map
body. All other visual elements, which are neither part of the map body nor the legend, were
grouped under the other elements category. This includes, e.g., the North arrow, scale bars,
or map titles.

For each of the three categories, we distinguish between two types of differences: aesthetic
and semantic ones. Aesthetic differences refer to the way in which the map elements are
visually expressed or styled, e.g., the colour used to depict certain aspects or which font
was used. Semantic differences include any changes that affect the substance of the map,
e.g., the absence of relevant elements or factual differences. When assessing whether a map
reproduction was successful, we used the matrix to classify any differences we observed. If
the observed differences were aesthetic in nature and were consistent with the context of
the paper, we considered the reproduction a success. For example, a different colour scheme
in the reproduced map is an aesthetic difference and, if reflected in the legend as well, it
does not break the success of the reproduction. If not, though, it constitutes a semantic
difference and the map reproduction does not qualify as successful. It should be mentioned
that the success of map reproduction also depends on the purpose, the context and the target
audience of the initial map.
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Table 1 Map elements and categories used to assess reproduction success with general examples
(in italics) and examples from reproduction study (in bold); numbers in brackets indicate how often
a difference type occurred during our reproduction study.

Aesthetic Semantic
Map body colour (4), annotation style (3) geographic extent (4), annota-

tion placement (14), spatial dis-
tribution (2)

Legend font (1), placement (1), colour measurement scale (1), text con-
tent, mismatch with map body

Other elements font (3), placement (10), stroke
width (1), size, colour

measurement units

4 Results

The paper collection process described in Section 3 resulted in 27 reproduction candidates.
The maps in two papers were demonstrating user interfaces and did not visualise any analysis
results related to the paper content. They were thus not further considered. Ten papers on
the list of reproduction candidates produced their maps using proprietary GIS or statistical
software that was not freely distributed for educational or research purposes. In addition,
some of these applications were unavailable for our (open source) operating system, i.e. Linux
Ubuntu. This prevented us from reproducing the maps depicted in these papers in the
way they were originally generated. However, three of these papers shared the scripts that
they developed for their studies. One paper elaborated the data analysis and the relevant
map creation using a proprietary GIS in detail, and shared these step-by-step instructions.
This enabled us to attempt reproducing the map using a free and open source GIS. Six
of the remaining 15 papers did not disclose any code at all, which also prevented us from
reproducing the maps they contained.

4.1 Reproduction Outcomes

In total, we initiated the reproduction process as described in Figure 2 for nine out of the 27
reproduction candidates. Four of these reproductions were stalled after the phase of getting
the data and the software. The reproduction of three candidate papers could not proceed
because no part of the code was associated with creating the maps shown in the paper. For
one candidate paper, reproduction was not possible because the code was compressed as
a .rar file that produced a “corrupt header” error when unpacking. For the remaining six
reproduction candidates, we were able to eventually generate a visual output. For two of
these papers, we assessed the reproduction attempts of all the included maps as failed. We
therefore managed to successfully reproduce maps from four papers.

The time required for reproduction varied greatly. One paper pointed to an online
interactive notebook written in JavaScript that visualised the map figures of the paper in a
transparent way. In this case, the successful reproduction required only a few clicks. For
another paper, setting up the computational environment, going through several processing
stages and resolving the issues we stumbled upon in cooperation with the authors, led to a
successful reproduction only after seven weeks. The effort required for the other papers (both
with failed and successful reproduction) fell between those two extremes. In the following,
we describe the obstacles that we faced during the reproduction process in more detail.
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4.2 Encountered Obstacles
In addition to issues preventing us from reproducing maps at all as outlined in 4.1, we mainly
encountered data-related issues and issues in configuring the computational environment.

4.2.1 Data-related Issues
As discussed in Section 3, we targeted only papers with available data. Despite this, we still
occasionally ran into missing files while executing the workflow. Since we could overcome
such obstacles only with the help of the authors, we approached them via e-mail asking for
information about where to find the missing files.

As mentioned before, some papers pointed to organisation websites for downloading the
data. Possible changes in the organisation’s data cleaning and pre-processing practices since
the elaboration of the study led to different datasets, and eventually failed reproduction. The
same was true for data processing methods that contain stochastic operations, which were
neither preserved nor documented. Since substantial differences in the underlying datasets
entail different analysis results and consequently maps, we stopped our efforts in such cases
and considered the map reproduction for the corresponding paper as failed.

In the case of one paper, the data was shared as a database dump. Importing it into a
database turned out to be complicated, as there was no accompanying information regarding
the database name and log-in credentials. We eventually discovered the necessary information
in the code files. A further issue was the lack of documentation of the installed plugins
in the database where the dump was extracted from. To solve this issue, we searched the
Internet for the error/warning log we received when trying to work with the database dump
to identify the missing plugins and to import the dump into a properly configured database.

4.2.2 Computational Environment Configurations
While data-related issues caused problems for our reproduction attempts, by far the most
considerable impediment that we faced in almost every reproduction attempt was related
to the configuration of the computational environment. This includes in particular the
lack of documentation regarding a) the versions of the software packages that make up
the computational environment, b) the intended usage of the code, and c) the connections
between the scripts and the data. This was especially true when there were multiple data
processing steps involved in the map making process and several data sources that needed
to be accessed individually and then combined. In order to resolve these issues, we had to
resort to thoroughly scrutinising the source code itself and to experimenting with various
configurations in the hope to identify the correct one. Frequently, we also had to change the
(hard coded) file paths in the code in order to match our file system structure.

Such issues could be addressed by containerisation, for example, but we did not come
across any paper that preserved the computational environment – neither in the form of
a container nor as a deployed application. One of the screened papers shared the package
list for its Python environment as .yml file, which saved us much time. However, we had
to manually change the version of one package, since there were conflicts that could not be
automatically resolved by the package manager (conda). Two papers listed the names of the
Python packages they considered most significant, but without mentioning the corresponding
versions. This caused substantial extra effort during the reproduction process as some of the
packages we had to install in our system conflicted with each other during the execution of
the scripts, resulting in an abrupt termination of the workflow. After an extensive Internet
research on various Python forums, we tracked down which packages caused the error and
tried several combinations of different versions until we could execute the scripts successfully.
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Although the aforementioned issues mainly refer to interpreted languages that rely on
package availability, such as Python and R, similar problems were encountered in the case of
applications that use compiled languages, such as Java. Changes in the version or linkage
to the repositories of the application’s dependencies (libraries, plugins) not only mandate
re-configuration in part of the code, but also may result in different visualised output.

4.3 Communication with the Authors
Communicating with the authors proved to be a valuable resource in addressing many of
the issues outlined in Subsection 4.2. We contacted the correspondence authors via the
e-mail address provided in the paper, stating that we are running a reproduction study
that is focused on maps and expressing our interest in their work. In the same e-mail we
described the technical issues that we were facing and asked for their help. Most frequently
we reached out for help in case the code required more data files than those pointed out by
the availability section. When we came across broken links, we requested the correct URLs
from the authors. Other reasons for contacting the authors were to obtain more detailed
instructions for executing the code and to clarify which library versions had to be used. It is
worth noting that the authors almost always replied to us within a few days and were willing
to advise on how to proceed with the reproduction. In one occasion, this communication
resulted in an update of the corresponding data repository of the paper. We are very grateful
for the extensive and helpful support we received from the authors during this study.

4.4 Reproduced maps
Successful Reproduction

The maps in Figure 3 were reproduced using R scripts [12]. We can observe that the
reproduced map has titles for all the subfigures, while the original does not. The fonts of
the axes labels and units and the legend are not the same. The units in the axes that show
the longitude and latitude in degrees are represented in a different way. The orientation of
the vertical axis labels is also different. Finally, the strokes appear bolder and the colors
more saturated in the reproduced map. As we can see, the original and the reproduced
maps are not identical in the pixel level, but they visualise the same data in a way that the
intended message is still conveyed within the context of the paper. Therefore we considered
this reproduction to be successful.

Unsuccessful Reproduction

In this example, the analysis of the paper was elaborated in ArcGIS Pro. Taking advantage of
the instructions for reproducing the analysis that was provided by the authors [29], we tried
to reproduce these steps in QGIS. Evidently, the reproduced maps differ greatly from the
original ones. We attribute these deviations to different implementations in the underlying
functionalities of the two GUI applications and to possible missing steps in the instruction
sheet. Apart from the color scheme, the fonts, the basemap and the geographic extent, which
we attempted to approximate with manual configurations in the GUI, we ended up with
deep semantic differences that change drastically how the maps are read in the context of
the paper. The reproduced maps differ in the shape of the tiled area, the measurement scale
(as observed in the legend), and eventually, in the spatial distribution that is illustrated. As
the maps diverge considerably in semantic level, we considered this reproduction attempt
unsuccessful.
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(a) Original.
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(b) Reproduced.

Figure 3 Example of successful reproduction with differences of aesthetic nature. Original (a)
and reproduced (b) maps were created with R script. Original Figure (a) is extracted from Herbert
et al. [11] as is, under CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

5 Discussion

5.1 The State of Map Reproducibility

Based on our results and the insights gained through the reproduction study, it is evident
that map reproducibility is in a dire state: out of 27 candidate papers from the last two
years, we were able to only reproduce maps from four papers. However, it should be noted
that reproducibility in general is not yet fully established in the Geosciences as a general
requirement. In addition, half of the papers used commercial, proprietary software, which we
excluded since it would require those who want to reproduce the contained maps to purchase
the software. It is possible that the maps of those papers could have been reproduced, had we
accepted to use the corresponding software. In one such case, we attempted to reproduce the
maps using free and open software, which was not successful. Standardising map production
functionalities and its description could be a way to bridge this gap, as it would enable
different software to generate the same maps. Overall, we were positively surprised to be
able to reproduce any maps at all, given the obstacles we faced.

Conceptualising and operationalising map reproduction success was also a challenge,
as it became clear quite quickly that a pixel-based comparison is not rather useful. The
initial set of criteria we defined enabled us to systematically assess reproduction success but
constitute only a first step towards defining and formalising this concept and the underlying
process. On a more practical level, poor documentation or a complete lack thereof required
the most effort and frequently led to reproduction failure. While this is understandable given
the current reward mechanisms in scientific publishing, it would also be easy to overcome
and greatly reduce the effort involved in map reproduction. The data related issues we
encountered also highlighted the importance of archival data repositories with persistent
links for map reproduction.
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(a) Original.

(b) Reproduced.

Figure 4 Example of unsuccessful reproduction with semantic differences. Original (a) was
created with ArcGIS Pro and shows a subset of Figure 5 of Ramírez Aranda et al. [30], under CC
BY 4.0 (https://creativecommons.org/licenses/by/4.0/). The reproduction (b) was created
with QGIS.

5.2 Recommendations for Improving Map Reproducibility

From the experiences we gathered during our reproduction, we can infer a number of
recommendations for improving map reproducibility. The most important is to fully document
all steps and intermediate results, so that people unfamiliar with the research can execute
them independently and assess whether the intermediate outcomes they produce correspond
to those produced by the authors, in line with what was proposed by Silva et al. [32]. In
the simplest scenario, this could include providing a flowchart that shows which data was
used at what step using which analysis component. This way, it is much easier to identify
what might have gone wrong when the final result differs from the original map. A second
recommendation for improving map reproducibility is to publish data, code and configurations
with reproduction in mind. Using persistent links and data repositories avoids issues related
to dead links and changed datasets. When using public repositories, researchers should assess
their suitability for reproduction and make use of features that facilitate reproduction (e.g.,
archiving repositories in Github so that the snapshot at map production time is preserved).
Furthermore, it is helpful to provide relative file paths rather than absolute ones as well as to
preserve the structure of the file system. Containerisation is one promising option that can
help overcome many issues related to computational environment configurations, which has
been successfully used for reproduction in previous work [24]. A third recommendation is to
keep the map production process as simple as possible. When we tried to reproduce maps, we

https://creativecommons.org/licenses/by/4.0/
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generally observed that the more steps were involved (from data pre-processing to the final
map), the more difficult it became to successfully reproduce the final map. In some cases,
complex production processes cannot be avoided but should then be very well documented.
A fourth recommendation is to educate researchers on how to conduct reproducible research.
This has been suggested before [16, 26] and is important not only for making them aware
of the importance of reproducibility, but also to enable them to publish their research in
a reproducible way, including the maps they develop. Our final recommendation is to
define reproducible map standards so that assessing successful reproduction becomes easier
and researchers can easily estimate whether their published work meets those standards.
There are suggestions for reproducibility standards in general [22, 23, 27], but as outlined in
Section 3.2.1, a more nuanced approach might be needed for maps as a simple pixel-based
comparison does not capture well whether two maps convey the same message. The criteria
we outlined in that section are a starting point towards defining such standards. Finally, a
change of reward schemes in academic publishing (also strongly recommended by Ostermann
et al. in [27]) could greatly benefit map reproducibility, as at the moment the extra effort
required for making maps reproducible is not rewarded.

5.3 Limitations
Our study was exploratory in nature and thus is subject to a number of limitations. This
includes the relatively small amount of papers (27), which was reduced further after deeper
analysis. While this limits the generalisability of our findings, we were still able to identify
many relevant obstacles and gain insights into how maps from academic papers can be
reproduced. In addition, the reproduction study was carried out without a rigid, predefined
protocol, which was due to the novel domain (map reproducibility). Hence, later reproduction
attempts benefited from lessons learnt in earlier ones. Furthermore, the study was carried
out by a single researcher and their abilities and knowledge affected the reproduction process,
e.g., in terms of expertise in certain programming languages. It can be expected that
reproducing researchers vary in their abilities and knowledge as well, so while having only one
person do the reproductions limited generalisability, it also provided a realistic test for map
reproducibility. Finally, we used an initial simple set of assessment criteria to determine the
success of map reproduction. While clearly further research is needed here, we consider the
proposed set a good starting point and the presented study can serve as an initial evaluation
of those criteria as well.

5.4 Future Work
Our work brought to light several gray areas and loosely defined concepts regarding reprodu-
cible research, which also depend on individual interpretation. An important area for future
work is thus to further investigate the diverse perspectives surrounding the notion of successful
map reproduction. This applies in particular to the question when a map is considered
reproducible, which factors affect this decision, and how significant various semantic and
aesthetic differences are in this context. Another interesting question for further research is
to what extent can the reproducing researcher modify the map making process to create an
identical copy of the original map without compromising its integrity. Understanding and
integrating the different viewpoints will contribute to a more comprehensive evaluation of
map reproducibility. The clarification of these concepts will pave the way for more systematic
approaches to map comparisons, which can be useful beyond the reproducibility of the
map making processes as well. Examining these factors will contribute to advancing the
understanding and implementation of reproducible research in the Geosciences.
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6 Conclusion

In this study, we explored how reproducible maps are that are included in recent scientific
publications. We collected a total of 27 papers, attempted to reproduce the maps contained
therein, and managed to successfully reproduce them in four cases. We report on the process
that we followed and the obstacles that we encountered. Our key contributions are an initial
definition of reproducible map making, an inceptive set of criteria to assess the success of
a map reproduction attempt and a set of guidelines for improving map reproducibility in
geoscientific publications. Our work – while exploratory in nature – provides a first systematic
analysis of map reproducibility. These outcomes are aligned with previous work regarding
reproducibility in the domain of Geosciences but the particularities of maps as representational
artifacts introduce further challenges and require further research for conceptualising and
operationalising map reproduction. As a next step in this line of work, we are therefore
planning to consult researchers in the Geosciences to develop a deeper understanding of what
constitutes a successful map reproduction.
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Abstract
Accurate building height estimation is key to the automatic derivation of 3D city models from
emerging big geospatial data, including Volunteered Geographical Information (VGI). However,
an automatic solution for large-scale building height estimation based on low-cost VGI data is
currently missing. The fast development of VGI data platforms, especially OpenStreetMap (OSM)
and crowdsourced street-view images (SVI), offers a stimulating opportunity to fill this research
gap. In this work, we propose a semi-supervised learning (SSL) method of automatically estimating
building height from Mapillary SVI and OSM data to generate low-cost and open-source 3D city
modeling in LoD1. The proposed method consists of three parts: first, we propose an SSL schema
with the option of setting a different ratio of “pseudo label” during the supervised regression; second,
we extract multi-level morphometric features from OSM data (i.e., buildings and streets) for the
purposed of inferring building height; last, we design a building floor estimation workflow with a
pre-trained facade object detection network to generate “pseudo label” from SVI and assign it to
the corresponding OSM building footprint. In a case study, we validate the proposed SSL method in
the city of Heidelberg, Germany and evaluate the model performance against the reference data of
building heights. Based on three different regression models, namely Random Forest (RF), Support
Vector Machine (SVM), and Convolutional Neural Network (CNN), the SSL method leads to a clear
performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1
meters, which is competitive to state-of-the-art approaches. The preliminary result is promising and
motivates our future work in scaling up the proposed method based on low-cost VGI data, with
possibilities in even regions and areas with diverse data quality and availability.
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1 Introduction

For decades, the world has been comprehensively mapped in 2D, however a vertical dimension
remains underexplored despite its huge potential, which is even more critical in Global South
areas due to inherent mapping inequality and diverse data availability. Mapping human
settlements as a 3D representation of reality requires an accurate description of vertical
dimension besides the 2D footprints and shapes [19, 11, 14, 7, 23]. Such 3D representation of
human settlements is of significant importance in many aspects, for instance, quiet and shadow
routing [35], environmental exposure modeling [2, 40, 34], architecture and city planning
[32, 36] and population capacity estimation [37, 21]. However, it remains challenging to
derive low-cost and open-source 3D representation of buildings at scale. In this paper, with
“low-cost”, we mainly refer to the cost of data acquisition in 3D building modeling.

Given existing methods of photogrammetry and remote sensing, 3D city reconstruction is
still a high-cost and time-consuming task, which mostly requires extensive expert knowledge
and a large amount of geospatial data (e.g., cadastral data, airborne photogrammetry data).
This fact will certainly increase the difficulty of ordinary stakeholders and city governments
with limited funding in establishing 3D city modeling systems for their well-being demands.
Fortunately, the increasing availability of Volunteer Geographic Information (VGI) together
with crowdsourcing technology [16] has provided a low-cost and scalable solution of mapping
our world even in a 3D representation. OpenStreetMap (OSM), as the most successful VGI
project, was considered as a valuable global data source for creating large-scale 3D city models
[14, 12]. For instance, in [10], a joint processing method of OSM and mutli-sensor remote
sensing data (e.g., TanDEM-X and Sentinel-2) was developed to generate large-scale 3D
urban reconstruction; Milojevic-Dupont et al [27]. demonstrated the capability of accurate
building height prediction purely based on morphometric features (or urban forms) extracted
from OSM data (e.g., building and street geometry).

Moreover, several recent works in [41] and [28] highlight the huge potential of low-cost
street-view images (SVI) in increasing the efficiency of large-scale 3D city modeling. The
idea is intuitive as SVI provides a low-cost and close-range observation of urban buildings,
therefore contains key information needed for 3D reconstruction, such as facade elements,
shapes, and building heights. Given the fast development of geospatial machine learning
and artificial intelligence (GeoAI) [17], automatic interpretations of SVI have become more
efficient than ever before. Hence, the geospatial ML method, which can integrate building
height information derived from SVI with existing 2D building footprints from OSM, presents
a promising solution for creating large-scale and open-source 3D city models.

Semi-supervised Learning

&

OpenStreetMap Street-View Image LoD 1 City Model

Building Height Estimation

GeoAI

Figure 1 An overview of building height estimation via semi-supervised learning from Open-
StreetMap data and street-view images.
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In this paper, we propose a semi-supervised learning (SSL) method (as shown in Figure 1)
to accurately estimate building height based on open-source SVI and OSM data. As a case
study, we implement the proposed method by training three different machine learning (ML)
models, namely Random Forests (RF), Support Vector Machine (SVM), and Convolutional
Neural Network (CNN), in the city of Heidelberg, Germany. Specifically, we first extract
multi-level urban morphometric features from existing OSM data (i.e., buildings, streets,
street blocks) as a feature space to the regression of building height, then we collect SVI with
metadata via the Mapillary platform (https://www.mapillary.com) and design a building
floor estimation workflow with a pre-trained facade object detection network to generate
“pseudo label” for the SSL of building height estimation models. As a result, we create an
open-source LoD1 3D city models for selected areas in Heidelberg using the low-cost SVI
data and OSM 2D building footprints.

2 Related Work

2.1 Building Height Estimation
Existing methods of building height estimation generally rely on Light Detection and Ranging
(LiDAR) [15, 29], Synthetic Aperture Radar (SAR) [25], and high-resolution remote sensing
image data [26]. In these data sources, LiDAR data provides highly accurate information
of building height but is difficult to estimate building height in large scale, considering its
collection cost. For SAR, the estimation result is often affected by the mixture of different
microwave scattering, thus have high uncertainties [33]. To avoid these problems, many
researchers also investigate remote sensing image data. For these methods, considering
that remote sensing image data does not contain 3D information directly, existing works
select stereo/multi-view images as the data source to achieve the estimation of building
height [1, 8, 42].

However, although SAR and remote sensing image data have a relatively low collection
cost than LiDAR data, the complex data processing of these data source causes their high
time and labor costs. Compared with these three data, SVI data and 2D building footprint
data are easier and cheaper to be collected and processed, especially with the support of
VGI (e.g., Mapillary and OpenStreetMap). There have been some early efforts to estimate
building height based on these new data sources. Biljecki et al. [6], Milojevic-Dupont et
al. [27], and Bernard et al. [4] proposed several methods based on RF or other ML approaches
to analyze the relationship between building heights and their features (such as building area
and type), and finally achieve the building height estimation from 2D footprint data. Yan
and Huang [39] proposed a deep learning-based method to estimate building height from
SVI. Zhao et al. [43] combined 2D building footprints and SVI to estimate building heights,
which also used deep learning technology. These methods also achieved good performance
but require a large amount of training data, which limits their generalization and practicality.
Currently, there is little work on how to accurately estimate building height from 2D building
footprint and SVI with only limited training data.

2.2 VGI and 3D Building Models
CityGML is a well-known international standard for 3D building modeling. In CityGML
2.0, 3D building models are divided into five levels of detail (LoD). In LoD0, only the 2D
footprint information is involved in the model. In LoD1, the LoD0 model is extruded by
their building heights, and the obtained cuboid after extrusion are the LoD1 model. In
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LoD2, the 3D roof structure information is added into the LoD2 model. The LoD3 model
further contains the facade element information, such as windows and doors. The LoD4
model is more complicated and contains both external and internal building elements. To
meet the requirements of the abovementioned CityGML standard, many cities like New York,
Singapore, and Berlin have created and freely released 3D city models with different LoDs
in the past years. However, most of these 3D city building models are constructed in LoD1
or LoD2 for urban area, while large-scale and fine-grained (LoD3 and LoD4) models with
semantic information are hardly available for cities with limited funding in establishing their
own 3D city modelling systems. Hence, that is the main motivation of this work to provide a
low-cost and open-source solution of creating large-scale 3D city models (e.g., first in LoD1).

Early work in [14] highlighted that OSM, as a crowdsourced VGI data source, can
be combined with international standards of the Open Geospatial Consortium (OGC) to
effectively create CityGML models in LoD1 and LoD2. Recently, Zhang et. al [41] proposed
a web-based interactive system, namely VGI3D, as a collaborative platform to collect 3D
building models with fine-grained semantic information in a crowdsourcing approach. In this
work, we aim to further investigate the potential of low-cost VGI data sources, especially
OSM data and crowdsourced SVI, in generating LoD1 3D city models via automatic building
height estimation with only limited training data.

3 Methodology

The proposed method of automatic building height estimation mainly consists of three parts:
(1) an SSL schema for height regression, (2) OSM morphometric feature extraction, and (3)
building floor estimation based on the SVI. Figure 2 shows the methodological workflow
of automatically generating open-source 3D city modeling (i.e., LoD1 city model) via the
proposed SSL method. In the rest of this section, we will elaborate on the details of this
design.

Figure 2 The methodological workflow of automatic building height estimation from OpenStreet-
Map data and street-view images.

3.1 Semi-supervised Learning Schema
In traditional supervised learning, one relies on labelled data to build the prediction model.
However, such a labelling process is mostly time consuming, labour demanding, and difficult
to scale up. Therefore, the capability of learning from unlabeled data is a desirable feature
to overcome this challenge. In this context, Semi-supervised learning (SSL) is a promising
technique to accommodate the lack of labeled data by allowing the model to integrate part of
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unlabeled data during the supervised model training [44, 18]. To be noticed, the SSL herein
is different from self-supervised learning, which does not rely on any ground truth labels
during the training process. A common way of implementing SSL is to generate “pseudo
label” from the data itself or even auxiliary data [22], which can be then merged with existing
labelled data to boost model performance. Following this concept, we design an SSL schema
with the option of defining different ratio of “pseudo label” during the supervised regression
of building height.

The proposed SSL schema is tasked with estimating building heights (h) based on a list
of morphometric features x = ⟨x1, . . . , xm⟩ extracted from diverse scales of OSM data (e.g.,
individual building footprint, street network, street block, etc.), where m refers to the total
number of features. In this context, the task of building height estimating can be formulated
as a multifactor regression task in the following mathematic form:

hΘ(x) =
m∑

i=0
Θixi (1)

where Θ = ⟨Θ1, . . . , Θm⟩ is the corresponding regression coefficients. More importantly, the
regression target value of building heights h comes from the following two parts:

h = (1 − a) ∗ hRaw + a ∗ hSSL (2)

Where a is the ratio of “pseudo label” (hSSL) obtained from automatic facade parsing
of Mapillary SVI. We will elaborate on this later in Section 3.3, while it is sufficient to
understand that besides available training label (i.e., known building heights) the model can
also benefic from SSL labels which are extracted from large-scale and open-source SVI in an
automatic and unsupervised method.

To build the model for accurate building height estimation, we train a classic supervised
regression model of finding the optimal regression coefficients with gradient descent and
optimizing a loss function of Mean Square Error (MSE) in the following format:

LMAE
Θ∗ = arg min

Θ

1
N

N∑
i=1

∥ ĥi − hi ∥ (3)

where LMAE and Θ∗ refer to the loss function and the optimal coefficients set, respectively,
and N is the number of training samples (hSSL and hRaw).

The design of SSL is concise and model-independent, which means in case we can keep
feeding the ML models with “pseudo label” (hSSL) of building height extracted from SVI,
the regression task can be tackled with diverse ML models. In this paper, we demonstrate
the capability of these three ML models (i.e., RF, SVM, and CNN) in estimating building
height in a typical western European city, so to say the city of Heidelberg, Germany.

3.2 OSM Morphometric Feature Extraction
Intensive existing works have confirmed the excellent capability of multi-level morphological
features (or urban-form features) in predicting key attributes (e.g., height, function, energy
consumption, etc.) of buildings and streets from an urban analytic perspective [27, 5].

To infer building height, we implement a range of morphometric features extracted from
OSM at three different levels, namely building-level, street-level, and street block-level, as
shown in Table 1. In total, we calculate 129 morphometric features based on OSM data (i.e.,
individual building footprints and street networks) to construct their spatial and geometric
relationships (e.g., spatial vicinity and compactness of street-blocks). More specifically, we
elaborate on the details of OSM morphometric features (in three distinct levels) as follows:
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Building-level. Considering the hidden information from the building footprint itself, we
calculate 9 features such as footprint area, perimeter, circular compactness, convexity,
orientation and length of wall shared with other buildings. The intuition herein is that
such building-level features can provide explicit and implicit information about the footprint
shape (e.g., compactness and complexity), which contributes to estimating building heights.
For instance, it was reported that a higher building generally consists of a large net internal
area, and vice versa [6]. In addition, since buildings are mapped differently in OSM (e.g.,
one building in several polygons or several buildings in one polygon), we simplify this data
quality issue by considering each polygon as a single building, while future work is definitely
needed in investigating the impact of how individual buildings are presented in OSM.

Street-level. Besides morphometric features of the building footprint itself, the street
network surrounding a building can be informative in estimating building height. For instance,
a high density (or compactness) of streets can imply more high-story buildings in order to
accommodate a potentially higher number of residents. Therefore, we calculate 9 features
based on the spatial relationship of buildings and their closest streets and road intersections,
such as length, average width, distance to the building, local closeness, betweenness and
centrality, etc.

Street block-level. Furthermore, we generate morphological tessellations based on the
OSM street network. This tessellation representation and its interaction with roads and
buildings were included in the design of the feature space (8 features). The motivation is
straightforward, as a preliminary assumption is that buildings in the same block are more
likely to be of a similar height.

Moreover, to capture the spatial auto-correlation in the OSM data, we extend these three
levels of OSM morphometric features by considering their second-order features (e.g., total,
average, and standard deviation) in the neighbourhood (i.e., within 20, 50, and 500 meters
buffers). As for the implementation, we rely on the open-source Python software toolkit
called momepy v.0.5.1 to calculate these features. For a complete list of OSM morphomet-
ric features, please refer to the GitHub repository (https://github.com/bobleegogogo/
building_height).

Table 1 List of OSM morphometric features extracted at building-level, street-level, and street-
block level.

Level Group Features Count

Building

building footprint e.g., area, perimeter, conversity etc. 9
buildings within 50m e.g., total/average/standard deviation of area,perimeter,conversity etc. 18
buildings within 200m e.g., total/average/standard deviation of perimeter, etc. 18
buildings within 500m e.g., total/average/standard deviation of conversity, etc. 18

Street

closest streets and intersections e.g., length, closeness and distances to the intersection 9
closest streets and intersections within 50m e.g., total/average/standard deviation of distances to the closest intersection 11
closest streets and intersections within 200m e.g., total/average/standard deviation of distances to the closest intersection 11
closest streets and intersections within 500m e.g., total/average/standard deviation of distances to the closest intersection 11

Street-block
street-block itself e.g., area, convexity, orientation, corner count, etc. 8
buildings in blocks e.g., count, total/average/standard deviation of the area of building 4
street-block within 50, 200 and 500m e.g., total/average/standard corner count, area of blocks etc. 14

Total features 129

3.3 Building Floor Estimation from Street-Level Images
Inspired by the work of automatic facade parsing in [20], we develop a building floor estimation
workflow based on automatic facade parsing and urban architecture rules. In short, we
aim to generate the estimation of building floor or height (by multiplying an average floor

https://github.com/bobleegogogo/building_height
https://github.com/bobleegogogo/building_height
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height) as the “pseudo label” to guide ML regression models with the aforementioned OSM
morphometric features as covariates. Figure 3 illustrates the developed method of building
floor estimation based on SVI. To explain the developed method in more detail, we elaborate
on three main steps as follows:

+Darknet53
Backbone

Facade Object Detection

SVI and OSM Alignment Building Floor Estimation

compass_angle = 216.94

floor #1

floor #2

floor #3

all windows

Mapillary API:
geometry (lat, long)
compass_angle 0 to 360 
etc.

YOLO v3
Conv+BN+ReLU

Upsamping

Concatenate Layer

Convolutional Set

Figure 3 Three steps of building floor estimation from street-level images: (1) aligning SVI and
OSM building; (2) facade parsing using object detection; (3) generating “pseudo label” by building
floor estimation.

SVI and OSM building alignment. As the first step, we download existing SVI from
Mapillary via their open-source image API, where each SVI record consists of geotagged
coordinates of the camera during a trip sequence and additional metadata information
(Table 2), especially the compass angle of the camera direction (i.e., 0 to 360 degrees). This
compass angle together with geotagged coordinates of the camera is key for aligning SVI
with an individual OSM building. To this end, we apply a simple ray-tracing method to
determine their relationship and assign the selected Mapillary SVI to its corresponding OSM
building footprints (see Figure 3). Currently, we manually select Mapillary images which
cover the complete facade of a building without being blocked by vegetation and cars, while
future work is needed to automate this selecting process. A possible solution is to apply
semantic segmentation approaches and ensure the skyline and ground are both visible within
a single SVI.

Facade object detection. There are two common approaches in measuring building heights:
either estimating absolute metrics (e.g., meters) or counting the floor number. As for
accurately inferring the floor number, key features (e.g., window, balcony, and door) and
their layout in the building facade play a key role [6]. Herein, we aim to detect these key
features from street-level Mapillary imagery via the facade parsing technique. To this end, we
follow the deep learning method developed in [20] for automatic facade parsing from the SVI
data. Specifically, we use a pre-trained one-stage object detection network, namely YOLO

GISc ience 2023



7:8 Automatic Building Height Estimation

Table 2 Selected metadata of SVI from the Mapillary Image API Endpoints.

Fields Data Format Description
computed_geometry GeoJSON Point latitude and longitude after running image processing.
computed_compass_angle float compass angle of the camera direction.
computed_altitude float altitude after running image processing, from sea level.
computed_rotation enum corrected orientation of the image, refer to OpenSfM definitation.
camera_type enum type of camera projection: “perspective”, “fisheye”, “equirectangular”.
captured_at timestamp capture time of the camera.
camera_parameters array of float focal length, k1, k2 of the camera.
exif_orientation enum orientation of the camera as given by the Exif tag.
Note: All fields refer to Mapillary API Version 4.

v3 [31] (with the Darknet53 backbone), for the purpose of fast and accurate facade object
detection. Herein, the facade object detection has been pre-trained on a facade semantic
dataset called FaçadeWHU [20], thus could be directly applied to detect key facade features
(e.g., window, balcony, and door) from the Mapillary SVI collected in Heidelberg without
further training. As a result, the detected facade features are saved as a list of objects and
their image coordinates.

Building floor estimation. Based on facade object detection results, we then apply a rule-
based approach to determine the floor number in order to estimate the height of corresponding
OSM buildings. Specifically, we first group facade objects (i.e., windows and doors) with
their vertical coordinates and calculate the difference between each two neighbored elements,
next k-mean clustering (with k=2) is used to find the clusters where objects are aligned
vertically with each other, which results in a floor number estimation by counting the number
of windows. By considering an average floor-to-floor height (i.e., 2.5 meters for residential or
3.5 meters for commercial), we can then derive the building height information from the SVI
data, and use it as an SSL training label (hSSL) to train the ML regression model on OSM
morphometric features.

4 Preliminary Result

4.1 Case Study
As a case study, we implemented and tested the proposed method (Figure 2) in a classic
western European city, namely the city of Heidelberg, Germany by considering Heidelberg
was relatively well-mapped in OSM. Moreover, the reference data (hRaw) of building heights
obtained from the City of Heidelberg is also available, where building eaves heights (as we aim
at LoD1 model for now) were recorded and spatially joined with OSM building footprints.

We extracted the latest OSM data (buildings and streets) via the ohsome API, which
is built on the OpenStreetMap History Database (OSHDB) [30]. Herein, the ohsome API
enables us to trace back to even historical OSM data, which can potentially contribute to
more intrinsic features (e.g., the curve of nodes or contributions density). However, this
goes beyond the scope of this paper. In this work, we calculated 129 morphometric features
for 16,089 building footprints within the city of Heidelberg, which were used to train three
types of ML regression models, specifically RF with 1000 trees, SVM with RBF kernel, and
a three-layer dense CNN, to estimate building heights.

Regarding the SVI data, we followed the method described in Figure 3 by manually
choosing 308 street-level Mapillary images and aligning them with 308 corresponding OSM
building footprints by considering the SVI metadata. Then, we estimated their floor number
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and further converted them into building heights by multiplying an average height of 2.5
meters for residential buildings and 3.5 meters for commercial and public buildings [9]. Herein,
we manually verified the building function for these 308 SVI and their corresponding OSM
building footprints. Although it is possible to automate this process with OSM data [13, 3],
the prediction of building functions is beyond the scope of this paper. Despite its limitation,
the proposed method provides a promising and low-cost solution to create open-source 3D
city models (LoD1) by consuming only VGI data sourced (i.e., OSM and SVI) with a flexible
SSL schema.

4.2 Experimental Result
In our case study, we conduct two comparative analysis to evaluate the capability of our
SSL method w.r.t mainly two variables: first, the different OSM morphometric features,
second, the different ratio of “pseudo label” during SSL training, by comparing the regress
performance among three ML regression models (e.g., RF, SVM, and CNN).

Height estimation with different OSM features. To validate multi-level morphometric
features extracted from OSM, Table 3 compares the regression performance of three ML
models (RF, SVM, and CNN) using two different levels of morphometric features (i.e., 64
building-level features and all 129 features). Herein, we set a split ratio (between training and
testing samples) of 0.7 on the reference data and calculate three common regression metrics
(MAE, RMSE, and R2, all in meters) for the evaluation purpose. An important finding is
that the integration of street and street-block features leads to an incremental boosting in
the model performance, though this is less significant in the case of CNN. Though in the
case of SVM, more features seem to be not helpful. A potential reason can be attributed to a
potential effect of the curse of dimensionality. In short, an average MAE of around 2.3 meters
(RF with 129 features), which is less than the average height of a single floor, confirms the
feasibility of accurately estimating building height only from OSM morphometric features.
This result encourages us to incorporate these OSM morphometric features with the proposed
SSL method to better create large-scale and open-source 3D city models.

Table 3 Preliminary results of estimating building heights with different OSM features and
regression models.

RF SVM CNN
Feature 64 129 64 129 64 129
MAE 2.58 2.38 2.89 2.91 2.78 2.67
RMSE 3.55 3.34 3.89 3.91 3.71 3.62

R2 0.2235 0.3140 0.0681 0.0567 0.1515 0.1929

SSL with different ratio of “pseudo label”. Based on the workflow described in Figure
3, we are able to collect 308 SVI from Mapillary and extract “pseudo label” via facade
object detection, then associate these height values with their corresponding OSM building
footprints. To test the impact of different SSL ratio, we set up three training sets: 1) to
use only estimated heights from SVI (SVI) as an aggressive scenario of SSL; 2) to randomly
select 308 OSM buildings and retrieve their heights from the reference data to simulate the
fully supervised scenario (RAW); 3) to merge the “pseud label” with reference heights thus
have a balance SSL training set (i.e., 308 each for SVI and RAW). In addition, a valuation
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set with 2,000 buildings randomly extracted from the reference data is considered given the
limited number of training labels. Table 4 shows the numerical results using different ratio
of “pseudo label” (e.g., SVI, RAW, and SSL) and three ML regression models (with 129
features). Although the “pseudo label” (SVI) still leads to the largest error (w.r.t MAE and
RMSE) in all three regression models, the “pseudo” height extracted from SVI is indeed
informative for building height regression, more importantly, it is beneficial when merging
with existing labels. Therefore, the quantitative result listed in Table 4 confirms that the
proposed SSL method is effective and efficient in extracting “pseudo” training information
from crowdsourced SVI data, which largely boosts the estimation accuracy using all three
different ML regression models. In future work, it would be interesting to further investigate
how different building types (e.g., residential or commercial, one-floor or multi-floor) can
affect the accuracy of building height estimation.

Table 4 Preliminary results of estimating building heights with different training sets and
regression models.

RF SVM CNN
Label SVI RAW SSL SVI RAW SSL SVI RAW SSL
MAE 2.75 2.67 2.07 2.93 2.89 2.20 3.23 3.03 2.72
RMSE 3.85 3.80 2.99 3.99 3.87 3.47 4.11 3.99 3.71

R2 0.2302 0.2210 0.5368 0.1726 0.0315 0.3735 0.0241 0.1718 0.2458

Regarding the generation of “pseudo label”, Figure 4 shows selected examples of building
floor estimations from Mapillary SVI in Heidelberg. One can observe that for lower floor
numbers in case the captured facade is complete, the model works in a sensible way. However,
we encountered several challenging cases when the building facade is not complete or the
layout of windows (e.g., dormer windows) is difficult to be grouped by our floor estimation
rules. In this context, future work is needed to develop a more robust method of extracting
and distinguishing related features from SVI, such as roof types, dormer windows, and
building functions, which can be helpful to generate more reliable “pseudo labels” for the
SSL method.

5 Discussion

In Figure 5, we demonstrate a 3D city model in LoD1 for selected buildings in the old town
of Heidelberg, which is created using the proposed SSL method based on SVI (Figure 5 (b))
and OSM building footprints (Figure 5 (a)). In future work, we aim to refine this method
by addressing the aforementioned limitations and comparing the estimated one with official
LoD1 city models in selected cities.

Our preliminary result echoes the findings in [20] and [27] to a certain extent. More
importantly, the SSL method will make our method in principle even more flexible and
easy-to-apply in areas where the availability of training data (e.g., existing building heights)
is limited or difficult-to-access. For instance, in most developed countries, 3D city models
can be established using e.g., Digital Terrain Model (DTM), however the acquisition of
large-scale and accurate DTM data remains costly and time-consuming. In this context,
the proposed method provides a solution to directly harness existing crowdsourced VGI
data (OSM and SVI) for 3D city modeling without additional data acquisition (e.g., DTM).
Therefore, the “low-cost” herein mainly refers to the cost of traditional data acquisition
methods w.r.t building height information. Despite the high potential, we identify several
limitations to be addressed in future work:
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Figure 4 Selected examples of facade object detection and floor number estimating from Mapillary
images in Heidelberg.

Figure 5 The creation of a LoD1 3D city model using SVI and OSM data in the old town of
Heidelberg. (a) OSM data with SVI metadata; (b) SVI with face object detection results; (c) LoD1
model with estimated building heights.
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It is key to improve the building floor estimation workflow in terms of accuracy and speed,
with which more “pseudo labels” can be extracted and used for SSL. For instance, the
current SVI selection is done manually to ensure complete coverage of a building facade
without being blocked by vegetation and cars, while this process can be automated using
a semantic segmentation approach to improve the efficiency of generating high-quality
“pseudo labels” at scale. Moreover, OSM data itself may contain information about
building height (“building:levels=* or height=*”) as well, which could be a helpful source
to get more training data into the SSL method.
Despite its low-cost and open-source nature, the quality aspect of VGI data (i.e., OSM
and SVI data) remains under-quantified in this work, but certainly deserves a careful
and decent treatment when applied to different countries or cities in the world [24]. For
instance, the positional error and obstruction in SVI can significantly hinder the existing
floor estimation approach. In addition, one needs to investigate how many SVI images are
needed to have a reasonable spatial coverage of a study area to ensure the effectiveness of
the SSL method.
The ML regression models used in this work are based on a 1D vector feature space (up
to 129 different features). However, a more sophisticated method is needed to encode
the spatial relationship among buildings. For example, one option is to apply a graph
CNN [38] as a spatial-explicit building height regressor.
It is still unclear how different architecture types (e.g., roof type, construction age,
building function) and city styles (e.g., low-rise, medium-rise, or high-rise) will affect the
effectiveness and accuracy of our SSL method.

6 Conclusion

In this paper, we present a semi-supervised learning (SSL) method of automatic building
height estimation by integrating crowdsourced street-level images (SVI) with multi-level
morphometric features extracted from the OpenStreetMap (OSM) data. In this context, we
design a workflow to convert facade object detection results from Mapillary SVI into “pseudo
label” of building heights for three different ML regression models. As a case study, we
validate the proposed SSL method in the city of Heidelberg, Germany, and the preliminary
result looks very promising. However, the varying quality of volunteered geographical
information (VGI) data, cultural and city-wise differences in the morphological features used,
and the varying availability of SVI, all lead to certain limitations of such an SSL method.
Our future work will focus on tackling these limitations and provide a robust and scalable
solution of large-scale and open-source 3D city modeling purely based on low-cost VGI data.
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1 Introduction

Citizen science (CS), public participation in scientific projects [3], is not a new concept as
for a long time amateur naturalists have been collecting animal and plant specimens and
contributing to museum collections [24]. With rapid technological advancements in recent
years, the number of CS projects has expanded significantly [19]. The advantage of technology-
supported CS is that it favours advanced data collection processes and then additional
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interaction capabilities [20]. Despite the increased number of CS projects, the two essential
features of engagement, initiating and sustaining participation, continue to be important
concerns [31, 11]. Accordingly, several studies have been conducted to better understand
the motivations of participants in contributing to CS projects [21, 8]. Consequently, the
importance of interaction with participants and providing them feedback has been mentioned
frequently as the main factors to keep citizens engaged [27, 18]. Nonetheless, few projects
have investigated the role of feedback on increasing engagement, and if they have, the
interaction has been primarily one-way and in the form of a generic response message such as
an acknowledgment note or general information regarding the project [27]. Yet, less emphasis
has been paid to user-centered feedback and interactions, or interactions that are specific
to the contributions made by each participant. Biodiversity CS projects are an excellent
example of user-centered feedback. Image recognition techniques are utilized to provide
participants with the name of the species captured in their wildlife images [29]. This feedback
helps them to verify the species name before uploading the observation to the platform,
ensuring accuracy and promoting greater participation. In these projects, the feedback is
centered around the participant’s submitted image of the species. Although feedback based
on images is valuable, even more accurate feedback can be achieved by considering additional
factors such as the location and time of the observation. For instance, feedback could be
provided on the probability of encountering a particular species at a specific location and
time. Thus, considering various dimensions to interact with the participants is one very
important element.

Another important factor to consider while interacting with participants is their het-
erogeneity. For example, for some participants, interaction means receiving incentives, for
others, it means receiving acknowledgments and recognition, for yet others, it means active
communication about the validity of their contributions and the project’s progress, and
finally for others, it means receiving guidance on taking actions that may even go beyond
the project’s objectives and/or time frame. As a result, it is essential to conceptualize the
project in such a way that it accounts for these varying levels of interaction.

The objective of this research is to design and implement a participation platform that
maximizes citizen interactions and encourages public engagement. Such interactions should
not be limited to user single contribution but should include advanced capabilities that support
different levels of platform feedback to the citizens, promoting active public engagement.
These principles should be supported by practical user-friendly interfaces and applications
experimented in real contexts. This paper introduces a framework that favours four levels of
possible interactions with CS participants. Moreover, we investigate how these interactions
are integrated within the three dimensions of space, time and theme. Furthermore, as a proof
of concept, we present a case study of an implemented biodiversity CS project that shows
how our approach may be put into practice, focusing on the third level of our interaction
framework. In conclusion, we present the potential for expanding the case study and provide
examples of the adaptability of the interaction framework to other CS applications in diverse
fields.

2 Participation and communication in CS

Active public participation in CS projects can lead to the acquisition and contribution
of knowledge, as well as the desire and satisfaction of being a part of a process and a
community [33]. There are different categorizations of CS levels of participation, which
are mainly focused on the degree of engagement in the project [18]. One of the most
known classifications of participants is the one defined by Haklay [13]. Haklay’s ladder
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of participation includes four levels: crowdsourcing, distributed intelligence, participatory
science, and extreme CS. As we progress through the levels, the usage of cognition in task
performance increases, and participants become involved in greater phases of the project, such
as in extreme CS where the participants are involved in problem definition, data collection,
and analysis. In a later article [14], Haklay discussed the common conceptualizations of
participation related to the misjudgment of participants based on their level of participation
by categorizing low level participation (participating mainly to collect data) as “bad” and
high level participation (participating in various phases of a project) as “good”. He designed a
matrix with four cells where the participation to a project depends on the level of knowledge
and level of engagement needed for the project, thus four possibilities of low/high, low/low,
high/low, and high/high level of knowledge and level of engagement.

While the majority of the literature has been on the level of engagement and participation
as measured by the extent to which people contribute to a CS project, less emphasis has been
placed on the level of interactions with participants. Various CS projects focus primarily
on obtaining data from participants rather than connecting with and understanding their
needs as well as giving some information back to them, resulting in a failure to engage
people to continue participating as well as a failure to learn from the project [9, 7, 17].
Accordingly, maintaining active communication with participants is critical, but what are
the numerous methods by which scientists might develop this interaction between themselves
and the citizens? Is it simply the sharing of information or showing appreciation? While
communication is critical, some people do not need to engage with one another in order
to contribute to a project, while others require active communication and information
exchange [12]. It is thus important to understand how to define communication in CS.

Citizens can play different roles when being part of a participatory knowledge production
process. Different levels of implications can be identified, from contributory to participatory
and actor levels with citizens being progressively involved in dialogue-based relationships and
empowerment [15]. At the abstract level, an interaction space generates a common framework
for exchange using bilateral communications. Different dimensions can be identified to
qualify such interaction space from the physical, spatio-temporal, semantics and technological
dimensions. According to Hekker and Taddichen [15] communication in CS can take two
forms. First, communication in its most fundamental sense, which is information exchange
and two-way dialogues. Second communication as a tool, to identify and reach the target
audience, to motivate participants to contribute, to negotiate interests, to provide feedback,
and to communicate results.

Given that there are various types of CS projects [3], the goals of communication vary
based on the type of project. For contributory projects, where scientists design the project and
members of the public primarily contribute data, the goals of communication for citizens are to
follow instructions, learn and apply them, and the goals of communication for scientists are to
promote participation, increase motivation, and sustain participation [15]. However, in other
types of projects where citizens are involved in more steps of the project, such as co-created
projects, where the project is designed collaboratively by scientists and members of the public,
the main goals of communication for citizens are to provide expertise, negotiate interests,
exchange knowledge, create something together, and so on, and the goals of communication
for scientists are similar to the citizens with the addition of managing conflicts among the
partners [15].

For interaction with citizens, continuous attention is given to the different mechanisms
that can foster participation and especially rewards offered to citizens [5, 6]. Certainly,
citizens are more likely to get involved if they are convinced of the project’s importance.
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Monetary rewards have been used and considered as a way to boost citizen participation [5],
however, we believe that these methods may introduce biases in the participation process
and the topic remains a subject of ongoing discussion in the scientific community. Online
acknowledgement is indeed part of good practices but nevertheless they cannot generate
further interactions. Rather than acknowledging or monetarizing them, citizens should be
considered as active players that can significantly contribute to participatory projects, and
giving them a sense of citizen contributors. Besides the studies on communication and
interaction with citizens, categorization of these interactions taking into account multiple
dimensions of space, time, and theme is missing, to the best of our knowledge.

3 Toward a multi-dimensional 4-level interaction framework

We introduce a multi-level framework for categorizing various levels of interaction with
participants in CS projects, and then explain how these levels are integrated across the
three dimensions of space, time, and theme. As there are diverse motivating factors to
engage citizens in contributing to CS projects [21], some participants do not require any
communication, while others demand active interaction to sustain their contribution. In this
framework, illustrated in figure 1 four levels of interactions are defined: basic interaction,
incentivized interaction, user-centered interaction, and action-oriented interaction.

Basic interaction: The first level includes basic feedback to the participants such as a
thank you message after a contribution, or very general information about the state of the
project. This level includes the participants whose input is independent of whether or not
they are interacted with. They can be highly enthusiastic individuals who are passionate
about a particular subject, such as bird watchers who are eager to report sightings and
observations, as well as casual participants who may not be as actively engaged in the domain,
but who are willing to contribute when the opportunity arises.

Incentivized interaction: This level includes interacting with the participants by rewarding
them for their contribution. This interaction can take the form of rewards, which can be
either tangible (such as vouchers) or intangible (such as points in a game or a certificate)
[23]. These rewards are given in recognition of their contribution.

User-centered interaction: The third level includes providing feedback to participants,
which are tailored to their contributions or in accordance to their preferences. This interaction
level aims to maintain the contribution of participants that need to receive personalized
feedback on their specific contributions. This feedback should not be general, but should
rather be tailored to the individual’s interests and preferences, taking into account the type
of data they prefer to contribute, the location they prefer to contribute data from, and their
preferred time for contributing data. In other words, the feedback should be user-centered
and should address the three dimensions of space, time, and theme (combined or separated)
to generate information that is specific to the participant.

Action-oriented interaction: This level of interaction involves providing participants with
guidance and instructions that can be useful in performing an action. This level aims at
maintaining the participants who are not only interested in receiving personalized feedback
or useful information, but also desire guidance on ways they can actively contribute to
the project’s goals. For instance, in a biodiversity project, some participants may be more
interested in finding out how they can help biodiversity, besides collecting observations. This
can range from simple actions like planting a tree, to more elaborate measures like setting
up bird feeders. These individuals seek guidance on actions they can take to assist with the
project’s objectives. The interaction at this level can go beyond the objective and time frame
of the project depending on the type of actions that are proposed to the participants.
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Figure 1 The four level interaction framework. The interaction starts at a basic level, and as we
progress through the levels, the focus of interaction shifts towards the contributions and requirements
of the participants.

Furthermore, the four levels of interactions outlined before are incorporated within the
framework of the three dimensions of space,time, and theme. Citizen observations are most
frequently if not always built around the spatial (the where), temporal (the when) and
thematic (the what) dimensions. In fact, spatial and temporal abstractions are fundamental
to how humans perceive, conceptualize and experience their environment [26]. The respective
roles of space and time have also been recognized in the development of interactive multimedia
applications to both ensure contextual synchronization and then consistency [32]. For example,
a given subject might have partial or complete knowledge of the spatial environment involved
in multimedia interactions, as well as the one of the temporal coverage. A similar statement
can be made regarding the thematic dimensions involved in such multimedia interactions.
Indeed, in CS associated to geographical information, it makes sense to consider space,
time and theme as fundamental information facets and structural dimensions to organise an
interactive and active participatory framework.

When a participant makes a contribution, all the three dimensions converge since CS
contributions occur in a specific location, at a certain time, and for a specified theme or
subject. Figure 2 shows the connection between the three dimensions of space, time, and
theme with various levels of interaction.

During the initial stage, all forms of participation are included within the convergence
of the three dimensions to create a contribution. However, based on the requirements
of the participant and the design of the project, the interaction with participants can be
directed towards one specific dimension, two dimensions, or all three. Level 3 interaction
falls under this category, where the interaction takes the form of user-centered feedback to
the participant, and the feedback provided may vary based on the dimension.

The spatial dimension in a project can provide participants with location-based guidance,
informing them of where a specific phenomenon is more likely to occur or what information
can be collected at a particular location. However, some feedback is location-independent.
For instance, the feedback can be tailored to the participant’s preferred level of complexity
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by proposing tasks related to their needs, thus customizing their contribution experience.
In some cases, feedback can encompass multiple dimensions, including both spatial and
temporal elements, giving the participant personalized information asking where and when
they would like to make a contribution. These types of feedback are often associated with
environmental data collection, where both the location and timing of the data collection play
important roles. This type of feedback can allow participants to maximize the impact of
their contributions and help ensure that the data collected is relevant and useful.

Finally, at the highest level of interaction where there is an action involved, all three
dimensions converge again, as an action takes place at a specific location, time, and in
relation to a specific theme, thus integrating all three dimensions.

Retroactions between the interaction framework and the citizens can be made at different
levels of interactions, whether the priority is given to the spatial (e.g., species observed at a
given location), temporal (e.g., species observed at a given time) or thematic dimension (e.g.,
where and when a given species is observed). This emphasizes the prominent role played by
the spatial and temporal dimensions which are not limited to conventional attributes as they
provide to the user specific capabilities for the selection and retroaction of data. In relation
to level 4, and as done for the first and second levels, actions performed by a citizen are
conducted at a given location and time, and for a particular theme and thus all dimensions
converge.

The Next section presents a case study that focuses on the third level of the interaction
framework and the three dimensions of space, time, and theme.

Figure 2 The connection between three dimensions of space, time and theme before and after
contribution to a citizen science project, and their relation to the levels of interaction (see Figure 1).
When a contribution is made, all three dimensions merge and a general feedback can be provided
(levels 1 and 2). Subsequently, based on the contribution, feedback may focus on one or a combination
of dimensions (level 3). If participants receive feedback on how to perform an action (level 4) and
carry it out, the three dimensions converge once more.
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4 Case study

To delve deeper into the framework, we have carried out a case study that presents the
interaction with participants within a biodiversity CS project. The case study presented here
highlights three categories of feedback based on the dimensions of space, time, and theme.
This feedback demonstrates the third level of interaction in our framework, illustrated in
Figure 1, which entails providing feedback to participants in the form of personalized insights.
The aim of this case study is to provide a concrete example of how the framework operates
and how it can be applied in a real practice, serving as a proof of concept for its usefulness
in other CS projects.

BioSenCS2,3 invites the public to collect biodiversity observations (with a focus on bird
species) and at the same time applies automatic data validation to the observations while
volunteers contribute and provides them with real-time user-centered feedback[22]. The main
objectives of BioSenCS in relation to the third level of the interaction framework are as
follows:

Provide participants with real-time feedback based on the location, time, and image of
the species observation
Boost public engagement as a result of user-centered feedback
Provide a learning opportunity for the participants through the feedback
Enhance data quality through learning from automatic feedback

BioSenCS is implemented using the Django framework4, which is a Python-based free and
open-source web framework, and we used a PostgreSQL5/PostGIS6 database for constructing
our data models and preserving the collected observations. The high-level architecture of
BioSenCS application is illustrated in figure 3.

Figure 3 The high-level architecture of BioSenCS application.

2 https://biosentiers-cs.heig-vd.ch/
3 https://github.com/mlotfian/Biosentiers-CS-functionality
4 https://www.djangoproject.com/
5 https://www.postgresql.org/
6 https://postgis.net/
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The primary goals of this case study are to utilize an automated system to validate or
filter observations and to provide real-time feedback to participants. The process involves
an automatic filtering system, as depicted in Figure 4. When a participant submits an
observation, it is first evaluated by the automatic system. If the observation does not meet
certain criteria, it is marked as an unusual observation and the participant is provided with
feedback including a detailed explanation of why the observation was flagged, which the
feedback is based on any dimension of space, time, and theme separately or combined.

At this point, the participants have two options. They can either make changes to
the observation based on the feedback received, or they can choose to proceed with the
original submission, moving the observation to the final expert validation stage. If the expert
determines that more information is needed, they will provide additional feedback to the
participant.

The automatic validation process includes three elements: date validation, image valida-
tion, and location validation. The image and location validation utilize machine learning (ML)
algorithms, while the date validation is performed by comparing the observation dates to a
static dataset provided by ecologists. The dates dataset is accessible through the BioSentiers
API (Application Programming Interface) (Figure 3).

Location validation is only applied to bird species, but image and date validation are
applied to all four organisms: bird, butterfly, tree, and flower. The following sections
concentrate on the third level of the interaction framework (See Figure 1) and integrate the
three dimensions (See Figure 2) of theme, time, and space respectively, in the order they are
presented.

Figure 4 The automatic data validation procedure applied in BioSenCS.

4.1 Theme: Observation Image Verification
The image filtering screens the contributed images that do not include the reported species
(bird, flower, tree, or butterfly). The feedback obtained in image filtering focuses on the theme
dimension of the observation, specifically the type of species. To perform image filtering,
we used an artificial intelligence (AI) platform called Clarifai7. Clarifai is an AI company

7 https://www.clarifai.com/

https://www.clarifai.com/
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that specializes in computer vision. It provides pre-trained models8 as well as the option
of training a model with a custom dataset. Clarifai offers services via its API (1000 free
API calls per month), which has a fast response time and can be integrated into AI-powered
mobile or web applications. We used its general model9 to determine, for example, whether
an image with bird tag really contains a bird or not. Once an image is sent to Clarifai’s
API, the model generates a set of possible tags that are present in the image along with
their probability scores (See figure 5). We flagged an observation and sent a feedback to the
participant, if the probability of having the species in the uploaded image was less than 85
percent. Figure 6 (b) illustrates the real-time image feedback to the participants.

Figure 5 An example of Clarifai predicted tags and their probabilities for an observation
contributed to BioSenCS.

4.2 Time: Observation Date Verification
The date filter focuses on the time dimension of the observation and verifies whether or not,
given a species name, the observation date falls within the species visibility period (the time
where the species is mostly probable to be observed). Accordingly, we have used a dataset,
which includes information of the visibility period of the species and is accessible through an
API called BioSentiers10[16], and the observation date is verified using the two attributes of
periodStart and periodEnd in the database. If the observation date is outside the species
visibility period, the observation is considered as an outlier and the participant receives a
feedback with information about the months (or the periods) the species can normally be
observed, and asking the participant to verify the added observation (e.g. species name or
the date). The final decision is however given to the participant, and the participant is not
forced to modify the observation. The observation is however flagged in our database in a
boolean attribute flagDate to be verified by experts later on. Figure 6 (a) illustrates the
real-time date feedback to the participant.

8 https://www.clarifai.com/developers/pre-trained-models
9 https://www.clarifai.com/models/image-recognition-ai
10 https://biosentiers.heig-vd.ch/api/species
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Figure 6 Automatic date (a) and image (b) feedback in BioSenCS application.

4.3 Space: Observation Location Verification
Location verification focuses on the space dimension of the observation, and thus the
corresponding feedback is centered on the participant’s location. To perform location
validation, we determined how the environmental variables surrounding the observation
location corresponded to the species habitat characteristics. To accomplish this, we generated
models of the distribution of the species in relation to the environmental variables in
our study area (Switzerland). Accordingly, we used species distribution modeling (SDM)
techniques [10] for bird species in Switzerland. SDM is a class of numerical models that explain
how the presence or absence of a species at a given location is related to environmental (e.g.
temperature, precipitation, etc.) and landscape characteristics (e.g. land cover, elevation,
slope, etc.) [10]. These techniques are used to gain ecological and evolutionary insights as
well as to predict distributions across landscapes, which requires spatial and/or temporal
extrapolation. SDM can be used to understand how a species’ distribution is correlated
with its location, as well as to predict the locations of species occurrence where no data is
available. To generate SDM two important datasets are required: the species abundance
data and the environmental variables.

For the species dataset, we used eBird data [28] for Switzerland from 2016 to 2020,
and for the environmental variables we used land cover (to obtain landscape proportions
such as the percentage of forest, water bodies, etc. in a given area), elevation, slope,
and NDVI (Normalized Difference Vegetation Index). Additionally, to generate SDMs,
four algorithms were trained and compared based on their performance: Naive Bayesian
(NB)[30], Random Forest (RF)[4], Balanced Random Forest (B-RF)[2], and a Deep Neural
Network (DNN)[1]. The models trained with Balanced-RF performed better compared to
the other three algorithms, and thus they were used to verify the location of new contributed
observations.
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For each species, we obtained two output distributions maps: a binary classification, and
a map of probability of occurrence of the species over the whole of Switzerland. Figure 7
illustrates the map of probability of occurrence for Common kingfisher species. As shown in
the figure, Common kingfisher can be mainly observed in the northern, and north west parts
of Switzerland with high probability to be observed near lakes and water bodies.

Figure 7 Classification of probability of occurrence of Common kingfisher.

Once training the algorithms and choosing the best performant one, in this case Balanced-
RF, the trained models were saved to be used for validating new contributed observations.
We developed an API called BioLocation, that uses the trained models and that is integrated
to the BioSenCS application to validate new observations while also providing user-centered
suggestions on the top-five high-probable species that can be observed around the participant’s
location. The API takes the species name and location and returns the probability of observing
the species in a 2km2 neighbourhood around the given location. The probability is given back
to the participant as a real time feedback with information on species habitat characteristics.
Additionally, the API can take the location and suggests the possible species that can be
observed in the participant’s proximity. Figure 8 illustrates the process of real time feedback
generation taking into account the space dimension.

If the probability of observing a species in a particular location is higher than 50 percent
(to account for randomness, as agreed when implementing the project), the generated feedback
will simply provide complementary information to the participant, such as the possible places
where the species is more probable to be observed. However, if the probability is less than 50
percent, the participant will be asked to confirm the validity of the observation (either the
location or the species name). After receiving the feedback, the participant has the option to
alter the observation based on the given information or leave it unchanged. Figure 9, a and
b illustrate the two possible location feedback, and c illustrates the top five species probable
to be observed around the location of the participant.

The feedback generated in this case study either focuses solely on one dimension, such
as only the observation date or location, or a combination of dimensions, such as in the
user-centered species suggestion which integrates space (user location) and theme (species
names). Furthermore, when a participant encounters an unknown species, the top five
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Figure 8 Real time location feedback generation.

suggestions can assist in identifying the species from the list, thus again a combination of
space and theme dimensions. Additionally, the feedback on the time dimension can provide
information on the visibility period of different species, allowing participants to determine
when they can observe species of interest, thus combining the time and theme dimensions.

Finally, a user test was conducted to gather feedback on the BioSenCS application interface
and explore participant views on receiving automatic feedback. The application was promoted
through targeted emails sent directly to students and colleagues within our university, as
well as through social media platforms such as Facebook and LinkedIn. Additionally, word of
mouth played a role in spreading awareness about the application. A thorough testing phase
lasting three weeks was conducted, resulting in 224 visits to the application. Out of these
visitors, 38 users successfully created an account, and 14 individuals actively participated
in collecting observations. Additionally, during this three-week timeframe, a total of 230
observations were collected.

Following the completion of the testing period, participants were provided with a ques-
tionnaire that encompassed general inquiries about the application’s usability. Additionally,
participants were asked to evaluate the extent to which they found the feedback information
useful and whether receiving feedback heightened their motivation to contribute to the
project. These questions were rated on a 5-point Likert scale, with 1 representing “not
at all useful/motivating” and 5 denoting “very useful/motivating.” The average score for
the usefulness of feedback was 3.33, while the average score for the impact of feedback on
motivation was 3.5. To assess the impact of feedback on enhancing data quality, we examined
the relationship between the number of flagged observations (OF ) and the total number of
contributed observations (OT ) per user. By analyzing the correlation between the ratio of
flagged observations to the total number of observations (OF /OT ) and OT , we discovered a
statistically significant negative correlation of -0.63 (p-value = 0.036). This indicates that
participants who made a higher number of contributions had fewer flagged observations.
Essentially, this suggests that participants either utilized the feedback provided to improve
their observations before submitting them (e.g., verifying accurate location pin placement)
or developed the ability to provide higher quality data. Although we did not obtain explicit
statistical evidence regarding the correlation between contribution over time and data quality,
the findings imply that increased participant contributions lead to a reduced number of
flagged observations, thus indicating higher quality data. However, a longer testing period
would enable a clearer understanding of how feedback influenced data quality over time.
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Figure 9 Location feedback if probability of occurrence of species is higher (a) and lower (b)
than 50%, and user-centered suggestion (c).

5 Discussion and conclusion

CS projects are rapidly expanding into various fields and the number of applications is
growing, thanks to technological advancements [25]. Despite this growth, there is still a
challenge in engaging the public to participate. One approach to sustaining participants’
engagement is through interaction with the participants [15]. Accordingly, some projects
provide general feedback to the participants, such as an acknowledgment of their contribution,
or feedback focused on one aspect of their participation. However, the needs and preferences of
participants may vary and require personalized feedback. This paper introduces a framework
that categorizes different types of interactions with participants while considering three
dimensions of space, time, and theme, when interacting with them for a more effective
outcome.

The framework outlines four levels of interaction, beginning with the simplest form, such
as acknowledging the participant, then is incentivized interaction offering tangible benefits
like certificates or rewards to participants. The next level, user-centered interaction, is
centered around the participant and involves two-way interaction, where feedback is tailored
to their contributions and they are given the opportunity to interact with the project and
express their preferences. The final level is action-oriented, providing instructions, guidance,
and support to help the participant take meaningful actions. Additionally, the integration of
the interaction levels within the three dimensions of space, time, and theme is discussed in
this article. The feedback in level 3 can concentrate on one dimension or a combination of
all three, while in level 4 interaction, all dimensions are combined, as an action is carried out
at a particular location and time, and for a specific theme.

The biodiversity CS case study highlighted in this article emphasizes user-centered
interaction and focuses on the third level of the interaction framework. The feedback
provided is based on location, time, and images of the observations. The participants receive
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location-based feedback on the likelihood of observing a specific species at a given location,
and also receive suggestions for species to observe in their vicinity, combining both spatial
and thematic dimensions. Although this case study provides multi-dimensional user-centered
feedback, to fully realize its potential, a two-way interaction between participants and the
project is necessary. To accomplish this, the three main questions of “where,” “when,” and
“what” can help guide participants to receive targeted feedback. The following are examples
of how the feedback in the case study can be expanded in each of the three dimensions.

Spatial
Ask participants where they prefer to observe species.
Find out what types of environments participants prefer for collecting observations.
Based on their previous observations, suggest other locations they might be interested
in visiting.
If participants have a particular species in mind, suggest likely locations where they
can observe it.

Temporal
Ask participants when they like to collect observations.
If they have a specific species in mind, recommend the best times to observe it.
Identify species that can be observed during the given time frame.

Thematic
Ask participants what types of species they like to observe.
Find out what individual species they prefer to observe.
Based on their history of observations, suggest other species they might also be
interested in observing.

The guidance questions mentioned above for generating user-centered feedback are focused
on the biodiversity field, however, they can be adapted to other areas depending on the
project’s objectives and the participants’ preferences. For instance, in a CS urban planning
project aimed at mapping street and sidewalk quality, the spatial dimension could involve
identifying and proposing areas with data gaps near participants, inviting them to collect data
in such areas, and providing them with information on the quality of streets and sidewalks
along their planned route.

Additionally, BioSenCS aims to expand by offering interaction at the fourth level (action-
oriented) of the proposed framework in this article. This interaction can include providing
support for preserving biodiversity such as through recommendations on appropriate plant
species to grow in specific locations and at specific time frames, or offering guidance on
building a garden pond, including information on necessary materials, estimated time required,
and the best time to start construction based on the participant’s location. The fourth level
interaction involves not only providing information but also maintaining a connection with
the participants throughout the entire action-taking process. This connection can be through
either automated and machine interactions, such as verifying the actions to be taken given a
location and time, or through online or in-person interaction with the project team.

Overall, this article aims to present ways in which CS practitioners can interact with
their participants, taking into account spatial, temporal, and thematic dimensions. The goal
of categorization of interaction levels presented in this article is not to assign positive or
negative labels to the levels, but rather to provide different methods to maintain community
involvement in CS projects. The choice of interaction methods can be adjusted based on the
project’s goals, its timeline, the preferences of the participants, and may consist of a single
approach or a combination of approaches. Finally, the purpose of this article is not to give
detailed instructions on how to interact with or provide feedback to the participants, but
rather to present an overall perspective, supported by a relevant case study.
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Abstract
While it is increasingly necessary in today’s digital society, sharing personal location information
comes at a cost. Sharing one’s precise place of interest, e.g., Compass Coffee, enables a range
of location-based services, but substantially reduces the individual’s privacy. Methods have been
developed to obfuscate and anonymize location data while still maintaining a degree of utility. One
such approach, spatial k-anonymity, aims to ensure an individual’s level of anonymity by reporting
their location as a set of k potential locations rather than their actual location alone. Larger values
of k increase spatial anonymity while decreasing the utility of the location information. Typical
examples of spatial k-anonymized datasets present elements as simple geographic points with no
attributes or contextual information. In this work, we demonstrate that the addition of publicly
available contextual data can significantly reduce the anonymity of a k-anonymized dataset. Through
the analysis of place type temporal visitation patterns, hours of operation, and popularity values,
one’s anonymity can be decreased by more than 50 percent. We propose a platial k-anonymity
approach that leverages a combination of temporal popularity signatures and reports the amount that
k must increase in order to maintain a certain level of anonymity. Finally, a method for reporting
platial k-anonymous regions is presented and the implications of our methods are discussed.
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1 Introduction

In 2014, a student used time-stamped paparazzi photographs of celebrities exiting taxicabs
in New York City (NYC) to identify their home locations using a supposedly anonymized
dataset of taxicab trips [34]. This raised privacy concerns about the dataset [9] and forced
the NYC Taxi & Limousine Commission to revisit their anonymization process and obfuscate
trip origins and destinations in latter data releases. The lesson to be learned from this
privacy debacle is that even though a dataset may have been anonymized, it does not exist
in a vacuum. Rather, these data exist in a world where other information pertaining to
the same subject may be available. Through these additional sources of information, one
may be able to reduce the anonymity of the anonymized dataset. This is referred to as a
linkage-attack [33] and the dilemma is that one likely does not know what additional sources
of information exist, or will be created.
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Driven by the ubiquity of context-aware technologies, and the data they collect, we have
seen a shift towards the development of computational approaches that leverage these data to
model places [22, 26]. Through these approaches, photographs, audio recordings, temperature
sensors, etc. are being used in combination with geographic data to provide more holistic
representations of our environment and the places we inhabit. The irony is that the same
data used to generate increasingly intricate models of the world can be used to violate one’s
privacy and de-anonymize personal location information.

Within the privacy and anonymity domains, there have been considerable efforts on
developing techniques that provide a trade-off between privacy preservation and data utility.
Driven by the needs of individuals, most privacy models parameterize that trade-off, permit-
ting users to exhibit control over their privacy based on their personal comfort levels. One of
the most popular privacy preservation method for individual data sharing is k-anonymity [32].
The objective of this approach is to anonymize a data point such that it cannot be differen-
tiated from k-1 other data points. Within geographic domains, these data points tend to
be locations. For a wide variety of reasons (see [2]), an individual may want to obfuscate
their location by reporting a set of locations (including their own), rather than their actual
position alone. Spatial k-anonymization was introduced to address a number of challenges
unique to geographic content [1, 7].

Much of the existing methodological work on k-anonymity and location privacy research
is designed to be domain agnostic. Researchers overwhelmingly approach locations as simple
geometric objects. In real-world scenarios, however, these objects represent entities that have
a variety of properties and relationships. Furthermore, these entities do not exist soley in
this dataset, i.e., other sources of related information exist. In this work, we explore such a
real-world scenario and demonstrate how the privacy guarantee of a spatial k-anonymized
dataset can be violated through the inclusion of external data. The real-world scenario
of interest to us, is the process of sharing one’s location. This is a process that happens
millions of times a day as people check-in to a location through social media, share their
favorite restaurant with friends, or tag their location in a photograph. In these scenarios,
location refers not to one’s geographic coordinates but rather the place that one is visiting,
e.g., Mel’s Diner. The dilemma is in the trade-off between preserving privacy and sharing
location data to gain utility. While I may be content to publicly share my visit to a trendy
restaurant I may not wish to disclose the location of my teenager with anyone other than
immediate family. It may still be useful, however, for my teenager to share anonymized
location information, such as a set of k possible places, in order to receive recommendations
for events nearby, for example.

The complexity of using places in a k-anonymity model is that an extraordinary amount
of information is publicly available about most places, information that can be used to reduce
the anonymity of someone sharing their platial location. In this work, we leverage the fact
that different types of places have different visiting behavior and different hours of operation.
For instance, people typically visit restaurants for lunch and dinner and more so on weekends
than weekdays. The place types themselves also vary in popularity, regardless of time of day.
For instance sports bars consistently receive more visitors than dentist offices.

While companies like Foursquare and Google collect the opening hours, popular visitation
times, and overall popularity of most places in the world, access to this volume of data is
unrealistic for most. For this work, we aggregate such data to the level of place type (e.g.,
Coffee shop) instead of place instance (e.g., Compass Coffee on 14th St.) and demonstrate
that even a sample of place instances aggregated to this level can significantly reduce the
anonymity of a place in a k-anonymized spatial dataset. More specifically, we will address
the following three research questions (RQ).
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RQ1 Does the ability to identify an individual’s location within a set of locations increase if
we know the time the individual visited the location? Specifically, we investigate the
degree to which temporal visitation patterns (signatures) can be used to reduce the
efficacy of the spatial k-anonymity technique.

RQ2 Do all temporal popularity signatures have an equal impact on the de-anonymization
of a k-anonymized spatial dataset? We compare three types of temporal patterns and
popularity values to identify which of them has the largest impact on the anonymity
of an individual. We then determine if a weighted combination of these temporal
popularity signatures can outperform the individual signatures.

RQ3 Given a set of weighted temporal popularity signatures, by how much must we increase
the number of places (k) in order to maintain the same level of anonymity promised
by a non-enhanced k-anonymized spatial dataset? Furthermore, if a set of places are
reported as a geographic region, what impact does the increase in k have on the average
size of the reported region?

2 Related Work

A large body of literature pertaining to computational approaches to location privacy and
anonymity has been published over the past few decades. Computational science research has
mostly approached this from a geometric perspective [14, 16] whereas human geographers
have typically taken a more qualitative approach [38, 12].

The concept of k-anonymity was first proposed by Sweeney and Samarati in 1998 [28] and
later formalized as a property of certain anonymized datasets. Relational k-anonymity was
then proposed as an approach for database privacy and disclosure control. A table is said
to be k-anonymized if each record is indistinguishable from at least k-1 other records [32].
Within relational k-anonymity, generalization is often applied to reduce the uniqueness
of each record, thus preserving a level of anonymity. While k-anonymity was originally
designed with anonymity of the individual (or record) in-mind, an extension, ℓ-diversity [18],
was proposed with the objective of preserving the sensitivity of the values associated with
the records or individuals. This is addressed by introducing ℓ “well-represented” sensitive
attribute values in each anonymized group. Li et al. [15] discovered that in some cases (e.g.,
skewed distributions or similar attributes) ℓ-diversity is insufficient in privacy protection. As
a result, they propose t-closeness [15] to overcome the limitation of ℓ-diversity.

Spatial k-anonymity incorporates location information into the discussion of anonymity
and privacy preservation. While relational k-anonymity is static and often involves a single
k, the spatial version was designed to be dynamic with variable k [6].

Existing research on this topic has leveraged spatial k-anonymity for the development
of k-anonymized spatial regions that include an anonymized set of locations consisting of
an anonymized user and at least k-1 other users [6, 23, 8]. Early work by Kalnis et al.
[11, 10] developed a series of cloaking techniques (e.g., Hilbert cloak, center cloak) with
the goal of reducing vulnerabilities in basic spatial k-anonymity algorithms. Additional
efforts have introduced techniques that consider the temporal connectivity of location-based
services [5]. To date, the majority of research from computational scientists has approached
spatial k-anonymity through the introduction of spatial-temporal cloaking and tree-based
spatial indices, predominantly focusing on the geometric properties of the data.

Aside from spatial k-anonymity, additional methods of geomasking have been developed
to obfuscate location information. While not strictly anonymity approaches, these are
typically categorized into aggregation-based or perturbation-based with aggregation methods

GISc ience 2023
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being similar to anonymized spatial region’s spatial-temporal cloaking but often leverage
existing geographic units such as administrative boundaries [3], Voroni polygons [30, 25], or
census tracts [17]. Others have built aggregation techniques based on geometric shapes or
centroids [36]. Perturbation geomasking methods displace individual data points to nearby
locations using random distance and direction and various kernels [36, 37]. Finally, efforts
have been made to combine the two types of geomasking methods. Adaptive areal elimination
first aggregates population polygons into anonymized spatial regions, then randomly displaces
data points within the newly formed anonymizing regions [13]. Charleux and Schofield [4]
proposed adaptive areal masking that replaces longest border shares in adaptive aerial
elimination with Euclidean distance ranks.

In recent years we have seen a substantial increase in computational approaches to
define and understand places. As geographic information science has evolved, researchers
are not only exploring the Aristotelian view of place (i.e., objects in the Euclidean space),
but also the Platonic view (i.e., relationships and experiences in the environment) [27].
A growing body of work has been examining and modeling the concept of place from
multiple dimensions [35, 29, 22]. As increased availability of large heterogeneous datasets
from a variety of sensors has allowed geospatial scientists to move from spatial studies to
the multidimensional concept of place, so too have the geoprivacy and spatial anonymity
domains.

3 Data

3.1 Temporal visitation, hours of operation, and place popularity

Two different data sources were used in these analyses. First, all of the place types (e.g., Bars,
Parks, Police Stations) published by the local place recommendation service, Foursquare,
were identified.1 We randomly selected 20 places of interest (POI) from across the United
States in each of the place types. The Foursquare application programming interface (API)2

was used to request the number of check-ins to each of these POI every hour over the course
of 3 months. These check-in counts were grouped by place type and aggregated to hour
of the week producing a set of 168 (24 × 7) temporal signatures (TF ) for each Foursquare
place type. Hours of operation were accessed from the API for each of the Foursquare POI
in our sample. These data consist of a binary value for each hour of a typical week. As
before, these were grouped by place type and aggregated (median) to the hour of the week
producing an hours of operation signature (TH). Foursquare also offers a popularity value for
each POI which is computed based on foot-traffic and user ratings.3 Using the Foursquare
API, we accessed the popularity values for each POI in our sample dataset, and averaged
them by place type. This produced a mean popularity value, Pop, for each place type in the
Foursquare dataset.

We then accessed popular times data for 185,600 Google Places POI across the United
States.4 The popular times data are constructed through passive collection of location
information accessed from the mobile devices of Google’s location service users. Similar to
the process used for the Foursquare data, these popular times were groups by Google’s place

1 A full list is available at https://location.foursquare.com/places/docs/categories.
2 https://developer.foursquare.com/
3 https://medium.com/foursquare-direct/tagged/engineering
4 Data collection script available at https://github.com/apollojain/popular_times

https://location.foursquare.com/places/docs/categories
https://developer.foursquare.com/
https://medium.com/foursquare-direct/tagged/engineering
https://github.com/apollojain/popular_times
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Figure 1 Example temporal signatures for the place type Café.

type5 (different from Foursquare’s) and aggregated by hour of the week. This approach
produced a set of temporal signatures (TG) for each Google place type. Finally, all three
temporal signatures (TF , TH , TG) were normalized individually producing a distribution of
temporal values that sum to 1 (Figure 1). This normalization process was necessary so that
each signature was evenly weighted at the start of analysis.

3.2 Place type alignment
Given the two sources of POI data, the first task was to align the place type schemas. We
leveraged our previous work on this topic [20] to identify alignments between place types.
The process involved collecting the same POI representations (e.g., the same restaurant) from
Foursquare and Google via their APIs. POI matching was done by comparing the names
and geographic distances between place representations. We took an overly conservative
approach by only accepting matches for POI where there was an exact name match and
the geographic distance was less than 100 meters. We then generated a matrix counting
the occurrence of place type matches. The place types that had the largest number of POI
matches were accepted as an alignment. For instance, Foursquare has a place type Coffee
Shop while Google does not. Through our alignment process, we identified Google’s Café
place type as a match. As a final step, we manually reviewed the alignment results and made
minor adjustments to the place type alignments where appropriate.

3.3 Validation data
To validate our approach we required access to a large sample of data where an individual
recorded their real-world visit to a location, including the time and place type they visited.
While geosocial media check-ins are suitable for this task, access to a large and randomized

5 https://developers.google.com/maps/documentation/places/web-service/supported_types
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sample is not possible directly through Foursquare or its gaming application, Swarm.6 Users
of both Foursquare and Twitter, are able to connect their two accounts allowing them to
publish their Foursquare check-ins on their public Twitter feed. Leveraging this knowledge,
we used the public Twitter API7 to randomly sample 17,909,516 geotagged tweets within
the continental United States between May 2017 and May 2022. The tweets were filtered
to select only those whose source was Foursquare’s Swarm application. All of these tweets
contained the information necessary to access a user’s geosocial check-in. Each check-in
consists of the Foursquare POI name, place type, geographic coordinates, and timestamp of
the visit. A total of 54,568 check-ins to 22,206 unique POI were identified after cleaning. To
reduce POI bias we elected to only include one check-in (randomly selected) for each POI in
our analysis.

Through the Foursquare API, we requested the closest set of POI to each of the 22,206
check-in POI. The API sets an upper limit of 50 POI per Nearby request. The maximum of
50 POI was not always returned, so in order to maintain a robust set of data, we removed
all check-ins with fewer than 29 nearby POI from further analysis. This resulted in a final
validation dataset of 19,478 check-ins to the same number of unique POI and a total of
584,340 nearby POI.

4 Analysis

Our first task in addressing RQ1 was to determine the degree to which one of our temporal
signatures impacted our ability to identify an individual’s POI location from within a set
of k POI. We will refer to an individual’s actual location as pl, nearby locations as pn, and
the larger set of all 30 POI in a region as P30, where p ∈ P . Each p has a place type and
each visit to a pl occurred at some time, reported as the hour of the week. Three temporal
signatures and the popularity value were assigned to each p based on its place type.

4.1 Spatial k-anonymization
We started with a baseline k-anonymized spatial dataset, one that includes pl and a set
of pn nearby POI, but ignores the place type property or temporal signatures of each p.
We set a range for k from 1 to 30 for our analysis. For each of the 19,478 check-in in our
dataset, we selected a subset of the k closest POI (Pk) to pl, including pl itself. For instance,
k = 3 means that P consisted of 3 p, including 2 pn and our pl. To determine the level of
k-anonymity in our set, we randomly selected a p from the set of Pk. This was done for all
19,478 check-ins and all values of k. The average number of times pl was correctly identified
in Pk was recorded. The results are shown as the dashed black line in Figure 2a (the other
lines will be discussed in Section 4.2).

Provided no other information on which to select a p from Pk, the results are random
with the percentage equating to 1/k × 100. While informative, this method of only counting
instances where pl is correctly identified ignores position ranking. For example, a model
that identifies pl as the second most likely place is better than a model that identifies pl

as the 20th most likely place. This is irrelevant for the random model, but will play a
role in assessing the temporal signature approaches. To account for differences in rank, we
calculated the normalized Discounted Cumulative Gain (nDCG) (Equations 1 and 2). nDCG

6 https://www.swarmapp.com/
7 https://developer.twitter.com/

https://www.swarmapp.com/
https://developer.twitter.com/
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based on position of pl in ranked Pk.

Figure 2 Percentage of POI that were identified correctly, or where they ranked, using different
approaches, shown as k increases.

considers the rank of a prediction by penalizing incorrect pl selections at a log2 rate based on
their position i in the ranking, where reli is the graded relevance of p in Pk. IDCGp is the
idealized ranking where pl is correctly identified in the first ranked position. The results of
the nDCG assessment of the random spatial k-anonymity approach are shown in Figure 2b.

nDCGp = DCGp

IDCGp
(1) DCGp =

|RELp|∑
i=1

reli

log2(i + 1) (2)

4.2 Temporal signature enhancement
We then designed a method to reduce the anonymity of a k-anonymized spatial dataset
through the inclusion of place type temporal signatures. Our answer to RQ1 depends on
whether the ability to identify someone increases with the inclusion of this temporal dimension.

To start, we limited our analysis to include temporal check-in behavior as reported by
Foursquare at the place type level. Remember that each p in our dataset has a place type,
and each place type has a Foursquare temporal signature, TF . The check-in time for each of
our pl was recorded and used to identify the temporal probability of an individual visiting
a p based on the temporal signature. For example, the temporal probability at 20:00 on a
Friday is higher for the Restaurant place type than Bank. Figure 3 represents these temporal
probabilities as graduate symbols.

As before, a subset of POI, Pk closest to pl were selected. The p in this subset were then
ranked based on the visitation probability at the indicated time (temporal signature). Given
that Pk may contain multiple p of the same place type, these p have the same temporal
probability value. Order was randomized between places of the same type. The p with the
highest temporal probability was flagged as the predicted location of pl. This was done for
all known POI visits in our dataset and the average accuracy was reported for each value
of k both as the correctly identified p and the nDCG. These are shown as the blue lines in
Figure 2.

The results of this analysis indicate that the inclusion of place type temporal signatures
increases one’s ability to identify an individual’s location in a set of k-anonymized POI.
Averaged across all selected values of k (1-30), the inclusion of Foursquare’s temporal
signatures, TF , decreased the anonymity of pl in Pk by 31%. As shown in Table 1 (column
TF ), the percentage of de-anonymization increases with larger values k.
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Check-in	POI

POI	(Temp.	Prob.)
0.15	-	0.59
0.59	-	0.69
0.69	-	0.77
0.77	-	0.86

0.86	-	1

Figure 3 Places of interest in a region shown with graduating symbology representing the
temporal probability at 20:00 on Friday. The black star marker indicates the actual location of the
individual. Base map by Carto.

Table 1 Average percentage improvement in correctly identify an individual (pl), above random
selection from a k-anonymized spatial dataset. The three different temporal signature-based
approaches are reported along with the popularity value method and the weighted combination of
temporal popularity signatures, T P op.

k TF (%) TG (%) TH (%) P op (%) T P op (%)
2 12.2 6.1 12.0 34.7 37.2
5 24.2 15.7 27.6 79.5 97.6
10 32.1 21.8 35.0 106.0 137.5
15 30.4 26.2 38.5 116.2 154.4
20 33.6 30.8 40.4 119.4 163.2
25 36.0 34.5 41.8 125.0 171.5
30 38.2 38.0 43.4 127.7 172.3

4.3 Comparing temporal signature and popularity approaches
Knowing that a place type temporal signature can be used to decrease the anonymity of
an individual in a k-anonymized spatial dataset, we compared temporal signatures from
different sources as well as the atemporal place type popularity values.

4.3.1 Temporal signatures
Having developed a model based on Foursquare’s temporal signature in the previous section,
we conducted the same analysis for the Google popular times signatures TG and the place
type averaged hours of operation, TH . As shown in Figure 2, ranking POI based on the
probability of an individual visiting them at a given time improved the place prediction in
all cases and for all values of k. In other words, location privacy was reduced through the
inclusion of any temporal signature data. In comparing the results of analysis using different
temporal signatures, TG has the lowest impact, reporting an average decrease in anonymity
of 26.3% across all values of k. Similar to TF , the percentage increased with larger values of
k. The TH signatures produced the largest impact on anonymity with an average decrease of
35.3%. The percentage decrease in anonymity is shown for select values of k in Table 1.
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4.3.2 Popularity
In addition to place type temporal signatures, the popularity of place types can also be used
to reduce anonymity of a user’s location in a set of POI. While the previous data signatures
reported a relative change in visitation popularity over time, our popularity values, Pop, are
atemporal and represents a comparison between place types, ranging from 0 (least popular)
to 1 (most popular). These place type popularity values were assigned to their respective p in
Pk and were ranked based on this popularity. We again randomly order p of the same place
type within this ranking. As shown in Table 1, this approach results in a greater percentage
of anonymity decrease than each of the temporal signatures alone. If we examine k = 8,
for instance, there is a 1 in 8 (12.5%) chance of randomly selecting an individual’s actual
location in a spatial k-anonymized dataset. Through the inclusion of place type popularity,
this doubles to 1 in 4 (25.0%). These results, along with those from the previous section
address the first portion of RQ2, namely that all of these data signatures decrease anonymity
by different amounts.

4.3.3 A weighted combination of signatures
In addition to assessing each of the temporal signatures and the popularity values inde-
pendently, we also computed a weighted combination of the signatures. In addressing the
second portion of RQ2, we question whether combining the signatures and popularity value
will outperform, with respect to de-anonymization, each signature alone. The combined
approach is shown in Equations 3 and 4. In our analysis, applied all combinations of weights,
incrementing by 0.1 so that 285 combinations were applied to all temporal signatures and
the popularity value. This was done for all 19,478 check-ins and all values of k between 1
and 30.

w1(TF ) + w2(TG) + w3(TH) + w4(P op) (3) w1 + w2 + w3 + w4 = 1 (4)

The results of this weighted approach, with all combinations of weights are provided
in the project repository. The weight combination that produced the highest number of
correct POI identifications, and highest nDCG, consisted of a weight of 0.3 for each of the
temporal signatures and a weight of 0.1 for the average place type popularity. We refer to this
weighted combination as the temporal popularity signature, TPop. On average, this approach
decreased anonymity by 143.3% with exact values shown in Table 1. This is a substantial
amount as compared to each of the temporal signatures and popularity independently.

We further investigated the results of this analysis by ordering all weighted combinations
by their average accuracy across all values of k. Our top model of 0.3 for all temporal
signatures and 0.1 for popularity values was ranked 1 out of 285 possible combinations. The
first combination of weights to not include average place type popularity (w4 = 0) was at
rank 220. This suggest that the inclusion of popularity in our model is essential for a large
decrease in anonymity, but that the actual weight is less important. Also of note, the best
performing combination placed equal weight on each of the temporal signatures, indicating
that each temporal signature represents a unique aspect of place visitation behavior and that
all are needed in order to produce the best approach for de-anonymization of a k-anonymized
dataset.

4.4 Platial k-anonymization
The results of the previous sections demonstrate that an attacker with access to temporal
and/or popularity data reported at a place type level can considerably decrease the anonymity
of an individual’s reported location within a k-anonymized set of POI. The accessibility to,

GISc ience 2023



9:10 Platial k-Anonymity

and inclusion of, such contextual data requires that the number (k) of POI in a k-anonymized
set be increased in order to guarantee the same level of anonymity promised by the original
spatial k-anonymity model. In addressing RQ3, we establish these new values for k proposing
that the values be labelled Platial k or kp.

Through referencing the results of our analysis in Section 4.3, we can match accuracy
percentages between a spatial k-anonymized (random selection) approach and our most
accurate platial approach, TPop, taking the k value from our most accurate model as kp. In
other words, how many kp are needed in order to guarantee the same level of anonymity that
was promised by a k-anonymized dataset that assumed no temporal popularity data were
available? Table 2 shows the value of k from a standard k-anonymized dataset along with
the kp values necessary to achieve the same level of anonymity using our temporal popularity
signatures.

Table 2 k number of POI along with the kp number of POI needed to preserve k-anonymity
given the temporal signatures, popularity values, or combination temporal popularity signature.

k kp|TF kp|TG kp|TH kp|P op kp|T P op

2 3 3 3 4 4
5 7 6 7 11 13
10 14 13 14 23 29
15 21 20 22 >30 >30
20 28 28 29 >30 >30

For instance, in order to limit one’s exposure to a 20% chance of being randomly identified
in a set of POI (the equivalent of a k-anonymity of 5), one would need to include 13 POI, or
a kp-1 of 12. As shown in Table 2, in some cases, the number of POI needed to preserve
kp-anonymity was greater than the 30 POI we had in each of our check-in sample sets. Using
these results, we can report kp as a function of k, namely kp = 2.54k + 0.04k2 − 0.88.

4.5 Reporting platial k-anonymity through geographic regions
What do these results mean in practice though? The application of k-anonymity specifically
deals with sets and spatial k-anonymity situates the elements of a set in geographic space.
In real-world scenarios, anonymized spatial data are often reported through a location-
based service as geographic regions, typically polygons that include the set of k-anonymized
locations. Depending on the user’s privacy preferences, they set a large or small value for k

which in turn determines the size of the reported polygon.
There are several ways to generate polygons that encompass a set of points. Here we

identify geometric shapes based purely on the POI set, rather than political, social, or
environmental boundaries. Such boundaries could also be used, but are not the focus of
this work. The most common geometric shapes are a circle, bounding box, or convex hull.
The centroid of these regions also varies. The simplest option is to set the centroid of
the region on the known location and expand the radius or perimeter until k points are
contained within the region. From an anonymity perspective, this approach falls victim to
a center-of-anonymized spatial region attack, where an attacker would assume, given the
geometry and centroid, that the actual location of an individual is the center most POI [11].
To avoid this, many current approaches [24] offset the centroid of the region by taking the
nth-nearest neighbor.

In generating a k-anonymized platial region, we have two options. One is generalized and
involves simply referencing Table 2 or the kp function to generate a polygon that contains kp

POI. This is a general approach as it uses the average kp as reported through our analysis of
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19,478 check-ins. While this can be used for any set of POI that contain place type attributes,
platial k-anonymity can also be computed for an individual scenario. This is the local option.
In this case, we assume the attacker has knowledge of the local region, knows the time
someone visited a location, and has access to the place types of all POI. In this case, our
set of Pk must include those that report a combined temporal popularity probability, TPop,
greater than or equal to that of the actual check-in POI. The local platial k-anonymized
region is the region that contains all of these POI. This may be better explained through an
example. Let us set k = 10 and specify that our actual check-in POI has a TPop probability
value of 0.5. At a minimum, our platial k-anonymized region needs to include the 9 nearest
POI with a TPop probability greater than or equal to 0.5. Depending on the shape of the
region, it may also include other POI with TPop probability less than 0.5. All of these POI
together sum to our local kp.

Figure 4 shows examples of the various polygonal representations for a k = 10 anonymized
set of POI as well as the kp equivalent region. In these examples, the center point (blue
hexagon), from which the shapes are determined, is the nearest neighbor to the actual check-in
POI (red diamond).8 The geometries are generated by expanding the search radius from the
center point until k POI are enclosed within the region. The smaller green regions show the
minimum areas that encompass the specified k number of points (10 in this example), limited
by the shape specifications. The larger purple regions represent the minimum areas that
include Pk that are equal to or greater than the temporal popularity signature probability of
the check-in POI at a given time. For a k of 10, kp will always be at least 10.

(a) Bounding Boxes. (b) Circles.

Check-in	POI
Center	POI
Places	of	Interest
Spatial	k-anonymized	region
Platial	k-anonymized	region

(c) Convex Hulls.

Figure 4 Polygonal representations of k-anonymity as well as the temporal popularity enhanced
k-anonymity. These use a local approach based on the place types signatures of the actual POI.

For our sample set of 19,478 check-ins, we calculated the area of all three shapes that
contain k and kp POI. For all shapes and values of k, the areas of the platial k-anonymized
regions are greater than the spatial k-anonymized regions. The difference in percentage
decreases as k increases. The average percentage increase in area for k 1-20 ranges from
170.1% for a convex hull to 193.7% for a circle. Table 3 shows the median percentage increases
in area. k is limited to 20 in this Table as we have seen that corresponding values of kp can
be considerably larger.

8 We use the first nearest neighbor here, but second or third could be used to increase privacy.
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Table 3 Median percentage increase in area between spatial k-anonymized regions and platial
k-anonymized regions.

k Convex Hull (%) Bounding Box (%) Circle (%)
2 0 520.9 845.7
5 394.0 343.6 324.0
10 105.9 96.9 120.9
15 73.9 67.4 105.5
20 32.7 37.8 56.8

5 Discussion

In the real-world, a geographic dataset does not exist in isolation. Additional information
is available about all aspects of our lives, including the places that we visit. The times
of day and days of the week that people interact with places in their environment follow
patterns that can be discriminated at the categorical, or place type level. This knowledge
can be leveraged and patterns can be used to estimate the locations of individuals. For the
privacy-conscious among us, this is problematic. The spatial k-anonymity of a dataset states
that an individual sharing a set of k places is guaranteed a level of anonymity.

In this work, we demonstrate that through the inclusion of place type temporal visitation
patterns and popularity values, the presumed level of anonymity is violated. The results
of RQ1 indicate that a place identification model built using publicly available temporal
visitation signatures can significantly reduce the anonymity of a user sharing their location
as a set of POI. Temporal signatures extracted from social media check-ins perform slightly
better than those collected through passive data collection such as Google’s location services.
Access to the average hours of operation for different place types outperform both of the
activity-based temporal signatures. It is unclear exactly why hours of operation outperformed
the behavior-based temporal signatures. One possible reason is that the hours of operation
data were the least nuanced of the temporal data and by taking the median, the data were
quite restrictive in reporting opening and closing times. It appears that for our sample of
check-in data, these restrictive time periods were beneficial in predicting an individual’s
location. By far the most useful information is the relative popularity of a place type. On
average, access to these values substantially decreases the anonymity of an individual in
a shared set of locations. This is worth noting as it suggests that the nuance of when a
person visits a location, while important, is less important (on its own) than the overall,
non-temporal popularity of a place. In identifying a weighted combination of these temporal
signatures and popularity values (RQ2), we demonstrated that each of the different dimensions
contributes to an improved model for de-anonymization. For instance, the probability of
identifying an individual’s location out of a set of five POI (k = 5) is nearly 80% greater
given access to popularity data and 100% greater using our weighted combination approach,
compared to a model that did not include any additional data.

This equates to a meaningful decrease in individual privacy brought about by analysis
of publicly available data. These signatures and popularity values are aggregated to the
place type level, not the individual place instance, suggesting that they can be applied to
k-anonymized POI datasets anywhere in the world. While research on temporal signatures
has shown that roughly 50% of these temporal patterns vary regionally, some of the more
common place types such as drug stores and restaurants, do not [19]. The results of our
analyses demonstrate that k does not accurately represent the anonymity of a dataset given
access to other sources of related data. To address this, we propose a platial value, kp, that
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represents the number of POI necessary to guarantee k-anonymity given an attacker may
have access to these contextual data sources (RQ3). In this paper, we provide a reference for
those developing place-based obfuscation applications, recommending a baseline kp number
necessary to ensure actual k-anonymity in a set of POI. Importantly, our proposed measure
of k only assumes access to the three temporal signatures and one relative popularity set for
a given set of place types. There are undoubtedly additional sources of information that can
be used to further reduce the anonymity of a user sharing an anonymized dataset. In this
work, we simply highlight some of the ways this can be done, and report the magnitudes of
de-anonymization.

Our analysis reports that regions built from kp-anonymized datasets are considerably
larger in area than k-anonymized datasets. What was surprising was the dramatic increase
in area reported on average. For instance, at k = 5, the average platial k-anonymized region
was roughly 350% larger than the spatial k-anonymized region. Larger regions equate to a
reduction in utility. While we argue that the anonymity of a user remains in-tact through our
improved approach, the trade-off in utility must be acknowledged. All of this demonstrates a
need for further critical investigation of how we choose to obfuscate location information.

The biases of the datasets used in this work must be mentioned. All of the data used in
these analyses were contributed by individuals of geosocial media applications or a location
service provider. While these data have been used in a wide variety of research, they do
represent a biased subset of the population. Though check-ins were randomly sampled, the
types of people that choose to check in and share their geographic locations are a unique
subset of the population. They tend to be tech-savvy and predominantly live in urban
areas. The data most often do not adequately reflect the activity patterns of the elderly,
lower-income individuals, and those in rural communities. Any application or policy that
uses the results of this work, should consider the biases and act accordingly.

A limitation of this work is the alignment of the two different place type vocabularies.
Since Google and Foursquare use different terms and concepts to label their categories,
alignment was necessary. As mentioned previously, the alignment was achieved through
identifying co-occurrence of place instances. In some cases, a place type from one service
would align with multiple place types from the other service. We took the place type that
had the largest number of place instance matches, but sometimes the difference was a single
POI. A manual check was done to ensure that the matches made sense, but any manual
alignment introduces bias on the part of the person doing the aligning.

Future work in this area will involve the inclusion of additional contextual data such as
the change in temporal behavior due to weather and local events. Our approach will be
integrated with other efforts in the location privacy domain that leverage socio-economic,
demographic, and mobility data. Additional efforts will be made in the application of this
approach to real-world scenarios and privacy-preservation platforms, similar to projects such
as MaskMy.XYZ [31] and PrivyTo [21].

6 Conclusion

In this paper, we identify some of the ways that the k-anonymity of an individual’s reported
location can be reduced by using existing publicly available place-based data. Specifically,
our work shows that knowledge of place type temporal visitation patterns, average hours of
operation, and relative popularity can substantially decrease the anonymity of one’s location
in a set of places of interest. Through analysis of 19,478 place check-ins we developed a platial
k-anonymity approach that aims to improve anonymity, acknowledging that an attacker
may have access to contextual information. Using this platial k-anonymized approach, we
show that sets reported as geospatial regions must increase in area in order to preserve their
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presumed degree of anonymity. Overall, this work demonstrates the need to be aware of
the additional data that is increasingly available, publicly accessible, and can be used to
reduce the anonymity of individuals sharing their seemingly obfuscated personal location
information.

References
1 Charu C Aggarwal. On k-anonymity and the curse of dimensionality. In Proceedings of the

31st International Conference on Very Large Data Bases, pages 901–909, 2005.
2 Marc P Armstrong and Amy J Ruggles. Geographic information technologies and personal

privacy. Cartographica: The International Journal for Geographic Information and Geovisual-
ization, 40(4):63–73, 2005.

3 Marc P Armstrong, Gerard Rushton, and Dale L Zimmerman. Geographically masking health
data to preserve confidentiality. Statistics in medicine, 18(5):497–525, 1999.

4 Laure Charleux and Katherine Schofield. True spatial k-anonymity: areal elimination vs.
adaptive areal masking. Cartography and Geographic Information Science, 47(6):537–549,
2020.

5 Bugra Gedik and Ling Liu. Location privacy in mobile systems: A personalized anonymization
model. In 25th IEEE International Conference on Distributed Computing Systems (ICDCS’05),
pages 620–629. IEEE, 2005.

6 Gabriel Ghinita, Keliang Zhao, Dimitris Papadias, and Panos Kalnis. A reciprocal framework
for spatial k-anonymity. Information Systems, 35(3):299–314, 2010.

7 Aris Gkoulalas-Divanis, Panos Kalnis, and Vassilios S Verykios. Providing k-anonymity in
location based services. ACM SIGKDD explorations newsletter, 12(1):3–10, 2010.

8 Marco Gruteser and Dirk Grunwald. Anonymous usage of location-based services through
spatial and temporal cloaking. In Proceedings of the 1st international conference on Mobile
systems, applications and services, pages 31–42, 2003.

9 Alex Hern. New york taxi details can be extracted from anonymised data, researchers say.
The Guardian, June 2014. (Accessed on 01/16/2023).

10 Panos Kalnis and Gabriel Ghinita. Spatial anonymity. In LING LIU and M. TAMER ÖZSU,
editors, Encyclopedia of Database Systems, pages 2685–2690. Springer, 2009.

11 Panos Kalnis, Gabriel Ghinita, Kyriakos Mouratidis, and Dimitris Papadias. Preventing
location-based identity inference in anonymous spatial queries. IEEE transactions on knowledge
and data engineering, 19(12):1719–1733, 2007.

12 Carsten Keßler and Grant McKenzie. A geoprivacy manifesto. Transactions in GIS, 22(1):3–19,
2018.

13 Ourania Kounadi and Michael Leitner. Adaptive areal elimination (AAE): A transparent
way of disclosing protected spatial datasets. Computers, Environment and Urban Systems,
57:59–67, 2016.

14 John Krumm. A survey of computational location privacy. Personal and Ubiquitous Computing,
13(6):391–399, 2009.

15 Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond
k-anonymity and l-diversity. In 2007 IEEE 23rd international conference on data engineering,
pages 106–115. IEEE, 2007.

16 Bo Liu, Wanlei Zhou, Tianqing Zhu, Longxiang Gao, and Yong Xiang. Location privacy and
its applications: A systematic study. IEEE access, 6:17606–17624, 2018.

17 Yongmei Lu, Charles Yorke, and F Benjamin Zhan. Considering risk locations when defining
perturbation zones for geomasking. Cartographica: The International Journal for Geographic
Information and Geovisualization, 47(3):168–178, 2012.

18 Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan Venkitas-
ubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions on Knowledge
Discovery from Data (TKDD), 1(1):Article 3, 2007.



G. McKenzie and H. Zhang 9:15

19 Grant McKenzie, Krzysztof Janowicz, Song Gao, and Li Gong. How where is when? On
the regional variability and resolution of geosocial temporal signatures for points of interest.
Computers, Environment and Urban Systems, 54:336–346, 2015.

20 Grant McKenzie, Krzysztof Janowicz, and Carsten Keßler. Uncovering spatiotemporal biases
in place-based social sensing. AGILE GIScience Series, 1:14, 2020.

21 Grant McKenzie, Daniel Romm, Hongyu Zhang, and Mikael Brunila. Privyto: A privacy-
preserving location-sharing platform. Transactions in GIS, 26(4):1703–1717, 2022.

22 Franz-Benjamin Mocnik. Putting geographical information science in place–towards theories of
platial information and platial information systems. Progress in Human Geography, 46(3):798–
828, 2022.

23 Mohamed F Mokbel, Chi-Yin Chow, and Walid G Aref. The new casper: Query processing
for location services without compromising privacy. In VLDB, volume 6, pages 763–774, 2006.

24 Dilay Parmar and Udai Pratap Rao. Privacy-preserving enhanced dummy-generation tech-
nique for location-based services. Concurrency and Computation: Practice and Experience,
35(2):e7501, 2023.

25 Fiona Polzin and Ourania Kounadi. Adaptive Voronoi Masking: A Method to Protect
Confidential Discrete Spatial Data. In Krzysztof Janowicz and Judith A. Verstegen, editors,
11th International Conference on Geographic Information Science (GIScience 2021) - Part II,
volume 208, pages 1–17, 2021.

26 Ross S Purves, Stephan Winter, and Werner Kuhn. Places in information science. Journal of
the Association for Information Science and Technology, 70(11):1173–1182, 2019.

27 Stéphane Roche. Geographic information science ii: Less space, more places in smart cities.
Progress in Human Geography, 40(4):565–573, 2016.

28 Pierangela Samarati and Latanya Sweeney. Protecting privacy when disclosing information:
k-anonymity and its enforcement through generalization and suppression. Technical report,
Data Privacy Lab Report, 1998.

29 Simon Scheider and Krzysztof Janowicz. Place reference systems. Applied Ontology, 9(2):97–127,
2014.

30 Dara E Seidl, Gernot Paulus, Piotr Jankowski, and Melanie Regenfelder. Spatial obfuscation
methods for privacy protection of household-level data. Applied Geography, 63:253–263, 2015.

31 David Swanlund, Nadine Schuurman, and Mariana Brussoni. MaskMy. XYZ: An easy-to-use
tool for protecting geoprivacy using geographic masks. Transactions in GIS, 24(2):390–401,
2020.

32 Latanya Sweeney. k-anonymity: A model for protecting privacy. International journal of
uncertainty, fuzziness and knowledge-based systems, 10(5):557–570, 2002.

33 Zhouxuan Teng and Wenliang Du. Comparisons of k-anonymization and randomization
schemes under linking attacks. In Sixth International Conference on Data Mining (ICDM’06),
pages 1091–1096. IEEE, 2006.

34 J.K. Trotter. Public NYC taxicab database lets you see how celebrities tip, October 2014.
(Accessed on 10/14/2022).

35 Daniel Wagner, Alexander Zipf, and Rene Westerholt. Place in the giscience community–an
indicative and preliminary systematic literature review. In Proceedings of the 2nd International
Symposium on Platial Information Science (PLATIAL’19), pages 13–22. Zenodo, 2020.

36 Jue Wang, Junghwan Kim, and Mei-Po Kwan. An exploratory assessment of the effectiveness
of geomasking methods on privacy protection and analytical accuracy for individual-level
geospatial data. Cartography and Geographic Information Science, pages 1–22, 2022.

37 Paul A Zandbergen. Ensuring confidentiality of geocoded health data: assessing geographic
masking strategies for individual-level data. Advances in medicine, 2014:1–14, 2014.

38 Hongyu Zhang and Grant McKenzie. Rehumanize geoprivacy: from disclosure control to
human perception. GeoJournal, 88(1):189–208, 2022.

GISc ience 2023





Data-Spatial Layouts for Grid Maps
Nathan van Beusekom #

TU Eindhoven, The Netherlands

Wouter Meulemans #

TU Eindhoven, The Netherlands

Bettina Speckmann #

TU Eindhoven, The Netherlands

Jo Wood #

City, University of London, UK

Abstract
Grid maps are a well-known technique to visualize data associated with spatial regions. A grid
map assigns each region to a tile in a grid (often orthogonal or hexagonal) and then represents the
associated data values within this tile. Good grid maps represent the underlying geographic space
well: regions that are geographically close are close in the grid map and vice versa.

Though Tobler’s law suggests that spatial proximity relates to data similarity, local variations
may obscure clusters and patterns in the data. For example, there are often clear differences between
urban centers and adjacent rural areas with respect to socio-economic indicators. To get a better
view of the data distribution, we propose grid-map layouts that take data values into account and
place regions with similar data into close proximity. In the limit, such a data layout is essentially a
chart and loses all spatial meaning.

We present an algorithm to create hybrid layouts, allowing for trade-offs between data values
and geographic space when assigning regions to tiles. Our algorithm also handles hierarchical grid
maps and allows us to focus either on data or on geographic space on different levels of the hierarchy.
Leveraging our algorithm we explore the design space of (hierarchical) grid maps with a hybrid
layout and their semantics.
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1 Introduction

Many types of data have a spatial component: they relate to regions of interests, points of
measurement, countries or other administrative zones, et cetera. Visualizing such data in a
geographic map then allows studying patterns in the data that may be influenced by local or
global geography – such as observing differences between rural and urban areas, or between
northern and southern municipalities. However, as the data complexity increases, visualizing
all data in a standard, geographically accurate map becomes infeasible, as precise geography
may cause objects to become indistinguishably small or to clutter. A solution is to warp
the geography instead, to create a better canvas for portraying the data, understanding that
precise geography is not a necessity for observing higher-level patterns.
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S = 0.457 D = 0.706 S = 3.454 D = 0.988

Figure 1 Synthetic example of France and two grid map layouts. Color indicates the region,
circle size indicates the data value. The modified value is highlighted with a light circle.

A popular example of such a warped geography are grid maps (also called tile maps),
which are used, for example, by news outlets [1, 2, 6, 8, 14, 15, 21] and in the geo-visualization
literature [10, 17, 19, 25, 28]. Grid maps schematize each region in the input into a simple
shape (a tile), often a rectangle or hexagon, to then subsequently arrange these tiles into a
grid, roughly according to geography. These tiles then act as a container for a visual encoding
of the data associated with each region, which can take as simple a form as coloring, but
might be as complex as charts for multivariate data. Effectively, a grid map is a spatially
conditioned and arranged small-multiples visualization [22].

We call the assignment of regions to tiles in a grid a layout. The layout of a grid map
is traditionally determined by the geography of the regions. There are many situations
where one can expect that the geography and patterns in the data correlate, at least to some
degree. Tobler, in his “first law of geography” [20], expressed this expectation as follows:
“everything is related to everything else, but near things are more related than distant things”.
Local variations, however, may obscure interesting patterns in the data. For example, urban
centers and adjacent rural areas frequently exhibit differences on socio-economic indicators,
while cities, even when far removed from each other, often exhibit similar data values. Here,
a purely spatial layout makes it difficult to obtain good overview of the data distribution.
Given that a grid map already distorts space to some degree, one might hence consider
layouts which distort space more to allow for a better representation of the data.

Consider the synthetic example of the departments of France in Figure 1. As data we are
using the latitude of the region centroid (with some noise), with the exception of Ariège in
the south, to which we assigned a northern value. In the grid maps color links cells to regions,
and the circle size represents the data, that is, the latitude. The modified value is highlighted
via a light circle. The middle of the figure shows a spatial assignment of departments to
cells; regions are placed in a geographically coherent way. The right of the figure shows a
hybrid layout that takes both space and data into account; regions are mostly placed to be
geographically coherent, but also in such a way that similar values group together. The
outlier can now easily be compared to regions with similar values, such that its place in the
data distribution is clear. We posit that such hybrid layouts, that encode both data and
space via location in the grid, might make it easier to observe patterns in the data that may
otherwise stay hidden. Please note that, although we use color to indicate the effectiveness
of our results, color is not required to indicate location in an eventual visualization and can
hence be used to encode additional information.
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Results and organization. In this paper we initiate the (algorithmic) study of hybrid
layouts for grid maps. After covering some preliminaries in Section 2, we discuss in Section 3
measurements of how well space and data are represented in a given layout. Using our
measures, in Section 4 we develop an algorithm that allows us to gradually transition from a
spatial layout (which ignores data) to a data layout (which ignores space) and vice versa.
Finally, in Section 5 we present a second algorithm which uses hierarchical properties of the
geography to create hierarchical hybrids of spatial and data layouts. The resulting grid maps
are visually pleasing and illustrate the potential of our techniques. We close in Section 6
with an extensive discussion of our results.

Related work. Algorithmically, grid maps were studied by Eppstein et al. [9], in the case
that the number of tiles is roughly equal to the number of regions. The authors identified three
main quality aspects: location (position in the grid with respect to the original geographic
position in the map), adjacency (adjacent regions should map to adjacent tiles) and relative
orientation (compass directions between regions). Eppstein et al. established that optimizing
location is effectively a point-set matching problem, in which the sum of squared distances
between the region centroids and their assigned tile centroids (the displacement) is to be
minimized. Minimizing this displacement generally performs well also for the other criteria.

Meulemans et al. [11] broadened the perspective on grid maps by considering a suite
of measures to assess layout quality in cases where the number of tiles well exceeds the
number of regions. Here, empty tiles (gaps) can be used to give a more accurate reflection
of the underlying geography. Generally speaking, a larger number of tiles allows for more
accurate geographic representation at the expense of the size of the individual tiles, which in
turn limits the complexity of the data visualization within each tile. The authors concluded
that minimizing displacement still leads to good grid maps, but only in specific simple
geographic settings. Subsequently, Meulemans et al. [12] described a pipeline to create
high-quality grid maps for general geographic settings, by partitioning the input into simple
pieces, leveraging cartogram techniques (see below) to create a tile configuration, and then
minimizing displacement within each piece.

Grid maps have been applied hierarchically, for example, to create origin-destination
maps (OD-maps) [18, 27]. OD-maps show the same (single) level both as the higher level
structure, as well as the content of each tile, to visualize relational data between regions (such
as migration). Here the hierarchical layouts are purely spatial, but they suggest nevertheless
that nested layouts can be useful when investigating complex data.

Cartograms are another technique to overcome the constraints enforced by geographic
detail. They deform the map such that every region has an area proportional to their data
value. There are a wide variety of cartograms; most closely related to grid maps are contiguous
cartograms that use schematic outlines, such as rectangular [4, 24], rectilinear [7], and mosaic
cartograms [5]. The latter represent regions by multiple tiles in a grid, corresponding to data
values; this is in contrast to grid maps which represent each region with a single tile. The
quality of a cartogram is determined by two criteria that measure spatial coherence and data
representation: (1) how well are the adjacencies and the relative positions of the geographic
regions preserved in the cartogram, and (2) how large is the cartographic error (how well do
the region sizes match their data values). Cartograms explicitly encode data, but similar
data values cannot cluster unless the cluster is already present in the geography.

Treemaps show a hierarchy, using recursively partitioned rectangles, sized according
to data values. Originally, there was no geographic space associated with the data, and
optimization focused purely on achieving rectangles with low aspect ratios (i.e., close to
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squares); see for example [3]. Ordered treemaps [16] provide more control over the treemap
structure, by relating it to a one-dimensional ordering of the data elements. Wood and
Dykes [26] proposed to use two-dimensional (geographic) space to control the treemap
structure, resulting in spatial treemaps – effectively a hybrid of cartograms and treemaps.

2 Preliminaries

Our input is a geographic map which consists of a set R = {r1, . . . , rn} of n regions. Each
region ri has a polygonal representation pi, a centroid ci derived from it, and a data value vi.
Two parameters specify the target grid: its width W (the number of columns) and its height
H (the number of rows). Together, they define a set T = {ti,j | 1 ≤ i ≤ W and 1 ≤ j ≤ H}
of W · H tiles. Each tile is identified with its centroid. We focus on grid maps that use few
tiles to represent the input regions, resulting in few gaps. That is, we set H and W such that
H · W ≥ n, (H − 1)W < n and H(W − 1) < n. Furthermore, we assume that the tiles in
the grid and the geographic map have been aligned; see Eppstein et al. [9] for algorithms to
optimize such alignment. We use square grids throughout our exposition, but our techniques
readily generalize to other regular tile shapes.

The mapping of regions into a grid map is an injective function L : R → T , the layout,
which assigns each region to a unique tile in the grid. We use AL to denote the set of all
(unordered) pairs of regions that are assigned to adjacent tiles in layout L.

Datasets. To illustrate our techniques, we use three different geographic maps, and popula-
tion data per region for each:
FR: The 94 departments of continental France. Source: https://en.wikipedia.org/wik

i/List_of_French_departments_by_population
EW: The 331 Lower Tier Local Authorities of England and Wales, hierarchically aggregated

into Wales and the 9 regions of England. Source: https://www.ons.gov.uk/peoplepop
ulationandcommunity/populationandmigration/populationestimates/articles/
demographyandmigrationdatacontent/2022-11-02

NL: The 388 municipalities of the Netherlands in 2017, hierarchically aggregated into 12
provinces. Source: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70072n
ed/table?dl=4675

3 Layout quality

To understand and measure the quality of hybrid layouts, which take both space and data
into account, we need to be able to measure how well space and data are represented in
a given layout. In the following, we hence consider the two extremes: spatial layouts that
ignore the data values and data layouts that ignore the geographic space.

3.1 Spatial layouts
A spatial layout is based purely on the geography of the input map and ignores the data
values; in other words, it is a traditional grid map. We hence use the results of Eppstein [9]
to compute spatial layouts by minimizing the total squared displacement between the region
centroids and the centers of the grid tiles. This method crucially relies on the alignment of
the geographic map and the grid: translation of the map can result in a different layout. As
mentioned in Section 2, we assume that the input map and the grid have been aligned well,
using known methods [9]. The result on the France dataset is shown in Figure 2. In the
following we discuss how best to measure how “spatial” a given layout is.

https://en.wikipedia.org/wiki/List_of_French_departments_by_population
https://en.wikipedia.org/wiki/List_of_French_departments_by_population
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/demographyandmigrationdatacontent/2022-11-02
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/demographyandmigrationdatacontent/2022-11-02
https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/demographyandmigrationdatacontent/2022-11-02
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70072ned/table?dl=4675
https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70072ned/table?dl=4675
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S = 0.457 D = 0.225

Figure 2 The spatial layout for FR: color encodes location, circles sizes encode data values.

Spatial distortion and spatial correlation. We compute spatial layouts by minimizing
displacement. Hence, a priori, displacement seems the logical choice to measure how well
space is represented in a layout. However, displacement is inherently a global measure and as
such not well suited for the local changes to the layout that occur during the kind of gradual
transitions between spatial and data layouts that we envision for our hybrid layouts. Spatial
distortion is a local measure for the distance and direction between regions that have been
assigned to adjacent tiles. Specifically, with some normalization, we measure the spatial
distortion S of a layout L as follows:

S(L) = 1
AL

∑
{ri,rj}∈AL

((ci − cj) − (L(ri) − L(rj)))2.

Here cx and L(rx) are vectors expressed in unit lengths (i.e. tile widths). That is, we
average the difference of the vectors between two adjacent tile centers and their assigned
region centers. We use vector subtraction such that direction is also taken into account. We
say that a layout L has high spatial correlation, when the spatial distortion S(L) is low.
Previous work [11] has established that minimizing displacement also generally results in
low spatial distortion for spatial grid maps. We expect that minimizing S(L) is NP-Hard: a
reduction from Euclidean TSP may follow to minimizing S(L) on a n × 1 grid. Hence, our
results are generally not (Pareto-)optimal.

In our figures, we color regions by their position in geographic space using a gradient. As
a result, small geographic distances between adjacent tiles translate to low color variations –
a layout that has high spatial correlation hence visually demonstrates smooth color changes.

3.2 Data layouts
A data layout is based purely on the data and ignores the geography of the input map. In
contrast to a spatial layout – which corresponds to a traditional grid map – there is no
one established way to create such layouts. We generally expect a data layout to cluster
similar values together, especially at the high and low extremes of the value range. In a
one-dimensional grid (that is, an array), this is readily achieved by sorting the regions by
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S = 20.897 D = 0.960

Figure 3 A data layout with a peak of high values, a valley of low values, and average values
along the edges and through the diagonal.

value. However, in a two-dimensional grid, the optimum is less obvious. Before discussing
our method to compute a data layout, we first define a measure for how well the data is
represented in a given layout.

Data correlation. A grid map is by definition a map with well-defined edge adjacencies
between tiles. Hence we can leverage spatial auto-correlation measures on the grid map space
to measure similarities between data values of those regions that are mapped to tiles which
are adjacent (or generally close) in the grid. Moran’s I [13] is a general measure for spatial
auto-correlation which can be flexibly configured for various models of spatial proximity, via
weights defined between each pair of regions. We want to focus on local relations and hence
use a weight of 1 between adjacent tiles, and 0 between all other pairs. We defined the data
correlation D of a layout L as the value of Moran’s I for a layout L:

D(L) = n

|AL|

∑
{ri,rj}∈AL

(vi − v̄)(vj − v̄)∑
ri∈R(vi − v̄)2 .

Here v̄ denotes the average of all vi. The value of D is always between −1 and 1, where
values towards 1 indicate a strong correlation of data values, and values towards −1 indicate
a strong inverse correlation of data values.

Regions whose data values are significantly higher or lower than the average contribute
most to the data correlation if they are placed next to other regions with the same deviation.
That is, in a layout with high data correlation, very low and very high values cluster together,
as we would expect from a data layout. Note that tiles along the boundary have fewer
neighbors than interior tiles and hence have a smaller impact on the data correlation. This
naturally attracts tiles with average data values to the boundary and onto a diagonal,
separating a peak and a valley, see Figure 3.

Computing layouts. As mentioned above, computing an optimal data layout in one dimen-
sion is simply sorting. So one can wonder if there is a two-dimensional equivalent? A naive
approach would fill row after row by the next highest value – that is, effectively sort in the
same manner as squarified treemaps do [3]. In such a layout many tiles can be expected
to not be adjacent to other tiles of similar values in more than two of the four directions
and hence the data correlation is generally low. There are many other possibilities to map a
one-dimensional order of the regions onto the grid along a space-filling curve. While some
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such mappings do better than others in terms of clustering similar data values, they all
necessarily contain adjacent tiles with data values that are far removed from each other in
the order. As a result, none of these sorted layouts optimize data correlation.

We hence computed (near-)optimal data layouts using simulated annealing, repeated for
a set of random layouts. Effectively, we used our constrained annealing approach described
in the next section, without constraints. We observed very slight variations in results due to
randomization, but all with similar values for D. The layout with the highest data correlation,
depicted in Figure 3, was used as the data layout in our experiments.

4 Hybrid layouts

In the previous section we introduced the two layouts that form the end of our spectrum: the
spatial layout which ignores the data values and the data layout which ignores the geographic
space. We also defined two measures to asses how “spatial” or how “data” a given layout
is: the spatial distortion and the data correlation. In this section we now aim to compute
meaningful hybrid layouts that represent both space and data to varying degrees.

Both measures are based on distances between tiles, but nevertheless, they do not live in
the same mathematical space. It is hence unclear how to combine them in a meaningful way
when computing and assessing hybrid layouts. We therefore take the following approach: we
optimize for one measure while constraining the other. That is, we start on either end of the
spectrum, constraining either space or data, and then optimize for the other, while slowly
releasing the constraints. This creates two ranges of layouts, from space to data and vice
versa, which allow us to explore the space of hybrid layouts and the corresponding trade-offs.

Simulated annealing. We use a constrained variant of simulated annealing: we define some
slack parameter σ and we allow the algorithm to search only the space of layouts that are
at most σ different from either the spatial or the data layout. Concretely, our algorithm is
given an initial layout and performs random swaps of tiles. This follows standard simulated-
annealing practice, with the addition that any swap that results in a layout exceeding the given
slack σ from the initial layout is always rejected. We use a starting temperature Ts = δs

ln(0.5) ,
an ending temperature Te = δe

ln(10−9) , 107 iterations, and exponential multiplicative cooling
with factor (Te/Ts)10−7 . For improving the data correlation, we set δs = 10−3 and δs = 10−1.
For reducing the spatial distortion we set δs = 10−2 and δs = 1. Due to locality of our
measures, each iteration takes O(1) time.

Spatial to data. To explore the trade-off from the spatial extreme, we initialize the annealing
algorithm with the spatial layout Ls and optimize for data correlation D, using a spatial
slack parameter σS . Any swap that results in a layout L with S(L) > S(Ls) + σS is rejected.

The results for France with increasing values of σS are shown in Figure 4. We observe
that even for a tiny amount of spatial slack σS = 0.001, the data correlation already increases
considerably. Apart from the measured improvement, we indeed observe that similar values
are grouped together: a peak of high values occurs in the northern blue area. However, we
do not observe further significant improvement until σS is increased to 1. For σS = 1 and
σS = 2 two southern peaks emerge in the purple and orange area. These peaks are merged
together into a single southern peak for σS = 5, yet still separated from the northern high
values. At this point we also see the small values cluster in the center of the grid. Finally,
the northern and southern peaks merge at σS = 10. This corresponds to an increase in data
correlation D, which is already close to D(Ld). At this point most of the spatial correlation is

GISc ience 2023



10:8 Data-Spatial Layouts for Grid Maps

already lost. Increasing the spatial slack further leads to only minor improvement of D, while
even further increasing the spatial distortion. We observe similar behavior in the results for
EW (Figure 5) and for NL (6). However, the improvement of the data correlation happens
more gradually. This might be due to the large number of regions, presenting the simulated
annealing algorithm with more possibilities, while maintaining a similar spatial slack.

Data to spatial. To explore the trade-off from the data extreme, we use an analogous
implementation of our constrained annealing algorithm. We initialize it with the data layout
Ld and reduce the spatial distortion S, using a data slack parameter σD: any swap that
results in a layout L for which D(L) < D(Ld) − σD is rejected.

Figure 7 shows our results for France with increasing values of σD. We again observe that
allowing a small data slack σD = 0.001 already leads to a considerable reduction of spatial
distortion. Visually, the data distribution is nearly identical to Ld, yet regions are starting

S = 0.457 D = 0.225 S = 0.457 D = 0.461 S = 0.463 D = 0.464 S = 0.546 D = 0.482

S = 1.439 D = 0.719 S = 2.434 D = 0.800 S = 3.433 D = 0.850 S = 5.420 D = 0.878 S = 10.375 D = 0.957

Ls σS = 0.001 σS = 0.01 σS = 0.1

σS = 10σS = 5σS = 3σS = 2σS = 1

Figure 4 Hybrid layouts for FR with increasing spatial slack σS .

S = 0.713 D = 0.160 S = 0.714 D = 0.293 S = 0.722 D = 0.306 S = 0.812 D = 0.427

S = 1.712 D = 0.669 S = 2.704 D = 0.785 S = 3.702 D = 0.820 S = 5.696 D = 0.861 S = 10.685 D = 0.914

Ls σS = 0.001 σS = 0.01 σS = 0.1

σS = 10σS = 5σS = 3σS = 2σS = 1

Figure 5 Hybrid layouts for EW with increasing spatial slack σS .
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S = 0.620 D = −0.004 S = 0.621 D = 0.222 S = 0.630 D = 0.230 S = 0.719 D = 0.320

S = 1.616 D = 0.414 S = 2.607 D = 0.654 S = 3.605 D = 0.670 S = 5.568 D = 0.732 S = 10.545 D = 0.759

Ls σS = 0.001 σS = 0.01 σS = 0.1

σS = 10σS = 5σS = 3σS = 2σS = 1

Figure 6 Hybrid layouts for NL with increasing spatial slack σS .

to cluster if they are geographically nearby, indicated by smoother color changes. The effect
further strengthens for σD = 0.005, where it becomes easier to locate most regions with
low and average values from some particular areas. As σD grows, more patches of similar
colors appear, and less similar data values become adjacent. At σD = 0.1 the average values
seem visually unorganized, and at σD = 0.3 some of the larger values are far from other
peaks of large values. Most regions are now geographically grouped, apart from the orange
regions. At σD = 0.5, most data correlation is lost, but the spatial distortion is close to
S(Ls). Again, the results for EW (Figure 8) and for NL (9) show similar behavior, though
the improvement with low amounts of slack seems more significant. This might be due to

S = 20.897 D = 0.960 S = 10.239 D = 0.959 S = 6.780 D = 0.955 S = 5.644 D = 0.950

S = 4.718 D = 0.930 S = 3.769 D = 0.910 S = 2.853 D = 0.861 S = 1.455 D = 0.665 S = 0.552 D = 0.465

Ld σD = 0.001 σD = 0.005 σD = 0.01

σD = 0.5σD = 0.3σD = 0.1σD = 0.05σD = 0.03

Figure 7 Hybrid layouts for FR with increasing data slack σD.
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S = 42.229 D = 0.939 S = 9.964 D = 0.938 S = 7.444 D = 0.934 S = 5.692 D = 0.929

S = 4.027 D = 0.909 S = 3.351 D = 0.889 S = 2.419 D = 0.839 S = 1.785 D = 0.640 S = 0.890 D = 0.441

Ld σD = 0.001 σD = 0.005 σD = 0.01

σD = 0.5σD = 0.3σD = 0.1σD = 0.05σD = 0.03

Figure 8 Hybrid layouts for EW with increasing data slack σD.

S = 63.560 D = 0.783 S = 9.160 D = 0.782 S = 6.226 D = 0.778 S = 5.192 D = 0.773

S = 3.683 D = 0.753 S = 2.740 D = 0.733 S = 2.011 D = 0.683 S = 0.965 D = 0.485 S = 0.891 D = 0.286

σD = 0.001 σD = 0.005 σD = 0.01

σD = 0.5σD = 0.3σD = 0.1σD = 0.05σD = 0.03

Ld

Figure 9 Hybrid layouts for NL with increasing data slack σD.

the many similar data values in EW regions, giving the algorithm many valid swapping
possibilities. We observe that it takes a large amount of slack before the outlying values
move to a more suitable spatial position, with the largest value not even being in an optimal
spatial position at σD = 0.5.

Analysis. There are layouts in both sequences that strictly outperform layouts in the other
sequence. For example, the layout of France with σD = 0.001 has higher data correlation
and lower spatial distortion than the layout with σS = 10. Similarly, the layout with σS = 1
outperforms the layout with σD = 0.3. We conclude that the trade-off can be efficaciously
approached from both ends using our constrained simulated-annealing approach. Both
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methods readily achieve improvements using only small slack values. High slack values
achieve reasonable results but are generally outperformed by the opposite approach with low
slack values. We observe that the EW and NL layouts produced with high slack values are
less close to the opposite extremes than is the case for France. They are hence still more of a
hybrid layout. Increasing the slack further would eventually lead to the opposite extreme.

5 Hierarchical hybrid layouts

In the previous section we explored the trade-off between data and spatial layouts by creating
sequences of layouts from both extremes. Each sequence focuses on one aspect, space or
data, and integrates the other. While this approach arguably creates meaningful hybrid
grid maps in the vicinity of the two ends of the spectrum, in the conceptual middle of the
trade-off, the results might become difficult to interpret: for any given cluster of similar
regions, it is unclear if this cluster was formed based on spatial or data correlation, which
may hinder understanding of relations between clusters. Hence, in this section, we explore
a more structured approach to integrate space and data. Specifically, we propose to use
hierarchical information about the regions, effectively creating a hierarchical grid map. These
zones may be administrative zones or deduced from the geography. It is less clear what
meaningful hierarchies based on data would be; we hence focus on geographic hierarchies.

Within a zone regions may be arranged to create a spatial or data layout, while still
displaying the zone affiliation. Meanwhile, the zones may also be arranged in a spatial or
in a data layout, as to convey information about their relations on the higher level. For
example, in a dataset with neighborhoods as regions and cities and rural areas for zones,
the cities could re-arrange themselves to cluster together, separating themselves visually
from rural zones. Yet, within each city (or within the rural areas), the spatial structure
of neighborhoods is maintained. To achieve legibility across hierarchical level, it may be
desirable to retain connectivity of regions within the same zone.

In the following we assume that our input map is augmented with a set Z = {z1, . . . , zk}
of k zones. These zones partition R, and we assume that they each capture a geographically
somewhat coherent set of regions, such as provinces in a country. Furthermore, the data
values of all regions in a zone zi are aggregated into a value ai for the zone – the form of this
aggregation (e.g., average or sum) depends on the nature of the data and the desired effect
in the map. We use administrative, established hierarchies in our experiments, aggregating
based on the sum, as our data values represent population.

The central idea of our algorithm is then to leverage the hierarchy: we separate spatial
and data aspects on different hierarchical levels, and finally blend the two together into a
single layout. Each level of the hierarchy can independently be assigned to be a spatial
layout, or a data layout. For simplicity, we assume a 2-level hierarchy. We hence select either
data or spatial layouts on the zone-level and either data or spatial layouts on the region-level.

Figure 10 Zone-level transformations: zones of EW; zone-level layout LZ (data layout); regions
of each zone fitted to the assigned tile; each zone scaled by factor λ, λ = 0.25 for illustration.
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S = 1.672 D = 0.177

(a) Spatial LZ , spatial LR.
S = 8.961 D = 0.621

(b) Spatial LZ , data LR.

S = 5.092 D = 0.187

(c) Data LZ , spatial LR.
S = 9.458 D = 0.632

(d) Data LZ , data LR.

Figure 11 Hierarchical grid map for EW. With each, the smaller maps represent from top to
bottom: the zones Z, the zone layout LZ , and the regions R.

To compute the hybrid layout, we first compute a data or spatial layout LZ on a coarse
grid for the zones. The next step is then to compute the final, region-level layout LR.

The difficulty lies with zones representing different numbers of regions. We want to obtain
an outline for each zone in which to place and rearrange its regions. To this end, we leverage
the algorithm for spatial layouts, by creating an artificial “map” based on the zone-level
layout. Refer to Figure 10 for illustrations. We scale the regions of each zone zi such that
it exactly fits the tile, translating it such that it is centered within the tile. Subsequently,
we scale the regions further by a factor λ < 1. These steps give us the artificial map, for
which we compute the spatial layout Ls of all regions. If the region-level was assigned to be a
spatial layout, we are done: Ls is the final layout LR. If this level was assigned to be a data
layout, then we compute a data layout for each zone zi separately, using the selected tiles for
zi in Ls. The combination of these data layouts per zone then yields the final layout LR.

The second scaling step with λ is done to ensure that each zone is represented by a
compact, connected set of tiles. The parameter mostly needs to be sufficiently small, we use
λ = 1

W +H . For λ to be closer to 1, the resulting zones could potentially preserve more of
the shape of the original geography, at the expense of disconnected zones. However, due to
the limited space available in the grid in computing the subsequent region-level layout, the
gain is limited; when a data layout is used on the region level, the semantics of the preserved
shape are lost and may even be misleading.
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S = 1.409 D = 0.004

(a) Spatial LZ , spatial LR.
S = 9.484 D = 0.427

(b) Spatial LZ , data LR.

S = 13.971 D = −0.022

(c) Data LZ , spatial LR.
S = 17.986 D = 0.408

(d) Data LZ , data LR.

Figure 12 Hierarchical grid maps for NL. With each, the smaller maps represent from top to
bottom: the zones Z, the zone layout LZ , and the regions R.

Results. We demonstrate our techniques on our two hierarchical datasets in Figures 11
and 12. We assign each zone a hue, using a saturation and brightness gradient for that hue
to color the regions within the zone. We render the boundary between tiles of different zones
with a thicker line, to make it easier to identify zones. In both cases we see that our measures
indicate that the spatial-spatial layout (a) has the lowest spatial distortion S, while having
low data correlation D. The data-data layout (d) achieves the exact opposite.

Interestingly, for the EW dataset, the spatial-data layout (b) has worse spatial correlation
than the data-spatial layout (c). Our measures, based on adjacent tiles, are sensitive to local
structures being removed in reshuffling each zone, and measure only some form of spatial
distortion for the relatively few tiles along the zone boundaries. The better higher-level
spatial structure of (b) is not captured as much by our spatial distortion measure S, though
it does seem to capture this structure for the NL dataset. Furthermore, it may have quite an
influence on what an analyst may understand from the map. That is, it may be easier to
still identify and relate the zones in a spatial-data layout, compared to doing so for regions
within a zone, that are necessarily harder to identify due to their sheer number.

GISc ience 2023



10:14 Data-Spatial Layouts for Grid Maps

S = 0.729 D = 0.180 S = 1.104 D = 0.157

Figure 13 Center: the spatial layout for the EW data, based only on the regions R. Note the
irregular zones and two disconnected zones. Right: a hierarchical layout computed by scaling regions
towards their zone’s geographical center.

For region-level data layouts LR (b) and (d) we can observe uneven coloring in zones
of rather similar data values, indicating unnecessary spatial distortion. Hence, instead of
using a pure data layout, we could use a hybrid data-to-spatial layout with little slack. As
we established in the previous section, such a layout will essentially retain the same data
correlation and improve the spatial correlation significantly.

Alternative for spatial zone-level layouts. When using a spatial layout on the zone level,
we aim to preserve the geographic relations of the zones. As such, the transformed map we
compute in fact aims to resemble to original geography. We could indeed use the original
geography – effectively using the non-hierarchical spatial layout for the entire map. Yet, this
does have a different effect, as zones are now not represented as compactly. As an example,
compare Figure 11(a) to Figure 13 (center): we observe the irregularly shaped zones in the
latter, and even two zones that are not represented contiguously.

To promote compactness of zones, we could also opt to shrink the regions of a zone towards
the zone’s original, geographic centroid. Such an approach avoids the need to compute a
zone-level layout. It naturally produces outlines roughly forming a Voronoi diagram of the
centroids of the zones; see Figure 13 (right). However, it breaks the grid-like layout in our
proposed solution which may help identifiability.

6 Discussion

We presented two approaches which allow us to combine spatial and data aspects in a
grid map. Our hybrid grid maps use simulated annealing to effectively improve spatial or
data correlation for a layout that is primarily based on the respective other aspect. Our
experiments show that already a low amount of slack improves the other measure significantly,
while not lowering the quality of the layout much with respect to the original measure –
effectively also indicating that Tobler’s law is indeed applicable here. Layouts with a large
slack are usually inferior to layouts with a small slack computed from the other extreme.
We believe that hybrid grid maps with low slack are not only visually pleasing, but also
highlight patterns clearly and as such demonstrate the potential of our technique. It is,
however, challenging to determine the cause of the complex patterns that arise in the grid
maps: the patterns might be complex due to the complex nature of the problem, or due to
imperfect grid allocation. Investigating this may be an interesting avenue for future research.



N. van Beusekom, W. Meulemans, B. Speckmann, and J. Wood 10:15

Furthermore, we introduced a controlled way of combining spatial and data aspects,
by leveraging a hierarchy, assigning each level of the hierarchy to use a data layout or a
spatial layout. This more enforced structure of mixing spatial and data aspects may aid
in interpreting the resulting hybrid grid maps, as the zones act as logical units that stay
together for higher-level patterns. Although we heuristically achieve a notion of connectivity
by choosing a sufficiently small λ, we do not enforce this constraint. In future work, extra
constraints may be added in the spatial layout algorithm to ensure connectivity, along the
lines of the work by Validi et al. [23]. Though hierarchical grid maps readily generalize to
hierarchies of multiple levels, we expect that repeatedly changing from data to spatial layouts
and vice versa may result in layouts that are too complex to be understood.

Measures. The quality measures that we used to assess spatial and data quality encapsulate
our main goal of creating smooth color and data changes along the grid.

It would be interesting for future research to investigate how well these notions of spatial
and data correlation match the expectations of a user, or how effective different measures
are for predicting task performance on hybrid grid maps and hierarchical hybrid grid maps.

Usability. The main question looking forward is whether such hybrid layouts indeed help
synthesizing a mental model of the data. That is, can a human analyst effectively work with
hybrid layouts? With these methods we have shown that it is now possible to create such
hybrid layouts, and hence these questions may now be further researched.

Intuitively, it seems that spatial layouts with some improved data correlation are useful.
It erases some of the “noise” in the data dimension at the cost of slight distortion of space –
but as grid maps are inherently distorted, such seems tolerable and inherent in the approach
to begin with. The other end, data layouts with some improved spatial correlation, can also
be useful and it is feasible to significantly reduce the spatial distortion while still maintaining
a layout with high data correlation. Hierarchical hybrid layouts are more constrained, but for
that reason also offer more control in creating such layouts with a strong mix of both aspects.
They may hence be easier to interpret than basic hybrid layouts with medium levels of slack.

We color the tiles by their spatial location, to communicate spatial correlation. However,
we observe that there may be visual bias for regions with large data values or bright colors.
When such regions are contrasting their adjacent tiles, this is more apparent and feels
more out of place than when less bright or smaller data values are out of place. The visual
assessment is further deceived by an element of the coloring scheme we use for non-hierarchical
cases. We rotate the hue around a point in the map. Near this point, regions might be close
together while having a different hue, and hence seem far apart in the coloring. We aimed to
reduce this effect be reducing brightness and saturation near the center. As an alternative to
color, interaction could help in identifying regions.

An eventual hybrid grid map may hence require further attention as to how spatial
distortion is communicated and how data values are rendered. A prominent question is to
what level of detail spatial distortion should be indicated. Standard grid maps often do not
communicate their distortion at all. Yet, in a hybrid layout, being able to separate spatial
from data patterns and effects may increase the need for indicators of distortions.
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Abstract
Machine learning methods have recently found much application on spatial data, for example in
weather forecasting, traffic prediction, and soil analysis. At the same time, methods from spatial
statistics were developed over the past decades to explicitly account for spatial structuring in
analytical and inference tasks. In the light of this duality of having both types of methods available,
we explore the following question: Under what circumstances are local, spatially-explicit models
preferable over machine learning models that do not incorporate spatial structure explicitly in their
specification? Local models are typically used to capture spatial non-stationarity. Thus, we study the
effect of strength and type of spatial heterogeneity, which may originate from non-stationarity of a
process itself or from heterogeneous noise, on the performance of different linear and non-linear, local
and global machine learning and regression models. The results suggest that it is necessary to assess
the performance of linear local models on an independent hold-out dataset, since models may overfit
under certain conditions. We further show that local models are advantageous in settings with small
sample size and high degrees of spatial heterogeneity. Our findings allow deriving model selection
criteria, which are validated in benchmarking experiments on five well-known spatial datasets.
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1 Introduction

The success of machine learning and artificial intelligence in recent years has sparked
considerable interest in respective methods also in GIScience, and has led to a general
proliferation of spatial data science [24]. While spatial statistics used to carefully address
the special nature of spatial data, spatial data science often involves the direct application
of (global) machine learning models to spatial data without explicitly modeling spatial
properties. Nevertheless, these models oftentimes provide successful inferences on test data.
Yet, spatial data may be subject to complex confounders including spatial heterogeneity,
which is the focus of this paper. Currently, there is no comprehensive review available
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that would show when global non-linear machine learning models can or should be used
for interpolation or prediction tasks on spatially heterogeneous data without producing
misleading or wrong results. While there exist analyses on the effectiveness of methods
to deal with spatial autocorrelation [2], no such benchmarking has been done regarding
spatial heterogeneity, either originating from non-stationarity of the actual process or from
spatially heterogeneous exogenous noise. In this work, we benchmark the performance of
global (machine learning) and local spatial regression models for the prediction of unseen
test data that is subject to various kinds of heterogeneity. We simulate spatial heterogeneity
with synthetic data in order to derive recommendations about the suitability of model types
for specific heterogeneity-related scenarios. We finally validate our model selection criteria
through experiments on several real-world datasets. The following two sub-sections briefly
outline the state of the art as well as our contribution in more detail, before we present the
experiments and our results.

1.1 Related work
Statistical learning methods have been adapted to geospatial data since a long time. A major
step towards accounting for spatial heterogeneity has been the proposal of local models, such
as Geographically Weighted Regression (GWR) [3, 9]. Next to variants of GWR [17], the
idea also inspired adaptations of machine learning models, with spatial versions of Random
Forests (RFs) [11, 28] or even Geographically Weighted Artificial Neural Networks [13, 7].
The proposed modifications of machine learning models such as Random Forests include 1)
providing spatial coordinates as input [18], 2) deriving spatial features such as the distance
from points of interest from the coordinates [14] in order to improve spatial generalization [5],
3) including the observations at nearby samples as covariates [28], and 4) fitting RFs on
local subsets of data [11]. While these approaches have been shown advantageous in some
situations, a recent study Zhou et al. [31] compared GWR with geographical RFs on health
data and actually found that GWR provided better predictions than the more complex
RF models, though the generalizability of the results is limited due to the very specific
application context.

A common limitation of existing approaches is that the developed methods are usually
evaluated on a single or few real dataset(s). The results may therefore be subject to unknown
data properties. Synthetic data, in contrast, allows to benchmark methods in a controlled
setting. While this solution is implemented, for example, by Beale et al. [2] and Santibanez
et al. [26] for the purpose of assessing the effect of varying degrees of spatial autocorrelation,
there is a lack of benchmarking with simulated spatial heterogeneity. Fotheringham et al. [10]
and Hagenauer et al. [13] validate their methods on synthetic data that were designed to
be non-stationary in space, and Finley et al. [8] compare GWR and SVC on non-stationary
synthetic data, but they do not systematically vary the non-stationarity. The latter is our
point of departure for the following sections.

1.2 Contribution
We evaluate the ability of different models to deal with varying degrees of spatial heterogeneity.
Inspired by the work conducted by Comber et al. [4] presenting a route map when to use
GWR and two of its variants, we derive model selection criteria from our results on synthetic
data. We extend previous findings in three ways: first, in addition to GWR and other
linear methods, we also consider Random Forests as non-linear models and compare their
performance on non-linear tasks; second, we consider predictive performance instead of
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analysis in order to account for overfitting behavior; third, and most importantly, we provide
a detailed analysis of model adequacy with respect to spatial non-stationarity and signal-
to-noise ratio. To achieve this, we propose a synthetic data-generating process that allows
to systematically vary the degree of spatial heterogeneity due to 1) the non-stationarity
of the process, and 2) noise. We utilize this framework to compare seven models that are
selected to reflect standard approaches that were, to varying degrees, developed to deal with
spatial data. By analyzing the model performances in this controlled synthetic setting, we
derive recommendations what model is appropriate dependent on the sample density, the
spatial heterogeneity and the problem complexity. We validate our model selection criteria
by benchmarking the models also on five real geospatial datasets.

2 Methods

We simulate a spatial regression problem with synthetically generated data that are subject to
spatial heterogeneity. Spatial heterogeneity in our analysis stems from two effects; on the one
hand, the dependence of the dependent variable2 Y on the independent variables X may be
non-stationary, i.e., the same input may lead to different outputs in different spatial regions.
In previous work [10, 13], this was modeled by varying the coefficients β dependent on the
coordinates (u, v); for example, Fotheringham et al. [10] set β1 = 1 + (u+v)

12 and Hagenauer et
al. [13] add coefficients with oscillating spatial distribution based on trigonometric functions.
On the other hand, spatial heterogeneity may be caused by differences in the variance of the
errors (and thus by noise). To understand the effect of the signal-to-noise ratio in spatial
data subject to spatial heterogeneity of both types, we propose to vary the noise and the
level of non-stationarity over space and to compare models on both linear and non-linear
problems on test data.

2.1 Data-generating processes (DGPs)
One of our investigated DGPs represents a linear relationship of Y on k independent variables
xj(j ∈ [1..k]). It is given as

yi =
k∑
j

βj(ui, vi) · xij + ϵ(ui, vi) , (1)

where xij is the j-th feature of the i-th sample, (ui, vi) are the coordinates of the i-th sample,
and βj(ui, vi) is the location-dependent coefficient. ϵ(ui, vi) is the noise that may also be
heterogeneous across space. The definition of β and ϵ will be given in detail in Section 2.1.1
and Section 2.1.2 respectively.

We also implement a non-linear DGP in order to analyze the model performances under
the regime of a more complex phenomenon. The function is constructed such that there are
interactions between variables and non-linear effects of single variables, and the terms are
weighted with the non-stationary coefficients β:

ỹi = β1(ui, vi) · x2
i1 · sin (xi2) + β2(ui, vi) · sin (xi2) · xi4

+β3(ui, vi) · xi5 · log (x2
i3) + β4(ui, vi) · x2

i4 · cos (xi2)
+β5(ui, vi) · x2

i1 · xi4 · xi5 + ϵ(ui, vi).
(2)

2 Throughout this paper, we use capital characters for vectors and matrices and non-capitalized characters
for referring to scalar terms.
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In both scenarios, we construct n samples with pairs of geographic coordinates (ui, vi) and
k attribute values xij . The coordinates are drawn from a uniform distribution U(−1, 1). In
contrast to related work, we did not use coordinates on a regular grid in order to better mimic
a realistic situation with irregular local clustering and dispersion patterns of observation sites.
The independent variables X are assumed to be subject to spatial autocorrelation since we
aim to simulate realistic spatial data. This is modeled by left-multiplying a vector of uniform
random data X ′ by the so-called spatial autoregressive (SAR) generating operator3 [16], that
is, as X = (I −ρW )−1X ′, where W is the weight matrix, computed as the inverse distances of
the 20 nearest neighbors. After observing that the average spatial autocorrelation, measured
using Moran’s I, is around 0.3 in the considered real datasets, we calibrate the autoregressive
parameter ρ such that the resulting values yield Moran’s I values of around 0.3 accordingly
(ρ = 0.75).

2.1.1 Non-stationary coefficients β

In contrast to previous work assuming a complete variation of the coefficients [10, 13], we
argue that with many types of real-world processes, it would be more reasonable for the
coefficients to vary around a constant value cj . To simulate this, we frame spatial non-
stationarity as an additive factor to the underlying coefficient cj , and quantify its strength
with a factor λ. The coefficients used are thus composed of the constant coefficient cj and
the spatial variation β̂j(ui, vi):

βj(ui, vi) = cj + λ · β̂j(ui, vi).

The spatial variation β̂, in turn, is modeled based on trigonometric functions and thus in a
similar fashion as presented in [10, 13]:

β̂j(ui, vi) = sin(ui · 2π + j) + cos(vi · 2π + j).

Since the coordinates are drawn from U(−1, 1), this definition of β̂ leads to two cycles of
the sine and cosine functions in x and y direction. Furthermore, the spatial variation is
shifted by j for the j-th coefficient to ensure that the spatial heterogeneities attached to the
coefficients are not all the same. The final coefficients βj(ui, vi) with weak (λ = 0.2) and
strong (λ = 0.5) non-stationarity are shown in Figure 1.

2.1.2 Spatial heterogeneity of the errors ϵ

Not only β-coefficients but also the error terms can vary across space. A heterogeneous
spatial distribution of the noise ϵ increases the difficulty of distinguishing signal from noise.
The spatial distribution may thereby either be similar to one of the coefficients (i.e., also
trigonometric) or different. Let σ be the average noise strength similar to the non-stationarity
effect size λ as defined in Section 2.1.1. Using this, we consider three scenarios for varying
the error terms:

ϵ ∼ N (0, σ), (3a)

ϵ(ui, vi) ∼ N (0, σ̂(ui, vi)) with σ̂(ui, vi) = σ · (sin(ui · 2π) + cos(vi · 2π) + 1), (3b)

ϵ(ui, vi) ∼ N (0, σ̂(ui, vi)) with σ̂(ui, vi) = σ · (0.5 · (ui + vi) + 1). (3c)

3 See also https://r-spatial.github.io/spatialreg/reference/invIrM.html

https://r-spatial.github.io/spatialreg/reference/invIrM.html
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(a) Coefficients with strong spatial heterogeneity (λ = 0.5).

(b) Coefficients with weak spatial heterogeneity (λ = 0.2).

Figure 1 Spatial non-stationarity is simulated as a trigonometric spatial variation of the coefficients
β. The factor λ determines the overall strength of the non-stationarity.

(a) Uniformly distributed
noise.

(b) Heterogeneous
(trigonometric).

(c) Heterogeneous
(linear).

Figure 2 Varying the spatial distribution of the variance of the errors ϵ. We simulate three
scenarios: uniformly distributed noise ϵ, one that follows a similar distribution as the non-stationary
process (i.e., trigonometric), and one that follows a different distribution (linear).

Equation 3a refers to a scenario with uniformly distributed noise. This scenario does not
incorporate spatially varying errors. Equation 3b describes error terms that are heterogeneous
in the sense that their variance oscillates trigonometrically around σ, depending on their
spatial locations. The last scenario presented in equation 3c is also spatially varying but
based on a diagonal linear trend over the map. Respective noise maps created under the
scenarios outlined are illustrated in Figure 2.

2.2 Regression models
We consider linear and non-linear, global and local models suitable for regression tasks.
Figure 3 provides an overview of their properties. In the following, let X ∈ Rn×m denote the
m-dimensional feature matrix of n samples, and let Y ∈ Rn be the dependent variable that
is to be predicted from X.

2.2.1 Ordinary Least Squares and a global spatial model
We employ two linear global types of regression models. One of these is the Ordinary Least
Squares (OLS) model, which assumes a linear dependency of Y on X. It is given as

Y = Xβ + ϵ,
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Figure 3 Overview of the compared models’ abilities to handle non-linearity, their consideration
of spatial autocorrelation, and their respective suitability for non-stationarity.

with ϵ being the error term and β ∈ Rm denoting the coefficients. In OLS, the coefficients can
be estimated using matrix inverse and multiplication: β = (XT X)−1XT Y . The intercept
can be included in this model through a column vector of ones added to the feature matrix,
which yields X ∈ Rn×m+1 and β ∈ Rm+1. Note that applying OLS on spatial data is not
generally advisable since it assumes that the samples are independent. This is not the
case with (geo)spatial data because these are often taken from shared contexts, originate
from processes with endogenous spatial dispersal mechanisms, or may be driven by spatially
structured covariates. We nevertheless include OLS in our comparison as it is widely used as
a yardstick against which to assess the usefulness of spatially explicit methods.

The second global linear method tested is the Spatial Lag in X model (SLX). This model
takes into account spatially lagged independent variables and is given as

Y = ρWX + Xβ + ϵ,

where W is the spatial weights matrix that is computed as the inverse distance of the 20
nearest neighbors (see DGP), and ρ is the spatial coefficient. The estimation of β and ρ can
be solved by adding the spatially-lagged X as additional covariates, and estimating two sets
of coefficients for X and WX respectively.

2.2.2 Geographically Weighted Regression
Although Geographically Weighted Regression (GWR) was proposed for the analysis (not
prediction) of spatial data, it is a suitable local model to account for non-stationarity in
regression problems. GWR follows the standard linear regression framework but assumes
that the coefficients β are dependent on locations (ui, vi). The model specification is given as

yi =
∑

j

βj(ui, vi)Xij + ϵ.

In GWR, the local coefficients are estimated by building local models around each sample
including only the spatial neighbors within a bandwidth. The latter can either be fixed
(i.e., a pre-set distance) or adaptive (i.e., varying in space). The bandwidth is optimized by
means of the golden-section search algorithm based on the Corrected Akaike Information
Criterion (AICc) or with cross-validation (CV). Here, we tune a fixed bandwidth with the
AICc criterion and use an exponential kernel. Our analysis aims to benchmark established
local and global models on a synthetic (single-scale) task. We, therefore, use the original
GWR specification but do not consider variants of the model such as multi-scale GWR [10].

2.2.3 Random Forest Regression models
Random Forests (RFs) are established machine learning models for regression tasks and
have been shown to be very successful for a wide range of applications. We choose RFs
as the main non-linear model in our experiments since it is arguably most prominent in
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spatial applications and does not require extensive parameter tuning. An RF is formed as an
ensemble of decision trees that can learn arbitrary non-linear relations. The prediction of an
RF is the average over the tree-wise outputs. We use the implementation provided through
the scikit-learn [23] package.

To give RFs the ability to learn spatially non-stationary processes, a simple approach
is to include the geographic coordinates as covariates [18]. We denote this RF-variant by
RF (coordinates) in the following. In general, this approach is not recommended, since such
a model is not applicable to other spatial regions [5]. However, we only regard regression
within the same region here.

2.2.4 Spatial Random Forests
Aside from simply extending non-linear models by adding geographic coordinates or spatial
features as covariates, another option is to fit them locally, as a non-linear counterpart to
GWR. Similar to [11], we implement this approach for RFs. To provide a local yet efficient
approach, we exploit the bootstrapping nature of RFs and fit a fixed number of spatially-
disjoint decision trees. The decision trees are rooted in the cluster centers of K-Means
clustering applied to the dataset. At test time, the prediction for a test sample is given by
the weighted average of tree-wise predictions, where the weights are defined by the inverse
distances of the test sample to the root of each tree respectively. While Georganos et al. [11]
proposed a weighting of the spatial-RF and the global-RF predictions, we set the weight to 1
for a fair comparison between global and local models. Our version of spatial RFs is made
available as an open-source package4. We validated that our spatial RF achieves similar
performance as the implementation by Georganos et al. [11] and found that it is actually
superior in 65.7% of all simulated scenarios and under ceteris paribus conditions.

2.2.5 Kriging
Another method that we employ is Kriging. This method is a well-known approach for
interpolating geospatial data. A suitable variant for regression tasks is so-called Regression
Kriging, which corresponds to universal Kriging with external drift. Regression Kriging
essentially tackles (possibly non-linear) regression problems by fitting an arbitrary (global)
regression model on the data and then applying Kriging on the residuals. Here, we use
an RF as the base regressor in order to achieve maximum comparability to the global RF
models, and employ the Kriging implementation offered in the pykrige package [20]. All
Random Forest-based models are fitted with 100 base estimators and a maximum tree depth
of 30. Increasing the number of estimators to 150 did not yield any significant improvements.
We did not tune other parameters for a fair comparison. For GWR and spatial RFs, the
bandwidth is tuned on validation data.

2.3 Experimental setup
We construct synthetic data following the DGPs described above, and evaluate the seven
regression models in each scenario. The data is thereby randomly split and each model is
trained on 90% of the data and tested on the remaining 10%. To study the effect of the
sample size, we generate four datasets with n = 100, n = 500, n = 1000, and n = 5000
samples respectively, and k = 5 attributes for each sample. Our DGPs allow to compare
model performances subject to varying degrees of non-stationarity (λ) and of the variance of

4 https://github.com/mie-lab/spatial_rf_python
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Figure 4 Results on the synthetic dataset (1000 samples). Performance in general decreases with
noise and with the degree of non-stationarity (lowest performance in the bottom right of each plot).
On linear data, GWR can account for non-stationarity, in contrast to other models. A random
forest is better suited for non-linear phenomena, but spatial (locally fitted) RFs do not provide any
benefits in these scenarios.

error terms (σ). In our experiments, we systematically vary the spatial non-stationarity by
setting the factor λ to values between 0 and 0.5 (see Section 2.1.1). Furthermore, we vary
the signal-to-noise ratio by setting σ to values between 0 and 0.5, where σ = 0.5 corresponds
to a low signal-to-noise ratio (i.e., strong noise).

3 Results and discussion

In the following, we first compare the performances of the models on our synthetic dataset,
then derive recommendations for model selection, and finally validate these recommendations
in experiments on five real-world datasets.

3.1 Results obtained from synthetic data
The model performances in terms of test-data RMSE are visualized in Figure 4, divided by
data generating function (row), spatial non-stationarity (x-axis), and noise level (y-axis).
Only the scenarios with 1000 samples and uniformly distributed noise ϵ are shown. As
expected, the performance generally decreases with higher noise levels or higher degrees of
spatial heterogeneity (see highest RMSE in the bottom right corner of each scenario depicted
in Figure 4). For the linear DGP, one can clearly see the superiority of GWR in dealing with
locally varying spatial data, as it is indeed very robust to the adjusted spatial heterogeneity.
The linear models (GWR, OLS, and SAR) are also clearly better at dealing with noise in
linear regression tasks, whereas non-linear regressors such as Random Forests may struggle
from overfitting. However, the latter picture changes when considering a non-linear function.
The non-linear models yet generally struggle more with spatial non-stationarity than their
linear counterparts. Surprisingly, spatial RFs are consistently outperformed by other models
for the linear case, probably due to overfitting local models on the limited number of samples.
The figure further indicates that a spatial RF is also not the best model when it comes to
non-linear scenarios, though better than GWR. In this case, the problem may be underfitting,
given the lower number of samples that are fed into each local model.

3.1.1 Effect of the spatial heterogeneity of the errors
As explained in Section 2.1.2 we additionally simulate different distributions of the variance
of the errors ϵ (see Figure 2). Figure 5 visualizes the RMSE for GWR and Regression Kriging
by the noise level. The outcomes obtained for degrees of non-stationarity λ ∈ {0.3, 0.4, 0.5}
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Figure 5 The average RMSEs with their 95% confidence intervals for varying noise levels (500
samples, averaged over scenarios with high degrees of non-stationarity). The RMSE is highest if the
noise varies in the same fashion as the coefficients (heterogeneous – trigonometric) for the linear
DGP. For the non-linear DGP the noise pattern has no significant influence.

are thereby averaged for obtaining an easier-to-interpret picture, so the blue lines (uniformly
distributed noise) in Figure 5 correspond to the right part of the squares in Figure 4. In
general, the type of distribution only has a minor effect compared to the average noise level,
in particular for the non-linear GDP. However, at stronger noise levels, the scenario with
trigonometrically varying noise is clearly the most difficult. Additionally, the variance of the
RMSE increases in that case. Since the non-stationarity of the coefficients β is also modeled
trigonmetrically, these findings indicate that the models particularly struggle to distinguish
signal from noise if the variance of the errors is distributed similarly to the non-stationarity.

3.1.2 Comparing training and test errors
GWR and related local models are oftentimes only evaluated in terms of their fit to the
input data, and not by means of inference on unseen data. Since GWR is based on linear
models, the risk of overfitting is considered low, and evaluating the fit on test data is deemed
unnecessary. Here, we make the case for evaluating models in terms of their predictive power,
since even local linear models may overfit due to their higher number of parameters, and
because local sample sizes are often small. To justify this argument empirically, we compare
the RMSE on training and test data in our experiment. We find that Random Forest-based
models (including Regression Kriging as we base it on RF) generally achieve very small
training errors (RMSE < 0.01), which is expected since the individual decision trees overfit
on the training data and only the boosting approach leads to good test performance. In
Figure 6 we therefore only compare the results for SLX and GWR to showcase the danger
of overfitting even linear models when they are local. Here, we consider λ ∈ {0, 0.1, 0.2} as
“weak non-stationarity” and λ ∈ {0.3, 0.4, 0.5} as “strong non-stationarity”, σ ∈ {0, 0.1, 0.2}
as “weak noise” and σ ∈ {0.3, 0.4, 0.5} as “strong noise”. The results are averaged over these
scenarios for n = 1000 samples. Figure 6 shows that SLX as a global linear model hardly
overfits on the data, whereas for GWR, which has considerably more parameters than global
linear models, the training and test errors indeed diverge in some scenarios. For example,
when there is strong non-stationarity but weak noise, the test error of GWR is 31% higher
than its training error. This demonstrates the necessity to validate models on test data when
employing them in predictive instead of purely analytical scenarios.

Additionally, overfitting may even lead to misinterpretations of analytical results of GWR,
such as the visualization of the estimated coefficients on a map. The effect of overfitting
on the spatial interpretation is application-dependent, but we exemplify the problem in
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Figure 6 Comparing training and test errors in different scenarios. Even linear models such
as GWR show overfitting behaviour, i.e., a lower test than train score, if there is either noise or
non-stationarity in the data.

Figure 7 Comparing the GWR-estimated coefficients to the real coefficient for different signal-to-
noise ratio. With noisy data, the spatial interpretation can be distorted.

Figure 7. The figure shows the true spatial variation of one coefficient β1 in synthetic data
(n = 1000) with moderate spatial heterogeneity (λ = 0.3), as well as the distribution of its
estimate obtained with GWR. With decreasing signal-to-noise ratio, the spatial pattern of
the estimated coefficient is perturbed. The pattern for σ = 0.5 indicates a single area with
high β1 on the left side of the region, in contrast to the true trigonometric pattern. This
shows the potential for misinterpreting the results of a model with a bad fit to the data and
calls for validation on test data before spatial analysis and interpretation. Of course, there is
no unequivocal and generally agreed definition for when a model is overfitting, and overfitting
may not be problematic as long as the test performance is sufficiently high. However, the
interpretation of coefficients should be considered with caution in such case. For example,
one could only analyze the coefficients of local models that were fit on a sufficient number of
samples.

3.2 Proposed criteria for model selection
Our experiments on synthetic data allow to derive recommendations for choosing a model,
dependent on the prediction task and on data availability. In general, the results in Figure 4
render linear models such as SLX most suitable for the linear DGP, with clear advantages of
GWR in non-stationary scenarios. In contrast, Random Forest-based models are superior in
the case of a non-linear DGP, while local RFs do not seem to provide many benefits. However,
in real-world scenarios, the DGP is usually expected to be neither perfectly linear nor as
complex as our non-linear scenario. It is therefore worthwhile to consider further factors
such as the sample size. For this purpose, we analyze scenarios with strong non-stationarity
(λ ∈ {0.3, 0.4, 0.5}) and weak noise (σ ∈ {0, 0.1, 0.2}) by sample size in Figure 8. Note that
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Figure 8 Comparing performance by the number of samples. The figure shows the average RMSE
over all scenarios with strong non-stationarity (λ ∈ {0.3, 0.4, 0.5}) and weak noise (σ ∈ {0, 0.1, 0.2}).

the samples are constructed by infill sampling in a fixed spatial region, implying that a
higher n leads to a higher sample density. For n = 1000 samples, the results correspond to
the average over the top-right quadrant of each square in Figure 4.

As Figure 8 shows, RF models perform similarly well on linear data in scenarios with
high sample density, whereas GWR is almost on-par for non-linear data when only 100
samples are provided. This observation leads us to derive the model selection tree presented
in Figure 9: If there is clearly a high sample density over space, RFs should be used, whereas
linear models are advisable in scenarios with very low sample density, or if the phenomenon
is expected to show linear relations. Since the value of a “high” or “low” sampling density is
application-dependent, this criterion must be decided on the basis of an analysis of the local
number of samples, e.g., by the number of samples within the set range in a semivariogram.
In scenarios with high non-stationarity, Kriging or spatial features in the RF are beneficial.
Global RFs should be tested in any case, in order to validate the necessity of local models.
It must be noted, however, that our analysis does not consider big data scenarios, where
RFs may still perform well but would need to be replaced by more memory-efficient methods
such as stochastic gradient descent.

High sampling
density

Strong spatial  
non-stationarity

GWR

SAR /
SLX

RF (+Kriging)

Linear 
 relation

Low sampling
density

Yes
No

RF (+Kriging)Given prediction
problem

Figure 9 Proposed criteria for model selection. The model choices were derived from experiments
with synthetic data of varying non-stationarity, sample size, and DGP (linear vs non-linear).

3.3 Results based on real-world data

We experiment with five benchmark datasets that have been used in previous work on spatial
data analysis and prediction, e.g. [19, 22, 14, 1]. The following sub-section first introduces
these datasets. Afterward, we discuss the results obtained.
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3.3.1 Datasets
There are five real-world, publicly available datasets that we employ for validation:

The California housing dataset5 was generated from the 1990 California census. Our
goal is to predict the median house price from the location and seven other variables,
such as the size and number of rooms, age, income, and population size. The number of
bedrooms is missing for 1% of the houses and we omitted those respective records.
The Atlantic mortality dataset6 captures county-level mortality rates from 2010–2012,
from which we have extracted only one year’s worth of data for our purposes. Rates of
smoking and poverty, as well as PM25, SO2, and NO2 levels provided as annual means
are utilized as covariates.
We further use a dataset on deforestation rates7 that was published by Santos et
al. [27]. The dataset provides annual deforestation rates from 2000 to 2010 for 2418 grid
cells (single values averaged over 10 years). The deforestation rate is to be predicted from
35 further variables about sociodemographics, spatial features, and economic information.
The forestation rate is given as four quantiles, which is problematic for the framing as a
regression problem. The results must therefore be taken with a grain of salt.
The Meuse river dataset8 is another standard dataset for experimental spatial ana-
lysis [25]. It is a rather small collection of soil measurements including copper, cadmium,
and zinc. Usually, this dataset is used to predict zinc concentration from the other soil
measurements as well as from further contextual information. For preprocessing, we omit
the categorical “landuse” variable and two incomplete samples.
Finally, a dataset on plant richness is included that was used for validating spatial
random forests9. Plant species richness is given for 227 ecoregions in America, and there
are 18 covariates with information on topography, land use, human population, and
climate.

3.3.2 Results obtained from real-world data
To validate the model selection tree presented in Figure 9 on real-world data, we first compute
an indicator for the degree of non-stationarity. The LOSH statistic [21] offers a way to
estimate local heterogeneity in terms of a local, spatially-weighted variance estimator. When
applying LOSH with a K-nearest-neighbor (KNN) weights matrix (here 20 neighbors), the
global average of all LOSH values indicates the average heterogeneity with respect to the
sample density. As shown in Table 1, we find LOSH values around 1.0 in the five real-world
datasets, where the California housing and the Meuse datasets show lower local heterogeneity
(øLOSH of 0.88 and 0.89) , and the plants data is subject to stronger local heterogeneity
(øLOSH of 1.06). Table 1 further gives the number of samples and the number of covariates
k as an indicator of the problem complexity. We then quantified the model performances in
terms of RMSE, mean absolute error (MAE), and the R-squared score; however, all metrics
yield the same ranking of methods, and we therefore only report the RMSE in Table 1.

5 We use the public dataset available from Kaggle: https://www.kaggle.com/datasets/camnugent/
california-housing-prices?resource=download.

6 The data is available from https://zia207.github.io/geospatial-r-github.io/geographically-
wighted-random-forest.html.

7 Data downloaded from https://github.com/FSantosCodes/GWRFC/tree/master/data
8 The data is included in the R package sp: https://rsbivand.github.io/sp/reference/meuse.html
9 The data is available from https://blasbenito.github.io/spatialRF/#data-requirements.

https://www.kaggle.com/datasets/camnugent/california-housing-prices?resource=download
https://www.kaggle.com/datasets/camnugent/california-housing-prices?resource=download
https://zia207.github.io/geospatial-r-github.io/geographically-wighted-random-forest.html
https://zia207.github.io/geospatial-r-github.io/geographically-wighted-random-forest.html
https://github.com/FSantosCodes/GWRFC/tree/master/data
https://rsbivand.github.io/sp/reference/meuse.html
https://blasbenito.github.io/spatialRF/#data-requirements
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Table 1 Model benchmarking on real-world data. We find that GWR performs better on the
Atlantic dataset and the Meuse data, whereas non-linear models yield lower RMSE on datasets with
higher sample density as expected (e.g. California housing).

Dataset Samples k ø LOSH RMSE

OLS SLX GWR RF RF
(coord.) spatial RF Kriging

Atlantic 666 7 1.00 8.65 8.64 7.14 7.54 7.34 8.18 7.43
California housing 20433 8 0.88 72244 63532 56156 61234 48209 67493 55173

Deforestation 2418 36 1.00 0.83 0.82 0.80 0.66 0.67 0.71 0.66
Meuse 153 11 0.89 51.65 54.80 48.40 68.13 68.13 88.70 64.16
Plants 227 18 1.06 2349 2334 2226 2216 2288 2507 2120

For validating the results, we compare to previous results reported for these datasets, and
our scores improve over the ones reported in the data-accompanying tutorials6,9, or achieve
comparable results as related work [19].

We confirm previous results that spatial models achieve good results on these spatial
datasets. However, RF-based methods perform better on several datasets, in particular, when
the sample density is sufficiently high (e.g., California housing) or when the process analyzed
is more complex (e.g., predicting quantiles in the deforestation dataset from 36 variables;
or predicting plant richness from 18 covariates). A surprising result is the superiority of
GWR above other model specifications for the Atlantic dataset (mortality rates) despite the
intermediate LOSH value and sample size. This may be due to a rather linear dependency of
Y on X, and is in line with previous findings [31]. Our results on real-world data, therefore,
show the general applicability of our model selection criteria, but call for further efforts on
quantifying spatial non-stationarity and problem complexity in spatial data.

4 Conclusions

While many promising regression methods were developed specifically for spatial data, there is
a lack of analysis about the properties of data that render such models superior. We contribute
to a better understanding of these conditions with an analysis systematically exploring the
effects of non-stationarity, the signal-to-noise ratio, noise heterogeneity, the nature of the
DGP (linear/non-linear), and sample size. Based on the experiments, we recommend using
(local) linear models such as GWR for addressing problems encompassing a small sample size
or strong non-stationarity. Further, we recommend using non-linear models such as Random
Forests for prediction tasks involving larger spatial datasets, whereby locations should be
fed into the model through additional spatial input features. RFs can further be combined
with Kriging to better account for non-stationarity. While the type of data may give some
indication of the non-stationarity and complexity, further work is necessary to assess spatial
stationarity a priori. Promising avenues may be, for example, exploring spatial stationarity
measures as proposed for time series [6], through better understanding localized (and varying)
heterogeneity [30] or, alternatively, by controlling for complex forms of stationarity using
Moran eigenvector filtering and its variants [29, 12]. We further argue that our results call
for an increased significance of prediction for validating model performance. Even if a model
is only used for analysis, the validity of the inferred coefficients should be evaluated via test
data, since even linear local models are prone to overfitting in spatially structured noisy or
non-stationary settings. At the same time, other factors that are not discussed in this work,
such as model interpretability, may be important when it comes to model selection and may
give preference to linear modeling even though non-linear models may be superior in terms
of prediction. Future work could aim to combine the best of both worlds by improving the
spatial interpretability of global models such as RFs.
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Finally, our analysis is limited in scope regarding the considered properties and models.
Follow-up work could put more focus on spatial autocorrelation and its interplay with non-
stationarity, or explore other types of non-stationary non-linear relations. Another interesting
path that some researchers have started venturing on is to integrate better modern machine
learning models such as spatial neural networks with geospatial principles [13, 15]. We hope
that our work inspires further efforts to properly benchmark new methods on both synthetic
and real-world data, thereby improving our understanding of the use cases and advantages
of spatially-explicit models.
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Abstract
There are many privacy risks when location data is collected and aggregated. We introduce the
notion of using confidential smart contracts for building location-based decentralized applications
that are privacy preserving. We describe a spatial library for smart contracts that run on Secret
Network, a blockchain network that runs smart contracts in secure enclaves running in trusted
execution environments. The library supports not only basic geometric operations but also cloaking
and differential privacy mechanisms applied to spatial data stored in the contract.
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1 Introduction

Mobile devices provide a number of opportunities to collect spatial data about human behavior,
which can be used for data analytics and as training data for machine learning algorithms [10].
However, location data can also reveal extremely sensitive personal information and can
easily be used in a harmful manner that violates an individual’s privacy [3, 5]. Location
data is not unique in this manner – centralized online platforms, such as large online social
networks, have in recent years been critiqued for a wide-variety of ways that private user
data is used and aggregrated for commercial gain at the expense of user privacy. A recent
trend toward building more decentralized applications that allow users greater control over
their own data proposes to counteract this practice of gathering private data into centralized
silos [8].

In this paper we present an approach to building decentralized location-based applications
using confidential smart contracts that execute within hardware-encrypted environments. We
demonstrate how we can use confidential smart contracts to implement spatial cloaking and
to calculate summary statistics with global differential privacy on private location information
without revealing individual information to others, such as a centralized server administrator.
In addition, we explain how this model can allow for the creation of privacy-preserving
location data marketplaces where data contributors can opt-in and control the amount of
data they produce, control the level of spatial granularity, privacy thresholds, etc. on what
data is made available, all while providing a mechanism for data producers to be directly
paid for their contributions to the data set.

Figure 1 illustrates a sample scenario of computing over location data in a decentralized
application that uses a confidential smart contract. Alice and Bob are users of mobile
devices that allow them record their spatial location. They each execute a transaction on a
confidential smart contract that stores their location (x, y) at a given timestamp on the chain
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Figure 1 A simple scenario where private location points are stored on a blockchain and a
third-party user makes a spatial query on the data without learning personal data.

in an encrypted format. They can query their own data points, but others, such as Carol,
are only authorized to query for COUNT values within a given polygon. Permissions to
access data are set by the logic of the contract and can be customized to suit any application.
Furthermore, the permission system can be built to allow data owners to personalize settings,
such as privacy thresholds or even charge for the use of their data before its acquisition.

2 Confidential smart contracts

Blockchains are essentially decentralized append-only databases [11]. They record transac-
tional information as blocks of data that are generated by a peer-to-peer network of miners
or validator nodes. The network operates using a consensus mechanism that ensures the
history of the data (i.e., the chain) is immutable. In other words a bad actor cannot corrupt
the chain and claim a transaction that did not occur and, for example, double spend some
amount of currency recorded by the chain. The most well-known public blockchain, Bitcoin,
uses a proof-of-work consensus mechanism which has an energy footprint that scales with
the size of the network, but many other networks, including most that run smart contracts
(described below), have long since shifted to proof-of-stake, which is far more energy efficient.
By design all the data that is stored on a blockchain is visible, so it is a public database that
allows one to examine every state of the chain, which means all transactions are by default
public as well.

Smart contracts, first developed for the Ethereum network, are programs which can be
run on blockchain networks [2]. Each node in the network runs a virtual machine that can
execute code written in a turing-complete language. Ethereum uses the Solidity language
running in the Ethereum Virtual Machine (EVM), while a number of newer chains run
contracts that are written in general-purpose programming languages (e.g., Rust) and which
are compiled to WebAssembly. Smart contracts are deterministic and modify the state of
the data on the chain based on cryptographically-signed input messages that are sent to the
network by client applications (often called decentralized apps or dapps). Smart contracts
are referred to as trustless applications, because the logic of the contract is fixed and the
consensus mechanism of the blockchain network ensures that messages sent to the chain
will be interpreted in a fixed way based on the logic built into the program. This provides
the ability to develop automated programs that allow users to conditionally transact on
information without requiring a trusted third-party to verify that conditions have been met.
Smart contracts have vastly increased the utility of blockchains leading to a wide-variety of
applications in decentralized finance, digital art, and supply chain management.
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Despite these many new kinds of dapps, the fact that all data and transactions that
occur on most blockchains is completely transparent means that they are unsuitable for
applications that require keeping information confidential, e.g. for user privacy. Some privacy
blockchains utilize non-interactive zero knowledge proofs to provide transactional privacy
built in, where proof of transactions from one account to another is recorded on the chain
without revealing the amount of the transaction or which accounts were included [9]. However,
the utility of zero knowledge proofs is limited to situations where there are only two parties
involved. In other words, they are not capable of answering questions about data points that
are individually private to a large number of different parties (e.g., calculating aggregate
statistics).

However, there are a few blockchain networks actively developing more general-purpose
confidential smart contract frameworks, where the internal state of smart contract execution
as well as the data on chain is encrypted [14]. With confidential smart contracts you can
create secure systems involving multiple clients that protect individually-supplied information
while also computing over that information to provide outputs that are usable by other
parties. Among three proposed methods: homomorphic encryption, secure multi-party
computation (MPC), and trusted execution environments (TEEs), only the last (TEEs) is
implemented in a working public blockchain. Fully homomorphic encryption is simply too
slow to be a practical solution in current blockchain networks and secure MPC has also not
been successfully implemented in a live network (although research remains active). TEEs
however have been successfully integrated into live public blockchains since 2020 (with Secret
Network1 and more recently the Oasis Network2).

TEE-based smart contracts rely on using specific hardware chips where code executions
can occur within a protected encrypted enclave [7]. For example, all the nodes in Secret
Network are running on a set of Intel SGX chipsets. This means that the trust in the
encryption of the network is based on trust that the hardware is secure. The upshot is that
even the people who are running the computer nodes in the network cannot inspect the
program state or data being used while the smart contract is executing, and all data written
to the blocks are encrypted. In this paper we explore implementations of spatial algorithms
using smart contracts running on Secret Network, at the moment the most mature network
for developing confidential smart contracts. On Secret Network, contracts are written in
Rust and compiled to WebAssembly before being uploaded to the chain. To date, most
applications running on Secret Network are in the area of decentralized finance – this paper
presents the first exploration into developing privacy-preserving location-based applications
using the network.

3 Storing spatial data on chain

Developing on blockchain networks has limitations not found in normal programming en-
vironments. An important difference is that smart contracts cannot use floating point
mathematical operations because they are not deterministic (different platforms implement-
ing the IEEE 754 standard can output different results based on rounding), therefore there
is a risk that different nodes in a network will be unable to come to consensus on floating
point data written to chain. As a result to build a contract for operating on spatial data,
e.g. points, lines, and polygons with x and y coordinates in a projected coordinate system,

1 https://scrt.network/
2 https://oasisprotocol.org/
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there are two options: 1) store locations on an integer grid using 128 bit or 256 bit integer
values for the x and y coordinates, or 2) using a fixed-point representation where numbers
are represented as rational numbers using software operations on integer data structures. In
the first case, operations will be fast and with 128-bit and greater sized integers meaning
that units can be expressed in micro-meters or smaller, which for all intents and purposes
allows the same level of geographic precision as any floating point representation. However,
the kinds of operations that can be executed will be limited. In the second case, we can
utilize fixed-point math libraries with functions such as sqrt and transcendental functions,
including exp, sin, cos, etc.

Despite not being able to do some mathematical operations, many common spatial queries
are still possible on data represented on an integer grid. For example, point in polygon, line
intersection, convex hull, range searching, and nearest neighbor are all possible. This is due
that fact you can calculate length squared as the dot product of a vector with itself and
calculate signed area for two vectors and infer turn relationships based on the sign. Some
operations however do require a fixed-point representation, such as great circle distance or
applying differential privacy techniques to return fuzzy statistics on the data set stored in
the contract.

The other main limitation for storing data on the chain is that doing so can be expensive.
Smart contracts meter the amount of computation and data written and read from the chain
and charge a fee (i.e., a gas requirement) to manage the computational load on the network.
Read-only queries are free, but anything that writes data to a new block on the chain will
cost something as a factor of these. Paying a small upfront gas fee for storing personal
location data on the chain might be acceptable to some users if it means they maintain
control over it and in fact if they are able to directly commoditize their own data while also
having access to location-based services.

4 Spatial library for confidential smart contracts

We have developed a secret-data-tools spatial package for creating spatial applications
on Secret Network. Code is written in Rust and available on Github (see Supplementary
Material). For both integer-grid and fixed-point the library provides a set of geometric
primitive structs written in Rust for Points, LineSegments, and Polygons. It also includes a
set of basic geometric query operations, such as point in polygon, that work for both integer
and fixed-point representations.

Spatial cloaking is a method for masking location data points into a wider geographic
region (or some minimum size) and in a manner that maintains a certain level of k-anonymity
[6, 12]. Implementing spatial cloaking of data with the library functions is rather trivial. A
contract can mask data into grid cells or other regions when producing answers to queries.
Furthermore, because authorization of data access can be customized to any use case, users
can e.g., choose to provide more granular data to specific individuals, categories of individuals,
or applications.

For point data stored in fixed-point representation, the library provides an implementation
of global ϵ-differential privacy using the Laplace mechanism [4]. Differential privacy adds
noise to the result of a function, e.g. COUNT or AVERAGE, such that the result satisfies
the constraint set by the privacy budget parameter, ϵ. Composed with the basic geometry
operations, the library provides the capability to perform queries such as returning a fuzzy
count of the number of spatial observations that fall within a polygon boundary, without
revealing any information about individual data points.
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Services that use differential privacy on location data, e.g. collected by mobile phone
apps, will often utilize local differential privacy. With local differential privacy, noise is added
to each individual data point prior to collection in a centralized database. This helps to
maintain individual privacy, however, because noise is added to each observation, rather than
only the final result, the overall accuracy of the data is degraded more quickly. However,
using confidential smart contracts, because the data values are only visible to the contract
itself when running in the protected enclave and no outside observer can view them, we can
store direct observation values and implement global differential privacy without needing to
trust a central data administrator.

A characteristic of differential privacy is that each query made on the database erodes the
privacy budget. This happens because multiple queries on the same data can reveal the true
value eventually, so for data stored on a blockchain we need to add additional limitations
on the number of times that a query can be performed. Therefore, all differential privacy
queries are implemented not as read-only queries but rather as read-write transactions that
not only provide the answer but also update the remaining privacy budget on chain. The
query will fail if not enough privacy budget remains for the query.

5 Toward building decentralized location-based applications

The secret-data-tools spatial package is a toolkit for building decentralized location-based
applications on Secret Network. Using this library enables a number of different possibilities
for data sharing and services. Allowing data contributors to set their own thresholds for
acceptable data sharing can lead to fine-grained control over location data. Data sources
need not be from individual, personal devices either. Other location-based data, such as from
object tracking or transportation nodes, might require confidentiality for business processes.

If a user wishes to contribute their location-based information then they will have to
pay to put the data on the chain. The amount paid depends on how much data and the
parameters of the network – a small amount of data (e.g., an individual point observation)
will cost a fraction of a penny, but larger amounts of data will quickly add up. Contracts
can operate data marketplaces that require payment from data readers before releasing
data, which can be directly paid to data contributors without the need for an intermediary.
Furthermore, the privacy parameters of spatial queries (e.g., the size of masking regions or
privacy budget) can be made to be user-settable.

A larger, practical concern is that providing a direct incentive for data sharing will also
likely incentivize people to upload false information, given that GPS data can be easily
spoofed. The use of confidential smart contracts for spatial data analysis is particularly well-
suited to be paired with proof-of-location systems [1, 13]. New proof-of-location technologies
in development, such as FOAM3 which uses networked LoRA devices to record location-
based events, by necessity will require privacy-preserving mechanisms built-in prior to wide
adoption. Currently they do not have that capacity, however. Confidential smart contracts
provide one possible solution to incorporating privacy in proof-of-location systems, while at
the same time proof-of-location can ensure fair decentralized marketplaces for spatial data.

Although we have primarily focused on examples of uploading individual data points,
location-based data need not be stored as individual observations. Various methods of rolling
up data are possible, which can be more efficient and result in lower gas charges for data
contributors. In addition, there is the option of storing encrypted location data off the chain,

3 https://foam.space/
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and storing only the decryption key on chain. In such a model there would be very little cost
to the user, however many of the advantages of trustless computation on individual spatial
data points from multiple contributors will be lost.

6 Conclusion

This paper presented a new approach for building decentralized programs that allow users to
privately share location-based data using confidential smart contracts. We introduced an
open-source library for Secret Network-based smart contracts, which includes basic geometry
operations and can support spatial data cloaking and differentially private queries. There is
more research that is required to fully evaluate efficacy of such tools to support different types
of privacy-preserving location-based applications and data sharing platforms. In addition, a
security analysis of potential side-channel attacks both in terms of the underlying blockchain
technology, as well as based on inference from other data is warranted.
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Abstract
The unprecedented rate of urbanization, along with the increase in the aging and disabled populations,
bring about an increasing demand for public services and an inclusive urban environment that allows
easy access to those facilities. Spatial Accessibility is a measure to assess how inclusive a city is and
how easily public facilities can be reached from a specific location through movement in physical
space or built environment.

A detailed geodata source of accessibility features is needed for reliable spatial accessibility
assessment, such as sidewalk width, surface type, and incline. However, such data are not readily
available due to the huge implication costs. Remote crowdsourcing data collection using Street View
Imagery, so-called ’virtual audits’ have been introduced as a valid, cost-efficient tool for accessibility
data enrichment at scales compared to conventional methods because it enables involving more
participants, saving more time by avoiding field visits and covering a larger area.

Therefore, in our pilot project, ZuriACT: Zurich Accessible CiTy, with the help of digital tools
that allow for virtual inspections and measurements of accessibility features, we want to contribute
to collecting and enriching accessibility information in the city of Zurich embedded in a citizen
science project that will have both scientific and social impacts.

With the help of additional accessibility data produced in this project, the issues of an inclusive
urban environment can be demonstrated by mapping the potential spatial inequalities in access to
public facilities for disabled or restricted people in terms of mobility. Thus, this project provides
helpful insight into implementing policy interventions for overcoming accessibility biases to ensure
equitable services, particularly for people with disabilities, and contributes to creating an inclusive
and sustainable urban environment. It goes without saying that an inclusive city is beneficial and
impacts the quality of life of not only the population groups mentioned above but also the society at
large.
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1 Introduction

It is projected that by 2050, about 70 percent of the world’s population will live in urban
environments, 15 percent of them will live with disabilities [10]. Moreover, the prediction
shows that by 2050, the number of older people will reach 2 billion worldwide [12]. The
unprecedented rate of urbanization, along with the increase in the aging and disabled
populations, bring about an increasing demand for public services and access to those
facilities. Depending on the infrastructure and design, the urban environment and physical
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space can facilitate or impede the mobility and accessibility of the aforementioned population
groups and consequently affect their active social and physical participation in society as
well as their quality of life [11]. Besides, promoting accessible built environments such as
easy-access buildings and barrier-free sidewalks is a key element for sustainable and inclusive
cities and is of high societal importance. But how can we measure the inclusivity of a city?
Spatial accessibility, traditionally defined as the “potential of opportunities for interaction”
[7] and more concretely understood as how easily destinations such as services (e.g., medical
centers, grocery stores, and banks), friends, or places of social interaction can be reached
from a certain location through movement in physical space, is one of the measures which is
also a crucial factor for supporting active and healthy aging and mobility.

A comprehensive geodata source of accessibility features is a prerequisite for accurate
spatial accessibility assessment and therefore, urban inclusivity measurement. Examples of
accessibility features, i.e., spatial features impeding or facilitating accessibility, are sidewalk
inclination, crossings, and ramps. Accessibility features are crucial to disabled and mobility-
restricted persons’ navigation and mobility. Still, they are usually not offered by commercial
geodata providers [13] and are mostly not readily available in existing open-access geographic
information databases such as Open Street Map (OSM) [5]. Moreover, existing routing
services and digital maps, such as Google Maps and OSM, fail to provide practical guidance
for the above-mentioned persons’ navigation due to the lack of relevant information on the
needs of these user groups, which results in incomplete routing results or results that may
not always reflect real-world conditions [6].

Different data collection methods have been applied to address this data gap issue and
support the mobility of persons with disabilities (e.g., wheelchair users, visually impaired
persons), which are traditionally conducted on the field applying on-field surveys [13], sensors
(e.g., Global Positioning System) [16, 9], or a wide range of mobile applications (e.g., Vespucci
[20], Go Map!! [4], and StreetComplete [21]). However, during the last few years, with the
widespread use of the Internet, remote data collection using Street View Imagery (SVI),
so-called ’virtual audits’ has emerged as a valid alternative to expensive and time-consuming
field visits [17]. The most famous and popular service for providing SVI worldwide is Google
Street View (GSV) which is a basis for most virtual audits [14, 17, 15]. Virtual auditing
allows users to remotely and manually measure and collect accessibility features by virtually
walking in the city using the SVIs.

Collecting and maintaining detailed and up-to-date geographical information on access-
ibility is a considerably laborious, time-consuming, and expensive process. Hence, public
partners usually avoid investing in such costly data collection [13]. Applying collaborative
technologies such as citizen science helps address this challenge. Compared to the physical-
based traditional methods, the virtual audit tools are easy-to-use, time and cost-efficient,
and suitable for collaborative data collection, allowing the participants, particularly those
who do not have the opportunity to do field visits for data collection, comfortably and safely
collect detailed data at a larger scale wherever and whenever they want.

As mentioned earlier, publicly available geographical data sources such as OSM lack a
considerable amount of accessibility information. For example, based on a recent study,
only 2.3 percent of the OSM footpath data in Zurich include the inclination or steepness [3].
Besides, to the best of our knowledge, there has been no comprehensive geodatabase or data
collection of accessibility information for the city of Zurich. Also, the city has launched no
participatory data collection campaign in that regard.

Therefore, in our participatory project titled: ZuriACT (Zurich Accessible CiTy), for the
first time, with the help of virtual audits, we want to take the initiative and contribute to
providing a systematic and enriched dataset of the accessibility features in the selected study
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Figure 1 Study area: District 1 of the city of Zurich.

area of District 1 of the city of Zurich embedded in a citizen science project. District 1 of
the city of Zurich (see Fig. 1) has been selected as the study area due to its topographical
and geographic characteristics such as inclined streets, various public facilities (e.g., shop-
ping streets, touristic attractions, main train station), a significant number of commuter
populations, and centrality.

Also, we aim to contribute to a better understanding of spatial accessibility and its
potential biases in the urban environment by providing an enriched accessibility database
that can bring about essential information for reliable accessibility measurements, thereby
equipping policymakers and urban planners with helpful insights into a more sustainable and
inclusive environment for society, particularly persons with disabilities. Moreover, generating
further new data can significantly contribute to scientific gaps in the accessibility analysis
domain that have not been addressed so far due to a lack of appropriate, comprehensive
open geographical data.

2 Method

2.1 Recruitment and Participants

A range of different marketing options will be used to inform citizens about the ZuriACT
project idea, including the organization’s websites (e.g., The City of Zurich, the organizations
for people with disability, University of Zurich), e-newsletters, social media (e.g., LinkedIn,
and Twitter), and distributing flyer in the study area. The communication and recruitment
of citizens will also be conducted through the university webpage, where citizens can find
further information about the project, as well as contact information and register for the
study.

After screening the registered people based on the inclusion criteria, eligible participants
will be contacted via email and asked to sign a consent form, including information about
the study objectives and procedure, expected contribution, and participant compensation.
Upon receipt of the informed consent, participants will be contacted to schedule meetings for
different parts of the project, including focus group discussions and training sessions for data
collection.

A total of 80–100 will be recruited for the study. As for eligibility criteria, participants
must be cognitively healthy (assessed based on self-report) adults aged 18 and above, and
belong to at least one of the population groups below:
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1. Community-dwelling older adults aged 65 and above
2. Persons with situation mobility restrictions, such as parents with pushchairs
3. Mobility-disabled persons (e.g., wheelchair users)

2.2 Focus Groups
Our citizen science project focuses on co-creation, aiming to maximize the level of citizens’
involvement in most or all stages of the project, including project design, data collection, and
implementation [18]. To this end, we apply methods and tools for co-producing knowledge,
such as focus group discussions [19]. In workshops, we bring together academics, citizens,
and public and private partners to discuss the project’s objective and contents, including
initial ideation and data collection specifications. This helps gain experience from various
perspectives and learn about the needs, knowledge, demand, and interests of different people
involved in the project, laying the basis to adapt the project planning in a way that could
be beneficial to all. An example of a similar initiative is the ‘MIND Inclusion’ project by
Martínez-Molina et al. (2020), which focused on providing co-created accessible cognitive
design tools for people with intellectual disabilities [8].

2.3 Spatial Accessibility Data Collection
We will use the Project Sidewalk tool for virtual audits by citizens. Project Sidewalk allows
for collecting accessibility data at a large scale by anyone with an Internet connection and
a web browser through GSV images. Examples of data that can be collected using this
tool are “curb ramp”, “missing curb ramp”, “surface problems”, “no sidewalk”, “Obstacles
in path”, and “Others” [15]. Besides, it offers an excellent citizen science platform that
allows laypersons to collect accessibility data comfortably via interactive onboarding and
mission-based tasks. However, it lacks tools for collecting accessibility features that require
measurements, such as sidewalk incline or width. Moreover, Project Sidewalk highly depends
on GSV images which are sometimes outdated or do not cover the entire street network of
the study area.

To address the data collection gaps using Project Sidewalk, we will use the Infra3D
web-based tool [2], which is based on up-to-date and complete 3D SVI data “Strassenraum
3D” taken from car-mounted cameras from the entire city of Zurich developed by the Swiss
company iNovitas [1] and also offers measurement tools. The “Strassenraum 3D” data has a
higher and finer temporal resolution and spatial coverage than GSV and is updated every
two years. The 3D images embedded in the infra3D web-based tool have been taken from an
equipped vehicle and include all public roads (excluding motorways) and the whole tram
network of Zurich city and selected cycle paths and squares. However, since Infra3D lacks
a well-designed citizen science platform like Project Sidewalk, it might be challenging for
laypeople and citizens to contribute to data collection using this tool. Therefore, to address
this issue, we will involve persons with expertise in geographical data for virtual auditing
using this tool.

During the data collection, through online forums or on-site social events, we ask parti-
cipants to provide feedback or exchange information regarding their data collection experiences.
The data collection will continue until obtaining the total coverage of the accessibility features
in District 1. However, using the above-mentioned web tools, there will still be data gaps in
the areas that were not reachable by the vehicle, such as stairs or narrow alleys or where
GSVs are missing. Therefore, our virtual data collection will be limited to the areas traversed
by the car or covered by GSV images using Infra3D or Project Sidewalk, respectively. To fill
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this void, the accessibility features will have to be collected via on-site field surveys with the
help of research assistants. This can happen by using the most commonly used smartphone
apps for enriching and editing OSM data, such as “Vespucci” or “Go Map!!” which enables
on-site accessibility data collection. The on-site data collection can also help verify the data
derived remotely from virtual audits.

2.4 Discussion and Conclusion

In this project, we aim to contribute to filling the spatial accessibility data gap on sidewalks
in Zurich with and for citizens by providing a systematic collection and enrichment of
accessibility features utilizing digital tools, and virtual audits. The participatory design
of this project involving citizens, researchers, and public partners allows for collecting and
enriching a vast amount of detailed accessibility information across a larger geographical
area during a shorter period, which not only contributes to considerable savings in time and
resources compared to conventional data collection methods but also provides additional
descriptive and spatial data to address crucial research and practical questions about the
mobility and spatial accessibility of disabled people and how to realize an inclusive urban
environment.
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Abstract
This paper describes an innovative computational approach for comparing old maps. Maps older
than 20 years remain a vast treasure of geographic information in many parts of the world with
potential applications in many environmental and social analyses, e.g., establishing road construction
over the past 80 years or identifying settlement growth since the middle ages. Semantic segmentation
has developed into a viable computational method for analysing old maps from previous centuries.
It allows for the discrete identification of elements, e.g., lakes, forests, and roads, from cartographic
sources and their computational modelling. Semantic segmentation uses convolutional neural
networks to extract elements. With this technique, we create a computational approach to compare
old maps systematically and efficiently.

2012 ACM Subject Classification Human-centered computing → Interactive systems and tools;
Information systems → Geographic information systems

Keywords and phrases Geographic/Geospatial Visualization, Visual Knowledge Discovery, Carto-
graphic Analysis

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.14

Category Short Paper

Funding Marta Kuźma and Francis Harvey: The project is co-financed by the Polish National
Agency for Academic Exchange within the NAWA Chair programme.
Yves Annanias: This research was supported by the Development Bank of Saxony (SAB) under
Grant 100400221.

1 Introduction

Semantic segmentation is a computational method for analyzing old maps from previous
centuries, allowing for discrete identification of elements like lakes, forests, and roads. This
technique uses convolutional neural networks to extract the elements. The old maps used
in this process contain valuable information, and comparing the elements they contain
supports numerous environmental and social applications. Here, we present an innovative
approach that allows us to compare multiple old maps. The paper considers the concepts and
implementation and includes an assessment of the results of the new approach. Particularly
challenging for this historical, geographical analysis are scale-related differences, distortions
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of old map sheets, undocumented projection parameters and cartographic generalisation
effects. The parametrisation of the semantic segmentation can take some geometric issues
into account.

Our approach advances the handling of cartographic dimensions and will make systematic
comparisons of collections of old maps possible and viable for the first time. For this, we
construct a quadtree-based data structure that divides a map section and the features it
contains into smaller and smaller sections, grouping them together. By visually displaying
the levels of the quadtree as a heatmap, we then enable a more targeted comparison of
features of the maps. Whereby the color coding highlights interesting map sections that may
be of interest for a comparison. For the accurate and efficient modelling of the information
from the old maps, we rely on a graph database that improves computational efficiencies
of the cartographic element extraction and comparisons. In the paper, we document the
modelling, processing and spatial visual comparisons of results of exemplary maps from the
early and mid-twentieth centuries. The assessment of results points to challenges we are
taking up in ongoing research.

2 Semantic Segmentation of Old Maps

Creating geographic information from old maps is an important source of data for many
applications. For example, Uhl et al. [15] describe potentials for the over 200,000 topographic
map sheets of the USGS map archive. While scanned versions of old maps are useful for
wall hangings, screen savers and visual analysis by themselves, spatial analytical approaches
frequently require additional processing to transform coordinate systems or features for specific
project requirements. The transformation from raster to vector allows for other analytical
operations that are well known from the development of GIS [5]. The cartographic modelling
and geo-relational basis of those spatial analysis techniques is suitable for specific application
and is limited by the computation complexity [14]. Database approaches are additionally
advantageous when data can be optimised for requisite storage schemes and applications [4].
Machine learning approaches have for some years offered further computational improvements
such as in [3] and are well-suited for the increasingly available large amounts of rasterised or
vectorised geographic information.

2.1 Addressing cartographic challenges
Scale, distortions of old map sheets, undocumented projection parameters and cartographic
generalisation effects are very significant challenges for any comparisons of old maps. Carto-
graphic approaches, which stress graphic variables, concepts from cartographic design and
features, build on traditional concepts of map representation that contemporary geographic
information modelling approaches can never fully reconstruct [11]. The documented and
archival information is usually very incomplete and research to gain insights involves much
work and often only partial clarity. This can guide different modelling attempts. Often
assumptions are made [13]. Old maps often are visually very insightful and intriguing
documents of past geographical situations and relationships [17, 9]. Their accuracy is fre-
quently limited and poses great challenges. In work using geographic information systems,
the challenges are well known [8]. In cartography, research involves maps and specialised
literature [6]. Their resolution is very time consuming. Integration of historical maps involves
complicated and demanding data preparation and error mitigation [10]. We draw on these
lessons and harness the capabilities of geographic information processing in our computational
modelling. The computational approach in this research attempts to compare historical
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maps, which computational approaches can greatly enhance help researchers move beyond
the cartographic feature concept through the semantic segmentation process. The difference
in terms stresses that the approach we describe here is information modelling approach to
working with old maps.

3 Semantic segmentation for old map comparison

A critical part of working with old maps is determining the parameters for transforming digital
raster scans of old maps into vector representations, suitable for CNN and normalisation of
the coordinates for numerical pattern matching. Work on large-scale image analysis points
the way for the approach we are developing. Therefore, we require a thorough documentation
of processing steps and geometric attributes to allow for later assessments of comparison
results including the identification of limitations arising from scale, distortions projections, or
cartographic generalisation. Several researchers have addressed these issues [12, 15, 16, 18].

There are a variety of visualisations for geospatial and temporal data using a geographic
information system (GIS). Andrienko et al. [1] provide a list of visualization-based techniques
that allow the exploratory analysis of this kind of data. Since visual comparisons are essential
in this task, we follow the guidelines of Gleicher [7]. In addition, as scalability also has an
impact, we use the described strategy of summarize somehow. For this purpose, we rely for
our approach on explicit encoding, whereby relationships between elements are visualised.

3.1 Process overview
Our approach follows the process presented in 2022 by Annanias et al. [2], but is simplified
by limiting the area we consider in this pilot study, which focuses on a limited range of map
element types and a small area. We adapted the color scheme, to fit to the new use case.
The original version is used to aggregate data and show the distribution of that data over a
larger area. With the limited map elements, it is now used to point out differences of similar
elements. The parts of the the process are:
1. Implement shape comparisons between polygons in two maps using Hausdorff or Frechet

distances and provide a system to support discovery and queries AND
2. Implement a GUI to compare multiple old maps by feature types or areas relying on

visual opacity to support interactive visual inquiry.

3.2 Linking visual elements for further processing
The two parts of the process can be technically summarised as a five step sequence, whereby
a quadtree-based data structure is created:
1. Determine the bounding box over all features, use it as the first parent cell.
2. Link all features to this parent cell.
3. Divide this cell into 4 equal parts (child cells).
4. Link all features from the parent cell to the child cell if they overlap with the child cell.
5. For each child cell, the process is repeated from step 3.
This process breaks the map image down and creates a quadtree, which consists of a grid
of adjacent cells on each level (see Figure 1). As cells become smaller and therefore cover
smaller areas of the map, the number of intersection calculations per cell becomes less. As
a result, the test against the feature set of the parent cell becomes more computationally
efficient. The number of cells, on the other hand, increases strongly. This information and
all relationships are then stored efficiently and flexibly in a graph database. Each cell and
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Figure 1 From top to bottom: The initial map is divided progressively into equal parts, thus
creating a quadtree with different resolution levels.

feature are represented by nodes connected by edges where the cell overlaps the feature. Cell
nodes are also connected with each other by edges to represent the structure of the quadtree.
In this way, the information for a grid level can be queried flexibly and the size of the overall
graph becomes less important. At the most detailed grid resolution, only features that have
a strong geographical adjacency are grouped together. At the lower levels of resolution,
proximity in the quadtree is more diffuse and has a decreasing significance (e.g., a feature
in one corner of a cell may have absolutely nothing to do with a feature in another corner
of the same cell). Therefore, features that are too far apart no longer interact with each
other. Because the process stops before reaching the next resolution level earlier, it avoids
the extreme case, where each cell on the lowest level corresponds to only one piece of a
feature (equivalent to perfect overlapping of two features) as the main task is not to find
perfect overlaps of features. However, since offsets are also omitted and slight shifts of the
features in relation to each other are no longer recorded, the process stops earlier after the
9th level. A cell on the lowest level has a resolution of about 1m2 in this study.

After the processing, each level of the quadtree can be used for visualisation. For this
purpose, a level consisting of a grid of cells is represented as a heatmap in a GIS. So the
heatmap is an aggregated representation of overlapping features (summarize somehow). Each
cell of this heatmap is colored according to the relationships of the features that are linked
to this cell (explicit encoding).

4 Results

The result is shown in Figure 2. Features from an old digitised map from 1941/1942 (blue)
were used with OSM data (red), which are displayed superimposed in a). It is clearly visible
that both feature categories overlap with each other. However, this overlap prevents us from
seeing exactly how they overlap everywhere, as one obscures the other too much. So it is
also important which category is displayed on top of which other. Similarly, if there are only
small differences in detail, it is necessary to zoom in very close to see them, otherwise they
may be overlooked. Figure 2 b) uses the same data, but uses a level from the quadtree and
displays it as a heatmap (the previously created cells). The quadtree level with the highest
resolution determines the color of a cell. Yellow cells indicate whether there are features
from both categories within the cell. Cells of lower resolution levels inherit the color yellow
if at least one of the four child cells is also marked yellow. This ensures that the features of
both categories within a cell have a spatial proximity.
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a) b)

c)

Figure 2 a) Features of two maps are shown. b, c) Two resolution levels of the quadtree displayed
as a heatmap (coarse to fine). Red (blue) cells contain only OSM (1941/1942) data features, and
yellow cells contain at least one feature from both categories. White cells do not contain any features.

Using this visualization, it no longer matters which category is on top of the other, as the
aggregated information for the cell is displayed. Similarly, subtle differences can no longer be
overlooked. However, this is still a rough representation of the overlap and serves as a simple
indication of areas of interest. This overview can be used, for example, to identify regions of
interest in larger map segments. In doing so, a user can locate sub-areas through the larger
grid cells, which can be viewed in detail by zooming and panning in the next step. c) shows
the heatmap at a finer level of resolution. There is more detail here and it is easier to see
where the features overlap and where they do not.

This allows the differences to be examined more closely without the visual clutter caused
by the overlaps themselves. This representation thus serves as a starting point for the precise
analysis of the shift of the categories towards each other. The comparison results support
the visual comparison in a novel way that extends capabilities. Through an iteration of
parameters, the resulting ’information spaces’ extend canonical cartographic presentations to
help researchers gain new insights into changes between two maps, for example assessing
when a city’s medieval walls were built up or torn down at various parts of a city.

5 Summary

In this paper, we present an innovative computational approach applied for comparing old
maps. Showing good potential for historical research, the process has potential as well in
other areas, e.g., assessments of urban development over the past 80 years or identifying
ancient settlement growth. This preliminary result and other projects show that semantic
segmentation is a viable computational method for the analysis of digitised old maps. This
paper presents the computational process to compare old maps systematically and efficiently.
Future research considers how to more fully automate the process and the comparisons.
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Abstract
The concept of uniqueness can play an important role when the assessment of an observation’s
distinctiveness is essential. This article introduces a distance-based uniqueness measure that
quantifies the relative rarity or commonness of a multi-variate observation within a dataset. Unique
observations exhibit rare combinations of values, and not necessarily extreme values. Taking a
cognitive psychological perspective, our measure defines uniqueness as the sum of distances between
a target observation and all other observations. After presenting the measure u and its corresponding
standardised version uz, we propose a method to calculate a p value through a probability density
function. We then demonstrate the measure’s behaviour in a case study on the uniqueness of Greater
London boroughs, based on real-world socioeconomic variables. This initial investigation indicates
that u can support exploratory data analysis.
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1 Introduction

The identification of similar observations is a well-studied problem in data science [2].
All forms of clustering rely on some form of similarity assessment [7], and so does data
deduplication. Online platforms relentlessly search for similar products and similar users
to drive engagement and sales. Geographic concepts can be compared and grouped by
similarity and relatedness [1]. Geo-demographic classifications group similar areas based on
socioeconomic characteristics. Similarity enables the identification of points representing
points that appear close in a multi-dimensional vector space [7].

But what about uniqueness, one of the similarity’s less known siblings? In many domains,
the degree to which an object is unique is crucial to assess its value. The distinctiveness of
artworks is carefully studied by scholars to ascertain the originality of painters, musicians,
and writers. Unique cities, landscapes, and heritage assets are praised in the rhetoric of
tourism marketing [9]. In the natural sciences, uniqueness is useful to define physical or
chemical properties, genetic or molecular characteristics, or ecological traits that distinguish
an individual from all others. Unique fingerprints, faces, irises, and DNA sequences enable
ubiquitous applications in cybersecurity and forensic science. The cognate concept of
“distinctiveness” is used in biology to explore the taxonomic structure of species [4]. In
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recommender systems, it has been deployed to assess the typicality of user preferences [8]. The
uniqueness of observations has been occasionally operationalised to support the interpretation
and filtering of multi-dimensional data [5]. In its infrequent appearances in the scientific
literature, this concept is largely left unexamined.

A relevant and intensely investigated problem is that of outlier detection, which consists
of identifying unusual observations that might indicate infrequent but interesting events (e.g.,
fraudulent bank transactions) or measurement errors. Outliers can be found with distance-,
clustering-, density-, ensemble-, and learning-based methods, with varying levels of success
and robustness [10]. In a multivariate context, outliers are rare combinations of values. The
values of each variable might not be extreme, but the combination appears relatively far from
the others. The Mahalanobis distance is very useful for finding outliers in multidimensional
datasets. While linked to outlier detection, our objective is the quantification of uniqueness
as a facet of observations for classification and exploratory data analysis.

To support the exploration and recommendation of walking routes [3], we devised a
distance-based uniqueness measure that can quantify how relatively rare (or common) an
observation is in a dataset. In the spirit of classic ecological indices that have been in
vogue for 40 years [11], we devise a simple, general, and easily interpretable measure that
can be applied to many contexts. We ground our notion of uniqueness into a cognitive
psychological perspective that defines the “distinctiveness of stimuli” as “the sum of the
differences between the stimulus and all other stimuli in the group” [6, p. 16]. Hence, the
more a multi-variate observation is different to all others, the more it is unique. The relative
rarity of observations can act as an informative feature in machine learning methods and
can support user interaction and data interpretation. Our measure u is described in the
remainder of this article. Its behaviour is illustrated in a case study on London boroughs.

2 A uniqueness measure

Univariate uniqueness

In its simplest form, uniqueness can be thought of as 1 − p, where p is the probability of
encountering a particular observation from random extractions from a set. For example, let
us consider the percentages of land cover categories of the UK territory: farmland 56.7%,
natural 34.9%, green urban 2.5%, built 5.9%.1 Taking this probabilistic view, the rarest
category we would encounter by selecting a random area is green urban, corresponding
to u = .98, and the most common (least unique) category is farmland (u = .43). This is
conceptually linked to the idea of surprise – a less likely outcome is more surprising.

To make u more interpretable, we can calculate the corresponding z scores, relating
uniqueness to the deviation from the normal distribution – with an assumption of normality
that might not hold. If all types of observation occur at the same probability, it is not
possible to meaningfully calculate uniqueness (z is null). Otherwise, common observations
have negative z scores, and rare ones are positive: farmland has z = −1.24, while green
urban has the highest value, with z = .88.

Multivariate uniqueness

As part of our efforts to support the exploration of large datasets [3], we developed a uniqueness
measure that can handle multivariate observations. Considering a set of observations, the
frequency of a given multi-variate configuration is correlated to uniqueness as rare observations

1 https://www.eea.europa.eu/publications/COR0-landcover

https://www.eea.europa.eu/publications/COR0-landcover


A. Ballatore and S. Cavazzi 15:3

are more unique than common ones. From a statistical standpoint, the assessment of
uniqueness is also analogous with outlier detection, in which observations at the extreme of a
distribution can be identified as of particular interest or as the result of measurement errors.

Our uniqueness index u between a multi-variate observation is calculated as the sum of
the similarity of the observation with all other observations in the group S, ranging from
rare to very common. Formally, given a set of observations S, the uniqueness score u of an
observation a ∈ S is defined as:

u(a, S) =
|S|∑
i=1

d(a, ai), a ̸= ai, d ≥ 0, u ≥ 0, S = {a1 · · · am}, uz = u − û

σ(u)

where d is an n-dimensional distance function. Different functions, such as Euclidean,
Manhattan, or Mahalanobis, might produce radically different u. This measure is also
sensitive to the particular structure of the data and to the selected variables. The scores are
then standardised as uz as z scores, where û is the mean u and σ(u) the standard deviation.
The uz scores are more interpretable than u, as they embed a measure of distance from the
dominant clusters in the data. In other words, the index allows comparing observations on
a spectrum ranging from very common (low values) to very rare (high values of uz). An
intuitive interpretation of these scores relates to the distance from cluster centres in the data
space: Central data is common, and peripheral is rare.

In order to provide a measure of statistical significance, we calculate a p value for each
standardised z(u) using a probability density function of a normal distribution, defined as
f(x) = 1√

2πσ
e−(x−µ)2/2σ2 , with ûz as the mean µ and σuz as σ. This approach captures the

extent to which a value of uz is greater than expected, with lower p for rarer cases. The
underlying assumption is that u scores have an approximately normal distribution. This is
a simplification of real-world data that might exhibit very different distributions of u and
should be adjusted to specific contexts, but it is useful to develop our measure.

The behaviour of uz and p values was tested on synthetic datasets of multivariate data,
with a Monte Carlo approach, generating random high-dimensional datasets with different
distributions and calculating uz and corresponding p values, considering uniform, normal, and
clustered distributions with two and three large clusters. In this initial empirical investigation,
the observation-by-attribute matrices showed that the distribution of uniqueness scores
remains fairly stable across different matrix sizes and across different distributions, although
low p values are more frequently produced with clustered data. For example, considering
1440 matrices, on average, a normal distribution produced 0.54% of p smaller than .001 and
89% at p > .1, which makes intuitive sense.

Interpreting uniqueness

In a focus group we conducted at Ordnance Survey [3], we discussed the semantic inter-
pretation of these scores with stakeholders. The uniqueness measure uz was presented with
walking routes as items to score, based on a number of attributes to identify unusual routes.
The term “uniqueness” was considered semantically clearer than “distinctiveness.” From a
cognitive perspective, participants expressed a preference for a categorical classification as
opposed to both scores and ranks. Less agreement was found on the specific categories to
use. The terms discussed included “common”, “rare”, and “typical” with modifiers “very”
and “extremely”. It was noted that terms should not have positive or negative connotations,
devaluing common items as uninteresting or valuing rare items that might be uncommon
for good reasons – an unusual walking route around a landfill. Moreover, the participants
highlighted the importance of showing the discriminant attributes along with the scores.
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Figure 1 Uniqueness of 32 London boroughs with respect to seven socioeconomic variables,
excluding City of London, calculated with the Mahalanobis distance. Variables were centred and
standardised. The rows are ordered by the uniqueness z scores (uz) from the rarest (Kensington
and Chelsea) to the most common (Greenwich). Data source: London borough profiles, 2015.

As a result of this process, we defined five uniqueness levels based on p values as follows:
(p = 0) very rare (.001) rare (.01) intermediate (.05) common (.1) very common (1). For
example, p = .006 would be classified as rare. While such classifications are inevitably
domain-dependent, these bins appear easily interpretable as they segment the scores at
common p value thresholds.

3 The uniqueness of London boroughs

As an exploratory case study, we consider the boroughs of Greater London, a familiar,
well-understood geography described through a set of socioeconomic variables. The seven
selected variables include population density, average age, percentage of residents born
abroad, percentage of employed residents, household income, Conservative seats, and median
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Figure 2 Uniqueness of 32 London boroughs with respect to seven socioeconomic variables,
excluding City of London, calculated with Mahalanobis distance. (a) Sum of distances u; (b)
Uniqueness z scores (uz); (c) p values with thresholds . (p < .1), * (p < .05), ** (p < .01), ***
(p < .001). Bins for (a) and (b) were produced with Jenks. Data source: London borough profiles,
2015. Projection: British National Grid (EPSG:27700).

house price.2 Highly correlated variables such as Labour seats (ρ < −.7 or ρ > .7) were
removed to avoid obvious collinearity issues. Using our R implementation, we performed
calculations of u, uz, and p values for all boroughs, except for the City of London, which had
several missing values. Among many possible options, the Mahalanobis distance measure
was selected as it inherently accounts for scale invariance. Figure 1 presents the standardised
matrix used for the calculation, along with the corresponding uz and p values.

Boroughs exhibiting the highest u values are characterized by unexpected combinations
of variables. According to our calculation method, three boroughs stand out as significantly
rare, with uniqueness scores (p < .05). Kensington and Chelsea demonstrate exceptionally
high house prices and household income, but relatively low levels of employment. Harrow,
on the other hand, is intriguing as its variables are not extreme individually, but noticeably
distinct from all other boroughs as a whole. Lastly, Havering appears relatively unique due to
its ageing population and predominantly UK-born residents. In contrast, Croydon, Haringey,
and Greenwich, located towards the bottom of the matrix, exhibit more central positions
in the data, making them more representative of London as a whole. Greenwich, at least
based on these variables, emerges as a very typical – and therefore common in our parlance –
borough of Greater London. Figure 2 displays maps illustrating the spatial distribution of u,
uz, and p values. Visually, the three rare boroughs do not exhibit clustering.

2 Data source: London Borough Profiles and Atlas, Greater London Authority (GLA), 2015.
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The results from this analysis indicate that our measure, u, shows promise in quantifying
the uniqueness of multivariate observations. However, further empirical testing with both
real-world and synthetic data is necessary to assess the stability and interpretability of this
uniqueness measure across different domains. A noteworthy characteristic of u is its weak
correlation with any of the seven variables (the strongest correlation being ρ = .39). This
suggests that the measure is capturing a latent dimension of the data, i.e. the distribution of
uniqueness of these observations, revealing this facet of the data for further analysis.

In conclusion, further empirical testing is necessary to evaluate the stability and cognitive
plausibility of this uniqueness measure across domains. Comparing different distance measures
and methods for calculating p values is crucial to assess u’s sensitivity to minor data variations.
The operationalisation of uniqueness might support meaningful analyses of why some places,
cultural artefacts, human behaviours, and natural environments emerge as unique from a
vast sea of sameness.
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Abstract
In recent years, the emergence and rapid growth of short-term rental (STR) markets has exerted
considerable influence on real estate in most large cities across the world. Central location and transit
access are two primary factors associated with the prevalence and expansion of STRs, including
Airbnbs. Nevertheless, perhaps due to methodological challenges, no research has addressed how
location and proximity are represented in the titles and descriptions of STRs. In this paper,
we introduce a new methodological pipeline to extract spatial relations from text and show that
expressions of distance in STR listings can indeed be quantified and measured against real-world
distances. We then comparatively analyze Airbnb reviews (written by guests) and listings (written by
hosts) from New York City in order to demonstrate systematically how listings exaggerate proximity
compared to reviews. Moreover, we discover spatial patterns to these differences that warrant further
investigation.
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1 Introduction

Over the past decade, the short-term rental (STR) market has expanded in most large
cities across the world. While STRs provide new economic opportunities for some, they
also contribute to harmful processes such as gentrification and displacement through the
removal of affordable units from the rental market [18, 1]. Airbnb in particular has become
synonymous with a certain kind of gentrification, whereby conveniently located working-class
and non-white neighborhoods are marketed as sites of consumption, leisure, and urban
authenticity for an upwardly mobile class of white-collar professionals.

As in any market, Airbnb hosts need to communicate important information about
location and other characteristics of their units to potential guests. Drawing on ideas from
the interactional sociology of Ervin Goffman [6], ethnographers have likened Airbnb listings
to front-stage performances whereby hosts deploy various means to manage the impressions
guests will have of a listing [16]. Because real estate listings are fundamentally located
somewhere, location figures strongly into the repertoire of distinctions [2] hosts can make
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vis-a-vis other listings. Indeed, recent research has demonstrated that location is one of
the key determinants of both the average price per night and average monthly revenue of
units listed on Airbnb [4]. Nevertheless, this line of inquiry has not yet been extended to the
“cognitive maps” [8, 10] which translate our experience of the city into mental representations
thereof and, in the context of Airbnb, which encode the relationship between residence and
place for people who typically reside elsewhere. By making claims about what is “nearby”,
“only 10 minutes away” or “within walking distance”, Airbnb hosts situate their properties
within the ensemble of a city’s structures and relations, including not only spatial and
semiotic [10] but also ideological [8].

A wide range of work from various fields has established that our conception of what is
“nearby” varies with a number of factors: larger objects tend to be considered closer than
smaller ones, distances will be estimated differently depending on familiarity and activity, and
so on (for an overview, see [5]). By comparing expressions of distance in listings and reviews,
we can grasp how socio-economic incentives shape the production of spatial representations
in discourse. While there is anecdotal evidence of the exaggeration of distance in the context
of real estate advertisements [13], our paper provides a first glimpse into how these dynamics
systematically unfold in a much larger dataset and in the setting of STRs. Furthermore,
while others have presented models for extracting vague spatial descriptions [3, 5] as well
as for assessing the linguistic distribution of concepts like “near,” we provide a sociological
control variable by contrasting A) listing descriptions with B) listing reviews associated with
the same locations. While listing descriptions are arguably written as a profit-motivated
performance for the STR market, reviewers have different motives.

In this paper, we introduce a new methodological pipeline to extract spatial relations
from text and show that expressions of distance in STR listings can indeed be quantified and
measured against real-world distances. With this data, we demonstrate differences in the use
of terms such as “nearby” and “walking distance” across listings and reviews. We do the same
for a range of toponymic categories including parks (e.g., “Central Park”), tourist attractions
(e.g., “Empire State Building”), and schools (e.g., “Columbia University”). Specifically, this
short paper presents preliminary work addressing the following four research questions (RQ):

RQ1 Can qualitative distance measures, such as nearby or walking distance, be quantified in
STR listings?

RQ2 Do quantified distance measures in STR listings accurately reflect real-world distances?
RQ3 On average, do these distances vary between listing descriptions and reviews?
RQ4 How do the above measures vary across neighborhoods in New York City (NYC)?

2 Data and Methods

The data for this paper cover all active Airbnb listings and their associated reviews for NYC
in August 2019. All data were purchased from the non-profit group Inside Airbnb1. The
data contain a total of 47,440 listings and 995,665 reviews. To make data processing more
feasible, we take a sample from the latter, giving us 168,533 reviews for an average 3.55
reviews per listing (even processing this sample takes a full day). Each listing includes its
title, description, and geographic coordinates. The listings are highly unevenly distributed
across the city, as can be seen in Figure 1a.

1 http://insideairbnb.com/

http://insideairbnb.com/
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(a) Number of listings by neighborhood. (b) Difference in average walking distance.

Figure 1 Cartographic representations of the Airbnb listing data. Raw count of listings per
neighborhood shown in (a) and difference in average walking distance between listings and reviews
shown in (b).

To extract geographical entities from the data, we manually annotated a spatially weighted
random sample of 1,517 listings and 967 reviews using the annotation platform Prodigy2

(for details on our sampling strategy, see Appendix A.1). The annotation was done by
five academic annotators, including all the authors of this paper. This was effectively a
named-entity recognition (NER) task, where the named entities were beyond the scope of
existing general-purpose NER datasets. Annotators had 14 labels to choose between, which
can be seen in Table 1 in the Appendix. For the purposes of this paper, the key labels are:
(1) “Spatio-Temporal Entity” (STE) reflecting any relation between two locations, such as
“15 minutes walk to” or “nearby,” and (2) various toponyms ranging from tourist attractions
to schools. Labels were chosen from an initial set suggested by Cadorel et al. [3] but adjusted
and extended to fit our specific dataset and framework.

After annotating the data, we fit three models with DistilBERT embeddings [17]. Out of
these, a model with a Conditional Random Fields (CRF) [9] classification layer performed the
best, with an overall F1-score of 0.756, with a plain DistilBERT model achieving comparable
results with an F1-score of 0.752. To make our work more reproducible, we use this latter
model, even if it is technically slightly worse. To connect STEs with relevant toponyms, we
use a combination of dependency parsing and graph partitioning: Each STE is associated
with the set of toponyms that are among its immediate dependents (for all the models and
other details, see the Appendix and Table 1).

To address RQ1, we geocoded entities using Google’s Geocoding API.3 The geocoder
provides coordinates for the centroid of each entity location. This poses a challenge for
larger parks such as Central Park, which expands across an area of 3.41 km2. To address
this issue, we calculated the point within the park closest to the Airbnb coordinates and
used this as the final entity coordinates. We then used Open Source Routing Machine4 to

2 https://prodi.gy/
3 https://developers.google.com/maps/documentation/geocoding/overview
4 https://project-osrm.org/
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Figure 2 The distribution of distances (bottom x-axis) and walk times (top x-axis) for listings
and reviews respectively. Listings consistently under-represent distance compared with reviews.

calculate the shortest walking distance between each Airbnb and entity coordinates along
OpenStreetMap’s pedestrian network. We use a maximum threshold value of 5,000 meters to
remove any outliers in the data. We do not expect individuals to walk distances exceeding
5,000 meters since the largest STE used in our analysis is 15 minutes.

For RQ2, we generate density plots to examine how walking distances are distributed
across STE groups and tags for listings and reviews. We use a secondary axis to display walk
time, calculated using an average walking speed of 1.31 meters per second [14]. Differences
in these distributions are assessed using a pairwise Mann-Whitney U test, a non-parametric
statistical test commonly used for data that is not normally distributed [12]. We use this
test to determine whether the differences in distributions are statistically significant (RQ3).
Finally, for RQ4 we plot the average differences across the widely used NYC neighborhoods
dataset by the non-profit BetaNYC.5

3 Results

Looking at Figures 2 and 3, we see that qualitative distance measures like “nearby” or
“walking distance” can indeed be quantified using the methods detailed above (RQ1). By
comparing these quantifications across listings and reviews, we discover that the former tend
to exaggerate proximity more than the latter (RQ3). However, across both types of data,
claimed walking times (5, 10, and 15 mins) were distributed widely across the actual walking
times (RQ2). Walking distances from listings were on average 12 minutes when the stated
distance was 5 minutes, 15 minutes for 10 minutes, and 18 minutes for 15 minutes. Walking
distances from reviews, by contrast, were closer to the actual claim: 8 minutes for 5 minutes,
12 minutes for 10 minutes, and 15 minutes for 15 minutes. These differences are also reflected
in how words like “near,” “close,” and “walking distance” are deployed on average: For
listings, these are close to 15 minutes of walking, while only 10 for reviews. Furthermore,
turning our attention to figure 3, words like “nearby” are always closer for parks than for
schools and tourist attractions. Again, listings consistently exaggerate proximity across these
three toponymic categories but the general pattern also holds: “nearby” parks are only 10
minutes away for reviews and 13 minutes away for listings, whereas schools are 12 and 15
minutes away and tourist attractions 15 and 17 minutes.

5 https://data.beta.nyc/dataset/pediacities-nyc-neighborhoods/resource/
35dd04fb-81b3-479b-a074-a27a37888ce7

https://data.beta.nyc/dataset/pediacities-nyc-neighborhoods/resource/35dd04fb-81b3-479b-a074-a27a37888ce7
https://data.beta.nyc/dataset/pediacities-nyc-neighborhoods/resource/35dd04fb-81b3-479b-a074-a27a37888ce7
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Figure 3 Walking distances and times for six different spatio-temporal entities in the data. Again,
the means are consistently lower for the reviews than the listings. The differences are particularly
pronounced for the vague STE qualifiers (top row).

We also found that there were statistical differences across neighborhoods (RQ4). Looking
at Figure 1b, listings in Manhattan tend to exaggerate consistently compared to reviews: here,
it seems, everything is “nearby.” This trend is reversed only in Lower Manhattan. Outside of
Manhattan, the visually distinct spatial clusters are more mixed. As we move further out
of the city center, the differences become more extreme in both directions. While this is
interesting to note, issues with data sparsity and outliers might be part of the explanation.
Nonetheless, these patterns require further investigation. Are listings in less attractive
neighborhoods more prone to exaggerate when they talk about distance? How might these
patterns correlate with the cultural and economic hierarchy between different areas [11]?

4 Discussion and conclusions

In this paper, we demonstrated how spatial entities and relations can be extracted from
textual descriptions of reviews and listings from Airbnb (RQ1). Claimed walking distances
do not reflect real world walk-times (RQ2), but the exaggeration is more extreme in listings
than reviews (RQ3). While these differences seem to be spatially clustered (RQ4), the exact
nature of these clusters remains to be investigated. Although these results are preliminary,
they offer a first step towards exploring the dynamics between the representation of spatial
relations and place-making.

There are notable limitations to our approach. First, it remains to be seen whether our
trained models would generalize well to other settings. Second, our model for extracting
spatial entities and our method for parsing spatial relations are still imperfect, introducing a
margin of error in the results. Third, there are sparsity issues with some of our annotated
data, which is reflected in the uneven F1-scores between labels (see Table 1).

These reservations notwithstanding, we have shown how to quantify and extract vague
spatial relations from text data. Moreover, we have demonstrated that there are consistent
and statistically significant differences between listings and reviews – that is, between hosts
and guests – in their representations of spatio-temporal relations. In this way, the results
presented here open up a new vantage point to studying representations of spatial relations
through geocoded text data. For example, by exploring how changes in these representations
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change over time, they could be related to indices of gentrification. Furthermore, these
methods could be expanded beyond the scope of Airbnb data to analyze representations of
space in a number of textual contexts: short- versus long-term real estate descriptions, other
forms of tourism literature, and even fictional literature.
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A Appendix

Table 1 Summary of NER label frequencies in the training data, in the overall data, and per-
formance metrics (F1, Recall, and Precision) for the DistilBERT-CRF model. The plain DistilBERT
model produced similar numbers.

Label
N N N

F1 Rec. Prec.Annotated Predicted Predicted
(all) (listings) (reviews)

1 TN:NEIGHBORHOOD 2265 66211 39914 0.872 0.877 0.867
2 TN:BOROUGH 1677 30014 40611 0.932 0.944 0.920
3 TN:CITY 1000 20097 46674 0.941 0.955 0.928
4 TN:STREET 552 21259 7409 0.681 0.675 0.687
5 TN:STATION 543 19828 8233 0.582 0.621 0.547
6 TN:TOURIST_ATTR 615 21619 6619 0.619 0.646 0.593
7 TN:PARK 532 19201 9548 0.893 0.941 0.850
8 TN:SCHOOL 127 3132 943 0.516 0.457 0.592
9 TN:BUSINESS 730 24059 9623 0.718 0.742 0.695
10 TN:OTHER 347 6092 3029 0.413 0.415 0.411
11 SPAT_TEMP_ENT 6643 197089 203545 0.690 0.708 0.672
12 TRANSIT 4168 126360 105646 0.787 0.806 0.768
13 GEOG_ENTITY 6663 184825 261947 0.806 0.812 0.800
14 HOST_BUILDING 915 29364 12391 0.426 0.442 0.411

Overall 26777 769150 756132 0.756 0.771 0.742

A.1 Sampling
To sample the training data, we used the following stratified disproportionate sampling
strategy:
1. Per neighborhood, all listings are included if there are 5 or fewer.
2. In neighborhoods with more listings than that, the sample for the neighborhood is 5

listings + 0.5%.
3. Each listing has 1 review sampled, but many listings have no reviews.

Sampling like this, we could ensure that all neighborhoods were represented in the training
data. However, for the review data that the trained model extracted NER labels from, we
used no spatial stratification, which is potentially reflected in the results. Future work should
use the entire dataset of reviews or take a spatially stratified sample.

A.2 Models
We trained three different models on the annotated data: 1) DistilBERT [17] with a linear
classification layer, 2) DistilBERT with a conditional random fields (CRF) [9] layer prior to
the linear classifier, and 3) DistilBERT with a CRF and BiLSTM layer prior to the linear
classifier [7]. For all these models, we used a 10/90 test-train split. Between the models, the
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Figure 4 The annotation interface of Prodigy. This annotated review references several different
types of entities related to place and spatial relations.

DistilBERT model with a CRF layer but without the BiLSTM layer performed the best, with
an overall F1-score of 0.756. Almost similar results were achieved with the DistilBERT model,
with a 0.752 F1-score. To keep results reproducible, all downstream tasks were performed
with this model. While these F1-scores might seem on the low side, it was much higher for
many of the classes in the data, as can be seen in table 1. The final models for all three
architectures were trained over five epochs with a 1 × 10−4 learning rate, 1 × 10−5 weight
decay, gradient clipping, and early stopping. All models were implemented in PyTorch6 using
pretrained DistilBERT models from HuggingFace7 and using additional IOB-chunking [15].

For an example of the annotation interface and, consequently, the data that was given to
the models, see figure 4.

A.3 Relationship extraction
To extract the dependencies between Spatio-Temporal Entities (STEs) and toponyms, we
proceed in the following way: For each document in our corpus, we extract dependencies
using the spaCy Python library8, with entities recognized as toponyms merged into single
tokens. We next identify all the dependents for all tokens for each document, using these
relations to build a directed graph of each document. Given this graph, we filter for nodes
that are labeled STE and remove any edges that point to this node. Next, we find the weakly
connected subgraphs that remain after removing these edges, giving us a set of graphs with
at most one STE node each and n nodes with other labels, including toponyms. Now, each
of these other nodes is a dependent of an STE node and we can pair each toponym-labeled
node with the STE of the subgraph.

6 https://pytorch.org/
7 https://huggingface.co/
8 https://spacy.io/
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Bayesian modelling averaging (BMA) allows the results of analysing competing data models to be
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1 Overview

Imagine that you are waiting for a taxi and it is already slightly late. You are concerned
that you will miss a train, and want to estimate how long you will need to wait. A number
of scenarios could cause the delay. For example: The taxi is stuck in traffic; There was
an administrative error and the booking service gave the taxi driver the wrong time; The
taxi was involved in a road accident; and so on. In each case a number of factors effect
the expected delay - but the factors are not the same in each scenario. However your main
concern is the delay time, regardless of the scenario. This is a similar problem to those which
Bayesian Model Averaging (BMA) may be used to address.

If you had models encompassing k scenarios based on past data D - say {M1 · · · Mk}
intended to predict the delay time T , and posterior beliefs in each scenario being correct:
{Pr(M1|D) · · · Pr(Mk|D)} you could obtain the predictive distribution of T given D as a
weighted average of the individual predictive distributions obtained from each model as

Pr(T |D) =
∑

i=1,k

Pr(T |Mk, D)Pr(Mk|D).

This in essence is Bayesian Model Averageing (BMA) – if we have a number of competing
models with at least one quantity of interest that all have in common, and relative likelihoods
of each of them being the correct model, we can obtain a posterior distribution of the quantity
of interest by averaging them using the likelihoods as weights.

Up to this point, there is nothing exclusively spatial about this process, but it can be a
powerful tool for assessing and utilising spatial models. For example, the competing models
could be:
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1. Spatial regression models using different spatial weight matrices.
2. Spatially Varying coefficient regression models where different parameters have fixed or

spatially varying coefficents in each model.
3. Spatial trend models with differing map projections (eg. a cartogram vs. national grid

coordinates)

In general, this approach can be used for any parameter that is common to all models, or a
predicted dependent variable – so if one were interested a particular regression coefficient, its
posterior distributioncould be considered in terms of various models containing this coefficient.
A key advantage of this approach is that while many other approaches (eg stepwise regression,
best AIC, best cross validation score) have a workflow to select a single “best” model, this
averages over all possibilities on the basis of relative evidence. In particular when several
models all perform similarly well, this approach makes use of information from all of them,
rather than discarding all but one.

2 A Brief Description of Computational Methodology

The approach to computing Pr(Mi|D) – a crucial stage in BMA - is to firstly compute
Pr(D|Mi) – then, via Bayes’ Theorem, we have

Pr(Mi|D) = Pr(D|Mi)Pr(Mi)∑
j Pr(D|Mj)Pr(Mj) .

Each model Mi will have its own parameter vector Θi - although the respective Θi may
differ in length and form between models. Standard statistical models typically specify
Pr(D|Θi, Mi) - but here we are interested in the marginal probability of the observed data
D across all possible Θi values for each Mi, weighted by their prior probabilities. That is

Pr(D|Mi) =
∫

Θi

Pr(D|Θi, Mi)Pr(Θi|Mi) dΘi.

This is sometimes referred to as the marginal posterior probability of D given Mi. Although
the right hand side expression cannot usually be derived analytically, two broad approaches
may be taken:
1. Approximation.
2. Monte Carlo Simulation.

Approximation is generally quicker and less “resource hungry” to evaluate, but less
accurate. A usual strategy for approximation is based on the Bayesian Information Criterion
(BIC) [4] for model Mi. If Θ̂i is the maximum likelihood estimate for Θi for Mi, and L̂ is
the value of the likelihood corresponding to Θ̂i, n is the sample size, and k is the dimension
of Θi then

BIC = k log(n) − 2 log(L̂)

and for larger n it can be shown that

Pr(D|Mi) ≈ exp
(

−BIC
2

)
.

Finally, for the parameter(s) of interest, say θi ⊂ Θi for a given model Mi the posterior
distribution can be approximated via Laplace’s approximation [1]. The posterior distribution
for θi may be approximated as having a multivariate normal distribution with a variance-
covariance matrix equal to the Hessian of the posterior likelihood function, with the maximum
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Figure 1 Leave Vote (%) by Parliamentary Constituency.

Table 1 Variables Used in Referendum Outcome Modelling.

Variable Description

Leave Percentage of “Leave” votes for each constituency (Dependent Variable).
Born_uk Percentage of electorate born in the UK.
Age_65_plus Percentage of electorate aged 65 or older.
Turnout Percentage of electorate who voted in the 2015 general election.
Christian Percentage of electorate stating their religion as “Christian”.

likelihood estimators of θi as mean values. For a scalar θi this suggests that the marginal
posterior distribution may be estimated as a normal distribution with the maximum likelihood
estimate θ̂i as its posterior mean, and SE(θ̂i) as its posterior standard deviation. The BMA
may then be approximated as a mixture of the k Normal distributions with Pr(Mi|D) as the
weight for Mi.

In this study, the example will use the BIC-based approach, and so attention will be
focused on this method.

3 Example: The UK’s 2016 Referendum on Leaving the EU

On June 23rd 2016, the United Kingdom held a referendum regarding its then membership
of the European Union. Voters were offered two choices: “Leave the European Union”
(Leave) or “ Remain a member of the European Union” (Remain). The outcome was a
51.9% majority in favour of “Leave”, although a hexagonal cartogram map of voting by
Parliamentary Constituencies in England, Scotland and Wales (Figure 1) suggests this overall
figure conceals notable regional patterns. This leads to a further question: if the voting
patterns themselves show strong regional patterns, do the drivers of these outcomes also
vary geographically?

To investigate this, a number of variables were obtained (from the parlitools R pack-
age) [3], recorded at at the Parliamentary Constituency geographical unit – listed in Table 1.
The UK census-based variables (born_uk, age 65+, and Christian) were recorded in the
2011 UK Census – this being the latest Census held in the UK prior to the referendum.
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The key questions for each variable are whether they influence the leave vote; and if so
then does the direction and magnitude of this influence vary geographically? To investigate
this, for each variable it is possible to include it in a model with a fixed linear coefficient
β × Variable or a geographically varying coefficient β(u, v) × Variable where (u, v) is the
centroid of each parliamentary constituency, or to omit it from the model.

To investigate this, the R package mgcv was used to fit every permutation of these kinds
of model. For each of the four predictor variables there were three possibilities - omit the
variable from a regression model, include with a fixed linear coefficient, or include with
a spatially varying coefficient. In the latter case a thin-plate spline approach was used
(although other options could be chosen). In the R formula notation, an example of a model
might be

Leave ~ s(u,v,by=Born_uk,bs='tp') + Turnout
suggesting a model where the coefficient for Turnout was fixed, that for Born_uk varied,

and the other variables were omitted. This yields 34 = 81 models. In addition to this, each
model was fitted with both fixed and varying intercept terms, and with the coordinates
(u, v) based on location on the cartogram and physical (UK National Grid) location. Thus
there are 4 variants on each model, resulting in 81 × 4 = 324 possible models altogether.
In the marginal likelihood approach, there is no requirement that models be nested, so all
324 models can be considered. Here the mgcv package offers Bayesian Information Criterion
methods (BIC) for gam model objects, and so the BIC based approximation will be used here.
Using this approach, all models with a posterior probability ≥ 0.01 are listed in Table 2.

The most likely model includes all variables with the intercept and the Born_uk coefficient
being modelled as thin plate splines, and the remaining variables having fixed linear coefficients.
The geographical coordinates for the splines are based on the cartogram, rather than physical
space. However, reading the Pr(M |D) column in the table suggests that this model is the
correct one is a little under two thirds. The possibility of one of the “runners up” being
correct is non-trivial. In the next model in the table (probability around one in five) Born_uk
has a fixed coefficient - but also although the intercept term is varying, the coordinates are
now based in physical space.

The Intercept term has a spatially varying coefficient in all of the three most probable
models. These three models dominate the posterior marginal probabilities, totalling around
0.95 of all possibilities. These surfaces are shown in Figure 2. The Bayesian model average
surface (over all possible models) for intercept is given by

β0∗(u, v) =
∑

i=1···324
Pr(Mi|D)β0i(u, v)

where β0i(u, v) is the intercept coeffient for model i. For models where the intercept is
constant, β0i(u, v) is a constant w.r.t. (u, v). This is shown as the fourth map in Figure 2 on
the LHS map quartet.

In these models all variables - as listed in Table 1 - are standardised to have mean zero
and standard deviation 1 prior to analysis. For the intercept term, this gives the standardised
value for the Leave variable assuming all other predictors are at their mean value. It is not
a direct measure of overall tendency to vote “Leave” or otherwise - more of a measure of
geographical effects not accounted for by current variables in the model. On this basis, there
seems to be among other things a “Scotland effect” and a “West London effect” (although
this is not apparent in the second most probable model, which uses physical coordinates
rather than cartogram). Once the models are averaged the West London effect remains,
although muted.
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Table 2 Models with Highest Posterior Probabilities.

Intercept Born_uk Age 65+ Turnout Christian Coords Pr(M|D)

Spline Spline Fixed Fixed Fixed Cartogram 0.637
Spline Fixed Fixed Fixed – Physical 0.205
Spline Fixed Fixed Fixed Fixed Cartogram 0.109
Spline Fixed Fixed Fixed Fixed Physical 0.045

Intercept (M1) Intercept (M2)

Intercept (M3) Intercept (Ave)

−2

−1

0

1

2

Intercept

0.00

0.25

0.50

0.75

1.00

1.25
Born UK (M1)

Born UK (M1)

Figure 2 The intercept and born_uk terms by parliamentary constituency (Great Britian).

The coefficient for born_uk can also be mapped. This is shown in Figure 2 (RHS). The
values are calculated using the formulae above. Of note here is perhaps that in a region to
the west of london, born_uk seems to have little infuence on the outcome than in much of
the country where higher values suggest a Leave majority is more likely.

It is also possible to map the marginal posterior standard deviation for these parameters,
after model averaging. These are computed using the formula

[PSD (β∗(u, v))]2 =
∑

i=1···324
Pr(Mi|D) [PSD (βi(u, v))]2

and are shown in Figure 3. Notable in both cases is the “edge effect” where the PSD is high
near to the coastal areas. Also of note is the raised PSD in the London area.

4 Discussion

The BMA approach provides a number of useful tools. It provides a means of assessing the
viability of competing models, by providing posterior probabilities of each being the correct
model. This can be thought of as similar to hypothesis testing, but it treats hypotheses
symmetrically, and can handle more than two competing hypothesis. It also a provides means
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Figure 3 Posterior Standard Errors for Intercept and born_uk.

of combining competing models to investigate parameters common to all models, in the
presence of uncertainty as to which model is correct. The example here used an approximate
approach that is convenient, as it can be achieved using standard R tools. More accurate
approaches are also possible via techniques such as Bridge Sampling – see [2] for example.
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Abstract
We present a framework which allows one to use an online routing service and get live updates
without revealing the sensitive starting and ending points of one’s route. For that, we obfuscate
the starting and ending locations in minimum capacity clusters and reveal only the route between
these clusters. We compare different anonymous clustering strategies on positions in the network
with efficient approximations and analyse the impact of the anonymisation on the route. We
experimentally evaluate the effect of the anonymisation scheme in real-world settings.
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1 Introduction

Services often utilise personal routing data to offer traffic information, but it can be achieved
using anonymised data. We can protect the sensitive part of our data by trading in a small
amount of convenience. Anonymising the routing data enables us to use it in scientific
research and redistribute it. The central idea is that the two endpoints of a route determine
the shortest path. This means that the shortest paths only is helpful in re-identifying the
starting and ending locations. By obfuscating these locations, we can protect privacy while
sharing the remainder of the route for the public and personal benefit.

The concept of “k-anonymity” was first introduced by Sweeney [6]. It guarantees that
each subject cannot be distinguished from less than k − 1 other subjects. So finding a good
k-anonymisation can be viewed as a clustering problem, with clusters requiring a minimum
capacity of k. We k-anonymise locations in the network by clustering them.

To achieve k-anonymity, we adopt a concept from the routing literature introduced by
Bast et al. [3]. In long-distance travel, routes around a starting location pass through a small
set of nodes near the start. These nodes, known as transit nodes, reduce the search space and
speed up the shortest path computation. We use a variation of this concept to anonymise the
routing of a person. By computing transition nodes for each cluster (possibly depending on
the cluster to be routed to) and routing through them, we can ensure that the path between
these nodes remains the same for all starting and ending locations within the cluster.
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Given clusters of at least k locations, one could find the transit nodes between two clusters.
Utilising these transit nodes per cluster would keep the travel time the same. However, it
would weaken anonymity, as a (specific) transit node (of several transit nodes of a cluster)
may reveal in which part of the cluster the point lies. Therefore, we instead decided to
actively lead the route through check points on the boundary of the clusters. This re-routing
introduces some additional travel time, denoted as ∆. We will show that the maximum of ∆
can be upper bounded with the radius of the clusters. Moreover, for a wide range of k, the
mean value of ∆ is insignificant in daily use. Additionally, since the check points are on the
boundary of the clusters, most of the routes can be shared. See Figure 1 for an example.
Routes within a cluster will not be anonymised within our framework as they are too short
for gains through online services and would not use any check points.

(a) Locations. (b) Shortest Route. (c) Cluster Centers
and check points.

(d) Private and Pub-
lic Parts.

Figure 1 shows an example of the anonymisation strategy. In the road network, streets from the
same cluster have the same colour. In red are the locations and the shortest route. Next, we look at
the centres shown as dots in colour for their cluster. With the shortest route in blue between them,
get the check points in orange on the boundary of the clusters. Lastly, we compute the private in
the black and the public in the green part of the anonymous route between the red locations.

We discuss four clustering strategies that differ in their setting and optimisation criterion
while achieving a k-anonymous clustering. Later we will compare them on their impact on
∆. First is the r-gather clustering problem, which Aggarwal et al. [1] introduced. Here, the
objective is to find clusters where each cluster contains a minimum of r points. The cluster’s
centre determines its radius, and the goal is to minimise the maximum radius across all
clusters. They showed that this problem is NP-hard and gave a polynomial time algorithm
to compute a 2-approximation, i.e. the radius is at most two times the optimal radius.

Armon [2] presents two variants of r-gathering that interest us. In the r-gathering setting
– in contrast to r-gather clustering – the centres are chosen from a different set than the
points to be clustered. The first one, called min-max r-gathering, minimises the maximum
radius of the clusters. It is an NP-hard problem, and they presented a 3-approximation in
the maximum radius in O(n(m + r + log n)) time. The second strategy, min-sum r-gathering,
minimises the sum over the distances to the centre. They showed that the problem is NP-hard
and gave a 2r approximation in O(n(m + r + log n)) time. With r-gather and min-max
r-gathering, we can compute bounds to time lost by our anonymisation. However, min-sum
r-gathering should lead to a better mean ∆ than the other strategies.

Haunert et al. [5] introduced the k-Anonymous Steiner Forest for the problem of location
clustering. Here they compute the optimal clustering where a cluster has to pay to the length
of the street connecting them. They gave an algorithm with an approximation factor of 2
and a runtime of O(nm). They applied their strategy to clustering places in a street network.
However, their optimisation criterion does not align with ours, as the cost of the edge is only
paid once. However, we will compare our location clustering with their result.
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Brauer et al. recently presented a solution to a similar problem [4] which builds on
the clustering strategy of Haunert et al. [5] to truncate trajectories. However, they only
considered geometric clues1. With that, the trajectories leak information about the start and
end points. The attacker model is heavily constrained because it cannot use the knowledge
of the existing network. However, their strategy can be used to anonymise existing databases
of trajectories, and they do not need the shortest paths.

We present a framework for k-anonymous online routing. We argue that under our
assumptions (that all users use the shortest route), retrieving the start or ending from the
route is impossible, even if the attacker knows the model of obfuscation, the clusters and
the network. We bound the impact on the travel time by this framework and present a
polynomial time algorithm to minimise the impacted travel time. We demonstrate the
practicality of our framework with experimental results for German cities.

2 Anonymization Scheme

We will use the road network, given as a directed embedded graph G = (V, E) and information
on travel time t(e) and population distribution p(e) over the edges of the network first to
compute a clustering on the edges. We then anonymise the shortest path between two points
by calculating the shortest path between the cluster centres that encompass these points.
We exclude the portion of the path within the clusters and replace it with the shortest route
from the starting point to the path and from the path to the destination.

This setting brings two challenges with it. First, typically the vertices of a graph are
clustered, whereas clustering of edges is rare. To use the point clustering techniques, we have
to adapt our graph. For that, we use the directed line graph, which has a node for each edge
in the directed graph and maintains the connectivity by introducing a directed edge for each
pair of edges in the directed graph if the first edge ends at the start of the second edge.

Secondly, road networks are directed graphs which do not come with a canonical metric.
We decided to use the length of the minimal cycle of a list of items as our distance function.
We use this because it gives a symmetrical distance measure for a list of length two and
satisfies the triangle inequality. Also, roundtrips are meaningful in our settings. We used
items as a stand-in for vertices and edges. To make this distance measure a metric, we
define cycle [p, p] to have length 0. As we will primarily discuss minimal cycles, we use the
list notation [a, b, . . . ] if we mean the shortest cycle using these objects in that order. The
distance function d gives us the length of the minimal cycle.

For a cluster C in the clustering C, we denote its centre as cC . For two clusters C, C ′,
we get the check points from the minimal cycle [cC , cC′ ]. The entry check point is the first
node iC ∈ C on the minimal cycle, coming from cC′ . The exit check point is the last node
oC ∈ C on the minimal cycle, coming from cC . So for the shortest cycle [s, e] with s ∈ S,
e ∈ E and S, E ∈ C, this leads to the anonymized cycle A(s, e) := [is, s, os, ie, e, oe].

We define the radius R(C) of a cluster C as maxp∈C d([cC , p]). Furthermore, R :=
maxC∈C R(C) denotes the maximal radius of the clusters in a clustering.

Now we can define the function ∆(s, e) from the introduction as d(A(s, e)) − d([s, e]).

▶ Lemma 1. Given the maximum radius R of a clustering, 4R bounds the maximum extra
time ∆ introduced by the anonymisation scheme A.

1 i.e. the closest location and a wedge in the last direction of the trajectory
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Figure 2 Example showing the tightness of the upper bound as stated in the lemma 1. If we pick
cs and ce as the centres, we get a 4-gather with radius 2 + ε. The minimal cycle distance between s

and e is 2δ. The anonymised cycle distance is 8 + 2δ. This gives us the tightness for ε approaching 0.

Proof. By definition, we have ∆ := d(A(s, e)) − d([s, e]). When we insert the centres cs and
ce into the anonymised cycle, we only make it longer but also can drop the check points as
they lie on the shortest cycle between ce and cs.

∆ ≤ d([is, cs, s, cs, os, ie, ce, e, ce, oe]) − d([s, e]) = d([cs, s, cs, ce, e, ce]) − d([s, e])

If we now insert s and e between cs and ce we can split the long cycle into smaller ones,

d([s, cs, s, cs, s, e, ce, e, ce, e]) = d([cs, s]) + d([cs, s]) + d([s, e]) + d([ce, e]) + d([ce, e]).

The length of the smaller cycles within a cluster is bounded by R. Thus, we get ∆ ≤ 4R. ◀

Remarkably, the upper bound 4R is tight. Figure 2 shows an example for that. Also, ∆ can
be bounded by the actual radius of the starting and ending clusters.

We conclude that minimising the maximum radius of the clustering is a suitable proxy/sub-
stitute for anonymising with a small impact on travel time.

3 Experimental Results

We tested our anonymisation scheme in several cities in Germany. We used the data from
OpenStreetMap for the network and the German census data to estimate the number of
people living next to the streets. We import the street network with the travel time for the
edges from OpenStreetMaps. The German census [7] from 2011 provided a 100 m times 100
m square grid of people living in each cell.2 We distributed each square’s population evenly
on every curve in that square for a realistic distribution.3

To use the r-gather clustering, we used a line digraph of the network to switch the roles
of edges and vertices. Because all clustering strategies assume that each point has equal
weight, we used a multigraph with as many edges for a street as people.

Our primary focus was to analyse ∆ for the different strategies and r, as this bounds
the detour induced by the anonymisation scheme. For that, we computed the shortest and
anonymised path for every pair of vertices. With that, we calculated the values of ∆. We
empirically found that the maximum ∆ is often close to two times the maximum radius of
the clusters. This could be explained by the fact that most edges of a street network are
undirected, and in that case, two times the maximum radius is the upper bound. Nevertheless,
there are instances where it gets close to the upper bound of 4 times the radius. However,
we also see that the mean of the distribution is much closer to 0 than the maximum. Factors
that play a role in this are the directedness and density of the network.

2 The data was anonymised, so no individual or pair of people could be identified.
3 We used networkx for processing, geopandas for geocoding, matplotlib for plotting, osmnx for import,

and scipy to compute the distance matrix.



M. Buchin and L. Plätz 18:5

(a) min-max r-gathering. (b) min-sum r-gathering.

(c) r-gather. (d) Anoynmous Steiner Forest by Hau-
nert et al. [5].

Figure 3 Shown are different clusterings with the minimum capacity of r=100 of Bonn Ückesdorf
in Germany. In general, the mean ∆ is far from the maximum and clumped around 0 (blue
histography on the right side of each subfigure with a log scale). 3a shows the min-max r-gathering
with the best maximum cluster size and mean time in seconds. 3b shows the min sum r-gathering.
3c shows the r-gather, which has a higher meantime because it only finds large clusters. 3d shows
the clustering from Haunert et al. [5]. Here, the cluster of locations are retrieved from the buildings
in OpenStreetMaps. As they grow trees until they are big enough, these clusters are connected.

We show the example of Bonn Ückesdorf, a small suburb. This allows us to compare
our clusterings with the clustering of Haunert et al. [5]. Figure 3 shows the four clustering
strategies. The clusters are randomly coloured, and we depict streets without inhabitants
as thin grey lines. On the right of each subfigure are the histograms of the ∆ of each route
between different clusters. The r-gathering approaches lead to a significantly smaller mean
∆. The approximation algorithm for r-gather produces equal-sized clusters. The clusters in
r-gather have the problem that they are not connected. The disconnection comes from the
flow problem satisfying the minimum capacity. Here the edges can be arbitrarily distributed
between the clusters when they have enough edges and their influence radius overlap.

In Figure 4, we compare ∆ for different r and strategies. In this setting, r-gather gives
bad results for small r but catches up for larger r. It also seems to be less stable as the other.
Surprisingly, the r-gatherings stay close to each other in max and mean ∆.

All clustering strategies had runtimes from a few seconds to minutes on a city scale. The
computations were done with a regular desktop pc and programmed in Python. Anonymising
a route does not require much more time than a normal routing query. We need to look up
the centres of the cluster of our endpoints and query the route between the centres. Finding
the boundary point of the cluster on the route is straightforward, and routing to these
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(a) Max ∆. (b) Mean ∆.

Figure 4 The graph on the left depicts the max ∆ and on the right mean ∆ for different r for
Bonn Ückesdorf. Both axes use a log scale.

checkpoints only needs a short-distance route query. Furthermore, routing between different
cities can be done by clustering every city individually. Therefore, it is only necessary that
the different clustering do not overlap, as that would break the k-anonymity.

4 Conclusion

We have developed a framework for anonymous routing that has minimal impact on travel
time. We explored four minimum capacity clustering strategies and their effects on travel
time. Our analysis revealed that the r-gather and min-max r-gathering strategies provided
upper bounds for the maximum extra travel time. We also examined the min-sum r-gathering
strategy and found that both r-gathering cluster strategies resulted in shorter mean extra
travel times. In the future, we plan to use a weighted version of the clustering strategies
to aggregate edges in the graph, which might lead to faster computations. Additionally, we
believe that a finer subdivision of the streets could reduce extra travel time even further.
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Abstract
Spatial optimisation models have been widely used to support locational decision making of public
service systems (e.g. hospitals, fire stations), such as selecting the optimal locations to maximise
the coverage. These service systems are generally the product of long-term evolution, and there
usually are existing facilities in the system. These existing facilities should not be neglected or
relocated without careful consideration as they have financial or management implications. However,
spatial optimisation models that account for the relocation or maintenance of existing facilities
are understudied. In this study, we revisit a planning scenario where two objectives are adopted,
including the minimum number of sites selected and the least relocation of existing facilities. We
propose and discuss three different approaches that can achieve these two objectives. This model and
the three approaches are applied to two case studies of optimising the retail stores in San Francisco
and the large-scale COVID-19 vaccination network in England. The implications of this model and
the efficiency of these approaches are discussed.
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1 Introduction

Spatial optimisation or facility location models are aimed at siting facilities so as to provide
service to demands efficiently. A range of location models have been proposed to support
varying management, planning, and decision-making contexts. In particular, the location set
cover problem (LSCP) [9] has been proposed for planning applications in which the fewest
facilities are to be sited so as to serve all demand within the designated service response
standard. The LSCP can be written as [2]:

Minimize
n∑

j=1
xj (1)

Subject to:∑
j∈Ni

xj ≥ 1 ∀i (2)

xj ∈ {0, 1} ∀j (3)
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19:2 Least Relocation LSCP

Where:

i = index referencing nodes of the network as demand
j = index referencing nodes of the network as potential facility sites
n = total number of potential sites
S = maximal acceptable service distance or time standard
dij = shortest distance or travel time between nodes i and j

Ni = {j | dij < S}

xj =
{

1, if a facility is located at node j

0, otherwise

In applications where there are one or more existing facilities, the LSCP in its basic form
as above is faced with a major problem, as it does not differentiate between sites with
and without existing facilities. The scenarios where the relocation of existing facilities is
concerned are common in applications. In this paper, we focus on a planning scenario where
two objectives are adopted: the first one is overall efficiency, which is exactly the objective
of LSCP (see Formula 1). This objective requires the least number of sites to be selected,
regardless of sites with and without existing facilities. The second objective, called the least
relocation of existing facilities, dictates the maximum maintenance of existing facilities (or
the least relocation of existing facilities), meaning that as many existing facilities as possible
should be utilised. These two objectives are not equally important and the first criterion has
a higher priority than the second one.

This bi-objective problem was introduced by [8] and illustrated by a case study of
optimising the locations of fire companies for the Denver fire department. This bi-objective
LSCP is as follows:

Minimize
n∑

j=1
xj (4)

Maximize
p∑

j=1
xj (5)

Subject to:∑
j∈Ni

xj ≥ 1 ∀i (6)

xj ∈ 0, 1 ∀j (7)

In addition to the notations above, the following notations are used:

j = index referencing nodes of the network as potential sites.
Sites with existing facilities are indexed from 1 to p.
Sites without are indexed from p+1 to n.

p = total number of sites with existing facilities, p ≤ n.

In the following, we present three approaches that are applicable to solve this problem.



H. Chen and R. Xu 19:3

The first approach is proposed in the paper as mentioned above [8], which combines the
two objectives into a single one and transforms the bi-objective problem into a single-objective
programming problem. More details of this approach can be found in [8].

The second approach is inspired by [7]. Originally, the author proposed a method to deal
with sites with and without current facilities in spatial optimisation by keeping a specified
number of current facilities in LSCP. Here, we extend this approach to solve the bi-objective
LSCP. Specifically, this approach adds an additional constraint to LSCP that keeps a specified
number (r) of current facilities and relocating others. By iterating all possible r values and
solving a list of LSCP problems with different r, a pool of LSCP solutions with different r
would be obtained, and then the LSCP solution with the maximum r would be the final
solution to the bi-objective problem.

Third, this problem can be directly solved using a hierarchical or lexicographic method [6].
Specifically, Objective (4) is assigned with a higher priority than Objective (5), and these two
objectives are optimised in priority order. This approach is incorporated in general-purpose
mixed programming solvers like Gurobi [5]; however, it is not supported in others such as
GLPK [4].

While these three approaches would derive optimal solutions to the bi-objective LSCP,
the computing efficiency of these approaches are understudied. In the following section, we
will compare these approaches using two case studies with different problem sizes.

2 Case studies

We present two case studies to compare the function and performance of the three approaches
to the bi-objective LSCP. All processing and computation are conducted on a desktop MacOS
10.15.5, 2.7 GHz with 8 GBytes memory.

2.1 Case study of siting stores in San Francisco
In this case, a retail chain would like to site a number of stores in San Francisco. The
primary objective is to locate stores close to population centres, which are represented by
205 census tracts in this city. In this problem, we consider a set of 16 potential store sites
and set the maximum service distance to access a store on the road network as 5 kilometres.
The facility-demand distance matrix was derived from ArcGIS Network Analyst extension
[1]. To simulate the scenario with a set of existing facilities, we randomly chose eight sites
and assumed that there were existing facilities at these sites. This bi-objective problem is
formulated as below: given the existing eight stores and a set of eight potential sites, at least
how many sites should be selected to site the stores to cover all populations?

2.2 Case study of COVID-19 vaccination network in England
This case study aims to optimise the COVID-19 vaccination network in England. England
contains 56.6 million people in 2020, which accounts for 84.3% of the UK’s population.
During the COVID-19 pandemic, a COVID-19 vaccination network was built and maintained
to provide vaccination to residents, and this network consisted of 1,600 vaccination centres
by November 2021. The locations of these vaccination centres are likely not optimised and
some centres are redundant. Therefore, we formulate the location optimisation problem of
the COVID-19 vaccination network as follows: given the existing 1,600 vaccination centres
and a set of 21,127 potential sites (based on locations of the Point Of Interest), at least
how many sites should be selected to locate the vaccination centres to cover all populations?
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The demands in this problem are the populations of each Middle Layer Super Output Area
(MSOA), with population-weighted centroids of MSOAs as demand points and the population
of the 2011 census as weights.

2.3 Results and discussion
The results of the two case studies are presented in Table 1. Both cases verify that these
three approaches derived optimal solutions with the same number of selected sites with
existing facilities and sites without. In terms of computing efficiency, in the small-size
San Francisco case, the three approaches solved the location problem using less than one
second, demonstrating high computating efficiency. In contract, when solving the large-size
COVID-19 vaccination case, Approach 3 significantly outperformed the other two approaches
regarding the computing time.

Table 1 Example of test session results.

Case study (n, p)1) San Francisco (8, 8) England (21127, 1600)
Approach 1 Weighted (4, 4, 0.1s)2) (313, 107, 512m 53.9s)
Approach 2 Iterative (4, 4, 0.2s) (313, 107, 294m 6.5s)
Approach 3 Lexicographic (4, 4, 0.1s) (313,107, 54m 53.5s)

1) n and m represent the number of sites without and with existing facilities,
respectively

2) the three numbers represent the number of selected sites without existing
facilities, number of selected sites with existing facilities, and computing
time

3 Conclusions

In this paper, we revisited a bi-objective extension of LSCP that aims to achieve two objectives
simultaneously, including the minimal number of selected sites (with higher priority) and the
maximal number of selected sites with existing facilities. We show that this problem can
be tackled by three different approaches, using two planning cases. The results verify that
these three approaches are capable of tackling this bi-objective LSCP. In terms of computing
efficiency, while these approaches exhibit similar computing time in the small-size case of
San Francisco, the third approach (lexicographic) shows significantly higher efficiency than
the other two approaches.

This research opens up avenues for future research. First, we will attempt to analyse
and understand the computational complexity of the three approaches. Second, we plan to
incorporate this bi-objective LSCP into the spopt Python library [3], an emerging open-source
project for spatial optimisation.
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Abstract
Building on a growing field of research on vulnerability to energy poverty, this study focused on
addressing the rising energy crisis by examining the issue of energy deprivation in local areas of
England and Wales. We developed a classification for energy deprivation using a clustering method
to group multiple indicators across various domains. By doing this, we identify spatial disparities of
energy deprivation for people living in different neighbourhoods, aiming to provide valuable insights
for governments, charities and stakeholders and inform policy making and intervention.
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1 Introduction

The energy market experienced strain in 2021 driven in part by the rapid economic recovery
following the COVID-19 pandemic. However, the situation escalated into a global energy
crisis, particularly affecting Europe, when the Russian Federation militarily intervened in
Ukraine in February 2022 [6]. The crisis has led to a significant increase in living costs, in
particular energy costs, resulting in an estimated 6.7 million UK households experiencing
energy poverty by November 2022 [8].

Energy poverty or deprivation, as defined by Bouzarovski [1], refers to the lack of access to
affordable, reliable, and environmentally friendly energy services, such as heating and lighting,
that are adequate in quality and safety [5, 11]. Energy deprivation negatively impacts on
health, well-being, social relationships, education, and economic development [1, 7] and poses
challenges to the UK government’s goal of achieving net-zero greenhouse gas emissions by
2050 [3].

In response to the energy crisis and energy poverty, it is crucial to understand the spatial
distribution and characteristics of energy deprivation to inform policy and practice, as well
as gaining insights into broader socio-economic and political factors contributing to the
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problem. This study aims to develop a nationwide classification of energy deprivation at
small area scale to improve understanding and support evidence-based decision-making by
policymakers.

2 Data and Methods

Table 1 Selected variables and their descriptions.

Code Variable name Description
Energy efficiency bands are rated from A (most efficient) to G (least efficient) 
Efficient energy refers to properties rated as band A and B                                                                                   

V02 Inefficient energy Inefficient energy includes properties rated as band E, F and G
V03 Fossil fuels dependency Fuel type of the property belongs to one of the fossil fuels
V04 High CO2 emissions Carbon dioxide emission per square meter of the property is higher than the average 
V05 Old property Properties built before 1930
V06 New property Properties built after 2012
V07 No central heating Households with no access to central heating  
V08 Not connected to gas grid Domestic properties not connected to the mains gas grid 
V09 Prepayment electricity meters Households with prepayment electricity meters 
V10 Renewable energy Households with renewable energy access only
V11 Electricity energy Households with electricity access only
V12 Age 0 to 4 Households with young children aged four and below
V13 Age 75 years and over Households with older adults aged 75 years and over 

V14 Lone parent with dependent 
children A dependent child is any person aged 0 to 15 in a household or aged 16 to 18 in full-time education and living a family with their parent or grandparent

V15 Large household size More than five people living in a household
V16 Under occupancy Households with at least one bedroom more than required
V17 Retired
V18 Long-term sick and disabled
V19 Looking after home or family
V20 Detached house or bungalow Property is not attached to another property but can be attached to a garage

V21 Semi-detached house or bungalow Property is joined to another property by a common wall that they share

V22 Terraced Property located between two other properties and shares two common walls or is part of a terraced development but only shares one common wall.
V23 Flat Property in a purpose-built block of flats or tenement
V24 Shared houses Property part of a converted or shared house, including bedsits
V25 Owns outright Household owns all of the accommodation

V26 Owns with mortgage or shared 
ownership Household owns with a mortgage or loan, or part-owned on a shared ownership

V27 Socially rented Property rented through a local council or hosing association
V28 Privately rented Property rented through a private landlord or letting agent
V29 More income on energy cost Percentage of household net income spent on the electricity and gas bills
V30 Elementary occupation Persons aged 16 years and over who do elementary job as their main occupation

V31 Unpaid care with more than 20 
hours Persons that look after, give help or support to anyone who has long-term physical or mental ill-health conditions, illness or problems related to old age

V32 Unemployment Persons that have not worked in the last 12 months and never worked
V33 Part-time employment Persons who worked 30 hours or less (including paid and unpaid overtime) a week before the Census
V34 Full-time students  Economically inactive full-time students
V35 Ethnic minority Persons who are not English, Welsh, Scottish, Northern Irish, or British
V36 Universal credit A single payment for each household to help with living costs for those on a low income or out of work 

V01 Efficient energy

Economically inactive population that aged 16 years and over who did not have a job between 15 March to 21 March 2021 and had not looked for work between 22 February 
to 21 March 2021 or could not start work within two weeks.

Data are collected from multiple data sources in England and Wales, including Department
for Levelling Up, Housing and Communities (DLUHC), Department for Business, Energy and
Industrial Strategy (BEIS), Department for Work and Pensions (DWP), and the 2021 UK
Census that are available at the property, postcode, and the Lower Layer Super Output Areas
(LSOAs) levels, respectively. LSOAs were created as a geographical structure to enhance
the collection and presentation of detailed statistical data for small areas in England and
Wales. To ensure effective and timely representation, all data are accessed from the most
recent years since 2018. 2021 Census LSOA geography in England and Wales are used as the
unified spatial granularity to link with data at diverse geographical scales.

We follow a typically geodemographic classification method framework to build an energy
deprivation classification. First, a list of variables is selected based on the large amounts of
review of energy vulnerability and poverty [1, 7, 9, 10, 12, 13]. 36 variables are selected to
reflect the energy deprivation and can be summarised into five domains: energy efficiency,
energy access, energy demand and service, housing and financial vulnerability. Figure 1 depicts
the chosen variables and their descriptions. All variables are measured using percentages to
reduce the potential data bias of various estimation size available at individuals, households,
or properties.

Prior to clustering, transformation and standardisation are conducted to enable equal
variable contribution and more interpretable results. Additionally, correlation analysis is
implemented to avoid certain types of variables with a high degree of association skewing
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the cluster result. We exclude variables that exhibit correlation coefficient values larger
than 0.8 (either positively or negatively) with more than one other variables. Five variables,
specifically high carbon dioxide emissions, prepayment electricity meter, under occupancy,
retired, and universal credit, are identified and excluded. Lastly, a widely used k-means
clustering method [2, 4, 14] is conducted to group all LSOAs in England and Wales. To
determine the optimal number of clusters (k), a Clustergram is utilised to helps identify the
point of diminishing returns, where increasing the number of clusters does not significantly
improve the clustering quality. K=6 finally generates robust results after multiple iterations.

3 Results and Discussions

Figure 1 displays the spatial disparities of six groups of energy deprivation at LSOAs in
England and Wales, representing Energy Efficient Suburbs, Energy Periphery, Energy Density,
Energy Inefficiency, Energy Constraints, and Energy Precarity (Group A to F). For better
interpretation, we calculate index scores of each variable and create Figure 2 to help us
explain the energy deprivation characteristics for each group.

Residents of Group A, Energy Efficient Suburbs, typically live in relatively new houses
with the highest energy efficiency and lowest carbon footprints compared to other groups.
They tend to own these houses financed using a mortgage, loan or shared ownership scheme.
Properties in the group are typically well-connected to the gas grid. There is a higher
proportion of families have very young children below four years old. The group is found
throughout suburban areas in England and Wales, especially in the southeast and southwest
regions of England.

Group B, Energy Periphery, is characterised by residents of retirement age and who
are mostly white British, own their detached or semi-detached property either outright, or
with a mortgage or via shared ownership. Properties are typically well serviced by energy,
including central heating and are well-connected to mains gas. However, properties tend
to be under-occupied and hence their occupants consume more energy than they might in
smaller homes. This group is pervasive in urban outskirts, and towns close to cities.

For Group C, Energy Density, many individuals are economically inactive full-time
students and ethnic minority, concentrating in high-density neighbourhoods of privately
rented flats or shared houses. They rely heavily on electricity as gas grid access is often
limited. Additionally, residents may reside in either older properties without central heating
or properties with high energy efficiency ratings A or B. The group is concentrated in the
city centres of England and Wales.

Neighbourhoods classified in group D, Energy Inefficiency, are predominately located
across rural parts of England and Wales. Residents are typically older, retired and tend to
live in detached houses that they own outright. Properties are typically built before 1930
and some lack a gas grid connection due to their rurality. Most properties have low energy
efficiency, leading to higher carbon dioxide emissions per square meter. Some properties only
use renewable energy resulting in lower carbon footprints.

Group E, Energy Constraints, is typified by residents who are white British and have
constrained access to energy services, predominantly concentrated at urban edges and
suburbia of the north and midlands of England and southern Wales. Residents typically
reside in rented semi-detached or terraced social housing, and are employed in elementary
occupations. They often receive welfare payments to cover essential living costs. Many energy
precarious households are lone parents with dependent children below four years old, or have
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Figure 1 Spatial patterns of energy deprivation in England and Wales at LSOA scale.

residents who provide unpaid care or have long-term sick or disability. Residents often use
prepayment electricity meters to manage their energy bills, which are more expensive than
other payment ways, and thus, higher proportions of their income are spent on energy.

Residents of Group F, Energy Precarity, are the most energy-deprived compared to other
groups. Neighbourhoods offer a mix of rented terraced, flats and shared older properties, that
often have constrained energy access, including no central heating, dependent on electricity
only and prepayment electricity meters. These low-income areas have a high proportion
of ethnic minorities, lone parent households and dependent children. They are more likely
to live in overcrowded properties. The group is prevalent in outer parts and less desirable
neighbourhoods of cities and towns.

4 Conclusion

This research collected and measured multiple indicators related to energy deprivation. By
examining the spatial distribution and contextual characteristics of cluster results, we identify
the most and least energy deprived areas in England and Wales and the characteristics of
individuals living in those areas. Some future works are required to mitigate the limitations.
First, there is no best method to determine the number of optimal k and k-means clustering
has some embedded limitations such as sensitive to outliers, exploration with other methods
may assist in more accuracy and reliability in methodology. Furthermore, the selection of
variables may not cover all factors that influence the energy poverty of households due to
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Figure 2 Index score for each group of energy deprivation.

the data limitation of small area statistics. Further survey data can be used via small area
micro-simulation to supplement more variables for the classification. Lastly, this study mainly
focus on the description of energy deprivation classification, further policy implications should
be provided for future work.
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Abstract
Rates of anxiety and depression are increasing due to financial stress caused by energy pricing
with over half of UK homes unable to afford comfortable heating. UK Government policies to
address this energy crisis have been implemented with limited evidence and substantial criticism.
This paper applies the dynamic microsimulation MINOS, which utilises longitudinal Understanding
Society data, to evidence change in mental well-being under the Energy Price Cap Guarantee and
Energy Bill Support Scheme Policies. Results demonstrate an overall improvement in Short Form 12
Mental Component Score (SF12-MCS) both on aggregate and over data zone spatial areas for the
Glasgow City region compared with a baseline of no policy intervention. This is work in progress
and discussion highlights potential future work in other energy policy areas, such as Net Zero.
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1 Introduction

United Kingdom energy prices have tripled in just five years, impacting on the cost of living
via fuel, food, and other expenses [3]. Household income is being squeezed to the point
that more than half of UK Homes [11] are now in energy poverty and can no longer afford

1 Corresponding Author

© Robert Clay , Luke Archer, Alison Heppenstall, and Nik Lomax;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Geographic Information Science (GIScience 2023).
Editors: Roger Beecham, Jed A. Long, Dianna Smith, Qunshan Zhao, and Sarah Wise; Article No. 21; pp. 21:1–21:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gyrc@leeds.ac.uk
https://github.com/RobertClay
https://orcid.org/0000-0002-5073-848X
mailto:l.archer@leeds.ac.uk
https://github.com/ld-archer
https://orcid.org/0000-0002-9467-5206
mailto:a.j.heppenstall@glasgow.ac.uk
https://www.gla.ac.uk/schools/socialpolitical/staff/alisonheppenstall/
https://orcid.org/0000-0002-0663-3437
mailto:n.m.lomax@leeds.ac.uk
https://environment.leeds.ac.uk/geography/staff/1064/professor-nik-lomax
https://orcid.org/0000-0001-9504-7570
https://doi.org/10.4230/LIPIcs.GIScience.2023.21
https://github.com/Leeds-MRG/Minos/tree/244_gis
https://github.com/Leeds-MRG/Minos/tree/244_gis
https://archive.softwareheritage.org/swh:1:dir:be994021b118b5533e0d37815ce7cf198ed048c2;origin=https://github.com/Leeds-MRG/Minos;visit=swh:1:snp:b307bdb6502fb7eb87caa0a748a6383766fb31a1;anchor=swh:1:rev:a856763bcd0359641be19ecf0a146adcd8b8cbf0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Applying MINOS to Energy Crisis Policy

Move to next time
point t = t + 1

Module Set 2
(Mortality/Fertility)

Module Set 4 (SF-12)

Module Set 3
(Intermediary modules)

Module Set 1
(Disposable Income

Intervention)

Has
the final year
2035 been
reached?

No Yes
Replenishing
Populaition

Starting
Population

(2020)

Start

End

Input
Population

Transition
Modules

Replenishing
Population

Key

Figure 1 MINOS model flow chart. Outlines three main model stages for initialisation of 2020
population, propagation through a series of transition models and population replenishment for 15
years until 2035.

comfortable heating. Literature [2] suggests this is having a drastic effect on mental health
as financial stressors increase incidence of anxiety and depression. The UK Government is
implementing a number of policies to try and protect household disposable income and public
health. Two well reported examples [5] are the Energy Price Cap Guarantee (EPCG) which
places a temporary cap on energy prices and the Energy Bill Support Scheme (EBSS) where a
flat £400 rebate is provided to all households, with more going to vulnerable subgroups such
as pensioners. These policies have been widely criticised as insufficient and based on limited
evidence [3, 9, 7]. Work is needed to quantify the effect of the energy crisis on mental health
and any alleviating effects from both real EBSS policy and any hypothetical alternatives [9].

One methodology to synthesise policy evidence is dynamic microsimulation [10]. A
population of individual households is generated, either synthetically or from survey data,
and propagated forwards in time under some transition probability mechanics and policy
interventions. Dynamic microsimulation can be used to quickly generate long term evidence
over a suite of multiple policies repeatedly to quantify uncertainty and provide rich individual
level data. This approach can be readily used by policymakers for evidence-based decision
making and has seen broad application particularly in economics and health[10, 6]. This paper
applies the dynamic microsimulation MINOS to estimate how the EPCG and EBSS policies
have affected UK mental health using the Short Form 12 Mental Component Summary
(SF12-MCS) [12] as the outcome of interest. Section 2 outlines the overall MINOS model
structure, data sources, transition probability models and intervention scenarios. Section 3
presents results demonstrating change in mental well-being due to both policies at aggregate
level and spatially over Data Zones (DZs) for the Glasgow City region. Finally section 4
summarises findings, limitations, and potential future work.

2 Data and Methods

MINOS is built using standard dynamic microsimulation design [10] as a first order discrete
time Markov model. UK population households transition forwards one year at a time
using a series of transition models that estimate new state at time t + 1 only using current
time t information. MINOS is built using a flexible modular design allowing for associative
representation of causal systems pathways between income and mental well-being [8] given
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available data. MINOS is completely open source and written in the R. and python languages
using the vivarium framework [1]. An overview of the MINOS life cycle is given in Figure 1.
The first stage initialises a population of UK households by importing either real or synthetic
panel data. This population serves as initial conditions and is the same for every model
run. The second stage of MINOS is a series of transition probability modules. Each
module evolves some subset of individual attributes forward one year in time. The order
in which these modules are run is important and done in four sets. The first set only
updates household disposable income. All policy interventions are parameterised as change
in household disposable income, and placing this module first allows change to propagate
through the rest of the system immediately. The second set contains birth and death modules
to ensure only those who are alive are intervened upon. The third set contains a number of
intermediary modules that are influenced by change in disposable income and subsequently
influence mental well-being. The final fourth set contains only a mental well-being module
that estimates the desired health outcome given change in all other areas. After running
each module set, the third stage of MINOS is population replenishment where a new batch
of households is added to the model to maintain population size. Stages two and three are
run indefinitely until the desired simulation horizon year 2035. At this point any post-hoc
analysis can be performed to estimate life trajectories of households. A summary of the
transition probability models used is given in table 1. Each model used depends primarily on
outcome data type. Full module data tables, predictors, and model coefficients are available
on GitHub2. MINOS uses the Understanding Society (US) dataset [4] as its primary data
source. US provides 11 annual cohorts from 2009-2020 containing hundreds of individual
and household attributes pertaining to health, employment, and demographics. US data are
used both directly as input population data for MINOS and to calibrate statistical models.
Preprocessing is applied to US data to correct missing data and improve readability resulting
in n = 15192 individual observations for the 2020 starting year dataset. Additional ONS
data are used to calculate mortality and fertility rates using the NEWETHPOP project [13].
Key variables in the US dataset are household disposable income and Short Form 12 Mental
Component Score (SF12-MCS). Household disposable income is defined as money after taxes
and bills a household can spend on other needs. It is a continuous variable that is heavily
right skewed with a median income of £1300 per month. SF12-MCS is a widely used metric
of mental well-being that ranges from 0 − 100 with higher values indicating better well-being.
It is approximately Gaussian distributed with mean 50 and variance 102. In order to produce
spatially disaggregated results, we draw on a synthetic population which combines US data
with Census data to derive Data Zone level estimates for Scotland [14]. Results use a 10%
sample scale for the Glasgow City region with n = 227589 individuals over 747 data zones
each containing 500 − 1000 people and mapped in Figure 2b. Glasgow was chosen for its
mixed socioeconomic demographics and an existing Scottish evidence base for comparison [3].

Three scenarios are applied to the Glasgow City region. The first baseline scenario
changes nothing about the UK population. Energy prices start low at 2018 levels and never
increase. This is a useful benchmark with which to compare other policies. The second policy
is the Energy Price Cap Guarantee (EPCG) scenario, in which energy prices do increase and
are capped by the UK government. Data suggests [11] energy prices increased by 240% from
2020 to 2023. High energy prices are sustained beyond 2023 to assess the impact to mental
well-being. The final scenario implements both the EPCG and EBSS policies together to
assess any further change in well-being. The EBSS provides a £400 base lump sum to all

2 https://github.com/Leeds-MRG/Minos/tree/244_gis
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Table 1 Table of transition probability models used in MINOS.

Module Name (Module
Set)

Outcome Variable Variable Type Model Used

Household disposable in-
come (1)

Monthly household dis-
posable income (£s)

Continuous Ordinary Least Squares

Mortality (2) Is the subject alive?
(yes/no)

Binary Rate Tables

Fertility (2) Has subject given birth
in last year? (yes/no)

Binary Rate Tables

Housing quality (3) Household quality com-
posite (1-3 Likert)

Ordinal Cumulative Link Model

Neighbourhood safety
(3)

Neighbourhood compos-
ite (1-3 Likert)

Ordinal Cumulative Link Model

Loneliness (3) Is subject lonely? (1-3
Likert)

Ordinal Cumulative Link Model

Nutrition (3) How many fruit and ve-
getables per week? 0+

Continous Ordinary Least Squares

Tobacco (3) Cigarettes smoked per
week 0+

Continuous Zero Inflated Poisson

Mental Well-Being
(SF12) (4)

SF12 Mental Compon-
ent Summary score (0-
100)

Continuous Ordinary Least Squares

households and further income to households that include pensioners, universal credit, long
term sick/disability, and council tax bands A-D. Each of these groups receives £650, £150,
£300, and £150 additional monthly income respectively [5, 3]. These changes are applied
directly to household disposable income and are capped at an upper limit of £0 matching
real policy that only returns money if energy is used. Each of these three policies is run 100
times through MINOS.

3 Results

Results estimate changes in well-being for the Glasgow City population at an aggregate
level. For each of the MINOS runs the mean SF12-MCS value is recorded giving a sample of
100 means. These are then used to estimate confidence intervals for the overall SF12-MCS
mean. Values are then scaled to estimate the percentage change in well-being versus baseline
for EPCG and EBSS policies in Figure 2a. The EPCG policy sees an approximate 0.25%
decrease in SF12-MCS score per year for the population by 2026. EPSS policy does improve
mental well-being vs EPCG alone but is not enough to bring SF12-MCS score back to
pre-2018 levels. This finding matches other literature suggesting the energy crisis has been
detrimental to mental well-being [3] but underestimates the effect size for reasons mentioned
in final discussion. SF12-MCS values were also aggregated spatially over Scottish Data Zones.
Starting with the mean by data zone for each of the 100 model/simulation runs, and taking
the grand mean again results in a scalar change in SF12-MCS for each data zone that can be
mapped. Figure 2b shows these values for the year 2025 comparing difference in SF12-MCS
for the EPCG vs EBSS scenarios. The EBSS scenario shows an improvement in mental
well-being across all areas. The areas that see the least improvement appear to be the most
economically affluent. Unsurprisingly these households are largely insensitive to energy price
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Figure 2 Energy interventions for Glasgow: (a) Lineplot showing relative change in SF12-MCS
score for EPSS and EPCG vs baseline. (b) Map of the Glasgow City region comparing EPCG
and EBSS policies for the year 2025. Comparison with the Scottish Index of Multiple Deprivation
(https://simd.scot) shows a strong correlation (0.61) between deprived LSOAs and greater benefit
from the EBSS scheme. The Springburn (262000, 668000), Castlemilk (260000, 660000), and Pollok
(254000, 662000) regions see the most benefit. Note two LSOAs are missing with white colouration
as map geometry is from 2011 and they no longer exist in 2020.

increases. Lower-middle class areas of Glasgow (north east, south east) appear to benefit
the most from the EBSS policy. Poorer areas see most of their disposable income lost to
the energy crisis and preventing this improves mental well-being [9]. Further investigation
is needed to disaggregate this map and identify vulnerable households that are seeing less
improvement under the EBSS policy [9] and personalise policy strategy.

4 Discussion

This paper has applied the dynamic microsimulation framework MINOS to the Energy Bill
Support Scheme policy in the UK to estimate its impact on household disposable income
and mental well-being. Results show significant overall improvement in well-being when
implementing EBSS policy, but not enough to return mental well-being to 2018 baseline
levels. Spatial analysis suggests lower income households benefit the most from EBSS policy;
however more analysis is required to determine which vulnerable households need more
assistance.

This work is limited primarily due to the Understanding Society data source. Yearly
interval data are not granular enough to capture mental health change that can occur at a
much finer timescale (e.g. days). There is also missing data for food and vehicle fuel expendit-
ure, this makes it difficult to accurately estimate changes in household disposable income.
Comparison with other research suggests the effect sizes for the EBSS are underestimated [3].

Application of the Energy Bill Support Scheme policy demonstrates the utility of the
MINOS framework. Initial future work will elaborate on the methods used in MINOS
particularly for transition probabilities and validation techniques using literature and online
documentation. MINOS can readily be further developed to simulate spatially distributed
policies that target inequities such as prepayment meters, the influence of place (e.g. rural
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locations) and additional cost of living impacts such as increase in rent [3]. In combination
with other Government targets [9, 5] such as social housing, energy efficiency and Net Zero,
MINOS has the potential to be developed into a pragmatic tool for future crisis policy that
is able to balance the preservation of economy and health as well as protecting vulnerable
households.

References
1 Institute for Health Metrics and Evaluation, University of Washington, Seattle, USA . Vivarium

dynamic microsimulation framework. https://github.com/ihmeuw/vivarium. Accessed: 2023-
05-22.

2 Virginia Ballesteros-Arjona et al. What are the effects of energy poverty and interventions
to ameliorate it on people’s health and well-being?: A scoping review with an equity lens.
Energy Research & Social Science, 87:102456, 2022.

3 Philip Broadbent, Rachel Thomson, Daniel Kopasker, Gerry McCartney, Petra Meier, Matteo
Richiardi, Martin McKee, and Srinivasa Vittal Katikireddi. The public health implications
of the cost-of-living crisis: outlining mechanisms and modelling consequences. The Lancet
Regional Health–Europe, 27, 2023.

4 Nick Buck and Stephanie McFall. Understanding society: design overview. Longitudinal and
Life Course Studies, 3(1):5–17, 2011.

5 Daniel Harari, Brigid Francis-Devine, Paul Bolton, and Matthew Keep. Rising cost of living in
the uk. London: House of Commons Library https://commonslibrary. parliament. uk/research-
briefings/cbp-9428, 2022.

6 Andreas Höhn, Jonathan Stokes, Roxana Pollack, Jennifer Boyd, Cristina Chueca Del Cerro,
Corinna Elsenbroich, Alison Heppenstall, Annika Hjelmskog, Elizabeth Inyang, Daniel Ko-
pasker, et al. Systems science methods in public health: what can they contribute to our
understanding of and response to the cost-of-living crisis? J Epidemiol Community Health,
2023.

7 Nada Khan. The cost of living crisis: how can we tackle fuel poverty and food insecurity in
practice? British Journal of General Practice, 72(720):330–331, 2022.

8 Petra Meier, Robin Purshouse, Marion Bain, Clare Bambra, Richard Bentall, Mark Birkin,
John Brazier, Alan Brennan, Mark Bryan, Julian Cox, et al. The sipher consortium: introducing
the new uk hub for systems science in public health and health economic research. Wellcome
open research, 4(174):174, 2019.

9 Amy Norman and Scott Corfe. Energy bill support–designing policies to support british
households in an age of high prices. Social Market Foundation, 2022.

10 Martin Spielauer, Gerard Thomas Horvath, and Marian Fink. microwelt: A dynamic microsim-
ulation model for the study of welfare transfer flows in ageing societies from a comparative
welfare state perspective. Technical report, WIFO Working Papers, 2020.

11 UK Government Department for Business, Energy, and Industrial Strategy (BEIS). Quarterly
energy prices. https://www.gov.uk/government/collections/quarterly-energy-prices.
Accessed: 2023-05-21.

12 John E Ware Jr, Mark Kosinski, and Susan D Keller. A 12-item short-form health survey:
construction of scales and preliminary tests of reliability and validity. Medical care, pages
220–233, 1996.

13 Pia Wohland, Phil Rees, Paul Norman, Nikolas Lomax, and Stephen Clark. Newethpop-ethnic
population projections for uk local areas 2011-2061. UK Data Service, 2022.

14 Guoqiang Wu, Alison Heppenstall, Petra Meier, Robin Purshouse, and Nik Lomax. A synthetic
population dataset for estimating small area health and socio-economic outcomes in great
britain. Scientific Data, 9(1):19, 2022.

https://github.com/ihmeuw/vivarium
https://www.gov.uk/government/collections/quarterly-energy-prices


Multiscale Spatially and Temporally Varying
Coefficient Modelling Using a Geographic and
Temporal Gaussian Process GAM (GTGP-GAM)
Alexis Comber1 #

School of Geography, University of Leeds, UK

Paul Harris #

Sustainable Agriculture Sciences, Rothamsted Research, Harpenden, UK

Chris Brunsdon #

National Centre for Geomcomputation, National University of Ireland, Maynooth, Ireland

Abstract
The paper develops a novel approach to spatially and temporally varying coefficient (STVC) modelling,
using Generalised Additive Models (GAMs) with Gaussian Process (GP) splines parameterised with
location and time variables - a Geographic and Temporal Gaussian Process GAM (GTGP-GAM).
This was applied to a Mongolian livestock case study and different forms of GTGP splines were
evaluated in which space and time were combined or treated separately. A single 3-D spline with
rescaled temporal and spatial attributes resulted in the best model under an assumption that for
spatial and temporal processes interact a case studies with a sufficiently large spatial extent is
needed. A fully tuned model was then created and the spline smoothing parameters were shown to
indicate the degree of variation in covariate spatio-temporal interactions with the target variable.
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1 Introduction

This paper describes a novel approach for spatially and temporally varying coefficient (STVC)
modelling. It extends Geographical Gaussian Process GAMs (GGP-GAM) to include GP
splines parameterised space and time. GGP-GAMs have been shown to be more accurate
than Multiscale Geographically Weighted Regression (MGWR)[1] the effective SVC brand
leader. GGP-GAMs explicitly accommodate process spatial heterogeneity and provide an
alternative to assumptions of stationarity[4]. STVCs extend this to the temporal dimension.

Generalized Additive Models (GAMs) are general in that they can handle outputs with
many types of distributions and not just linear relationships, polynomial or not. They
are additive and because they generate multiple model terms which are added together to
generate predictions. The advantages of a GAM-based approach to SVC and STVC modelling
are because GAMs are flexible and able to handle different types of response[6, 2]. This
is due to their additive nature which combines multiple sub-models, and the modelling of
non-linear relationships using splines, the building blocks of GAMs. Splines are combination
of functions (basis functions) which may be single or multi-dimensional, each of which is
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assigned a coefficient, which are combined to generate ŷ and in this way complex relationships
are modelled in GAMs. Splines parameterised with location form the basis of SVC modelling
with GGP-GAMs and here this is extended to include time within the splines: the geographic
and temporal Gaussian process GAM (GTGP-GAM).

The inclusion of temporal data can provide insight on the spatial process dynamics and
a number of approaches that include time in spatial regressions exist. However, with the
exception of GTWR, most of these are concerned with capturing autocorrelation effects,
rathere than relationship heterogeneity. This paper extends GGP-GAMs to the temporal
dimension. Temporal process are well described by GPs. However a key methodological
consideration is how space and time should be analysed together. This paper uses a national
case study to investigate the relative benefits of combining space and time into a single 3D
GP spline against treating them separately in a 2D + 1D approach.

2 Case study

A case study of national data of livestock in Mongolia as reported in[5] was analysed. This
reports livestock totals, here focussing on goats, over 341 soums (second-level administrative
units) from 1991-2006 and these were considered to be a function of annual mean normalised
difference vegetation index (NDVI), annual mean rainfall, the number of households working
with livestock and the number of reported animal losses in the previous year. The choice
of historical loss data and household working with livestock, as explanatory variables was
because livestock losses have been found to play a critical role in livestock decisions and
viability[3]. The environmental variables reflect the changes in biomass and their drivers over
time. Figure 1 shows the spatial context of the soums and the trends over time of the variables.
These indicate a steady increase in cattle numbers, which is associated with increased meat
consumption (anecdotally increasingly concentrated around Ulaanbaatar). The goat losses
indicate the dzud period 2001–2002 which are extreme weather events associated with deep
snow, severe cold and conditions that make foraging difficult and results in livestock deaths.
The number of households associated with livestock production increases and levels off as
livestock management becomes more concentrated. The the median of mean monthly NDVI
is relatively stable, and mean monthly precipitation shows some fluctuation.

3 Results

A key issue in space time analysis is to determine whether observation spatial and temporal
variables should be handled separately or together, ie whether their covariances are separable
or non-separable. One way to approach this is to construct models and compare their
performance through some measure of model fit such as AIC, and prediction accuracy such as
mean absolute error (MAE). Here the aim was to construct models of goat numbers. These
have a classic Poisson distribution. One option is to construct Poisson regression models
and another is to to transform the response variable and fit Gaussian regression models.
A square root transform of the goat counts was undertaken here. Four GAM models were
constructed with GP splines parameterised with location and temporal data separately and
together, using normalised (z-scores) spatial and temporal data and the original spatial and
temporal data. For each of these the model MAE and AIC are summarised in Table 1, with
the “best” model determined from the AIC measure.

The best performing model was one which combined space and time, with normalised
space and time variables. This indicates the interaction between the space and time effects
in this case and their lack of independence. This is perhaps not surprising due to the large
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Figure 1 The Soums in Momgolia (n = 341) with the 3 largest cities (top), and the trends in the
median values of the variables, with upper and lower quartiles indicated (bottom).

Table 1 Summaries of the model predictive preformance and fits, with separate and combined
GP splines for locational and temporal variables, and with normalised and un-normalized data.

Splines Normalized.Data MAE AIC
Separate No 9593.17 -1800.22
Separate Yes 9608.42 -1941.88
Combined No 9405.98 -1812.12
Combined Yes 9776.30 -1972.61

spatial extent of the case study and thus the spatial variation of the drivers of local goat
numbers are likely to vary over space and over time. That is, different effects are more likely
to be be experienced in different places at any given time and the pattern of these is more
likely to change over time. Also it is important to note that although the results indicate that
a better performing model is obtained by combining space and time, this is not to suggest
that no distinct effects occur. Rather that the uncertainty in calibrating a more complex
model with 3D splines leads to more reliable prediction.

The GTGP-GAM models were created using default parameters for the gam function
in the mgcv package. The convergence of the spline smoothness optimisation of the best
performing model was examined in detail, and specifically the effect fo the number of knots (k)
used to construct the spline basis dimensions. Investigation indicated that k was potentially
too low, with the effective degrees of freedom (EDF) for some splines close to k. The models
was tuned by increasing k to 400 resulting in improved model fits (AIC) and convergence of
the GP splines as the high k values ensured sufficient degrees of freedom in the splines.

The fixed parametric coefficient estimates are shown in Table 2. These show significant
intercepts and generally insignificant covariates (except for mean NDVI in the Mongolian
case study). The smooth terms for the combined spatial and temporal GP splines (ie the
STVCs) are summarised in Table 3. The full set of coefficients are not printed because there
many coefficients for each spline, one for each basis function. The edf (effective degrees of
freedom) summarises the complexity of the spline smooths, with an edf value of 1 indicating
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Table 2 The GTGP-GAM fixed parametric coefficients and their global significance.

Covariate Estimate Std. Error t-value p-value
Intercept 113.795 2.597 43.813 0.000
Goat Losses 0.209 0.413 0.507 0.612
Livestock Households 1.209 1.244 0.972 0.331
Mean Precipitation (mm) -0.738 2.101 -0.351 0.725
Mean NDVI -83.217 103.519 -0.804 0.422

Table 3 The GTGP-GAM smooth terms of the tuned model.

GTGP Spline edf Ref.df F p-value
s(X,Y,Ti):Intercept 10.688 11.515 22.090 0.000
s(X,Y,Ti):Goat Losses 206.717 248.831 2.704 0.000
s(X,Y,Ti):Livestock Households 220.063 256.766 7.805 0.000
s(X,Y,Ti):Mean Precipitation (mm) 143.082 168.939 4.311 0.000
s(X,Y,Ti):Mean NDVI 5.272 6.302 0.566 0.761

a straight line, 2 a quadratic curve etc. Higher edf values indicate increasing non-linearity
in the relationship between the covariate and the response. The p-values relate to splines /
smooths defined over these, and their significance can be interpreted as indicating whether
they vary locally over space and time combined (i.e. spatio-temporally). That is, covariates
with insignificant p-values (i.e. Mean NDVI) still have an effect, but these effects do not vary
locally. In contrast to the fixed parametric coefficients, all are significant. That is, their
relationship with the target variable y varies locally over space and serially over time with
different temporal effects in different places.

It is possible to extract the spatially and temporally varying coefficient estimates. These
describe how the relationship between y and the covariates varies over space and time.
It is instructive to examine these alongside the GTGP-GAM smooth terms or smoothing
parameters (SPs). The SPs indicate the scale of the relative spatial-temporal variation
of the interaction between each covariate and the response. These and summaries of the
STVCs over time are shown in Figure 2. This plots the median coefficient estimates for each
year, describing how the coefficient estimates vary over time, with their variation over space
summarised in their inter-quartile range (IQR). It shows that:

The Intercept steadily increases over time and the the IQR gradually narrows towards
the end of the sequence. It has a low SP indicating stable spatial relationships over time.
The association of Goat Losses with goat numbers decreases to 2002 and then increases
to 2006. However, the IQR shows high variation over time indicating, narrowing to 2002
and the increasing in later years. This has a high spline SP value, indicating a strong
spatially and temporally varying relationship with the target variable.
The relationship of Livestock Households with goat numbers steadily increases over time.
This may indicate the impact of an increasing concentration of livestock within fewer
households. The variation (IQR) over space also remains relative stable, with a small
degree of variation, reflected in the moderate spline SP value.
Mean NDVI and Mean Precipitation are both mostly negative in the association with goat
numbers, with Mean NDVI decreasing in later years and Mean Precipitation increasing to
zero and the decreasing before increasing in later years. There is more spatial variation
over time in Mean Precipitation than Mean NDVI, as reflected in their SP values.
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Figure 2 The temporal trends in the median values of the coefficient estimates over time (with
upper and lower quartiles) indicated, with spline smoothing parameters (SP).

In summary, Figure 2 shows the temporal trend of the relationships between the covariates
and the target variable. The changes in the IQRs over time indicate whether the relationship
and thus the process is changing spatially as well as temporally. This interaction between
space and time in the STVCs is is also reflected in the spline SP values.

It is also possible to confirm this interpretation of the spline SPs and the nature of the
STVCs they indicate: broadly, larger SPs indicate greater spatio-temporal interaction of the
covariate with the target variable. Figure 3 compares the coefficient estimates for the Goat
Losses (high SP) and Mean NDVI (low SP). For the Goat Losses, this shows how the spatial
relationship between the covariate and the target variable (Goat population) changes over
time, with stronger relationship in and around the major population centres noticeable in
2006, for example. By contrast Mean NDVI has a spatially varying relationship with the
target variable but this does not change over time.

4 Brief Discussion and Conclusions

The paper explores STVC modelling through the application of GAMs with GP spline
parameterised with location and time variables. Here these were combined into a single
3-dimensional spline for each predictor variable, under the assumption that the case study
extent was sufficiently large for an assumption of the geographic and temporal process
interacting over space and time to hold. In this model the temporal trends in the relationship
between the predictor variable and the target variable were allowed to vary with location.
The paper demonstrates STVC modelling using GAMs with GP spline parameterised with
location and time variables. Different GP spline compositions were explored to determine
whether space and time should be treated separately ar assumed to interact. In this case,
exploring a national case study, the best fitting model was found to be one in which space
and time measurements were re-scaled to z-scores and combined in 3-dimensional GP spline.
This reflected a priori assumption that spatial and temporal processes would interact for case
studies with a sufficiently large spatial extent, an assumption that proved to be true in this
case. In other situations this might not be the case. Case studies with smaller spatial extents,
or indeed with shorter runs over time, may require location and time to be treated separately,
with separate GP splines for each predictor variable. In this situation, the assumption would
be that the spatial and temporal trends in the data and their relationship with the outcome
do not interact, and that any changes in the relationship with target variable over time would
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Figure 3 Examples of STVC estimates for Goat Losses and Livestock Households over a 16 year
time period.

be independent of changes in location. These models exclude the possibility of different
temporal trends in different locations. It also reflected an assumption that AIC as a measure
of model fit and parsimony identified the “best” model. Other investigations (not reported
here) has suggested that BICs (Bayesian Information Criteria) may be more appropriate for
investigating and comparing space-time interacted models with independent space and time
effects. Future work will explore these issues. The model was then tuned with large number
of knots, allowing sufficient degrees of freedom for the model parameters. The relative values
of the tuned model smoothing parameters provided an indication of the variation in the
spatial and temporal interactions of the covariates with the target variable. Summaries over
time of the median values of the coefficient estimates demonstrated the temporal trends,
and the spatially varying nature of these was suggested by the interquartile ranges of these.
These were confirmed by the smoothing parameters and through visual exploration.
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Abstract
Maps and their usage have widely evolved recently, to become more and more interactive, multi-scale
and accessible. However, the design of maps did not change so much, leading to the following two
problems: (1) in theory, it is not formalised how to create a good map in this context, (2) in practice,
the most used maps are not good considering the quality criteria defined for the classical (static)
maps. Therefore, it is necessary to question the usefulness of these principles in this new context. In
this article, we focus on the role of cartographic generalisation in maps where one can easily zoom in
and out to make information accessible. We draw up a list of hypotheses on the role of generalisation
for pan-scalar maps, based on both a deductive approach (the role of map generalisation is deduced
from a review of human-maps interactions), and an inductive approach (observation of maps with
diverse qualities). Then, we discuss how these hypotheses might be experimentally verified.
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1 Introduction

Map generalisation (MG) is the process of deriving a map at a certain scale from detailed
geographic information. This process is an important step in designing a static map at
a specific scale. However, most maps used today are not static paper maps at a specific
scale or even a stack of independent static maps but pan-scalar maps [7]. “Pan-scalar map”
refers to interactive zoomable applications comprised of numerous maps of a particular
area at different zoom levels (i.e. scales), and we assume that the generalisation of such
maps involves new challenges compared to traditional map generalisation. Today, a broad
audience can easily access many maps from a computer or mobile device. In parallel with
the multiplication of cartographic media, the time spent on each has decreased and the user
expects ever faster and more easily accessible geo-information. We could think that a simple
response to this need would be to use more and more generalised maps, as MG reduces the
level of detail, hierarchises and simplifies the information in each view. In practice, we rather
observe the contrary: Google Maps, for instance, is globally chosen by users although it
includes many views with a lousy generalisation, an ill-adapted level of detail, and remaining
conflicts. This observation raises the question if MG still matters when you can just zoom in
to see more details or zoom out to see less.
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The goal of this article is to refine the usefulness of MG in the current context, by
examining how the quality of MG may affect users during the exploration of pan-scalar maps.
We first review how pan-scalar maps are used, then we review the graphical consequence
of a bad generalisation and their impact on map usage and finally, we draw up a list of
hypotheses on map generalisation usefulness and discuss how they can be verified.

2 How do people use maps?

Maps are often defined as communication models to convey geographic information, and
the most general usage of maps is the acquisition of spatial knowledge [11]. Understanding
map reading strategies for spatial knowledge acquisition in pan-scalar maps involves both
the understanding of the reading strategy for each view [1] and the understanding of the
navigation strategy. In this context, an exploration is a set of successive views and transitions
triggered by interaction (e.g. zoom-in, zoom-out, pan) [14]. For each new view of the
exploration, a reconciliation is performed to associate the information of this view with
the one from the previous views (present in short-term memory), and the user’s previous
knowledge (present in long-term memory). This step is both achieved from information
observed pre-attentively and attentively and the feeling of disorientation in a pan-scalar map
is provoked by contradictory or missing information during reconciliation. Thus, MG can
affect disorientation by its impact on the representation of entities used for reconciliation.

Moreover, the typification of cartographic usage is an important subject in spatial cognition
and the usage of the map may widely affect the exploration strategy and thus the role of
generalisation. For instance, thematic maps represent and locate phenomena in relation
to the environment; and their generalisation should highlight spatial relations between the
phenomena and their context and their different magnitudes across scale [5]. Consequently,
the exploration should contain a few interactions and longer views. On the contrary, route
planning is often made from topographic maps and involves many interactions: zoom out
on the complete path; zoom in on arrival, departure place and complex intersection; pan
along the route etc. In this case, the role of generalisation is to preserve road hierarchy and
connections necessary for route planning and avoid disorientation at each interaction.

3 Map generalisation and pan-scalar maps

Map generalisation is the adaptation of the level of detail at a certain scale. This reduction of
the level of detail should enhance legibility while preserving the main structures and patterns
at the target scale. The role of MG in the usability of static maps has been formalised
years ago, and to our knowledge, it was never updated for pan-scalar maps. Some studies
already demonstrate the impacts of some map design choices (related to MG) on the efficiency
of pan-scalar map exploration (e.g. landmark visualisation [4]), while others focus on the
adaptation of legibility thresholds used in MG for screen display [12].

Currently, most pan scalar maps are created with generalisation strategies that do not
differ so much from those used for papers map: (1) the range of possible scales is split into
a defined number of representations (2) each is generalised independently (with a variable
quality) (3) intermediate views are derived by enlarging the closest representation. This
process does not take into account pan-scalar map specifics. Indeed, it aims to make each
view legible not to optimise navigation between scales. Recently, there is some focus on
smooth navigation [6, 15]. However, the role and usefulness of generalisation have not been
investigated in a pan-scalar environment. In the next paragraphs, we review the possible
effects of a bad MG in this context.
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Figure 1 Example of conflict that can remain after a bad generalisation. a) overlaps between
buildings and roads disconnect the road network b) overlaps between buildings.

The impact of remaining graphical conflicts. First, map generalisation is often viewed as
a method to resolve graphical conflicts occurring when cartographic information is rendered.
A conflict is when a constraint cannot be respected (e.g. two objects overlap or an object
is too small, see Figure 1). In a pan-scalar map, contrary to a static map, when a conflict
occurs the user can access the hidden information by just zooming in until the conflicts
disappear and thus it has less impact on the usability of the map. However, more interactions
are required which is not practical, and some information theoretically visible at a certain
scale can be hidden (e.g. in Figure 1.b, the two cities cannot be compared in one view).
This practical question of quantity of interaction conduces to more cognitive load and more
opportunity for disorientation. It may also affect the trust of the user in the map and map
provider. Would you trust a map with many unsolved conflicts?

The impact of missing information. A bad generalisation may involve a loss of information:
in some map views, entities are removed to avoid conflicts while it would be possible and
relevant to make this information appear without conflicts with a relevant generalisation.
The absence of information can be of several types: (1) the entity is not represented (2) a
geometric part of the entity is missing, e.g. a notch or a meander is removed, which prevents
entity recognition (3) the semantic granularity of the entity is not sufficient, e.g. in Figure
2.a. the green space is not specifically symbolized as a stadium. On one hand, such problems
may hide some phenomena or information, and affect the decision-making made from the
map. For instance, could you find sports facilities in Figure 2? On the other hand, it affects
the exploration of the map, as some views/scales are not useful by themselves, they are just
intermediate steps in the exploration, requiring more interaction overall. It may produce
more disorientation and less confidence for users (1) if expected landmarks are not present,
or (2) if you need to zoom too much to see the missing information.

The impact of clutter. Contrary to the previous point, a bad MG can also produce too
much and too complex information. Clutter is a notion of image complexity, cluttered images
tend to increase the cognitive load [8], and we observe a similar impact of clutter for map
images [9]. To better understand the effect of clutter on pan-scalar map usage we can make
an analogy with a messy and cluttered room, where you have to search for a particular object;
even with the ability to zoom in and out, it would be easier to find the object if the room
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Figure 2 Illustration of missing information. a) Google map only represents the roads and green
areas in this view. b) OSM depicts more information.

Figure 3 An area mapped at a regional scale to illustrate the absence of hierarchy: a) OSM: very
few entities are salient, and no structure stands out. b) IGN map with more hierarchy.

were organised. In a similar way memorising the position of an object is easier, and the user
may experience less disorientation as the landmarks are easily identifiable and memorable
between scales. Finally, we could hypothesise that cluttered maps are less accessible to the
general public and require a higher level of expertise. Indeed, an expert may dedicate more
time to reading the map, already knows some reading keys etc. For instance, geological maps
are often cluttered, but still useful for experts.

The impact of the absence of hierarchy. Finally, map generalisation provides a hierarchy
of information. Indeed the goal is not only to reduce information density and level of detail
but also to highlight the main information and preserve and enhance structures and patterns.
With static maps, this is mostly made by a gradual use of visual variables (e.g. size, colour)
to improve salience (e.g. toponyms for cities appear with a size relative to their importance;
important roads appear larger and with a brighter colour than a local road). Hierarchy is
used to structure and or partition the space in a view, thus its absence makes that each
entity is presented with the same level of importance. It may lead to a sense of disorientation
when there is no salient landmark (see Figure 3) or when an important pattern cannot
be extracted (e.g. Paris ring road does not stand out from the road network in OSM).
Further than the disorientation, it is really difficult to memorise or to project yourself into a
map without a hierarchy of information. Moreover, in a pan-scalar map a second factor of
hierarchy exists and can be employed: the scale of appearance [7]. For now, the hierarchy
in the common pan-scalar map is also unsatisfactory as structures do not appear clearly:
for instance, important toponyms appear too late to avoid placement conflict, which causes
confusion and cognitive load [6].
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4 Measuring the effects of a good map generalisation

In the previous section, we identified several effects of map generalisation on pan-scalar map
use. We review here these elements and try to identify how to measure their impact via a
user test where users are faced with maps with variable quality of generalisation.

H1. Practicality. is characterised directly by the number and the range of interactions that
compose an exploration. This is simple to measure and can be measured from whatever task.

H2. Disorientation. is a feeling, it can be measured by asking the participant (either with
a questionnaire or think-aloud). Both strategies have drawbacks: the feeling is instantaneous
so a questionnaire afterwards could be ill-adapted; a think-aloud strategy is shown to
distract users from the exploration and combines very badly with eye-tracking. Then,
disorientation can be indirectly measured via induced behaviours: a disoriented user may
search for landmarks and thus make large saccades across the map, or zoom out strongly.
Disorientation may occur in most of the tasks but it can be a tenuous phenomenon compared
to all other cognitive process in play during a pan-scalar map exploration.

H3. Cognitive load. directly degrades user attention and may cause a decrease in task
performance. It can also be indirectly observed by an increased number of eye blink [3].
To measure a cognitive load the task proposed to the user must be complex enough and
repeated enough to cause this cognitive load.

H4. Memorisation. is the quantity and quality of remaining information after an exploration.
It is commonly tested with two types of tasks: recall and recognition [2].

H5. Confidence. is the feeling of user self-confidence and confidence in the map producer
during exploration and decision-making. To our knowledge, the only way to measure it is
using a self-report questionnaire.

H6. Accessibility. is the level of map reading skill necessary to understand and make
good decisions from the map. Measuring map reading skills is challenging. Commonly it is
associated with the sense of direction, which can be estimated via self-report measures [10]
or via spatial perception, mental rotation and spatial visualisation tests [13]. This skill varies
in an important range in a population, thus even without a reliable estimation, it is possible
to verify this hypothesis with the variability of user response for a task: the variability might
be smaller for a map with good generalisation (even users with low map reading skills might
succeed as well as experts). The number of participants required to observe such a variation
might be important.

5 Conclusion: Does generalisation matters in pan-scalar maps?

We identified six hypotheses on the usefulness of map generalisation for pan-scalar maps:
practicality, disorientation, cognitive load, memorisation, confidence and accessibility. Ex-
perimental verification of these hypotheses is crucial to design improved pan-scalar maps.
However, it is a significant research challenge due to the variety of map usage, and incom-
patible measures. We propose the following plan: 1) Practicality and confidence can be
investigated using a widely distributed study that measures user interaction and feelings for
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realistic map usage. 2) Disorientation and cognitive load are studied in an in-situ survey
using eye tracking. 3) Memorisation and accessibility are verified with long sessions on a
specific population with various expertise levels. These three surveys are essential to discern
the role played by map generalisation in the optimal use of pan-scalar maps and to guide
future map generalisation research towards usability rather than tradition.
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Abstract
Liveable neighbourhoods are urban planning initiatives that aim to improve the quality of residential
areas. In this paper, we focus on the East Bristol Liveable Neighbourhood (EBLN) to understand
people’s perceptions of their neighbourhood’s urban reality. We analyse the opinions of citizens
collected through the project, by examining their sentiments, the urban subjects they consider, and
the language used to express their opinions. The findings of this study offer initial indications to
inform urban planning processes and facilitate effective decision-making.
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1 Introduction

The term liveability has been used in various studies and at different levels of granularity
ranging from individuals, neighbourhoods, and countries. It has also been used in multiple
disciplines, such as geography, ecology, and urban planning [9]. Liveable Neighbourhoods
(LNs) are fine-grained people-centred urban planning units with the goal of improving overall
liveability. LNs aim to integrate various services and facilities in residential areas, aiming to
create safe, healthy, inclusive, accessible, and attractive environments [5]. Public engagement
in designing changes in their local community to meet local needs, known as co-design, plays
a vital role in the development and implementation of LNs.

Understanding people’s opinions toward their neighbourhoods is crucial for informed
decision-making. Researchers have employed public participation geographic information
systems (PPGIS) to examine local views for urban planning and decision-making research
[3, 1]. They used PPGIS to collect and analyse public perceptions across diverse landscape
types and scales, with examples of application in national park planning [2] and urban
planning [4]. All these studies often relied on face-to-face surveys and interviews to collect
peoples’ opinions [7, 6], and comments were mostly analysed manually with respect to
qualitative evaluation. However, these traditional methods are often work-intensive, and
limited in sample size. To overcome these limitations, many projects are trying to use online
neighbourhood reviews, that allow larger sample sizes and broader geographic coverage.
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Table 1 Example of responses in the EBLN dataset.

Sentiment Positive Negative

Subjects Trees and greenery on street, Street
trees and planting Walking, Crossings

Reasons Pleasant Not pedestrian friendly, Difficult to
cross the street

Suggestions Slow down traffic Add crossing, Safer junction for
walking and cycling

Comments

The street planters have reduced
traffic speed and made the street
’greener’. Something similar could
be done in other locations within
the project area and in traffic dis-
placement areas outside the project
area

Hard to cross here - there is a traffic
island slightly above this point but
often want to cross lower down and
it’s hard to do so as the road is busy
with two lanes of fast traffic.

These typically combine numeric ratings and textual comments. However, the challenges
here are in analysing such a large number of data and efficiently extracting meaningful
knowledge [6].

Another group of researchers tried to use geo-tagged social media as a mirror to view
public perceptions and opinions of their living environment. For example, social media data
have been examined to explore people’s sentiments [10], emotions [11], satisfaction [12], and
attitudes [8] toward their living area. Despite their significant findings, social media data are
generally very noisy and require extensive preprocessing before use.

East Bristol Liveable Neighbourhood (EBLN) project1 is a pilot study based on online
surveys. The project aims to work with people who live, work, study, and travel through
East Bristol, UK, to design people-friendly, safe, quiet, and healthy streets. It has been
designed in partnership with the community as part of a co-design phase of the project which
will help to shape permanent solutions.

With this work, we aim to analyse EBLN data to: (1) Understand citizen sentiment
toward their living environment; (2) Investigate citizen choices of urban subjects and their
mutual relations; And (3) Analyse citizen comments with respect to their sentiments.

The remainder of this paper is organised as follows. Section 2 introduces the EBLN
data. Section 3 provides a detailed discussion of our analysis and results. Finally, Section 4
summarises our conclusions and plans for future work.

2 Data and study area

The survey data used in this study were collected between January and March 2022 by
Bristol City Council, UK. People living, working, and travelling to or through the survey area
(Figure 1b) were asked to express their views using an online interactive map2. Respondents
could drop a point on the map, and were then asked to:

Express their feeling by selecting one of five sentiments, ranging from negative to positive.
Optionally, leave a comment using a free-text box.
Optionally, select one or more subjects related to the comment, reasons for the sentiment
expressed, and suggestions to improve the area.

1 https://eastbristolliveableneighbourhoods.commonplace.is
2 https://eastbristolliveableneighbourhoods.commonplace.is/map/map

https://eastbristolliveableneighbourhoods.commonplace.is
https://eastbristolliveableneighbourhoods.commonplace.is/map/map
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(a) Overall geographic spread of sentiments. (b) Sentiment spread within the survey area.

Figure 1 Geographical distribution of sentiments within and outside the East Bristol Liveable
Neighbourhood survey area.

(a) Respondents’ sentiments compared to
their living location.

(b) Sentiment distribution for each subject
category.

Figure 2 Sentiment analysis based on respondents’ living location and subject categories.

An example of responses is shown in Table 1. As Figure 1a shows, some comments refer
to locations outside the survey area. Nonetheless, we have decided to include these data
points in our analysis, since our final goal is to gain insights into the language citizens use to
describe the urban environment around them. The dataset used comprises 540 geo-located,
sentiment-based entries, of which 91% contain textual comments and subject labels. In
this preliminary study of the EBLN data, we have limited our analysis to the free-text
comments along with their corresponding sentiments. We have also focused on understanding
the co-occurrence of urban subjects selected within the survey, as well as their relation to
respondents’ sentiments.

3 Analysis and results

3.1 Geographical spread and frequency of sentiments
Our initial investigation concentrated on analysing the sentiments expressed by the respond-
ents. The primary objective was to investigate the geographical distribution of sentiments,
and how they relate to whether the respondents live within the survey area or not. The
findings revealed that a substantial portion of the respondents resides within the survey area
(Figure 2a), with a noteworthy proportion of the sentiments expressed being characterized as
negative. This highlights how PPGIS participants living in a study area are more vested in
decisions regarding their community than respondents less connected to the area [1]. Due to
the co-design nature of the project, it is not surprising that respondents tended to emphasize
the negative aspects of their neighbourhood.

GISc ience 2023
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Figure 3 Subjects frequency and co-occurrence. The edge colour scale represents the co-occurrence
rate.

The maps in Figure 1 show that most of the negative comments are concentrated along
main roads and junctions. Conversely, areas characterized by green spaces tend to display
more positive-related comments. Given the aim of the EBLN project is to improve the
urban environment of the neighbourhood, it is expected that the majority of comments are
pinned to roads. It is worth noticing that further statistical analysis of the data revealed no
significant correlation between the sentiments expressed by the respondents and the land
cover and type characteristics within the study area.

3.2 Co-occurrence of subjects in the responses

In our analysis, we have identified a total of 28 distinct subjects that the respondents selected
to categorize their responses. As Table 1 shows, some comments have multiple subjects
associated. The top 3 most selected are: Walking (40% of the comments), Traffic (34%)
and Personal safety concern (29%). Figure 3 shows all the subjects selected, as well as their
occurrence in the same data entry (edges) and individual frequencies (node sizes) within the
dataset. The edge colour represents the occurrence rate of responses containing two node-
subjects. The graph shows a clear cluster around personal safety, linking together walking
and cycling. Moreover, these two subjects are often selected with traffic and traffic speed
within the same responses, as shown by the darker coloured edges. This is not surprising since
both modes of travel commonly occur within the realm of traffic, and they are affected by its
dynamics. The frequency of such co-occurrence in the comments highlights the importance
of well-designed infrastructure to ensure the safe coexistence of pedestrians, cyclists, and
vehicles.
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(a) Words associated with negative
sentiments.

(b) Words associated with positive
sentiments.

Figure 4 Word cloud: language patterns in the EBLN free-text comments.

3.3 Language and subjects patterns based on sentiments
In the final part of our analysis, we investigated patterns between the response subjects, the
language used in the comments and the respondents’ feelings. Given the complexity of the
subjects’ structure, we decided to group all the subjects into five main categories, following
the naming convention used by Bristol City Council:

Environment: air quality, traffic noise, street environment, trees and greenery on street,
street trees and planting, littering and bins;
Safety: personal safety concern, traffic speeds, traffic, street lighting;
Community: play space for children, seating and benches;
Infrastructure: footways, crossing, cycle lanes, cycle parking, cycle hangar, bike hangar,
bus stop accessibility, EV charging point, car club bays, parking restrictions, blue badge
parking;
Travel: walking, cycling, bus services, e-scooters, e-bikes.

We analysed the sentiment distribution within the above categories. Figure 2b shows a
notable presence of negative statements in the safety and environment categories, while the
community category displays a more balanced distribution of sentiments. This aligns with the
observations from the word clouds in Figure 4. In the word clouds, we included the negative
and mostly negative labelled responses in the negative group, and the positive and mostly
positive responses in the positive one, while excluding neutral comments. This approach
allows us to accentuate the contrast between the words used to express positive and negative
opinions. The analysis of the free-text comments in the EBLN data revealed a predominance
of negative terms associated with the environment and travel aspects. Conversely, positive
words were more linked to community and green areas. It is worth noticing, the word road
in the negative cluster, and street in the positive one. This distinction reflects the perception
that roads typically denote larger, traffic-intensive settings, while streets refer to smaller-scale
entities. The sentiment contrast between these terms highlights how respondents express
their experiences in relation to urban spaces and transportation infrastructure. Finally, we
observe that specific road and area names in the word cloud, such as Beaufort Road, Church
Road (negative), and Troopers Hill (positive), correspond to the clustering of negative and
positive pins on Figure 1b. We can therefore infer that respondents perceive these locations
as areas in need of improvement or additional attention.

4 Conclusions and Future Work

In this paper, we have analysed East Bristol Liveable Neighbourhood (EBLN) online review
data to understand the aspects of neighbourhoods perceived by people and identify potential
problems. EBLN is a trial project and the dataset used in this study comprises 540 geo-located
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contributions. By analysing this dataset, we found that the majority of the respondents
reside within the survey area. They tended to emphasize the negative aspects of their
neighbourhood, and identify the names of areas and roads associated with positive and
negative sentiments in their comments. We also found that most of the negative comments
were linked to main roads and junctions while most of the positive comments were linked
to community and green areas. The results of this study provide promising preliminary
evidence for urban planning and decision-making. Our analysis approach can be applied to a
full-scale project. Given the emergent use of public neighbourhood reviews in recent years, it
can also be used for similar projects conducted by other cities such as Glasgow and Bath.

There are a number of directions for future work. First, we can extend our analysis to
include the reasons and suggestions given by the contributors. Second, evaluate and apply
AI-based Natural Language Processing (NLP) techniques for sentiment and semantic analysis
of the free-text comments. This would help urban planners to analyse and deduce sentiment
and topics from free-text surveys.
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Abstract

Population modeling requires clear definitions of socioeconomic status (SES) to ensure overall
estimate accuracy and locate potentially underserved subpopulations. This presents a challenge
as SES can be measured in myriad ways and for divergent purposes, and the data required to
calculate these metrics may be lacking, particularly in low and middle income countries (LMICs).
To support more refined SES measurement, we explore improvements upon the Demographic and
Health Survey’s (DHS) Wealth Index (DHS-WI) using alternative characterizations of SES based on
multiple correspondence analysis (MCA) and hierarchical clustering. We produce the MCA-derived
metrics first on a full suite of household economic, demographic, and dwelling variables, then on a
reduced set of occupant-only SES characteristics. We explore the utility of these metrics relative to
DHS-WI based on their ability to 1) differentiate DHS household types and 2) identify mixtures of
SES levels within DHS samples and mapped at high spatial resolution. We find that our full suite
MCA yields more clearly defined SES segments and that our reduced MCA delineates occupant
SES most clearly, suggesting potential pathways to improve upon the DHS-WI in future population
modeling efforts for LMICs.
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1 Introduction

To improve our ability to locate and address population-related challenges like climate change
resiliency and disaster response, we need accurate and precise population estimates that
attend to socioeconomic status (SES). SES – variously defined – is predictive of the density
at which a population lives [15], as well as life expectancy, [8], lifetime mobility [2], and
consumption patterns [9]. However, building appropriate SES definitions is challenging.
Measures of SES variably incorporate income, accumulated wealth, education, occupation,
cultural markers, demographic factors, resource/infrastructure access, national policies, or
embeddedness within the international economy, and are shaped by data availability, and
research and policy goals [2][9].

In this paper, we describe efforts to delineate and map SES groups from data recorded
in Ghana’s 2014 Demographic and Health Survey (DHS) [5]. Ghana’s survey, like all DHS
surveys, is a nationally representative sample collected by a local statistical service in
concert with the United States Agency for International Development (USAID), largely for
the purposes of monitoring child and maternal health in LMICs. The DHS provides its
own Wealth Index (DHS-WI), a measure of household economic status derived from the
household’s assets, access to utilities, quality of water sources and toilet facilities, urban/rural
status, and the materials with which the household’s dwelling is constructed. DHS reduces
these variables to a single metric through a principal components analysis (PCA), taking the
first component of the PCA to score households, and dividing the population into quintiles
[13]. While DHS-WI is widely used by development agencies and for validation purposes[3],
reducing and flattening occupant and dwelling characteristics into a single metric via the first
component PCA method complicates the investigation of subpopulation-place relationships
whose understanding is central to our own work.

We explore alternative characterizations of SES using DHS data, first based on a full suite
of household economic, built environment and demographic variables, and then on a reduced
occupant SES only variable set (education and assets). We employ multiple correspondence
analysis (MCA) and hierarchical clustering to generate new metrics to compare against
DHS-WI, motivated by arguments that 1) PCA is inappropriate for non-continuous variables
and 2) that too much useful information is discarded when relying on the first component
alone [12][16]. We compare the MCA-derived metrics to the DHS-WI based on distinctiveness
and diversity in class labels of respondent households, as well as based on spatial variation
in class labels when mapped.

2 Methodology

We began by selecting and preprocessing our variables of interest from Ghana’s 2014 DHS,
which consists of 12,831 weighted observations drawn from 30 households randomly sampled
from each of the country’s 427 enumeration areas (referred to by DHS as “clusters”)[6]. We
extracted variables pertaining to the built environment (source of drinking water; condition of
toilet facilities; provision of electricity; number of sleeping rooms; materials used to construct
the floor, walls and roof), those that can be used as proxies of wealth (the presence of assets
from cars and sewing machines to tables and telephones), the highest level of education
in the household, and variables recording basic demographics (household size; age and sex
of household head). Following [14], we aggregated building material variables into natural,
rudimentary, and finished categories, water and toilet facilities into three quality grades,
and binned quantitative variables. We implemented basic data cleaning tasks such as the
imputation of missing data using methods specialized for MCA [7].
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We conducted our MCAs on the full suite of demographic, occupant SES (assets/educa-
tion), and aggregated dwelling variables and on a reduced set of only occupant SES variables
using R’s FactoMineR package [7]. We then segmented the individual (household) mappings
from each MCA run using FactoMineR’s hierarchical clustering method. We set the number
of components used by the clustering function to the number of dimensions required to
capture over 75% of the variance, thus the full suite and reduced MCAs used seven and four
dimensions, respectively. Instead of identifying the number of segments a priori, we allowed
the function to select an appropriate number of segments based on minimizing within-cluster
inertia for each partition, resulting in three household segments for each MCA run. We also
derived quintiles from the first component of our MCAs for the sake of comparison with the
DHS-WI.

We evaluated the MCA-derived labels against the DHS-WI based on 1) distinctness of the
household types they encompass and 2) diversity in household types by DHS sampling cluster.
To measure distinctness of households by segment, we calculated silhouette scores, averaged
across all variables, built environment variables, occupant SES variables, and demographic
variables. Very compact, well separated clusters would score 1; completely overlapped clusters
would score -1.

To measure diversity of household types within DHS sampling clusters we calculated
Shannon equitability scores, using R’s vegan package [11] to calculate Shannon entropy and
normalizing these figures by the natural log of the number of classes. A score of 0 indicates
complete dominance of one label within a sampling cluster; 1, that all labels are present in
equal measure. Taken together, these distinctness and diversity measures enable comparison
between the DHS-WI and MCA-derived metrics based on both survey-specific and geographic
properties of the DHS.

Finally, we compared spatial variation between the DHS-WI and the MCA-based metrics.
For each metric, class prevalences (proportions) were described as planar point patterns
(PPPs) modeled from 30 random displacements of the DHS sampling cluster centroids (GPS
points) for Ghana (within 2km, and 5km-10km displacement zones for urban and rural areas,
respectively) [1]. We then apply an edge corrected, absolute risk function to each PPP at
500m resolution to estimate gridded class prevalences that average as final estimates [4]. In
future work, these estimates could be combined with gridded population totals to estimate
counts of households by SES class; for now they simply describe the expected mixture of
groups.

3 Results

Figure 1 visualizes the MCA-derived segments (full suite: panels A, B; reduced: panels C, D)
(light gray hulls) relative to projected DHS-WI labels (red to blue: poorest to richest), based
on active MCA variables (black text) and descriptive supplemental variables (gray text). For
both MCA-derived metrics, dwelling and occupant variables expected to be associated with
lower SES (natural or rudimentary building materials, poor quality water and toilet facilities;
low education, lack of assets) fall to the left side of the factor maps (panels A and C), while
higher household education and increased assets and dwelling quality variables fall to the
right. As seen in the cluster maps (panels B and D), individuals assigned a DHS-WI from
poorest to richest also track left to right. While the reduced MCA’s three segments largely
align along this left-right axis (64.5% of explained inertia), the full suite MCA’s segments also
split across the second dimension which appears to be influenced by demographics: household
size (HS), having children (kids), head’s marital status (h.married), and working age adult
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Figure 1 Visualizing segmentation results. A: factor map of full-suite MCA. B: cluster map of
full suite MCA. C: factor map of occupant SES MCA. D: cluster map of occupant SES MCA.

proportion (WAD). Given that scholarly opinion is divided as to how such demographic
factors should be used in the calculation of SES, our results invite further investigation of
this dynamic [8][13].

Table 1 compares the DHS-WI and MCA-derived metrics (both quintiles and segments)
based on diversity and distinctness criteria. In terms of household type distinctness, the
MCA-derived metrics generally improve upon the DHS-WI: full suite MCA segments more
cleanly distinguish household types than the DHS-WI when measured across all variables
or the variable subsets, while the reduced MCA segments yield the highest silhouette
score for the occupant SES variables (though lower ones for built environment variables).
Comparing the metrics based on diversity, reduced occupant SES segments tend to be
considerably more mixed within DHS sampling clusters than the DHS-WI or full suite MCA.
Comparing the quintile and segment-based MCA metrics, we also note that allowing for the
expression of additional MCA dimensions (via hierarchical clustering) generally improves
distinctness/diversity over reliance purely on the first MCA component.



A. R. Cunningham, J. V. Tuccillo, and T. J. Frazier 25:5

Table 1 Distinctiveness and diversity measures. Silhouettes measured from -1 (complete overlap)
to 1 (complete separation), diversity from 0 (one class present) to 1 (all classes equally present).

DHS-WI Full suite
MCA
quintile

Full suite
MCA
segments

Reduced
MCA
quintile

Reduced
MCA
segments

Household Distinctness
(Mean Silhouette Width)
All variables 0.0364 0.0635 0.1882 0.0639 0.1231
Built environment -0.0163 -0.0075 0.0501 -0.0601 -0.0266
Occupant SES 0.0044 0.0567 0.0988 0.0953 0.2047
Demographic -0.0912 -0.0430 0.1579 -0.0384 -0.0319
DHS Cluster Diversity
(Mean Shannon Equitability)

0.5512 0.7037 0.4995 0.7895 0.7082

Figure 2 Prevalence estimates of SES classes for the DHS-WI, full suite MCA segments, and
reduced occupant SES only MCA segments in Kumasi, Ghana.

Figure 2 displays spatial variation in the prevalence estimates of SES segments by metric
for Kumasi, Ghana’s second largest city. Consistent with the diversity measures in Table 1, the
MCA-based metrics reveal increased mixing of SES classes. In particular, the reduced MCA
segmentation shows an increased presence of households associated with low SES (segment 1)
compared to the DHS-WI, which features virtually no households with “poorest” and “poorer”
labels within Kumasi. Compared to DHS-WI and the full suite MCA, the mapped reduced
MCA segments also show increased concentrations of middle-SES households (segment 2) in
the south-central area, and high-SES households (segment 3) in the north-central area.

4 Concluding discussion

To explore improvements upon the DHS-WI, we developed several alternative SES classifica-
tions based on MCA. Comparing the DHS-WI to the MCA-derived metrics reveals that the
former may be both 1) too broad in its scope (subjects/variables) and 2) too reductionist
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(one-dimensional) to clearly delineate household SES. Paring our metrics down from an
all-inclusive MCA (full suite) to assets and education alone (reduced), we remained able to
identify SES categories in alignment with an intuitive socioeconomic gradient. This suggests
that in future efforts we can eschew mixing subsets of variables (i.e. built environment with
occupant SES) whose relationships we would prefer to explicitly measure. Models leveraging
such subpopulation-place relationships could potentially be applied in data sparse contexts
to predict occupant SES where this information has not been observed but built environment
characteristics have. Further, as demonstrated in Figure 2, these MCA-based metrics reveal
more nuanced spatial patterns than the DHS-WI, including potential residential locations
of urban poor populations, which in turn can lend detail to characterizations of the built
environment extracted from remotely-sensed imagery [10]. Work remains in data engineering,
testing modeling alternatives, and external validation, yet this work takes an important step
in advancing our ability to map and model populations accurately and precisely.
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Abstract
Interaction between individuals within an environment can result in complex patterns that a statistical
analysis is unable to disentangle. The resulting social structure may pose important challenges for
the identification of causal relations between variables using only observational data. In particular,
the estimation of contextual or neighborhood effects will depend on the spatial configuration under
study and the morphology of the areas used to define them. The relevant interpretation of estimates
is hence put into question. I suggest adopting a Agent Based Modeling (ABM) approach to study
the uncertainty of neighborhood effect estimations within complex spatial systems. An Approximate
Bayesian Computing algorithm is used to quantify the uncertainty on the underlying processes that
may lead to such estimations. An ABM model of spatial segregation is implemented to illustrate
this method.
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1 Introduction

The endeavour to generate causal rather than associational claims requires identifying the
sufficient conditions for real effects to be estimated. However, their identification can prove
to be very challenging in the presence of social and spatial complexity. Namely, interaction
between individuals within a geographic environment can result in spatial patterns that a
statistical analysis is unable to disentangle. Causal studies that consider factors of a spatial
nature however rarely question the nature of space or the different ways in which it may
transform the causal analysis [10].

In this paper I consider a category of spatial exposures, the neighborhood effects: the
causal effect on an outcome of living in a given area versus living elsewhere. The underlying
questions that such exposures raise concern the implications of spatial assumptions on the
causal nature of estimated effects. In particular, how does the way we assign neighborhoods to
a delimited area impact our causal claims? This question interrogates the inherent uncertainty
linked to space in worlds where individuals are in constant movement, in interaction with
their peers and with their surroundings. I present some of the challenges linked to the
estimation of area-level effects in observational studies. I propose an Agent Based modeling
(ABM) approach to generate various forms of spatial complexity against which statistical
models may be tested. The exploration of spatial configurations represents an interesting
starting point to analyse the so-called neighborhood effects. In particular, ABM exploration
methods such as Approximate Bayesian Computing (ABC) offer the means to evaluate the
relevance of spatial estimands given complexity assumptions. An illustration of this approach
is presented using a simple Schelling model of segregation.
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2 Challenges of estimating and interpreting neighborhood effects

2.1 What are neighborhood effects?

In the literature, one commonly refers to neighborhood effects as the independent effect of a
neighborhood on one or multiple outcome [8, 4] 1. For instance, epidemiology studies may
compare health outcomes in “poor” versus “rich” areas [17]. Behind this definition lies a
number of strong assumptions: what spatial attributes (shape and scale) best describe the
neighborhood given the research question? Through what mechanisms can this geometric
object be thought to have an independent effect on individual outcome? Finally what are
the conditions for these area-level effects to be interpreted causally?

Multiple causal pathways may generate a dependence between the spatial configuration
and the individual outcome of interest [4]. The social structure can be thought to play an
important role in the shaping of place and the creation of an area identity. Furthermore,
social influence or contagion mechanisms may exacerbate or spread exposure effects within an
area. Other forms of spatial processes may impact individuals locally such as pollution, crime
or the presence of green spaces, etc. The combination of these spatial and social processes
can generate important spatial heterogeneity that is typically approximated by variability
between specific neighborhood attributes.

2.2 Challenges for estimation

Methods have been developed to estimate neighborhood effects and account for spatial
heterogeneity [3]. Namely, multi-level regression models assume some spatial hierarchical
structure and allow for heterogeneity by including both fixed and random area-level effects [8].
Still, the interpretation of results are exposed to serious challenges.

The identification of such effects is threatened for one by spatial confounding and at
times, complete confounding. A selection process may render the comparison of observations
in different areas impossible [1]. This process is further enhanced by social interaction and
the non-independence of observations. In a causal analysis, this is referred to as interference
or spill-over effects [13].

Finally, spatial and social phenomena can rarely be confined within fixed, arbitrary
geographic borders. The choice of spatial areas can lead to the misspecification of neighbor-
hoods that may not reflect any empirical reality. This geographic problem is known as the
Modifiable Areal Unit Problem (MAUP) [6].

The previous challenges suggest that the primary danger with mapping the social onto
fixed spatial boundaries does not pertain so much to the approximation as it does to the
causal interpretation of these so-called neighborhood effects. While accounting for the latter
has proven to be insightful for the study of health outcome, employment or education [16, 9],
very little work has specifically considered the uncertainty introduced by spatial assumptions.
The relation between the misspecification of spatial properties and the bias in results should
be looked into. The potential of ABM to generate and analyse the uncertainty surrounding
estimates is presented below.

1 In this paper, we interchangeably use the terms area effects and neighborhood effects when considering
small scale spatial configurations
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3 A multi-simulation approach

In order to generate artificial complex systems from which granular data may be extracted,
we adopt an Agent Based Model (ABM) approach. These models are particularly adapted to
create emergent properties from the bottom up by allowing the modeler to build heterogeneous
interacting agents while maintaining full control over the micro-level process [12]. The output
of these ABM can be placed under the microscope of the same statistical models typically
used in observational studies, of which: models that include spatial neighborhood effects.

Many validation methods have been developed to evaluate the performance of ABM for
modelling real world systems. Some of these are able to integrate both empirical information
and some level of uncertainty on the underlying process. One such method is Approximate
Bayesian Computing that approaches a posterior distribution for the parameters of the ABM
through typical MCMC algorithms [7]. The general idea is that given information on the
system one is modeling, a distribution over the parameter space can be proposed to reflect
the probable worlds that may have resulted in similar observations. Samples of the input
space are drawn and either selected or rejected according to a proximity criteria, usually
determined by an error threshold ϵ. This threshold represents a level of uncertainty in the
output space: how precise is the information on the real system? A more detailed description
of ABC can be found in [14].

I suggest using ABC, not to evaluate the ABM but to interrogate the relevance of spatial
assumptions in analytical models. The questions that this framework should be able to
answer are: How biased are the estimations of neighborhood effects when obtained from data
generated by the ABM? What other complex systems and mechanisms may be considered as
possible generators of these estimations, given the statistical confidence levels. The notion of
sufficiency of the statistical approach is introduced here as its performance in distinguishing
between multiple causal mechanisms can be analysed. The uncertainty considered here links
the equifinality of complex systems [15] to the epistemic uncertainty of classical models [2].
In the following, I present a simple illustration of the use of this framework on a spatial
segregation model, the Schelling model. This model was chosen as an illustration for it’s
simplicity and its focus on spatial interaction between agents.

Figure 1 Schema of the ABM-ABC framework. Here β represents the objective/estimation and ϵ

the threshold/standard error.
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4 Illustration and results

4.1 The Schelling model
The Schelling model [11] can be described in the following way: on a square lattice a number
of blue (exposed) and red pawns (non-exposed) occupy individual cells. These pieces will move
to an empty cell if the percentage of a piece’s same-color neighbors (Moore neighborhood) is
lower than a predetermined threshold H (designating the homophily level). At each step,
the elements on the board will be displaced according to their surrounding composition
until they can no longer move or until all pieces are satisfied. The dynamics of this system
tell a very interesting story as clear segregation patterns emerge without any higher order
intervention. The relationship between the agent’s attributes and their environment can be
simply translated into a linear form for a given step in time.

Yi(H, Ci, CNi
) = H − Ci − 1

di
g(CNi

) + 2Ci

di
g(CNi

) (1)

Where Yi is the outcome for agent i, Ci is their color or the individual “exposure”, g(CNi)
is the aggregated prevalence of blue within i’s ego-neighborhood and finally di is size of i’s
neighborhood. Translated into network terms, di is the degree of i in the regular graph drawn
from the grid structure (for Moore neighborhood, di ≤ 8). Note that there is clear violation
of the no-interference assumption as agents outcome will depend on their own color and the
color of peers. I consider the simple data scenario where the graph (or ego) neighborhood
of pieces is not known but interaction is assumed constrained to fixed predetermined areas.
Neighborhood exposure is then approximated by “blue” prevalence within an area. This
specification of neighborhoods is analysed in light of the approximated posterior distribution
for two of the models’ key parameters: the homophily level (H) and the probability of agents
belonging to the blue group (p). Some of the results obtained for different neighborhood
scales are presented below.

4.2 Results
The 40x40 Schelling torus grids are cut up into 4, 25 and 100 different areas, respectively.
An ABC is run for each choice of scale:

Samples were drawn from a uniform prior over the input space. A linear estimation of
exposure and neighborhood effects are computed on a random simulation output for p = 0.5,
H = 0.5. The estimation at step t = 30 is used as the objective for the ABC algorithm, the
standard error of the estimation serves as the restrictive threshold for the rejection process.
N=1000 particulars are tested against these criteria. Both the ABM model and the ABC
algorithm were run using standard Python packages [5].

The estimation of color and neighborhood effects vary with time as the spatial patterns
converges to a segregated state. It is quite clear that the choice of scale impacts the quality
of the estimation. Larger scales blur the information on micro-level heterogeneity and social
borders are hidden within fixed areas. The problem of total confounding may also arise for
smaller scales as more and more selective neighborhoods appear. The results of the ABC
show that the uncertainty introduced by the spatial approximation does interact with model
parameters in a uniform way. While the true homophily level is relatively well identified, a
wider range of exposure assignment p may lead to similar estimations. The distribution of the
segregation index (as the average similarity of peers) shows that very different spatial patterns
can lead to the same interpretation of neighborhood effects: not only are the estimations
heavily biased, they do not describe the system sufficiently well. What is interesting to note
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Figure 2 Variation in estimation of OLS estimator for color effects (βc) under misspecification of
neighborhood for resp. (2x2), (3x3), (5x5), (6x6), (10x10) area grids.

(a) 2x2 (b) 5x5 (c) 10x10

(d) segregation index

Figure 3 Posterior distributions for H and p approximated from the ABC and the estimation
of color effect for different scales (a-c) ; Distribution of segregation in the selected simulations for
scales 2x2, 5x5 and 10x10 (d).

is the influence of scale on the uncertainty. It appears there exists a scale for which the
possibilities are reduced and the posterior distributions are more concentrated (for instance
see Fig. 3.b))

5 Discussion

This very simple model was used to illustrate the use of ABM pattern oriented methods to
question the uncertainty of causal model estimates. The specific representation of space, here
as neighborhood effects, will have an impact on the meaning of the estimands and ultimately,
on the appropriate interpretation of estimations. Notions of spatial equifinality in complex
systems should be considered to better understand the role of space in social mechanisms.
A relevant road-map for spatial causal inference would consider the specific challenges that
relate to defining this spatial context. Thinking of causality within a spatial context may
imply moving from a paradigm of causal dependence between variables to one of causal
mechanisms in a system of spatially embedded agents.
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Abstract
Extreme weather events have caused dramatic damage to human society. Human mobility is one
of the important aspects that are impacted significantly by extreme weather. Currently, focus on
human mobility research during extreme weather is often limited to the transport infrastructure
and emergency management perspectives, lacking a systematic understanding of the spatiotemporal
patterns of human travel behavior. In this research, we examine the structural changes in human
mobility under the severe rainstorm that occurred on July 20th, 2021 in Zhengzhou, Henan Province,
China. Innovatively applying a tensor decomposition approach to analyzing spatiotemporal flows
of human movements represented by the mobile phone big data, we extract the characteristic
components of human travel behaviors from the spatial and temporal dimensions, which help
discover and understand the latent spatiotemporal patterns hidden in human mobility data. This
study provides a new methodological perspective and demonstrates that it can be useful for uncovering
latent patterns of human mobility and identifying its structural changes during extreme weather
events. This is of great importance to a better understanding of the behavioral side of human
mobility and its response to external shocks and has significant implications for human-focused
policies in urban risk mitigation and emergency response.
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27:2 Patterns of Travel Flows Under Extreme Weather Events

1 Introduction

Cities are not simply spaces with idealized morphologies; rather, we should understand them
as complex systems composed of networks and flows [1]. Within cities, residents travel by
various transportation modes, which is reflected in the spatiotemporal patterns of urban
travel behavior, forming different urban rhythms and spatial structures. Understanding these
travel behavior patterns is crucial for helping to better understand the complex urban system,
thereby bringing implications to people-oriented policies and promoting urban management
capabilities.

According to the 2023 IPCC Report on Climate Change [4], human-caused climate change
has recently affected the weather and extreme climate in all regions of the world, causing
widespread damage and destruction to nature and humanity. Existing research has shown that
when faced with extreme weather, the patterns of human mobility can exhibit spatiotemporal
characteristics different from those in normal times [10, 3]. However, in the field of GIScience,
most studies still adopt the transport infrastructure and emergency management perspectives,
utilizing GIS methods to investigate human behavior during disasters or to simulate the
evacuation patterns of individuals [9, 5]. These studies lack a systematic understanding of
the spatiotemporal patterns of human mobility under external impacts.

With the widespread adoption of smartphones and the development of positioning
technology, a vast amount of population activity data has been generated, which is now
widely used in urban research [6, 2, 11]. This kind of data contains information about human
travel behavior, interactions between different areas of the city, and the spatial structure
of the city. The availability of these data and corresponding analysis methods provide
possibilities for quantifying and measuring human travel under normal conditions and during
natural disasters, as well as analyzing the spatiotemporal patterns of travel flows.

This study utilizes travel flows recorded by mobile phones to construct a tensor of human
mobility, and decomposes it using tensor factorization methods to extract the spatiotemporal
characteristics. As a case study, this paper focuses on a torrential rain event that occurred
on July 20th, 2021 in Zhengzhou, Henan Province, China, which resulted in 380 deaths
and affected more than a million people [8]. This paper explores the differences in urban
travel behavior under normal conditions and external impacts of the rainstorm, reveals the
spatiotemporal patterns hidden in travel behavior, and analyzes the underlying spatiotemporal
mechanisms causing changes in human mobility patterns after the rainstorm.

2 Methods and Data

2.1 Methods
Multidimensional travel flows can be organized in a “space-time” format to construct a
spatiotemporal tensor. In this study, for the analysis of travel flows, we use Origin-Destination
(OD) pairs as the spatial dimension and time as the temporal dimension to store and express
the travel flow values between the origins and the destinations.

Tensor decomposition is a low-rank approximation method for tensors. Through tensor
decomposition, we can extract the main characteristics and relationships in the travel flows.
In this study, the CANDECOMP/PARAFAC (CP) tensor decomposition is chosen, which is
a representative and easy-to-understand analysis method, to decompose a high-order tensor
into a sum of rank-1 tensors. The principle of decomposition is shown in Figure 1, with the
tensor constructed from the original data denoted by X ∈ RI×J . I is the number of OD
pairs, J is the length of the time unit, and R is a positive integer, representing the rank in
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the tensor decomposition, which is the number of features in each dimension. R modes are
obtained by the decomposition. ODr, Tr(r = 1, ..., R) are the characteristics of the spatial
and temporal dimensions, and λr is the corresponding weight. Considering the non-negativity
of the travel flows, this study uses the Non-negative CP (NNCP) decomposition proposed by
Shashua and Hazan [7] to implement.

Figure 1 The CP decomposition for travel flows.

2.2 Data
Zhengzhou is located in the central-northern part of China, and is the capital city of Henan
Province. It is also the economic and population center of Henan Province and an important
transportation hub for the entire country with an enormous amount of floating population.
From July 19th to 23rd, 2021, a torrential rain disaster occurred in Zhengzhou, which broke
the historical record of extreme meteorological observation in mainland China, causing heavy
casualties and property losses. In this study, we select Zhengzhou as the research area, and
divide it into basic spatial units of 1 km * 1 km grids, as shown in Figure 2.

Figure 2 The geographical location of our research area. (a) the research area in China; (b) the
research area in Henan Province; (c) the spatial distribution of grids in Zhengzhou.

The travel flow data used in this study covers a period of two weeks, from July 10th to
July 23rd, 2021, with a time resolution of one hour. In order to remove abnormal values that
may affect the experiment, we impose a threshold on the value of OD flows. Only flows with
a daily average value greater than 10 are included, resulting in 1,027,568 OD pairs on 336
time units. Moreover, we perform smoothing processing on the experimental data to reduce
the effects of anomalies and peaks and obtain results with better reconstruction rates, using
a window size of 3, with a convolution kernel set to [0.3, 0.4, 0.3]. The same data quantity
are maintained.

Based on the above data, we construct a travel tensor with a size of [1027568, 336]. Each
row represents an OD pair, and each column represents an hour. The value in each element
represents the flow volume from the origin to the destination within one hour. The first
168 columns represent the first week or normal conditions, and the remaining 168 columns
represent the second week or the external impact of Zhengzhou torrential rain disaster.
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3 Results

3.1 Original Data Analysis
Firstly, we evaluate and analyze the impact of the torrential rain event on the travel behavior
of people based on the original data. The total travel volume during the period from July
10th to 23th is shown in Figure 3. It can be inferred that there exists a daily rhythm in the
residents’ travel behavior. In addition, due to the impact of the torrential rain in Zhengzhou,
the travel volume significantly and relatively decreases after July 19th, which implies a
transition from the normal behavior pattern to the abnormal behavior pattern.

Figure 3 Total travel volume changing with time.

3.2 Decomposition Results
We use NNCP decomposition to extract spatiotemporal modes of travel behavior, obtaining
two outputs: temporal patterns and spatial patterns. The rank parameter is selected
according to the root mean square error of decomposition results at different ranks. We
use the rank 6 at the elbow point as an example for experiment and analysis. Six modes
are obtained by decomposition, and their weights are sorted as follows: 87980.86, 73816.80,
61583.89, 59256.50, 57573.24, and 48475.62. The corresponding temporal patterns and spatial
patterns are shown in Figure 4. In spatial patterns, values of decomposition results are
aggregated according to the origins and destinations.

In the sub-figure of temporal patterns, the gray background represents weekends, and the
white background represents weekdays. The red vertical line represents the start day of the
torrential rain in Zhengzhou. The most important mode a represents the overall trend of
the city’s travel behavior. Compared to weekends, weekday travel volumes are lower. On
the day before the heavy rain of July 19th, the travel behavior still shows a normal pattern.
However, after July 20th, the travel volume decreases greatly and reaches its minimum on
July 21st. Mode b can be interpreted as the morning peak mode, which reaches its peak
around 7:00–10:00. Compared to mode a, the peak height of mode b is also higher on
weekdays than on weekends, and there is a secondary peak in the afternoon (around 14:00).
Mode c represents the evening peak mode, and there is a secondary peak at around 12:00,
which corresponds to the secondary peak of mode b. Mode d represents the abnormal travel
mode caused by external impacts such as torrential rain and other additional information
outside the main mode. It increases greatly from July 20th and reaches its peak on July 21st,
then drops rapidly. Mode e shows the travel flows after the evening peak during the late
night (20:00–23:00), and mode f represents the stronger characteristics of the morning and
evening peaks.

We combine the temporal patterns to interpret the spatial patterns. In mode a, the
results for the origins and the destinations are relatively similar. The high-value areas mainly
include the central city of Zhengzhou, the airport area, and the centers of the county-level
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Figure 4 Spatiotemporal patterns of travel flows.

cities. Mode b–O corresponds to modes c–D and e–D. Combined with the temporal patterns,
it shows that the origins of the early peak flow are consistent with the destinations of the
late peak flow and the late night flow, reflecting the commuting patterns of urban residents
for work and life. It can be inferred that the primary residences are Weilai Road Street,
Nanyang Road Street, Jingba Road Street, and Tongbai Road Street, etc., while their work
locations are Jicheng Road Street (provincial government and other administrative regions),
Zhengzhou East Station area, and Zhengzhou Railway Station area. Therefore, it may also
contain information about cross-regional travel. Unlike previous modes, mode d reflects the
travel patterns during heavy rain periods, with higher values in the areas of county–level city
centers, which are more affected by the rainstorm. These areas experience relatively increased
travel due to rescue and other activities, while the central city areas have a significant
decrease in travel intensity. Mode f is mainly located in the Foxconn Park area. Combined
with the time mode, it may reflect the commuting mode of its workers.

4 Conclusions and Discussions

In this study, we use NNCP decomposition to extract and analyze different urban travel
patterns before and during the 720 torrential rain event in Zhengzhou, Henan Province,
China. We find that there are multiple spatial and temporal patterns. The temporal patterns
include morning peak, evening peak, daytime flow, late night flow, and early morning flow.
The spatial patterns correspond to the interaction between residence and workplace, and the
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interaction between residence and other functional places, and so on. In particular, under the
external impact of the torrential rain disaster, people may shift their travel modes to avoid
potential risks. Temporally, the travel pattern shows an intense increase from July 20th after
the torrential rain, reaching a peak on July 21st, followed by a rapid decline. Spatially, the
internal travels within counties are relatively strengthened, and different travel patterns are
also observed in the urban area.

This paper innovatively applies a tensor decomposition approach to analyzing spati-
otemporal flows of human movements under extreme weather events, effectively extracting
different urban travel behavior characteristics under different circumstances, and exploring
the response of urban travel behavior patterns to extreme weather. However, there is still
room for improvement in this study. Currently, the interpretation of the obtained travel
pattern results is based on exploratory analysis and limited to speculative discussions. In
the future, more confirmative analysis can be conducted to validate the multi-scale charac-
teristics of travel patterns. For temporal patterns, time series analysis can be used to extract
time-frequency domain characteristics, providing descriptions and predictions. For spatial
patterns, methods such as network community detection can be used to divide urban areas.
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Abstract
GeoQA (Geographic Question Answering) is an emerging research field in GIScience, aimed at
answering geographic questions in natural language. However, developing systems that seamlessly
integrate structured geospatial data with unstructured natural language queries remains challenging.
Recent advancements in Large Language Models (LLMs) have facilitated the application of natural
language processing in various tasks. To achieve this goal, this study introduces GeoQAMap, a
system that first translates natural language questions into SPARQL queries, then retrieves geospatial
information from Wikidata, and finally generates interactive maps as visual answers. The system
exhibits great potential for integration with other geospatial data sources such as OpenStreetMap and
CityGML, enabling complicated geographic question answering involving further spatial operations.
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1 Motivation

The recent progress in Natural Language Processing (NLP), specifically with Large Language
Models (LLMs) has demonstrated significant potential for automating a wide range of tasks.
The field of GIScience is actively embracing the utilization of artificial intelligence and seeking
to enhance traditional workflows through their integration. Within this context, GeoQA
(Geographic Question Answering) has emerged as a prominent research area, focusing on
the development of intelligent systems capable of answering questions involving geographic
entities or concepts. By leveraging the power of NLP and knowledge graph, GeoQA aims
to enable more efficient and effective utilization of geographic information for improved
decision-making and problem-solving in various domains.

However, geospatial question answering is challenging, primarily because it involves
the integration of structured geospatial data with unstructured natural language queries.
Geospatial data typically has a structured format that represents spatial relationships,
coordinates, and attributes of geographic entities. On the other hand, natural language
queries are unstructured and require understanding and interpretation to extract the relevant
geospatial information. Current models are mostly based on text or images. ChatGPT is
primarily a text-based model and does not have the capability to directly generate maps. The
user would only reply with guidance on how to generate a map using conventional software or
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Figure 1 Overview of the proposed GeoQAMap system.

programming languages. On the other hand, there are image-based generative models, such
as Midjourney or Stable Diffusion1, that can generate images containing maps as content.
However, it is important to note that these generated map images may not conform to the
standard formats and conventions commonly associated with geospatial data [2].

To address this challenge, an intermediary becomes essential to bridge the gap between
geospatial data and natural language queries. One potential solution is to utilize SPARQL, a
query language specifically designed for querying data stored in the Resource Description
Framework (RDF) format. RDF provides a standardized representation for data using
subject-predicate-object triples, making it suitable for structured geospatial data. SPARQL
is nowadays standard for representation and querying of linked data for semantic web.
Furthermore, SPARQL’s capabilities have been extended to GeoSPARQL, which incorporates
spatial operations, enhancing its utility for handling and analyzing geospatial data.

However, it is worth noting that SPARQL queries often involve complex syntax and
rules, making them challenging for end users to grasp and utilize effectively. The intricacies
of the language can pose a barrier to entry for individuals who are not familiar with its
syntax or who lack technical expertise. To address this challenge, the emerging field of LLMs
has provided a promising solution. By leveraging LLMs, natural language queries can be
translated into SPARQL queries that can access structured geospatial data stored in RDF
format. SPARQL queries can retrieve the relevant information based on the query’s spatial
constraints, enabling the integration of geospatial data and natural language queries. Since
the research leveraging LLM and knowledge system is a rather new research field, there
were not yet many applications that demonstrate the ability answering geospatial questions
with maps. Only recently, there was one work named Autonomous GIS presented by [3].
In their process, the steps of geo-spatial operation need to be clarified to LLM with texts.
Corresponding codes in Python would help end-user to achieve their geospatial operations.
One limitation of this work is that users are required to upload or download a prepared
dataset, which restricts them from leveraging the vast amount of existing open geodata
available on the Internet.

Therefore, in this work, we would like to present GeoQAMap, an evolving system designed
to answer geospatial questions using maps. It is a further development of GPT-alike AI
system. We demonstrated a preliminary example integrating the state-of-the-art LLM and
the public knowledge base Wikidata. The system follows a process where questions are first
translated into SPARQL queries, which are then queried in a Wikidata endpoint. The output
JSON is then utilized in conjunction with the Python library to create interactive maps that
provide visual answers to the geographic questions.

1 Stable Diffusion Online. Source: https://stablediffusionweb.com/

https://stablediffusionweb.com/
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Figure 2 For question “all universities of China and Germany”, the interface contains: prompt
input box (upper left), the extracted name entities and generated SPARQL query (bottom left),
additional context information (upper right), and the output map (bottom right).

2 Methodology

The entire workflow of the proposed GeoQAMap system is illustrated in Figure 1. There are
in general three steps: (1) prompt optimization, (2) prompt interpretation and knowledge
base query, and (3) map visualization. Figure 2 shows how this system interact with users.

2.1 Prompt optimization
Formulating the prompt sentence is essential as it directly influences the response generated
by the LLM. Additionally, it is crucial to specify the desired output format. The majority
of existing LLMs are not readily openly accessible to developers, limiting their ability to
retrain or fine-tune the provided models together with the computational resource constraints.
Therefore, in this work, frequently happened issues are recorded, and we improve the system
performance by giving additional constraints in the prompt sentence.

Considering a user-submitted geospatial question in natural language, we have established
several constraints for the output:
(1) Specifically, we require the output to be a pure SPARQL sentence, devoid of any headers or

explanatory text that could potentially create issues when interacting with the SPARQL
endpoint.

(2) According to our observations, the LLM system would often make mistakes on finding
correct Wikidata ID for the corresponding name entities. Therefore, we ask the LLM
first to extract name entities from users’ prompts, and then look up the corresponding
Wikidata ID using the Wikidata API via HTTP requests. (3) Additionally, users
are provided with an extra textbox to expand the prompt whenever they encounter
incomplete results, allowing them to provide further context to refine their query. As in
Figure 2, the extra context input make the LLM to consider the sub-classes (P279) of
university in addition to instances (P31) when generating the query.

2.2 Prompt interpretation and query knowledge base
The GeoQAMap utilizes GPT-3.5 as its underlying LLM, providing access to a range of
natural language processing capabilities, including Name Entity Recognition (NER). To
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interact with GPT-3.5, OpenAI API2 was used. The generated SPARQL query would then
be directly given to Wikidata Query Service, where the query is sent to the endpoint server3

via Python package sparqlwrapper.
Of course, there may be instances where the SPARQL query is not executable on the

Wikidata Query Service. In such cases, users may need to manually intervene, for example, by
utilizing the Wikidata Query Service web interface to verify the validity of the query sentence.
This could involve checking for potential issues such as mismatched entity IDs, mismatched
SPARQL syntax or other related issues. Even though this process may occasionally require
user interaction, it still significantly reduces the effort compared to constructing complex
SPARQL queries from scratch every time.

2.3 Visualization
The Wikidata endpoint responses the SPARQL query with data in JSON format. The
output text strings are then parsed and visualized with Python package folium. Within the
standard Jupyter Notebook or Google Colab implemented with gradio interface, users can
easily interact with this map and explore more details of the results.

3 Results and discussion

In this section, we present three case studies, which demonstrate the questions that
GeoQAMap system can already answer with maps.

3.1 Questions for geo-entities of affiliation relationship
The most common type of questions is to search for specific geo-entities that are located within
a certain administrative region. This type of query helps in finding relevant information
about the relationship between geographical entities and the administrative regions they are
associated with. With the first example, we present GeoQAMap’s answer to the question
“churches in Paris and all districts of Paris”. The name entities of this question were first
extracted with church, Paris, and district, where the corresponding Wikidata IDs are
also given to the prompt sentence. The LLM-generated SPARQL query is in Figure 3.

SELECT DISTINCT ?item ? itemLabel ? coord ? description
WHERE {

{ ?item wdt:P31 wd: Q16970 ;
wdt:P131* wd:Q90 ;
wdt:P625 ? coord . }

UNION
{ ?item wdt:P31/wdt:P279* wd: Q16970 ;

wdt:P131 wd:Q90 ;
wdt:P625 ? coord . }

?item rdfs: label ? itemLabel .
?item schema : description ? description .
FILTER (LANG (? itemLabel ) = "en ") .
FILTER (LANG (? description ) = "en ") . }

Figure 3 Answering “churches in Paris and all districts of Paris”.

2 GPT - OpenAI API. Source: https://platform.openai.com/docs/guides/gpt
3 SPARQL endpoint server of Wikidata. Source: https://query.wikidata.org/sparql

https://platform.openai.com/docs/guides/gpt
https://query.wikidata.org/sparql
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3.2 Questions for geo-entities of attribute conditional filtering

A second frequent type of question is to select geo-entities with respect to certain criteria.
With the second example, we would like to present GeoQAMap’s answer to the question
“cities of Germany with a population more than 500,000”. Since many cities are only
associated with the subclasses of “city (Q515)”, such as “big city (Q1549591)”, “Hanseatic
city (Q707813)”. Therefore, the user would need to declare that “the subclasses of city should
also be considered”. With the SPARQL generated as following, the answers as map in Figure
4 can be generated.

SELECT DISTINCT ?item ? itemLabel ? coord ? description
WHERE {

?item wdt:P31/wdt:P279* wd:Q515 .
?item wdt:P625 ? coord .
?item wdt:P17 wd:Q183 .
?item wdt: P1082 ? population .
?item rdfs: label ? itemLabel .
?item schema : description ? description .
FILTER (LANG (? itemLabel ) = "en" &&

LANG (? description ) = "en ")
FILTER (? population > 500000)

} ORDER BY ? population

Figure 4 Answering “cities of Germany with a population more than 500,000”.

3.3 Questions for geo-entities that need further calculation

Moreover, some questions may need further calculation since the answers are not directly
given in the Wikidata knowledge base. For example, a user queries “universities of the
United Kingdom established more than 100 years”. Only the established time was recorded
for universities in the Wikidata under the field of “inception (P571)”. However, this does
not directly answer the user’s question. The LLM-generated SPARQL as in Figure 5 can
perform the process of calculation properly. However, similar to the example in Figure 2, it
would need to consider the subclasses of university. Therefore, in certain cases, a user may
need to intervene and identify the errors to help the LLM to generate correct queries.

SELECT DISTINCT ?item ? itemLabel ? coord ? description
WHERE {

?item wdt:P31/wdt:P279* wd: Q3918 ;
wdt:P625 ? coord ;
wdt:P17 wd:Q145.

?item wdt:P571 ? inception .
FILTER (YEAR(NOW ()) - YEAR (? inception ) > 100)
OPTIONAL {

?item schema : description ? description .
FILTER (LANG (? description ) = "en ") }

SERVICE wikibase : label { bd: serviceParam
wikibase : language "[ AUTO_LANGUAGE ],en ". }

} ORDER BY ? itemLabel

Figure 5 Answering “universities of the United Kingdom established more than 100 years”.
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3.4 Discussion
The system demonstrated in this work can already answer many geographic questions,
especially questions such as the locations of geo-entities. Still, complicated questions that
require geospatial operations, such as applying a buffer, are not yet achieved.

However, despite the advancements in automatically generating SPARQL queries, there
are still several failure cases that often require manual intervention for correction. These
failures can be broadly categorized into the following three types, as far as we observed:
(1) Mismatch of named entities and relationships with incorrect Wikidata IDs: Although

most cases can be resolved through extracting the named entities and look-up their code
in the Wikidata server. It is reasonable to expect that the vast number of concepts and
relationships in Wikidata may not be fully covered and learned by the language model.

(2) Syntax errors: The LLM system may occasionally produce syntax errors, such as
generating invalid syntax resulting in query inconsistencies. To address these issues,
regular expression rules can be established to identify and rectify such syntax errors.

(3) Inconsistencies in Wikidata knowledge base: Within Wikidata, geo-entities can be
linked to different geographical entities, including nation names, city names, or city
district names. While the general affiliation may be clear, there are instances where the
associations are not accurately recorded in the Wikidata knowledge base. This discrepancy
can lead to incorrect or incomplete results when querying geospatial information.

To handle these failure cases, manual intervention becomes necessary to identify errors
in the generated SPARQL queries and communicate with the LLM to make it remember.
Despite these challenges, the automated generation of SPARQL queries by LLMs still greatly
reduces the overall effort required to construct complex queries from scratch. It serves as a
valuable starting point, with manual correction acting as a backup step to refine and ensure
the accuracy of the queries.

4 Conclusions and outlook

In this work, we presented our early implementation of GeoQAMap, a system that has been
built on the current state-of-the-art LLM and open knowledge base to answer geospatial
questions using maps. Many geospatial questions can be answered with an interactive map
visualization and it allows users to explore details of individual geo-entities.

There are several aspects that require further exploration. Firstly, since there are still
many cases that the LLM would generate incorrect SPARQL queries, it is important to
comprehensively evaluate the performance of the current LLM models for this certain task
and design proper strategies to ensure the correctness of the generated queries. Secondly,
the implementation would benefit from the inclusion of a filter mechanism that determines
which questions specifically require answers using maps and which associated geo-entities are
in need of visualization for the user. Lastly, at present, the system’s capabilities are limited
to query-based questions, and the depth and breadth of its ability to answer complicated
questions would require significant enhancements.

Furthermore, as illustrated in Figure 1 and highlighted in orange, we aim to leverage
the capabilities of Virtual Knowledge Graph (VKG) technology to include more geospatial
data into the process, e.g., OpenStreetMap and CityGML, in order to achieve geo-analytical
question answering [4]. By combining Ontop4 and GeoSPARQL, Ding et al. (2021) [1]

4 Ontop - A Virtual Knowledge Graph System. Source: https://ontop-vkg.org/

https://ontop-vkg.org/
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demonstrated the ability to answer questions involving geospatial operations, such as buffering.
The LLM can therefore act as a crucial entry point, allowing users to pose complex geospatial
questions using natural language.
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Abstract
With the new policy aimed at advancing the phase-out date for the sale of new petrol and diesel
cars and vans to 2030, the electric vehicle (EV) market share is expected to rise significantly in
the coming years. This necessitates a deeper understanding of the driving and charging behaviours
of EV drivers to accurately estimate future charging demand distribution and benefit for future
infrastructure development. Traditional data-based approaches are limited in illustrating the granular
spatiotemporal dynamics of individuals. Recent studies that use conventional vehicle trajectory data
also have the sampling bias problem, despite their analyses being conducted at a finer resolution.
Moreover, studies that use simulation approaches are often either based on limited behaviour rules
for EV drivers or implemented in an artificial grid environment, showing limitations in reflecting
real-world situations. To address the challenges, this work introduces an agent-based model (ABM)
with complex behaviour rules for EV drivers, taking into account the drivers’ sensitivities to financial
and time costs, as well as route deviation. By integrating the simulation model with the origin
and destination information of drivers, this work can contribute to a better understanding of the
behaviour patterns of EV drivers.
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1 Introduction

The transition from petrol/diesel-based vehicles to alternative fuel vehicles can play an
important role in reducing global greenhouse gas emissions and air pollution. The UK
government has announced to bring forward the phase-out date for the sale of new petrol
and diesel cars and vans to 2030, and to require all new cars and vans to be completely
zero-emission at the tailpipe from 2035. The new policy targets necessitate a higher electric
vehicle (EV) penetration rate and create opportunities in the market for electric vehicles.
Therefore, it is essential to illustrate the behaviour patterns of EV drivers and provide a
deeper understanding of the spatial distribution of their charging demand.

Data-driven approaches have been used to explore EV driver behaviour and charging
demand in previous research, mostly relying on statistical methods to understand charging
behaviours [7]. However, the use of socio-demographic statistics [5] and travel survey data [2],
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Table 1 The attributes of hypothetical charging stations.

Station name Charger name Charge speed(kW) Charge price (£/kWh)

Station 1 1A 6 0.3
Station 1 1B 2 0.1
Station 2 2 12 0.6

despite their rich attributes, can be limited in demonstrating the granular spatiotemporal
dynamics of individuals and their decision-making processes. Alternatively, recent studies
have used GPS data from conventional vehicles [9] or EV fleets like taxis [12] to understand
EV behaviours. Although these datasets can demonstrate spatiotemporal trajectories of
drivers in a finer resolution, their ability to represent all types of EVs – including private
EVs, ride-hailing EVs, and other commercial EV fleets – can be questionable. As a result,
these datasets could introduce sampling bias and lead to systematic errors in the conclusions.

More importantly, the utilisation of the datasets above cannot fully capture the vari-
ous features of EV drivers’ behaviours, including their sensitivities to charging costs and
psychological preferences. Sensitivities to charging costs can affect a driver’s behaviours in
various ways, such as travel distance [13], the payment for charging [6], and the time spent
waiting and charging [3, 14]. Meanwhile, the psychological factor refers to a driver’s comfort
level with a low State of Charge (SOC) [15]. Given the limited availability of EV trajectory
data, integrating these complex EV driver behaviour rules with the origin and destination
(OD) information of drivers through simulation methods can provide opportunities to explore
detailed EV trajectories and a granular charging demand distribution.

Agent-based modelling (ABM) offers a simulation method to plan, design, and experiment
with micro-agents in an artificial computational environment [11]. Compared to statistical
methods, ABMs can represent a richer and more detailed set of individual agents [4] and
enable interactions both between and within agent types [8]. Previous studies have applied
ABM to simulate the behaviours of EV drivers. However, research gaps exist because
they either captured limited behavioural rules of EV drivers [16], or were implemented in
hypothetical grid environments rather than real-world road networks [1]. Consequently, this
work aims to provide a deeper understanding of the driving and charging behaviours of EV
drivers by creating an ABM with comprehensive behaviour rules and implementing the model
in a real-world road network in Glasgow.

2 Data and methods

2.1 Data and study area

The geographical scale covers the area between Glasgow city centre and the West End in
Glasgow. The study area is shown in Figure 2. As described in Table 1, two hypothetical
charging stations are situated within the area. Station 1 is equipped with two chargers,
while Station 2 has one charger. Each charging station operates at a hypothetical charging
speed and charging price. The origins and destinations of EV drivers are stochastically
selected from the 869 nodes on the road network using a simple random sampling method.
Twenty-two cars are simulated in each iteration.
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2.2 Model development
In the model, the SOC consumption rate is assumed to be constant, as operating conditions
and environmental influences that can potentially affect the energy usage of vehicles are not
considered. Furthermore, a driver is sensitive to a particular SOC threshold, meaning that
when the SOC falls below this threshold, the driver recognizes that the battery has depleted
to a level where recharging is necessary. The full battery capacity of the vehicles is assumed
to be 100kWh [10]. The starting SOC value of each driver is set at 100%. The SOC threshold
is randomly selected to be either 40% or 50%. This threshold ensures a considerable amount
of charge remains in the battery, thus reducing the likelihood that the driver will be stranded
without power for the simulation purposes. An ABM model is developed using the Mesa
package in Python to integrate the complex behaviours of EV drivers. The model includes
two types of agents: EV drivers and charging stations. The behavioural rules of the model
are demonstrated in Figure 1.

Figure 1 Behavioural rules of EV drivers and charging stations.

Drivers start their journeys from the origins and drive to the destinations following the
Dijkstra’s shortest path on the road network. A driver searches for an optimal charging station
with least cost when the SOC falls below the SOC threshold. The cost of station p is denoted
by equation 1. α represents a driver’s sensitivity to charge payment. β, ϵ and δ represent
the cost in GBP that a driver attributes to each additional unit of travel distance to find a
charging station (GBP/km), each extra unit of time to spend while charging (GBP/minute),
and each decrease in the degree of availability at a station (GBP/%), respectively. Since
the drivers cannot predict the queueing time at the station before their arrival, we use
availability, a value ranging from 0 to 1, to indicate the percentage of available chargers at
the station. This provides an estimate of the likelihood of not encountering a queue upon
arrival at the station.

Coststation_p = α × paymentp + β × distancep + ϵ × charge_timep + δ × availabilityp (1)

If a driver cannot find a station within reach based on the current SOC, the status of
the EV driver changes to ‘fail trip’, and the driver will not be able to continue the journey.
Otherwise, the driver will follow the shortest path to the optimal charging station. Upon
arrival at the station, drivers are updated with the most current availability status of the
chargers. If at least one charger is available, the driver will select the optimally available
charger with the least cost. If all the chargers are occupied and another station is reachable
given the current SOC status, the EV driver will compare the cost of queuing to the cost
of finding another station, choosing the option with the lower cost. Otherwise, the driver
will queue for the optimal charger before beginning to charge. The cost of charger q at the
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selected station is denoted by equation 2. It comprises the charge payment and the cost in
GBP that a driver attributes to the time spent queueing and charging. It should be noted
that the payment and charge time in equation (2) can be different from equation (1) due to
the change of charging circumstances in the charging station when the drivers arrive.

Costcharger_q = α × paymentq + ϵ × charge_timeq + ϵ × queue_timeq (2)

If the SOC drops below the threshold again, the driver will recharge. Upon reaching
the destination, the driver evaluates the total cost incurred during the trip (Total_cost),
which is calculated in equation 4. It is composed of the deviation and the cost spent at all
used chargers. Deviation is calculated in equation 3. It refers to the difference in distance
between the planned route (the shortest path between the origin and destination) and the
actual route taken by the driver. γ represents the cost in GBP that a driver attributes to
each unit of deviation (GBP/km). i is the i-th decision made by the driver while j is the
j-th charger used by the driver. m is the total number of decisions made by a driver and n is
the total number of chargers used by a driver.

Deviation =
m−1∑
i=1

Distancei,i+1 − Distanceplan (3)

Total_cost = γ × Deviation +
n∑

j=1
Costcharger_j (4)

3 Results and discussion

3.1 Simulation Results

Figure 2 EV routes.
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Table 2 Simulation results.

Vehicle ID Final status Deviation (km) Cost(£) Charge time (min) Charger Queue time (min)

1 finish 0 0 - - 0
2 fail trip 0 0 - - 0
3 finish 1.88 9.95 [51.43,150.94] 1B 41.48
4 finish 0.56 8.57 [8.57, 51.43] 1B 0
5 finish 0.24 28.7 [9.58, 25.54] 1A 0

Five samples of the simulation results are presented in Table 2. The visualised routes are
shown in Figure 2. EV-2 fails to complete its journey because it cannot reach any of the
charging stations with the remaining SOC. EV-3, EV-4, and EV-5 charged en route. EV-3
queued behind EV-4 for charger “1B”, resulting in a wait time of 41.48 minutes.

3.2 Model calibration
As shown in Figure 3, the One Factor at a Time (OFAT) and Sobol’ method-based sensitivity
analyses were performed to determine the robustness of the results and guide further
improvements of the model. The confidence interval was calculated at 95%. The results
suggest the presence of higher-order interactions in the function, as the total-order indices
are larger than the first-order indices for all parameters. Furthermore, the OFAT sensitivity
analysis is conducted to explore the sensitivity of total cost to charge payments (α), to
deviation (γ), and to charge and queue time (ϵ). The variations of α, γ, and ϵ can affect the
total cost if a driver charges during the trip, but have no effect on the total cost if a driver
does not charge (Total cost = 0).

(a) Sobol’ Analysis. (b) OFAT Analysis.

Figure 3 Sensitivity analysis results.

4 Conclusion and future works

This work has developed an ABM that integrates the complex behaviours of EV drivers. The
simulation results show that the drivers’ sensitivity to deviation is the strongest determinant
of the total cost. Additionally, the results of the sensitivity analysis show that the cost
function needs to be further modified to include nonlinear terms and interaction terms
between the variables.

The model presented is based on multiple assumptions and is limited in reflecting real-
world situations. In future work, we plan to replace the hypothetical stations with real-world
public charging stations, and substitute the randomly generated OD information with real-
world trajectory data of vehicles. This will enable us to explore how driving patterns might
change when a driver adopts an EV. Based on the trajectory data,we also aim to integrate
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the heterogeneous behavioural rules of different drivers into the model. Charging session
data will also be used to validate the simulation results and ensure that the simulated driving
and charging behaviours accurately represent real-world scenarios.
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Recent pioneering works have shown the potential of a new deep-learning-backed paradigm for
automated map generalization. However, this approach also puts a high demand on the availability
of balanced and rich training sets. We present our design and progress of constructing an open
training data set that can support relevant studies, collaborating with the Swiss Federal Office of
Topography. The proposed data set will contain transitions of building and road generalization in
Swiss maps at 1:25k, 1:50k, and 1:100k. By analyzing the generalization operators involved in these
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1 Introduction

Map generalization is a cartographic process for deriving a target map or database at a
reduced scale from a source database by reducing the contents and complexity of the map
while preserving necessary information of the map at the source scale [12]. Despite a long
history of attempts to develop a fully automated pipeline with the assistance of machine
learning [13, 9], map generalization still requires significant manual intervention by expert
cartographers. The recent success of deep learning (DL, [8]) in computer vision has led
researchers in cartography to adapt DL models toward an end-to-end map generalization
workflow. Current studies focus on the generalization of buildings [16, 5] and roads [3, 4] in
transitions between large scales, e.g. 1:5k to 1:20k, using raster- or vector-based data models.
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The success of DL models exploits the increased complexity of neural network infrastruc-
tures to increase the learning capacity, but it also needs the support of big data. In the
early stage of DL in computer vision applications, big open data sets such as ImageNet [7]
contributed to the development of models by serving as baselines and allowing researchers to
focus on improving the methods. Similarly, applying DL in map generalization also needs the
support of big data. Unlike classical computer vision tasks (e.g., semantic segmentation and
instance segmentation) that solely focus on individual objects, map generalization mainly
targets the global organization of geographic objects, which is comprehensively influenced
by their geometric and semantic characteristics. Besides, different scales involve different
generalization criteria [10]. Therefore, training sets for DL applications in map generalization
need extra effort, compared to computer vision.

To promote the progress of automated map generalization models in the era of deep
learning, we set out to construct an open data set for map generalization as one of the major
tasks in the DeepGeneralization project with support from swisstopo, the Swiss Federal Office
of Topography. This report presents the design and the most recent progress in implementing
the data set.

2 Design

2.1 Raw data and scope
The raw data sets contributed by swisstopo include KRM_25 (cartographic reference model
at 1:25k; KRM: Kartografisches Referenzmodell in German) and DKM_25/50/100 (digital
cartographic model at 1:25k/50k/100k, respectively; DKM: Digitales Kartografisches Modell
in German). KRM is directly derived from swisstopo’s Topographic Landscape Model (TLM)
without much geometric adjustment. DKMs are the generalized geometries of the KRM that
end up in the final map products. Besides essential information such as the geometry and
other necessary attributes, each entity in each raw data set has a UUID to trace the possible
transformation between maps. A join table is applicable to trace the changes between two
consecutive scales, such as aggregation for the generalization between two maps.

While cartographers at swisstopo have a well-documented and well-established workflow
for map generalization, the matching of UUIDs between maps of two consecutive scales is
not guaranteed. A missing UUID on a smaller-scale map might be the result of deletion or
aggregation. It is not always a reduction in UUIDs, as a generalized map may have new
geometric entities that do not exist in the source map, due to cartographic reasons. For
example, a road with two segments in the 1:25k map may have three segments in the 1:50k
map. In addition, there is no information regarding the generalization operators applied.
Therefore, matching is still needed to link the records in different maps, especially based on
the spatial relationships among the geometries.

A balanced training set is critical for machine-learning models. In the context of map
generalization, the balance can regard the instances of different map generalization operators,
the spatial contexts/constraints between buildings and roads, land use contexts such as
urban vs. rural, etc. Following the recent rise of explainable AI (XAI, [6]), researchers may
also want to evaluate if one network structure works better for one map generalization task
than another or how the network performs for a specific operator. Researchers thus may
want to build up their own sampling strategies to balance the instances based on specific
operators or geometric metrics. Thus, to better serve the community, only clarifying the
corresponding relationship between a source entity and its target entity in the generalized
map is not enough. We decided to include the map operator descriptions as part of the
metadata for the map generalization cases.
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Based on current research priorities, the planned data set will cover the transformations
of buildings and roads between the three scales with vector-based outputs, from which
raster-based representations can be easily derived.

2.2 A conceptual model for map generalization transformations
The transformations between the three scales we are using mainly include the generalization
operators selection (elimination), simplification, aggregation, displacement, exaggeration,
typification, and smoothing. We categorize the operators into atomic operators, including all
aforementioned operators except typification, which is categorized as a complex operator
that consists of atomic operators. Our classification is based on cartographic knowledge and
the cardinality between the source and target geometries: An atomic operator involves 1 : 1
or N : 1 relationships, while complex operators such as typification usually involve N : M

relationships. The complex operators are hard to characterize formally, as they involve many
scenarios for which even professional cartographers may not reach a consensus.

Based on the conceptual model, we thus formalize the operators in a generalization trans-
formation between a source geometry and a target geometry as a series of selected atomic oper-
ators using a set T ⊂ {deletion, simplification, displacement, aggregation, exaggeration,

smoothing}. A complete transformation thus consists of the source and target entities and
the operator set for each pair of source and target entities.

2.3 An automated workflow
To derive corresponding source-target pairs and the applied generalization operators from
the raw data sets, an automated workflow was designed, as manual matching is impossible
due to the large number of samples.

The matching workflows for buildings and roads are performed separately, though both
start with the UUID-join table. For building matching and operator detection, an additional
spatial join was applied to the source and target buildings to find intersecting pairs. With
the intersection table, aggregation was determined if a target building spatially overlaps with
more than one source building. Displacement was detected if centroids of buildings with the
same UUID exceed a buffer distance. Simplification was identified based on the change in
terms of shape complexity [2]. Only entities not being part of an aggregation were fed into
the enlargement detection module, as we regard the aggregated buildings as new, synthetic
entities. Deletion was determined if a UUID was removed from the target map. All modules
exported the decision as a binary result, which form a 5-dimension map-operator vector.

The workflow for determining generalization operators on roads is more challenging.
Currently, we are still developing the matching module. The reason is that roads involve
more complex geometric changes compared to the buildings, such as Figure 1. The spatial
relationships between road segments cannot be simply inferred by intersection detection.
The matching also relies on proper distances to describe the similarity between two lines.
We chose the number of vertices, curviness, and sinuosity as the main metrics to characterize
roads. However, how to determine the map operators based on the transformation of metrics
between maps with different scales still need further conceptualization and development.

2.4 Database schema
The proposed data set will be delivered as two loosely connected databases: A Postgres
database will store the geometry, UUID, and other attributes from the raw swisstopo data set.
A MongoDB database will be used to store the transformation information of entity pairs,
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Figure 1 a. An example of buildings; b. An example of roads at an intersection.

with individual collections for buildings and roads. We chose a NoSQL solution because
transformation information differs case by case, while MongoDB has minimal data structure
constraints. Each collection will contain the associated UUIDs with modeled operator types
and metrics to characterize the transformation between the two entities. The collection will
also have metrics extracted from the geometries, such as the number of vertices and shape
complexity, which can benefit the data set users to design their own sampling strategies for
compiling a customized training data set.

3 Constructing progress

Our workflow for buildings is well established and was applied to transitions between 1:25k
and 1:50k maps in Switzerland, in which the source and the target map are both at medium
scales, for preliminary testing. It can be observed that most of the building geometries are
displaced after the generalization (Figure 2.a). Cases with only a single operator are rare.
The instances of different combinations of the automated map operators are also highly
imbalanced (Figure 2.b), suggesting that learning the implicit map generalization rules can
be challenging.

Figure 2 Map generalization operator cases of 2,078,548 building entities in 1:25k to 1:50k. a.
By operator type; b. By operator combinations.
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4 Research agenda

Challenge 1: Learning dominant but neglected operators

Using deep learning to explicitly learn individual generalization operators is mainly based
on vector maps, which can reduce the manual intervention of expert cartographers (e.g.,
for setting thresholds). As illustrated in Figure 2.a, displacement is the predominant
operator involved in map generalization within medium scales, followed by the enlargement,
aggregation, simplification, and deletion operators. Unfortunately, it seems that the more
dominant operators, including displacement and enlargement, are paid less attention to while
some studies have attempted to learn aggregation [15], simplification [16], and deletion [14].
Therefore, research efforts should be particularly directed towards learning displacement and
enlargement by formulating them as learnable tasks and introducing feasible models.

Challenge 2: Developing end-to-end generalization models

While the learning of individual generalization operators benefits the explicit modeling of
cartographic knowledge and achieves the generalization of a part of map objects, it is still
necessary to chain these intermediate outputs for more map objects to produce the final
generalized map. Therefore, a second stream of raster-based deep learning models has
great potential to enable end-to-end map generalization [4, 5]. The existing studies mainly
work on the aggregation, simplification, and deletion operators and their combinations [5].
However, Figure 2.b shows that map generalization for medium scales also involves a large
portion of combinations of displacement and other operators, as well as further, different
combinations. Therefore, the raster-based deep learning models should be further developed
using a more comprehensive data set that contains the dominant operator combinations (e.g.,
our demonstrated swisstopo data set) to improve their capacity for end-to-end solutions.

Challenge 3: Understanding learned cartographic knowledge

While Challenge 1 is result-oriented, it is also important to understand what specific carto-
graphic knowledge a DL network learns. From the pragmatic perspective, this can contribute
to better fine-tuning strategies for learning; from the theoretical perspective, it helps to gain
scientific knowledge on the capacity and limitations of DL network architectures. XAI meth-
ods such as Grad-Cam [11] for raster-based data and those in GraphXAI [1] for vector-based
graphs can help gaining interpretation of the knowledge a DL network learns. The result can
also guide the optimization or chaining of modules in an end-to-end generalization workflow
in Challenge 2, if the final generalization turns out to be a cascading multi-module workflow.

5 Future work

In future work, we would like to take a closer look at the validation of the generalization
operator modeling and its effectiveness on the 1:50k to 1:100k generalization of buildings,
with the help of swisstopo cartographers. The generalization operator modeling for roads
will continue. Once the data set is published, a crowd-sourcing-like approach may also be
applied for collecting corrections of specific transformations.
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Abstract
We present a new approach to categorizing different types of urban development, namely infilling,
fringe, and leapfrogging, based on construction projects as the fundamental unit of analysis. We
focus on the role of the leapfrogging projects as seeds for new developments, leading to urban
sprawl extending beyond statutory plans. To examine this phenomenon, we analyze the 50-year
growth of three major Israeli cities: Netanya, Haifa, and Safed and the 5-year dynamics of 66 cities
in Israel that account for 68% of the country’s population. Our investigation utilizes extensive
databases of Israeli development plans, along with high-resolution aerial photographs covering the
investigated areas and time periods. These datasets were supplemented by detailed Israeli databases
encompassing roads, buildings, and other infrastructure elements, compiled by the Israeli Mapping
Centre for the year 2018. Our analysis reveals that although most construction projects in Israel
adhere to land-use plans, urban sprawl in Israel remains highly unpredictable. Leapfrogging is
specific in terms of both place and time, attracts additional development nearby, and forces the
divergence from development plans. We conclude that urban modelers’ view of urban dynamics
being driven by common and systematic forces, is unrealistic. Instead, every city has its specific
and self-enforcing development drivers that define its land-use dynamics. This explains the limited
success of the Cellular Automata (CA) models in explaining and predicting urban dynamics.
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1 Introduction

Urban development is complex and only partially predictable, as illustrated by the limited
ability of Cellular Automata (CA) to predict Land-Use/Land-Cover (LULC) dynamics ([3]).
This is particularly true for leapfrog development beyond the current city boundary ([2]).
Leapfrogging attracts additional development, and this positive feedback mechanism may
override statutory plans ([1]) and significantly modify the city’s spatial dynamics ([4]),
increasing their unpredictability. To mitigate deviations from the development plans, it
is crucially important to estimate the role of leapfrogging in urban dynamics. Our paper
proposes a new method for identifying leapfrogging and assessing its effects by studying a
large database of Israeli development plans versus real development.
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We depart from the conventional raster-based analysis of satellite images by analyzing
urban sprawl based on the fundamental unit of urban development – the development
project. Our view of urban dynamics centers on three types of urban development - infilling,
fringe, and leapfrogging. We quantify the extent and attractiveness of leapfrog projects for
further construction nearby that contributes to non-planned sprawl. Our study exploits
unique county-wide Israeli data on land-use dynamics: aerial photographs, development
plans starting from the 1960s, and comprehensive databases of building footprints, land use,
and road data, all provided by the Israeli Mapping Center (IMC). The research focuses on a
53-year sprawl of three Israeli cities – Netanya, Haifa, and Safed – from 1964 to 2018, and
the sprawl in 66 Israeli cities with a population exceeding 15,000, between 2013 and 2018.

2 The data

To assess the effects of leapfrogging, we investigate two datasets. The first represents long-
term dynamics in three cities that differ in their properties: Haifa, a metropolitan city with
a population of 283,000 in 2018; Netanya, a mid-sized city near Tel Aviv (217,000); and
Safed, a small city located far from metropolitan areas (36,000). In each city, we study the
LULC dynamics of 6-km width transects that start in the city’s CBD and extend beyond
city boundaries to open spaces. The second dataset represents LULC dynamics in 66 cities
housing 68% of Israel’s population, between 2013 and 2018.

Aerial photos covering the transects at a spatial resolution of 25 cm, were obtained from
the IMC for the years 1964, 1972, 1983, 1993, 2000, and 2008. Based on each photo, polygons
of building constructions and roads were manually digitized. Buildings and road layers for
2013 and 2018 were obtained from the IMC database for these years. To estimate the year of
building construction we compared the IMC layer of buildings in 2018 to the corresponding
aerial photography building layer, and assigned the year in which a building first appeared
in the aerial photo as its construction year. The information on the building’s use was also
acquired from the IMC layer for 2018 and aggregated into residential, industrial, public,
and others. Additionally, we used the IMC 2018 road layer to estimate the year of road
construction. All these data were matched to layers of construction plans. Similarly, we
matched the IMC layers and development plans for the years 2013 and 2018 for the 66 cities.

Our assessment of the leapfrogging is based on the recognition of the urban fringe –
the border area between the built-up and non-built-up parts of the city, and development
projects – the basic units of urban development that consist of one or several buildings.

3 Identifying the urban fringe and development project

3.1 Recognizing the urban fringe
We recognize the urban fringe by examining, annually, the continuity of built-up (BU) and
non-built (NB) areas. Based on the average distance between buildings in the city, we
perform this examination at a resolution of 50m and consider a 50x50m (vector) cell as BU

if at least 5% of its area is covered with buildings. The cell is a part of the continuous BU

patch if at least 7 of its 8 neighbors in the 3x3 neighborhood are also BU . The same rule
applies to NB cells, for identifying continuous NB patches. An urban fringe is the rest of
the area. To group adjacent cells of the BU or NB types into continuous regions we apply a
connected-component labeling algorithm with orthogonal and diagonal (8-cell) connectivity.

The fringe areas F (tn), estimated at the year tn, can be of 3 types (Figure 1):
F (tn) is an inner fringe, denoted as Fi(tn), if all cells adjacent to it are of the BU -type.
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F (tn) is a leapfrogging development, denoted as Fl(tn), if all cells adjacent to it are of
the NB-type.
F (tn) is an outer fringe, denoted as Fo(tn), otherwise.

Figure 1 Recognition of a fringe area: (a) construction of BU (grey) and NB (white) continuous
areas; (b) fringe area; (c) inner fringe, outer fringe, and leapfrog.

3.2 Recognition of development projects
Definition of a development project: Buildings b1, b2, ...bk belong to the same construction
project P (tn) that starts in the year tn, if (1) they are all recognized, for the first time, in
the aerial photo of the year tn, (2) there is no road between any pair of them, (3) there is
no NB areas between them, and (4) they share the same land-use - residential, industrial
public, other, determined based on the attributes of the IMC building layer. The spatial
extent of the project P (tn) is established as follows:
1. Construct Voronoi coverage V (tn) based on the centroids of all buildings existing at tn.

Assign land use type of the building to its Voronoi polygon (Figure 2a).
2. Construct layer R(tn) of roads at the year tn, representing roads as polygons (Figure 2b).
3. Erase road polygons R(tn from V (tn), to obtain corrected Voronoi coverage Vc(tn) (Figure

2c).
4. Overlay Vc(tn) and grid G that defines the resolution of our view of the city, currently

50x50 m (Figure 2d).
5. Erase NB polygons (constructed for the fringe assessment) from Vc(tn) (Figure 2e).
6. Obtain P (tn) by merging adjacent Voronoi polygons of the same land-use (Figure 2f).

To recognize the changes in the urban patterns between the moments tn−1 and tn we
overlap projects that first appeared in the year tn with the fringe F (tn−1). If a certain project
P (tn) overlaps Fo(tn−1), then this project is a fringe-expansion. If P (tn) overlaps Fi(tn−1)
or is located within the city borders, it is an infilling project. If P (tn) overlaps Fl(tn−1), then
it is an old-leapfrog, and if P (tn) does not overlap F (tn−1), it is a new leapfrog (Figure 3).

4 General view of leapfrogging

The amount of new development in Netanya, Haifa, and Safed changed over the 50-year
observation period (Figure 4). The construction activities in Haifa and Safed peaked in the
early 1990s, while Netanya’s period of rapid development was in the early 2000s. The decline
in development rate from the year 2000 onwards in all three cities reflects the national trend.

Infilling is the least prevalent form of development in the three cities, accounting, besides
the year 2013 In Haifa, for less than 5% of the total construction during the entire period.
In the large Haifa and Netanya, fringe projects make up 80-90% of the developed area, while
leapfrogging accounts for the remaining 10-20%, except for two spikes in Haifa in 2008 and
2013 with 20-30% of leapfrogging, and Netanya in 2013 with 40% of leapfrogging (Figure 5).
In the smaller Safed, the share of leapfrog fluctuates between 25% and 80%, averaging 45%.
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Figure 2 Project construction: (a) Voronoi coverage V (tn) of buildings; (b) Road polygons R(tn)
(c) Road polygons R(tn) erased from the V (tn); (d) grid G classified into BU and NB cells; (e) NB

polygons erased from the Vc(tn); (f) P (tn) is obtained by merging adjacent Voronoi parts of the
same land-use.

In the country-wide case of the sprawl of 66 cities between 2013-2018, the average share
of leapfrog development is 13% of the total developed area, while the variation of this share
is substantial, and the standard deviation of it is 15%. The relationship between population
size and the share of leapfrog development is not statistically significant, while if we split the
cities into 3 groups – above 100K, 50-100K, and below 50K population, the average shares,
by groups, increase from 9% to 14%, and 16%, respectively (Figure 6).

4.1 Adherence to development plans
We study adherence to statutory plans by overlaying the layer of the development projects
started during the period [tn, tn+1] and the layer of the development plans for the same
period. In this way, we can identify constructions that sprawl beyond the planned areas
(usually, to the open lands, agriculture, or forest). Overall, Israeli developers consistently
adhere to zoning plans. In Netanya, the overlap is almost 100%, while in Haifa and Safed,
8% to 10% of leapfrog projects violate plan constraints. In the county-wide case, developers
also closely adhered to the statutory plans. On average, 94.6% of the projects’ area is within
the planned border, with 14% of leapfrog projects violating development plans.

4.2 Residential leapfrog project as a seed for future development
We consider leapfrog project P (tn) erected during period [tn−1, tn] as an active urban seed if
other projects are erected 50 m or less from P (tn) during the next period [tn, tn+1]. Otherwise,
the leapfrog project is passive. Active leapfrogging expresses the system’s positive feedback,
and its strength can be assessed based on long-term data only. Over 50 years, the share of
leapfrog projects in Safed, Netanya, and Haifa that remain passive is 61-68%. Yet, 47-63% of
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Figure 3 Leapfrog, infilling, and fringe projects in Afula city between t = 2013 and t = 2018.

Figure 4 The new built-up area (ha), along the transect, in Haifa, Netanya, and Safed.

new residential leapfrog projects become active seeds and stimulate additional development.
For leapfrog projects of industrial and public land uses, the share of active seeds is much
lower and varies between 25-32% and 32-45%, respectively. Residential and industrial seed
projects attract projects of the same kind in over 90% of cases across all three cities. Active
public projects, on the other hand, exhibit city-dependent attractiveness patterns.

4.3 Urban fringe expansion towards the leapfrog projects
Attracting new constructions, the leapfrog projects become the seeds of unpredictable
dynamics of the urban built-up pattern. However, in time, some of these self-organizing areas
are absorbed by the regular sprawl of the continuous part of the city. One needs long-term
data to estimate the rate of this absorption and to this end, we estimate the percentage of
leapfrog projects P (tn) for which the distance to the nearest project that belongs to the
urban fringe becomes zero in time. This assessment demands three sequential observations
and we employ it for projects erected until 2008. Estimating this rate, we see that most of
the leapfrog projects become absorbed by the city. In Safed, 25% of the projects remain
unabsorbed; in Haifa, the share is 31%; and in Netanya, it is 26%.

5 Conclusions

About 13% of the development projects in Israel are leapfrogging and only 14% of these
projects, that is, less than 2% of all constructions, violate statutory plans. In time, most of
these projects become absorbed by the city, however, before this happens, half of residential
and a third of other leapfrog projects serve as seeds for further sprawl. For this reason,
leapfrogging often necessitates updates to existing development plans and infractions can
be critical for the development trajectory of the city. The importance of leapfrogging as a
possible dynamic phenomenon that averts the planned city development trajectory can only
be estimated with long-term and high-resolution data on urban dynamics, as above.
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Figure 5 The dynamics of the share of leapfrogging development in Haifa, Netanya, and Safed.

Figure 6 The share of the leapfrogging development by cities, depending on their population.

Safed, enveloped by open areas and forests, Haifa with partial constraints, and Netanya,
fully surrounded by agricultural lands and other settlements - each city exhibits a unique
development pattern, and this pattern is not related to the size of the city. The growth of
these cities is mainly defined by historical events, like development peaks in the 90s and
early 2000s following mass immigration from the former USSR. We hypothesize that it is
this interaction between the external factors and positive plan-violating feedback that makes
urban sprawl unpredictable. We plan to explore this unpredictability with an agent-based
model of urban growth, whose mechanisms and parameters will be based on the above results.
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Abstract
Communicating deep understanding between humans is key to the effective application and sharing
of science, and this is critical in GIScience because much of what we do has practical implications in
the modelling and governance of societal and environmental systems. Reproducible and explain-
able science is needed for public trust, for informed governance, for productivity and for global
sustainability [20]. This article summarises some of the more recent research on reproducibility from
outside of GIScience, gives practical guidance to current best practice from a GIScience perspective,
provides a clearer road-map towards reproducibility and adds in the additional step of explainable
GIScience as our final goal.
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1 Introduction

The ‘Reproducibility Crisis’ [2] sent shock waves through both Psychology and Medical
Science has changed expectations around how experimental scientists report their research.
Apart from the obvious risk of eroding public trust in science if researchers cannot be trusted
to behave honestly, reproducibility is critical for two very distinct reasons:

1. For the individual researcher and team, the goal is to discover, access, reuse and build on
the work of others, knowing that it can be trusted (efficiency).

2. For the research community as a whole, the goal is to compare new methods, data-sets
and theories so we can learn which ones work best, and in what circumstances they can
be applied, and to move forward with the best of them (evolution).

Experiments in reproducibility show us that even well-intentioned researchers often fail to
provide a complete-enough account of their experiments to allows others to reproduce their
results accurately [11]. The bigger issue, then, is not bad actors, but bad practices. The
issue has received some good attention of late from the GIScience community [21] including
a critical assessment of the reproducibility of GIScience papers published in conference
proceedings [14, 15].

Beyond reproducibility is another even more important goal: that of explainability.
Communicating deep understanding between humans is key to the effective application
and sharing of science, and this is critical in GIScience because much of what we do has
practical implications in the modelling and governance of societal and environmental systems.
Being able to reproduce someone’s research is not enough to ensure it can be successfully
repurposed. Repurposing requires that we understand not just the work that was done, but
also the situations in which it can be used reliably, and the situations where its underlying
assumptions no longer hold. Explainable science is science that can be explored, queried,
tested, understood and repurposed, as well as reproduced.
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2 The journey to Reproducible and Explainable GIScience

We can view the journey towards explainable science as a series of stepping stones, each one
taking us a bit closer. A useful starting point is the concise pathway to reproducibility from
the Physiome journal [16]. Their ideas are expanded in Table 1 below, and a GIScience slant
added. Explainability was not included in their text, it has been added in here. Note that
there are other definitions in use for some of the terms below, this set has strong traction in
the wider sciences.
Replicable Re-running the source code produces a result with reported research. In this

case, literally a digital replica of the original experiment produces the same answers. For
example, source code distributed with a research article (runs and) provides exactly the
same results as those documented in the article.

Reproducible When research can, by means of an underlying representation based on domain
theory (mathematics, logic or a mix of both), be successfully reproduced in some new
system. Source code can be ambiguous and opaque. Logic and mathematics is more precise
and often provides more clues as to the semantics. For example, a new Geographically
Weighted Regression method is successfully re-implemented from a set of equations in a
published article. Though not efficient, there are benefits from separately re-implementing
methods: it demonstrates that the original description of the method is accurate.

Reusable This requires that the model is well documented, the source code is available and
that it is licensed for reuse, so that limitations and appropriate use are clear. Licenses
do not remove rights, they add them. In most legal jurisdictions, the absence of any
statement about reuse of data or code means that no rights whatsoever are extended.
See https://creativecommons.org/licenses/ for details of which licenses to use. For
example, code and documentation are managed in a software repository such as github
(https://github.com/) and the program contains a license statement that enables
reuse. The OSGeo Docker image https://wiki.osgeo.org/wiki/DockerImages library
contains over 70 GIScience applications, ready to install, with documentation and licensing
information.

Discoverable Research artifacts can be made discoverable via a metadata description of the
content that is accessible to a search engine. As research artifacts have moved online,
metadata has been increasingly used to describe the ‘container’ for these artifacts in
progressively richer ways. Discovery can be improved by adding in terms that describe
the domain and application semantics of artifacts. For example, a repository of global
landcover maps uses schema(.org) metadata, augmented with the UN’s GlobalLand30 inter-
national land-cover categories (https://www.un-spider.org/links-and-resources/
data-sources/land-cover-map-globeland-30-ngcc) to allow content-based search.
State-of-the-art for packaging research artefacts for discoverability and reuse is RO-Crate:
https://www.researchobject.org/ro-crate/

Validated A method can be considered validated when its predictions under specified con-
ditions match experimental observations. In other words, validation requires that we
test a model against real-world observations, not just for consistency within own internal
logic or mathematics. Models are typically validated within a range of ‘safe’ operating
conditions (such as a scale interval, or between two temperature values). Data-sets can
also be validated, or fit-for-purpose. For example, a new climate circulation model is
validated by several research teams against observed data [18]. We rarely validate in
GIScience: we propose new methods, demonstrate that the method works on a test
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data-set, but push any comparison to future work. Where a comparison is present, it is
often very limited. As a community, we have no real sense which methods are better, nor
in what circumstances we should, or should not, use them [8].

Explainable Explanation requires that we can interrogate a model to find out more detail,
to clarify our understanding, or to test our assumptions. Such questions could target the
data, the code, the theory, the workflow, as well as the more mundane aspects such as
the software license or the data-sets used and their reliability and suitability.
For example, a model for political redistricting can reveal to the users relevant details
of likely bias and quality issues in underlying data and explain the theory behind the
analytical methods employed. No examples exist yet in GIScience.

These six aspects of reproducible science are somewhat entangled. For example, a model
can be discoverable without being reusable simply because it does not have an appropriate
license information to allow the data or code to be reused.

3 Explainable GIScience – a road-map

The first 5 stepping stones above each add in some useful aspects or hints of explanations, for
example by a more provable formal description, or by adding in meta-data. But providing a
more complete understanding exactly what has been done in a piece of research, and how,
and why, remains challenging. Theory may tell us whether a model is valid, but not how or
when to use it; semantics help us to share our ideas and concepts, but does not anchor them
into our workflows. Explanations require a complex blend of formal theory, semantics and
pragmatics [3, 10, 13] for which there is no conveniently simple packaging.

The challenge in building GIScience explanations is the difficulty in ‘grounding’ geography,
that is, to find some scaffolding that is solid enough to build our formal representations
upon. The data and concepts used in GIScience are often loaded with complex meaning
and abstraction; they can be far removed from physical measurements (though not always).
This abstraction also helps explain why it is difficult to come up with laws and theory for
GIScience – the data we use are already filtered through so many conceptual lenses that
patterns arising from actual measurements are easily lost [9]. So how do we proceed?

3.1 Theory: Connecting Symbolics to Semantics
Symbolic reasoning uses logic, mathematics and other formal theory to represent meaning,
with an emphasis on internal consistency and provability, rather than a grounding into
semantics. Where the research conducted can be expressed mathematically (e.g. spatial
statistical methods), or symbolically using formal logic (some qualitative spatial reasoning
methods), then symbolic reasoning provides an excellent grounding into something that is
not itself subject to further abstraction – it is foundational. Formal representations seem
to have a high currency in the GIScience community, we value the formal grounding of our
ideas into symbolic reasoning. (Less so the grounding of our data into suitable ontologies)

But symbolic reasoning by itself is a house of cards. The abstract symbols and functions
used are not anchored into any domain semantics, nor into any implementation in a computer
program. The reader can often understand them in this way, sometimes with effort, but the
process is subjective. Similarly, we can be taught how to translate a symbolic notation from
a mathematical form into a computer program. However, translation between a provable
abstract representation, the semantics of the domain and the implementation in (say) a
program is prone to error. Inconsistencies and translation errors can lead to failures of
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reproducibility; misunderstanding and confusion can lead to a failure of explanation. For
explanations based only on symbolics there may still be a significant semantic gap and there
is no guarantee that the code perfectly implements the equations.

The good news is that symbolics can be tied more closely to both domain semantics and
to code, as the following example demonstrate.

LinguaPhylo (LPhy) is a framework to precisely define phylogenetic models (as used
for example to understand virus evolution). As the authors state: “We present a new
lightweight and concise model specification language, called ‘LPhy’, that is both human
and machine readable. ‘LPhy’ is accompanied by a graphical user interface for building
models and simulating data using this new language, as well as for creating natural language
narratives describing such models. These narratives can form the basis of manuscript method
sections..” [6]. The code and model examples are here: https://linguaphylo.github.io/.
LPhy is a programming language designed specifically for a given domain – its operators
are those directly used in the domain – rather than abstract types and methods of a
traditional programming language. Behind the scenes, and using some clever markup,
LPhy creates English language descriptions of the models a user creates. LPhy essentially
provides an immutable mapping between the methods that phylogenetics researchers use, the
implementation of these methods in code and human-readable descriptions of the resulting
workflow.

There is a useful lesson to learn here. Building a bespoke programming language for a
large swath of science or geography problems is intractably hard. But if we take a problem
that is small enough to have a consistent epistemology, it is possible to create a domain-
oriented programming language that is more consistent, reproducible, self-documenting, and
explainable, and that makes programming easier. In GIScience, this idea could be used for
geostatistical modelling, or to re-engineer tools such as PySal (https://pysal.org/) so that
they propel GIScience towards reproducible and explainable goals.

Cao et al [4] demonstrate exactly how geographic processes can be represented using
geographic and other foundational ontologies. It is these ontologies, then, that need to
form the analytical functions in a GIScience LinguaGeo. Of course, geospatial data can
also be connected back into ontologies of observations [12] and from there to ontologies of
foundational scientific (SI) measurements [17]. The very same anchoring can be used in the
representation of variables representing data in the symbolic logic of our methods.

4 What we can do now to encourage reproducibility in GIScience

Replicable Require the publishing of source code and data by all publications that use them.
Encourage journal reviewers to run the code for themselves to establish the truth of
the claimed results. Move beyond publishing code to publishing workflows, which also
capture additional control flow information.

Reproducible Encourage clear representation of key algorithms in the text of the article. Do
not rely solely on source code.

Reusable Insist that all code and data published be made available to other researchers
via a permissive license. Ensure that the repositories we use explicitly hold such licens-
ing information (e.g. the OSGeo Docker Repository https://wiki.osgeo.org/wiki/
DockerImages).

Discoverable Ensure that all data and code are at very least available via a website that is
publicly accessible. Use persistent identifiers (DOIs) to ensure longevity. Discoverability
is improved by the use of subject-level metadata, so look for repositories that provide
this functionality. Even a small amount of metadata is better than none for example see
the New York University Spatial Data Repository: https://geo.nyu.edu/.
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Validated Encourage the validation and comparison of proposed methods, either in the
originating article or amongst the wider scholarly community. Use special issues to
provide the opportunity for publication of articles that compare methods and that
validate published data-sets.

Explainable An open challenge for GIScience is to develop our own LinguaGeo programming
language(s) to reduce the gap between code and theory and to automatically generate
text descriptions of workflows. In the meantime, we should insist on clear descriptions
of methods in text as well as in mathematics or logic. We can also ask for statements
that describe any known bias in the data and methods used. For example, if an article
examines sentiment analysis in geo-located tweets, what are the socio-demographic biases
inherent in these data? Which voices (e.g. ages/genders/ethnicities) are over-represented,
and which are not? Where data is being used to train methods, insist that a statement
explaining how bias in the data may skew the results obtained. See [19] for more details.

All of these stepping stones, by increasing levels of sophistication, record what was done in
precise ways that can survive the process of sharing and so enable researchers to reproduce
the findings in a separate computational environment. Some of the responsibility rests with
authors, but also some with reviewers and journal editors as well as the scholarly community
at large to hold ourselves to a higher standard.

5 The Future: Live and Explainable GIScience?

Perhaps the holy grail of repeatability is a journal article that is itself an executable experiment
– that describes an analysis in words, mathematics (or formal logic), semantics and code,
but also allows the analysis to be repeated and queried by the reader. A compelling recent
example is the Physiome journal [16] that encourages authors to submit the analytical models
that accompany their more traditional written publications. Physiome evaluates submissions
“to determine their reproducibility, reusability, and discoverability. At a minimum, accepted
submissions are guaranteed to be in an executable state that reproduces the modelling
predictions in an accompanying primary paper, and are archived for permanent access by
the community.” The journal uses shared method libraries, process and data ontologies (see
[5] for more details), common workflow descriptions and packaged data to deliver on its
ambitious claims. It is the culmination of many years of collaborative research within a
segment of the bioengineering community. A more general solution to this problem that also
maintains dynamic links to changing data (thus updating a publication in real time as new
data becomes available) is provided by [7].

6 Conclusion

A lot has been said about whether GIScience is in fact a science [22]. The pros and cons
of this argument often revolve around whether GIScience has a unique body of theory
that might justify the title. And whilst developing theory is important, it is still only
one approach to science [1]. Another is experimentation, and GIScience has much to
learn from other experimental sciences in terms of how to report science in ways that are
reproducible, understandable by others and that can be easily built upon. Or put another
way, GIScience would benefit from acting more like a science in the way we conduct and
report our experiments! This article describes the pathway to reproducibility and provides a
practical summary of improvements we can collectively make now.
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Abstract
Urban road-based risk prediction is a crucial yet challenging aspect of research in transportation
safety. While most existing studies emphasize accurate prediction, they often overlook the importance
of model uncertainty. In this paper, we introduce a novel Spatial-Temporal Zero-Inflated Negative
Binomial Graph Neural Network (STZINB-GNN) for road-level traffic risk prediction, with a focus
on uncertainty quantification. Our case study, conducted in the Lambeth borough of London, UK,
demonstrates the superior performance of our approach in comparison to existing methods. Although
the negative binomial distribution may not be the most suitable choice for handling real, non-binary
risk levels, our work lays a solid foundation for future research exploring alternative distribution
models or techniques. Ultimately, the STZINB-GNN contributes to enhanced transportation safety
and data-driven decision-making in urban planning by providing a more accurate and reliable
framework for road-level traffic risk prediction and uncertainty quantification.
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1 Introduction

In recent years, the field of traffic risk prediction has attracted considerable attention from
researchers and policymakers, driven by the need to create resilient urban traffic systems
and enhance their reliability in response to mounting challenges such as minimizing urban
congestion, improving road safety, and making informed investments in urban infrastructure.
Additionally, the zero-inflated nature of accident data, characterized by sparse incidents,
poses a substantial challenge to prediction efforts.
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Deep learning models have emerged as promising tools in this domain, incorporating
multivariate spatiotemporal information and utilizing point-processing estimation during
training to forecast traffic accidents or risk situations in subsequent time series [2, 12]. For
instance, de Medrano et al. [1] proposed a novel SpatioTemporal Neural Network (STNN)
framework based on Recurrent Neural Network (RNN) to predict the number of accidents in
each region of Madrid, Spain using a 5-hour prediction window. Their results show a more
accurate prediction than the traditional linear statistics models as well as machine learning
methods. Ren et al. [5] also employed RNN to analyze spatial and temporal patterns of
traffic accident frequency and predict grid-level daily risk situations. However, the RNN
model is limited by its focus on short-term temporal embedding information and its inability
to fully capture the spatial heterogeneity of traffic accidents. Furthermore, Najjar et al.
[3] employed Convolutional Neural Networks (CNNs) to combine urban information from
satellite imagery and open traffic accident data, mapping city-wide risk situations. Despite
this, their approach neglected temporal information and faced limitations due to the quality
of street image data.

Recognizing the potential of graph neural networks (GNNs) to account for the natural
connection of spatial units, researchers have proposed graph-based models for traffic risk
forecasting. Zhang et al. [8] employed a multi-modal approach to jointly consider text data
from social media and imagery data from satellites, subsequently mapping grid-level traffic
accident frequency using GNNs. Zhou et al. [9] introduced a novel Differential Time-varying
Graph Convolution Network (GCN) to dynamically capture traffic variations and inter-
subregion correlations, also predicting grid-level traffic risk. After that, they further refined
their algorithms to account for hierarchical spatial dependencies, allowing for the mapping of
finer grid-level urban traffic risk [10]. While their work addressed the zero-inflation problem
of sparse accident data, their models sidestepped this challenge with a grid level and still
faced limitations when predicting at the road level, which is a much finer micro-level unit
compared.

Despite the valuable foundation provided by predicted average grid-based risk levels, a
significant concern in understanding traffic risk prediction is the quantification of uncertainty
by considering distribution rather than mean values [11, 4, 12, 7]. Uncertainty is pervasive
in urban mobility systems and plays a crucial role in accounting for potential variations in
prediction results, which may arise from the aleatoric uncertainty of imbalanced risk data
or the epistemic uncertainty of black-box prediction models [2]. Qian et al. [4] explored
uncertainty quantification in traffic forecasting by training a graph-based deep learning
model to fit aleatoric uncertainty and combining Monte Carlo dropout with Adaptive Weight
Averaging re-training methods to estimate epistemic uncertainty. Zhou et al. [11] considered
the irregular patterns in human mobility data as aleatoric uncertainty and the average
potential variations in predicted results among specific and neighbouring regions as epistemic
uncertainty. By recognizing the reducible nature of predicted epistemic uncertainty, they
improved prediction performance through a gated mechanism to calibrate the predicted
mobility results. Although those two approaches demonstrated the potential of combining
variational inference and deep spatial-temporal embedding for predicting various distributions,
they did not thoroughly investigate the sparse traffic data scenario. Zhuang et al. [12]
and Wang et al. [6] highlighted the importance of considering zero-inflated distribution
statistical models for analyzing sparse traffic demand data. These models offer a more
accurate spatiotemporal representation of the underlying uncertainty structure suitable for
incorporation with deep learning models.
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Despite the progress in the field of uncertainty quantification in urban traffic research, the
current focus predominantly lies on traffic demands and human mobility. This research mostly
utilizes sequence or time-series data and employs coarser resolution prediction approaches,
such as grid-based analysis. This also leaves a notable research gap in terms of an investigation
into finer resolution models, particularly from a road safety perspective. Road safety
prediction involves non-stable and event-based characteristics, which deviate from the usual
time-series data analysis. Expanding research in this area could provide a more nuanced
understanding of traffic risk prediction and its significant potential for improving urban
transportation safety and resilience. Filling this research gap will contribute to the holistic
development of urban transportation studies, enhancing not only predictive accuracy but
also the applicability of results in practical, real-world scenarios.

Building upon the work of Zhuang et al. [12], this paper presents the Spatial-Temporal
Zero-Inflated Negative Binomial Graph Neural Network (STZINB-GNN) model, specific-
ally designed to tackle the existing limitations in traffic risk prediction and uncertainty
quantification.

(a) The zero-inflated negative binomial model is employed to effectively distinguish between
non-risk and risk levels across road segments.

(b) The spatial-temporal Graph Neural Network (ST-GNN) is responsible for learning and
fitting the parameters of probabilistic distributions.

To the best of our knowledge, this is the first attempt to merge these two elements for
road-level risk estimation. Empirical evidence showcases the enhanced performance of our
proposed model when applied to road-daily resolution traffic risk data.

This paper is structured as follows: Section 2 describes the development of the model and
provides detailed explanations of its components. Section 3 presents the dataset employed
for the case study, outlines the evaluation metrics, and discusses the experimental results.
Finally, Section 4 offers conclusions and highlights potential avenues for future research.

2 Methdology

Our objective is to predict future traffic risk and associated confidence intervals for each
individual road segment across k forthcoming time intervals, using m roads’ risk conditions
from previous time windows lasting T days. This is a sequence-to-sequence prediction
problem, as illustrated in Figure 1. We construct the road graph, G = (V, E), where V

represents the set of roads, and E denotes the edges connecting these roads. The adjacency
matrix A ∈ RV ×V indicates the relationships between roads, and |V | = m × m. More
specifically, xit signifies the risk level of the ith road segment during the tth time interval,
where i ∈ V , xit ∈ N. Subsequently, Xt ∈ N|V |×T designates the risk conditions for all road
segments within the tth time interval, with xit as its component. Our aim is to employ
historical records X1:t and spatial-temporal features as input data to estimate the distribution
of predicted Xt:t+k (i.e., the risk levels for each road over the next k time intervals), thus
examining the anticipated value and confidence intervals of the future risk situation.

First, we assume that the inputs follow the ZINB distribution with probability mass
function as:

fZINB(xk; π, n, p) =


π + (1 − π)

(
xk + n − 1

n − 1

)
(1 − p)xk pn if xk = 0

(1 − π)
(

xk + n − 1
n − 1

)
(1 − p)xk pn if xk > 0

, (1)
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Figure 1 Framework of STZINB-GNN model.

where π is the inflation of zeros, n and p determine the number of successes and the probability
of a single failure respectively. xk denotes a road’s traffic risk level at one time. All three
parameters π, n, p are learned by spatial-temporal GNNs (STGNN), where the temporal
encoder applies a Gated Recurrent Unit (GRU) and then the spatial encoder applies Graph
Attention Network (GAT):

nt+1:t+k, pt+1:t+k, πt+1:t+k = STGNN(X1:t; F1:t; A) = GAT
(
GRU(X1:t; F1:t); A

)
. (2)

Here, Ft represents the spatiotemporal features of roads on the tth day, while Xt corres-
ponds to the risk level observed on the same day. This relationship illustrates the connection
between road features and risk levels at specific roads in time.

The log-likelihood of ZINB is composed of the y = 0 and y > 0 parts, and can be
approximated as follows:

LLy =


log π + log(1 − π)pn when y = 0

log(1 − π) + log Γ(n + y) − log Γ(y + 1)
− log Γ(n) + n log p + y log(1 − π) when y > 0

, (3)

where y is the ground-truth value, Γ is the Gamma function and n, p, π is learned by
STGNN. The final negative log-likelihood loss function is given by:

NLLST ZINB = −LLy=0 − LLy>0. (4)

3 Result

We evaluated the model’s performance using a real-world dataset from Lambeth Borough
in London, UK. This dataset comprises 5,659 road segments and a total of 1,335 accidents
throughout 20192. We calculated a daily risk level by combining the number of accidents
with the severity of each accident. We then identified the nearest road segment and accounted
for the spillover effects on first and second-order neighbouring roads [9] to assign each road
segment a risk value for each day. Notably, the zero-inflation rate for road-level accident risk
in Lambeth Borough is 98.7%, indicating that a significant proportion of the road segments
experienced no accidents during the observed period.

The evaluation metrics for assessing the model performance are categorized into four
aspects. Traditional accuracy measures, including Mean Absolute Error (MAE), Mean
Absolute Percentage Error (MAPE), and Root Mean Squared Error (RMSE), evaluate the
model’s ability to accurately predict risk values. Uncertainty quantification is assessed using

2 https://roadtraffic.dft.gov.uk/downloads

https://roadtraffic.dft.gov.uk/downloads
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the Kullback-Leibler Divergence (KLD), which indicates how closely the distribution of the
model’s output risk values approximates the distribution of the true risk values. Lower
values for these above metrics are desirable, as they signify a smaller difference between the
predicted and actual risk values as well as distributions.

The true-zero rate (ZR) quantifies the model’s capacity to accurately replicate the sparsity
observed in the ground-truth data. Additionally, the Hit Rate (HR) is assessed based on
information entropy. To compute HR, we first select the top 20% of road segments with the
highest predicted risk values and then consider the predicted risk values’ information entropy,
which is derived from the KLD uncertainty quantification. We calculate the HR by selecting
those road segments with lower predicted uncertainty among the top 20% risk roads, where
the road information entropy is below the mean value of the entire road’s entropy.

Higher ZR and HR suggest better model performance in identifying road segments with
no accidents and those with accidents, respectively.

Table 1 Model Results for the Lambeth Borough, London.

Results Long(14-14) Short(7-7)
Metrics Models STZINB STG STNB HA STZINB STG STNB HA

ACC
MAE 0.054 0.118 0.080 0.135 0.077 0.048 0.105 0.134

MAPE 0.026 0.405 0.036 0.414 0.025 0.443 0.078 0.485
RMSE 0.119 0.183 0.139 0.211 0.139 0.185 0.172 0.238

Uncertainty KLD 0.259 0.504 1.558 0.269 0.473 0.522 0.759 0.264
Zero Inflated ZR 0.641 0.199 0.562 0.520 0.579 0.102 0.518 0.503

Hit Rate HR20% 0.618 0.267 0.447 0.452 0.575 0.301 0.442 0.443

In the table, bold fonts mean the best values among all the baseline models while the
underline means the second-best values. The baseline models used for comparison include
Spatial-temporal Graph Neural Network with Gaussian Distribution (STG), Spatial-temporal
Graph Neural Network with Negative Binomial Distribution (STNB), and Historical Average
(HA). It is evident that our proposed model outperforms the baseline models across all
evaluation metrics, with the exception of KLD in short-term prediction scenarios, where it
ranks second. This demonstrates the effectiveness of our model in capturing the skewed data
distribution through its zero-inflated components, which leads to more accurate results and
improved reliability when approximating the true risk distribution. Notice that both ZR and
HR20% metrics, which are important to measure the occurrence of events in practice, have
received significant accuracy improvement. This is due to introducing the parameter π in
Equation 1, which can effectively learn the sparsity of the data.

Furthermore, our model’s capability to reliably predict higher risk values enables us to
achieve an accuracy of approximately 61.8% or 57.5% in identifying the exact locations of
accidents, which also significantly outperforms the other GNN counterparts. This highlights
the potential of our approach to significantly enhance transportation safety and facilitate
data-driven decision-making in urban planning.

4 Discussion and Conclusion

In this study, we developed a versatile spatial-temporal Graph Neural Network (GNN)
framework for predicting the probabilistic distribution of sparse road traffic risk and quanti-
fying its associated uncertainty. By employing Gated Recurrent Units (GRUs) to capture
temporal correlations and Graph Attention Networks (GATs) to model spatial dependencies,
we created a comprehensive framework that embeds the spatial and temporal representations
of distribution parameters. These parameters are then fused to obtain a distribution for each
spatial-temporal data point.

GISc ience 2023
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Our case study, based on the urban risk situation of Lambeth borough in the UK,
demonstrated that the proposed model consistently delivers more accurate and reliable
results compared to other methods. Despite its performance, the model also has certain
limitations. When addressing real risk levels that extend beyond binary values, the negative
binomial distribution may not be the most suitable choice. Future work could explore
alternative distribution models or techniques that better capture the complexity and nuances
of real-world risk levels. This would further enhance the model’s applicability and predictive
capabilities, ultimately contributing to improved transportation safety and data-driven
decision-making in urban planning.
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Abstract
Blackwall Tunnel is one of the most congested roadways in London. By simulating the tunnel and
the connecting roads, information can be obtained about the traffic conditions and bottlenecks. In
this paper, a model will be created using the Simulation of Urban Mobility (SUMO) tool and traffic
flow data gathered from Transport for London (TfL) traffic cameras. The result from the simulation
will be compared to the journey time data of Blackwall Tunnel in order to determine the accuracy
of simulation.
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1 Introduction

Traffic simulation software is a very powerful tool for such requirement. In the last decade,
open-source traffic simulation has been developing at a rapid pace, such as Simulation of
Urban Mobility (SUMO) [1], an agent-based traffic simulation program developed in 2001 by
the German Aerospace Centre. In this case, SUMO will be utilised to construct a model of
Blackwall Tunnel and its connecting roads.

Simulation needs to be supported by – or at least validated against – real and accurate
traffic data. Fortunately, Transport for London (TfL) provides traffic camera footage that
can be accessed via an API [4]. Traffic camera footage can be an incredibly versatile tool for
analysis. It can be utilised for recognition of car makes and models [6]. Calculation of traffic
flow count from camera footage has also been carried out [5]. Therefore, TfL traffic camera
footage will be used to generate traffic data for the simulation in this paper.

2 Case Study

2.1 About Blackwall Tunnel
Blackwall Tunnel is one of the earliest road tunnels under River Thames in London. It
was constructed in 1897, initially with two lanes. It was doubled in 1967, and the current
Blackwall Tunnel is operating with four lanes in total [7]. The tunnel is currently one of

© Chukun Gao;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Geographic Information Science (GIScience 2023).
Editors: Roger Beecham, Jed A. Long, Dianna Smith, Qunshan Zhao, and Sarah Wise; Article No. 34; pp. 34:1–34:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chukun.gao.22@ucl.ac.uk
https://doi.org/10.4230/LIPIcs.GIScience.2023.34
https://github.com/Chukun-Leo-Gao/Blackwall_Simulation_GIScience
https://github.com/Chukun-Leo-Gao/Blackwall_Simulation_GIScience
https://archive.softwareheritage.org/swh:1:dir:0242fb03acf02ee8c6e971fb8a26814719ac1a1a;origin=https://github.com/Chukun-Leo-Gao/Blackwall_Simulation_GIScience;visit=swh:1:snp:5446a18120dd1b7b5388f904be63d892143130c7;anchor=swh:1:rev:ec4c2ad63a83323dc41a59dc9eb345423fb93bd0
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


34:2 Traffic Simulation and Validation of Blackwall Tunnel

the most congested Thames crossings in London, and a supplement, the Silvertown Tunnel,
is now under construction [3]. Therefore, trying to understand the current bottleneck of
Blackwall Tunnel will be very helpful for future traffic management of Silvertown Tunnel.

2.2 Literature Review
There have been many attempts at simulating and validating traffic flow in multiple scales,
ranging from a whole country to a single motorway. Two main methods are employed.
Numerical simulation, as name implies, uses numerical traffic models to estimate traffic flow
[8] and are usually limited to one road alone [11]. Agent-based traffic simulation is more
versatile. SUMO, as an agent-based traffic simulator, has been put in use in many projects,
from small scale simulation such as Bologna city centre [10] to scenarios on a grander scale
such as the whole of Luxembourg [2]. However, there has been no previous works on traffic
validation of a major roadway using agent-based traffic simulation, so this research fills an
important gap within the literature.

3 Methodology

3.1 Constructing the model for SUMO
According to TfL, the Blackwall Tunnel and its approach, dubbed “ Blackwall Thoroughfare”
, extends from Bow Interchange (Junction with A11) to the north to Sun in the Sands
Roundabout (Junction with Shooters Hill Road), stretching a total of approximately 6.9km.
In order to compare simulated travel time data with real data from TfL, the main road from
Bow Interchange to Sun in the Sands Roundabout, along with slip roads and connecting
junctions, should be modelled.

SUMO is supported by a package of powerful tools. In particular, it can read road
networks from Open Street Map (OSM), and import the map into NETEDIT program,
which is the built-in network editor for SUMO. For this research, Blackwall Thoroughfare
and its connecting roads are imported from OSM, and modified to increase realism, including
positions and numbers of lanes, shapes of junctions, and placement and timing of traffic
lights. The Blackwall Thoroughfare in Google Earth and the same road imported into SUMO
NETEDIT can be seen in Figure 1 below.

3.2 Extracting data from TfL Traffic Camera Footage
TfL traffic cameras, or Jam Cams as they are internally known in TfL, provide 10-second
footage at 352×288 resolution of live traffic flow. Footage is usually updated once per 5-10
minutes. The Blackwall Thoroughfare is very well covered by Jam Cams, so traffic estimation
from the cameras will be relatively accurate.

For this research, all the Jam Cam footages along Blackwall Thoroughfare between 7:30am
and 9:30am on all weekdays between 5th and 16th of December for a total of 10 days. As
Blackwall Tunnel is the most congested during weekday mornings, the simulation will try to
replicate the most stressful condition of the tunnel.

After gathering all the video footages, they are analysed using the “ virtual loop” method
[13]. Like a traditional traffic induction loop that count cars by detecting magnetic field
changes [9], the function of a virtual loop is to count passing vehicles. Firstly, an object
detection algorithm, Yolo-v7, is applied to all the Jam Cam footages [12]. Then, a virtual
loop, effectively a line drawn across the road in the video footage, is applied, and the number
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Figure 1 Blackwall Thoroughfare, Google Earth (left) and SUMO NETEDIT (right).

Figure 2 Typical frame of a TfL Jam Cam footage.

of cars that passes through the loop is then counted. In the image below, the white line
represents the virtual loop, and if the coordinate of the bounding box of a car moves across
the white line, the vehicle will be counted.

3.3 Simulation Results
After calculating average traffic flow for every Jam Cam, an Origin-Destination Matrix (OD
Matrix) is created for the network, and it serves as the input of traffic simulation in SUMO.
The ratio of different vehicle types is shown in the table below. As Blackwall Tunnel has a
13ft (4.0m) height restriction, there are almost no articulated lorries and only a few rigid
lorries crossing the tunnel.

Table 1 Ratio of vehicle types.

Types Private Car Van Lorry Articulated Lorry Motorcycle
Ratio 70% 15% 5% 0% 10%

To further increase the realism of simulation, the departure speeds of the vehicles are
randomised. The range of departure speeds of private cars is between 90% and 110% of road
speed limit, while lorries are lower (between 70% and 90% of speed limit).
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Figure 3 Jam Cams along Blackwall Thoroughfare (north/south of Thames), each camera symbol
is a Jam Cam.

Figure 4 Application of object detection algorithm and virtual loop.

4 Results and Validation

4.1 Simulation Results

As the published travel times are only available for the full length of Blackwall Thoroughfare,
only the vehicles travelling from the beginning to the end of Blackwall Thoroughfare is
accounted. As TfL journey time data only includes small vehicles, private cars and vans
are included in the travel time analysis. In the simulation, 277 cars and vans traverse the
Thoroughfare in the northbound direction and 194 traverse in the southbound direction.

In Figure 5, the horizontal axes represent departure time of vehicle after simulation starts,
and vertical axes represent time taken to traverse the entirety of Blackwall Thoroughfare.
Several phenomena can be observed from the figure. Firstly, the northbound direction traffic
takes a lot longer to traverse the Blackwall Thoroughfare, with northbound journey times
reaching over 40 minutes, while southbound journey times are within 20 minutes. This is
due to a chokepoint at the northbound entrance of Blackwall Tunnel, where three lanes of
traffic merges into two. This chokepoint can propagate congestion for more than a mile.
The simulation replicates the congestion propagation, which is a positive sign that indicates
the simulation can realistically represent real life traffic phenomenon. Secondly, in both
northbound and southbound direction, the journey time first remains low, and then gradually
increases as simulation progresses. This also happens in real life. During the first several
minutes of peak hour (around 7am), the traffic increases drastically, causing congestion.
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Figure 5 Journey time with regards to departure time in northbound and southbound direction.

4.2 Data Analysis and Validation
TfL has ceased publishing road journey time data since 19th of May 2021, several days after
the easing of the last lockdown. Pre-Covid data, taken from the workdays of the first week
of December 2019 (2nd – 6th), will also be provided for comparison. Moreover, TfL provides
data for 90th percentile travel time of Blackwall Tunnel, albeit the data was published in
2017. Although it is slightly too outdated for this research, it has been included as a third
point of validation.

Table 2 Comparison of simulation data and TfL journey time data.

Travel Time Unit: Minutes Average Standard Deviation 90th percentile
Simulation
(December 2022)

Northbound 26.8 8.8 39.3
Southbound 11.9 2.5 15.0

TfL Data
(May 2021)

Northbound 23.7
Southbound 8.6

TfL Data
(December 2019)

Northbound 23.9
Southbound 10.4

TfL Data, 90th
percentile (2017)

Northbound 52.9
Southbound 12.9

Apart from travel time, speed is another measurement for traffic simulation. Although
TfL does not provide speed data to validate against, it is a better indicator for congestion,
and the distribution of speed can help visualise driver behaviour in the simulation. The
average speed and 90th percentile for northbound and southbound directions are shown in
the table below, and the distributions of northbound and southbound speed are shown in
Figure 6.

5 Discussion of Data

The simulation corresponds quite well with TfL data from 2019, but less so with data from
2021. The average travel time deviates from 2019 data by 0.4 standard deviation (12%) in
northbound direction, and 0.6 standard deviation (13%) in southbound direction. For the
90th percentile, simulated value is 35% lower than the real value in northbound direction,
and 14% higher than the real value in southbound direction.
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Table 3 Speed distribution of Blackwall Thoroughfare (lower speed indicates longer journey
time).

Speed Unit: mph Average Standard Deviation 90th percentile
Simulation
(December 2022)

Northbound 12.1 5.9 20.4
Southbound 22.1 5.0 30.1

Figure 6 Histogram of northbound and southbound average speeds, with red dashed lines denoting
the average.

Some insights can be uncovered from the journey time data. First of all, the simulation
result is closer to December 2019 than May 2021, showing that the vehicle traffic on the
Blackwall Thoroughfare has not yet recovered in May 2021, but has since returned to or
even exceeded pre-Covid level in December 2022. Secondly, although the real averages are
well within one standard deviation from the simulated values, the overestimates, which
are over 10% in both directions, cannot be ignored. This discrepancy can be explained
by several factors: TfL Jam Cam data comes in 10-second clips, and can be easily biased.
It is possible that by using multiple short clips, traffic flow is overestimated. Also, some
important interchanges (e.g., the interchange with Devas Street and Twelvetrees Crescent,
see Figure 7) are not covered by any TfL Jam Cams, and traffic flow through the ramps
could be overestimated.

Although the 90th percentile data is very old, it can still provide some valuable knowledge.
The percentage of overestimate in southbound direction (14%) is similar compared to
that of average travel time (13%), meaning the discrepancy might be caused by the same
underlying reason. Meanwhile, the simulation severely underestimates the 90th percentile in
the northbound direction. It can be caused by accidents in the northbound direction: the “
3 into 2” merging at the northbound entrance of Blackwall Tunnel have caused quite a few
rear-end collisions in the past year, and accidents can cause further delays. The simulation
does not account for accidents, and thus underestimates travel times in extreme cases.
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Figure 7 No Jam Cams at the interchange with Devas Street and Twelvetrees Crescent.

Some information could also be gleaned through histograms of average speed. The
northbound average speed follows a long tail distribution, with three quarters of cars fall
below average speed. Higher speeds correspond to earlier departures, prior to the formation
of chokepoint at the northbound entrance of Blackwall Tunnel. However, in the southbound
direction, less than 60% of cars fall below average speed, indicating that there is hardly
any “ early start advantage” on the southbound direction, as there are no chokepoints. This
discrepancy is already visible in Figure 5, but Figures 6 and 7 makes it much clearer.

6 Conclusion

In this paper, the Simulation of Urban Mobility (SUMO) tool is used to model the Blackwall
Thoroughfare, and the results correspond reasonably well to the data provided by Transport
for London (TfL). The simulation slightly overestimates the journey times by approximately
10%, but are well within one standard deviation. This is likely due to the short length of
Jam Cam videos and improper Jam Cam coverage. One key gist of this paper is that a large
amount of data needed for an accurate agent-based simulation. Without a full picture of the
Blackwall Thoroughfare, the simulation will inevitably deviate from reality.

In the future, the author plans to obtain longer videos and videos from junctions without
Jam Cam coverage. The footage will be used to determine the traffic within each junction,
calculate speed and acceleration distribution, and observe driving behaviour such as lane
changes. By incorporating these elements into the simulation, each car agent will become
more heterogeneous, thus better mimicking behaviour of real-life drivers. It is hoped that
increased heterogeneity will result in a more realistic simulation result.
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Abstract
Large-scale datasets of building footprints are a crucial source of information for a variety of efforts.
In 2023, the general public benefits from open access to multiple sources of building footprints at
the country scale or larger, such as those produced by Microsoft and Google. However, none of
the available datasets have attained complete global coverage, and researchers and analysts may
need to combine multiple sources to assemble a complete set of building footprints for their area
of interest or choose between overlapping sources, requiring an understanding of the differences
between different building sources. This paper presents a method to closely examine the quality
of different building footprint sources by matching corresponding buildings across datasets, using
building footprints in Ethiopia published by Microsoft and Google as an example set.

2012 ACM Subject Classification Computing methodologies

Keywords and phrases Open data, Building footprints, Data comparison

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.35

Category Short Paper

Acknowledgements The author gives thanks to Daniel Adams and Jessica Moehl for their thoughtful
review and advice.

1 Introduction

Among many data resources characterizing the built environment, building footprints have
proven to be extremely useful for a wide variety of purposes, from general public use mapping
services like OpenStreetMap, to population modeling efforts such as WorldPop and LandScan
[10, 1, 11]. At large scale, these building footprints are typically derived from satellite
imagery via automated machine learning models, e.g. [14, 13, 12, 8, 5], or using volunteers
to manually map out building footprints as in the case of OpenStreetMap [11].

Microsoft and Google have both released expansive datasets of building footprints for
use by the general public, providing researchers and analysts with massive datasets covering
multiple continents and growing. In addition to their 1.2 billion building dataset covering
Europe, much of the Americas, Africa, and Asia, Microsoft has released several independent
country-scale datasets, such as the 2018 dataset for the United States [8]. The Google
Open Buildings dataset began with a near-complete mapping of buildings in Africa, and has
since expanded to parts of Asia and the Americas to include 1.8 billion buildings [5]. Both
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Microsoft and Google identify buildings using convolutional neural network-based semantic
segmentation models to classify pixels in high-resolution satellite imagery as building or
non-building, and then generate building footprint polygons from the positively classified
pixels [8, 5, 12].

Other large-scale datasets exist as well, such as EUBUCCO v0.1, which aggregates
and harmonizes data from 50 sources to build a dataset of over 200 million buildings for
the European Union [9]. OpenStreetMap utilizes a vast number of volunteer analysts to
manually map out buildings, providing a good alternative to machine learning-based datasets,
albeit very labor intensive to develop and ensure quality, and often lacking in completeness
[2, 15, 3, 6].

While all these datasets provide an excellent data resource, they vary in quality and
completeness, sometimes requiring multiple sources to be used to completely cover an area of
interest. In order to effectively use and integrate data from different sources, effort must be
made to understand and account for systemic differences between building footprints from
each source. This study presents a framework for comparing one dataset against the other
based on matching building footprints from Microsoft and Google.

2 Methods

Study area

Two small areas of interest (AOIs) were selected: one from a densely built urban area and
another from a low-density rural area. The urban AOI is in the eastern part of Addis Ababa,
Ethiopia’s capital city, covering roughly 108 hectares and including a good representation of
building types found throughout the city. The rural AOI is located in the Amhara region,
about 175 kilometers northeast of Addis Ababa, and is dominated by agricultural land with
small villages and clusters of buildings scattered about. Examples of the settlement patterns
in the AOIs can be seen in the imagery in Figure 1. Like many areas in the world, these
AOIs are relatively data poor, with little to no data available other than machine-generated
datasets. These two contrasting areas were chosen to evaluate the datasets in a variety of
conditions, since settlement patterns heavily differ between urbanized and rural areas, placing
different demands on building extraction models. Although small, these AOIs provide a good
proof of concept in anticipation of larger-scale comparison efforts.

Data

Building footprints data were sourced from Microsoft’s Global Building Footprints and
Google’s Open Buildings datasets. In addition to footprint geometry, Google provides a
confidence value with each footprint, along with guidelines on suggested confidence thresholds
to achieve 80%, 85%, or 90% precision. This confidence value allows Google to include many
more geometries in their data, many of which may be false detections that can be filtered
out using the prescribed confidence thresholds, especially in areas where natural building
materials are common and buildings can often be confused with rocks and other landscape
features [12]. For this study, we only used those geometries that meet the 90% precision
confidence threshold. Microsoft does not report confidence values, but reports that their
data achieves 94.4% precision in Africa. Microsoft and Google both report roughly 70%
recall [8, 5].
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Figure 1 Typical settlement patterns and building footprints in the two study areas, with the
urban area on the left and the rural area on the right, overlaid on Google Maps satellite imagery [4].

Comparison

This study seeks to compare matching building footprints from both Microsoft and Google.
As such, the initial step is to pair each footprint in one dataset to the foorprint(s) that
represent the same building in the opposite dataset. For each building in one dataset, matches
were identified by identifying all footprints in the opposite dataset that overlap by at least
30% of the area of the smaller geometry, using a similar minimum overlap threshold to Fan
et al. 2014 [3]. Individual building footprints may have multiple matches, especially in
dense urban areas, where the Microsoft and Google models may disagree on where to divide
buildings that are adjacent or have complex, disjointed roofs.

Matched buildings were compared based on area differences and the number of matches
found in the other dataset. The number of matches describes the semantic similarity of
building detection, or the models’ agreement on how to divide complex and adjacent buildings,
and can be expressed as a ratio of the number of building footprints in one dataset to the
number of corresponding footprints in the other. Possible semantic similarity ratios include
1:1 similarity, where a building matches with exactly one footprint footprint in the other
dataset, 1:0 if there is no match, 1:n if one building has multiple matches, m:1 if multiple
buildings match one building, or m:n, where multiple buildings match with multiple other
buildings [3]. In this study, only 1:1 and 1:n similarity ratios were considered, as other ratios
demand a more complex analysis beyond the scope of a short paper, but are important to a
complete and thorough examination of the differences between these two sources.

Area comparison is straightforward, taking the median area difference of corresponding
footprints between the two datasets, as well as the percentage of buildings with a statistically
significant difference from their counterpart in the opposite dataset. A threshold of 1.96
deviations from the median was used to identify values significantly different from the median.
Median absolute deviation (MAD) was used to quantify data dispersion as it provides a
much more intuitive description of data deviation than the traditional standard deviation [7].

In addition to metrics describing matched building footprints, aggregated statistics
describing total number of buildings, percentage of buildings with at least one match, and
total and average building area were used to further compare datasets and contextualize
statistics of matched buildings.

GISc ience 2023



35:4 Comparing Microsoft and Google Open Buildings

3 Results

Aggregated statistics

Aggregated statistics shown in Table 1 reveal differing trends for the urban and rural study
areas. In the urban area, Microsoft produced fewer, larger building footprints with greater
total area, while Google produced more, smaller footprints covering less total area. In both
datasets, the majority of buildings had at least one matching footprint.

In the rural area, Microsoft produced far fewer footprints than Google, totalling just 58%
of the total area of Google. However, less than half of Google’s buildings had a match in
Microsoft, whereas 72.5% of Microsoft’s buildings had a match. In addition, both produced
similar sized footprints on average.

Table 1 Aggregated statistics of each sample set in both urban and rural study areas.

Aggregated Statistics
Dataset Total buildings Percent matched Total area (ha) Mean building

area (m2)
Microsoft (Urban) 2,628 66.67 35.03 133.28
Google (Urban) 3,194 72.94 21.68 68.86
Microsoft (Rural) 1,942 72.50 7.02 36.13
Google (Rural) 3,094 46.19 12.11 39.13

Matched building statistics

In the urban area, Google buildings tended to be smaller than their matches in the Microsoft
dataset, with a very high MAD, and very few buildings with more than one match, while
Microsoft buildings had a higher average number of matches. Both datasets contained similar
percentages of buildings with an area significantly different from the median difference.

In the rural area both Microsoft and Google had very similar results, with few buildings
matching with more than one other, and Microsoft buildings running slightly smaller than
their Google counterparts. MAD for both were nearly identical and far lower than in the
urban area. Similar to the urban area, Microsoft buildings had a slightly higher percentage
of buildings with a significant area difference.

Table 2 Statistics comparing buildings with their matched counterparts in the opposite dataset.

Matched Area Statistics
Dataset Median area dif-

ference (m2)
Area Difference
MAD (m2)

Percent signific-
ant difference

Mean number
of matches

Microsoft (Urban) 15.96 42.13 15.60 1.39
Google (Urban) -62.47 131.86 10.48 1.06
Microsoft (Rural) -2.32 6.65 16.48 1.02
Google (Rural) 2.03 6.55 10.63 1.00

4 Discussion and Conclusion

In the rural study area, matched buildings are remarkably similar, however the aggregated
statistics show that Google detected far more buildings, and thus greater total building area.
Although many of these buildings have no match in the Microsoft dataset, both datasets
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report at least 90% precision and roughly 70% recall, indicating that this discrepancy is most
likely predominantly due to different imagery dates and new construction, allowing Google
to detect buildings that simply did not exist in the imagery used by Microsoft [5, 8]. This is
supported by inspection of Google and Bing satellite maps, with Google imagery appearing
to be more recent.

In the urban study area, matched area differences in both datasets show large dispersion,
likely due to difficulty in matching the correct buildings with one another. Correctly matching
buildings becomes very difficult where imagery is misaligned or models disagree on where to
divide and separate buildings. This can be seen on the left side of Figure 1, where overlapping
footprints are often very different, as opposed to the rural area on the left where they are very
similar. Microsoft tends to generate larger footprints that may encapsulate multiple buildings
under a single footprint, while Google tends to break buildings up into smaller polygons,
potentially dividing a single complex building into multiple parts. This led Microsoft to
generate a larger total building area with fewer buildings, which can be seen Table 1. This
discrepancy in polygonization also leads to poor matching results, as small Google footprints
may match with a large Microsoft footprint that may completely envelope several Google
buildings, leading to the large area difference and dispersion shown in Table 2.

Conclusions

By examining individual building footprints, one can gain a much more in depth understanding
of the differences between two data sources that both seek to describe building footprints.
This study demonstrates a framework for evaluating differences between two similar sets
of polygons, which is crucial for integrating data from multiple sources. It is important
to note that neither of these datasets can be considered absolute truth, and rather than
determine accuracy, this workflow is designed to characterize differences to assist analysts
in integrating or choosing between multiple available data sources. Analysis shows that in
the rural area, the Microsoft and Google datasets are very similar where they are able to
detect the same buildings, but it is likely that differences in imagery dates result in Google
containing additional recently constructed buildings [5, 8]. Differences in the urban area
are not likely due to imagery differences, but rather how the models define and separate
buildings, as well as difficulty in matching footprints in dense urban areas.

This paper shows an effective method for comparing buildings datasets based on matched
footprints in less dense areas, but a more refined matching strategy is needed for an appropriate
building-level comparison in highly dense urban areas with complex building patterns. Goals
for future work include further development and improvements on the building matching
strategy, scaling to larger areas such as regions or countries, and incorporating other building
morphology characteristics in addition to area to gain a better understanding of how these
different sources characterize the same buildings.
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Abstract
Characterisation of the urban expansion processes using time series of binary urban/non-urban land
cover data is complex due to the need to account for the initial configuration and the rate of urban
expansion over the analysed period. Failure to account for these factors makes the interpretation of
landscape metrics for compactness, fragmentation, or clumpiness problematic and the comparison
between geographical areas and time periods contentious. This paper presents an approach for
characterisation using spatio-dynamic modelling which is data-centred using a process based model,
Bayesian optimization, cluster identification, and maximum likelihood classification. An application
of the approach across 652 functional urban areas in Europe (1975-2014) demonstrates the consistency
of the approach and its ability to identify spatial and temporal trends in urban expansion processes.
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1 Introduction

Urban expansion along with climate change is one of the major global challenges, affecting all
pillars of sustainable development. Past processes of urban expansion are often characterised
in terms of composition, for example by the rate of growth of built-up areas. However, it is
also of relevance to understand the spatial structure, i.e. the spatial configuration and its
process of change. In particular the compactness of urban areas is consequential as it affects
the quality of both the natural (e.g. fragmentation of habitats) and urban (e.g. transport
demand, walkability) environment.

Commonly, as in this paper, the source data for analysis of urban expansion is multi-
temporal raster data classified into binary urban/non-urban classes. The methods that are
widely used for the characterization of urban configuration include landscape metrics that
were largely developed and applied in the field of landscape ecology. These metrics include the
dispersion index, clumpiness index, fractal dimension and compactness index. These metrics
can characterize temporal change when applied cross-sectionally for multiple moments in
time. Few metrics exist that take a longitudinal perspective and characterize changes over
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time. Notable exceptions are the Landscape Expansion Index[3], which measures to what
extent new urban land is adjacent to existing urban land and the classification of change
events as infill, edge expansion, or leapfrogging[8].

The suitability of the landscape metrics to describe urban expansion processes is limited:
the same observed changes in landscape metrics may be the result of different processes;
Furthermore, the same process will have different effects on landscape metrics dependent
on the initial configuration as well as the duration over which the processes are active.
This paper investigates an alternative approach to characterizing urban expansion processes.
The rationale is to characterize the urban expansion that occurs over a given period by
the simulation model that best describes the observed changes. The initial configuration
is exogenous to the model, as is the total area of expansion. Hence, the model – and
classification – are exclusively about the change in urban configuration. The urban expansion
model used is the recent model by Yu et al. [6] as is the clustering of parameter sets into
four growth modes ranging from compact to dispersed [7]. This current paper extends this
work by applying the classification method to 652 functional urban areas (FUAs) in OECD
countries within Europea over the periods 1975-1990, 1990-2000 and 2000-2014. For a sample
of FUAs the characterization will be compared to the well-established metrics of fractal
dimension (FD)[2] and dispersion index (DI)[5] .

2 Methods and data

The model is a Constrained Cellular Automata urban expansion model. It is dynamic in
the sense that it starts from an initial urban configuration and then steps through time to
incrementally allocate new urban land to raster cells. The model takes the total urban land at
each moment in time as an exogenous constraint. The model represents complex dynamics as
the spatial configuration of existing urban land is the main factor determining the locations
where new urban expansion takes place, causing a process of self-organisation. With just
four parameters, representing processes of agglomeration and preservation of natural capital
it is one of the most concise urban expansion models. The use of the model to characterise
urban expansion patterns goes through several stages:
1. The first stage is calibration using a stochastic method based on Markov chain Monte

Carlo with approximate Bayesian computation. For each FUA and time period it produces
twenty different parameter sets representing the uncertainty of the calibration. Yu et
al. [7] estimated the model for ten FUA across Europe and two time periods and thus
produced 10 x 2 x 20 = 400 parameter sets.

2. In the second stage the generated parameter sets are applied to a common initial
configuration and rate of urban expansion yielding 400 simulated urban configurations.

3. In the third stage all 400 simulated urban configurations are mutually compared and
clustered into four groups based on their similarity . The four groups are considered urban
expansion modes and were labelled ’compact’, ’medium compact’, ’medium dispersed’
and ’dispersed’.

4. The fourth stage of the classification applies sample parameter sets from each of the
urban expansion modes to a single FUA over a given period. A basic maximum likelihood
classification takes place based on the urban expansion mode that most closely resembles
the observed dynamics.

This paper uses the model and parameter clusters identified before and extends the analysis
to the full set of 652 FUAs within European OECD countries. The built-up and functional
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urban area data that support the findings of this study are part of the Global Human
Settlement Layer (GHSL)[1] [4]. All the models and analyses of this study are implemented
in Python as open-source1.

3 Results and discussion

The results, as seen in Fig. 1 present classification of urban expansion processes in Europe
over time. The first period is from “0” to 1975, this classification is based on the urban
expansion mode that best represents the expansion from urban genesis (a map void of urban
land) to 1975. The results indicate that the processes that have historically shaped urban
form in Europe could best be described as compact or medium compact. From 1975 onward
however, a clear shift is visible and increasingly over time, more FUAs are becoming classified
as undergoing dispersed or medium dispersed expansion processes. This does not imply that
this shift occurred in 1975, but rather that it occurred sometime before 1975. Where in
1975-1990 58% of FUA could be classified as having a dispersed urban expansion process, in
2000-2014 this had increased to 88%. There is also a distinct spatial pattern, of more urban
and industrialized areas turning towards a dispersed process of expansion first, and more
rural areas following later.

For a sample of four FUAs we show four model realisations of urban expansion patterns
(one for each mode), as well as the observed urban expansion pattern (Fig. 2). For each
of the resulting maps the corresponding Dispersion Index and Fractal Dimension are also
calculated. The results indicate that the four urban expansion modes reflect a variability of
modelled expansion patterns that reflects actual variability across time and FUAs. The
comparison of compactness metric by urban expansion mode (Fig. 3) shows that for each of
the four FUAs individually the results are consistent, i.e. a more dispersed expansion mode is
reflected in corresponding values for DI and FD. However between FUAs the results are not
comparable: based on the metrics alone it is not possible to predict what expansion mode a
FUA belongs to. Efforts to make the metrics more comparable, by considering the relative
change of the metric over time, or by considering the relative metric value compared to that
of the compact expansion scenario, did not effectively make the results more comparable
(Fig. 3.) These results supports the assertion in the introduction that existing landscape
metrics are ill-suited to give insight in urban expansion processes when there is variation in
initial configuration or rate of expansion.

4 Conclusion

The proposed method for characterising urban expansion processes presents stark spatio-
temporal patterns of changing urban expansion processes across Europe in recent decades.
The method is complex and computationally intensive, but is more effective than widely
used landscape metrics in characterizing urban expansion processes. The reason for this is
that the simulation model based approach is inherently dynamic and independent of initial
configuration and quantity or rate of expansion. Although specifically aimed at the process
of urban expansion, the general framework should be applicable to a wider range of spatial
dynamics.

1 Available here: https://github.com/JingyanYu/LandUseDecisions
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Figure 1 Classification of urban expansion processes for FUAs in Europe over time.
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Abstract
Narratives are the richest source of information about the human experience of place. They represent
events and movement, both physical and conceptual, within time and space. Existing techniques in
geographical text analysis usually incorporate named places with coordinate information. This is
a serious limitation because many textual references to geography are ambiguous, non-specific, or
relative. It is imperative but hard for a geographic information system to capture a text’s sense of
place, an imprecise concept. This work aims to utilize qualitative spatial representation and natural
language processing to allow representations of all three characteristics of place (location, locale,
sense of place) as found in textual sources.
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1 Introduction

Narratives are a fundamental way of organizing experiences and giving them meaning.
Narrative theory privileges time by emphasizing the sequence of events, yet all narratives also
imply a material, spatial world. Narratives represent events and movement, both physical and
conceptual, within time and space. Most work to date looking at geographies within digitized
texts has focused on extracting and mapping well-recognized toponyms i.e. place names
with geographic coordinates. However, in practice, people conveniently log and share their
narrative experiences in imprecise natural language. They likely recall locations qualitatively
[6]. For instance, they would share information like “Lake Gardens is a 10-minute walk east
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of the monorail station” instead of “From latitude, longitude 3.177383, 101.7076 walk to
3.1733, 101.6959” . In such cases, qualitative and approximate spatial statements are more
useful than exact location coordinates [5].

The term “landscape narratives” describes the interaction and mutual relationship between
story and place. Place has multiple characteristics including: the location of an object
or event; the natural and built physical environment that makes up a place, termed its
locale; and sense of place, the accumulated events, actions, and memories attributed to
a location [1]. In this work, we aim to preserve the narrative structure of text data, and
move much further by incorporating geographical features that cannot be easily mapped
(“a town”, “the hills”), relative spatialities (“near to”, “20 minutes from”), and senses of
place (“picturesque”,“enclosed”). This will be achieved by combining natural language
processing (NLP) and qualitative spatial and temporal reasoning (QSTR) to extract, locate,
and contextualise imprecise information about places.

This work particularly explores the Corpus of Lake District Writing (CLDW) consists of
travel writing and tourist literature from 1622 to 1900 describing the English Lake District. It
contains 80 geoparsed texts by famous writers, such as Wordsworth and Coleridge, and works
from lesser-known writers and travel guides. The corpus portrays leisure journeys where the
aim is to describe the landscape and evoke an emotional response. It offers us the opportunity
to assess how human experiences of space are represented in writing. It has already been
extensively analysed in geographical information systems (GIS) using quantitative places [3]
[13]. Applying our methods to these texts will allow us to develop an enhanced understanding
of what semantic, grammatical, and geographical tropes can be discovered in individual
texts and entire corpora, allowing us to better understand the senses of place recorded by
individual writers and their aggregate grouping. The scope of the details provided in this
paper is limited to spatial information part of the larger work.

2 Qualitative Spatial Representation for Textual Data: Background
and related work

Spatial representation usually locates objects in a quantitative frame. Natural language,
on the other hand, offers an imprecise and vague setting. The emergence of qualitative
spatial representation (QSR) provided a systematic description of space in this domain.
It defines locations as regions, but without the need for geometric information. It uses a
common-sense level of abstraction to represent spatial knowledge in terms of connections or
spatial relationships between one region and another region. Hence, spatial relations are one
of the fundamental aspects for formal qualitative representation of space. Examples include
topological, direction and distance associations [5]. The difficulty lies in analysing textual
data to identify connections between regions, so one can perceive spatial representations that
go beyond toponyms [12].

Additionally, QSR makes use of the logical properties of relationships between entities,
enabling data consisting of entities with qualitative relationships between them to be handled
as a network of nodes and labelled links. This provides a computational representation of
qualitative data even in cases, such as geographical relationships, where specific details are
unknown [10]. In this way, it can push spatial study beyond the limitations imposed by
quantitative geographical information. Some notable and relevant studies include the work
on the analysis of the 16th century Mexican maps [10] to model complex and diverse spatial
information, including social and symbolic conceptions depicted in the maps. The study
explores the implications of qualitative spatial reasoning for historical and archaeological



E. Haris, A. G. Cohn, and J. G. Stell 37:3

research. Another interesting study [9] adopted this technique along with corpus linguistics
and NLP in humanitarian forensic research to analyze social and media releases from official
sources to gain an understanding of the death of migrants at the Texas-Mexico border. This
illustrates the utility of qualitative spatial representation in Humanitarian GIS. Semantic role
labelling [7] draws on natural language semantics for the extraction of qualitative descriptions
from text is yet another application of qualitative spatial reasoning. A pertinent study [8]
presents mapping of natural language to formal spatial representation using a two-level
approach where the first level deals with spatial role labelling and the second level maps
these arguments to formal spatial calculi.

3 Proposed Methodology

This work is part of a larger project focusing on the extraction, qualitative representation,
analysis and visualization of the CLDW [11] . Each phase of the project forms an independent
module. In this context, the proposed work will utilize QSTR to demonstrate how one
can extract a network of geographical and temporal entities and relationships combining
location, locale, and sense of place from the CLDW. The first stage is the development of an
appropriate reasoning mechanism using existing and extended qualitative spatial and temporal
calculi which refer to the sets of relationships encoding spatial and temporal semantics with
associated inference mechanisms. This stage will primarily use the annotations from the
first module which focuses on the corpus linguistics and NLP techniques for named-entity
recognition (NER) and related tasks [4]. Spatial relations can be understood from multiple,
sometimes conflicting viewpoints. Existing research [2] identifies a “user level” corresponding
in our case to the writer’s intended meaning. Two other levels in [2] are called “geometrical”
and “computational” which provide respectively an abstract mathematical denotation and
an implementation. An alternative abstract level to [2] is to specify meanings of relations
by logical formulas. As part of the first stage, we aim to develop an ontology to define
various categories of spatial and temporal entities and relations exist at the user level. The
identified entities and relations will be used to construct semantic triples. An analysis of
the meanings of spatio-temporal relationships in the corpus requires the transformation of
these extracted user-level triples to a suitable abstract level, and then to the computational
level to connect with geographical visualizations. The overlap between these relationships
and existing spatio-temporal calculi will be identified. Calculi will be designed that extend
current AI-focused work in QSTR to narratives. This will not only allow the expression of
qualitative relationships, but also those which are vague and imprecise.

In the second stage, semantic representations of narratives will be developed as networks
with locations, temporal entities and events as network nodes and spatio-temporal relation-
ships as edges, or links between nodes. This will be followed by a network analysis step
since patterns within networks will represent more complex relationships. Hence, the overall
task is to explore the extent to which existing QSTR reasoning methods are adequate to
allow deeper meanings to be extracted from these representations and design new inference
methods to allow hidden meanings and consequences to be made explicit.

3.1 Representing spatial information using QSR
This section provides details on representing spatial information using QSR. It presents an
interpretation of the different types of qualitative relations found in the CLDW as narrative
writing. The purpose here is to illustrate the complexity of describing space, which in turn
requires a range of inference mechanisms to appropriately represent respective relations.
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Hence, it is imperative to provide a non-mathematical description of the mapping from
object-entity relation to possible geometric space representation using QSR inference rules.
From the given examples, it can be realized that some of the relationships are straightforward,
while others being abstract require development of inference mechanisms. A few relations
are highly domain-specific and require background knowledge before modelling. Consider a
snippet from the CLDW related to one of the landmarks named Pooley Bridge with NER
tagging represented in figure 1 (The NER and semantic tagging system for extracting spatial
entities has been developed by our colleagues at Lancaster as part of the first module [4]).
Here, an interpretation of possible relationships and ambiguous terms is presented for a few
sentences:

▶ Example 1. From Penrith two roads lead to Pooley Bridge, about six miles distant,
which spans the Eamont just at its issue from Ulleswater. Either road may be taken, be we
recommend that which follows the Shap road to Eamont Bridge. Carleton Hall is near to it
on the left. Cross the bridge, and take the first road to the right. At this point, on the left, are
the druidical remains called King Arthur’s Round Table and Mayborough. Immediately after
crossing Pooley Bridge, the road runs along the western shore of Ulleswater to Patterdale, a
distance of ten miles; but, before proceeding along it, the tourist would do well to take a walk
of a few miles along the eastern shore, in the direction of Martindale, from several points on
which he will obtain a good view of the lake.

Figure 1 NER and semantic tagging system developed by our project colleagues I.Ezeani and
P.Rayson [4].

Sentence 1: From Penrith two roads lead to Pooley Bridge, about six miles distant,
which spans the Eamont just at its issue from Ulleswater.

QSR-based relations and interpretation:
place(penrith)
place(pb) : Pooley Bridge, pb, is both a bridge and a town, one needs to consider both,
and have two different logical names
distance(penrith, pb, about(6), miles) : approximate measurements with about(), a
reasoning mechanism could be developed for “aboutness”
road(road1) : “roads” are really “routes” since there are various roads and road segment
which constitute them
road(road2) : one could explicitly say that road1 and road2 are 6 miles long or possibly
have a rule which says that if r is a road from x to y and the distance between x and y is
z, then r must be at least z long
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end(road1,penrith) : a separate start( , ) relation would be required if road is to be
made oriented
end(road1,pb)
end(road2,penrith)
end(road2,pb) : a further statement could be added to note the implicit fact that there
are *only* 2 roads from penrith to pb
bridge(pb)
spans(pb,eamont) : some rules could be added about spanning and bridges that lets
one infer that one can get from one side to the other via the bridge, and also one can
only cross a river via a bridge or a tunnel or a ford. Moreover, all bridges span something
and have two ends
river(eamont) : not explicit in the text, requires background knowledge
source(eamont,ullswater)
lake(ullswater) : not explicit in the text, requires background knowledge

Sentence 2: Carleton Hall is near to it on the left.
QSR-based relations and interpretation:
near(carleton Hall,pb) : “near” is a vague term and one has to separately consider what
axioms/rules might apply to it in this kind of geographical context. Vague spatial terms
have received a lot of attention in the literature but without any definitive treatment.
Note that “near” is not transitive, i.e. from near(a,b) and near(b,c) we cannot conclude
near(a,c).
direction(carleton Hall, left eamont bridge,shap) : Directions provide different
frames of references. Here, a direction predicate is defined with four arguments: the
“figure” (i.e. the thing being pointed out), the direction (here left), the “ground” (i.e. the
place from where the direction is being pointed out from), and the direction the person
pointing is facing. Note that if roads have a start and an end then fourth argument is
not required. Almost certainly a number of different direction predicates for the different
situations are needed.

4 Conclusion

This paper presents a small part of a larger research project which aims to uncover spatial
and temporal dynamics of narratives. The research will create a step-change in the way
we explore the geographies described in large textual collections by exploring how GIS and
related tools can identify, analyse and visualise qualitative senses of place alongside the
quantitative spatial information more typically used in geographical information science
(GISc).This will allow us to redefine the way that computer technologies represent place
and transform the abilities of social scientists and humanists to understand and interpret
narrative accounts about place.
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Abstract
Exascale computing can potentially revolutionise the way in which we design and build agent-based
models (ABM) through, for example, enabling scaling up, as well as robust calibration and validation.
At present, there is no exascale computing operating with ABM (that we are aware of), but pockets
of work using High Performance Computing (HPC). While exascale computing is expected to become
more widely available towards the latter half of this decade, the ABM community is largely unaware
of the requirements for exascale computing for agent-based modelling to support policy evaluation.
This project will engage with the ABM community to understand what computing resources are
currently used, what we need (both in terms of hardware and software) and to set out a roadmap by
which to make it happen.
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1 The transformative potential of exascale computing for agent-based
modelling

Exascale computing is defined as computing capable of 1018 floating-point operations per
second (FLOPS). Though instructions executed per second is of greater relevance to agent-
based modelling than purely floating-point operations, the two are approximately the same.
A recent experiment with an agent-based model conducted by the authors used 76 CPU
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days of computing time on a cluster with mean 4390 “bogomips” (“bogus” (i.e. approximate)
million instructions per second) CPUs. This is approximately 3 × 1016 CPU instructions,
which an exascale computer could theoretically complete in three hundredths of a second,
in comparison with roughly a working day (8 hours or so) on a 200 CPU high-performance
computing cluster. This is a six orders of magnitude improvement in computing time.

The potential benefits to agent-based modellers of access to exascale computing are
immediate, even based on existing practice. These would be manifested most trivially
in being able to sample models’ high-dimensional parameter spaces more densely during
calibration. Since exascale computers are massively parallel architectures, there is also
immediate potential in appropriately parallelised larger-scale simulations enabling us to
model megacities and countries with millions or billions of agents; though here there are
challenges in taking full advantage of exascale computing because of thread-blocking and
shared memory issues.

However, this huge gain in computing power has rather more revolutionary potential for
agent-based modelling than merely doing what we already do, but bigger. There are three
main activities occupying a significant time in empirical agent-based modelling. First is
assembling and preparing data; second is designing and building the agent-based model itself
and any supporting software; third is running the simulation experiments for calibration,
validation and scenario analysis and processing and visualizing the outputs. The third of
these – assuming the tools already exist – is most trivially addressed by exascale computing:
a process that takes days can be completed in a few seconds. The first two, which are less
embarrassing in duration when experimentation takes so long, then start to look rather more
embarrassing.

Squazzoni et al.’s [6] call for improvements in data sharing and modelling practice in
the early stages of the COVID crisis are no less relevant now than they were then. Though
COVID brought some of the benefits of agent-based modelling into sharp focus as authors
such as Thompson et al. [7] and Badham et al. [3] worked with policymakers to evaluate
scenarios for managing the crisis. With an existing agent-based model, data, and analysis and
visualisation tools, exascale computing could already support a creative, transdisciplinary
discussion about how to handle a developing emergency. Such a discussion would be greatly
enhanced, however, if the model could be adapted and new data brought in, as people became
aware of potential cascading consequences of their interventions. With appropriate software
and institutional support, enhancements like these could be realised, significantly improving
the attractiveness of bringing agent-based modelling in to such conversations.

2 Challenges

Existing work with high-performance computing (HPC) infrastructure in agent-based model-
ling makes it clear that realising the potential of exascale computing in the area will not be
without its challenges. These all largely pertain to accessibility. There are three main areas
to consider: technical, institutional, and cultural. Much of the following is anecdotal, but
the points will be familiar to those who have tried to access HPC to run their agent-based
models.

From a technical perspective, Alessa et al. [1] put out their “All Hands” call to create a
community of practice around social simulation and cyberinfrastructure in 2006, referring
explicitly to the fact that developing agent-based models, even on platforms such as NetLogo,
entails a learning curve that is a significant barrier to adoption of agent-based modelling in
the social sciences. Introducing a special issue of JASSS on “grand challenges” more than



A. Heppenstall, J. G. Polhill, M. Batty, M. Hare, D. Salt, and R. Milton 38:3

Figure 1 A screenshot from one of the EPSRC’s “Technical Assessment” forms to access national
computing infrastructure.

ten years later, An et al. [2] are still in a position to refer to the “steep learning curves”
(para. 3.2 – note the plural) faced by modelling novices. Accessing HPC currently involves
command-line interfaces, shell scripts, and SSH (Secure Shell Protocol) arcanery that social
scientists are not desperately keen to learn. This does not mean that they do not want to
use the technology. Their primary interest in doing so, however, is in the practical benefits
to them in the insights gained for their case study. Social scientists don’t necessarily get
their intellectual “kicks” from playing with advanced technology. This means HPC needs to
be easy to use – ideally (though impossibly) to such an extent that there is a button on the
interface of their modelling tool that says “Run this experiment on HPC”.

Institutionally, accessing HPC infrastructure is surrounded by gatekeepers, who need
forms to be filled, stipulating information that social scientists may not be in a position
to provide. For example, in the UK, national high-end computing infrastructure access is
managed by the Engineering and Physical Sciences Research Council. This is managed by
calls with deadlines2, which require applicants to complete “Technical Assessment” forms
stipulating information such as that in figure 1. From the perspective of managing the HPC,
this kind of information makes sense in that it helps with planning usage of the machines to
ensure that everyone’s needs can be met. Further, individuals running the facilities can be
extremely helpful to the first-time user in advising on how to complete these forms. However,
Polhill [5] has pointed out that agent-based modellers may not be able to provide accurate
estimates of run-time or memory demand from running the models, for sound theoretical
computer science reasons that anyone with a degree in computer science should know.

The cultural side is somewhat harder to articulate, and could be ironically phrased as
the question of whether your code is “worthy” of the very expensive computing equipment
on which you hope to run it. The social sciences suffer perennially from physics envy, but
physicists regularly use HPC as part of work on particle collision and cosmology, some even
claiming to be in search of the “mind of God” [4, p. 175]. How can the social sciences compete
with such majesty? Rather more prosaically, computer scientists are not especially excited
about “embarrassingly parallel” problems such as running models repeatedly to explore
parameter space. Massive distributed models with difficult multi-threading memory and

2 e.g. https://www.ukri.org/councils/epsrc/facilities-and-resources/using-epsrc-facili-
ties-and-resources/apply-for-access-to-high-performance-computing-facilities/
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CPU co-ordination problems that don’t break the benefits of parallelism are more interesting
to them. This is strange because they have built machines that are brilliant and hugely
efficient for the former kind of problem, but aren’t really designed to do the latter nearly so
well. Perhaps most problematically (and mundanely), however understandable it may be,
the worthiness of your code is also reflected in its efficiency – have you used the right data
structures and algorithms to reach the results of running the code with as few instructions
executed as possible? Some might simply be pleased that they’ve got a model that runs
without crashing...

3 Benefits beyond exascale

In thinking about the software, institutional and data support that empirical agent-based
modellers need to take full advantage of the potential of exascale computing, there are
opportunities to think about wider benefits to the community. By being involved in the
conversation about HPC access, and making the case for our requirements, we may be able
to break down some of the barriers described above, reaching a point whereby HPC use is
more routine in agent-based modelling work. The software developed to support exascale
agent-based modelling could also be useful for agent-based modelling on a laptop – especially
if we are somehow able provide tools that enable agent-based models to be built rapidly.3 If
there are ways of easing access to data suitable for using in empirical agent-based models,
and learning from and building on others’ experiences with doing so, then this will advance
empirical applications of agent-based models by reducing the time investment this modelling
step currently requires.
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Abstract
Spatial heterogeneity is a typical and common form of spatial effect. Geographically weighted
regression (GWR) and its extensions are important local modeling techniques for exploring spatial
heterogeneity. However, when dealing with spatial data sampled at a micro-level but the geographical
locations of them are only known at a higher level, GWR-based models encounter several problems,
such as difficulty in establishing the bandwidth. Because data with this characteristic exhibit spatial
hierarchical structures, such data can be suitably handled using hierarchical linear modeling (HLM).
This model calibrates random effects for sample-level variables in each group to address spatial
heterogeneity. However, it does not work when exploring spatial heterogeneity in some group-level
variables when there is insufficient variance in each group. In this study, we therefore propose a
hierarchical and geographically weighted regression (HGWR) model, together with a back-fitting
maximum likelihood estimator, that can be applied to examine spatial heterogeneity in the regression
relationships of data where observations nest into high-order groupings and share the same or very
close coordinates within those groups. The HGWR model divides coefficients into three types:
local fixed effects, global fixed effects, and random effects. Results of a simulation experiment
show that HGWR distinguishes local fixed effects from others and also global effects from random
effects. Spatial heterogeneity is reflected in the estimates of local fixed effects, along with the spatial
hierarchical structure. Compared with GWR and HLM, HGWR produces estimates with the lowest
deviations of coefficient estimates. Thus, the ability of HGWR to tackle both spatial and group-level
heterogeneity simultaneously suggests its potential as a promising data modeling tool for handling
the increasingly common occurrence where data, in secure settings for example, remove the specific
geographic identifiers of individuals and release their locations only at a group level.

2012 ACM Subject Classification Information systems → Geographic information systems

Keywords and phrases spatial modelling, hierarchical data, spatial heterogeneity, geographically
weighted regression

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.39

Category Short Paper

Supplementary Material Software (Source code): https://github.com/hpdell/hgwr
archived at swh:1:dir:c9c2bab2a6428b8d3b6d25a3da472653018a7fae

Text (Blog post): https://hpdell.github.io/GIScience-Materials/posts/HGWR/

Funding Yigong Hu: Yigong Hu was sponsored by the China Scholarship Council with the University
of Bristol (No. 202106270029).

1 Corresponding author.
© Yigong Hu, Richard Harris, Richard Timmerman, and Binbin Lu;
licensed under Creative Commons License CC-BY 4.0

12th International Conference on Geographic Information Science (GIScience 2023).
Editors: Roger Beecham, Jed A. Long, Dianna Smith, Qunshan Zhao, and Sarah Wise; Article No. 39; pp. 39:1–39:6

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yigong.hu@bristol.ac.uk
https://orcid.org/0000-0002-9553-6275
mailto:rich.harris@bristol.ac.uk
https://orcid.org/0000-0001-7943-9005
mailto:richard.timmerman@bristol.ac.uk
https://orcid.org/0000-0002-7305-7804
mailto:binbinlu@whu.edu.cn
https://orcid.org/0000-0001-7847-7560
https://doi.org/10.4230/LIPIcs.GIScience.2023.39
https://github.com/hpdell/hgwr
https://archive.softwareheritage.org/swh:1:dir:c9c2bab2a6428b8d3b6d25a3da472653018a7fae;origin=https://github.com/hpdell/hgwr;visit=swh:1:snp:ac6152effc869b50452be7146fa3c2f22be3c832;anchor=swh:1:rev:5cf813fe785f8c86b821acf9a930f6a1d15d79e9
https://hpdell.github.io/GIScience-Materials/posts/HGWR/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


39:2 A HGWR Model and Its BFML Estimator

1 Introduction

In statistics and data analysis, regression models are powerful tools in examining relationships
in data. However, the ordinary linear regression, as a model of global relationships, holds many
limitations in dealing with spatial data [5] because the relationship between variables may not
keep constant across the whole area. In spatial statistics, this phenomenon is called “spatial
heterogeneity” [2]. To uncover such an effect, many local-form spatial statistic methods are
proposed to discover underlying spatial heterogeneity in data [5]. The geographically weighted
regression (GWR) [3] model and its extensions are popular ones. These methods calibrate a
unique model at each location to produce spatially varying coefficients by borrowing samples
from its geographical neighbors defined by spatial distances. Shorter distance gives rise to
higher weighting. Among its extensions, the multiscale GWR (MGWR) [6, 9] has many
attractive features. MGWR specifics a unique bandwidth for each coefficient to improve the
goodness of fit and prediction accuracy [9]. The hierarchical linear model [10], is also an
important method for finding spatial heterogeneity in data of hierarchical structure. When
samples are grouped by their locations, HLM calibrates some effects for samples in each
group (called “random effects”) to fit for spatially varying relationships, whereas other effects
are treated as “fixed effects” that are constant for all groups [8].

In recent years, spatially hierarchical data have become increasingly popular in real world
analysis since samples can be naturally nested in different spatial scales. For example, in the
Biobank database [1] which consists of health information from 0.5 million UK participants,
their addresses are nested into 1km-by-1km grid cells to protect their privacy. With the
development of spatial big data and improved access to administrative data through secure
data settings, it is increasingly common to find data sets where the attributes of the sample
are available at a different geographic scale to their geographical identifiers. In spatial data
of hierarchical structures, effects of variables may work in different ways. For example, group-
level variables – that keep constant within groups – may have global or local effects, and
sample-level variables are the same. No matter which variables, the basic GWR model always
treat their effects as local ones, and estimate them by data borrowing from geographical
neighbors. When dealing with group-level variables, the repeated values increase the risk of
singular matrix. MGWR works similarly, only that it assigns variable-specified bandwidth
settings and variables of global effects will be assigned a huge bandwidth up to infinity to
estimate global effects. Fixed effects and random effects in HLM can be used to discover
global and local effects, respectively. Fixed effects can be estimated for both group-level
variables and sample-level variables. However, random effects only work for sample-level
variables, which vary among individuals as opposed to the group-level ones. Because values of
group-level variables are determined by their locations. Thus, there is no sufficient variation
to calibrate random effects for them within each group. We need a special method to properly
estimate effects of the variables with spatial heterogeneity.

In this article, we propose a hierarchical and geographically weighted regression (HGWR)
model and its estimator based on backfitting and maximum likelihood (BFML) algorithms to
solve the above-mentioned issues. This model calibrates two types of fixed effects – local fixed
effects and global fixed effects – and random effects. We conducted a simulation experiment
to ascertain whether HGWR could successfully distinguish local effects from other effects.
We also compared its performance with GWR, MGWR, and HLM.

2 Model

The HGWR model is designed for data with a spatially hierarchical structure. In a data set
with n samples divided in m groups according to their locations, the variance of dependent
variable y can be explained with the following three parts: local-fixed effects γ for variables
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G that vary with location; global-fixed effects β for variables X that are constant across the
whole area; and random effects µ for variables Z that vary from group to group. The model
for sample j in group i can be expressed as Equation 1,

yij = Giγi + Xiβ + Zijµi + ϵij (1)

where γi, βi and µi are coefficients of local fixed effects, global fixed effects, and random
effects respectively; ϵij is the remaining random error. Then this model can be written in a
matrix from as Equation 2,

y = diag {Gγ} + Xβ + Zµ + ϵ (2)

where γ = (γ1, γ2, · · · , γm),

G =


G1
G2
...

Gm

 , X =


X1
X2
...

Xm

 , Z =


Z1

Z2
. . .

Zm

 µ =


µ1
µ2
...

µm

 ,

µ ∼ N (0, σ2D), and ϵ ∼ N (0, σ2I), and Gγ here is regarded as a product of block matrices,
such that

Gγ =


G1γ1 G1γ2 · · · G1γm

G2γ1 G2γ2 · · · G2γm

...
...

. . .
...

Gmγ1 Gmγ2 · · · Gmγm

 , diag {Gγ} =


G1γ1
G2γ2

...
Gmγm

 .

In this model, coefficients γ1, γ2, · · · , γm are estimated group-by-group as for other GWR
models using weighted least squared estimation [3] with a uniform bandwidth.

A back-fitting procedure, shown in Figure 1, can be applied to estimate parameters in
this model following a similar methodical approach to [4]. In this workflow, when calibrating
local fixed effects γ̂(t) in each iteration, the algorithm can optimize the bandwidth value
via golden-selection [7] according to the CV criterion. This algorithm is very efficient and
effective in minimizing univariate functions.

3 Simulation Experiments

To evaluate the performance of HGWR and compare this model with HLM, GWR and
MGWR, some simulation experiments 2 are designed. In particular, the performance was
measured regarding the ability to properly distinguish local fixed effects from global fixed
effects under the circumstance that random effects exist.

A spatial data set of 21,434 random samples was generated that were unevenly spread
across 625 locations. The data generating process was inspired by [6]. For each data
point, four independent variables (g1, g2, x1, z1) were generated according to the standard
multivariate normal distribution. To simulate group-level spatial-related variables, the mean
of g1 and g2 at each location were substituted for the original values. Samples located
together share coefficient values. Values of the generated coefficients are shown in the first
row of Figure 2. Results of the for models are shown in other rows.

2 Please turn to https://hpdell.github.io/GIScience-Materials/posts/HGWR/ for more details.
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Figure 1 Diagram of the BFML estimator for HGWR, where RSS = (y − ŷ)T(y − ŷ) and
ŷ = Gγ̂ + Xβ̂ + Zµ̂.

In the results of GWR, spatial heterogeneity is revealed in estimates for all variables.
Although β̂1 should be constant across the study area, GWR still generate spatially varying
estimates for it. This is a kind of over-fitting from the spatial perspective. However, for
estimates of µ1, they are smoothed compared with actual values, even though the bandwidth
selected is small enough. Because the bandwidth is small, estimates for γ1 and γ2 are too
local. Consequently, there are quite a few outliers disrupting the spatial trend.

MGWR partly gets over issues of GWR by adopting parameter-specified bandwidths,
instead of a uniform bandwidth. It performs better when estimating γ1 and γ2. For global
fixed effects, MGWR still generates spatially varying estimates, but they vary more slightly
than estimates from GWR. For random effects, the results are slightly smoothed as well.
Besides, MGWR it requires a lot of computing time and memory.

In the results of HLM, there is only one estimate for β1 across the whole area as well as
estimates for µ1, the problem lies in estimates for γ1 and γ2. As they are fixed effects in
HLM, their estimates are also constant for all samples. However, spatial heterogeneity is
expected in them.
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Figure 2 Real values and estimated values.

HGWR is the final solution. For global fixed effects, it generates globally constant
estimates for all samples. For random effects, it does not smooth the estimates because they
are not obtained by borrowing points. And for local fixed effects, we can discover spatial
heterogeneity from their estimates. And it does not repeat computation for samples at each
location. Computationally, it is more efficient because it does not repeat geographically
weighted fitting at every sample within a higher-level group where models are the same. On
the dataset used in the experiment, calibrating the HGWR model only took 6.06 seconds,
which reduced the calculation time by 4 minutes compared to GWR (3.55 mins); and reduced
it by nearly 4.4 hours compared to MGWR (4.41 hours) paralleled by 48 threads. These
findings have been double-checked via repeating the experiment 100 times.
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4 Conclusion

In this article we proposed a BFML estimator for a HGWR model. Compared with HLM,
this method divides fixed effects into global and local effects. For local fixed effects, this
model applies a spatial heterogeneity assumption and estimates the effects using the GWR
method. For global fixed effects and random effects, this model adopts a similar method as
in HLM, i.e., maximum likelihood. To facilitate cooperation between the two methods, a
back-fitting procedure was developed. It is demonstrated that HGWR can properly estimate
local fixed effects, global fixed effects, and random effects simultaneously. HGWR can
successfully distinguish local fixed effects from other effect types. For local fixed effects,
spatial heterogeneity is considered as with GWR; moreover, global fixed effects and random
effects are estimated as accurately as when using HLM. Thus, HGWR can be regarded as a
successful combination of GWR and HLM. In this stage, there are some limitations remaining
to be solved, such as convergence conditions and statistical inferences. Nevertheless, with
the popularity of spatiotemporal big data, situations wherein the specific parameters for
which HGWR was optimized are becoming more prevalent, suggesting that HGWR holds
considerable promise as a useful tool for analyzing such data sets.
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Abstract
Traditional geographically weighted regression and its extensions are important methods in the
analysis of spatial heterogeneity. However, they are based on distance metrics and kernel functions
compressing differences in multidimensional coordinates into one-dimensional values, which rarely
consider anisotropy and employ inconsistent definitions of distance in spatio-temporal data or spatial
line data (for example). This article proposes a general framework for locally weighted spatial
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applied to data in any space and is not limited to geographic distance.
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1 Introduction

In recent years, analysis of spatial heterogeneity – for example, spatially varying regression
relationships – has attracted increasing interest from researchers. Among the local-form
spatial modelling methods, geographically weighted regression (GWR) [1] is popular. It fits a
unique weighted least squared model at multiple locations across a study region by borrowing
points from each location’s geographic neighbours. Extensions include geographically and
temporally weighted regression (GTWR) [2], enhancing basic GWR’s ability to model more
kinds of data. Basic GWR, on 2D spatial data sets, uses weights based on geographic
distances between samples. Extended versions may adapt the weights to incorporate other
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kinds of “distance” but are still rooted back into one-dimensional distance metrics. This
raises the problem of how to compress differences in multidimensional coordinates into a
one-dimensional distance value.

Additionally, even when the metric is simple, differences in geographic scales of different
dimensions may cause unexpected problems. This phenomenon is called “anisotropy”. For
example, the range of vertical distances is generally different from that of horizontal distances.
Consequently, when we incorporate distance in the 3D space to weight samples, relatively
large changes in heights may present very limited effects on weights (without rescaling the
vertical distances, at least). The problem is more evident when time is considered as this
is, of course, measured in units of time, not of space. They are not directly compatible.
These problems highlight the limitation of reducing multidimensional spaces into a single-
dimensional weighting based on some notion of “closeness” or least distance.

In this paper, we introduce a general framework for locally weighted geographic and other
spatial modelling based on density regression (DLSM: density-based local spatial models).
This model essentially follows the workflow of density regression [6] under a conditional
variable, but the conditional variable is restricted to the multivariate coordinates of samples
in their space. Critically, this space can be geographic, spatio-temporal, or any other kind.
It can have a dimension of any positive integer. Assuming these dimensions are independent,
the DLGM framework calculates a weight for each according to their own bandwidth and
kernel function. The product of these weights is used as the final weight to calibrate the
least-squared model at each location. This modelling method can be easily adapted to any
data of coordinates without trying to collapse the multiple dimensions into a single distance
metric in the first instance. Simulation experiments demonstrate that this method is flexible,
extensible and customisable. It can also reach higher goodness of fit than specially designed
GWR-like models that attempt to accommodate spaces and coordinate systems that are not
solely geographical.

2 Methodology

Geographically weighted regression can be expressed as Equation 1 for the sample i at
location ui,

yi = β0i(ui) + β1i(ui)x1i + β2i(ui)x2i + · · · + βpi(ui)xpi + ϵi (1)

and the estimator for its coefficients βi = (β0i, β2i, · · · , βpi) is shown in Equation 2,

β̂i =
(
XTWiX

) −1XTWiy (2)

where y = (y1, y2, · · · , yn)T is the vector of dependent variables, n is the number of samples,
X is the design matrix or independent matrix of all independent variables, ϵi ∼ N(0, σ2)
is the random error and Wi is the geographical weighting matrix for this sample. This
weighting matrix is a n × n diagonal matrix. Each diagonal element is a distance-decay
weight wij = k(dij ; b) (for j = 1, 2, · · · , n) in which dij is the distance from sample i to j, k is
a kernel function and b is the bandwidth. The basic GWR model uses straight-line distance,
Minkowski distance, network distance, or travel time [4], which are all spatial. The GTWR
model uses the spatial-temporal distance dST

ij = dS
ij ⊕ dT

ij by combining spatial distance
and temporal distance together [2]. The bandwidth can be fixed (defined by distance), or
adaptive (defined by the number of nearest neighbours).
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For DLSM, the weight wij originates as a product of weights for every dimension in the
current space, as shown in Equation 3,

wij =
m∏

h=1
wijh =

m∏
h=1

kh (dijh; bh) (3)

where m is the number of dimensions in ui, kh is the kernel function for dimension h, bh is the
corresponding bandwidth, dijh = |uih − ujh|, and uih, ujh is the coordinates in this dimension
of sample i and j. Regardless of whether they are measured as longitude, latitude, height,
time, social distance or any other measure of “closeness”, they are all feasible dimensions in
this model. The estimator of this model can be that shown in Equation 2 or another locally
weighed regression estimator.

The weighting method shown in Equation 3 operationalises multiple values of bandwidths
– one for each dimension of the various coordinate spaces. The optimization of these
bandwidths uses multidimensional minimisation of a criterion function. Theoretically, any
kinds of multidimensional minimizer without derivatives are applicable here. We choose the
Nelder-Mead algorithm [5]. The criterion function can be either the cross-validation (CV)
value or goodness-of-fit, e.g., AIC function of given bandwidth b = (b1, b2, · · · , bm), shown in
Equation 4 and Equation 5 respectively,

CV(b) =
n∑

i=1

[
yi − xiβ̂−1(b)

]2
or CV(b) =

n∑
i=1

∣∣∣yi − xiβ̂−1(b)
∣∣∣ (4)

AIC(b) = 2n ln σ̂ + n ln 2π + n

[
n + tr(S)

n − 2 − tr(S)

]
(5)

where β̂−i(b) is the coefficient estimates for sample i without the sample itself, xi is the i-th
row of matrix X, S is the “hat matrix” in which each row si equals to xi(XWiX)−1XWi.

3 Experiments

We carried out three experiments, generating simulation data sets to demonstrate how DLSM
works 2. We also calibrated a corresponding GWR-family model in each experiment to
provide a comparison. In each experiment, we use root mean squared error (RMSE) or mean
absolute error (MAE) to evaluate the precise of estimates, which are defined in Equation 6,

RMSE =
n∑

i=1
(ri − ei)2, MAE =

n∑
i=1

|ri − ei| (6)

where n is the number of estimates, ei is the i-th estimate, ri is the corresponding real value.
We first generated a 2D data set of Cartesian coordinates. Anisotropy was preserved in

the coefficients. Bandwidths optimized by DLSM are 11.4% (570 neighbours) in the E-W
direction and 0.7% (35 neighbours) in the N-S direction. Coefficient estimates and their
RMSEs are shown in Figure 1. Whereas DLSM helps identify anisotropy, it is missing in
estimates from a basic GWR model because the only bandwidth value optimized by GWR is
16 nearest neighbours (regardless of direction). It also has a stronger risk of overfitting as
the bandwidth is too small. By contrast, DLSM can restrain overfitting in dimensions where
spatial heterogeneity is weaker.

2 Please turn to https://hpdell.github.io/GIScience-Materials/posts/DLSM/ for more details.
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Figure 1 Results of GWDR and basic GWR with two-dimensional spatial data.

Four 3D data sets of Cartesian coordinates representing space-time location (u1, u2, u3)
were generated to compare DLSM and GTWR. In the former two data sets, coefficients
were generated by exp(u3). While in the latter two data sets, an autoregression model on
u3 was a part of all coefficients. The space-time distance metric use by GTWR was set to
dST

ij =
√

λ(∆u2
1,ij + ∆u2

2,ij) + µ(∆u2
3,ij). Parameters λ and µ in this space-time distance

metric were optimized according to goodness of fit. Coefficient estimates and their RMSEs
are shown in Figure 2. According to the results, DLSM can reduce the mean of absolute
estimation error by 10%-50%, especially when coefficients are temporally autocorrelated. The
multiple bandwidths attach actual meaning to the parameters λ, µ; they have a real-world
correlate, unlike the root of sum of squared meters and seconds (

√
m2 + s2).

A 4D data set was also generated to simulate flow data. DLSM was compared with
GWR. For flow data, each flow can be represented by a set of 4D coordinates (u, v, α, l) in
which u, v represents the spatial location of its starting point, α represents its direction, and
l represents its length. The distance metric used by GWR was set to the similarity between
flows Oi(uOi, vOi) → Di(uDi, vDi) and Oj(uOj , vOj) → Dj(uDj , vDj) [3], as shown in

dij =

√√√√[
(uOi − uOj)2 + (vOi − vOj)2

]
+

[
(uDi − uDj)2 + (vDi − vDj)2

]
lilj

(7)

in which li is the length of flow −−−→
OiDi. Coefficient estimates and their RMSEs are shown in

Figure 3. Results show that DLSM works well for spatial line data even without defining
distance metrics. It performs better than GWR according to the mean of estimation
errors, but a few outliers exist in estimates. GWR selected a much smaller bandwidth (173
neighbours). Thus, the risk of overfitting reappears.
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(a) Coefficient estimates and
real values, the first data set.
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real values, the second data set.
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(c) Coefficient estimates and
real values, the third data set.
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(d) Coefficient estimates and
real values, the fourth data set.
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Figure 2 Comparison between real value and estimations of coefficients given by GWDR and
GTWR for ordinary spatial and temporal data.
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Figure 3 Results of GWDR and basic GWR with four-dimensional spatial data.

4 Conclusion

This paper introduces the DLSM model as a framework for estimating local regression
models, such as GWR and GTWR. It offers more flexibility because of its three alterable
parts: a space where samples exist, a set of kernels selected for every dimension and a
locally weighted regression method. Simulation shows that DLSM can be applied to many
kinds of spatial data without specially defined distance metrics, such as spatio-temporal
data and spatial interaction data. It can also help tackle the effects of anisotropy because
it has, in effect, a multidimensional bandwidth and decay function, measuring “closeness”
in multiple dimensions simultaneously. In the future, researchers no longer need to design
distance metrics to bring together, in a rather ad hoc way, different types of space and
coordinate systems into the distance decay function. Assigning a weighting scheme to each
of the dimensions and then pooling across them is suggested as a better alternative.
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Abstract
Researchers are constantly leveraging new forms of data to understand how people perceive the
built environment and the collective place identity of cities. Latest advancements in generative
artificial intelligence (AI) models have enabled the creation of realistic representations of real-world
settings. In this study, we explore the potential of generative AI as the source of textual and
visual information in capturing the place identity of cities assessed by filtered descriptions and
images. We asked questions on the place identity of a set of 31 global cities to two generative AI
models, ChatGPT and DALL·E2. Since generative AI has raised ethical concerns regarding its
trustworthiness, we performed cross-validation to examine whether the results show similar patterns
to real urban settings. In particular, we compared the outputs with Wikipedia data for text and
images searched from Google for images. Our results indicate that generative AI models have the
potential to capture the collective features of cities that can make them distinguishable. This study
is among the first attempts to explore the capabilities of generative AI in understanding human
perceptions of the built environment. It contributes to urban design literature by discussing future
research opportunities and potential limitations.
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1 Introduction

Place identity, often referred to as properties that distinguish a place from others [12, 11], is
an important concept in the fields of urban design, geography, tourism, and environmental
psychology. As a sense of place that is shaped through diverse human experiences, recognizing
such place characteristics has been crucial for understanding human-environment interactions
[4, 9, 10]. Yet, measuring and representing place identity has been a challenging task due
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to the intrinsically subjective nature of place identity. Conventional studies attempted to
capture place identity through direct observation, questionnaires, surveys and interviews
[4, 10]. In the past decade, researchers have been leveraging new data sources to understand
the collective place identity of cities. In particular, two data formats, texts [4, 2, 3], and
images such as street-level images and geotagged photos [16, 17] have been effective in
revealing place identity information. Urban planners and designers have benefited from these
emerging data sources to explore subjective urban experiences and promote data-driven
decision-making processes in practices [10].

Recently, advancements in generative artificial intelligence (GenAI) models have received
significant attention due to their capabilities to generate realistic text and image output
based on natural language prompts. ChatGPT and DALL·E2, for instance, have been
highlighted as powerful tools with the potential for a wide variety of applications in different
domains such as education, transportation, geography, and so forth [6, 7, 8, 14]. Also, there
have been attempts in urban studies to evaluate design qualities of the built environment
scenes and obtain optimal land-use configuration through automated urban planning process
[13, 15]. Despite its promise in urban science, the use of generative AI also faces common
ethical concerns such as misinformation and bias, falling short in depicting composition
and locales for specific conditions [5]. Therefore, there remains needs for a more robust
quantitative examination and analysis of how well they represent place-specific contexts
toward trustworthy outputs in different domains.

To this end, since generative AI models are offering new ways to collect textual and visual
information that may represent realistic human responses, this study aims to examine the
potential of generative AI as new tools for understanding place identity in different cities.
In this endeavor, we address two research questions: (1) Can generative AI models identify
place identity of cities? and (2) How reliable are the generated outputs when compared with
real-world settings? This study is expected to guide urban researchers in using such tools to
generate large volumes of data through a more efficient and cost-effective approach, as well
as to study place identity in a data-driven manner, which can facilitate our understanding of
urban perception.

2 Methodology

We present a computational framework of this study in Figure 1. The framework involves
two datasets that we created to investigate the potential of generative AI models in capturing
the place identity of 31 global cities. The first dataset is a text-based dataset that we
generated using ChatGPT to understand place identity, using the following prompts: “What
is the place identity of {city}? Give me in ten bullet points”. To ensure consistency and
comparability across different cities included in our dataset, we limited the responses to ten
bullet points. By doing so, the generated outputs are concise and structured, and can easily
be analyzed and compared. The second dataset is an image-based dataset that we collected
using DALL·E2 to generate visual representations of streetscapes in different cities. The
prompts used to achieve this are the following: “What is the place identity of streetscapes
of {city}”? We generated 10 images for every city, where each image has a size of 256*256
pixels. By combining the image-based dataset with the text-based dataset, we aim to provide
a comprehensive and multi-modal understanding of the place identity of each city.

We further collected two ground-truth datasets including a text dataset from Wikipedia
and an image dataset from Google search. Despite the high performance of generative
AI tools in generating realistic outputs, concerns regarding their reliability and accuracy
have emerged. Thus, we performed the cross-validation to compare the similarities among
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Figure 1 The computational framework of this paper.

these datasets to evaluate whether the results provided by generative AI can be trustworthy.
For text similarity, we first segmented the Wikipedia corpus into individual sentences and
converted each sentence from both datasets into word embeddings. This was achieved by
using a sentence transformer BERT model based on a modified version of MiniLM. Then, we
measured cosine similarity for sentence embeddings from ChatGPT responses and Wikipedia
corpuses to assess the relevance between the two datasets. We also created word cloud images
of each city for a visual comparison between topics covered in ChatGPT and Wikipedia
texts.

For image similarity, we measured the Learned Perceptual Image Patch Similarity (LPIPS)
[18] to assess the perceptual similarity of images generated by DALL·E2 and collected via
Google search. The LPIPS metric evaluates the distance between different image patches
and produces scores ranging from 0 to 1, where a lower score indicates greater similarity, and
vice versa. Subsequently, we identify the top 3 similar Google images for each DALL·E2-
generated image based on similarity scores. These analyses allow us to validate whether the
results generated by generative AI models are consistent with the real-world urban settings
of each city, providing valuable insights for urban design research and practice.

3 Results

3.1 Results of place identity generated by ChatGPT
To validate the accuracy and reliability of the data generated by ChatGPT, we conducted
cross-validation with Wikipedia. This involved computing the similarity scores between
sentences from ChatGPT and Wikipedia, and presenting visual comparisons between pairs of
word clouds. Figure 2 illustrates the validation results. Figure 2(a) shows several examples
of high sentence similarity scores. For example, for the city of Madrid, both Wikipedia and
ChatGPT-generated sentences had similar descriptions of the climate, resulting in a very
high similarity score of 0.94. However, as shown in Figure 2(b), the comparison between
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ChatGPT-generated sentences and the introduction from Wikipedia resulted in a range of
similarity scores, reflecting both similar and dissimilar descriptions of place identity. Such
disparities may suggest that there are limitations to the effectiveness of generative AI models
in capturing the nuances and complexities of place identity. Last, Figure 2(c) illustrates two
cases of word clouds analysis created for ChatGPT responses (left) and Wikipedia (right).
While the introduction of Madrid in Wikipedia covered generic keywords such as spain,
spanish, centre and capital, we found that ChatGPT captures the full spectrum of place
identity components as defined in fields of environmental psychology and geography [1, 12].
For instance, topics including park and garden refer to the “physical settings” of Madrid,
festival and shopping represent the “activities” that take place, and historic and climate
describe the subjective “meanings” that contribute to the place identity formation in the
capital of Spain. In the case of Blantyre, the most notable keywords observed in the word
cloud of Wikipedia corpus are Malawi and centre. Likewise, the word cloud generated from
ChatGPT response also features the same keywords, from which we infer that ChatGPT
identifies the place identity of Blantyre in relation to its significance within the national
context of Malawi.

Figure 2 Text similarity results. (a) Examples of high text similarity scores between Wikipedia
introductions and ChatGPT responses on place identity; (b) Scatter chart of the distribution of
cosine similarity scores between sentences from ChatGPT responses and Wikipedia introduction
corpuses; and (c) Word cloud comparison for Madrid and Blantyre cases.

3.2 Results of place and urban identity generated by DALL·E2
Similar to the comparison between ChatGPT-generated sentences with Wikipedia corpus,
we also compared images generated by DALL·E2 and those collected from Google search.
This was conducted to verify the reliability and generative capability of the text-to-image
model in producing realistic representations of place-specific scenes of cities. For this purpose,
the image similarity was measured using LPIPS metric to assess the perceptual similarity
between AI-generated and real-world images that match well with human judgment. Figure 3
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presents the image similarity results. Overall, as shown in Figure 3(a), Almaty, Blantyre,
Lisbon and Sydney were cities that reported the highest perceptual similarity with LPIPS
value being approximately 0.65. In particular, Lisbon presents relatively consistent low
similarity scores within the range of 0.65-0.82. Figure 3(b) shows two examples of DALL·E2
generated images for Lisbon’s place identity and their top three matching Google image
search results. It is evident that the generative AI effectively captured the low-rise residential
buildings with vivid yellow colors in Lisbon, resulting in a low LPIPS score (high similarity).
These suggest that, despite variability across cities, DALL·E2 can generate more reliable
images of urban scenes for certain cities that reflect their place identity.

Figure 3 Image similarity results. (a) Distribution of LPIPS scores between DALL·E2 generated
images and Google image by cities; and (b) Low LPIPS score examples for Lisbon case.

4 Conclusion

In this study, we presented text and image similarity results between responses from two
generative AI model, ChatGPT and DALL·E2, and corresponding ground-truth data to
test the reliability of their outputs for representing place identity of different cities. Through
examining the two datasets, we find that, in many cases, they generated text description or
realistic images that represent salient characteristics of cities. In particular, text similarity
scores aligned closely with similarities observed in sentence-by-sentence comparison and word
clouds of ChatGPT responses and Wikipedia corpuses. This study is among the first to
examine the capabilities of generative AI tools in representing the place identity of cities. The
overall framework is expected to aid planners and designers in utilizing such tools to identify
salient characteristics of cities for sustainable placemaking and city branding purposes.

Despite the contributions of this study, we discuss potential limitations and research
opportunities to be addressed in future studies. First, a portion of DALL·E2 generated
images is still considered more generic than place-specific, which may not fully reflect the
place identity. These images are more relevant to the generic concept of a city, rather than
identity, and fall short in representing the attributes that distinguish a particular city from
the rest. Another limitation lies in the uncertainty in the image similarity results. We
found that certain similar scenes generated by DALL·E2 resulted in a range of similarity
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scores when measured against the same ground-truth image. Yet, it is uncertain why such
differences are observed, what contributes to high or low similarity results, and thus which
scene is most relevant to the place identity of a particular city.
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Abstract
This paper introduces an integrated Uncertainty and Sensitivity Analysis (US-A) approach for
Spatial Multicriteria Models (SMM). The US-A approach evaluates uncertainty and sensitivity by
considering both criteria values and weights, providing spatially distributed measures. A geodiversity
assessment case study demonstrates the application of US-A, identifying influential inputs driving
uncertainty in specific areas. The results highlight the importance of considering both criteria
values and weights in analyzing model uncertainty. The paper contributes to the literature on
spatially-explicit uncertainty and sensitivity analysis by providing a method for analyzing both
categories of SMM inputs: evaluation criteria values and weights, and by presenting a novel form of
visualizing their sensitivity measures with bivariate maps.
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1 Introduction

Uncertainty analysis (UA) and sensitivity analysis (SA) are two complementary methods of
evaluating uncertainty present in model inputs and, by extension, in model results [12]. UA
quantifies outcome variability given model input uncertainties, and is, therefore, forward-
looking as it focuses on evaluating how the uncertainty of inputs propagates through the
model and affects its output values. However, UA does not inform about the magnitude of
individual inputs’ influence on model output variability. This information can be obtained
from SA that relates the output variability to model inputs and evaluates how much each
source of uncertainty contributes to the overall variability of the output. In this sense, SA is
a backward-looking approach that complements UA.
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Spatial Multicriteria Models (SMM) implemented in the context of GIS-based multicriteria
analysis employ either value function-based methods or outranking relation-based methods to
arrive at a rank-order/classification of spatially-explicit choice alternatives [8]. In SMM that
employ value function methods, the rank order is determined by a synthetic score expressing
the overall strength of each choice alternative vis-à-vis other alternatives under consideration.
The score is calculated by integrating criteria values with weights using a combination rule.
Due to potential errors in criteria values and the subjectivity of weights, both types of inputs
can become potential sources of uncertainty affecting the SMM output. The overall impact
of uncertainty can be represented by a measure of output variability (e.g., variance), which is
also a proxy of output uncertainty. In order to isolate influential inputs driving the model’s
output uncertainty, one can employ SA. Ultimately, the purpose of UA combined with SA is
to improve the model’s reliability and its value for policy and decision-making.

2 Related work

Two approaches to UA-SA – local and global, have been proposed for SMM. In the local
approach, the values of model inputs are varied one at a time (OAT) while keeping other
inputs unchanged. This approach has been popular among modelers due to its simplicity,
tractability, and low computational cost [15]. Yet, in SMM based on compensatory decision
rules (i.e., Weighted Linear Combination, Analytical Hierarchy Process), model inputs do
interact, and the OAT approach does not address these interaction effects. In contrast, the
global approach accounts for model input interactions by more or less systematically sampling
the entire input value space [7]. The downside of the global approach is its computational
cost. Different solutions to accelerating global SA for spatial models have been proposed,
including parallelization [1], [5] and surrogate models [11].

In an early example of global approach for SMM, [3] used variance decomposition-based
SA to investigate model’s solution stability in light of uncertainties affecting criteria values
and weights. In their study, SA was performed on aggregated criteria values and weights,
producing one measure of sensitivity for each input for the entire study area. This approach
to UA-SA takes spatially explicit inputs, identifies among them the influential ones that
drive the model’s output variability, and returns non-spatial estimates of sensitivity without
providing a crucial piece of information – namely, where in the study area this influence plays
out. Others, including [6], [2], and [10] proposed a spatially explicit and integrated approach
to UA-SA of SMM, henceforth referred to as US-A, based on global variance decomposition,
in which the output of SMM results in spatially distributed measures of uncertainty and
sensitivity. Their work, however, addressed only one category of uncertain inputs: criteria
weights. The work presented here extends it by providing a method for analyzing both
categories of SMM input: criteria values, and weights. Additionally, it presents a novel form
of visualizing their sensitivity measures with bivariate maps.

3 Methods

The US-A of variable criteria and weights is presented in Figure 1. In this approach, weights
Wn are represented as probability distributions, whereas criteria Cn are represented as sets of
k multiple alternative layers. Since both types of inputs are stochastic, a given SMM f(W,C)
has to be calculated multiple times, each time with a different vector of input values. Each
calculation uses n scalars for W and n maps for C, where the scalars are derived from weights’
respective probability distributions and the maps from their respective sets of realizations.
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The sampling used to generate the vectors is called Sobol’s quasi-random with radials and is
described in [14]. As a result, we obtain a distribution of SMM spatial outputs, for which we
can calculate different aggregation statistics’ maps like mean or standard deviation. Both
statistics can then be used jointly (Figure 2) as an uncertainty map.

The next step involves spatially-explicit variance decomposition, independently applied
to every spatial unit (su) in the study area (e.g., raster cell, vector polygon). Variance
decomposition involves subdividing the total variance of su creating partial variances for
each input [14], [13]. The procedure produces two sensitivity indices per input – First Order
Effects Index and Total Effects Index. The former is the input’s fractional contribution
to the total variance when the given input is treated independently from all other inputs.
The latter is the input’s fractional contribution to the total variance due to its independent
influence and interactions with other inputs. Consequently, the difference between the Total
Effects Index and the First Order Effects Index is the input’s interactions (Figure 3, legend).
The final results comprise 2N sensitivity maps (i.e., one map per each W and one per each C)
depicting regions of input’s combined (i.e., bivariate) “first order and interactions” influence
on SMM outputs.

Figure 1 A framework for an extended US-A incorporating the analysis of criteria values and
weights.
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4 Case study

US-A was employed to assess the uncertainty and sensitivity of multicriteria geodiversity
assessment [16], for the Karkonosze National Park (KNP) in southwestern Poland. The
park is known for its unique relief and the richness of landforms, including mountain-top
planation surfaces, glacial kettles, granite tors with fanciful shapes, waterfalls, and peat
bogs. A multicriteria model developed for the purpose of assessment included seven criteria
(lithological features, relief energy, landforms, land cover and land use, soils, solar radiation
and the topographical wetness index), their relative importance weights, and it was based
on a weighted linear combination function for aggregating criteria values with weights. The
criteria values and weights were collected from 57 experts in geodiversity and/or Earth
sciences using a geo-questionnaire [4]. The study area, the model, and the data collection
approach are described in detail in [9].

5 Results

Uncertainty analysis is the first step of US-A (Fig. 1). Figure 2 shows its results, including
1) standardized, average geodiversity score (0.0 – 1.0 scale) calculated for each of 212 first
order watersheds (assessment units) based on 2000 model runs, and 2) standard deviation
representing the measure of uncertainty. Each model run used a sample of input values
drawn from discrete uniform probability distributions of criteria maps discrete non-uniform
distributions of weights. The sampling scheme was based on Sobol’s quasi-random sampling
sequence that improves the uniformity of samples in the parameter space [13]. Many
watersheds in Fig. 2 exhibit high average values of geodiversity (0.79 – 0.7) and medium-low
standard deviation (0.08 – 0.06). We focus our analysis on three watersheds rendered in black
in Fig. 2, representing high average geodiversity (0.79 – 0.7) and relative high uncertainty
(0.09 – 0.08). These watersheds, which are highlighted in red circles (Fig. 2), represent areas
characterized by the richness of geomorphological forms. Two of them (lower right red circle),
located in the eastern part of the park, include the headwaters of Sowia Valley in the eastern
part of Black Range. The third watershed, located in the western part of the park (upper
right), covers Snow Kettles – the second deepest complex of glacial kettles in the park.

Figure 2 Spatial distribution of average geodiversity and standard deviation in KNP.
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In order to identify inputs driving the uncertainty of the selected watersheds, we used
the combined “first order and interactions” effects for each of the model’s 14 inputs (seven
criteria + seven weights). As described in section 3, variance decomposition produces two
sensitivity indices for each criterion and each weight. A challenge in mapping first and
total effects sensitivity indexes in the presence of many inputs is cognitive difficulty in
interpreting 2N sensitivity maps. The values of indexes are typically rendered on coincident
maps (side-by-side) requiring a lot of visual back and forth. The overcome this challenge,
we used a bivariate map for each input, which allowed us to present the distribution of
both index values on one map per input (Fig. 3). The examination of the sensitivity maps
in Figure 3 reveals that both landforms and lithology criteria contribute to a relatively
high uncertainty (high standard deviation) of geodiversity values in the three watersheds.
Specifically, the landforms criterion affects geodiversity of the watersheds covering Sowia
Valley and the eastern part of Black Range (lower rights) and the lithology criterion impacts
geodiversity of the watershed covering Snow Kettles (upper right). This could be addressed,
for example, by obtaining higher quality input data for the criteria, which in turn might
reduce the uncertainty of assessment. The other input contributing to high uncertainty is
the relief energy criterion, but only for the watershed that covers Snow Kettles (upper left).

Figure 3 Spatial distribution of First Order and Interactions (Total Order) effects across 14 input
factors.

6 Conclusion

The work presented here shows that considering only criteria weights in US-A may give
us an incomplete understanding of important factors driving multicriteria model output
uncertainty. Notably, the framework presented in Figure 1 lends itself to incorporating in
US-A potential sources of the model’s output uncertainty other than criteria values and
weights. Other considerations, not accounted for in this study, are the model’s decision rule
represented by aggregation function(s) and the selection of criteria used in the model. They
can be addressed in future research.
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Abstract
This research focuses on assessing the ability of large language models (LLMs) in representing
geometries and their spatial relations. We utilize LLMs including GPT-2 and BERT to encode the
well-known text (WKT) format of geometries and then feed their embeddings into classifiers and
regressors to evaluate the effectiveness of the LLMs-generated embeddings for geometric attributes.
The experiments demonstrate that while the LLMs-generated embeddings can preserve geometry
types and capture some spatial relations (up to 73% accuracy), challenges remain in estimating
numeric values and retrieving spatially related objects. This research highlights the need for
improvement in terms of capturing the nuances and complexities of the underlying geospatial data
and integrating domain knowledge to support various GeoAI applications using foundation models.

2012 ACM Subject Classification Computing methodologies → Artificial intelligence

Keywords and phrases LLMs, foundation models, GeoAI

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.43

Category Short Paper

Funding The authors would like to acknowledge the support from the H.I. Romnes Fellowship,
National Science Foundation (No. 2112606) and Arity.

1 Introduction

Deep learning methods have exhibited great performance to tackle many challenging tasks
in geographical sciences [16, 9]. However, the models often depend on handcrafted features
for specific downstream tasks, thus being hard to be generalized into different tasks. The
emergence of representation learning largely mitigated the issue by decomposing the learning
process into two steps (task-agnostic data representation and downstream task) [1]. Therefore,
an effective location-based representation should preserve key spatial information (e.g.,
distance, direction, and spatial relations) and make classifiers or other predictors easy to
extract useful knowledge [13]. In geospatial artificial intelligence (GeoAI) research, although
the geospatial data are usually well-formatted and can be readily understood by GIS software,
not all of them can be directly integrated into a deep learning model.

The success of ChatGPT has been a milestone that attracts the general public’s attention
to Large Language Models (LLMs). With tons of parameters trained on a large text
corpus, LLMs have learned profound knowledge across many domains. Other well-known
LLMs include the Bidirectional Encoder Representations from Transformers (BERT) [5],
the Generative Pre-trained Transformer (GPT) series [14, 2], etc. Despite the differences
in network architectures, these LLMs can achieve state-of-the-art performance on natural
language processing (NLP) benchmarks. Consequently, researchers have begun the early
exploration of integrating LLMs into GIS research, such as geospatial semantic tasks [12] and
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automating spatial analysis workflows [11]. These studies have demonstrated the ability of
LLMs to understand and reason about geospatial phenomena from a semantic perspective as
learned from human discourse or formalized programming instructions. In contrast, accurate
geometries and spatial relations in GIS are not necessarily expressed in natural languages.
Therefore, it can be challenging for LLMs to reconstruct the physical world solely from the
textual description of these building blocks, which is the motivation of this research.

In GIScience, spatial relations refer to the connection between spatial objects regarding
their geometric properties [8] , which play an important role in spatial query, reasoning
and question-answering. Using natural language to describe spatial relations is essential for
humans to perceive our surroundings and navigate through space. Attempts have been made
to formalize the conversion between quantitative models and qualitative human discourse
[4]. For topological spatial relations, the RCC-8 (region connection calculus [15]) and the
Dimensionally Extended 9-intersection (DE-9IM) model [6] are widely used. Based on the
DE-9IM model, five predicates are named by [3] for complex geometries, including crosses,
disjoint, touches, overlaps, within. On top of them, the Open Geospatial Consortium (OGC)
further added the predicates equals, contains, intersects for computation convenience. In
addition, predicates can also be used to describe the distance or direction between a subject
and an object. Fuzzy logic can also be adopted to convert precise metrics into narrative
predicates such as near and far [18].

However, there remains a gap between the contextual semantics of predicates in everyday
language and the abovementioned formalization procedures, yielding disagreement and
vagueness in the understanding. It is yet to be determined whether the LLMs can fully
capture how people describe spatial objects with predicates in natural language. If so, how
we can leverage such knowledge to represent geospatial contexts with LLMs.

2 Methodology

2.1 Workflow
This research focuses on assessing the ability of LLMs in representing geometries and their
spatial relations through a set of downstream tasks. Figure 1 illustrates the workflow we
employed, which consists of three primary modules. The first module utilizes a GIS tool to
extract the attributes, such as geometry type, centroid, and area, of individual geometries
and their spatial relations, including predicates and distances between pairs of geometries.
The second module applies LLMs to encode the well-known text (WKT) format of geometries,
e.g., LINESTRING (30 10, 10 30, 40 40), which includes the geometry type and the ordered
coordinates whereas the map projection is not considered in this work. Finally, the obtained
embeddings from LLMs, along with the ground-truth attributes or spatial relations, are fed
into classifiers or regressors to evaluate the effectiveness of the LLMs-based embeddings.

2.2 Notation
The notations used in this paper are listed in Table 1.

2.3 Evaluation Tasks
The downstream tasks are designed for deriving the geometric attributes or identifying
spatial relations, as described in Table 2. The targets of Tasks 1-5 are straightforward, that
is, to train a neural network classification/regression model that can best approximate the
ground-truth values computed from a GIS tool. All of these tasks use a Multilayer Perceptron
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Figure 1 The evaluation workflow of this research.

Table 1 Notations.

Notation Description
g A geometry instance (e.g. Point, LineString, and Polygon) that can be

processed in GIS tools
W KT (g) The WKT format of g
Enc(g) The location encoding of g using a LLM model to encode W KT (g)
T ype(g) The geometry type of g
Centroid(g) The centroid of g
Area(g) The area of g
rel A predicate that can be used to represent the spatial relation, which is one

of {equals, disjoint, intersects, crosses, touches, contains, within, overlaps},
as defined by OGC and implemented in GeoPandas.

Rel(gi, gj) The spatial relation between the subject gi and the object gj

Dist(gi, gj) The minimum euclidean distance between two objects gi and gj

[Enc(gi); Enc(gj)] The concatenation of the embeddings of gi and gj

Enc(rel, g) The embedding of the short phrase rel + W KT (g). For example, “within
Polygon ((0 0, 0 1, 1 1, 1 0, 0 0))”

(MLP) as the classifier or regressor. Task 6 aims to investigate whether a geometry gi can
be predicted based on its neighbor gj and their spatial relation Rel(gi, gj). We employ the
nearest neighbor retrieval approach to evaluate whether LLMs have learned the meaning of
spatial predicates properly. During inference, given an object gj and a spatial relation rel,
we retrieve the top-k nearest neighbors of Enc(rel, gj) and examined whether they belong to
the set of subjects {gi|Rel(gi, gj) = rel}. This approach assesses the ability of the LLMs to
relate geographic objects through spatial predicates.

Table 2 Evaluation Tasks.

Task Subtask Model type Input Target

Geometric
attributes

T1: Geometry type Classification Enc(g) T ype(g)
T2: Area computation Regression Enc(g) Area(g)
T3: Centroid derivation Regression Enc(g) Centroid(g)

Spatial
relations

T4: Spatial predicate Classification [Enc(gi); En(gj)] Rel(gi, gj)
T5: Distance measure Regression [Enc(gi); En(gj)] Dist(gi, gj)
T6: Location prediction Retrieval Enc(rel, gj) {gi|Rel(gi, gj) = rel}
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3 Experiments

3.1 Dataset and Preprocessing
Since there is no available benchmark dataset, we constructed real-world multi-sourced
geospatial datasets for our case study in Madison, Wisconsin, United States. We downloaded
the OpenStreetMap road network data (including links and intersections) using OSMnx 1,
points of interest (POIs) categorized by SLIPO 2, and Microsoft Building Footprints 3. Our
evaluation tasks focus on the spatial objects with Point, LineString, and Polygon geometry
types and assessing their spatial relations, respectively. The datasets are created as follows.

1) For each geometry type, we randomly select 4,000 samples, including 2,000 road
intersections and 2,000 POIs for Point data, 4,000 road links for LineString data, and 4,000
building footprints for Polygon data. In total 12,000 samples are used for performing the
downstream tasks. The area and centroid of each polygon are also computed.

2) For the spatial predicate disjoint, we randomly generate pairs of geometries and check
whether their spatial relation is disjoint. For other predicates, we identify spatially related
objects using spatial join. Given each combination of subject/object geometry type and their
spatial predicate, we keep 400 triplets (subject, predicate, object) for each category for the
task of predicate prediction and distance measure. Then we compute the minimum distance
between the subjects and the objects.

3) We further construct data for the task of location prediction. In addition to the
subjects and objects that are spatially joined in step 2), we also relate neighboring disjoint
geometries using a buffer radius of 0.003°. The predicate of “disjoint” is replaced by “disjoint
but near”. For each predicate except disjoint, we select 200 objects of each geometry type
that are related to more than 5 subjects by the same predicate.

All the computations are performed by using the GeoPandas package in Python. We
consider the predicates of crosses, disjoint (but near), touches, overlaps, within, equals,
contains in this work but not intersects as it is the opposite of disjoint. The data for
downstream tasks are further split into 80% training, 5% validation, and 15% test sets.

3.2 Encoding
In this work, we perform the evaluation tasks based on two LLMs: GPT-2 and BERT. Due
to the computational and memory resources required to train and use the models, GPT-2
and BERT have a maximum input sequence length (i.e., 1024 and 512 tokens respectively).
Therefore, a sliding window approach is employed to tackle the issue as the WKT of LineString
and Polygon types can exceed the length limitation. The long input sequences are broken
down into smaller segments of 512 tokens with an overlap of 256 tokens between adjacent
segments. Each segment is processed by the LLMs separately. We then take the average of
the token embeddings to generate the final embedding for the whole sequence of geometries.

3.3 Training MLPs
As we hypothesize that the learned embeddings from LLMs can be effectively utilized in
downstream geometry-related tasks, we use a simple neural network architecture (i.e., MLP)
across all tasks. Specifically, the input layer of the MLP is the embedding layer generated
from LLMs, followed by a dropout layer for regularization purposes. Following the dropout

1 http://osmnx.readthedocs.io/
2 http://slipo.eu/
3 http://www.microsoft.com/maps/building-footprints

http://osmnx.readthedocs.io/
http://slipo.eu/
http://www.microsoft.com/maps/building-footprints
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layer is a single hidden layer, which employs the Rectified Linear Unit (ReLU) activation
function. Finally, the MLP is concluded with the output linear layer. The number of neurons
in the output layer varies depending on the specific task.

To facilitate the training process, we apply a logarithmic function to the target values
for the area computation and distance measure tasks. In the centroid derivation task, we
use the min-max normalization for the target values. The loss function combines the Mean
Squared Error (MSE) on both the transformed and original scales. However, for reporting
the performance, we only use the original scale of the target values.

3.4 Results
As shown in Table 3, the performance of the downstream tasks based on the embeddings
generated by GPT-2 and BERT are similar, which can be understood from the similarity in
their subword tokenization and transformer-based architecture.

Table 3 LLMs Performance Comparison.

Tasks Metric GPT-2 BERT
Validation Test Validation Test

T1: Geometry type Accuracy(%) 100 100 100 100

T2: Area computation All geometries MAPE(%) 13124 11700 12251 10850
Polygon only 45.1 44.1 40.7 41.9

T3: Centroid derivation RMSE 0.037 0.037 0.029 0.029

T4: Spatial predicate Without geometry type Accuracy(%) 62.6 65.7 63.8 68.7
With geometry type 73.7 71.0 73.1 72.3

T5: Distance measure Disjoint only RMSE 0.064 0.063 0.057 0.075
T6: Location prediction Precision@5 N/A 0.03 N/A 0.03

For T1-T3, the assessment is conducted on individual geometries. The 100% accuracy
achieved on both the validation and the test dataset of T1 is expected as the geometry type
are words that often occur in text documents. Considering the unit of degree in longitude and
latitude, significant errors (measured by Mean Absolute Percentage Error (MAPE) and Root
Mean Square Error (RMSE)) are observed in area and centroid computations, and increasing
or reducing the model complexity does not alleviate the issue, suggesting a potential loss of
information when averaging the token embeddings or fragmentation of coordinates during
tokenization. Training the regressor on all geometries for T2 does not successfully learn
that Point and LineString have an area of 0. Even when training the regressor on Polygon
separately, the results remain unsatisfactory. In T3, the centroids computed from the high-
dimensional embeddings often fall outside the study area. T4-T6 evaluates the embeddings’
ability to capture spatial relations. One interesting finding is that the spatial predicate can
be better predicted when combined with the geometry type, with accuracy increased from
62%∼68% to 71%∼73%. This can be attributed to the imbalanced spatial relations among
different combinations of geometry types. However, the distance measure task T5 still faces
challenges in accurately estimating numeric values even when restricted to the “disjoint”
relation only. The poor performance on T6 shows that even though the LLMs can encode
the spatial relations and geometries in a consistent way, generating embeddings using an
average approach alone is insufficient to support spatial reasoning and conduct geometric
manipulations directly. Therefore, a different design to enhance the function of localizing
spatial objects from textual descriptions [17] can improve the applications of LLMs in GeoAI.

Overall, the results indicate that the LLMs-generated embeddings have encoded the
geometry types and coordinates present in the WKT format of geometries. However, it should
be noted that the performance of the embeddings does not consistently meet expectations
across all evaluation tasks. While the LLMs-generated embeddings can preserve geometry
types and capture some spatial relations, challenges remain in estimating numeric values
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and retrieving spatially related objects due to the loss of magnitude during tokenization
[7]. Despite the possibility of ameliorating the issue by modifying notations or applying
chain-of-thought prompting [10], this research highlights the need for improvement in terms
of capturing the nuances and complexities of the underlying geospatial data and integrating
domain knowledge to support various GeoAI applications using LLMs.
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Abstract
Traditional safety analysis methods based on historical crash data and simulation models have
limitations in capturing real-world driving scenarios. In this experiment, panoramic videos recorded
from a motorcyclist’s helmet in Bangkok, Thailand, were narrated using an image-to-text model
and then put into a Large Language Model (LLM) to identify potential hazards and assess crash
risks. The framework can assess static and moving objects with the potential for early warning and
incident analysis. However, the limitations of the existing image-to-text model cause its inability to
handle panoramic images effectively.
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1 Background

Traffic incidents are a global issue that causes significant economic and social costs. Every
year, millions of people die or are injured in road crashes worldwide, costing countries 3%
of their Gross Domestic Product (GDP) on average, with most incidents happening in low-
and middle-income countries [13]. According to the World Health Organisation (WHO),
Thailand has one of the world’s highest road traffic fatality rates, with an average of 22,000
deaths annually. Bangkok, the capital city, is a hotspot for traffic incidents, with almost 1
million casualties a year in 2020 and 2021, 90% of whom were motorcyclists. Tracking the
cause of these incidents is challenging as they can often be attributed to multiple factors.
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Safety analysis approaches for local roads in Bangkok face limitations due to incomplete-
ness, unavailability, under-reporting, and a lack of comprehensive crash-related factors and
behavioural information [3, 11]. Studies utilise advanced cameras, benefiting from improved
camera quality, computational power, and AI integration for street scene analysis. However,
reliance on static cameras may limit their ability to capture the complexities of real-world
scenarios [4, 5]. Recent progress in visual understanding, particularly in Vision-Language
(VL) models and Large Language Models (LLMs), has shown great potential in analysing
image-text pairs. This opens up opportunities to leverage pre-training VL and LLMs for
evaluating real-time videos and assessing the scenes and behaviours of motorcyclists, thereby
enhancing traffic risk assessment [8, 2, 12].

This study presents a framework for investigating the hazardous environment and in-
teractions involving motorcycle riders and their surroundings. Initially, panoramic videos
will be recorded in Bangkok, Thailand, using a GoPro Max camera mounted on the rider’s
helmet. Subsequently, Image-to-Text, video captioning, and LLM will be integrated to
extract valuable information to identify potential hazards.

This paper is organised as follows. Section 2 lists the related works before Section 3
elaborates on the methodology and experiment. The preliminary results are described in
Section 4. The paper finishes with the conclusion and potential applications of this study.

2 Related works

2.1 Traditional Traffic Risk Assessment
Traditionally, safety analysis has relied on historical crash data [11], which unfortunately may
suffer from limitations such as incompleteness, unavailability, under-reporting, and a lack of
comprehensive behavioural information, as well as the omission of important crash-related
factors [3]. Simultaneously, simulation methods may not accurately represent non-lane-based
mixed traffic conditions [1]. Although recent advancements in camera quality, Artificial
Intelligence (AI), and computational power have enabled the development of simulation
models for driving behaviour at intersections, most studies still heavily rely on static cameras,
which may not fully capture the intricate complexities of real-world driving scenarios [4, 5].

2.2 Large Vision and Language Pre-trained Models in Traffic Scenes
Since the introduction of Contrastive Language-Image Pre-training (CLIP), VL Pre-training
(VLP) models have rapidly advanced, relying on large text-image datasets [6, 9, 7]. Large
VLP models achieve competitive performance on benchmark datasets, even without specific
training, through zero-shot learning [9, 6]. Additionally, they have the capability for zero-
shot Visual Question Answering (VQA) in the context of traffic image understanding [14].
However, while these large VLP models can efficiently extract textual information from image
features, they face challenges when it comes to correlating relevant textual information and
performing deeper interpretation, particularly in complex scenes involving multiple objects.

After OpenAI proposed ChatGPT [14], the use of LLMs expanded to specific tasks,
excelling in summarising prompts and completing questions, explanations, and captions.
However, LLMs lack the ability to extract visual features. By combining LLMs with VLP
models, they can effectively interpret text features from images and gain detailed information
through VQA. This combination overcomes the limitations of large VLP models in explaining
phenomena and the inability of LLMs to extract image features without additional training.
It is like a visually impaired person relying on an interpreter for specific tasks to understand
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Figure 1 Paronamic video dataset coverage in Bangkok, Thailand (left) and an example of object
detection (right).

their surroundings. While Large Language-and-Vision Assistant (LLaVA) has shown good
interpretation of scenes in many scenarios [7], it falls short in object tracking in videos. To
address this, a novel framework proposed in this study incorporates object detection and
instance segmentation at each keyframe before applying VLP models. This framework aims
to interpret VLP models for analysing traffic scenes, with potential applications in real-time
traffic interpretation for early warning of potential risks and incident analysis by stakeholders
and planners.

3 Methodology and Experiment

3.1 Data collection
This study involved collecting panoramic videos using a GoPro Max camera mounted on a
helmet while riding a motorcycle from December 18, 2022, to January 16, 2023. The camera
was set to 360 video mode with 5.6k resolution and 30 Frames per second. The journeys
mostly covered the route from home in the Phaya Thai district to Chulalongkorn University
in central Bangkok, as indicated by the green dots on the map with examples of captured
scenes in Figure 1 (left) with an example of object detection (right). It is important to note
that these journeys were routine activities and did not put the user at increased risk. The
study obtained ethics approval from UCL and Chulalongkorn University. The dataset is
the 360-view of street scenes from a motorcyclist’s helmet across Bangkok’s streets during
diverse times of day, including peak and off-peak periods on weekdays and weekends.

3.2 Framework
This section introduces the proposed framework for identifying motorcycle crash risks from
panoramic videos outlined in section 3.1. The framework overview is shown in figure 2 and
considers two types of objects: environment or static objects and interactions or moving
objects by using different VL models.

The environments or static objects are described using an image-to-text model, which
provides information on non-moving objects, such as the number of lanes, flow density, road
surface conditions, weather, and lighting.

The framework tracks and filters the interactions between the rider and surrounding
objects. It excludes smaller boxes far from the rider to reduce computational costs and
contribute less to risk. This exclusion is done to reduce computational costs. Each object is
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Figure 2 Framework for panoramic video crash risk analysing.

considered separately within the model, with other objects blurred. This approach focuses on
capturing the interaction between the object itself and the rider. A video captioning model
is employed to generate descriptions for each moving object. This model processes specific
seconds of video footage and generates a set of sentences that describe the interactions
between the surrounding objects and the motorcyclist.

The descriptions generated from both moving and static objects are input into a LLM
to assess the potential crash risks. The existing LLM will be implemented and fine-tuned
to rate a quantitative score that quantifies the level of risk. The visual risk score obtained
from the LLM is then combined with trajectory information derived from the camera’s
GPS, which integrates with Geographic Information System (GIS) data. This GIS data may
include historical incident records and Points-of-Interest. Through this integration, the final
risk score is computed. This framework can potentially alert the rider when the risk score
surpasses a predefined threshold. Such a system could be a valuable tool for motorcyclists,
particularly when the camera is equipped with a GPU for real-time processing capabilities.

The ongoing study aims to implement image-to-text, video captioning and LLMs for risk
rating purposes. As part of this framework, the image-to-text approach was tested using
the LLaVA model [7]. The LLaVA model prompts 6 questions to gather information on
various factors that are considered critical in assessing motorcycle crash risks. These factors
include flow density, number of lanes, weather conditions, traffic signs (specifically speed
limits), road surface conditions, and lighting conditions. By incorporating these crucial risk
factors, the study seeks to enhance the accuracy and effectiveness of the risk rating process
by validating 16 and 8 images during day and night time, respectively. Researchers manually
supervise by rating 1 as correct, 0.5 as partially correct and 0 as wrong, then will calculate
the accuracy of returning captions.

4 Preliminary results

The preliminary results are presented in table 1, revealing the accuracy from 6 prompts
against manual supervision. The model performed well in classifying flow density, weather,
and lighting. However, it showed relatively poor performance in identifying the number
of lanes, road surface conditions, and traffic signs. Additionally, the model showed slight
differences in performance between day and night time.
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Table 1 Accuracy (in %) of captions tested against manual supervision.

Class % (all) % (day) % (night)
Number of lanes 39.6 40.6 37.5
Flow density 81.3 75.0 93.8
Road surface 25.0 37.5 0.0
Traffic sign 16.7 15.6 18.8
Weather 77.1 75.0 81.3
Lighting 83.3 75.0 100.0

Lighting conditions are the easiest to identify, as shown in table 1. This is attributed to
the straightforward evaluation of lighting based on red, green, and blue (RGB) values during
visual decoding. The model also demonstrated high accuracy in identifying flow density.
This is because VLP models have learned vehicles from the abundance of traffic images for a
large dataset, and LLM can also easily understand traffic congestion at a textual level. The
model effectively determined the weather conditions due to the substantial coverage of sky or
weather in traffic images, as the model was pre-trained in a large weather-related sample size.

However, The accuracy of counting the number of lanes is relatively poor in panoramic
images, which introduce horizontal misalignment between lane lines and vehicles, leading to
confusion for the pre-trained model. Previous work has shown that image understanding
tasks trained mainly on rectilinear images benefit from re-projecting equirectangular images
to rectilinear before the visual task is performed [10]. Identifying road surface conditions
poses a challenge due to the diverse range of colours, conditions, and materials found in
different countries. This difficulty is exemplified by the misclassification of cement surfaces
as wet surfaces in this study. The most challenging class to identify is traffic signs. It is
worth noting that traffic signals (red/green/yellow lights) were considered traffic signs in the
textual decoding, and tail lights from vehicles are often labelled as traffic signals, further
contributing to the difficulty in accurately identifying traffic signs.

5 Conclusion and Future work

In this study, we proposed a framework to examine motorcycle incident risk by using VLP
and LLM models from a panoramic video dataset. The video data was collected in Bangkok,
Thailand, by mounting a 360 camera on a motorcyclist’s helmet to record the interaction
between the surroundings and the rider. A VLP model, LLaVA, is tested on a series of
panoramic images in the daytime and nighttime. Promptings related to traffic incident risks
are used. The results show the potential of using the pre-trained model to describe safety
related features, from testing flow density, weather and lighting conditions, and images for
prompting the LLM to rate the incident risk. On the other hand, the results reveal the
limitations of using panoramic images when counting the number of lanes, road surfaces, and
traffic signs.

In future developments, the framework will incorporate distortion correction to mitigate
potential misinterpretations caused by distorted geometries. The objective is to describe
critical risks associated with stationary objects and environments accurately. Moreover,
there will be a strong emphasis on understanding traffic scenes within the framework model,
achieved through the fine-tuning and training of pre-training VL and LLM for visual traffic
comprehension and textual analysis. The risk analysis will transition from image-to-text to
video captioning, integrating the detection and tracking of moving objects. Unrelated objects
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will be disregarded or given lower weights using depth estimation techniques to enhance
accuracy. The overarching goal of this comprehensive framework is to comprehend crash
risks for motorcyclists and provide real-time notifications to the rider when equipped with
graphics processing units on the panoramic camera or edge device. While the framework
holds the potential for transferability to other cities, careful consideration must be given to
factors such as the environment, vehicles, behaviours, and contextual risks.

References
1 Gowri Asaithambi, Venkatesan Kanagaraj, and Tomer Toledo. Driving Behaviors: Models

and Challenges for Non-Lane Based Mixed Traffic. Transportation in Developing Economies,
2(2):19, October 2016. doi:10.1007/s40890-016-0025-6.

2 Jun Chen, Deyao Zhu, Kilichbek Haydarov, Xiang Li, and Mohamed Elhoseiny. Video
ChatCaptioner: Towards Enriched Spatiotemporal Descriptions, April 2023. arXiv:2304.04227
[cs]. URL: http://arxiv.org/abs/2304.04227.

3 Rupam Deb and Alan Wee-chung Liew. Missing Value Imputation for the Analysis of Incomplete
Traffic Accident Data. In Xizhao Wang, Witold Pedrycz, Patrick Chan, and Qiang He, editors,
Machine Learning and Cybernetics, volume 481, pages 275–286. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2014. Series Title: Communications in Computer and Information Science.
doi:10.1007/978-3-662-45652-1_28.

4 Nopadon Kronprasert, Chomphunut Sutheerakul, Thaned Satiennam, and Paramet Luathep.
Intersection Safety Assessment Using Video-Based Traffic Conflict Analysis: The Case Study
of Thailand. Sustainability, 13(22):12722, November 2021. doi:10.3390/su132212722.

5 Gabriel Lanzaro, Tarek Sayed, and Rushdi Alsaleh. Can motorcyclist behavior in traffic
conflicts be modeled? A deep reinforcement learning approach for motorcycle-pedestrian
interactions. Transportmetrica B: Transport Dynamics, 10(1):396–420, December 2022. doi:
10.1080/21680566.2021.2004954.

6 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. BLIP-2: Bootstrapping Language-
Image Pre-training with Frozen Image Encoders and Large Language Models, May 2023.
arXiv:2301.12597 [cs]. URL: http://arxiv.org/abs/2301.12597.

7 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual Instruction Tuning, April
2023. arXiv:2304.08485 [cs]. URL: http://arxiv.org/abs/2304.08485.

8 Jesus Perez-Martin, Benjamin Bustos, Silvio Jamil F. Guimarães, Ivan Sipiran, Jorge Pérez,
and Grethel Coello Said. A Comprehensive Review of the Video-to-Text Problem, November
2021. arXiv:2103.14785 [cs]. URL: http://arxiv.org/abs/2103.14785.

9 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and
Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision,
February 2021. arXiv:2103.00020 [cs]. URL: http://arxiv.org/abs/2103.00020.

10 E. Sanchez Castillo, D. Griffiths, and J. Boehm. SEMANTIC SEGMENTATION OF TER-
RESTRIAL LIDAR DATA USING CO-REGISTERED RGB DATA. The International
Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-
2021:223–229, June 2021. doi:10.5194/isprs-archives-XLIII-B2-2021-223-2021.

11 Chamroeun Se, Thanapong Champahom, Sajjakaj Jomnonkwao, and Vatanavongs Ratanav-
araha. Motorcyclist injury severity analysis: a comparison of Artificial Neural Networks and
random parameter model with heterogeneity in means and variances. International Journal of
Injury Control and Safety Promotion, pages 1–16, June 2022. doi:10.1080/17457300.2022.
2081985.

12 Junke Wang, Dongdong Chen, Chong Luo, Xiyang Dai, Lu Yuan, Zuxuan Wu, and Yu-Gang
Jiang. ChatVideo: A Tracklet-centric Multimodal and Versatile Video Understanding System,
April 2023. arXiv:2304.14407 [cs]. URL: http://arxiv.org/abs/2304.14407.

https://doi.org/10.1007/s40890-016-0025-6
http://arxiv.org/abs/2304.04227
https://doi.org/10.1007/978-3-662-45652-1_28
https://doi.org/10.3390/su132212722
https://doi.org/10.1080/21680566.2021.2004954
https://doi.org/10.1080/21680566.2021.2004954
http://arxiv.org/abs/2301.12597
http://arxiv.org/abs/2304.08485
http://arxiv.org/abs/2103.14785
http://arxiv.org/abs/2103.00020
https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-223-2021
https://doi.org/10.1080/17457300.2022.2081985
https://doi.org/10.1080/17457300.2022.2081985
http://arxiv.org/abs/2304.14407


N. Jongwiriyanurak et al. 44:7

13 WHO. Global status report on road safety 2018. Technical Report 2, WHO, 2018. ISBN:
9789290496977 ISSN: 00142972 Publication Title: World Health Organization Volume: 3.
doi:10.18041/2382-3240/saber.2010v5n1.2536.

14 Ou Zheng. ChatGPT Is on the Horizon: Could a Large Language Model Be All We Need for
Intelligent Transportation? Computation and Language, March 2023. doi:10.48550/arXiv.
2303.05382.

GISc ience 2023

https://doi.org/10.18041/2382-3240/saber.2010v5n1.2536
https://doi.org/10.48550/arXiv.2303.05382
https://doi.org/10.48550/arXiv.2303.05382




National-Scale Spatiotemporal Variation in Driver
Navigation Behaviour and Route Choice
Elliot Karikari1 #

Leeds Institute for Data Analytics, University of Leeds, UK

Manon Prédhumeau #

School of Geography, University of Leeds, UK

Peter Baudains #

ESRC Consumer Data Research Centre, University of Leeds, UK

Ed Manley #

School of Geography, University of Leeds, UK

Abstract
Understanding human behaviour is an integral task in GIScience, facilitated by increasingly large
and descriptive datasets on human activity. Large-scale trajectory data have been particularly useful
in measuring behaviours in different contexts, and understanding the relationship between the built
environment and people. Yet, to date, most of these studies have focused on urban or regional scale
analyses, with less exploration of behavioural variation at larger spatial scales. Human navigation
behaviour is inherently linked to variation in spatial structure, and a study of national variations
could help to better understand this variability. In this paper, we analyse GPS data from over 1
million journeys by 50,000 connected cars across the UK. Some key statistics relating to route choice
are computed, and their variations are explored over time and space. A k-mean clustering of the
trips identifies different types of trips and shows that their distribution varies by time of day and
across the country. The insights gained from the data highlight spatio-temporal variations in road
navigation, which should be considered in transportation modelling and planning.
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1 Introduction

The increasing availability of vehicle usage data, made possible by the rise of electric connected
vehicles, presents an opportunity for researchers to analyse vast amounts of data related to
speed, location, and direction [2]. The ubiquity of the technology means that never before
have granular data on navigation behaviour been available at such a large scale. In this
study we leverage connected car data to gain novel insights into human mobility patterns and
behaviour, scaling analysis up to the national scale. While previous studies have explored
various aspects of mobility, such as travel distances, radius of gyration, and visited locations
[6], this study specifically examines drivers’ routes. Studies have relied on diverse data
sources, including GPS tracking devices [6, 5], mobile phone data [4], and transportation
surveys [8], revealing insights into the fundamental drivers of navigation behaviour. To date,
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there has been no examination of navigation behaviour across an entire country. This study
aims to fill this gap by examining the driver navigation behaviour and route choice using
national-scale GPS data. The central research question of this study is: to what degree do
drivers’ navigation behaviours and route choices in the UK vary spatially and temporally ?

In this paper, we explore navigation across the entire UK. We observe how a set of
indicators describing navigation behaviour vary over space and time. We outline the methods
and data involved in the study, before describing the results and their implications.

2 Method

The methods used to derive insights into navigation behaviour are outlined in our previous
work [3]. This paper established a methodology for deriving six key statistical measures -
travel distance, travel time, stop time, number of turns, angular deviation and sinuosity -
with application to the same data. Here, we extend our previous work by applying these six
key statistical measures to 1,224,270 trips, i.e. 66.92% of the entire dataset and analysing
their spatio-temporal variations. Section 3 details the processing undertaken to clean up the
data retaining only one-way trips over 4 weeks in July. Section 4 then presents the statistical
results obtained and a k-mean clustering analysis, in order to identify patterns associated
with the different journey types and to examine their spatial and temporal variation.

3 Data

This work uses high-frequency GPS recordings from 50,000 connected cars across
the UK (https://data.cdrc.ac.uk/dataset/wejo-connected-vehicle-trajectories).
The dataset consists of over 400 million GPS data points, collected in July 2022 where an
observation was recorded every 3 seconds on average during each journey (over 1.8 million).
To ensure anonymity, the first and last 15 seconds of each journey have been removed.

An initial two-stage filtering of the data was applied. We selected a four-week period
from 4th to 31st July for the analysis. This timeframe provides a balanced selection of
weekdays and weekends. Some trips in the dataset were then identified as round trips, which
are defined as trips for which the Haversine distance between origin and destination is less
than 800 meters. These round trips were filtered out as they were found to greatly skew
sinuosity results. Further analysis of this data could reveal specific behaviour associated
with round trips. The present analysis however focused on the behaviours associated with
one-way journeys which makes up 66.9% of the entire dataset.

In this study, we used Python and the Scikit-mobility library [7] to process data and
generate key statistics such as travel distance and stop time. We also derived additional
measures such as travel time, number of turns, cumulative angular deviation, and sinuosity,
which were essential in providing insights into human mobility patterns.

4 Results

The results computed on the 1,224,270 trips indicate a diverse set of navigation behaviours
within the data. Table 1 shows a summary of descriptive statistics generated per journey.

Results reveal a wide range of variability in distances travelled. On average, drivers
tended to travel 13.1 km. However, this average is skewed by a few long trips as half of all
trips made were below 5.5 km. It was also shown that stop time accounted for approximately
28% of their overall travel time. Furthermore, we observed that people tended to take routes

https://data.cdrc.ac.uk/dataset/wejo-connected-vehicle-trajectories
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Table 1 Descriptive statistics on 1,224,270 trips.

Min Max Mean Q1 Median Q3 SD
Travel distance (km) 0.8 715.4 13.1 2.8 5.5 12.6 24.9

Travel time (min) 0.5 747.2 16.7 5.7 10.30 19.5 20.5
Stop time (min) 0.0 646.3 4.7 0.0 2.3 5.7 7.8
Number of turns 0.0 863.0 17.1 8.0 13.0 22.0 15.1

Cumulative angular deviation (°) 0.5 111197.7 2504.3 1189.9 1955.2 3168.1 2074.5
Sinuosity 1.00 273.16 1.59 1.23 1.37 1.60 1.62

with an average of 17 turns per journey. This suggests that the complexity of travel routes
should be considered when analysing travel behaviour. Finally, the average sinuosity of 1.59,
meaning routes are around 60% longer than the Haversine distance, highlights a considerable
amount of inefficiency in navigation behaviour and/or infrastructure. For comparison, [1]
reported average sinuosities of 1.377 in Boston and 1.339 in San Francisco for pedestrians.

4.1 Variation over space and time
Next, we accessed spatiotemporal variation, the count of trip starts and sinuosity by time of
the day and its geographic variation.

Figure 1 shows high trip starts recorded during all hours of the day on weekdays (in green).
Two distinct peaks were identified, at 07:00, and between 14:00 to 16:00. The morning peak
is likely indicative of people going to work, while the afternoon peak may be attributed
to picking up children from school or people leaving work. The number of trips starts on
the weekend (in red), steadily increased during the early hours of the day peaking at 10:00,
before steadily declining towards the end of day.

Figure 1 Distribution of connected car trip origins over time.

Geographic visualisations were done using a non-contiguous cartogram at the Local
Authority (LA) level from https://github.com/houseofcommonslibrary. The LAs have
been grouped and scaled in size relative to their populations. Figure 2 shows some regions
with a high number of trip origins in Scotland such as Lanarkshire and Falkirk, and Glasgow
and Clyde. Cornwall in the Southwest, parts of West Midlands, Merseyside, and West
Yorkshire are also highly represented.

The sinuosity variable measures how much a trip deviates from the Haversine distance
between the origin and destination. Trips with a sinuosity of 1 are direct and identical to
their equivalent Haversine distance. Trips in Bedfordshire, Northamptonshire, Lanarkshire
and Falkirk, Wiltshire, and Tyne and Wear have a relatively high average sinuosity (from
2.5 to 2.8). This suggest that drivers in these regions are constraints by infrastructure into
driving further to reach their destinations, or that drivers take detours to avoid congestion.
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Figure 2 Distribution of connected car
trip origins.

(a)

(b)

(c)

Figure 3 Average (a) distance travelled, (b) num-
ber of turns and (c) sinuosity over time and day of
week.

Within areas with relatively lower sinuosity (from 1.7 to 1.9), i.e. Gloucestershire, Somerset,
Highland and Islands, Oxfordshire, and Mid Wales, more direct routes are possible. Camden
in the London area has a very high sinuosity (>8.5), which calls for future investigation.

Distances travelled vary depending on the day of the week and the time of day (Figure
3a). Long trips are more common in the early morning hours (around 06:00) on all days of
the week, with more long trips on weekends starting between 06:00 and 07:00. This indicates
a self-selection bias, in that people who need to travel further are more likely to be leaving in
the early morning, relative to later in the day. Results also indicate a relationship between
the number of turns per trip and start time (Figure 3b). It appears people may opt to take
more turns during peak weekday and weekend periods. However, there is no clear relationship
between time of day and sinuosity (Figure 3c), meaning that the routes do not deviate more
significantly than usual during these periods. This is an indication that people seek to avoid
traffic congestion during peak periods, but do not deviate widely from the shortest route.

4.2 Clustering analysis

After exploring the variability in the travel behaviour data, we identified different route types
using k-means clustering analysis. This machine learning method groups similar data points
together based on their features. Highly correlated route attributes (correlation coefficient
> 0.7 or variance inflation factor > 2.5) were not used. As a result, only three variables –
travel distance, number of turns, and sinuosity – were used to cluster the trips. We evaluated
different values of k (i.e., [2-8]), using silhouette scores and silhouette visualisers, and found
that k=4 resulted in the most distinct trip types. However, clustering with k=6 produced
silhouette scores almost as good as k=4, and may be worth further exploration.

Short one-way trips (Cluster 0) Direct trips with the fewest average number of turns (11).
Observed travel distance (7 km) is on average 56% longer than the Haversine distance.
Most trips fell within this cluster (79%).
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Mid-range one-way trips (Cluster 1) Longer trips with more turns (37). Observed travel
distance (22 km) is on average 93% longer than the Haversine distance. This cluster
accounted for 18.9 % of all trips.

Long one-way trips (Cluster 2) Very long trips (139 km), on average 40% longer than the
Haversine distance. The average distance travelled is 6 times longer than in Cluster 1
but has only 13% more turns. This may suggest that Cluster 2 uses more major roads.
2.4% of all trips were accounted for in this cluster.

Sinuous trips (Cluster 3) 0.1% of clustered trips were identified as round trips, with unusu-
ally high sinuosity values (32) compared to the other clusters (1 to 2). This indicates
that the simple filtering process used (removing trips with origin-destination distance
<800m) could be improved using a filter to remove high sinuosity trips.

As most trips (79%) were short one-way trips (Cluster 0), we ran the clustering on this
subset to identify variations within trips (Table 2).

Table 2 Descriptive statistics of re-clustered Cluster 0.

Average travelled distance Average number of turns Average sinuosity % trips
0A 6.90 17.66 1.45 34.7
0B 4.06 6.81 1.34 51.4
0C 5.22 13.26 2.66 6.6
0D 29.49 12.99 1.33 7.3

Cluster 0A Short sinuous one-way trips, with high number of turns. Observed travel distance
is 45% longer than its Haversine distance.

Cluster 0B Short, direct, low sinuosity, one-way trips. Observed travel distance is 34%
longer than its Haversine distance.

Cluster 0C Short highly sinuous one-way trips, with moderate number of turns. Observed
travel distances is 166% longer than its Haversine distance.

Cluster 0D Mid-range, low sinuosity, one-way trips with moderate number of turns. Observed
travel distance is 33% longer than its Haversine distance.

Further analysis found that Fridays had the highest number of short sinuous trips (0A),
while Wednesdays had more short direct trips (0B). Drivers may be more willing to take
indirect routes on Fridays when they have more time or are less constrained by work schedules.
The analysis also showed that short sinuous trips (0A) were more common in major urban
conurbations including London, Greater Manchester, and South Yorkshire (Figure 4), while
short direct trips (0B) were highly represented in all other areas. Travel behaviour in some
areas may be different from others, possibly due to road infrastructure or specific traffic
conditions. Further research could explore these variations and identify potential solutions
for improving travel efficiency.

5 Conclusion

This study provides insights into road navigation behaviour across the UK, based on connected
cars data. The analysis of travel distance, number of turns, and sinuosity revealed patterns
that vary by time of day and day of the week. The identification of different trip types
further highlights the variability in navigation behaviour across the UK. This new perspective
on navigation behaviour can supplement the outputs of classic surveys and will be used to
create synthetic trip datasets that are representative of observed behaviours.
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Figure 4 Most frequent cluster for each local authority: short sinuous one-way trips (0A) in
green and short direct one-way trips (0B) in yellow.

Results from this study can inform transportation planning and policy. For example,
the finding that 25% of the analysed car trips are shorter than 2.8 km can guide the
development of zero-emission local policies by identifying where and when drivers make
short trips. Moreover, insights from this study may be used to refine transport models
with new behavioural patterns, and help to predict drivers’ behaviour. However, the lack of
socio-demographic data prevents the assessment of the representativeness of the data. This
study is purely observational and further exploration of causation is required. Stop time and
point of interest data could enable the investigation of the trip purposes. Overall, this study
underscores the potential of using vehicle trajectory data to understand travel decisions.
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Abstract
This study describes an approach for augmenting urban residential preference and hedonic house
price models by incorporating Status-Quality Trade Off theory (SQTO). SQTO seeks explain the
dynamic of urban structure using a multipolar, in which the location and strength of poles is driven
by notions of residential status and dwelling quality. This paper presents in outline an approach for
identifying status poles and for quantifying their effect on land and residential property prices. The
results show how the incorporation of SQTO results in an enhanced understanding of variations
in land / property process with increased spatial nuance. A number of future research areas are
identified related to the status pole weights and the development of status pole index.
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1 Introduction

The importance of location in land valuation has been confirmed in many studies[9]. The
increasing use of explicitly spatial methods in land valuation is an emergent trend[6]. In
urban areas, land value is closely related to spatial structure, such as proximity to central
business districts (CBDs)[10]. However, it is difficult to quantify the spatial variation of
drivers[6]. Status – Quality Trade Off theory (SQTO) explains the dynamic structure of
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residential areas using a multipolar model of two components: housing status and dwelling
quality[4]. Each pole or center represents the highest degree of attractiveness about a certain
type of social status. Housing status is the value of the non-physical (or intangible) factors,
including cultural, economic, environmental political, etc., which distinguish different levels of
housing desirability. Dwelling quality relates to the physical, measurable elements relating to
the normal use of a dwelling[4]. The benefits of applying SQTO have important implications
for housing and real estate policies including:

Refinement of statistical methods and models for analysing the housing market and value
forecasting, by including housing status and dwelling quality[1, 2].
The identification of housing status pole locations, capturing frequently intangible qualities
that are inherently associated with the evolving spatial structure of cities.
The opportunity to captures, explanation and predict future housing bubbles.

Most studies , including in Vietnam, focus on the first of these[7]. This short research paper
examines the second and third in land valuation.

2 Background

SQTO defines a status pole as “the highest point of certain kinds of social status, recognized by
a given proportion of the population”[4]. They capture qualitative neighbourhood perceptions
such as wealth, political power, business, culture, ethnicity, education, etc, and play an
important role in land valuation. Urban residential areas have distinct morphological patterns
around status poles[4] and are geographically stratified, providing a potential basis for analysis
and modelling. Properties can be grouped into homogenous areas based on factors such as
use, physical characteristics with different status poles pulling value in positive or negative
directions. For example, areas around the CBDs typically have a higher house price [2, 5] and
negative pulls have found around landfill [3]. There are enhanced opportunities to support
development policy, planning and real estate regulation by better understanding the location
and nature of different status poles and importantly, their effect on value and price. In
Vietnam, land acquired for development is subject to a state determined compensatory value.
In this, land use change is related to a change in value. A further regulatory aspect is that
“rumors” can form virtual status poles, leading to real estate bubbles. In order to explain
the mechanism of the bubble, a number of recent studies started to look more closely at the
components of land value over temporal and geographic dimensions [6].

This paper identifies the areas around different status poles, as the basis for understanding
variations in land value. The status pole is the location with the highest point. “status value”
that pulls value in the surrounding area (in a positive or negative direction). This can cause
land prices in the surrounding area to increase or decrease. One aspect of the status poles
are their ability to represent aspirations of different social groups when they choose their
residential location. This suggests the need for different factors to be weighted relative to
location in any spatial analysis to identify stats poles. Here a classic multi-criteria analysis is
used to synthesize, evaluate and understand the relative strengths of emergent status poles.

3 Methodology

To identify status poles revealed preferences and stated preferences are combined. Revealed
preference methods involve the quantification of people’s preference through market land
value (objective). Stated preference are captured through a set of questions with varying
degrees of strength (subjective). The combination of the two approaches is the basis for
identifying status poles (Figure 1) and the full method is in Le et al. [8]
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Figure 1 The process of identifying status poles through 3 stages.

The first stage is to delineate areas based areas with the highest and lowest land price, as
potential status poles. Questionnaires were used to capture information about residential
land parcels sales. These had sections with a total of 46 questions: land owner information
(occupation, number of family members, incomes, etc.); land parcel and transaction informa-
tion (location, area, shape, transfer price, date of transaction, etc.); house information (house
type, number of floors, house price, etc.); neighborhood characteristics (water and electricity
utilities, security environment, accessibility, etc.). Sample data of land transactions was
collected in surrounding areas under normal trading conditions. The minimum required
number of samples (N) was estimated as N > 50 + 8m where m is the number of predictors.
The samples were interpolated using Kriging to give a spatial distribution of land prices.

The second stage determines the spatial location and function of status poles from analysis
of the influence of factors on land prices. These change over time, space and with people’s
perspective. Criteria were proposed to select locally appropriate factors. In overview, criteria
were established for classifying factors affecting urban residential land prices were based
on urban quality of life approach with six dimensions (including environmental, physical,
mobility, social, psychological, and economic dimensions). A key task of this stage was to
determine the weights and scales of influence on land prices of each factor. A variety of
methods were explored including network analysis, space syntax, Analytic Network Process,
Fuzzy logic, and, for each dimension a composite index (the urban quality of life index -
UQoL) is calculated for each land parcel. This provides the basis for determining the function
of status poles that were preliminary identified in the first stage.

The third stage is to capture the opinions of people living around the status pole as a form
of to verification through questionnaires. A total of 15 questions related to the indicators of
urban quality of life, and the attractiveness of status poles were scored on a Likert scale with
5 levels from very dissatisfied to very satisfied. Thus, the three criteria for identifying the
status poles are addressed in the three stages of the process.

The case study area is Cau Giay District. This is among the most well-developed districts
in Hanoi. It has eight wards and is bordered by old inner districts and new districts. Cadastral
maps were collocated with 427 standardized survey samples of real estate transactions from
2017 to 2019. Attribute data was obtained from both field surveys and spatial analyses
resulting in each land parcel having 36 attribute fields (such as land market price, shape,
frontage, relative position of a parcel to streets, distance from a land parcel to the closest
hospital, school, police station, etc.).
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Figure 2 Preliminary identification of status poles.

4 Results and Discussion

4.1 Identification of status poles
The kriging interpolation generated the spatial distribution of residential land prices, as
the basis for preliminary identification of status poles (Figure 2). The results show that
residential land prices vary from 34.5 to 550 million V ND/m2. Three areas with the highest
land prices are considered as positive status poles, namely: (1) Thang Long International
Village area, (2) Dich Vong New Urban Block (in Dich Vong Ward) and (3) Trung Hoa –
Nhan Chinh New Urban Block (in Trung Hoa Ward). The area with the lowest land price is
the residential area in Yen Hoa ward, which has a negative status pole.

A quality of life index was calculated for each residential land parcel as the basis for
determining the function of the status poles. The results show that the area around Cau
Giay Park (including Dich Vong New Urban Block) and Thang Long International Village
have a high UQoL (0.950-0.995). The area around Trung Hoa – Nhan Chinh New Urban
Block with an UQoL index (0.900-0.950) are areas near the park with convenient access to
socio-economic locations such as schools, hospitals, offices, etc. Local interviews revealed
that the attractiveness of the status poles was 86% in Cau Giay Park, 87.5% in Thang Long
International Village, and 76% in Trung Hoa – Nhan Chinh Urban Block. In contrast, the
residential area in Yen Hoa ward has a lower UQoL index ( 0.800) due to poor infrastructure,
degraded roads and some locations prone to flooding and cemeteries in this residential area.

4.2 Status pole zones
The interaction between the status poles allows status pole areas to be delineated. According
to SQTO are continuous and overlapping rings. In Cau Giay District, there are 3 positive
status poles (X, Y, Z) and 1 negative status pole (P). The distance of each land parcel to
each status poles was determined (x, y, z, p). Fuzzy logic was used to scale the distance
values under the principle that the closer to the status poles, the higher scale (Sx, Sy, Sz,
Sp). Figure 3 shows the membership function used for scaling, with the value of a and b
depending on individual preferences or as derived from Government regulations. Here these
were set as follows: a = 300m, b = 2000m.
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Figure 3 Membership function for scaling distance to status poles.

Figure 4 Result of status pole index zoning in Cau Giay District.

The next step is to calculate status index as follows:

Istatus = (Sx + Sy + Sz + Sp)/4

where Sx, Sy, Sz have positive values (+), and Sp has negative value (-). The value of the
status index ranges from -1 to 1 to represent positive or negative status poles. The value
0 represents regions not affected by status poles. Figure 4 shows the result of status areas.
It can be seen that the linking area between Thang Long International Village and Cau
Giay Park (the red area) has the strongest influence in the positive direction. Because these
two status poles are located relatively close to each other, they are considered to form a
“dual” status pole, with a stronger influence. The blue color represents areas affected by the
negative status pole of Yen Hoa Ward. Some areas with light blue color are not affected by all
four status poles in Cau Giay District such as Mai Dich Ward, the north of Nghia Do Ward.
However, these areas may be partially affected by other status poles in the neighboring areas.
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5 Conclusions

This research provides an outline of an approach for identifying status poles related to urban
residential land and their effect on price. These were identified as the locations where the
influence of qualitative factors on the surrounding area are strongest, causing land prices to
increase or decrease sharply and recognized by a given proportion of the population. These
influences can be economic, political, environmental, etc., that affect the urban quality of life
and their interaction with the status poles form the rings of status pole zones. Future research
will to consider the weights of status pole and the application of status pole zoning index in
land value. This paper also demonstrates how the concept of status poles SQTO, and the
spatial in neighbourhood variation that it captures, can be used to underpin spatially non-
stationary house price models. These quantify how the relationship between land value and
house price with different factors related to neighbourhood perceptions and the property vary
in different parts of the city. Being able to model how and where the processes vary spatially,
supports a deeper, more spatially nuanced understanding of the impacts of developments
and urban transformation. This is important in locations that are experiencing very rapid
urban changes, to identify house price bubbles early, to ensure developments are socially
mixed and critically to avoid the commodification of property. The emergence and presence
of these of price bubbles can be identified and explained using the proposed Index.
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Abstract
The modifiable areal unit problem (MAUP) can significantly impact the use of census data as different
choices in aggregating geographic zones can lead to varying outcomes. Previous research studied the
effects using random aggregations, which, however, may lead to the use of impractical and unrealistic
zones that deviate from recommended census geography criteria (e.g., equal population). To address
this issue, this study proposes the use of approximately equal-population aggregations (AEPAs) for
exploring MAUP effects on various statistical properties of census data, including Moran coefficients,
correlation coefficients, and regression statistics. A multistart and recombination algorithm (MSRA)
is used to generate multiple sets of high-quality AEPAs for testing MAUP effects. The results of our
computational experiments highlight the need for more well-defined census geographies and realistic
alternative zones to fully understand MAUP effects on census data.
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1 Introduction

The U.S. Census Bureau reports data using a nested hierarchy of geographic zones, beginning
with census blocks and progressing to block groups, tracts, counties, and states. The
boundaries of these zones are typically created before the digital computer era and are often
arbitrary [4], resulting in significant variations in size, population, and demographic makeup
[8]. When data is aggregated into different geographic zones and at different scales, statistical
properties of the data, such as spatial autocorrelation and correlation coefficients, often
demonstrate significant differences from the officially defined zones. This problem is referred
to as the modifiable areal unit problem, or MAUP [6], which often causes uncertain and
potentially biased census data [5].

A spatial aggregation is a particular way of grouping low-level units (e.g., census blocks)
into contiguous high-level units (e.g., census block groups or tracts). Figure 1 illustrates such
an aggregation where census block groups (light grey lines) are aggregated into tracts (dark
grey lines). During this process, the aggregated data is expected to have different, often
reduced, spatial autocorrelation compared to the original data. When using the aggregated
data in correlation and regression analysis, the coefficients may also differ from those obtained
using the original data.

To understand MAUP effects on the statistical properties of spatial data, algorithms have
been developed to generate alternative random aggregations [5, 2]. However, these algorithms
often cannot yield spatial aggregations that satisfy some prerequisites of census geography.
For example, census tracts in the United States are designed to have a relatively uniform
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Figure 1 The official 2010 census block groups (light grey) and tracts (dark grey).

population size of around 4,000 people [9], a criterion that random aggregations typically fail
to meet. Using random aggregations, therefore, may only partially reveal MAUP effects on
the statistical properties of spatial data.

In the meantime, past research has also advocated the use of geographic zones that are
standardized in terms of size, population, and other socioeconomic components [4, 8]. To
achieve this, automated zone design algorithms have been developed to generate alternative
aggregations that meet these criteria [4, 1, 7]. However, these algorithms often focus on
producing one of the many possible aggregations that align with these criteria and may not
allow us to fully understand MAUP effects on census data.

This paper reports our work in progress where we utilize a heuristic search method called
multistart and recombination algorithm (MSRA) [10] to generate multiple approximately
equal-population aggregations (AEPAs). We compare the analysis of MAUP effects derived
from AEPAs with that from random aggregations. Specifically, we investigate whether AEPAs
significantly differ from random aggregations in (1) spatial autocorrelation, (2) correlation
coefficients, and (3) other regression statistics. In the following sections, we first describe the
MSRA and then illustrate how AEPAs generated by the MSRA can be used to explore the
impact of spatial aggregation on the statistical properties of census data.

2 The Multistart and Recombination Algorithm

The MSRA is a heuristic search method that identifies a diverse set of high-quality spatial
aggregations where the populations in the zones are approximately equal [10]. The algorithm
consists of two phases. In the first phase, a multistart process generates a pool of independent
aggregations. Each aggregation is randomly created and then improved using an efficient
method called the give-and-take algorithm to reduce population differences between zones
by swapping units [3]. The second phase is an iterative process where in each iteration
two aggregations from the pool are randomly selected and then combined to create a new
aggregation. If the new aggregation is new and superior to the worst in the pool, it is added
to the pool by replacing the worst aggregation.

3 Computational Experiments: Design and Results

We chose Franklin County, Ohio as our study area due to its diverse social, economic,
and demographic characteristics, as well as its mix of densely populated urban areas and
extensive rural areas. The county is composed of 887 block groups that are combined to
form 284 tracts (Figure 1). To explore potential alternatives to these census tracts, we use
the MSRA to generate 500 AEPAs, each combining 887 block groups into 284 zones with
approximately equal population (Figure 2a–b). We also employ the algorithm proposed in [7]
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to generate 10,000 random aggregations for comparison (Figure 2c–d). Figure 3 illustrates the
population distribution among official census tracts, as well as zones in AEPAs and random
aggregations. The results suggest that random aggregations have the greatest variation in
population distribution, followed by the official census tracts, and then the AEPAs generated
by the MSRA. Using the AEPAs, we investigate MAUP effects on three variables related to
the Franklin population: the number of people who work from home (x1), the number of
non-Hispanics (x2), and the number of people with a Bachelor’s degree or higher (y).

Figure 2 Two AEPAs (a, b), and two random aggregations (c, d).

Figure 3 Population distribution and comparison. The left panel displays the population
distribution for official census tracts, zones in an AEPA, and zones in a random aggregation. The
right panel shows the standard deviation of population size for zones in all AEPAs and random
aggregations.

3.1 MAUP effects on Moran coefficients
The Moran coefficient (MC) is a statistical measure that determines the degree of spatial
autocorrelation of a variable. Figure 4 demonstrates MAUP effects on the MC using AEPAs
and random aggregations, revealing three significant findings. First, the MC resulting from
AEPAs can be quite different from the MC at the block group level. For instance, for variable
x2, the MC at the block group level (0.341) suggests moderate spatial autocorrelation, whereas
the average MC resulting from AEPAs (0.136) indicates weak spatial autocorrelation. This
finding implies that aggregation can affect the statistical properties of census data. Second,
the MC obtained by aggregating data using the official census tracts may not always provide
a reliable representation of the MCs that can be obtained through AEPAs. For example,
the average MC for variable x2 obtained through AEPAs is 0.136, while the tract-level MC
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is noticeably higher at 0.354. This may seem surprising, but can be explained by the fact
that although equal population served as a general principle when the Census Bureau first
designed the boundaries of census tracts, these boundaries have not been updated in decades
while the population within them has changed substantially. As a result, the population
distribution in existing census tracts deviates from equal population, and the statistical
properties of census data can also differ from those that can be obtained through AEPAs.
Third, it is observed that the distributions of MC under equal population and random
aggregations may differ significantly. For example, there is minimal overlap between the
distribution of MC under random and equal population aggregations for variables x2 and y.

Figure 4 MAUP effects on the MC of variables x1 (work from home, left), x2 (non-Hispanics,
middle), and y (Bachelor’s degree or higher, right).

3.2 MAUP effects on correlation coefficients
Correlation coefficients play a critical role in statistical analysis by quantifying the degree
and direction of the relationship between two variables. Figure 5 presents MAUP effects
on correlation coefficients between variables x1 and y and between x2 and y. The findings
are similar to those observed for the MC. First, the correlation coefficients derived using
AEPAs can differ substantially from the block group-level coefficient, as demonstrated by
the correlation coefficient between x2 and y being 0.666 at the block group level, whereas
the average resulting from AEPAs is substantially lower at 0.325. Second, the correlation
coefficients obtained through AEPAs can differ considerably from the tract-level correlation
coefficient. For instance, the average correlation coefficient between x2 and y for AEPAs is
0.325, suggesting a slightly weak association, while the correlation coefficient at the tract
level is 0.669, indicating a strong association. Third, the correlation coefficients resulting
from AEPAs and random aggregations have little overlap, as previously observed for the
MC. This finding reinforces the idea that random aggregations may not yield representative
results that reflect MAUP effects when the equal population criterion is applied to modify
census geography.

3.3 MAUP effects on regression statistics
Regression analysis is a widely used statistical tool to explore the relationship between a
dependent variable and independent variables. In the case of two variables, it is important
to consider MAUP effects on the regression slope, which indicates the direction and strength
of the association. In addition, if the regression residuals exhibit spatial autocorrelation,
the assumption of independent residuals is violated, compromising the validity of linear
regression analysis. It is therefore crucial to investigate the spatial autocorrelation of the
residuals under different aggregations to determine if they exacerbate or mitigate the issue.
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Figure 5 MAUP effects on the correlation coefficients between x1 (work from home) and y

(Bachelor’s degree or higher) on the left, and between x2 (non-Hispanics) and y on the right.

Here, we examine two regression models of the form y = α + βx1 and y = α + βx2, where
α represents the regression intercept and β the regression slope. Figure 6 presents MAUP
effects on the regression slope β and the Moran coefficient of the regression residuals (MCRR).
It is observed that both β and MCRR exhibit differences using AEPAs compared to block
group-level regression statistics. In addition, there are differences between β and MCRR
obtained through AEPAs and existing census tracts. Consistent with our findings for MC
and correlation coefficient, distributions of β and MCRR generated using AEPAs and random
aggregations can have minimal overlap.

Figure 6 MAUP effects on the regression slope β and the MCRR for two models: y = α + βx1

(top) and y = α + βx2 (bottom).
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4 Conclusions

We present a renewed exploration of MAUP effects on univariate and bivariate statistics
of census data using multiple approximately equal-population aggregations (AEPAs). Our
study yields three key findings. The first highlights the significance of MAUP effects when
aggregating census data from low-level units, which can greatly impact the interpretation
of statistical properties such as Moran coefficients, correlation coefficients, and regression
statistics. Second, the current census geography deviates from the principles that guided
its design decades ago, which poses a challenge for understanding and addressing MAUP
effects. Our analyses show how existing census tracts, established since 1790 and evolved over
time, barely adhere to the equal population criterion today, resulting in statistical properties
that differ from what we would expect under equal population aggregation. This finding
underscores the need to re-examine the existing census geography and to develop more
well-defined geographic zones to help better understand MAUP effects. Finally, our analyses
reveal that random aggregations and AEPAs can yield vastly different results regarding
MAUP effects. While it is recognized that not all randomly generated sets of zones are
suitable for use as census geography, they are still commonly used to study MAUP effects.
Our study demonstrates the limitations of such an approach and emphasizes the importance
of employing realistic zones with approximately equal population to better understand MAUP
effects on census data. Future research can be directed to generalize these findings to other
variables and explore the impact of AEPAs in multivariate situations.
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Abstract
Hemorrhagic fever viruses present a high risk to humans, given their associated high fatality rates,
extensive care requirements, and few relevant vaccines. One of the most famous such viruses is
the Ebola virus, which first came to international attention during an outbreak in 1976. Another
is Marburg virus, cases of which are being reported in Equatorial Guinea at the time of writing.
Researchers and governments all over the world share a goal in seeking effective ways to reduce or
prevent the influence or spreading of such diseases. This study introduces a prototype agent-based
model to explore the epidemic infectious progression of a simulated fever virus. More specifically,
this work seeks to recreate the role of human remains in the progression of such an epidemic, and to
help gauge the influence of different environmental conditions on this dynamic.
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1 Introduction

Viral hemorrhagic fevers (VHFs) represent a growing threat to human health, even as
recent events reflect the challenges and costs of widespread pandemics. The 2014-16 Ebola
outbreak occurred primarily in West Africa killed over 11,000 people, with the World Health
Organization reporting new outbreaks every single year; Marburg disease, too, has been
detected with increasing frequency.[2] The main form of transmission for VHFs that spread
from human to human are blood or body fluids from a human infected with Ebola.[5] It
is known that in certain cases, human remains continue to be infectious; through unsafe
handling of human remains or funeral ceremonies, people may infect others even after death.
While well known to practitioners as a pillar of outbreak control, this dynamic has received
less attention than living human-to-human contact in the simulation literature. This is
unfortunate, as funeral customs in some of the areas where these diseases are endemic involve
extensive contact between mourners and the body of the deceased; it is thought that this
may have been a significant driver of certain outbreaks.[1][3] Thus, this paper will explore
how adding corpse-to-human transmission influences an existing human-to-human model,
developing a prototype agent-based model to explore the epidemic infectious progression of a
theoretical hemorrhagic fever virus.
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2 Background

The outbreak of Covid-19 prompted many researchers to turn their hand to the problem of
epidemics, resulting in an explosion in the creation of agent-based models (ABMs) of disease
(see for example [9]; [17]). The popularity of SIR (Susceptible, Infectious, and Recovered)
models and its close cousins (those with states such as exposed, vaccinated, or immune)
meant that researchers could track the development of disease in individual simulated persons.
Agent-based models made it possible for researchers to vary the specific qualities of the
individuals being exposed to disease, to control contact through social networks, and to
impose non-pharmaceutical interventions on the world which had varying impacts on different
groups (eg school closures versus general travel bans). Given the pressure to respond to
the crisis, these simulations were naturally targeted at Covid-19 specifically - and perhaps
therefore tended to deprioritise the role of the deceased in the spread of disease.

To take a more general example, [7] present nosoi, an open-source r package that offers a
agent-based framework for simulating infectious disease events. Agents are removed from the
nosoi model when they die - meaning that their bodies do not remain in the model to infect
others. This appears to be a widespread practice across the discipline. Even when modelling
Ebola specifically, [8] remove bodies upon death. [14] apply an SIR system dynamics model
to Ebola, using Bayesian inference to calculate the flow among compartments representing
different statuses; they add an extra compartment they call ’X’ to allow them to track deaths
more easily and vary the R0 to reflect local care and funeral practices. The deterministic
numerical simulation of [2] does include the role of funerals and the un/safe handling of
infectious human remains. Finally, [11] builds upon the work of [6], with the former expanding
upon the latter’s basic compartmental model to apply the transmission process to a spatial
agent-based model. The model of [11] takes into account the role of contact with the deceased
during unsafe funerals; it is the only simulation we have been able to identify that considers
the impact of human remains on transmission.

This work is focused on exploring the role of the human remains in the growth of an
epidemic. We seek to demonstrate the significance of including or ignoring this process,
investigating how the presence of human remains influences the infectious progression under
different environmental conditions. Thus, this study utilises a simple agent-based model to
present a series of counterfactuals. This method is computationally inexpensive enough to
execute a large number of simulations and for us to pinpoint the exact role of the changing
variables.

3 Methods

As this research aims to explore the impact of traditional burial practices on the spread of
VHFs, we developed a basic simulation framework1 using the Python Mesa module [10]. In
the model, individual humans move randomly around the environment, potentially infecting
those immediately around them with the theoretical VHF. Susceptible individuals may sicken
and die, and their remains will eventually - but not immediately - be removed from the
simulation.

In order to focus on the impact of time to interment - which we considered in the
experiments in the following chapter, we generate an empty, theoretical environment which
allows us to experiment without concern for confounding factors. Agents are randomly
moving and interacting with each other on the grid. The default model parameters are as

1 Available on GitHub at https://github.com/Huixin-coder/Huixin--Giscience-2023

https://github.com/Huixin-coder/Huixin--Giscience-2023
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Table 1 Default Model parameters.

Parameter Default Value Reference/Assumption
Multigrid 150 x 150 —

Step 100 —
Population 5000 See the determination below

Initial infected rate 0.11 Initial infection rate is 1/9 [15]
Transmission probability 0.44 From 0.44 to 0.9 [13]

Progression period mean 8 The incubation period of 2–
21 days (mean 4–10 days) [4]

Recover days mean 7 7-14 days after first symptoms [16]
Eliminated days mean 3 The virus is infectious for 7 days [12]

shown in Table 1. Similarly, the susceptible human population is held constant and will
not be supplemented, as the time period being simulated is not long enough for births or
natural deaths to play a significant role. The model’s step represents the a single day in the
simulation.

Individuals in the population behave as visualised in Figure 1. At the beginning of
the simulation, a small number of human individuals will be selected from the susceptible
population S to be infected based on the initial infection rate I0. Susceptible individuals may
acquire the infection after contact with infectious individuals (with chance β1) or infectious
human remains (with chance β2). Infectious individuals I may recover at rate γ or die at
rate µ. Deceased individuals remain temporarily in the simulation, potentially infecting
others around them as controlled by the β2 parameter. After some number of days defined
by the eliminated days parameter, the human remains are removed from the environment.
The parameters used in this paper are roughly based on the Ebola virus, but can easily be
varied to explore other VHFs.

Figure 1 VHF status flowchart (SIRD): individual agents exposed to the virus may progress from
susceptible (S) to infectious (I) with probability β1. Eventually they will experience either recovery
(R) or death (D), with probabilities γ or the “death rate” respectively. Deceased agents remaining in
the simulation may come into contact with other, living, susceptible agents and transmit the disease
to them (with probability β2).
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Figure 2 Typical sample instances of simulation results for Model 1 (a): human remains are
not infectious, and Model 2 (b): human remains are infectious and can transmit the virus to living
persons. Parameter values are the same in Models 1 and 2.

4 Results

In this section, we will first present a comparison of two versions of the model. In Model 1,
human remains are not infectious. In Model 2, human remains are infectious and can transmit
the virus to living persons. Building on this, we present two further experiments, exploring
the impact of time to interment (called ’eliminated days’) relative to different population
densities (Experiment 1) or virus fatality rates (Experiment 2). All other parameters are
held constant throughout.

4.1 Infectious versus Noninfectious Remains
Models 1 and 2 are run until the 100th timestep, at which point experimentation shows they
usually equilibrate. The results do not show large deviations across either set of simulations.
Figure 2 shows a comparison of the different model outcomes.

In Model 1, the R0 typically stabilises around time 60, levelling out at 0.258, meaning
that the outbreak will gradually disappear and be well controlled. Notably, such an R0 is
far from the R0 of, say, the real-world Ebola virus which lie in the range of 1.56 to 1.9. In
contrast, Model 2 with its infectious remains sees the measurements stabilise around time
70, with many more fatalities. Its R0 value reaches about 1.6, suggesting that the disease
has the potential to create an epidemic. The average final number of deceased persons are
1587.3 in Model 1, and 3161.2 in Model 2, reflecting the increased mortality associated with
infectious remains.

4.2 Experiment 1: Population Density relative to Eliminated Days
As described above, Experiment 1 involves varying the population and eliminated days (2 to
7 days [12]) relative to one another, holding all other parameters as in the default model.
This is meant to explore the sensitivity of the process to population density, and to better
understand how significantly the timely handling of human remains impacts the spread of
disease.

The model tracks the number of agents which are alive at the end of the simulation,
referred to here as the “alive rate”. This is calculated by the following equation:

AliveRate = Susceptible + Recovered

population



H. Liu and S. Wise 48:5

Figure 3 Average measures of the “Alive Rate” across 50 repetitions of (a) Experiment 1: varying
population densities and number of days until human remains are eliminated from the model, and
(b) Experiment 2: varying death rates and number of days until human remains are eliminated from
the model.

Results are taken at the end of the 100th step. The population is set at 1000, 3000,
5000, 7000 and 9000, while the eliminated days range from 2 to 7 days. Each combination of
parameters is repeated 50 times.

Figure 3(a) tracks the average “alive rate” of each combination of parameters as population
and eliminated days are varied. The different population levels are clearly distinguishable,
and as expected the alive rate decreases as either eliminated days or population density
increases. Interestingly, the most extreme population values appear to be less affected by the
speed with which remains are handled. In contrast, the sensitivity of the population of 3000
to the number of eliminated days is related to the size of the population relative to the size of
the grid. The uneven distribution of alive rates relative to population size at any given value
of eliminated days suggests that there may be critical points of inflection in model behaviour.

What the graph suggests is that in situations of medium population density when a
susceptible person might not otherwise encounter an infectious living person, the long-term
presence of infectious remains represents a noticeable peril.

4.3 Experiment 2: Change daily death rate and eliminated days

Experiment 2 holds population constant (size 5000) and instead varies the fatality of the
infection relative to the eliminated days. The daily death rate increases from 0.05 to 0.25
in increments of 0.05, while the eliminated days again range from 2 to 7. Once more, each
parameter combination is run 50 times.

Figure 3 (b) shows the relationship between the daily death rate and eliminated days as
defined by the average alive rate. Again, as expected the alive rate decreases with the increase
in number of eliminated days, regardless of daily death rate level. In certain situations,
infections are known to “burn themselves out” by killing off hosts before a virus has the
opportunity to spread to new hosts. If human remains are infectious, however, the highly
virulent strains of disease are still able to spread, especially when these deceased hosts remain
in the environment.
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5 Discussion and Conclusion

This article demonstrates a simple example of how improperly handled infectious human
remains can propagate and worsen epidemics. Many extant modelling frameworks remove
deceased agents immediately; our goal is to show the impact that such a modelling choice
may have. There are of course often reasons for such coding decisions. For example, in
extremely large-scale models being run on suboptimal hardware setups, recovering memory
may be a priority. However, we would caution against adopting such a framework without
careful consideration. At a minimum, modellers should be aware of the impact such decisions
have on the ultimate course of an epidemic.

Simulation as a tool showed a great deal of promise during the recent Covid-19 pandemic.
It is crucial, however, that researchers ensure that models not sacrifice essential functionality
in the name of parsimony. This paper presents a simple example drawn from a well-known
principle of infectious suppression. It is important that modellers engage proactively with
subject matter experts to ensure that we incorporate such dynamics into our work in the
future.
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Abstract
Daily travel is a large part of life, and it is widely believed that our mood can be affected by
the environment in which travel takes place. In this study, we investigate how environmental
factors affect mood while performing daily travel activities using an app-based geographic ecological
momentary assessment study. Our study (the WorkAndHome study) involved over 1000 participants
tracked using a bespoke GPS mobile phone app in three cities (Birmingham, Leeds, and Brighton
and Hove, UK) At the end of trips (i.e., when a stop in the GPS data was detected) we pushed a
survey to participants asking them to score their current happiness and stress levels on a 7-point
Likert scale. We combined individual GPS data with environmental data on green and blue spaces
and weather conditions. We found that green and blue space availability and weather variables,
such as daytime, apparent temperature, and visibility, significantly affect our happiness levels at the
end of trips. While these weather factors were also significant predictors of stress level, availability
of green and blue space was not. The results of this study provide fine-scale evidence from direct
surveys about the associations between environment and weather and our moods when performing
daily travel activities.
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1 Introduction

It is well documented that a variety of trip attributes; such as mode of transportation [5], the
duration of the trips [17], the type of activity [7], and whether we are travelling alone or not,
can affect our mood during and following trips. Less is known about how the environment
where trips occur influences mood. Previous evidence supports that trips occurring in
greenspaces are associated with greater happiness levels [23]. Further, it is believed that the
environmental features where we conduct our trips can significantly influence our mood [5].
To study the effect of environmental factors on our mood, we need to capture individuals’
immediate experiences during and/or immediately following trips. Geographic ecological
momentary assessment (GEMA) therefore represents an ideal method to track real-time data
on how individuals feel. Previous studies have successfully employed GEMA methods to
investigate human exposure and response of the environment on people using GPS-enabled
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apps on mobile phones [18]. In this study, we use GEMA to collect targeted information
on individual mood (happiness and stress) and investigate how mood is associated with
environmental factors such as green and blue spaces and weather conditions.

2 Data and Methods

We used the WORKANDHOME dataset [11, 21] comprising mobile-phone based GPS data
for 1029 participants in three UK cities (Brighton and Hove, Leeds, and Birmingham). This
data were collected in two sampling periods: Oct 2018 to May 2019 (Leeds, Brighton & Hove)
and Sep 2019 to Apr 2020 (Birmingham). We tracked each participant’s movement (with
their consent) and pushed a GEMA survey corresponding to any trip endpoint detected by
the app. In the GEMA survey, we asked a set of 6 questions (Table 1), including questions
about mood (happiness, stress, and enjoyment) on a 7-point Likert scale. Along with the
GPS data and GEMA survey, we collected detailed socio-demographic information on each
participant through a telephone-based survey administered prior to installing our mobile
phone app. In this study, we incorporated the self-reported variables on gender, age, and
having a health issue limiting mobility.

Table 1 GEMA survey questions and their possible responses.

Questions Responses Questions Responses
Where are you? Work, home, other How happy are you? 1-7 (the least to the most)
Whom are you with? Alone, not alone How stressed are you? 1-7 (the least to the most)
What activity are you involved in? Work, housework, leisure, eating, other How much are you enjoying? 1-7 (the least to the most)

Using methods detailed in [11] we derived trips from individual’s raw GPS tracking data.
In total, we extracted 31743 trips. However, not all trips have a completed GEMA response
at the end, and we kept only those trips where the GEMA survey was completed within 1
hour of the trip end time. After filtering out trips with successful surveys, we had a dataset
of 8654 trips from 657 different participants. We used Meteorological Office Integrated Data
Archive System (MIDAS) data to assign weather attributes to each trip in our study. MIDAS
is a comprehensive weather database managed by the UK’s national weather service [14, 15].
Here we used hourly data for rainfall and other weather attributes: air temperature, air
pressure, wet bulb temperature, wind speed, and horizontal visibility. Previous research has
demonstrated that apparent temperature is a useful variable for capturing how human beings
experience weather and therefore we calculated the apparent temperature (in Centigrade)
[22]. We used the UK Centre for Ecology and Hydrology (UKCEH) land cover dataset
to extract information on green and blue spaces [13]. UKCEH uses Sentinel-2 Seasonal
Composite Images reflecting the median reflectance for each season. The land cover dataset
is comprised of 21 classes of land cover. We merged 11 green-related classes as green space
and two blue-related classes as blue space. We calculated the area of green and blue space
present in a buffer of 50 meters around each trip’s GPS data. The area of green and blue
space within each trip was divided by the area of the 50 m buffer to give a numerical proxy
(between 0 and 1) for how much of a trip was in areas where green and/or blue space was
present. As previous literature has reported [12], transport mode can significantly affect our
mood. Following [24] we employed a Fuzzy Logic system to detect the mode of transportation.
We used 6 transportation mode categories: walk, run, bike, bus, train, and car. We used four
parameters: median speed, standard deviation speed, proximity to bus routes, and proximity
to train routes. Incorporating four parameters enabled us to distinguish between modes
that are similar in one aspect but different in the other. For example, bus and car might
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have the same median speed, but their proximity to bus routes is different; consequently,
our fuzzy system differentiates these two from each other. We employed min-max operation
(minimum value in each parameter and maximum value between all mode categories) to
identify each mode of transportation. To employ public transit in our model, we used the
Open Street Map (OSM) dataset to extract train and bus routes of any kind. We used a
linear mixed-effect regression model to account for participants having multiple trips as a
random effect. We considered two GEMA response variables (happiness and stress) measured
on a 7-point Likert scale. Prior to analysing the data, we adjusted each participants GEMA
scores for happiness and stress by subtracting the mean response for each individual across
all GEMA surveys (including those GEMA surveys not associated with a trip) from each
response.

3 Results

More than two third (69%) of GEMA surveys were not associated with a trip. This provides
a comprehensive assessment of happiness and stress levels in various contexts. We observe no
significant difference in happiness and stress levels between trip and non-trip GEMA surveys
responses (Figure 1). The average and standard deviation of happiness levels for trip GEMA
surveys are 4.55 and 1.26, and for non-trip GEMA surveys are 4.55 and 1.30. Similarly, the
average and standard deviation of stress levels for trip GEMA surveys are 1.47 and 1.58, and
for non-trip GEMA surveys are 1.52 and 1.63.

Figure 1 Distributions of raw self-reported happiness and stress levels and their normalized
values.

Higher green/blue spaces were found to be positively associated with Happiness scores
(Table 2) but showed no significant association with stress level. We found daytime had a
negative association with happiness level; meaning individuals had higher happiness scores at
night than during the day. Similarly, we found that daytime was positively associated with
stress level. Apparent temperature was positively associated with happiness and negatively
associated with stress. Rainfall showed no significant association with either of happiness or
stress. Travel mode was not found to have an overall significant impact on GEMA happiness
or stress scores, with the exception of bus travel, which was negatively associated with
happiness (Table 2). Destination type also did not significantly influence observed happiness
or stress scores. Trip duration was positively associated with stress level (but not happiness);
whereas trip length was negatively associated with stress (but not happiness). Housework,
leisure, and other activities were not significantly associated with happiness or stress levels
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compared to work as the reference category. Travelling with someone (vs. alone) was not
found to be associated with happiness or stress. We found no associations between individual
factors (age, gender, whether or not individuals self-report a health issue that limits mobility)
and happiness or stress.

Table 2 Results of linear mixed-effect regression models of happiness and stress level.

Happiness Stress
Predictors Estimates p Estimates p
(Intercept) -0.27 0.177 0.17 0.445
Green-Blue Spaces 0.40 0.032 -0.20 0.317
Daytime -0.26 <0.001 0.23 <0.001
Apparent Temperature 0.24 0.006 -0.21 0.030
Visibility 0.43 <0.001 -0.22 0.021
Rain 0.02 0.508 -0.05 0.154
Travel Mode - Walk -0.01 0.840 -0.08 0.124
Travel Mode - Run 0.07 0.593 -0.12 0.378
Travel Mode - Bike -0.00 0.951 -0.06 0.465
Travel Mode - Bus -0.17 0.020 0.10 0.200
Travel Mode - Train -0.20 0.376 0.21 0.411
Travel Mode - Car -0.08 0.067 0.02 0.718
Destination Type [RC: Home]

Work 0.02 0.679 -0.04 0.281
Other -0.02 0.568 0.01 0.798

Duration -0.43 0.072 0.57 0.030
Length 0.23 0.336 -0.55 0.034
Activity Type [RC: Work]

Housework 0.05 0.329 0.00 0.957
Leisure 0.02 0.598 0.05 0.144
Eating -0.36 0.058 0.16 0.445
Other 0.12 0.447 -0.18 0.283

Presence of People - Not Alone [RC: Alone] -0.03 0.254 -0.00 0.961
Health and Mobility Issue - Yes [RC: No] -0.03 0.676 0.08 0.259
Gender - Male [RC: Female] -0.00 0.995 0.00 0.989
Age [RC: 18-24]

25-34 0.04 0.433 -0.08 0.152
35-44 0.02 0.703 -0.08 0.150
45-54 -0.02 0.716 -0.04 0.525
55-64 -0.01 0.804 -0.02 0.762

σ2 0.98 1.18
τ00 0.01 0.02
Marginal R2 / Conditional R2 0.022/0.034 0.014/0.028

RC: Reference Category. Bold number: significant association.

4 Discussion and Conclusion

In line with the existing literature, we incorporated environmental and weather factors into
our study, as they have been commonly studied in relation to self-reported happiness and
stress levels during and after trips. While previous studies have demonstrated that spending
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time in green and blue spaces may reduce stress levels [4], we found that daily travel through
these spaces is not significantly associated with individuals’ stress levels. An important
difference in our study is that we are measuring the proportion of the trip through green-blue
spaces by area rather than measuring time spent in those spaces, which may differentiate
what we have found with previous studies. It is interesting that our results support a positive
association between the amount of green-blue spaces experienced during trips and happiness
levels, which is a similar effect as to when individuals spend time in these spaces [10].

We found daytime was negatively associated with happiness level and positively associated
with stress level. One reason for this might be that it is estimated that 96% of workers
are daytime workers [1], and as work is recognized as a significant source of stress [2], it is
not unexpected to find daytime a positive predictor of stress level. Similarly we found a
positive association between apparent temperature and happiness, but a negative association
with stress. Previous studies have found that individuals spend more time on leisure and
fun activities [9], and have a better mood [8] during warmer days and seasons which might
explain this relationship. We also found horizontal visibility to have the same relationships
with happiness and stress, respectively. It has been previously identified that foggy weather
and a high level of humidity can negatively affect individuals’ moods [25]. Moreover, another
reason for this might be that individuals feel safer travelling when visibility is greater.

It is also interesting that we found all transport modes to be non-significant predictors of
happiness and stress, with the exception of travel by bus which was negatively associated with
happiness. Previous research has reported active transportation and private transportation
may positively affect our mood [6]. We limited evidence on the impact of these individual
factors, while previous studies have identified significant associations between individual
factors and mood during trips [20].

It is worth noting that mood is a complex response which is difficult to capture in survey
data, and therefore often difficult to measure [19]. In our study, we limited our analysis to
investigating the role of daily travel and the surrounding environment (i.e., weather and
green/blue spaces) on individuals’ moods. Numerous factors, including individual genetics
and personal characteristics [3], and interpersonal connections [16] can affect individuals’
moods. We tried to control for this by adjusting the happiness and stress levels by individuals’
average scores. However, there are many other varying factors that we cannot control for.
Therefore, it is likely that the complexity of individual happiness and stress levels may limit
the explanatory power of our models (as observed here, overall model fit was low (R2 < 5 %).

In conclusion, we found that travel environment (such as the presence of green and
blue spaces and weather characteristics) was significantly associated with mood (happiness
and stress). These results highlight the importance of green and blue spaces in our travel
environment. Increasing green and blue spaces along travel routes, especially in urban spaces,
can potentially improve citizens’ travel-related well-being.
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Reported case numbers in the COVID-19 pandemic are assumed in many countries to have underes-
timated the true prevalence of the disease. Deficits in reporting may have been particularly great
in countries with limited testing capability and restrictive testing policies. Simultaneously, some
models have been accused of over-reporting the scale of the pandemic. At a time when modeling
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September 2020), calibrating our spatial Agent Based Model (ABM) model to the reported case
numbers in Zimbabwe.

2012 ACM Subject Classification Computing methodologies → Modeling methodologies

Keywords and phrases Agent Based Modelling, Infectious Disease Modelling, COVID-19, Zimbabwe,
SARS-CoV-2, calibration

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.50

Category Short Paper

Funding Robert Manning Smith: UKRI Grant MR/T02075X/1.
Sarah Wise: UKRI Grant MR/T02075X/1.
Sophie Ayling: UBEL-Doctoral Training Partnership ES/P000592/1.

1 Introduction

From the early stages of the COVID-19 pandemic, there have been initiatives to estimate the
true scale and impact of the epidemic in terms of cases, hospitalizations and deaths across
different countries around the world. Starting with the World Health Organization [23], a
number of other data trackers sprung up (e.g. [15, 21, 12] or the more policy-focused [3]).
These trackers fed into disease models which sought to predict the future spread of disease.
Agent-based models (ABMs) became popular, especially as researchers sought more granular
dimensions to population characteristics and scenario modelling (see [4, 16, 10]).

During the pandemic, criticisms were levelled at modellers in the public eye that the model
forecasts did not reflect the number of cases that were reported in the media [2]. Certain
studies suggested that the cases detected and reported were substantially under-reporting
the true magnitude of the epidemic. In different contexts, researchers estimated that true
case numbers might outstrip reported case numbers by a factor of between 5 and 20 ([19].
What accounts for this discrepancy?

In this paper, we attempt to recreate these “hidden” cases, taking as a case study
Zimbabwe. We endeavour to replicate the true reported case numbers by layering a simulated
testing process on top of our existing model of disease. The work presented in this paper
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incorporates the available data on Zimbabwe’s pandemic response policy, testing, and reported
cases. The following sections will address some relevant background for this question (Section
2) before presenting the modelling framework and data used to inform it (Section 3). The
results of the applied model will be presented (Section 4) and contextualised (Section 5).

2 Background

This section will present motivating context for understanding reported cases of disease as
well as Zimbabwe’s handling of the COVID-19.

2.1 Understanding reported cases
ABMs experienced an explosion in popularity as a result of the COVID-19 pandemic. The
ways in which researchers sought to understand how their simulations related to reported
cases varied. Some modelers have made efforts to either a-priori include an understanding of
testing, resulting in only a proportion of cases being detected, or to somehow back-calibrate
to reported data. For example, the US based Institute of Disease Modelling’s model Covasim
[16] added a parameter to incorporate testing. Others tried to compare actual and simulated
hospital admissions [17] or to calibrate their models on diagnosis versus morality rates [14].

In many Low and Middle Income Country (LMICs) contexts, where testing capacities were
often more limited, these underestimates on reported case numbers are likely to have been at
least as high as those in High Income Countries (HICs). Many have proactively attempted to
mitigate this: for example, in Kenya, researchers used a combination of serological and PCR
test data to calibrate their work for this reason [20]. Research seems to support the idea that
true cases were undercounted: in Kazakhstan, researchers used death and the Case Fatality
Ratios (CFR) to attempt to backcast true case numbers from July 2020 to May 2021 of the
pandemic in that country [22]. The authors of the study asserted that official cases reported
undercounted the number of infections by at least 60%. A similar situation was reported
in various African countries [6], where serological surveys also retrospectively appeared to
reveal a much higher prevalence of those who had developed SARS-CoV-2 antibodies in the
population than the reported case statistics would appear to show. For example across 3
high density suburbs in Harare, Zimbabwe researchers found that the seroprevalence was
at 19% in 2020 and 53% in 2021, with almost half of the participants who tested positive
reporting no symptoms in the preceding six months [11]. With this background, it is useful
to explore further the specific case of Zimbabwe.

2.2 The case of Zimbabwe
Zimbabwean authorities acted very quickly after the first case was detected in their country
on 20th March 2020 [5]. They launched the country’s Preparedness and Response Plan for
Coronavirus the very next day.However, during this initial period testing was very limited.
Large scale rapid diagnostic testing did not become available till September 11th, 2020 [13].
As of 27th June 2020, Zimbabwe had 567 confirmed SARS-CoV-2 cases [21]. Eighty-two
percent of these were returning residents and 18% were the result of local transmission. The
testing was heavily skewed towards returnees despite a comprehensive testing strategy [18].
For those tests that were conducted, there were also logistical issues in transporting samples
to the few available testing centers (see [7]) further confounding the picture. Thus, despite
proactive measures by leadership, it is likely that cases in Zimbabwe were substantially
underreported.
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With this understanding of the need for simulation which can calibrate against systemat-
ically underreported data, we proceed to a description of the method we adopt in the rest of
this paper.

3 Methodology

This model is an extension of work documented in [24], based on simulation available as
an open-source project available online1. To briefly review the simulation framework, we
constructed a spatial agent-based model (ABM) simulating the spread of SARS-CoV-2 in
Zimbabwe with district level dis-aggregation in movement patterns for individual agents in
the model. Default model values are taken from [16], which in turn draws upon [10].

In this paper, we introduce the incorporation of a testing regime into the model to enable
us to measure both cases that exist and cases that have been detected in the population.

3.1 The testing regime
The modelled testing regime sits on top of our existing simulation of the spread of the virus.
In the testing regime, a number of tests are distributed amongst the population each day.
Individuals who exhibit symptoms of SARS-CoV-2 are eligible for testing. The symptoms of
SARS-CoV-2 - such as a continuous cough or fever - are common to many other infections;
thus we take into account that people without SARS-CoV-2 will present for testing. To
simulate the allocation of tests to those without the infection, we generate a number of
people with “spurious” SARS-CoV-2 symptoms. These symptoms will last for 7 days before
subsiding. A person will seek a test only once. This process is based upon the work of
numerous contextual studies (see [7, 6, 13, 8, 9, 5]).

Two factors will necessarily influence the number of detected cases beyond the actual
underlying number of cases: the number of tests administered per day and the number of
people with SARS-CoV-2 infections who are tested. The number of tests given out each day
is a set number taken from the government’s reported numbers [21]. Because the number of
tests distributed daily was not available to us, we calculated the number of tests performed
each day from the reported number of cases and the percent of tests that were positive as
per [21]. The total number of tests administered each day were then scaled to match the
models population size. The number of people with SARS-CoV-2 who are tested remains
an unknown; false positives and negatives make it impossible to objectively determine this.
Thus, we explore different possibilities in the results section.

3.2 Movement
One key feature of the model is the movement of individuals between districts. As we wanted
to compare our test results to real reported case data, it was important to ensure that
lockdowns and their consequent lower mobility levels were incorporated into the simulation.

The model calculates the likelihood of any agent moving between districts based on a
number of different factors: their economic status, the day of the week, and the baseline
likelihood of moving between their current district and another. That last factor is represented
in the model by an origin-destination (OD) matrix, which draws from Call Detail Records
(CDR) provided by the largest mobile phone service provider in the country. The raw data

1 see https://github.com/dime-worldbank/Disease-Modelling-SSA

GISc ience 2023

https://github.com/dime-worldbank/Disease-Modelling-SSA


50:4 Calibration in a Data Sparse Environment

Figure 1 a) The model’s number of SARS-CoV-2 cases detected through the testing regime
compared to the official reported case number, taken from Our World in Data. b) The model’s
detected number of SARS-CoV-2 and the total number of the model’s predicted cases.

(to which this study did not have access) covered the period February 1-June 30, 2020. At
the dis-aggregated level, it contains data on 1900 towers to include 8.1 billion observations
across each of the country´s 60 districts. The World Bank research team which handled
this data partitioned it into two periods: the first from February 2 to March 14 (prior to
the first Level 4 lockdown), and the second from March 15 - June 2020. By extracting the
inter-district movements for these two time periods into separate OD matrices, they created
patterns of travel representative of both normal and lockdown conditions.

Thus, in order to ensure that our simulated individuals were moving correctly, we applied
a “lockdown” in the simulation by drawing the movement of individuals from a distribution
defined by either the pre- or lockdown OD matrices. The simulation imposes a level 4
lockdown on the 30th of March, with reduced movement; we then revert back to the pre-
lockdown levels of interdistrict travel on the 17th of May, when the imposed restrictions on
intercity travel were removed as part of Level 2 measures (as per [5]).

4 Results and Discussion

Each instantiation of the model was run for 200 simulated days; our model start date and
testing routine coincides with the start of the case reporting from Zimbabwe from the 20th of
March 2020. The simulated population is based on a 5% sample of the 2012 Zimbabwe Census
was taken from IPUMS International [1], allowing us to incorporate realistic distributions of
age, sex, economic status, and household composition.

We performed a parameter grid search to calibrate the models’ number of detected cases
to those reported. We paired combinations of the infection transmission parameter, β, to the
rate in which a person will develop spurious symptoms, γ. The total error in the number
of detected cases in each parameter combination was assessed and models were selected to
minimize the total error. Initially, SARS-CoV-2 testing in Zimbabwe was limited to points
of entry (functionally, districts with an official boarder crossing, airport or train station).
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Within our parameter grid search, the parameter combination which resulted in model
runs that most closely fit the true reported case data came when β = 0.128 and γ = 0.0875.
The simulated reported cases are shown in Figure 1a, with a 95% confidence interval
indicating the variation among runs. Figure 1b demonstrates the total number of simulated
cases in the same model, demonstrating the significant number of cases missed as a result of
a limited testing regime. During the simulation period, the model’s daily detected number of
cases peaked at 531, whereas the peak number of both undetected and detected cases was
3763.

Our methodology of filtering the model’s simulated cases through a simulated testing
regime allowed us to closely match the reported case numbers. Over the course of the
simulation, the model generated a total of 153,807 cases, yet the simulated testing documented
only 6892 cases. Thus, only 5% of the model’s “true” cases were discovered by the testing
regime. Other modelling studies have found similar discrepancies in the detected and total
cumulative number of cases estimated (see for example [19]).

5 Conclusion

The results of this paper are dependent on the outcome of the model’s calibration and a
number of assumptions made. For example, one relevant assumption is the number of cases
distributed in the population at the beginning of the simulation. Initially, we created a single
infection in a 25% scale size population (equivalent to four initial cases, once scaling is taken
into account). A single initial infection was chosen to represent the single initial case reported
on the 20th of March. It may be that more cases existed in Zimbabwe at the time; however,
in hindsight it would be impossible to establish the exact number. Seeding more infections
initially would result in an increased number of cases overall. Future work might explore the
sensitivity of the epidemic to the number of initial cases as well as the parameters β and γ.

Broadly, this work contributes to the discussion around disease forecasting and prediction.
As described above, many people were skeptical of the apparent “overprediction” of cases of
SARS-CoV-2 cases. Our results show a clear example of how the results of such simulations
might track well with the reality of testing. The fit between our simulated testing data and
real testing data in our chosen case study suggests the model is capturing the true epidemic
peak - and also of reflecting the impact of a testing regime. Exploration of different testing
regimes represents a promising future direction for research. Regardless, researchers should
ensure that modelled results distinguish between cases and reported cases, and should seek
to document the statistical process which mediates the relationship between these. Reported
case numbers will paint only a partial picture of the full situation, but through simulation
we may begin to better understand the underlying reality.
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1 Introduction

With urban areas’ development, numerous new office buildings have been built in the city
centers. However, the impact of the supply of these new office buildings on such regions is
unknown. Generally, the impact of real estate supply on a region can be explained by the
trade-off between supply and amenity effects [6]. The supply effect relates to the availability
of new real estate that absorbs demand and eases the upward pressure on rents. Accordingly,
the filtering process used as a supply mechanism for affordable housing can cause rent to
fall and result in a cascading transfer to higher-quality properties [9]. The amenity effect
is related to the supply of new real estate that attracts high-income households and new
amenities, thus increasing rent in that area. Particularly, the redevelopment in low-income
neighborhoods can lead to gentrification, driving existing residents outside the area [3].

The trade-off between amenity and supply effects have been studied in recent years for
the housing market. [4] and [1] demonstrated that the overall supply effect is stronger in the
U.S. housing market. Do these results hold true for the office segment?
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Numerous researchers, who have analyzed office market dynamics at the city or country
levels, have reported that the supply effect is consistently strong in the long term. Simultan-
eously, in the short run, the new supply has been observed to increase and decrease rents [8].
However, this issue – at the micro-level – has been underdiscussed.

Using data from 2000 to 2022, we answer the following three questions regarding the new
supply of office buildings for the Tokyo office market, which has a high concentration of office
buildings worldwide:
RQ1: What is the geographical extent of the impact of new office buildings?
RQ2: How do trade-offs between supply and amenity effects vary over time?
RQ3: Do these trade-offs vary geographically?

2 Data

This study focused on the rental office market in Tokyo’s 23 wards. Sanko Estate Co. Ltd.
provided the data for the analysis. This included quarterly attribute data for all rental office
buildings identified by Sanko Estate Co., Ltd. The data also include information on asking
rent for the advertised properties. The sample size, including asking rent and excluding
missing data, was 523,566.

Tokyo’s 23 wards have the world’s most concentrated business cities in terms of office
space, with approximately 5 million tsubo (≒16 million m2) of new rental office space
available between 2000 and 2022, leaving approximately 13 million tsubo (≒43 million m2)
rentable floor space at the end of 2022.

The indicator for neighborhood new office building supply (NNSr
it) is the ratio of the

rentable floor space of new office buildings to the rentable floor space within a radius of r

meters, centered on office building i at time t. Here, r is the threshold of interest representing
the spatial range affected by the new supply. Considering that r is an unknown threshold, it
is empirically determined using the following method:

3 Method

3.1 Variable selection
We adopted a hedonic approach to estimate the impact of the new supply. This approach
was proposed by Rosen [10] and has been widely used to used to explore the determinants of
real estate prices (rents) [11].

lnRit = β0 +
K∑

k=1
Xitkβk + NNSr

itβNNS + εit (1)

where lnRit represents the logarithmic asking rent; Xitk is the kth explanatory variable; εit

is the error term; and β0,βk,βNNS are parameters. Here, βNNS is the parameter of most
interest, with βNNS > 0 implying a strong amenity effect and βNNS < 0 implying a strong
supply effect. The spatial range threshold r in NNSr

it was determined to be from 100 to
1500 meters, based on the Akaike information criterion (AIC) minimization. See Table 1 for
the details and basic statistics on the explanatory variables Xitk.

To answer the RQ2 question, we extended the base model. Here, we added the lagged
variables of NNSr

it to the model from five years ago (20 quarters) to three years later (12
quarters).

lnRit = β0 +
K∑

k=1
Xitkβk +

20∑
p=−12

NNSr
i,t−pβNNS,p + εit (2)
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Table 1 Variables and description.

Variable Content Unit Mean SD

Asking rent Monthly asking rent including
common area maintenance charge yen/tsubo (log) 9.582 0.346

Area per floor The maximum leasable area on a standard
office floor (3rd floor or higher) for each building tsubo (log) 3.833 0.904

Age Number of years since construction year 25.422 11.681
Stories Number of stories above ground floor (log) 2.020 0.347
Time to
the nearest station

Time to walk to the building
from the nearest station min 3.583 2.306

Neighborhood
rentable area Rentable gross floor area in the neighborhood tsubo (log) 11.434 1.231

Vacancy rate Vacancy rate of neighborhood office buildings % 0.061 0.041
Air-conditioning =1 if a building have air-conditioning system {0, 1} 0.976
Seismic performance =1 if a building have seismic performance {0, 1} 0.018
Structural dummy A set of dummy variables for building structure

Time dummy A set of dummy variables representing
the quarter of tenant recruitment

Area dummy A set of dummy variables for submarkets
as defined by Sanko Estate [2].

For larger office buildings, leasing activity begins before construction is completed. In such
cases, supply effects may become apparent even before construction is completed Similarly,
rent increases may be associated with expectations of future regional revitalization.

Additionally, these trade-offs may vary from region to region (RQ3). Moreover, other
determinants may have a less linear relationship with rent and vary spatially or non-spatially.
To consider these relationships, the linear hedonic model was extended to spatially and
non-spatially varying coefficient (SNVC) models [7].

lnRit = fMC,0(si) +
K+1∑
k=1

Xitkβik + εit, βi,k = bk + fMC,k(si) + gk(Xitk) (3)

where βik represents the regression coefficient and comprises the constant mean bk,
spatially varying component fMC,k(si), and non-spatially varying component gk(Xitk). The
spatially varying component is a function estimated based on Moran eigenvectors, and varies
with the location of property i(si). The non-spatially varying component is represented
by a function that varies with the value of the variable captured by the spline function.
In the SNVC model, the coefficients of each variable are selected from the constant, SVC
(Spatially Varying Coefficient), NVC (Non-spatially Varying Coefficient), or SNVC, given the
Bayesian information criterion (BIC) minimization. Additionally, the explanatory variable
Xitk includes NNSr

it. Therefore, the number of variables increases from K to K + 1.

4 Result

4.1 Geographic range of impact of new supply
This section identifies the geographic range of the new supply’s impact. Figure 1 depicts
the change in the AIC of the model and the coefficient of the new supply when using each
threshold value. The AIC is at a minimum when the radius threshold is 1400 m. Furthermore,
the coefficient of the new supply is positive in all cases, and the larger the radius, the larger
the absolute value of the coefficient. This suggests that the amenity effect is significant in a
tradeoff relationship. However, this result is also attributable to the fact that the larger the
geographic area, the smaller the percentage of new supply (NNSr

it).

GISc ience 2023
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Figure 1 Identification of the geographic range of the impact of neighborhood new supply on
rent. The horizontal axis represents the radius (spatial range).
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Figure 2 Impact of neighborhood new supply before and after completion of construction.

4.2 Change in trade-offs over time
The event study graph (Figure 2) based on Equation 2 depicts the impact of the new supply
in pushing rentals up for approximately three years (nine quarters). Specifically, an increase
in new office stock by 10% will increase rentals by 0.7% approximately two years before
construction is completed and by 1.6% upon completion. After construction is completed,
the effect of rising rents declines for one to three years only to increase again. The temporary
decline in impact is thought to manifest a supply effect, as tenant relocations associated
with the completion of construction generate secondary vacancies. Once secondary vacancies
settle, the amenity effect occurs, raising rentals to sustainable levels even after five years.

However, this interpretation requires the consideration of any remaining biases. Property
developers may know the optimal locations and times to reap development profits [1].
Moreover, the new building might be planned in fast-growing areas [4]. In this case, the
estimates are biased in the positive direction. The phenomenon of rents increasing two years
before construction is completed is not intuitive and indicates bias. However, various actions
can be taken before the new supply. Property owners may lower the rent to fill vacancies
before new buildings are completed. However, if the new supply involves redevelopment, then
tenants need to be temporarily relocated before construction begins. In this case, demand
for office space in the neighborhood during the construction period would be temporarily
increased, which might result in rising rents. While there is insufficient evidence of a strong
amenity effect here, clearly, the supply effect, which becomes apparent after the construction,
is weakened over time.

4.3 Spatial heterogeneity of trade-offs
Finally, the SNVC model reveals that the impact of new supply varies spatially (Figure
3). Here, the coefficient of neighborhood new supply was estimated as SVC. This result is
strongly related to the aforementioned bias. Areas with significantly positive coefficients can
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Figure 3 Estimation results and spatial distribution of NNS coefficients. Type indicates the
type of coefficients, where C stands for Constant, SVC for spatially varying coefficients, NVC for
non-spatially varying coefficients, and SNVC for spatially & non-spatially varying coefficients.

be interpreted as having strong amenity effect or biases. However, this does not necessarily
imply that actively redeveloped areas have strong positive effects. In the case of the Roppongi
and Tokyo Station areas, which underwent extensive redevelopment over the past two decades,
the coefficients were either negative or zero.

This spatially heterogeneous trade-off may be related to the vacancy rate. Areas such as
Shinjuku and Shibuya Sta. areas tend to have low vacancy rates in the long term, whereas
Roppongi and Kanda (between Tokyo and Ueno Sta.) have high vacancy rates [5]. In
localities with low vacancy rates, new buildings absorb latent demand and help boost rents,
whereas in areas with high vacancy rates, secondary vacancies may become apparent and
cause rents to fall.

The results of the SNVC model showed other interesting spatial heterogeneity in rent
determinants, but due to volume constraints, we omit them here.

5 Conclusion

This study estimated the local impact of new office building supply. The results suggest that
the model fits best when the impact of the new supply has a radius of 1400 meters. According
to the results based on the linear model, the impact of the new supply was positive, but the
presence of an upward bias should be considered in the discussion. However, event studies
reveal that the supply effect became apparent post-construction, indicating a temporary
decline in the impact of the new supply. Furthermore, the results of the SNVC model, which
considers the spatial heterogeneity of the impact of the new supply, suggest that the trade-off
between amenity and supply effects may be associated with high and low vacancy rates.

These results contribute to a wider discussion of the endogeneity of the new supply in
terms of the location and trade-off relationship. They can be used to formulate informed
policy decisions regarding office supply. If the supply effect is only temporary, the supply
of quality office buildings to SMEs based on the filtering process may become complex and
place financial strain on SMEs over time. However, appropriate location-based interventions
are needed because of their locational variations.

GISc ience 2023
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Nevertheless, this study has several shortcomings as it is in its infancy. Specific strategies
to remove bias and identify causation needs to be discussed. Furthermore, the new supply is
interdependent on rent and vacancy rates.
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Abstract
Spatial accessibility is a powerful tool for understanding how access to important services and
resources varies across space. While spatial accessibility methods traditionally rely on origin-
destination matrices between centroids of administrative zones, recent work has examined creating
polygonal catchments – areas within a travel-time threshold – from point-based fine-grained mobility
data. In this paper, we investigate the difference between the convex hull and alpha shape algorithms
for determining catchment areas and how this affects the results of spatial accessibility analyses. Our
analysis shows that the choice of how we define a catchment produces differences in the measured
accessibility which correlate with social vulnerability. These findings highlight the importance of
evaluating and communicating minor methodological choices in spatial accessibility analyses.
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1 Introduction

Spatial accessibility is an important field of research that examines access across space to vital
resources and services like healthcare [11, 12, 14]. This makes spatial accessibility a powerful
tool for identifying and analyzing disparities in access across space. Access is especially
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crucial for socially vulnerable populations – those who are socio-economically disadvantaged,
disabled, with limited transportation, etc. – who may be less likely to overcome the barriers
between them and the services they need. This means that spatial accessibility work must
always be cognizant of how various methodological choices impact measures of accessibility
and how these different patterns of access correlate with social vulnerability.

While spatial accessibility traditionally relies on origin-destination matrices between
centroids of administrative zones, recent work in spatial accessibility has created polygonal
catchments from fine-grained travel data [10, 11, 14]. These works have used fine-grained
point data, such as travel-time on OpenStreetMap road networks [3] and Floating Car Data
(FCD) [10], to more accurately determine catchments and service areas. To calculate these
catchments from point data, researchers used convex hulls in Kang et. al. [11, 12] and alpha
shapes in Jiao et. al. [10]. However, convex hulls have the potential to exaggerate the
catchment area as they oversimplify the shape of accessible locations.

In this paper, we examine the implications of using the convex hull and alpha shape
algorithms for defining catchments in spatial accessibility analysis with a case study in
Cook County, Illinois, USA. In Section 2 we discuss our methods for determining spatial
accessibility and catchments and Section 3 details our data. Section 4 gives our findings
for our two research questions: (1) what are the differences in the accessibility measures
when we compare the two approaches and (2) how do these differences correlate with social
vulnerability? Section 5 concludes with a discussion of our findings and their implications.

2 Methods

2.1 Measuring Spatial Accessibility
Spatial accessibility analyzes the distribution of supply and/or demand across space. The
Enhanced Two-Step Floating Catchment Area (E2SFCA) method is a common tool for
calculating spatial accessibility [13]. The first step of E2SFCA determines the weighted ratio
of supply and demand (Rj) for each supply location j using Equation 1:

Rj = Sj∑
k∈{dkj∈Dr} PkWr

(1)

where Sj is the degree of supply at location j, Pk is the degree of the demand or population
at location k and Wr is the weight for travel-time zone r [13]. The travel-time between the
supply location k and demand location j is given by dkj and each step of the summation
only considers supply/demand pairs k, j if the travel-time is within that step’s travel-time
threshold Dr (dkj ∈ Dr). In the second step, each demand location sums the weighted
supply-to-demand ratios of supply locations within the travel-time zones. The equation for
Step 2 of the E2SFCA method is:

Ai =
∑

j∈{dij∈Dr}

RjWr (2)

where Ai is the access at demand location i and Rj , Wr are ratios and weights from step one.
This yields a measure which can be interpreted as supply-to-demand ratios across space.

2.2 Calculating Catchments
An explosion in high-quality geospatial data and the development of cyberGIS for high-
performance geospatial analysis [17] in recent years has led to a greater diversity in how
travel-time catchments are defined. Mobility information is often given in the form of points
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– nodes on road networks [12], mobile phone data [16], social media data [8], etc. – but there
is some uncertainty in how we determine a service area from a set of points.

Our study examines two well-known approaches: convex hull [5] and alpha shapes [6].
The convex hull CH(S) of a set of points S is convex – meaning that the line between any two
points in CH(S) is completely contained in CH(S) – and is the smallest convex set containing
S [5]. Kang et. al. [12, 11] created driving-time polygons by calculating the ego-centric graph
– the network around a node up to some distance threshold – on the road network around
each supply location and used the convex hull to produce polygons. A similar approach was
employed by Park & Goldberg using travel speed data in addition to the street network
data [14]. The convex hull on a road network is given on the left of Figure 1.

Alpha shapes instead use the Delaunay triangulation of the points [6]. Using the triangu-
lation, the alpha shape algorithm filters out triangles based on their circumradius using an
alpha parameter [1]. We follow the convention used by the Python alphashape package [2],
by filtering out triangles in the Delaunay triangulation which have a circumradius greater
than 1/α. The convex hull and alpha shape are related in that the convex hull can be thought
of as an alpha shape with α = 0; the Delaunay triangulation with all triangles [6]. Whereas
the convex hull is like a rubber band around the points, the alpha shape is like shrink wrap
being fitted to the points, with α telling us how long to apply the heat. Jiao et. al. (2020) [9]
calculated hospital service areas (HSAs) using alpha shapes and isolated forest algorithm on
taxi trajectory data and Jiao et. al. (2022) [10] calculated accessibility using these service
areas. An alpha shape on a road network is given on the right of Figure 1.

Figure 1 An example of the difference between convex hulls and alpha shapes on road network
data. The street network nodes in red are within 30 minutes of the Carle Hospital in Urbana, IL
while the grey nodes are not. The convex hull around the red nodes is on the left and the alpha
shape (with α = 2−13 using Albers Equal Area Conic projection) is given on the right.

To determine catchments in our experiments, we calculated travel-time with the osmnx
package [3]. First, we cleaned the road networks to remove all but the largest weakly and
strongly connected components of the network, ensuring each hospital and census tract were
reachable, and determined free-flow travel-times for each edge. Distance between nodes on
the graph were calculated with the Python networkx package using Dijkstra’s Algorithm. We
collected the coordinates of each node within the travel-time threshold and created collections
of points using the Python geopandas package. Using the collection of points, we were able
to calculate polygonal catchments using the convex hull and alpha shape algorithms.
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3 Study Area and Data

This study examined spatial accessibility for the general population to Intensive Care Unit
(ICU) beds and its relationship with social vulnerability in Cook County, Illinois. This
analysis required several different sets of data: (1) population and social vulnerability, (2)
hospitals and ICU beds, and (3) road network data. Our population and social vulnerability
data comes from the Centers for Disease Control (CDC) Social Vulnerability Index (SVI)
which includes population estimates at the census tract level from the Amercian Community
Survey 5-Year (2014-2018) [4]. The hospitals and ICU beds per hospital were obtained
from the Homeland Infrastructure Foundation-Level Data Geoplatform1. Our road network
dataset was obtained from OpenStreetMap using the Python osmnx package [3].

4 Results

Our experiments answer two key research questions. First, what is the relationship between
the alpha parameter and measured access across space? Second, does the relationship between
alpha and access correlate with the CDC SVI? To accomplish this, we calculated alpha
shapes using a range of alphas (2−16, 2−15, · · · , 2−6) and convex hulls around the 10, 20, and
30 minute travel zones for each hospital. Then, we calculated spatial accessibility using the
E2SFCA method with the catchments produced.

To understand the relationship between alpha and access, we plotted for each census
tracts standardized accessibility score based on each tested α value as shown in Figure 2a.
For each census tract, we compiled the distribution of spatial accessibility measures for
each value of alpha and standardized the data such that the mean was zero and standard
deviation is one. It is hard to determine a clear relationship here: access in some census
tracts increase while others decrease as alpha rises. However, it is clear from Figure 2a that
our choice of convex hull versus alpha shape makes a significant impact on the measured
spatial accessibility.

To quantify the relationship between alpha and access, we computed an “alpha-access
effect” metric for each census tract, mapped in Figure 2b. The metric is the linear regression
coefficient between log base two of the alpha values and standardized mean accessibility for
each census tract. A positive alpha-access value indicates a positive relationship between the
alpha value and the measured accessibility, whereas a negative value means the measured
accessibility tends to decrease as the alpha value increases. The clustering in the map
prompted us to check for spatial autocorrelation and we found a Moran’s I of 0.465 and
p-value of zero given by pysal using a Gaussian weight matrix. The map in Figure 2b shows
positive values in downtown Chicago, against Lake Michigan, and generally declining values
as we move west with some exceptions like O’Hare International Airport (north-western
corner), the I-90 corridor (the yellow strip running from downtown Chicago to O’Hare), and
the I-57 corridor (the yellow strip running south-west from the lake).

Lastly, we found a weak negative correlation (Kendall’s τ : -5.45e-02, p-value: 3.06e-03)
between the alpha-access effect and SVI. This is a statistically significant result at the
0.01 significance level and indicates that census tracts with high social vulnerability tend
to also be the ones where measured spatial accessibility decreases as a function of alpha.
Practically, this means convex hulls and low α alpha shapes tend to over-report access in
socially vulnerable communities relative to higher α alpha shapes.

1 https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::hospitals-1

https://hifld-geoplatform.opendata.arcgis.com/datasets/geoplatform::hospitals-1
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(a) Standardized access as a function of α for
census tracts in Cook County, IL

(b) Map of the “alpha-access effect” for census
tracts in Cook County, IL

Figure 2 (Left) Plots of standardized accessibility by census tracts as a function of alpha for
Cook County, IL. CH stands for Convex Hull and is an alpha shape with alpha equal to zero. (Right)
A map of Cook County, IL giving the alpha-access effect of each census tract.

5 Concluding Discussion

In this paper, we explored how different catchment constructions (i.e., convex hull and
alpha shape) affect spatial accessibility metrics that employ granular travel-time data. Our
work shows that the differences are spatially autocorrelated and vary greatly depending
on the alpha value used. In addition, we demonstrated that these differences in spatial
accessibility – arising from the choice between convex hulls and alpha shapes – correlate with
social vulnerability. This suggests that using convex hulls and low α alpha shapes for spatial
accessibility may overestimate access for socially vulnerable populations which could have
unintended policy implications.

While we cannot claim that either convex hulls or alpha shapes provide a ground truth
for mobility, alpha shapes with appropriate values of alpha more accurately represent the
data we have, as seen in Figure 1. Therefore, we can conclude that using convex hulls and
inappropriately low α alpha shapes for constructing catchments tend to over-report access
to ICU beds for those who are socially vulnerable in Cook County, IL. This may lead to
policy-makers providing less support to socially vulnerable populations.

There is future work to do in this vein of research as more diverse spatial datasets and
tools become available. It would be illuminating to apply this methodology to a variety
of cities to see how much of our findings hold in cities generally. Additionally, our work
used OpenStreetMap data, but there is a variety of mobility and transportation data which
have potential for use in spatial accessibility studies including the Floating Car Data [10]
and temporally dynamic mobility data [15]. Further work could also help to identify the
circumstances in which convex hulls and alpha shapes more accurately describe real-world
mobility which varies heavily based on individual-level characteristics [7].
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Abstract
The OpenStreetMap (OSM) project is a widely-used crowdsourced geographic data platform that
allows users to contribute, edit, and access geographic information. However, the quality of the
data in OSM is often uncertain, and assessing the quality of OSM data is crucial for ensuring its
reliability and usability. Recently, the use of machine and deep learning models has shown to be
promising in assessing and improving the quality of OSM data. In this paper, we explore the current
state-of-the-art machine learning models for OSM data quality assessment and improvement as an
attempt to discuss and classify the underlying methods into different categories depending on (1) the
associated learning paradigm (supervised or unsupervised learning-based methods), (2) the usage of
extrinsic or intrinsic-based metrics (i.e., assessing OSM data by comparing it against authoritative
external datasets or via computing some internal quality indicators), and (3) the use of traditional
or deep learning-based models for predicting and evaluating OSM features. We then identify the
main trends and challenges in this field and provide recommendations for future research aiming at
improving the quality of OSM data in terms of completeness, accuracy, and consistency.
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1 Introduction

The OpenStreetMap (OSM) project 2 is a collaborative effort to create a free, editable map
of the world. The OSM database is built and maintained by a community of volunteers
who contribute data on various geographical features such as roads, buildings, and points
of interest. For this purpose, there are various editors that can be used to edit OSM data,
including web-based editors such as iD and Potlatch 3, and desktop editors such as JOSM 4

and Merkaartor 5. Each editor has its own set of features and tools, making them suitable
for different types of mapping tasks. For example, JOSM is a powerful editor that has a wide

1 Corresponding author
2 https://www.openstreetmap.org
3 https://www.systemed.net/potlatch/
4 https://josm.openstreetmap.de/
5 http://merkaartor.be/
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range of advanced features and is suitable for experienced mappers, while iD is a web-based
editor that is easy to use and is suitable for beginners. Additionally, some editors like JOSM
have plugins that can automate certain tasks, such as checking for errors in the data.

The importance of OSM data lies in its wide range of applications. It is essentially used
in many fields such as navigation, emergency response, transportation and urban planning.
It is also used to create custom maps for specific needs, such as hiking and biking maps, and
is used as a base map for many other applications. Besides, OSM data can be used to create
map tiles and other map products that can be used on websites and mobile applications.
Despite its usefulness and its reliability, the quality of OSM data is strongly dependent on
the accuracy and completeness of the contributions (edits or changests) made by volunteers.
In fact, as the OSM database continues to grow, the need for automated methods to assess
and improve its data quality becomes increasingly important.

On the other hand, numerous machine and deep learning models have been applied to
various different tasks in the area of GIS (geographic information systems) and web-mapping,
including map digitization using features generated by artificial intelligence (AI) predictions.
For instance, one could extract building footprint binary masks from drone imagery via
different deep learning segmentation models, transform those masks into georeferenced
polygons, and then overlay those geometries on OSM base-map for quality assessment. This
will allow us to build AI tools capable to assist the mappers detect incomplete regions and
vandalism cases when there is a mismatching between the predicted features and the existing
annotations created by the contributors within a certain area of interest (AOI) in OSM.

In this paper, we review some of the state-of-the-art machine learning models for OSM
data quality assessment while describing the proposed approach and the important findings
for each work.

2 Machine Learning Models for OSM Data Quality Assessment

Mapping systems are crucial for navigation, transportation and other applications, but they
can be costly to maintain due to the need for regular updates. Traditional maps, also known
as authoritative maps, may not be updated as frequently due to budget constraints and may
result in inaccuracies in terms of temporal, spatial and completeness. An alternative solution is
Volunteered Geographic Information (VGI) [9], which relies on the contributions of individuals
to create and update maps. One of the most popular VGI projects is OpenStreetMap (OSM),
which was launched in 2004 and currently has over 10 million users from around the world.
OpenStreetMap (OSM) is a VGI project which serves as an alternative to traditional map
sources and is open to the public for retrieving, adding and editing spatial features. While
OSM data is constantly being improved, the completeness and quality of the data may vary
depending on the number of contributors and their mapping skills [19]. For instance, OSM
coverage is more or less complete in urban areas compared to rural areas [10]. Additionally, it
is not uncommon to encounter missing roads and inaccuracies in terms of positional accuracy
[28] and semantic tags [6, 14].

Despite these limitations (i.e., issues related to data completeness and its quality),
OSM has been widely used in a variety of applications, including land cover mapping
and classification [5, 25, 3, 26], navigation (e.g., traffic estimation) [16], 3D city modeling
and location-based services [22], building footprint detection using aerial imagery [27, 18],
location-based map services [30] and indoor mapping [8].
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To evaluate and improve the quality of OSM data, researchers have proposed various
methods to tackle issues related to completeness [15], positional accuracy [4], semantic tag
accuracy [7] and topological consistency [21]. Other works approached OSM data quality
assessment [24, 13] by performing OSM meta-analysis, such as examining the activities of
the contributors [20, 2].

In recent years, there has been an increasing interest in automating tasks related to OSM
data. In fact, numerous works have used machine learning and remote sensing techniques
to improve OSM data, while deep learning [29] has been used to extract information from
OSM data to train image recognition models. Overall, the combination of machine learning,
earth observation and OSM data has the potential to address global challenges in new ways.
Several supervised machine learning based models have been trained on properties of OSM
objects to find potential annotation errors. The authors in [1] have proposed three different
machine learning based approaches to identify errors (inconsistent tags) in OSM object
annotations. The first approach, consistency checking, involves applying a classifier while the
user is editing and assigning tags to OSM objects. In this case, the editing tool can inform the
volunteer if the assigned tag value is inconsistent with what the classifier predicted. Usually,
geometrical, topological, and contextual properties (e.g., the object area) are used to train
the supervised learning classifier. The second approach, manual checking, consists of applying
a supervised classifier on a selected set of objects from OSM and then having OSM users to
manually validate the objects whose tags present inconsistencies with the predictions of the
classifier. The third approach, automatic checking, involves using a classifier to automatically
correct annotations based on its predictions without human verification.

Conventional methods typically compare Volunteered Geographic Information (VGI)
against an authoritative dataset to evaluate the quality of VGI data such as OSM data.
While authoritative data is generated by official organizations, VGI is contributed voluntarily
by individuals or communities. Also, VGI can be less reliable and accurate due to varying
quality and expertise, while authoritative data is more trusted. In addition, VGI is more
dynamic but lacks consistent quality control, can have biases, legal concerns, and sustainability
challenges. Despite the previous limitations, combining VGI with authoritative or reference
data is recommended to tackle the aforementioned shortcomings.

In cases where reference data is unavailable to assess the quality of OSM data, intrinsic
methods that evaluate the data itself and its metadata can be employed. The study described
in [17] utilizes unsupervised machine learning (k-means clustering algorithm) to analyze OSM
history data in Mozambique, aiming to gain insights into the contributors, their timing, and
their contributions. The results obtained from the analysis showed that a majority of the
data in Mozambique (93%) was contributed by a small group of active contributors (25%).
The study also identified a new category of contributors who were newcomers to the area,
likely attracted by HOT mapping events during disaster relief operations in Mozambique in
2019. While intrinsic methods cannot serve as a substitute for ground truthing or extrinsic
methods, they offer alternative means of gaining insights into data quality and can contribute
to efforts aimed at enhancing it.

The study presented in [12] takes a similar approach by examining the OSM database in
Ottawa-Gatineau. The focus of the investigation is on historical map features and contributor
data to understand how accurately users contribute to the OSM database. To classify
the changesets and OSM contributors, two unsupervised machine learning models, namely
K-means and Principal Component Analysis (PCA), are utilized. The findings reveal a
cluster of skilled contributors identified as OSM experts, based on their strong contribution
loadings related to the use of advanced OSM editors, and weaker loadings associated with
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feature creation and frequency of contributions resulting in further correction. Therefore,
attributing data quality is done by identifying experienced contributors who are likely to
make further corrections and improvements to the OSM database.

On the other hand, the authors in [23] introduced a deep learning approach to address the
challenge of detecting buildings in areas with limited data. They achieved this by transferring
a pre-trained building detection model on a well-mapped region in OSM to data-scarce areas.
The transfer was accomplished through fine-tuning the model using a combination of training
samples from the original and target areas. The effectiveness of the method was validated by
applying a deep neural networks trained in Tanzania to a site in Cameroon. The fine-tuned
model successfully identified numerous OSM buildings that were missing in a specific area of
Cameroon. The results demonstrated a significant improvement in the f1-score, even with
only 30 training examples from the target area.

Moreover, the paper in [11] presents a novel approach that combines deep learning and
crowdsourcing using the MapSwipe 6 platform. The authors devised a strategy for assigning
classification tasks to either deep learning or crowdsourcing based on the confidence level of
the derived binary classification results. They conducted three case studies in Guatemala,
Laos, and Malawi to assess the effectiveness of their proposed workflow. The findings
indicated that both crowdsourcing and deep learning surpassed existing earth observation
methods and products like the Global Urban Footprint in terms of performance and accuracy.

3 Conclusions and Perspectives

OpenStreetMap (OSM) is a collaborative, open-source project that aims to create a free
and editable map of the world. The data in OSM is contributed and maintained by a global
community of volunteer mappers, who use various tools to edit and update the map. However,
the data in OSM can be inconsistent and contain errors, which can lead to inaccuracies in
the map. This paper has discussed the contribution of machine and deep learning models to
the assessment of the OSM data quality.

In fact, various traditional machine learning models have been used in several studies to
automatically detect errors in OSM data, such as annotation errors, topological errors, and
positional errors. Technically, classifiers have been trained to automatically detect errors in
new data, and to recommend tag values for new objects being added to the map. Additionally,
other works have deployed these models to extract rules from OSM data to help with the
disambiguation of geographical objects.

On the other hand, deep learning models have been used largely to segment high-resolution
satellite imagery for roads and building footprint detection. The extracted features could be
used later on to assess and enrich OSM data quality.

Working on improving the existing machine learning models in terms of providing better
training data quality and designing & optimizing larger models will certainly play an
important role in making OSM data a more valuable and reliable data source for various
real world applications.
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Abstract
Maps are excellent as a medium for communicating spatial configurations at geographical scales.
However, the communication of thematic qualities of geographical features is constrained by the
traditionally assumed strict classification of features on the map and the strong focus on spatial
representation. This is despite the fact that places are central aspects of everyday life that we use to
structure our experiences and thus the need to include them in many maps. This paper explores
how places can be communicated through the map medium. In particular, it addresses the question
of the extent to which places are mediated or merely referenced, and the extent to which maps
already communicate places through its inherent spatial and thematic aspects. This is followed by a
discussion of how maps not only communicate but also shape places. In perspective, this contributes
to a better and more targeted representation of places, especially through maps, but also advances
our understanding of how places are conceptually entangled with spatial and thematic aspects.
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1 Introduction

Places are fundamental to our everyday lives because they are among the basic units we use
to structure geographical space. In this context, ‘home’ and ‘work place’ take on central
roles, which is why they are also referred to as first and second place, respectively [25].
This structuring role is also evident in narratives, which usually engage in one or more
places. Previous research has investigated how narratives can be communicated by means of
maps [28, 4, 14, 34, 17], especially also in relation to places [20, 7, 6], and what systematic
problems exist in this regard [23]. Notwithstanding the results achieved related to the map
medium, the content-related communication of narratives and places often resorts to the
text or image medium because it would be difficult to do so with traditional, cartographic
means [23]. This is despite the fact that maps contain many indications that refer to places.

Before resolving this apparent contradiction, we first delineate the terms ‘place’, ‘Point
of Interest (POI)’, and further ones (Section 2). A discussion of the stylistic devices to
communicate places in maps and other data sets follows (Section 3). This train of thought
resolves the apparent contradiction between the numerous reference to places contained in
the map and the simultaneously existing problems of communicating places cartographically.
Subsequently, we argue that the communication of places by means of the map medium
is not at all unidirectional but also possess performative qualities (Section 4). The paper
concludes with a summary of the resulting consequences for maps and places (Section 5).

2 Place, POI, and Related Terms

This section engages with the concept of place and adjacent concepts to create a basic
understanding for the framework of this paper. The explanations must not, however, be
regarded as definitions of these very concepts, because the latter cannot be exhaustive due
to the brevity of this section and could thus only be inadequate as a definitions.
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Absolute or geometrical space refers to the physically measurable structure of space, as is
represented by the mathematical concepts of Euclidean space and manifolds, e.g., in relation
to the surface of the Earth. The geographical or socially constructed space is distinguished
from this, since it is not given by the physical properties in the sense of a container space
but only constructed by the geographical features and the being lived of these. It is thus
mostly conceptualized as a relational space. Terms of absolute space such as ‘location’ and
‘area’ make sense only to a limited extent here, because they cannot be transferred without
further ado. In geography, many further concepts of space are used in addition to these [30].

The concept of place is complex. Although there is agreement about its meaningfulness
and basic idea in many respects, many different characterizations exist [5, 2]. These have in
common that they ascribe meaning to a place [29], which makes it experienceable as an entity
in its own right. Place are often (though not always) understood in the context of everyday
behaviour and routine. Some places are socially constructed and shared, while others emerge
individually without social influence. Place identity [26, 27], place attachment [35, 18, 33],
sense of place [35, 15], recurring patterns of behaviour (place ballets) [31, 32], and further
qualities are used to characterize places. This complexity in the description of a place without
reference to absolute space distinguishes the concept of place from a Point of Interest (POI).

In a way, the concepts of region and of place can be considered similar in that both refer
to characteristics of geographical space. A region focusses on the common characteristics of
all sites within that region that make possible the demarcation from surrounding regions,
while the concept of place seeks a more holistic understanding. The latter thus commonly
refers to its essence, such as its identity, place attachment, and alike. In this sense, a region
refers to an extended part of space, while a place exists as such in space.

3 Places Are Communicated Through Maps

Maps reference places in many ways, despite traditionally following the absolute space
paradigm [24]. Among such reference are, most prominently, place names, but many further
indications of such reference exist. To better understand the nature of these indications, we
introduce below two dimensions to describe and categorize them, followed by examples.

When considering maps as spatial arrangements of symbols interpreted by the map reader,
maps only represent and mediate places but they cannot contain them. A distinction can
be made here between two prototypical cases that represent the ends of a spectrum rather
than a collection of discrete categories: the referencing and the mediation of a place [22]. In
the first case, what is displayed on the map affords to establish a relationship between the
map content and a place without, however, going into more detail about its qualities. This
relationship only refers to the place as a whole. This is in contrast to the second case, in
which some of the qualities of the place are conveyed, thus enabling the map reader to gain
an impression of the place even without (or with little) previous experience of it.

The referencing and the mediation of a place is demarcated by the extent to which the
qualities of the place are referred to and conveyed. The mediation refers to at least some
of the qualities of the place, as opposed to the referencing. These qualities of the place
referred to must, in turn, be conveyed in the map through appropriate references themselves,
because platial qualities can only in very few cases apply to a map or its elements themselves.
The map will hardly constitute the identity of a place, nor will it evoke the same emotions
without according reference, et cetera. In the end, the concepts of referencing and mediation
seem not to be qualitatively different; they only represent different levels of referencing –
with regard to the place itself, or, in the case of mediation, with regard to its qualities.
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Table 1 Typical examples of place representations in a map, categorized by the two dimensions
referencing/mediation and intentionality.

• social entities and locale represented
• structure and arrangement of features

in the map

• representation of a geographical
feature that is reminiscent of an
individually constructed place

• signs indicating a place ballet
• use of colours and symbols to

convey emotions

• label with a place name
• icon indicating a Point of Interest

(POI)
intentional

referencing mediation

unintentional

The communication of places can also be characterized by the intentionality to reference
or mediate the place. Place name labels, like most symbols, are consciously and intentionally1

added to a map. Yet, whether a symbol is understood as a reference to a place depends on the
map reader. A building or lake depicted on a map may, e.g., remind the reader of his or her
home or favourite bathing spot. Such communication of a place can be despite the original
intention to communicate other types of information. Combining these two dimensions –
referencing/mediation and intentionality – results in four prototypical cases (Table 1).

Place names and POIs are prominent examples of intentional reference to places. Corres-
ponding labels and icons serve as reference to the place, but without being a place themselves.
In particular, a POI can be seen as a proxy for the communication of a place, although
it is itself conceptually significantly different from a place.2 It is interesting to note that
the labels that refer to place names as well as icons that represent POIs are point features.
Despite places having spatial characteristics and their cartographic communication often
being intentional [13, 36, 8, 9], these spatial characteristics are not well represented in maps
apart from the indication of a location. This demonstrates that spatial characteristics are
often not considered to be among the relevant key characteristics of these places represented.

The intentional mediation of places through the map medium is difficult to achieve, which
is why most attempts resort to other media such as texts, photos, and videos. Only few
refer to the qualities of places, such as as embodied experience (by using the human sensory
system) [20], emotions [11, 3], the inner structure of a place [8], and place ballets [10].

Practically every geographical feature displayed on the map can unintentionally become
reminiscent of a place. In particular, when a place is not socially constructed and thus
not shared, the map maker cannot have intended to reference or even mediate the place as
it is experienced exclusively by the map reader. Examples include the road bend where I
stop every day to feed the ducks; and my favourite spot at a nearby hill to which I use to
retreat when I want to be alone. In many cases, the qualities of a place are mediated by
the composition and spatial arrangement of the associations to the geographical features
represented, and the locale and the represented socially lived features define a structure

1 Intentionality is always accompanied by conscious communication. Conversely, non-intentionality often
but not necessarily means unconscious communication of the place.

2 If the map maker includes, e.g., a ‘fish & chip’ shop as a POI, then he or she (intentionally) refers
to the affordance of buying fish and chips at this location. Such affordance can be assumed to be of
rather long-term nature, suggesting that individuals live and experience this location as a place. In this
respect, it can be assumed that not only the POI but also the place is referenced to some degree.
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reminiscent of relational and thus also geographical space (cf., space syntax; [12]). An
example is the partially reflected public–private space dichotomy [19]. Also, the familiarity
with a place can be conjectured to potentially influence the way it is represented.

4 The Map Creation–Conceptualization Creation Cycle

Given the difficulties to communicate places through the map medium, one might assume
that the latter has little influence on the communicated place itself. Many use cases, however,
utilize the performative qualities of maps [1] and thus their potential influence on how we
conceptualize and, ultimately, shape and live places. Maps used in urban planning represent,
e.g., often a not yet existing state of the urban environment that is to be planned, evaluated,
and actively shaped. Besides rendered photography-like images, the spatial arrangement and
type of planned features depicted in the map provide an idea of how the place might feel in
case of later realization, its identity, et cetera. This, in turn, can influence the to-be-developed
place, thus creating a feedback loop from our mental conceptualization of the place to the
map and then back to the conceptualization. In this sense, maps can serve as ‘place shapers’.

Maps can generally be assumed to have much less influence on the shaping of a place if
they have not specifically been created for this purpose. In extreme cases, however, a map
can make entire places come into existence, as was the case with the ‘paper town’ of Agloe,
NY. A corresponding point symbol with attached label was depicted as a copyright trap
on a map without such a place actually existing in reality. If someone were to mistakenly
reproduce Agloe when copying the map without permission, the appearance of the place
name on the new map would be an indication of copyright infringement. After another map
that included Agloe actually appeared, it turned out that the place indeed existed. The
place name had served as the name-giver for a petrol station and a supermarket that had
only been built afterwards [16].

5 Consequences and Conclusion

Maps can communicate places by referencing or even mediating them. We have argued the
latter to be particularly difficult when certain qualities of the place shall intentionally be
emphasized in the map. In the following, we discuss three consequences of this fact.

First, the limited ability to convey places by means of traditional maps implies that that
narratives can hardly be spanned when using this medium. Places and narratives become, in
turn, more relevant when employing non-traditional map paradigms [7, 6], suggesting the
exploration of alternative modes of representation beyond the traditional map paradigm [23].

Secondly, maps have limited affordances to convey platial qualities, especially idiosyncratic
or socially constructed ones. The reason behind is that maps are geared to absolute space
and therefore afford particularly well those tasks that refer to such space. Although many of
the tasks we perform with a map seem to primarily relate to abstract space, they often refer
to socially constructed space and places. In this sense, the tasks we actually perform with a
map while employing an abstract space paradigm often need to be considered simplifications
of, and thus proxies for, more complex tasks. Route finding tasks in the context of sight
seeing or during ones holidays, e.g., refer to places and their characteristics rather than to
pure distances and directions in absolute space, because the route chosen from one sight to
another should, ultimately, not lead through filthy streets or industrial areas.
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Thirdly, the map maker is in a dilemma. Places impact map creation such as in terms of
how geographical features are spatially and thematically represented. This influence impairs
readability as it is often obscured by thematic and spatial generalization and thus rarely
evident to the map reader. If, however, a multiplicity of individualistic places without strong
generalization were included, this would reduce readability as well. The emphasis on spatial
aspects (as opposed to individual, platial qualities) must therefore inevitably limit readability.

The three consequences discussed demonstrate limitations when it comes to the carto-
graphic representation of places, which is despite the need for better communication of these.
This is in line with the larger picture of Platial Information Systems (PISs) and Theories
of Platial Information (ToPIs), which face similar problems: the difficulty to represent the
thematic diversity of places (strength of a PIS) and the difficulty to enable a high complexity
in the formal reasoning about places (complexity of a PIS) [21]. Maps cannot fully solve these
problems but may yet play an important role through building a bridge between formal data
and human cognition. If alternative map paradigms make the qualities of places accessible
to human cognition, this can contribute to solving the aforementioned problems of PISs.

Beyond the outlined consequences related to the cartographic communication of places as
often individually and emotionally shaped geographical features, the question arises whether
the nature of the map medium in itself has an influence on our conceptualization of places.
Accordingly, the Sapir–Whorf hypothesis [37], which originally stems from the theory of
linguistic relativity, can (and should) be posed here with regard to the map medium: how
does the structure of a map used according to the traditional map paradigm influence our
conceptualization of places and ultimately also the places themselves?
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Abstract
Data binning, or data classification, involves grouping quantitative data points into bins (or classes)
to represent spatial patterns and show variation in choropleth maps. There are many methods for
binning data (e.g., natural breaks, quantile) that may make the same data appear very different on a
map. Some of these methods may be more or less appropriate for certain types of data distributions
and map purposes. Thus, when designing a map, novice users may be overwhelmed by the number of
choices for binning methods and experts may find comparing results from different binning methods
challenging. We present resiliency, a new data binning method that assigns areal units to their
most agreed-upon, consensus bin as it persists across multiple chosen binning methods. We show
how this “smart average” can effectively communicate spatial patterns that are agreed-upon across
binning methods. We also measure the variety of bins a single areal unit can be placed in under
different binning methods showing fuzziness and uncertainty on a map. We implement resiliency
and other binning methods via an open-source JavaScript library, BinGuru.
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1 Introduction

Data binning (or classification) is the process of grouping quantitative data values into bins
(or classes), that are then represented by different colors, shades, textures, or sharpness to
show spatial patterns or variations in choropleth maps [4]. A classic example of a choropleth
map may be a country’s states shaded light or dark according to their low or high population,
respectively. To create such maps, the population values may be placed into groups such as
high, medium and low population using a binning method that assigns each state to a group.
Using one binning method, a single state may be classified as high population, but using
another binning method, it may be classified as low population. This affects the reader’s
interpretation of the state and how resources may be allocated to the state.

Many binning methods exist [1, 9, 3, 14] and are built into popular GIS tools and
libraries [5, 15, 12, 18]. They have strengths and weaknesses that make them (un)suitable
for certain types of data distributions and map purposes. For example, standard deviation
emphasizes normality and regions of high and low deviation from the mean; quantile evenly
distributes data values into bins irrespective of the data distribution, highlighting regional
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differences; pretty breaks rounds off bin extents, making them visually appealing and easy-to-
interpret; and natural breaks can capture organic data groupings and reveal outliers. Choosing
an appropriate binning method is important to ensure that the map effectively represents
the data and communicates information to the reader [11]. However, this determination
can be overwhelming for users, particularly those who are not well-versed in statistical or
cartographic concepts. Even experts may find it challenging to compare and contrast results
of different binning methods for data-driven decision making.

In this paper, we present resiliency, a new data binning method that assigns areal
units to their most agreed-upon, consensus bin as it persists across multiple methods. For
example, if a county is placed into bin #2 (i.e., second to lowest group of values) across a
majority of binning methods, resiliency will attempt to place it in that bin. We also show
how resiliency allows for spatial patterns to be communicated with(out) outliers and how
it promotes reflection on the fuzziness that binning imposes during mapping. Note that
resiliency is neither a panacea nor a prescriptive measure, but provides more insight into
a dataset. It detects which areal units are likely to “hop” across bins upon switching to a
different binning approach. As a consensus method, resiliency can help the user be more
confident in choosing a familiar binning method (e.g., natural breaks) if its result resembles
resiliency. We share resiliency and 17 other established binning methods via BinGuru,
an open-source JavaScript library for developers to create custom geospatial applications,
offering more variety than existing GIS tools1 and libraries2.

2 Related Work

While continuous or unclassed maps are valuable for maintaining exact numeric data re-
lationships to the visual variable [19], it is more common to group areal units into bins
to reveal patterns across geographic space. In terms of methods, equal interval, natural
breaks, standard deviation, quantiles, and pretty breaks are particularly common [3]. Genetic
algorithms [1] and proximity-based [9] binning methods, which promote spatially compact
and homogeneous regionalization on maps, have also been explored but are not widely used
in practice. OSCAR is a human-centered binning method that leverages usage information
from visualization dashboards to suggest common bin sizes for an attribute [14].

Determining an appropriate binning method often depends on several factors such as
the data distribution (e.g., standard deviation for normally distributed data), tacit and
domain specific knowledge (e.g., manual interval or diverging bins centered around a certain
meaningful baseline value) [16], or a desire to have the same number of data points in each
group (e.g., quantiles). According to Brewer and Pickle [3], quantile and minimum boundary
error are best suited for general reading of epidemiological rate maps followed by natural
breaks and a hybrid version of equal interval. According to Smith [17], quartile, equal interval,
standard deviation, and natural breaks are accurate for data sets with specific distributional
characteristics, but none of them accurately bin all types of distributions. Prior work has
also explored diverse approaches and measures for assessing map complexity, emphasizing
their impact on cognitive load, readability, and visual effectiveness [7, 2]. For example,
Monmonier [10] found that round-number bin breaks, which are easy to read and remember,
can constrain the outputs of optimization algorithms that have more significant digits than
the map user would prefer or that the precision of the data warrants.

1 ArcGIS [5] (9 binning methods), QGIS [15] (6)
2 ArcGIS Maps SDK [6] (6 binning methods), Python’s PySAL [12] (10), and R’s tmap [18] (9)
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Algorithm 1 Resiliency.

1 input : data values V, binning methods M, binning options O
2 output : resiliency bin breaks RB
3 // Compute bin breaks for all M
4 bin breaks B ← { }
5 for method m in M do
6 B[m] = ComputeBins(V, O, m)
7 // Determine bins for all V across all M
8 bin ids ID ← { }
9 for value v in V do

10 for method m in M do
11 ID[v][m] = AssignBin(v, B[m])
12 // Compute the frequency of each bin among all M
13 bin frequencies BF ← { }
14 for value v in V do
15 BF[v] = ComputeBinFrequency(ID[v])
16 // Place values in their most frequent bins
17 most frequent bins MFB ← { }
18 for value v in V do
19 MFB[v] = ComputeMostFrequentBin(BF[v])
20 // Compute Resiliency
21 resiliency bin breaks RB ← { }
22 working bin assignments WFB ← MFB
23 while ValidateBins(RB) do
24 RB, WFB = ResolveConflicts(WFB, RB)
25 return RB

3 Resiliency

Given the diversity and complexity of established binning methods, we propose a new method,
resiliency, that assigns areal units to their most agreed-upon, consensus bin across multiple
methods. Algorithm 1 illustrates the pseudo code for this method.

First, we compute the bin breaks for multiple comparable3 binning methods (Lines 3 - 6).
For each areal unit, we track the ID (or index) of the bin (binID) that it was assigned to
across the binning methods (Lines 7 - 11). Next, we compute the frequency of the assigned
binIDs (Lines 12 - 15), i.e., the number of times it is placed across different binIDs. For each
areal unit, we then compute the frequency of the most frequently assigned binIDs (Lines 16 -
19). The output is the resiliency bin count (number of bins), interval (high and low
bounding values), and size (number of data points in each bin). The output at the data
point (areal unit) level is its assigned bin and the number of times it has fallen into this
bin (and also other bins). Next, we place each areal unit in its most frequent binID, and
subsequently detect and resolve conflicts (Lines 20 - 24).

3 Binning methods are considered comparable if they have the same resultant (or specified) bin count, e.g.,
if the specified bin count is five, then we can compare equal interval, quantile, maximum breaks, natural
breaks, ck-means, and geometric interval. If the desired bin count is six, then box-plot and percentile
may also be considered (as they generally output six bins). Other methods may also be considered on a
case-by-case basis, e.g., defined interval if the specified bin interval results in the desired bin count.
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We note three possible conflicts. First, if there is a tie for the most frequent bin assignment,
we break the tie on a first-come-first-serve basis and use the smaller binID. Next, resultant
bin extents could overlap, e.g., binID = 1’s maximum extent is 50 and binID = 2’s minimum
extent is 45 (smaller instead of greater); in response, we skip the most frequent binID
assignment and iterate on the next (i.e., second) most frequently assigned bin and so on.
Third, some bins (e.g., the middle bin) may have no areal units; one could output fewer bins
or equally split bins until the desired bin count is reached; resiliency supports both modes.

3.1 Usage Scenario
Imagine Kiran is an Indian government official who wants to map the “Total Fertility Rate”
(number of children per women) across India to educate the general public and inform future
birth-related policies. The data contains 28 states and 7 union territories, and the total
fertility rate ranges from 1.1 (Sikkim) to 3.0 (Bihar) with an average of 1.8 children per
woman. They are not sure which binning method to use.

Kiran uploads their dataset to an interactive notebook we developed powered by the
BinGuru JavaScript library. They choose six bins and a divergent purple to orange color
scheme, and inspect the output of eight (out of 18 supported) binning methods: equal interval,
geometric interval, quantile, maximum breaks, percentile, box plot, standard deviation, and
natural breaks (Figure 1A-H). They find that states of Bihar and Meghalaya (north east)
have the largest fertility rates with equal interval, geometric interval, maximum breaks, and
standard deviation. However, when using the quantile, box plot, and natural breaks methods,
Uttar Pradesh (west of Bihar) is also placed in the same bin. Maximum breaks groups most

Total Fertility Rate (children per women), 2022-23 Economic Survey, Government of India.
A B C D
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Figure 1 Small multiples of choropleth maps showing “Total Fertility Rate (children per women)”
(M) in India [8] using established binning methods (A-H) and resiliency (I-L).
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import {BinGuru} from “binguru”; (after installing via pip install binguru)

data = [1.7, 1.8, 1.9, 3, 1.8, 1.3, 1.9, …, null, “undefined”, 1.9, 1.7, 1.4, 2.3, 1.7, 1.8];
binCount = 6; // Desired number of bins, if applicable to the binning method (s).
binGuruObj = new BinGuru(data, binCount, …);

nb = binGuruObj.fisherJenks(); // Natural Breaks (Fisher Jenks)
sd = binGuruObj.standardDeviation(); // Standard Deviation
…
res = binGuruObj.resiliency([“quantile”, “geometricInterval”, …, “maximumBreaks”]); // Resiliency

binGuruObj.visualize(res);

binGuruObj.map(res, geography);

res = {
binCount: 6,
binBreaks: [1.5, 1.7, 1.9, 2.2, 2.9],
binSizes: {valids:{1: 7, …}, invalids: 6},
dataRange: [1.1, 3],
dataBinAssignments: {0: 2, 1: 3, …}, 
binObjs: {equalInterval: {…}, …},
mostFrequentBins: {0: 3, 1: 3, 2: 4, …},
frequencyOfMostFrequentBins: {0: 3, 1: 5, …}
}

res[“binBreaks”]

ArcMap, QGIS

Vega-Lite

A

B

C

1

2

3

4

Figure 2 Usage scenario demonstrating how developers can (1) import the “binguru” library,
(2) initialize a BinGuru class instance with the input data and binning parameters (e.g., binCount
– desired number of bins), (3) explore different binning methods (e.g., .fisherJenks()), and (4)
inspect their output comprising resultant binBreaks (bin boundaries), binSizes (number of points
in each bin), dataBinAssignments (binID corresponding to each point), binObjs (applicable for
resiliency, with intermediate binning outputs of constituent binning methods), mostFrequentBins,
and frequencyOfMostFrequentBins. Developers can also visualize the output on (A) a legend, (B) a
map – if underlying geography is available, and/or (C) copy-paste into commercial GIS software.

of western, central, and southern regions in the same bin (binID = 4). Quantile shows a more
even distribution but does not distinguish extreme values. Kiran is uncertain which method
to use and experiments with resiliency, visualizing the results using three maps (Figure 1I-L):

Most Consistent Bin. This map shows the most frequent bin across binning methods for
each areal unit (Figure 1I). For example, Bihar (Total Fertility Rate equals 3.0) is colored
dark orange, implying it is most frequently placed in binID = 6–with a high fertility rate.

Frequency of Most Consistent Bin. This map shows the frequency of an areal unit’s most
frequent (or consistent) bin assignment across binning methods (Figure 1J). Higher numbers
mean that the areal unit consistently fell into the same bin. For example, Bihar is colored
the darkest shade of black (frequency = 8), implying it is consistently placed in the same
bin (binID = 6); whereas, Madhya Pradesh (center) is colored much lighter, implying it
is inconsistent across bins. Kiran understands that their binning decisions will affect how
Madhya Pradesh is classified and will discuss this “fuzziness” at future meetings.

Most Consistent Bin and its Frequency. This bivariate map combines the previous two
maps into a value-by-alpha map [13]. The hue corresponds to the most frequent bin and the
opacity corresponds to the frequency of the most frequent bin (Figure 1K), where higher
opacity implies higher frequency. Here, Bihar is an opaque orange color, as it consistently falls
in binID = 6. More transparency indicates low frequency, less certainty, and inconsistency.

Resiliency. This map (Figure 1L) often (but not always) resembles Figure 1I, but now
includes a legend that reflects the actual data values as the bin breaks. Kiran observes that
Resiliency retained the regions of Bihar and Meghalaya as the regions with the largest and
Sikkim with the smallest (outlier) values, while also showing variance among other northern,
southern, and western states. They also note that this result resembles the standard deviation
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method (Figure 1F) except for the bin assignment of the regions of Jammu & Kashmir
(north) and Sikkim (north east). They now decide to either use the output of resiliency as-is
or use standard deviation, which they value as a more familiar, easy-to-understand method.

4 Implementation, Future Work and Conclusion

Resiliency and 17 other binning methods are available through an open-source JavaScript
library, BinGuru (Figure 2). We next plan to make resiliency more robust with weighting
(e.g., equal interval has more weight). We then plan to better guide users by recognizing
the distribution of their data and suggesting binning methods that are appropriate for that
distribution. We also hope to capture how cartographers and GIS experts might use resiliency
to learn about its benefits and drawbacks, ease of use, and uptake to drive future iterations.

In conclusion, we presented resiliency, a new data binning method that assigns areal
units to their most agreed-upon, consensus bin as it persists across multiple binning methods.
We showed how resiliency can enable spatial patterns to be communicated with(out) outliers
and promote reflection on the fuzziness often imposed during binning.

References
1 Marc Armstrong, Ningchuan Xiao, and David Bennett. Using Genetic Algorithms to Create

Multicriteria Class Intervals for Choropleth Maps. Annals of the Association of American
Geographers, 93:595–623, September 2003.

2 Arnold Bregt and Marco CS Wopereis. Comparison of complexity measures for choropleth
maps. The Cartographic Journal, 27(2):85–91, 1990.

3 Cynthia A. Brewer and Linda Pickle. Evaluation of Methods for Classifying Epidemiological
Data on Choropleth Maps in Series. Annals of the Association of American Geographers,
92(4):662–681, 2002.

4 Michael John De Smith, Michael F Goodchild, and Paul Longley. Geospatial Analysis: A
Comprehensive Guide To Principles, Techniques And Software Tools. Troubador Publishing
Ltd., 2007.

5 ESRI. ArcGIS, 2023. URL: https://www.esri.com/en-us/arcgis/about-arcgis/overview.
6 ESRI. ArcGIS Maps SDK, 2023. URL: https://developers.arcgis.com/javascript/

latest/api-reference/.
7 Alan M MacEachren. Map complexity: Comparison and measurement. The American

Cartographer, 9(1):31–46, 1982.
8 Ministry of Finance, Government of India. Economic Survey of India, 2023. URL: https://

www.indiabudget.gov.in/economicsurvey/doc/Statistical-Appendix-in-English.pdf.
9 Mark Monmonier. Maximum-Difference Barriers: An Alternative Numerical Regionalization

Method. Geographical Analysis, 5(3):245–261, 1973.
10 Mark Monmonier. Flat laxity, optimization, and rounding in the selection of class intervals.

Cartographica: The International Journal for Geographic Information and Geovisualization,
19(1):16–27, 1982.

11 Mark Monmonier. How To Lie With Maps. University of Chicago Press, 2018.
12 Serge Rey and Luc Anselin. PySAL, 2005. URL: https://pysal.org/.
13 Robert E Roth, Andrew W Woodruff, and Zachary F Johnson. Value-By-Alpha Maps: An

Alternative Technique To The Cartogram. The Cartographic Journal, 47(2):130–140, 2010.
14 Vidya Setlur, Michael Correll, and Sarah Battersby. Oscar: A semantic-based data binning

approach. In 2022 IEEE Visualization and Visual Analytics (VIS), pages 100–104, Los
Alamitos, CA, USA, October 2022. IEEE Computer Society.

15 Gary Sherman. QGIS, 2002. URL: https://qgis.org/.

https://www.esri.com/en-us/arcgis/about-arcgis/overview
https://developers.arcgis.com/javascript/latest/api-reference/
https://developers.arcgis.com/javascript/latest/api-reference/
https://www.indiabudget.gov.in/economicsurvey/doc/Statistical-Appendix-in-English.pdf
https://www.indiabudget.gov.in/economicsurvey/doc/Statistical-Appendix-in-English.pdf
https://pysal.org/
https://qgis.org/


A. Narechania, A. Endert, and C. Andris 55:7

16 Terry A Slocum, Robert B McMaster, Fritz C Kessler, and Hugh H Howard. Thematic
Cartography And Geovisualization. CRC Press, 2022.

17 Richard M Smith. Comparing traditional methods for selecting class intervals on choropleth
maps. The Professional Geographer, 38(1):62–67, 1986.

18 tmap. Tmap, 2023. URL: https://cran.r-project.org/web/packages/tmap.
19 Waldo R Tobler. Choropleth Maps Without Class Intervals? Geographical Analysis, 1973.

GISc ience 2023

https://cran.r-project.org/web/packages/tmap




Counter-Intuitive Effect of Null Hypothesis on
Moran’s I Tests Under Heterogenous Populations
Hayato Nishi1 # Ñ

Graduate School of Social Data Science, Hitotsubashi University, Tokyo, Japan

Ikuho Yamada # Ñ

Center for Spatial Information Science, The University of Tokyo, Japan

Abstract
We examine the effect of null hypothesis on spatial autocorrelation tests using Moran’s I statistic.
There are two possible variable states that do not exhibit spatial autocorrelation. One is that they
have the same average values in all small regions, and the other is that they are not the same, but
their variations are spatially random. The second state is less restrictive than the first. Thus, it
intuitively appears suitable for the null hypothesis of Moran’s I test. However, we found that it can
make false discoveries more frequently than the nominal rate of the test when the first state is the
true data generation process.
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1 Introduction

Moran’s I statistic [3] is one of the most widely accepted statistics for testing spatial
autocorrelation in spatially aggregated quantitative data such as the results of social surveys
aggregated at the municipality level. A typical example of data to be tested is “per capita”
quantity. For instance, we may obtain the average income of each municipality from a survey
and test whether spatial clusters of high (or low) income exist using these data. In this
paper, we discuss two fundamental aspects of Moran’s I test that are often overlooked but
can potentially affect the results of the test. One is the reliability of the observations and
the other is the null hypothesis.

The reliability of the observations varies among municipalities because of their heterogen-
eous populations and sizes. Although the original implementation of Moran’s I test does not
consider such variability in data reliability, studies have pointed out its influence on results
and proposed adjustment methods for heterogeneous populations [4, 7, 1].

In addition to population heterogeneity, the selection of the null hypothesis also affects
the results of Moran’s I test. [1] classified the spatial risk pattern (which corresponds to the
income pattern in our example) to be tested into three states:

A. spatially constant risk,
B. heterogeneous risks without spatial correlation, and
C. heterogeneous risks with spatial correlation.
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Although the Hypotheses A and B imply no spatial autocorrelation, their practical meanings
are substantially different. Hypothesis A is rejected when there are differences in the average
income of individual municipalities. By contrast, B is rejected only when the differences in
average income have spatial clusters. Therefore, we consider A as a more rigorous state of
no spatial autocorrelation than B. When one suspects that the data in hand have a spatial
pattern of C, it appears reasonable to employ B as the null hypothesis to detect spatial
autocorrelation in the data. Employing A as the null hypothesis would result in overdetection
because it regards the spatial pattern of B as spatial autocorrelation. However, analysts
do not always carefully examine the null hypothesis when applying Moran’s I test. In this
study, we investigate how our choice of null hypothesis and population adjustment influences
the results of Moran’s I test.

This paper is structured into four sections, including this introduction. Section 2 dis-
cusses the theoretical basis for adjusting Moran’s I test for heterogeneous populations.
Section 3 presents simulation studies using synthetic grids and population data for Japanese
municipalities. Section 4 summarizes our major findings.

2 Spatial Autocorrelation Tests with Moran’s I

2.1 Moran’s I Statistic
Let us consider a set of observed values x = (x1, . . . , xn)⊤ for a study region consisting of
n regions. Let C be a known spatial adjacency matrix and ci,j be its i − j element. When
regions i and j are adjacent, ci,j = 1; otherwise, ci,j = 0. Furthermore, for diagonal elements,
ci,i = 0. Let W be a row-standardized version of C and wi,j be the i−j element. In the
simulation studies discussed in Section 3, we define C as Queen’s contiguity matrix. Using
these notations, Moran’s I statistic is defined as

I(x) = nx⊤MWMx

W0x⊤Mx
(1)

where W0 =
∑

i

∑
j wi,j and M = I − 1

n 11⊤. Note that I is the identity matrix of size n

and 1 is an n × 1 vector, all of whose elements are 1.

2.2 Data Generation Process and Null Hypothesis
Here, we derive the distribution of Moran’s I when x follows the Gaussian distribution. We
assume that xi represents the estimated value of an unknown parameter µi. For instance,
let xi be the average income observed in region i, µi be its true value without biases such
as measurement errors, and yi,k be income that an individual k in region i gains. As yi,k

generally contains personal differences and measurement errors, we assume that yi,k follows a
normal distribution with mean µi and variance σ2. Letting mi be the population of region i,
xi is given by 1

mi

∑
k yi,k; thus, it can be discerned that the observation xi follows a normal

distribution with mean µi and variance σ2

mi
. If the data generation process (DGP) is A, the

mean µi is constant µ for the entire study region. However, if DGP is B, µi is not uniform.
Following [1], we assume that µi follows an independent normal distribution of mean µ and
variance σ2s2. The parameter s2 controls the relative heterogeneity of true values µi. If
s2 = 0, then the DGP corresponds to A, whereas if s2 > 0, it corresponds to B.

Therefore, letting µ = (µ1, ..., µn)⊤ be the vector of true income values and Σ be a
diagonal matrix whose i − i element is 1

mi
+ s2, x follows a multivariate normal distribution

of the mean µ and the variance-covariance matrix Σ. Below we explain our finding that,
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when the mean µi is constant µ for the entire study region, and s2 = 0, the distribution of
Moran’s I does not depend on unknown parameters µ and σ2. When Σ can be decomposed
into Σ = LL⊤ by Cholesky decomposition,

x = µ1 + σLε (2)

where ε is a vector of elements following a standard normal distribution. By substituting
this into x in Eq. (1), we can obtain

I(x) = nx⊤MWMx

W0x⊤Mx
= nε⊤L⊤MWMLε

W0ε⊤L⊤Mx
(3)

given that ML = 0 and Mx = µM1 + σMLε = σMLε, where 0 is a zero vector. Eq. (3)
includes neither the parameters µ nor σ2, implying that Moran’s I statistic is a pivotal
statistic independent of the unknown parameters when we assume A as a null hypothesis.
[5] and [6] present the distribution of Moran’s I statistic and its approximation, respectively,
when the observed vector x follows a normal distribution. Based on them and Eq. (3), the
probability that I(x) is less than an arbitrary value Iobs can be written as

Pr [I(x) ≤ Iobs] = Pr
[
ε⊤ (

nL⊤MWML − IobsW0L⊤ML
)

ε ≤ 0
]

. (4)

Let T be nL⊤MWML − IobsW0L⊤ML and its eigenvalue decomposition be T = E⊤ΛE,
where Λ is a diagonal matrix composed of the eigenvalues, (λ1, ..., λn). If we make E an
orthogonal matrix, z = Eε follows independent normal distributions; thus, the left-hand side
of the inequality in Eq. (4) , ε⊤Cε =

∑
i λiz

2
i , follows the generalized chi-square distributions.

[2] provides details of this transformation. This property indicates that we can evaluate the
cumulative distribution of Moran’s I statistic by evaluating that of the generalized chi-square
distribution without using the unknown parameters µ and σ2.

This property is particularly beneficial when the population mi is not uniform because
we cannot employ the permutation test approach because the observation vector x is not
exchangeable. If our null hypothesis is A, then we assume s2 = 0. Hence, we can apply
population adjustment without knowledge of the unknown parameters µ and σ2. However, if
our null hypothesis is B, we need s2 for the population adjustment.

We cannot distinguish A and B when the population mi is uniform for the entire study
region. Therefore, the selection of the null hypothesis A or B does not affect the property of
Moran’s I test when the populations are uniform and the DGP is Gaussian. By contrast, in
the case of heterogeneous populations, it is unclear how the selection of the null hypothesis
affects the results. In the next section, we examine the potential influence of this selection
using two simulation studies.

3 Simulation Studies

This section describes the settings and results of the simulations. The two study regions
are discussed in Sections 3.1 and 3.2. Section 3.1 presents a synthetic grid system with
three population patterns to examine the influence of population heterogeneity. For a more
realistic scenario, we introduce real-world municipalities and their populations in Section 3.2.
Section 3.3 illustrates how the choice of null hypothesis influences the false discovery rate
(FDR) of Moran’s I test in our simulations.
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Figure 1 Populations on the Synthetic
Grids.

Figure 2 Municipalities and Populations
in Tokyo, Japan.

3.1 Synthetic Grid Data
We consider a 20×5 regular grid system as the study region. Using the notation defined
in Section 2 and assuming that an individual living in region i has the value of a target
variable with mean µi and variance σ2, the value of xi can be simulated as a random number
obtained from the normal distribution of mean µi and variance σ2

mi
. Note that variance σ2

is set constant for the entire study region. Once the local mean µi is marginalized, the
observation xi follows a normal distribution of the mean µ and variance σ2( 1

mi
+ s2).

To examine the influence of heterogeneous populations, we consider the three spatial
distributions of the regional populations shown in Figure 1. The “steep grid” pattern shown
in Figure 1(a) has the regional population that steeply increases toward the right, while the
“flat grid” pattern in Figure 1(c) shows a constant regional population for the entire study
region. The “gradual grid” pattern in Figure 1(b) is in between; while its regional population
also increases toward the right, it is less steep than the steep grid pattern. The regional
populations are arranged such that the total populations are the same.

In the simulations described in Section 3.3, we set σ2 = 1.0 and µ = 0. For the nonspatial
autocorrelation state B, we select s2 = 1.0.

3.2 Tokyo Municipality Data
For a realistic study region, we use municipal and population data from three prefectures
in the Tokyo Metropolitan Area in Japan: Tokyo, Kanagawa, and Saitama. The muni-
cipal boundaries and populations are shown in Figure 2. The red dashed lines show the
neighborhood relationships among municipalities defined by the Queen style.

In the simulations in Section 3.3, we set σ2 as the same as the average of mi and µ = 0.
For the nonspatial autocorrelation state B, we select s2 = σ−2.

3.3 Results
For both the grids and Tokyo, we applied one-sided tests to detect a positive autocorrelation
at the 5% significance level. We employed the numerical approach presented in [5] to calculate
the cumulative probability that appears in Eq. (4). Therefore, numerical errors were included
in the simulation results.
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Table 1 False Discovery Rates on the Syn-
thetic Grids.

(a) steep grid
H0 = A H0 = B

DGP=A 0.049 0.077
DGP=B 0.027 0.049

(b) gradual grid
H0 = A H0 = B

DGP=A 0.050 0.057
DGP=B 0.043 0.049

(c) flat grid
H0 = A H0 = B

DGP=A 0.050 0.050
DGP=B 0.050 0.050

Table 2 False Discovery Rates on Tokyo
Municipalities.

H0 = A H0 = B
DGP=A 0.050 0.058
DGP=B 0.042 0.049

Figure 3 The Distributions of Moran’s I on the Synthetic Grids.

Table 1 shows the false discovery rates (FDR) of the synthetic grids described in Section 3.1.
In the case of (c) flat grid, A and B are identical, as discussed in Section 2.2. Thus, we do not
need to consider differences in the null hypothesis if the population is uniform. However, in
other grids, FDRs equal to a nominal rate of 5% only when the null hypothesis H0 is correctly
selected. This shows that the null hypothesis H0 = B, which allows heterogeneity of the true
mean µi, results in a much higher FDR than expected, when actual µi is homogeneous. The
opposite result is obtained when we employ H0 = A. Thus, counterintuitively, a test that
assumes homogeneous means is more conservative than one that allows heterogeneous means.
This tendency is clearer in (a) steep grid than in (b) gradual grid.

Table 2 shows the result of Tokyo municipality data. We observe the same counterintuitive
results as those found in synthetic grids.

The results in Tables 1 and 2 indicate that H0 = A is a safer choice than H0 = B to keep
FDR less than 5%, which is the predetermined nominal significance level of the test. This
is because the distribution of Moran’s I from H0 = A exhibits a larger variance than from
H0 = B. Figure 3 shows Moran’s I distributions for the synthetic grids. However, whether
this property is always observed remains unclear.

4 Conclusion

Intuitively, the test under the null hypothesis B does not reject it if the true data generation
process (DGP) is A. Hence, it sounds reasonable for analysts to employ B as their null
hypothesis if they want to discover only C. However, our simulation studies based on
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synthetic grids and real municipalities with population data revealed that testing under the
null hypothesis B does not guarantee that FDR becomes less than the nominal significance
level if the true DGP is A. In other words, if we employ B as a null hypothesis, we may
often detect incorrect “spatial autocorrelation” of income when income is the same in all
municipalities. This implies that the null hypothesis must be selected carefully when applying
spatial autocorrelation test.

Further research is needed to examine whether this counterintuitive property appears in
other situations, such as the target variable xi following non-Gaussian distributions and the
spatial contiguity matrix C different from Queen’s definition. To evaluate the performance
of the test, the statistical power, in addition to FDR, also needs to be examined. This is not
straightforward because the true value of s2 is generally unknown; thus, practical approaches
are required.
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Abstract
This paper proposes a data fusion framework that seeks to investigate joint mobility signals around
wildfires in relation to geographic scale of analysis (level of spatial aggregation), as well as spatial and
temporal extents (i.e. distance to the event and duration of the observation period). We highlight
the usefulness of our framework using intra-urban mobility data from Mapbox and SafeGraph for two
wildfires in California: Lake Fire (August-September 2020, Los Angeles County) and Silverado Fire
(October-November 2020, Orange County). We identify two distinct patterns of mobility behavior:
one associated with the wildfire event and another one - with the routine daily mobility of the nearby
urban core. Using the combination of data fusion and tensor decomposition, the framework allows us
to capture additional insights from the data, that were otherwise unavailable in raw mobility data.
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1 Introduction

The issue of geographic scale (i.e. level of detail / aggregation), geographic extent (i.e. area
of analysis, measured in terms of proximity to the phenomena of interest), and temporal
extent (i.e. the period of observation in relation to the phenomena of interest) has been
an important research topic in GIScience and in movement research within the last decade
[5, 3]. Many conventional methods of geographic analysis are traditionally designed for
univariate spatial or temporal series (e.g. geographically-weighted regression, local indicators
of spatial association, spatial scan statistics). Yet, data on human movement is increasingly
heterogeneous [1, 6], multivariate, and dependent on local land-use and transportation
patterns, necessitating further development of complex multivariate spatio-temporal methods
that can leverage and integrate numerous data sources.

We propose an analytical framework that allows to fuse various indicators of human
mobility (in this paper, only two are considered) at different geographic and temporal
scales to identify the impact zone of disruptive events, such as wildfires, on mobility. The
framework consists of several processes: 1) Multi-scale spatio-temporal matching of data to
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combine various types of geographic data (e.g. POI point vector data and regular grid-based
OpenStreetMap tiles) geographically and temporally. 2) Calculating mutual information
score combining the multiple data sets for different geographic and temporal scale and extent.
3) Fitting the fused data to PARAFAC2 tensor decomposition model [4] to elicit shared
patterns of movement at different locations. As a case study, we test this framework for
exploring mobility patterns around two wildfire events.

2 Methods

2.1 Multi-Scale Spatio-Temporal Matching and Aggregation
The first step in the proposed framework relies on the matching of the various data sources
(in this case two). These data sources vary in coverage, have different units of analysis and
units of measurement. The process of matching is described in Algorithm 1. In short, it
sequentially increases the spatial scale of the study area (unit of analysis), the spatial extent
(e.g. distance from the fire event), and the temporal extent of the observations (e.g. time
from fire ignition) to fuse the two mobility indices into a mutual information (MI) score as
described in the next section (see Figure 1c).

Algorithm 1 Multi-Scale Spatio-Temporal Matching.
Input : fire perimeter, mobility index 1 (M1), mobility index 2 (M2), spatial extent (distance

from fire perimeter - Si), temporal extent (days from the fire ignition - Tj), spatial scale
/ zoom levels (OpenStreetMap zoom level tiles - Zk)

Output : Mutual information MIzst for various spatial extent (S ∈ 1...j), temporal extent
(T ∈ 1...j) and spatial scale (Z ∈ 1...k)

1 Discretize study area using OSM tiles at level Zk and aggregate mobility indices (M1, M2) at
selected spatial Si and temporal Tj extent levels;

2 for z ← 1 to k do
3 for t← 1 to j do
4 for s← 1 to i do
5 1. Keep only spatial units that have non null values across M1 and M2;
6 2. Calculate mutual information MIzst from M1zst and M2zst;
7 end
8 end
9 end

2.2 Mutual Information (MI)
Mutual information (MI) is a measure of the amount of information that two variables
share. In information theory, MI is defined as the reduction in uncertainty about one
variable (X) given knowledge of another variable (Y ). In contrast to Pearson correlation,
the MI score is ideally suited to capture non-linear dependence between random variables.
Mathematically, the MI between two discrete random variables X and Y is defined as:
MI(X; Y ) = H(X)−H(X|Y ), where H(X) is the entropy of X, which measures the amount
of uncertainty in X, and H(X|Y ) is the conditional entropy of X given Y , which measures
the remaining uncertainty in X when Y is known.

The rationale behind utilizing the mutual information of mobility is simple: the premise
is that in the presence of emergency events such as a natural disaster, all types of mobility
are affected. As such, variation in mobility will be manifested in various measured indices
of mobility. By utilizing mutual information across different geographical scales and spatio-
temporal extents, we hope to establish and characterize mutual dependence of mobility
indices and fuse movement data that may be different in coverage, uncertainty, and bias.
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(a) Lake Fire. (b) Silverado Fire. (c) Geographic scale, spatial
and temporal extent in relation

to fire and mobility data.

Figure 1 POI location and OSM grid representation of the study areas. For demonstration
purpose only the zoom level 13 is illustrated, denoting the coarsest level of detail.

2.3 Tensor Decomposition
Tensors are multi-dimensional arrays and, as such, require multi-dimensional methods of
analysis. Tensor decomposition allows us to uncover hidden latent factors (clusters of
behavior) in multi-dimensional data. There are different types of tensor decomposition,
including Tucker, CANDECOMP, and Tensor-Train [7]. Of particular interest to this
study is the PARAFAC2 factorization [4], because it allows to jointly model data arrays
of different sizes (for instance, where the spatial extent of data varies), by aligning them
across a shared dimension (e.g. time). The multiset data can be decomposed as follows:
Xk = UkSkVT, where R is the number of components derived from the decomposition,
Uk ∈ RIk×R, Sk ∈ RR×R, and V ∈ RJ×R. The PARAFAC2 decomposition is fitted via an
alternating direction method of multipliers (AO-ADMM) [9] available through MatCouply
Python package [8]. Since MI scores are always non-negative, we impose non-negativity
constraints on the uncovered decomposition components (factors).

3 Case Study

3.1 Study Area
This study focuses on two major wildfires in California (Figure 1a, 1b) that happened in
2020: Lake Fire, which burned around 31,000 acres in Angeles National Forest in Los Angeles
County from August 12 to September 28 and Silverado Fire, which burned around 13,000
acres in Orange County from October 26 to November 7, 2020. The data for this study was
collected specifically for two months before and after the ignition date of the two wildfires:
Silverado Fire (August 26 - December 26, 2020) and Lake Fire (June 12 - October 12, 2020).

3.2 Data
SafeGraph published several mobility data products during the COVID-19 pandemic through
their Data for Good Initiative. One of such products is Weekly Patterns, which reports
raw visitor counts at the points of interest (POI) level daily. Mapbox provides gridded
data, representing the amount of mobility, at OpenStreetMap (OSM) tile level (with OSM
zoom level 18, finest resolution available, corresponding to a square grid of 100m × 100m).
The data is aggregated and delivered daily, and is available in the form of an activity
index, ranging from 0 to ∞, where higher index values denote higher levels of mobility.
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To investigate the mutual information at various levels of aggregation using the proposed
framework, we utilize OSM zoom levels 13–18, where zoom level 13 corresponds to a 1:70,000
screen scale (village level), and level 18 corresponds to a 1:2,000 scale (buildings/trees levels)2.
OpenStreetMap tiles are regular square tessellations that remain uniform across remote and
isolated areas where wildfires occur. Thus we can ascertain mobility at different spatial
scales, while minimizing modifiable areal unit problem [2]. To delineate the study area, we
create a bounding box from a 10km buffer around each of the wildfire perimeters and filter
the mobility data to this extent. We hypothesize that direct impact zone of wildfires will be
pronounced the most in close vicinity to the fire.

3.3 Data Tensorization
The mutual information values are shaped into a multiset data XF, where X ∈ RI×J is
a matrix with spatial extent on the rows (I), temporal extent on the columns (J), and F

denotes a fire name (in Algorithm 1). The bins for spatial extent are calculated starting
from the centroid of the fire perimeter, and are incrementally increased by 1km, resulting in
a progressively expanding geographical area around the fire. The distance of 1km provides a
balanced binning for remote areas, when mobility data is sparse. The temporal extent (Tj)
is measured in the number of days before and after the fire. For instance, if j = 3 we have a
period of 6 days, starting 3 days before fire and terminating 3 days after the fire ignition.
These bins are progressively increased by the increment of 3 to the total of 21 bins (i.e. 62
days or roughly two months). Thus, the final dimensions of the multiset data are as follows:
Xlake ∈ R43×21 and Xsilverado ∈ R25×21. Since the fire perimeters vary in size and shape,
buffering and discretizing the study area will result in different number of spatial bins (X
rows): 43 rows for the Lake fire and 25 rows for the Silverado fire.

(a) Lake Fire. (b) Silverado Fire.

Figure 2 Mutual information score curves for different levels of analysis (zoom levels) and
geographical extent (radii from the fire).

4 Results

The fitted curves of the matched mutual information scores are plotted against the distance
to the fire in Figure 2. For both fires the mutual information score decreases across various
zoom levels as the distance from the fire increases. This is logical: as we include more spatial

2 For more details see https://wiki.openstreetmap.org/wiki/Zoom_levels

https://wiki.openstreetmap.org/wiki/Zoom_levels
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units into our area of interest, we are also capturing daily urban mobility signal and noise.
Since Lake Fire perimeter acreage is higher, the curves plateau around 20km from the fire
(Figure 2a). One important difference between the two sets of curves is the magnitude of
the fitted curves (noted in the different y-axis) which is largely due to drastically different
number of POI at the two locations: so much so that the the MI scores are dominated by
daily mobility, and not wildfire related mobility. This is supported by lack of relationship
between temporal extent and MI scores.

(a) Spatial view of uncovered
decomposition components for Lake Fire.

(b) Spatial view of uncovered
decomposition components for Silverado

Fire.

(c) Temporal view of uncovered decomposition components for both fires.

Figure 3 PARAFAC2 modeling results.

PARAFAC2 decomposition allows us to analyze both fires jointly, identifying distinct
movement patterns (Figure 3) that are shared across two wildfires. A model with two
decomposition components (R = 2) fits the data very well (99% fit). Component 1 (denoted
in red) shows fire-related mobility signal and plots MI scores against the spatial extent
(Figure 3a, 3b). As we increase the geographic extent, the mutual information decreases
for both fires (with more rapid decrease for sparse Lake Fire data), pointing to the higher
dependence of mobility indices in close proximity to the fire event. On the temporal view for
Component 1 (Figure 3c) we notice that the MI scores are highest for the observation period
of 9-12 days before/after the ignition date of the fire, declining gradually. This might be an
indication that we need a relatively extended period of time to establish the effect of the
wildfire. Component 2 (denoted in blue) shows daily mobility associated with nearby urban
cores at two locations. For Lake Fire (Figure 3a) the closest urban area, Lancaster is located
approximately 15km to the Northwest of the fire (peak for blue line). For Silverado Fire
(Figure 3b) the urban area borders with the fire perimeter on the Southeast, and as such,
coincides with direct impact zone of the wildfire. On the temporal view for Component 2, the
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MI scores fall abruptly, approaching zero around 15 days before/after the fire. This is logical,
as we increase the observation period for two urban areas, there is no added information
about the fire event.

5 Conclusion

This paper demonstrated how the proposed framework can be used to fuse the data on
mobility at different spatial and temporal scale and establish relationships between mutual
dependence of mobility indices around disruptive events. The mutual information score
coupled with tensor decomposition is able to identify two clusters of behavior, which were
otherwise not traceable in raw mobility signals (e.g. SafeGraph visitor counts or Mapbox
activity index). The framework presented in this paper can be easily scaled up to incorporate
more locations, different event types (hurricanes, floods, etc.) and event duration, and
mobility indices. Future work will compare the methods laid out in the paper to other
clustering techniques for studying aggregate human movement.
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Abstract
The quest for identifying feasible routes holds immense significance in the realm of transportation,
spanning a diverse range of applications, from logistics and emergency systems to taxis and public
transport services. This research area offers multifaceted benefits, including optimising traffic
management, maximising traffic flow, and reducing carbon emissions and fuel consumption. Extensive
studies have been conducted to address this critical issue, with a primary focus on finding the
shortest paths, while some of them incorporate various traffic conditions such as waiting times at
traffic lights and traffic speeds on road segments. In this study, we direct our attention towards
historical data sets that encapsulate individuals’ route preferences, assuming they encompass all
traffic conditions, real-time decisions and topological features. We acknowledge that the prevailing
preferences during the recorded period serve as a guide for feasible routes. The study’s noteworthy
contribution lies in our departure from analysing individual preferences and trajectory information,
instead focusing solely on macro-level measurements of each road segment, such as traffic flow or
traffic speed. These types of macro-level measurements are easier to collect compared to individual
data sets. We propose an algorithm based on Q-learning, employing traffic measurements within a
road network as positive attractive rewards for an agent. In short, observations from macro-level
decisions will help us to determine optimal routes between any two points. Preliminary results
demonstrate the agent’s ability to accurately identify the most feasible routes within a short training
period.
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1 Introduction

The topic of finding routes between two points has been studied in many different fields, such
as computer systems, transportation systems and communication networks. The majority
of research concentrates on route optimisation, seeking to reduce travel time or distance
or to maximise operational efficiencies, such as the maximum number of taxi customers
or the maximum storage of a delivery truck. These studies, which employ mathematical
optimisation techniques, include optimisation constraints such as the truck’s maximum cargo
capacity and minimise/maximise the objective function of the main aim, such as travel time.
They often take into account the average travel time on a route depending on the length of
the road, the timing of the traffic lights, or occasionally the traffic situation, including actual
or historical traffic flow and speeds. They also factor in user preferences from surveys or GPS
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to generate the most popular routes ahead of time. All of these aspects make optimal route
research hard and costly when using multiple data sources. As more realistic findings are
sought, models and algorithms become increasingly complex and computationally expensive
to investigate every aspect of the traffic situation and road network infrastructure.

In this study, we assume that all of these factors, including traffic user preferences,
traffic conditions, and road network features, are already represented in macro-level historical
observations. We attempt to extract the most feasible routes using macro-level measurements,
in other words, by using the most popular road segments in a road network. We aim to train
a reinforcement learning agent to mimic human behaviours for route choices and use the
agent to detect the most taken routes between any two nodes which might or might not be
optimal routes at that time period under certain traffic conditions.

Although the approach does not guarantee route optimisation, it will identify the most
practical and feasible route options at that time from the reflection of the preferences of
mass mobility actions. The relevant studies on the algorithms and RL-related studies in
route finding in the transport research sector will be briefly discussed in the next section.

2 Related Studies

The principles of routing in transportation are based on the most well-known problems
including the travelling salesman problem (TSP), the vehicle routing problem(VRP), and
the shortest path problem. They are the primary subjects with the goal of determining the
best transport strategies over a road network from a source to a destination. The classic
Dijkstra algorithm from 1959 [3] is where the history of discovering shortest paths in networks
begins. Heuristic algorithms such as A*[5] concerned with the heading to the destination
were created because the Dijkstra algorithm has a vast solution space. These are the core
algorithms for static networks, and they only produce one shortest path. However, due to
the dynamic nature of road networks, various algorithms for problems involving short paths
are introduced with dynamic variables.

Reinforcement learning algorithms have been combined with these conventional techniques
to tackle common routing problems such as VRP and TSP [9][14]. Recent RL research has
begun to focus on applying deep learning techniques to TSP [13] and VRP problems [1].
These studies are not only limited by classical problems but also attempt to solve optimisation
problems in shared transportation [11] and taxi systems [8] by considering future demands.
Basically, they define reward systems for desired outcomes such as potential high-demanded
areas for taxis. Some studies[2][10] introduce dynamic variables such as energy consumption,
and customer request to design some optimisation constraints. This also affects routing
studies for passengers[4].

All these studies focus on only the main goal to define a reward system. Our approach will
employ mid-rewards to encourage the agent to mimic human behaviours based on observations
to find feasible routes. According to the studies [4][7][6], classical routing algorithms are not
the best methods to find feasible routes in large systems because of the time complexity and
insufficient capabilities of considering only distance costs. On the other hand, All of the
aforementioned studies focus on finding the best options within predefined rules, assumptions
and constraints. We aim to remove all the pre-defined assumptions and constraints.
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Listing 1 Pseudo code for the Q-Learning.
Input: Macro - Level measurements ( traffic flow), Graph representation
Output : Q- Table
Initialise Reward R(s,a) and Q-table (Q(s,a))
for i:0 to the number of iteration

Select a random node and its neighbours
Update the Q- value of the node pairs with the equation

Return Updated Q-table
end
- Select Feasible Route: Reach destinations by selecting the highest
q- values from the starting state
- Derivate other routes : Let the agent choose other best options

3 Methodology

The study’s core part is based on a reinforcement learning algorithm called Q-learning. It
is a branch of machine learning where an agent maximises its cumulative reward by collecting
rewards based on its actions and interactions with an environment. The environment can
be modelled mathematically or can be model-free by only focusing on certain rewards that
encourage behaviours.

Our approach uses model-free Q-Learning algorithm taking traffic flow values on road
segments as the reward. The purpose of the approach is to extract significant routing
behaviours from macroscopic observations. It is an offline approach, which implies the agent
tries to mimic given behaviours using historical observations without having any impact on
the environment. A directed graph is used to represent the environment that represents
road networks. Road segments are the edges and intersections are the nodes in this graph.
At each intersection, the agent can choose the next road segment (state) to travel through
by considering the normalised flow values, in other words, the rewards. These mid-rewards
encourage the agent to choose the most taken routes between any two nodes. To help the
agent reach the destination point, the highest point is given to the destination points.

These rewards in Q-Learning have an impact on the equation that modifies Q-values in
a table (Q-table) displaying the values computed based on state and action pairs. In our
approach, we used the Bellmann equation, which performs computations based on states,
current and projected rewards, and current Q-values. The Bellman equation;

Qnew(st, at) = (1 − a) ∗ Q(st, at) + α ∗ (R(s, a) + λ ∗ maxQ(s
′
, a

′
))

Where R is the reward value at state s in the taken action a. The discount variable
λ controls the rate at which future rewards will affect the Q-values. The learning rate,
or α determines how the current state and actions will influence the Q-values. With the
Bellman equation, all the Q-values can be updated in the Q-table in each interaction. This
is essential in the agent’s training stage. After the training is completed, any starting point
can be selected as a current state and the agent can choose the best q-value chain reaching
the destination point represented by another state. The highest q-values at each state are
consecutively selected to complete this process. The total Q-value value is not required to
have the highest value. There might be other route options with higher q-values in total
but they are not the best options showing significant mobility patterns. A randomness
parameter is introduced to allow the agent to select q-values other than the best one in order
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(a) Truth routes taken by taxi drivers. (b) Routes found by the RL agent.

Figure 1 Routes between selected origin-destination pairs.

to derive additional route alternatives. By comparing the distances between the users’ actual
routes and the routes discovered by the approach, path similarity algorithms can validate
the method.

4 Case study

To test the proposed Q-learning approach, a well-known taxi trajectory data set collected
in Beijing by Microsoft[12] is used. The OSMnx package, which uses OpenStreetMap as
a source, is used to extract the road network. For our approach, there is no need to use
micro-level or individual-level measurements such as GPS points or trajectories. However,
this data set is helpful to demonstrate the effectiveness of the approach by providing taxi
trip trajectories to be used in the validation. We used map-matching algorithms to aggregate
all the individual trips for one day in the study area in order to obtain the traffic flow values
that the algorithm needs as input. So, we can have the number of taxis at each road segment
throughout the entire network.

The dataset contains the trajectory data for nearly 10,000 taxis for the days between
February 2nd and February 8th in Beijing. We selected the first-day data of 1000 trips in
Beijing’s central region for simplicity and due to computation costs. For the study area, there
are 657 nodes representing intersections and 1542 edges between these nodes representing
each road segment. To determine the origin and destination points, we selected two random
point pairs in the concentrated areas having the highest flow values by observing the dataset.
Although it is not guaranteed that all trips begin and end at these points, they are sufficient
to test our methodology and compare the feasible routes with the real routes passing between
these two points. This step is only performed for validation aims.

4.1 Q-learning and Initial Results
During the training phase, the discount and learning rate are chosen as 0.8 and the Q-value
table is updated one million iterations. For the study area, this procedure takes 150 seconds
to complete.

We detected 31 taxi drivers and 13 different route options taken by these taxi drivers
in real life between the origin and destination points in figure 1a. For the visualisation, we
showed only the 4 most taken routes by taxi drivers in figure 1a and the three most feasible
routes found by the RL agent in figure 1b. The best feasible route extracted from taxi
drivers’ behaviours by the agent has total Q-values of 6625. In this route, the agent chooses
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the best actions at each state until it reaches the destination point. Once the derivation
process has been completed, all feasible routes can be extracted by using only traffic flow
values, revealing the majority of taxi drivers’ choices on their routes. Given the connectivity
between nodes, it is clear that there are a finite number of physically feasible routes. The
route found by the agent with the best actions is considered the most feasible route and
reflects the most seen behaviour of taxi drivers. The other derived options are ordered by
the distance of the total q-values from the best feasible option. These q-values can be larger
or smaller than the best one in total. All these feasible routes show the preferences of the
taxi drivers between these two nodes.

There are two issues with this approach. The agent can choose longer routes to collect
more points or it only follows main roads with a high number of traffic flow. Therefore, the
reward at the destination point should be decided carefully to encourage the agent to reach
the destination point with fewer steps while also avoiding finding only the shortest paths. It
should be emphasised that during the training step, all reward values derived from traffic
flows are normalised.

The approach demonstrated that the agent can be trained by using only historical
macro-level measurements such as traffic flow. These measurements can also be additional
traffic state indicators such as traffic speed and travel time. The approach eliminates the
requirement for using individual data, which are difficult to obtain and troublesome because
of privacy issues. Also, individual preferences and pre-defined assumptions on behaviours
can be bypassed by focusing only on macro-level patterns. The approach merely assumes
that the best possible sequence of q-values will serve as a guide route.

5 Conclusion

The proposed approach uses a Q-learning-based algorithm to identify feasible route pos-
sibilities using just macro-level measurements. It does not have any assumption on the
route selection and only mines the historical patterns to detect attracted route segments and
extract routes between any two points from observations. This can be seen as a transaction to
proceed from macro-level measurements to micro-level discoveries. Comparatively speaking,
macro-level measurements are simpler and cost-friendly in terms of collecting data than
individual data sets like GPS and surveys. They can be received by using sensors, cameras,
or even manual counting.

The initial results show that an agent can be trained to extract feasible routes by only
exploring the number of vehicles on road segments and sorting the potential options by their
selection probabilities. It focuses on the attractiveness and popularity of road segments to
take action for the next states. This concept will help us to develop a technique to understand
route choice behaviours from macro-level patterns for future research. The approach can
combine route set generation and route selection processes in route choice modelling by
considering trends at any traffic state. Additionally, these feasible routes may or may not be
the shortest ones, the fastest ones, or the ones that taxi drivers select because of the scenic
vistas. To uncover the motivations behind these decisions, we will be conducting a more
comprehensive analysis.
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Abstract
Spatial analysis of data with compositional structure has gained increasing attention in recent
years. However, the spatial heterogeneity of compositional data has not been widely discussed. This
study developed a Moran eigenvectors-based spatial heterogeneity analysis framework to investigate
the spatially varying relationships between the compositional dependent variable and real-value
covariates. The proposed method was applied to municipal-level household income data in Tokyo,
Japan in 2018.
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1 Introduction

Spatial data that represent parts of a whole and carry only relative information are known
as compositional data, such as income structure, land use shares, and vote shares across
multiple regions. Although previous studies have considered both the compositional and
spatial nature of data [5], little attention has been given to spatial heterogeneity, which is one
of the fundamental spatial properties. Spatial heterogeneity in compositional data generally
refers to the inconsistent relationships between the relative ratios of each composition and
the associated factors across geographical space. This variability can be investigated by
estimating spatially varying coefficients (SVCs) at each location [8]. To date, the methodology
and application have not been widely discussed.

To enrich this research area, this study proposes a Moran eigenvector-based SVC (MSVC)
[3] framework to explore the spatial heterogeneity of compositional data. MSVC links the
local variations to the global spatial process, providing interpretable explanations of SVCs.
In addition, based on the linear regression framework, MSVC has the advantage of being
extendable to accommodate the specific properties of compositional data.

2 Properties of compositional data

Compositional data including D positive components can be represented by a vector y =
(y1, . . . , yD), where each component yj describes only relative information (e.g., proportion
or percentage) and all of them sum up to a constant. y is defined on a simplex space SD as
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SD =

y = (y1, . . . , yD) | yj > 0, j = 1, . . . , D;
D∑
j

yj = 1

 . (1)

The constant-sum of compositions leads to spurious correlation [1], which poses challenges
to the use of traditional statistical methods with compositional data. A common solution
to this problem is to adopt the isometric log-ratio (ILR) transformation [2], which maps
compositions y from the simplex space SD to ILR coordinates y∗ in the Euclidean space
RD−1 through y∗ = ilr (y) := V′ ln (y). The inverse ILR transformation is y = ilr−1 (y∗) =
C exp(Vy∗), where C is the closure operation that Cy : = y/

∑
j yj . The D × (D − 1) matrix

V obeys V′ ·V = ID−1 and V·V′ = ID −(1/D)1D×D. Columns vi and vectors ei = C exp(vi)
forms orthonormal bases of RD−1 and SD, respectively. The orthogonality of ILR coordinates
allows for the use of classical regression models for each coordinate separately.

3 Method

3.1 MSVC model
The MSVC model is developed based on the correlation between eigenvalues and Moran’s I
statistic (MC). First, a spatial weight matrix C is constructed by the binary relationships or
distance decaying function (e.g., the exponential function). The eigenvector decomposition
(I − 11′/N)C(I − 11′/N) = EN ΛE′

N , where the left-hand side of the equation is also a part
of MC, decomposes the spatial structure of the data into a set of orthogonal spatial patterns
that are represented by each eigenvector in EN . Λ includes the corresponding eigenvalues.

Based on this work, Griffith (2008) [3] introduced a subset of eigenvectors into the basic
linear model to account for the spatial heterogeneity in the regressed relationships. The
resulting MSVC model is expressed as

y =
K∑

k=0
xk ◦ βESF

k + ε, ε ∼ N (0, σ2I). (2)

Here, βESF
k = βk1 + Eγk represents the k-th spatially varying coefficient, which consists

of the global trend of the spatial process βk1, and the linear combination of eigenvectors
Eγk that account for the local deviations from the trend at each location. “◦” is the column-
wise product operator. The next section will extend the MSVC model to accommodate
compositional data.

3.2 MSVC model for compositional data
Let Y =

(
y1 · · · yN

)′ =
(
y(1) · · · y(D)

)
represent N samples of D-composition data,

where yi, i = 1, . . . , N , is the D × 1 transposed vector of the i-th sample, and y(j), j =
1, . . . , D is the N × 1 the vector of the j-th component. The ILR transformation of Y
becomes ilr(Y) =

(
ilr (y1) · · · ilr (yN )

)′, where ilr (yi) = yi
∗ =

(
y∗

i(1) · · · y∗
i(D−1)

)
.

The MSVC model for the j-th (j = 1, . . . , D − 1) coordinate is formulated as

y∗
(j) =

K∑
k=0

xk ◦
(

β∗
k(j)1 + Eγ∗

k(j)

)
+ ε∗

(j), ε∗
(j) ∼ N (0, σ2

(j)I). (3)
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where * denotes the ILR transformation, xk(k = 0, ..., K, x0 = 1) is the k-th covariate,
βSV C∗

k(j) = β∗
k(j)1 + Eγ∗

k(j) represents the relationship between the k-th covariate and the j-th
ILR coordinate. We can also rewrite the model into a more general form as

y∗
(j) = Xβ∗

k(j) + Ẽγ∗
k(j) + ε∗

(j), (4)

where Ẽ = (x0 ◦ E, x1 ◦ E, . . . , xK ◦ E) are considered as proxy variables. Under the ILR
transformation, Equation (4) can be estimated by ordinary linear regression for each y∗

(j),
but the interpretation of the estimated coefficients is not straightforward. In line with [4, 8],
we adopt the concept of semi-elasticity (SE), which reflects the relative percentage change in
a particular composition with respect to a unit change in the covariate of interest. The k-th
spatially varying SE of the j-th composition at the i-th location is defined as

e (yj , xk)i =
(

ln βik(j) −
D∑

m=1
yi(m) ln βik(m)

)
yi(j). (5)

where yj , yi(m), yi(j), and βik(j) are the inverse transformed variables in the simplex space.

3.3 Variable selection
Using all eigenvectors can result in an excessive number of explanatory variables. This
can create computational challenges and potential overfitting problems. To mitigate these
issues, as suggested by [7], we first select eigenvectors whose corresponding eigenvalues satisfy
λl/λmax > 0.251 and then use penalized regression (see Equation (6)) to choose only the
eigenvectors that explain significant spatial variations in the data.

min(y∗
(j) − Xβ∗

k(j) − Ẽγ∗
k(j))′(y∗

(j) − Xβ∗
k(j) − Ẽγ∗

k(j)) + λ|γ∗
k(j)|1 (6)

The value of λ is determined by cross-validation or information criteria. Because the
output of the penalized regression is known to be biased, we use it only for variable selection
and apply the proposed model to estimate the coefficients of the selected variables.

4 Empirical application

4.1 Data and methods
We applied the proposed model to the analysis of the municipal-level household income
structure of Tokyo, Japan in 2018. The annual income data were aggregated into three main
groups: Low (less than 2 million JPY), Middle (between 2 and 7 million JPY), and High
(more than 7 million JPY), resulting in a three-composition response variable. The following
matrix V for the ILR transformation of compositions generates two ILR coordinates [6].

V =

2/
√

6 0
1/

√
6 1/

√
2

−1
√

6 −1/
√

2

 . (7)

The first coordinate y∗
(1) refers to the relative importance of the low-income with respect

to the other two groups, and the second coordinate y∗
(2) refers to that of the middle-income

with respect to the high-income group.

1 0.25λmax relates to roughly 5% of the variance in response variable attributable to positive spatial
dependence.
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The covariates used in the analysis included the proportion of people with secondary
education (Uni), the unemployment rate (Unemp), the proportion of people aged over 65
(Age), and the homeownership rate (House). The data were published by the Statistics
Bureau of Japan on the e-Stat portal site (https://www.e-stat.go.jp/en). We excluded
11 municipalities with no records, resulting in a final sample size of N = 51. Based on the
adjacency of regions, we built a spatial weight matrix in which the (i, j)-th element was 1 if
two regions i, j shared a common boundary, and 0 otherwise. From this matrix, we extracted
12 out of 51 eigenvectors to be further selected by the penalized regression.

4.2 Results and discussion
First, we conducted the ordinary linear regression without considering the spatial effects.
The results shown in Table 1 suggest that all covariates except the unemployment rate are
significantly associated with both ILR coordinates. The residual MC indicates that the
spatial autocorrelation is significant in y∗

(1), but not significant in y∗
(2).

The results of the proposed model are summarized in Table 2. For y∗
(1), the use of

eigenvectors led to a decrease in the residual MC and a noticeable increase in the adjusted
R2, suggesting that the spatial variations captured by the eigenvectors explain a considerable
proportion of the variance in the response variable. No eigenvector was found to be significant
on y∗

(2), which aligns with the MC of y∗
(2) shown in Table 1 and proves that the proposed

model can distinguish the existence of spatial heterogeneity. This result only indicates
that the impacts of covariates on the ratio between middle- and high-income are spatially
invariant. However, it does not necessarily imply that the impacts on each income group
remain constant. For further analyzing their relationships, we can transform coefficients back
to the simplex place and then calculate the corresponding SEs (Equation (5)).

Figure 1 plots the SEs of each covariate across different income groups. The SEs provide
insights into the interconnections among income groups, as they sum up to zero within
each region for each covariate. For the entire region, we observe that an increase in the
proportion of individuals with secondary education contributes to the shift from low- and
middle-income to high-income groups. However, this impact varies by region. Particularly
in the southeastern area, which serves as the business and cultural center of Tokyo, the
expansion of the high-income group is notably significant. This can be attributed to the
concentration of knowledge-intensive industries in this region, which has led to a higher
demand for skilled professionals. In Chiyoda-ku, for example, when the proportion of the
educated population increases by one unit, the high-income group increases by 0.426%, which

Table 1 Estimation results of the ordinary linear regression.

Variables y∗
(1) y∗

(2)

Coefficient Std. Error Coefficient Std. Error

Constant -0.798* 0.465 0.673** 0.274
Uni -0.678* 0.381 -1.159*** 0.224
Unemp 0.110** 0.049 0.044 0.029
Age 2.967*** 1.065 2.988*** 0.626
House -1.460*** 0.351 -0.807*** 0.206
MC 0.236*** 0.014
Adjusted R2 0.568 0.860

Note) : *p < 0.1; **p < 0.05; ***p < 0.01.

https://www.e-stat.go.jp/en
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Table 2 Estimation results of the MSVC-based regression.

Variables y∗
(1) y∗

(2)

Min. Med. Max. Min. Med. Max.

Constant -0.296 -0.239 -0.168 0.673
Uni -1.285 -1.048 -0.801 1.159
Unemp 0.038 0.044
Age 3.069 2.988
House -1.969 -1.757 -1.547 -0.807
MC -0.005** 0.014
Adjusted R2 0.729 0.860

Note) : *p < 0.1; **p < 0.05; ***p < 0.01.

is the highest among all regions. The middle- and low-income groups decrease by 0.153%
and 0.273%, respectively. In contrast, in Hinode-machi, which is located on the periphery of
Tokyo, the high-income group increases by only 0.189%, and the low- and middle-income
groups decrease by only 0.094% and 0.096%, respectively. An increase in the unemployment
rate results in the expansion of low- and middle-income groups, along with a decrease in
the proportion of the high-income group, primarily observed in southeastern Tokyo. The
proportion of people aged over 65 negatively affects the high-income group but positively
affects the other two groups. This is consistent with the fact that older people generally
have lower incomes and may require more social welfare support. Furthermore, this impact
is stronger compared to other factors in terms of the magnitude of the SE, highlighting the
importance of considering the impact of the aging of population on income analysis. Lastly,
the increase in homeownership rate contributes to the transition of low-income groups into
middle-income groups in western and northeastern Tokyo. The middle-income group further
shifts to high-income in the southeastern parts.

5 Conclusion

This study proposed an MSVC-based framework to investigate the spatial heterogeneity
of compositional data. We adopted the ILR transformation and the semi-elasticity to aid
the model estimation and interpretation. The application on household income in Tokyo
indicated that socio-economic factors affect income distribution differently across regions,
which yields insights for understanding the drivers of income inequality.

There are still many challenges and our work is only just beginning. It is worth discussing
in the future a more intuitive way of model interpretation. Moreover, an in-depth investigation
is necessary to assess the impact a change in the type of spatial weights matrix and the criteria
for selecting eigenvectors might have on the outputs. Finally, comparing the performance of
the proposed method and previous approaches in analysing spatial heterogeneity would be
an interesting topic for future discussions.
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Figure 1 Spatial distribution of semi-elasticities of MSVC-based CoDA.
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Abstract
Over the last 50 years, Geographic Information Systems (GIS) have become a vital tool for decision-
making. Yet, the increasing volume and complexity of geographical data pose challenges for real-time
integration and analysis. To address these, we suggest a causally aware GIS that represents causal
relationships. This system uses causality to analyze events and geographical impacts, aiming to offer
a more comprehensive understanding of the geographic world. It integrates causality into design
and operations, applying robust algorithms and visualization tools for scenario analysis. Unlike
traditional GIS, our approach prioritizes an event-based model, emphasizing change as the core
concept. This model moves beyond object-oriented models’ limitations by considering events as
primary entities. The proposed system adopts an event-oriented approach within a Spatio-Temporal
Information System, with objects in space and time viewed as event components linked through
processes. We introduce an innovative event-based ontology model that enriches GIS by focusing
on modeling changes and their interconnections. Lastly, we suggest an IT implementation of this
ontology to enhance GIS capabilities further.
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1 Introduction

GIS has advanced significantly over the past 50 years, transforming geographic research
and applications and demonstrating its value to various fields such as urban planning,
environmental management, disaster response, through its continuous evolution [11, 12, 8, 21].
GIS has evolved from computer mapping to spatial analysis to solving geographic problems,
incorporating our understanding of spatial configurations and perceptions into its approach
[25, 24]. Furthermore, GIS is becoming increasingly even more important in our increasingly
data-driven world. With its ability to store, manage, and analyze large amounts of geospatial
data, GIS aims to provide a powerful tool for solving real-world problems in a variety of
domains. This rapid explosion of Geographical data has become one of the biggest challenges
facing GIS today. The integration of heterogenous data from multiple sources, making this
data available, analyzing it, and using it to make informed decisions is a monstrous task to
fulfill. To make this even more challenging, we need to consider in to account that many
decisions need to be made real-time or near-real-time in today’s increasingly more complex
dynamic world. A GIS capable of handling the requirements of a dynamic complex and
connected world is yet to be realized. This new GIS not only needs the development of new
and innovative methods for visualizing and analyzing geographic data, but more importantly
it should be able to represent real-world causal relationships and enable (near)-real-time
inference based on continuous flow of data. To address the challenges facing humanity,
it is necessary to perform inference of causal relationships, identify effects, and conduct
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complex dynamic simulations in human-environment systems [4, 13]. A system that can
accurately depict reality’s dynamic nature and delineate the relationship between causes
and effects, thereby facilitating causal reasoning and inferencing, can aptly be defined as a
causality-enabled GIS or, in essence, a causality-aware GIS.

In the next section first the meaning of causality is discussed and the term causal aware
GIS and events as its cornerstone are briefly examined. In section 3 differences between
event-based models and object-oriented models in GIS are reviewed. In section 4 the proposed
event-based model is illustrated and next steps to implement the model in an IT system is
listed. Finally, Chapter 5 concludes this article.

2 Causal aware (GIS) systems

Causality refers to the causal relationship between a cause and its resulting effect, where
the cause plays a role in producing the effect and the effect is dependent on the cause [5].
“Causality is a relation within the realm of conceptual objects. The relation of cause and
effect refers to conceptual events regardless of the relation of the latter to reality” [20].
Causality is a fundamental concept in many fields, including physics, philosophy, psychology,
and economics. The earliest recorded inquiry into the relationship between cause and effect
can be traced back to Aristotle’s Physics, which was the first known study of this nature
within the realm of science [9]. Philosophy tries “to determine what causal relationships in
general are, what it is for one thing to cause another, or what it is for nature to obey causal
laws. As I understand it, this is an ontological question, a question about how the world goes
on” [23]. Bunge [5] divides the causal problem into two subsets: a) “The ontological problem
of causality, i.e. what is causation: what are the characteristics of the causal link; to what
extent are such links real; are there causal laws; how do causation and chance intertwine
(and so on)?” and b) “The methodological problem of causality, i.e. what are the causation
criteria; how do we recognize a causal link and how do we test for a causal hypothesis?” This
research focuses on the ontological problem of causality and is interested in causal links,
processes as well as causal relations among events.

Causal awareness means a system, agent, or individual’s capability to comprehend and
account for cause-effect relationships in their environment. This ability enables more than
mere correlation, promoting accurate predictions and decisions by considering causal links.
Causal awareness aims to enhance decision-making and prediction precision by focusing on
underlying mechanisms behind events rather than mere statistical patterns [29]. A causally
aware system can thus make informed decisions and accurate predictions by understanding
causality, providing a deeper comprehension of complex systems. Developing causally aware
geographical systems is key for accurate comprehension of our world, however, systems
seamlessly integrating spatiotemporal interactions and causal relationships are still lacking
[16]. A causally aware GIS understands and considers cause-effect relationships in a geographic
context. Such GIS not only contemplates causal relationships between various events within
a geographical space but also leverages causality to analyze interplay between physical, social,
environmental, and economic events.

Incorporating causality into GIS involves integrating causal models, algorithms, and
data structures for storing and analyzing causal information. To further clarify, causal
models refer to the representations that describe the causal mechanisms of a system. These
models could be encoded as a system of equations, a directed acyclic graph, or a detailed
computational model. Algorithms used in causal analysis commonly include techniques for
learning the causal structure from data, methods for causal inference, and procedures for
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sensitivity analysis. Data structures suitable for storing and manipulating causal information
can include ontologies for representing causal knowledge, database schemas for storing causal
data, and file formats for interchange of causal information. These structures ensure efficient
retrieval and modification of the causal data. The development of user-friendly interfaces for
exploring causal relationships and outcomes is also a critical aspect of integrating causality
into GIS. Such interfaces can support users in interpreting the output of causal analyses,
navigating through causal structures, and interacting with causal data. This GIS may combine
traditional techniques with causality, machine learning, AI, probability, and network analysis
methods. A causally aware GIS is a largely unexplored area in GIScience that requires
significant research investment. Understanding events, the building blocks of causality [5].
According to Bunge [5] “the causal relation is a relation among events”. Events help us
understand causation, the mechanisms linking cause and effect. Events, instances of processes
occurring at specific times and places, involve changes in object states. Galton [10] discusses
the complexity of causality, including the roles of states, processes, and events, and the
challenges of understanding causality from an ontological perspective. Considering these
components can enhance understanding of an event and its impact.

Events and their behavioral patterns represent a higher level of knowledge in comparison
with changes caused by them. Therefore, they are more valuable for decision makers for
making informed decisions. To explore the mechanism of changes, one must investigate the
mechanism of events; indeed, events underlie changes [6, 33]. In another word, the Event-
based modelling reinforces representation of dynamic behaviors of geographical phenomena,
generation of hypothesis, investigation of scientific complex relationships, and ability to
explore causal relationships among associated entities while providing an opportunity to
understand underlying procedures [3]. In this research “event” as the basic units of causality
is further explored and discussed in the next section. While the current paper provides a
preliminary outline for a causality-aware GIS centered on events, it is important to note that
is is impossible to cover the breadth and complexity of the literature on event ontology in
this writing. However, to gain a more in-depth understanding of the connection between
processes and events, readers are referred to the vast body of work by Antony Galton or
references such as [31] and [1].

3 From object-oriented view toward event-based models in GIS

Initially, GIS modeled geographical features independent of time due to their long-lasting
identities and locations [29]. However, in the late 80s and early 90s, GIS started to incorporate
time, addressing geographic feature dynamics [2, 19]. This allowed for recording object history
and predicting future changes. Still, the focus remained on geographical features, with time
stamps tracking feature states [32]. This object change view, reflecting ontologies that have
dominated western thought since Aristotle’s time [30], sees the world as a collection of
classified objects with specific properties, relationships, and behaviors. Hägerstrand [15]
highlights the importance of time in human activities to assess the dynamic behaviour of
people in space, especially the motion of individuals in space and time. Miller [26] and
Yuan [34] have exhibited this fact in their work on transportation and urban analysis, and
on analysis of physical phenomena, such as storms. Different researchers such as Miller
[26] have promoted the work of Hägerstrand’s under the principal of geo-spatial lifelines.
However, Hornsby and Egenhofer [17] deal with the object change view through the concept
of identity-based change. There are several downsides when modelling changes with the
object change view [19, 32]: first, expensive computations and calculations are needed to
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detect and identify changes between snapshots. Second, developing or imposing rules for
internal reasoning is challenging, since there is no understanding of the restrictions upon the
temporal structure. Third, no matter what the size of changes is, a full snapshot is produced
at each time sequence leading to storing huge amount of redundant information. Fourth,
when models concentrate on objects’ changes rather than a snapshot, it becomes challenging
to identify “when and what change becomes so substantial that an object is no longer the
same object”. Due to such restrictions in the object-oriented model, many researchers have
suggested event-based models as an alternative solution [7, 28, 33, 32, 29].

In event-based models, change is the main concept that is modelled and change units are
the primary items for analysis and evaluation. Claramunt and Thériault [7] define events
as things which occur. Particularly they explain that processes cause changes in the state
of objects, these changes reveal the outcome of the process and create events. The event
perspective sees objects in space and time merely as information elements of the events,
which are connected to other event elements through internal or external processes [29].
Peuquet [27] defines an event as indicator of changes in a place or an object. Peuquet and
Duan [28] refer to an event as a way to represent spatiotemporal manifestation of processes.
Worboys [32] and Worboys and Hornsby [33] define an event as a happening that should be
differentiated from a thing or continuant. They suggest that events are necessary to record
the mechanism of change. Events are perhaps the most extensive information container for
dynamic geo-historical phenomena and geographical reality [29]. To explain any event well
enough, we should take into account its objective and results, its individual participants,
its place in space and time, and its relationships to various other events. Representing
enough large number of events along these dimensions may enable us to analyze and discover
underlying social historical processes of the globe [14]. Although early calls to maintain and
preserve records of events and processes to understand dynamic behaviours of the reality go
back to late 80s [6], its realization in GI Systems is far from being called done [29].

Most early GIS data models can be considered as expansions of cartographic models, and
existing methods to organise and store data generally use data layers and spatial blocks [18].
This radically limits expressing reach relationships between geographic elements at different
scales, the mechanisms of interaction among elements, and their evolutionary processes
with different semantic meanings and multiple attributes [22]. Hence, the need to move the
concept of “representing geographical reality” beyond the principle of mapping objects which
have distinct spatial, temporal and attributive identities as usual in object-oriented systems
[29]. Although GIS is an information system, its core idea is to explore the geographical
reality and real-world complexities, its patterns, processes, and reach interactions among
different geographical phenomena, to enable us to understand the world better. Using a
generic event-oriented perspective to implicitly represent causal relationships among different
components of a Spatio-Temporal Information System makes realization of this goal possible.
Thus, the core of GIS should follow the mission to explore the laws of nature and reveal
its essence to humanity, which cannot be achieved by considering events and process as
second-class elements in today’s GIS systems. Leveraging event-oriented representations of
reality, enables GIS to serve as a true knowledge representor of real-world complexities and
move toward a causal-aware system.

4 Event-based models

Spatiotemporal ontologies have been extensively researched, but there is a notable gap in
explicitly considering events as entities within GIS. Previous studies focused on modeling
events and their relationships, often treating the temporal dimension as an attribute of



N. Polous 60:5

spatial objects or as a part of new entities called “spatiotemporal objects.” To bridge this gap,
this study introduces a conceptual model to mirror and manage real-world dynamism. In
this novel system, events unfold, processes occur, and states change. The study goes beyond
conventional mapping practices that view objects as static geographic entities. Instead, it
centers on modeling change as the core concept, with the analysis and evaluation primarily
based on change units. This approach prioritizes the temporal dimension, recognizing the
crucial role of recording event sequences over time. To handle the complex relationships
between spatial and temporal dimensions, new methods are necessary. Events serve as
identity containers for objects, states, and processes, forming the fundamental components for
mapping dynamic phenomena. By treating events as first-class objects in GIS, this proposed
event-oriented perspective enables the modeling of causality and complex relationships in
our dynamic world. The mapping perspective shifts towards viewing the world as a network
of interconnected relationships, unlocking richer language and understanding interactions
among objects, events, and underlying processes.

Figure 1 Schematic concept (modified version of model proposed by Polous [29]).

Figure 1 illustrates the schematic concept of the event-centric perspective. This new
perspective integrates two aforementioned mapping principles; an event centric approaches
that look at the phenomena holistically while in its turn inherited the object-oriented
perspective for mapping the object in reductionist way. In this new integrated model, objects
belong to states while processes are running on them and making changes in their states
(spatial and none-spatial) through the power of events as causal forces. In fact, the states
and processes together create a new concept so called ‘dynamic snapshot’ at each moment.
The snapshots contain both processes and objects, therefore they are no longer static but
have an inherent dynamism which provides a solid foundation for understanding events which
are happening over time. The events can initiate or terminate a state through initiating or
terminating an external or internal process. Indeed, by looking at the dynamic snapshots we
can see different objects, in various states which are undergoing particular processes. The
snapshots are constantly renewed as time passes; the snapshots alter from one moment to
the next, because the present elements in the snapshot are changing. Here, the events are
considered as fixed historical records so as time passes, event are occurring, and getting
gradually added, numbered and stored in the event database. This new perspective offers a
Spatio-temporal Information System a standard way to mathematically model the changing
world while developing a firm basis for the logical modelling of dynamical systems.
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In the pursuit of incorporating an event-based ontology model within an IT system,
the Author is implementing a meticulous seven-step strategy, utilizing key tools like the
Web Ontology Language (OWL) and the Resource Description Framework (RDF). The first
step revolves around defining the ontology using an OWL ontology tool such as Protégé,
including elements such as events, processes, states, and involved objects. OWL allows the
creation of detailed and consistent models by providing greater machine interpretability than
XML, RDF, and RDFS. Its reasoning capabilities enable the automation of data consistency
verification and allow querying beyond instance retrieval. Subsequently, instance data tailored
for particular use cases will be populated within the ontology. As a third step, we will
integrate the defined ontology with other existing GIS models. The fourth stage involves
data storage through RDF, facilitated by an RDF database. RDF is a standard model for
data interchange, offering broad interoperability, which enables the integration of data from
various sources. Its graph-based data model provides flexibility in representing knowledge,
allowing users to structure and link data in any way. The data will then be queried through
the SPARQL query language in the fifth stage, unveiling hidden connections and relationships
within the data. SPARQL, with its capabilities to express queries across diverse data sources,
supports complex reasoning tasks and extraction of valuable insights from the semantic data.

These first five steps are enough to conduct needed research for any specific use-case,
however, to expand the reach of the system, the Authors aim to make the IT System available
to others through APIs and User interfaces. The sixth step focuses on the development of
APIs or web services, integrating the knowledge management system with additional GIS
applications and allowing for external querying and support in decision-making processes. .To
conclude, a user-friendly interface and visualization tools will be constructed to foster user
interaction with the ontology, thus improving the overall usability of the system. By applying
this model to an IT system underpinned by Semantic Web technologies, we anticipate
constructing a robust knowledge management system. This system will empower users to
navigate intricate relationships, inform decision-making processes, and provide valuable
insights for a myriad of stakeholders. Through the leverage of Web Semantic languages
such as OWL and RDF, this model offers extensive manipulation and reasoning capabilities,
enabling users to create, manage, exchange, and reason with knowledge about resources.
This expands the range of capabilities and empowers users to generate and explore complex
relationships and hypotheses. The findings from this endeavor will be published in due
course.

5 Conclusion

GIS strives to offer a complete and accurate understanding of geographic data, but the
explosion of data complexity and the dynamic nature of our world poses challenges. Thus,
the next logical step is to develop a causally aware GIS - a system that understands and
integrates causal relationships and supports real-time decision making. A causally aware
GIS enhances data analysis by considering causal relationships between various factors in
a geographical context. To realize this system, we need to infuse causality into its design,
operations, and analysis processes. This includes integrating causal models, algorithms,
and structures that support the manipulation and analysis of causal information. Crucially,
the system should be capable of computing various scenarios’ effects and outcomes and
clearly representing causal information. This needs to be complemented with user-friendly
visualization tools for exploring causal relationships and their implications. Historically,
GIS models had limitations in expressing the interaction and evolution between geographic
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elements. An event-based model, which sees change as the primary concept being modeled,
can better represent dynamic geo-historical phenomena. As a next step, this paper proposes
the development of a causally aware GIS system that comprehensively represents reality
and understands causal relationships. This requires innovative methods for visualizing and
analyzing geographic data, coupled with a deep grasp of causality. Implementing the proposed
event-based ontology model within an IT system is a pivotal step in this direction, involving
seven systematic steps from constructing the ontology to developing user-friendly interfaces
and visualization tools.
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Abstract
Though numerous studies have examined human mobility within an urban environment, few have
explored the concept of urban vitality purely through the lens of urban transportation. Given the
importance of different modes of transportation within a city, such analysis is necessary. In this
short paper, we introduce the novel concept of mobility vitality by integrating human mobility and
urban vitality, offering a multilayered framework to assess the degree of transportation and mobility
within and between regions. The mobility patterns of three transportation modes, namely subway,
taxicab, and bike-share, are first examined independently. These patterns are then aggregated to
form the composite measure of static mobility vitality. Through this measure, we evaluate similarities
between neighborhoods. Our results observed significant spatial differences in the travel patterns of
three transportation modes on weekdays and weekends. Moreover, neighborhoods with high static
mobility vitality have relatively similar mobility patterns. Ultimately, this approach aims to find
neighborhoods with imbalanced transportation infrastructure or inadequate public.
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1 Introduction

In 1961, the urban activist Jane Jacobs introduced the concept of urban vitality as a qualitative
measure of a city’s pulse [2]. The idea suggests that varying tempos of human activities
and pedestrian flow can all be employed to differentiate regions. For decades, most of the
research related to this concept was done using qualitative surveys, demographic studies, and
narrative analysis. The difficulties with such approaches are costly and labor-intensive and
are prone to subjective biases. The recent dramatic growth of publicly accessible activity
and mobility data has set the stage for alternative approaches to assessing urban vitality.

Despite a large body of literature targetting the extraction of individual human mobility
patterns and their accompanying impact variables [1, 7], little attention has been paid to
urban dynamics characterized purely by individual movement. Recently, a growing number
of research teams have focused on temporal characteristics of mobility to better understand
urban vitality [3]. For instance, Sulis et al. [6] examined smart-card rail trips to assess
spatiotemporal variation in urban vitality in London. They produced a set of three dynamic
properties, namely the number of people, the continuity, and the fluctuations of this presence
over particular intervals of time. Similarly, Zeng et al. [9] created a new index to measure
urban vitality based on records from a bicycle-sharing system. Further work has demonstrated
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that lively regions of a city correlate with taxi drop-off locations [10]. A variety of research
has shown that urban vitality/vibrancy can be measured through data ranging from social
check-ins and points of interest to trajectories and mobile phone data [4, 8].

Though progress is being made, research focused exclusively on mobility as a measure of
urban vitality is lacking [11]. In exploring the vitality of different parts of a city through a
mobility lens, one is able to identify the impact that access to different mobility modes, has
on city cohesion. Furthermore, a combination of mobility signatures can be used as a measure
through which different regions of a city can be compared [5]. Urban and transportation
planners can use such a measure to better understand the impacts of policy decisions on
the vibrancy and vitality of the city as a whole. Through integrating human mobility with
urban vitality, we proposed the novel concept of mobility vitality, serving as a multilayered
framework to evaluate the degree of transportation and mobility within a space. In this
preliminary work, we aim to address the following two research questions (RQ).

RQ1 Can a region, e.g., neighborhood, be quantified by the mobility patterns of different
modes of transportation that exist and traverse the region? Furthermore, do these
patterns vary by mode and region?
RQ2 Can mobility vitality, as represented by a combination of mobility patterns, be used
to compare and differentiate regions within the same city?

We address these questions through an analysis of three different modes of transportation
within New York City (NYC). As the most densely populated city in the United States,
NYC’s transportation ecosystem is both complex and extensive. The scale of our analysis is
neighborhoods within the five boroughs of NYC and the extent of analysis varies based on
the service area of each transportation system.

2 Data and Analysis

To start, three data sets representing three very different modes of transportation were
collected. These include bike-share, subway (rail), and taxicab data. We restricted our
analysis to May 2019, cleaned the data to remove errors, and aggregated the month of data
to days in a typical week. We use this week as a representative sample of transportation
usage in NYC. May was chosen due to the limited holidays, historically decent weather, and
fewer people on summer vacation. For micro-mobility, we accessed data for the widely used
bicycle-sharing system, Citi Bike1. Citi Bike is a privately operated docking station-based
bike-sharing system. Citi Bike trip data include the start and end times of each trip as well
as the origin and destination stations. For mid-sized transportation, we accessed trip data
for yellow taxis2. The yellow taxi trip records include fields capturing pick-up and drop-off
dates, times, and locations. For mass transit, we analyzed turnstile data of the NYC subway
system3. These data report an accumulated number of entrances and exits, per station at a
four-hour temporal resolution. All data were cleaned to remove erroneous trips (e.g., those
that were one minute in length, 200 miles, etc).

Next, we intersected the trip data with the NYC neighborhood boundaries4 to assign trip
volume for each of the three services to each neighborhood in NYC. The assigned volume
includes both origins (entries) and destinations (exits). More specifically, the numbers of

1 https://citibikenyc.com/system-data
2 https://data.cityofnewyork.us/Transportation/2019-Yellow-Taxi-Trip-Data/2upf-qytp
3 https://data.ny.gov/Transportation/Turnstile-Usage-Data-2019/xfn5-qji9
4 https://data.cityofnewyork.us/City-Government/2020-Neighborhood-Tabulation-Areas-NTAs-

Tabular/9nt8-h7nd

https://citibikenyc.com/system-data
https://data.cityofnewyork.us/Transportation/2019-Yellow-Taxi-Trip-Data/2upf-qytp
https://data.ny.gov/Transportation/Turnstile-Usage-Data-2019/xfn5-qji9
https://data.cityofnewyork.us/City-Government/2020-Neighborhood-Tabulation-Areas-NTAs-Tabular/9nt8-h7nd
https://data.cityofnewyork.us/City-Government/2020-Neighborhood-Tabulation-Areas-NTAs-Tabular/9nt8-h7nd
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origins and destinations were combined to determine the final trip volume. For the subway
turnstile, the total number of entries and exits for every turnstile within a station was
summed. For example, there are four control areas in the “Cortlandt St.” station and each
control area has 10 turnstiles. The trip volume for that station was calculated as the sum of
all passengers through the 40 turnstiles. The trip data were then divided by the populations
of their respective neighborhoods. This process was straightforward for the bike-share and
subway turnstile data as they are represented as point geometries. The taxicab trip data,
however, is reported by polygonal taxi zone5 (TZ). A dasymetric mapping approach was
used to allocate taxicab trip origins and destination TZ data to the NYC neighborhood
boundaries.

To address RQ1, our static6 mobility vitality measure was generated by summing the
individual transportation mobility patterns across each region, producing a single value for
each neighborhood. While we took an “equal weights” approach here, the measure is designed
to allow a user to adjust the importance (weights) of each individual transportation mode
in the overall mobility vitality result, depending on their interests. Given this measure of
mobility vitality, we then examined how such a measure could be used to better understand the
vitality and variability of mobility services within a city such as NYC. To start, we averaged
the mobility vitality measure for each neighborhood by weekday and weekend. This allowed
us to subtract weekend mobility vitality from weekdays to better identify temporal variations
in mobility and differentiate neighborhoods based on prototypical commuting behavior.
Finally, we examined mobility vitality as a measure on which to identify similarities between
neighborhoods based purely on how inhabitants and visitors use different transportation
systems. To address this RQ2, we used Jensen-Shannon divergence (JSD), a method for
assessing the (dis)similarity of two probability distributions. In our case, we took the
trip volume for each day of the week of our three transportation modes as a distribution.
Having one distribution for each neighborhood allowed us to assess the similarity between
all neighborhood pairs. We then identified the neighborhoods that were most similar to all
other neighborhoods and those that were most unique.

3 Results and Discussion

For all three modes of transportation, there is greater mobility activity on weekdays than on
weekends. For bike-share origins and destination points, the population-normalized mean
values are 0.028 and 0.021, for weekdays and weekends, respectively. Similarly, the mean
population-normalized taxi pick-up density on weekdays is 0.0143, while on weekends it is
0.0137. The subway turnstile data was much more pronounced with a population-normalized
weekdays value of 1,407.86 and a weekend value of 839.91. These large values indicate that,
for many of the neighborhoods within NYC, the number of subway passengers is several
orders of magnitude higher than the residential population.

The weekday/weekend variation in normalized transportation trips is shown in Figure 1.
In order to compare weekday trips and weekend trips, we delineated the legend on the maps
by setting 0 as the dividing line in the class intervals. In both bike and taxi categories,
those values greater than 0 and those less than 0 were separately averaged into two intervals.
For the metro map, given the significantly higher number of weekday trips compared to
weekend ones, only one level was established for values less than 0, while those greater

5 https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
6 Static here refers to the fact that temporal variability was not included in this approach.

GISc ience 2023

https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc


61:4 Mobility Vitality

(a) Bike share. (b) Taxicab. (c) Subway turnstile.

Figure 1 Population-normalized weekend trip counts subtract from weekday trip counts, for
three modes of transportation.

than 0 were evenly divided into three levels. In general, the Manhattan business district
witnesses a predominance of weekday trips over weekend ones, with the intensity varying
across transportation modes. Bike sharing predominantly favors weekdays, with Central Park
being the exception. Conversely, neighborhoods encompassing recreational areas report higher
weekend bike trip volumes. Taxi trips exhibit a starkly distinct pattern, with higher weekend
volumes in both northern and southern Manhattan, notably in downtown neighborhoods
near Queens. Subway data, however, shows a universal weekday preference, except in East
Elmhurst and North Corona. A clear spatial clustering of neighborhoods with the greatest
discrepancy between weekday and weekend trips is evident in downtown Manhattan.

The results of the equally-weighted static mobility vitality measure are shown in Figure 2.
The operating region for the bike share service is the most spatially restrictive of our data
and so all data sets were restricted to this analysis area. As one can see, the greatest degree
of mobility vitality is in Central Park and the southeast corner of Manhattan. As one moves
towards the east side of Brooklyn and north Harlem, the vitality gradually decreases.

Figure 2 Static mobility vitality as calculated by summing the population-normalized trip volume
from three different modes of transportation.

The results of our Jensen-Shannon divergence approach are shown in Figure 3. In this
Figure, pink neighborhoods are the most unique neighborhoods in terms of mobility vitality,
reporting the highest average JSD values. These include the Upper West Side (Central),
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Upper East Side-Yorkville, East Midtown-Turtle Bay, Williamsburg, Harlem (North), and
Astoria (North)-Ditmars-Steinway. Among these, four are located in Manhattan, while
Queens and Brooklyn each contain one. Comparing these results to the static mobility
vitality map shown in Figure 2, it can be observed that the six most dissimilar neighborhoods
are not the ones with the highest static mobility vitality. They belong to the lower-scoring
group in terms of the three individual mobility patterns as well as static mobility vitality.
This speaks to the influence of the temporal dimension on assessing the vitality of a city
with respect to mobility. In our data, most neighborhoods with high static mobility vitality
have relatively low divergence values, indicating that they tend to be similar to one another.
Neighborhoods with low JSD values are in regions with high volumes of everyday traffic
for each mode of transportation and their individual mobility patterns show little variation.
The six most unique neighborhoods, as measured by our mobility patterns, are scattered
throughout the city but share a common characteristic, they are all waterfront neighborhoods.

Figure 3 Unique and similar neighborhoods as measured through three modes of transportation
using Jensen-Shannon divergence.

4 Conclusions and Next Steps

In this preliminary work, the concept of mobility vitality is proposed to measure the degree of
transportation and mobility within a region. This work investigates mobility vitality patterns
when different transportation starts or ends in the neighborhood and uses these patterns
to identify the divergence between different neighborhoods within NYC. Not surprisingly,
we found that mobility patterns are different on weekdays than on weekends. In most
cases, the volume of trips in downtown neighborhoods is greater during weekdays than on
weekends; however, taxicabs in some central business districts are the exception. Additionally,
neighborhoods with excessive divergence are dispersed and more dissimilar neighborhoods
often exhibit a high degree of clustering and high mobility vitality.

The next steps for this work will involve including additional modes of transit and
assessing the robustness of our approach through varying types of transportation. Our
current mobility vitality approach is meant as a “proof-of-concept” and further iterations will
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allow users to vary the weights depending on the question they are investigating. Last, the
current analysis was conducted using data collected at a daily temporal resolution. We aim to
examine the spatiotemporal characteristics of mobility vitality with a finer time granularity
in the future.

The results of the analysis presented in this short paper are meant to offer a glimpse
at the objective of generating a mobility vitality measure that represents the spatial and
temporal dynamics of mobility within a city. Through developing such a measure, our aim
is to empower urban and transportation planners with measures by which similarities and
differences within a city can be identified. Planners and government agencies will be able to
monitor how transportation policies can change vitality within a city and use such a measure
to improve equitable access to transportation systems within the urban environment.
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Abstract

This study investigates the impact of location uncertainty on the predictive performance of Bayesian
Logistic Regression (BLR) for forest fire ignition prediction in Austria. Historical forest fire ignitions
are used to create a dataset for training models with the capability to assess the general forest fire
ignition susceptibility. Each recorded fire ignition contains a timestamp, the estimated location of
the ignition and a radius defining the area within which the unknown true location of the ignition
point is located. As the values of the predictive features are calculated based on the assumed
location, and not the unknown true location, the training data is biased due to input uncertainties.
This study is set to assess the impact of input data uncertainty on the predictive performance
of the model. For this we use a data binning approach that splits the input data into groups
based on their location uncertainty and use them later for training multiple BLR models. The
predictive performance of the models is then compared based on their accuracy, area under the
receiver operating characteristic curve (AUC) scores and brier scores. The study revealed that higher
location uncertainty leads to decreased accuracy and AUC score, accompanied by an increase in
the brier score, while demonstrating that the BLR model trained on a smaller high-quality dataset
outperforms the model trained on the full dataset, despite its smaller size. The study’s contribution
is to provide insights into the practical implications of location uncertainty on the quality of forest
fire susceptibility predictions, with potential implications for forest risk management and forest fire
documentation.
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1 Introduction

The impact of forest fires in Europe has been increasingly severe due to climate change,
leading to longer fire seasons, expansion of affected areas, and unprecedented conditions for
fire-fighting services [12]. In countries such as Austria, forest fire prediction models, which
form the backbone of early warning systems, use manually collected incident reports to
predict the outbreak and behaviour of forest fires. However, uncertainty in the input data,
due to human involvement makes the data susceptible to various uncertainties. In order
to create reliable predictive models for forest fires, it is essential to understand how input
uncertainty impacts the accuracy of predictions. This study specifically investigates the
impact of uncertainty surrounding the initial fire ignition point location on the accuracy of
forest fire ignition predictions. Bayesian Logistic Regression (BLR) is a flexible approach
for predictive modeling, particularly with input data uncertainties. It provides a robust
mathematical model to quantify uncertainty, incorporate prior knowledge, and improve the
model’s generalization. Unlike the point estimates provided by traditional Logistic Regression
(LR), the Bayesian method provides a full predictive posterior distributions, that quantifies
input data and model uncertainty [4]. The primary objective of this study is to analyze the
sensitivity of BLR models to forest fire ignition location uncertainty by training multiple
models using training datasets with different levels of associated uncertainty. For this purpose
this study utilizes the Austrian forest fire database, which stores the locations of past fire
ignition points. Each point is associated with a positional uncertainty in the form of a
distance radius, which determines the area where the forest fire may have started, as shown
in Figure 1. The paper is organized as follows. In section 2 we elaborate on the related work,
followed by the methodology described in section 3. This section covers data preparation,
model training and evaluation. Section 4 covers the results and section 5 discusses the results
achieved.

Figure 1 This map displays recorded fire ignition locations and their associated buffers, indicating
the uncertainty of each ignition position. The slope raster underneath provides further insight into
the terrain, showcasing strong variations within the uncertainty regions.

2 Related Work

Logistic Regression (LR) has been used extensively in wildfire science and management, ac-
cording to [10], who provided a comprehensive review of Machine Learning (ML) applications
in this area. BLR, on the other hand, has seen limited use in wildfire prediction. [5] applied
BLR with uninformed priors to estimate the probability of large fires based on weather
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components, while [8] trained hierarchical BLR models with different priors to estimate the
probability of fire occurrence based on forest vulnerability and climatic conditions. While
previous studies have investigated the impact of weather conditions, land cover, and human
activities on the predictive performance of wildfire fire ignition models using LR and other
complex ML methods, few have examined the effect of location uncertainty on predictive
models. [1] conducted a study to analyze the impact of fire ignition location uncertainty
on kernel density estimates by systematically displacing ignition points and comparing the
resulting density surfaces. In their study on wildfire prediction in Portugal, [7] utilized LR
models. They found that the recorded ignition locations used for model training had a
margin of error of up to 500 meters. However, they argued that the impact of this positional
error on predictions could be considered negligible due to the large sample size and the small
scale of the geospatial data used in their study. To the best of our knowledge, no study has
yet investigated the impact of location uncertainty on the predictive performance using BLR
models.

3 Methodology

3.1 Data Sources

In this study, the primary data source used was the Austrian forest fire database, which was
established within the activities of European and nationally funded projects (AFRI and ALP
FIIRS) [13]. This database covers forest fire incidents beginning in the 16th century with an
almost complete documentation of forest fires events since the beginning of the 21st century
and provides valuable information such as the coordinates of the assumed ignition point
location, the location uncertainty radius, the cause of the fire, and the size of the affected
area. The scope of this study was limited to human-caused fire incidents that occurred
between 2001 and 2018 and have a location uncertainty of no more than 500 meters. A total
of 955 fire events were considered in the analysis. To generate predictive features we used
additional data sources covering a digital elevation model (data.gv.at; 10x10m), a building
and population raster (100x100m), the street network (gip.gv.at) and a vegetation type raster
(bfw.gv.at; 10x10m). All data layers were projected to the Austria Lambert reference system.

3.2 Data Preparation

To get an evenly balanced data set, we randomly sampled 1085 points within the forest
domain, which we used as non-fire events. The study encompasses several features, namely:
distance to buildings, population density, distance to roads, road type, distance to bicycle
and pedestrian pathways, vegetation type, elevation, slope and aspect. These specific features
were chosen, drawing upon the research conducted by [2] and [3]. The values associated with
these features are calculated based on the incident point location. Finally, the recorded fire
incidents are divided into four groups based on their associated distance radius, representing
the uncertainty of the fire ignition location. The first group, serving as the validation set,
includes all samples with an uncertainty smaller or equal to 100 meters. The other three
groups, serving as training datasets, are created based on uncertainty thresholds that ensures
a roughly equal distribution of samples across the groups. Furthermore, the training data
from all groups are combined into a single additional training set. Table 1 provides an
overview of the four groups and their corresponding uncertainty ranges and sample sizes.
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Table 1 Overview of training and validation data groups.

Bin Uncertainty Range (meter) Size Distribution (non-fire, fire)
Validation [0, 100] 429 228, 201
Training 1 (100, 250] 580 319, 261
Training 2 (250, 400] 527 275, 252
Training 3 (400, 500] 504 263, 241

Training full (100, 500] 1611 857, 754

3.3 Model Training
Each training dataset is used to fit both a traditional LR and a BLR model. LR is a statistical
method that is well-suited for modeling binary outcomes, such as the presence or absence
of forest fires. Unlike traditional LR, BLR assigns a prior probability distribution to the
regression coefficients, which reflects prior beliefs about the relationship between the features
and the outcome. By using Bayesian inference, the prior is combined with the likelihood of the
observed data to obtain the posterior probability distribution of the coefficients. Our choice of
prior distribution was a Student-T distribution with a mean of 0, a scale of 2.5, and 1 degree
of freedom, resulting in a Cauchy distribution. This prior distribution is known to allow
for robust inference and has been recommended for weakly informative priors in Bayesian
analysis [9]. Before fitting the data to the model parameters, the numerical input features
were standardized to improve model convergence. We utilized scikit-learn (scikit-learn.org)
for traditional LR and the probabilistic programming library PyMC (pymc.io) for BLR,
which leverages the Markov Chain Monte Carlo (MCMC) algorithm for Bayesian inference.

3.4 Model Evaluation
To assess the predictive performance of the various models on the validation set, we employ
two common metrics: accuracy and area under the receiver operating characteristic curve
(AUC). Accuracy is defined as the proportion of correctly classified incidents (i.e., whether a
fire occurred or not) based on a threshold of 0.5 for the predicted probability values. AUC,
on the other hand, measures the ability of the model to distinguish between fire and non-fire
cases across all possible threshold values. Both accuracy and AUC have a scale from 0
to 1, where values above 0.5 suggest performance that exceeds random guessing. When
evaluating the danger of forest fires, it’s important to consider the probability values provided
by the model, rather than just the binary classification. These values represent the model’s
uncertainty in identifying potential fires and indicate the danger of a fire starting under
the observed conditions. Therefore, we additionally assess the quality of the probability
estimates using the brier score. The brier score measures the average difference between the
predicted probability and the actual outcome. A higher score indicates that the model’s
probability estimates are less reliable, while a lower score indicates greater reliability. The
brier score ranges from 0 to 1 and was first introduced in [6].

4 Results

The reported accuracy, AUC and brier scores for the BLR models are mean values of 10
runs. Since the variation among the different outcomes is low, we do not report all model
runs in this short paper. Figure 2 and Figure 3 depict accuracy and AUC scores for the
LR and BLR models trained on the different datasets. The results clearly show that the

www.scikit-learn.org
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Figure 2 Accuracy (with
threshold = 0.5) of LR and
BLR models.

Figure 3 AUC score of LR
and BLR models.

Figure 4 Brier score of LR
and BLR models.

model performance decreases with increasing ignition location uncertainty. For the BLR
models, there is a +8,6% accuracy, a +9,3% AUC and a -4% brier score (as shown in Figure
4) difference between the model trained on the high quality dataset (100-250 meter location
uncertainty) and the model trained on the poor quality dataset (400-500 meter). The BLR
trained on the high quality dataset even outperformed the BLR model trained on the full
dataset (+4,6% accuracy, +1,8% auc and -1% brier score). When comparing the BLR and
LR models, it can be seen that the BLR model trained on the high quality dataset performs
significantly better than the LR model trained on the same data (+5,2% accuracy, +2,5%
AUC). However, this observation does not apply to the models trained on the other datasets,
except for the brier score (Figure 4), where BLR consistently outperforms LR by a small
margin.

5 Discussion

The findings of this study highlight the impact of location uncertainty on the predictive
performance of fire ignition models. The bias resulting from uncertainty about the true
location of the fire ignition has a significant effect on the models’ accuracy, with a clear
decrease in performance as the location uncertainty increased in the training data. This
phenomenon is attributed to location bias affecting all spatial features, especially those with
high spatial variability, such as slope. Given the relatively small number of data samples
available for forest fire ignitions in Austria, a critical question arises about whether using
high-quality data (in terms of location uncertainty) is more advantageous than employing all
available data with mixed quality for training purposes. Our study indicates that BLR is
a suitable method for dealing with small data sets. It achieves better results when trained
on a small high-quality dataset than when trained on a mixed-quality dataset containing
roughly three times as many samples. In contrast, the traditional LR model trained on
the high-quality data only achieves similar results as the one trained on the full dataset.
The reason behind this is, that BLR allows prior knowledge to be incorporated regarding
the relationship between the predictors and outcome variable. This incorporation works
as a regularizer, constraining overfitting or underfitting in small datasets by reducing the
parameter estimates towards the prior distribution. However, an extensive analysis of different
prior distributions in our BLR model was not conducted, neglecting the fact that different
features may require different sets of priors.Furthermore, there is an additional point that
requires discussion. The interpretation of the probability values generated by the forest fire
ignition prediction models can be somewhat ambiguous. While the probability score can
be an indicator of the level of danger, it can also be viewed as a measure of uncertainty in
the model’s prediction. However, [11] argue that these two concepts, the predicted level of
danger and the prediction uncertainty, should be treated separately. This suggests the need
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to investigate how we can use Bayesian inference, which provides additional information
about the prediction uncertainty, to communicate both the predicted probability and the
model’s uncertainty to decision-makers in forest fire management.

6 Conclusion

In summary, this study highlights the importance of considering location uncertainty in fire
ignition models, and the potential benefits of using BLR for dealing with small datasets.
The findings of this study can have significant implications for forest fire management and
documentation, as they suggest that investing in a high-quality dataset and utilizing BLR
with weakly informed priors may help overcome the limitations posed by a small training
dataset.
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Abstract
Shadow calculation is an important prerequisite for many urban and environmental analyses such as
the assessment of solar energy potential. We propose a neural net approach that can be trained with
3D geographical information and predict the presence and depth of shadows. We adapt a U-Net
algorithm traditionally used in biomedical image segmentation and train it on sections of Styria,
Austria. Our two-step approach first predicts binary existence of shadows and then estimates the
depth of shadows as well. Our results on the case study of Styria, Austria show that the proposed
approach can predict in both models shadows with over 80% accuracy which is satisfactory for
real-world applications, but still leaves room for improvement.
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1 Introduction

The production of renewable energy in urban environments is a crucial contribution to carbon
neutrality. This requires the assessment of the solar energy potential that is reflected by
the solar radiation on the earth’s surface [1]. Of particular interest is the assessment of
solar energy potential in urban environments, where almost 50% of the world’s population is
located. Besides photovoltaic systems mounted on roofs, there is additional potential for
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photovoltaic systems on facades. As urban areas are covered by buildings that cast shadows
on surrounding buildings, and the production of renewable energy with photovoltaics is
influenced by shadows - the calculation of shadows is key to make informed decisions.

Contemporary Geographic Information Systems (GIS) are capable of representing shadows
for 3D city models based on some type of surface information. The task of generating shadows
is usually performed by strictly geometrical approaches such as GIS shadow calculation
models. Such models have high accuracy, but usually come at high computational costs
depending on spatial and temporal resolution of the data and calculation [11, 12]. One such
model is used as a source of ground truth in this study as well [4, 5].

In order to address these issues, this paper presents an approach to calculate shadows
using GeoAI methods. One approach, already using machine-learning libraries (tensor-based
techniques) but simply optimizing the data preparation and computation time, was shown
by[2]. Their urban test area is also represented by a digital surface model (DSM) with a
spatial resolution of 1m. They provide a proof-of-concept for binary shadow calculation, in
contrast to our ML-approach, which is able to predict not only the binary value, but also
the depth of the shadow. In detail, we present a method for the calculation of the shadow
depth of tiles in Styria using U-Net [13]. With this machine-learning approach to solving this
problem of physics, we strive to get results more quickly after a computationally intensive
training [16, 17].

The U-Net, as basic structure of our network, was originally developed for segmenting
biomedical images and is designed to get by with few training images and to be able to
localise high-resolution features. These properties fit well for our shadow segmentation task,
because as the shadow calculation depends on the position of the sun, we would have needed
a large amount of training data.

2 Methodology

The architecture of a U-Net is made up by a contracting path followed by an expansion
path, which is roughly symmetric to the contraction. Each contraction step consists of two
convolutions and a subsequent max pooling as well as a doubling of the channel numbers. In
every expansion step we have an upsampling, followed by a concatenation with the channels
of the same size from the contracting path and two convolutions. The concatenations between
contraction and expansion paths are key to allow for better localization of high-resolution
features and thus more precise segmentation. On top of the U-Net we include residual
connections [8] within the convolution net, concretely we insert identity mappings between
every other multi-channel feature map. This further eases the training of our net, allowing
us to use a larger number of layers in our net.

For our purposes, a U-Net with 5 up- and downsampling layers and a depth of 256 in the
bottleneck layer was implemented, where the input tensor consists of the geographic data
for each pixel in a 64 × 64 tile. More specifically, for each pixel, the input is defined as the
elevation information, i.e. surface height and the surface height plus the average height of
the objects in the pixel, the terrain information slope and aspect, and sun angle and azimuth
at a certain time. The input tensor therefore has the size 64 × 64 × 6. Let’s take as an
example a tile whose centre has the coordinates (47.0867407955596, 15.423575649486619).
The pixel in the upper right corner of the tile has a surface height of 352.3 metres, with
the objects on the surface 354.59 metres. The terrain has an aspect of 0.23◦ and a slope of
15.77◦. Assuming that the shadow is to be calculated on 19.02.2022 at 12 noon, the angle
of the sun is 39.28◦ and the azimuth is 240.971◦. Hence the input tensor of this pixel is
(352.3, 354.59, 15.77, 0.23, 39.28, 240.97).
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The output differs between the two models. The binary model calculates whether a pixel
is shaded or not, whereas the shadow depth model tries to predict the shadow depth, or
more precisely the degree of shading of objects with consideration of the shadow depth in a
pixel. The degree of shading is divided into eleven classes, where the first class indicates that
0% of the object surface is shaded, the second class indicates that 10% of the object surface
is shaded, the third class indicates that 20% of the object surface is shaded, and so on. This
is therefore a multi-class net.

For the training of the networks, training areas in Styria (Austria) were defined and
divided into 64 × 64 tiles, where one pixel corresponds to 1m2. While the elevation and
terrain information for the input layer were derived from the digital service model, a random
day of the year 2022 at 12 o’clock was chosen for each tile to determine the position of the
sun, from which the azimuth and the angle of the sun were calculated. A total of 449152 tiles
were generated and further augmented, i.e., rotated 90, 180 and 270 degrees to increase the
size of training data. This dataset was split into 66% training tiles, whereas the rest serve as
validation tiles. For each of these tiles, the ground truth was calculated to train the nets.
For this purpose, a QGIS Terrain Shading plugin was used to calculate the shadow depth
over the DSM [5]. The next step is to transform the result of the QGIS plugin to make it
comparable to the output of the nets. For the binary model, a pixel is not shaded, i.e. it
has the value 0, if the shadow depth is zero, otherwise its value is 1. For the multi-class net,
the degree of shading of an object pshaded, if there is any shading, is calculated from the
depth of shading dshadow ∈ R− and the object height, the difference between surface height
hsurface ∈ R+ and ground level hground ∈ R+.

pshaded =


0 , dshadow = 0 and hsurface − hground = 0
1 , dshadow < 0 and hsurface − hground = 0
⌊ dshadow

hsurface−hground
⌉ , else

(1)

Hence, pshadow ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} which is equivalent to eleven
categories.
In each training step, different evaluation metrics were applied to the current results to check
whether the neural net is learning. One of those is the Jaccard index [6], also known as
intersection over union, and the other one is the Dice score [7]

J (A, B) = |A ∩ B|
|A ∪ B|

= |A ∩ B|
|A| + |B| − |A ∩ B|

, (2)

C(A, B) = 2|A ∩ B|
|A| + |B|

, (3)

where A and B are any two batches of tiles to be compared. Both scores determine the
similarities of sets and are common [10, 15].

3 Results

3.1 Binary Model
As already discussed in Section 2 the binary model predicts whether a pixel is shadowed or
not. To measure the learning behaviour of the network, we will use the Jaccard index (IoU),
Dice Score and Accuracy, and then perform a threshold analysis.

GISc ience 2023
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Figure 1 The left figure shows the training metrics of the binary model. Due to early stop
algorithm, training was cancelled after 8 epochs. The right figure shows the IoU, Dice, Accuracy
and AUROC [3] for validation dataset at different thresholds, where the vertical line indicates the
threshold with the best results.

Figure 2 The top left figure shows the original shadowing computed with the QGIS plugin.
The top right figure shows the shading predicted by the binary model with threshold 0.2. The
bottom left figure shows the shading predicted by the binary model with threshold 0.35. The
bottom right figure shows the shading predicted by the binary model with threshold 0.5.

The model learning is basically achieved in the first 4 epochs. This is depicted in the left
of Figure 1, and can be explained with the number of tiles used for training and the property
of the U-Net to learn quickly with a small data set. One may observe in the right of Figure
1, the best results are obtained when the threshold is chosen at 0.35. If the choice is too low,
the transitions can also be predicted as shaded. It is also remarkable that in this particular
study the MSE-Loss performs best. In the literature[14][9], the cross-entropy loss is mostly
used.
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3.2 Shadow Depth Model
This model is more complex than the binary model, due to the nature of a multi-class net.
Generally, it is expected that premature termination will not occur in this case, which can
be also seen in Figure 3. Figure 4 shows that this net accurately calculates the shaded/non-
shaded areas, but the transition between them is not sharp as in reality, which is why the
result looks blurred. This can be remedied by an additional algorithm that sharpens the
results.

Figure 3 The figure shows the training metrics of the shadow depth model for 40 epochs. Unlike
the binary model, the accuracy increases over the epochs so that the training was not terminated
earlier.

Figure 4 The left figure shows the original shadowing computed with the QGIS plugin. The
right figure shows the shading predicted by the shadow depth model.

4 Conclusion

In this paper, the calculation of shading by a U-Net with residual layers was discussed and
trained using selected test areas in Styria. As the results have shown, satisfactory values for
the metrics, especially for accuracy, were obtained for both the binary net and the shadow
depth net. This is an improvement over the current state of the art because there are
currently no approaches that can predict the non-binary depth of the shadow. However, there
are still a number of questions that are still open and are in need of further investigation.
For example, the nets perform best with MSE loss as the training loss. However, the present
state of affairs provides satisfactory results that may serve for further studies. Another aspect
that needs to be further investigated and developed is the calculation time. Contrary to the
literature, the approach shown is a factor of ten slower in the calculation of 10000 tiles than
the QGIS plug-in with the traditional method.
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In summary, with the approach of a U-Net as a basis for calculating the shadow depth, a
suitable basis for further developments could be created.
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Abstract
Extreme heat affects communities across the globe and is likely to increase as the climate changes;
however, its consequences are not uniform. Geographically weighted regression is a useful modeling
effort to understand the spatial linkage between various factors to heat-related casualty and supports
decision-making in the spatial context. Still, as every complex spatial modeling approach, it is
also bounded by uncertainty. Understanding model uncertainty and how this uncertainty is related
to model input can be revealed by sensitivity analysis. In this study, we applied a spatial global
sensitivity analysis to assess the model dynamics to address which input factors need to be prioritized
in decision-making. A visual representation of the model’s sensitivity and the spatial pattern of factor
influence is an important step toward establishing a robust confidence mechanism for understanding
heat vulnerability and supporting policy-making.
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1 Introduction and Background

Extreme heat causes injuries and fatalities in many regions of the U.S. Southwest region,
especially during the summer months [12] [13]. Furthermore, extreme weather events like
heat waves will likely increase with climate change [21]. However, studies have found that
communities are not impacted the same by these extreme events [2] [9] as some communities
are more vulnerable than others [9] [10].

There is a combination of factors that influence heat vulnerability, such as social (e.g., age
and isolation[2][14][19]), economic (e.g., income and poverty[15]), health (e.g., pre-existing or
chronic health conditions [15]), and environmental (e.g., lack of tree canopies or temperature
[15]) factors. Scholars used these factors and applied various methods to measure heat
vulnerability. Some of these methods were composite where the contributing factors are
combined into an index [4][11][24] or regression which explains the relationship between
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independent and dependent variables [3],[16], or both [8]. Regression analysis draws a more
reliable picture in terms of variables’ influence on heat vulnerability compared to composite
methods; however, the traditional regression methods do not address the spatial configuration
of the factors, which can be solved by employing geographically weighted regression.

Despite the effort to address heat vulnerability, none of these methods are immune to
uncertainty; as the presence and importance of uncertainty in spatial data is not new in
data collection or GIS. Moreover, how the uncertainty is intertwined with vulnerability
representation and its disproportionate impact on marginalized populations is an important
dimension that is not addressed enough[6]. In the realm of policy decision-making models,
when we contemplate the renowned aphorism of George Box, “all models are wrong but some
are useful” in conjunction with Franklin’s [6] observation “poor data often disadvantages the
disadvantaged”’ understanding uncertainty becomes more crucial in informed decisions and
resource allocation. Therefore, in this study, we are interested in identifying how uncertainty
in heat vulnerability related factors influences the prediction of health casualty. This research
aims to advance the field of vulnerability to natural hazards and GIS by employing geographic
weighted regression analysis coupled with sensitivity analysis.

2 Methodology

2.1 Data Acquisition and Variable Reduction

Our analysis area was the U.S. Southwest region, including Arizona, New Mexico, Texas, and
Oklahoma states. The unit of analysis was chosen as the county level due to the availability
of the data.

Our dataset was selected based on a thorough literature review of previous studies in the
field and data availability. Our study combined social, economic, health, and environmental
data as independent variables, county population (population 2015) and number of heat
events as control variables, and casualty (fatalities and injuries) as the dependent variable.
We used social and economic data from the 2015 American Community Survey 5-Year (ACS5),
health data from both the ACS5 (2015) and the Global Health Exchange Data (GHDx)
from 2014 and 2015, and environmental data from the National Oceanic and Atmospheric
Administration (NOAA) from 2016 to 2020 and the Multi-Resolution Land Characteristics
Consortium (MRLC) from 2016. Mortality and injury data were obtained from SHELDUS
from 2016 to 2020. The initial dataset included 24 social, economic, health, and environmental
variables.

We first tested the correlation between independent and dependent variables to reduce the
number of independent variables. We then dropped independent variables whose relationship
with the dependent variable was not statistically significant (p − values > 0.05). We also
conducted a correlation matrix including all remaining independent variables and dropped
one of the independent variables with a high correlation (> 0.7). Finally, we removed
variables that had high spatial correlation. From our initial 24 independent variables, we
ended up with 9 independent variables, which are elderly population, disabled population,
black population, population with no car, unemployed population, number of months with a
temperature higher than 38◦C, and impervious surface and two control variables.

2.2 Geographically Weighted Regression for Heat Vulnerability

To understand the spatial relation between independent variables to dependent variables,
we applied geographically weighted regression (GWR). GWR has been widely used over a
decade to model the potential spatially varying relationships [1][5][23]. The model outcome
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yi(health-related casualty) can be expressed by

yi = β0(ui, vi) +
∑

k

βk(ui, vi)xik + ϵi (1)

where yi represents the dependent variable, k are independent variables, β is the parameter
to be estimated, ϵ is the error term. (ui, vi) denotes the coordinates of the ith feature and
k(ui, vi) is a realization of the continuous function k(u, v) at feature i.

2.3 Global Sensitivity Analysis for Heat Vulnerability GWR
Global Sensitivity analysis (GSA) is a forward looking approach to modeling to understand
the linear (individual) and nonlinear (interaction) relationship between input variables and
the output of the model [18]. In this study, since we are focusing on GWR’s sensitivity,
our focus is on which independent variable(s) influence most the prediction of causality.
GSA starts with generating random samples which are used to replicate the behavior of
the input set when the model is run multiple times. These sample sets mimic the original
probability distribution function (pdf) of the input variables. Therefore, we conducted a
systematic analysis to acquire the pdf of each variable before generating the samples. Due
to limited information about some factors’ priori distribution, GSA is only conducted for 7
variables (disability, elderly, impervious surface, black population, population with no car,
unemployed, 2015 county population), whereas all 9 are included in the GWR. Once the pdfs
are determined, the following framework is applied:
1. For each parameter, we generated 2048 random variables. This number is based on

the experimental example set N (27) and number of model inputs D(7), which yields
N(2D + 2) = 2048 samples.

2. Prepare the sample set for GWR input using python based pandas library [22]
3. Run GWR model 2048 times on county scale with randomly generated sample set of

independent variables
4. Exporting GWR output for GSA
5. Implementing GSA using SAlib package in python [20] [7]

3 Results and Discussion

The result of the GSA has been visualized as the most influential variable for the individual
(Figure 1) and interaction effects’ (Figure 2) influences in terms of the model’s explanatory
power for each county. These maps represent variables contributing the most to the model’s
variability or uncertainty. For each input variable that is fed into GSA, the analysis produces
a unique GSA map. In order to reduce the visual load of the GSA output ( 7 individual and
7 interaction effects map), self-organizing map-based exploratory analysis [17] has been used
where the neural networks evaluate the similarities among indices per future and results in
clusters where patterns are dominant. While Figure 1 shows us where individual variances of
each variable affect the heat-related casualty uncertainty, Figure 2 depicts the interaction
effect influence on the model uncertainty. For example, when we look at Arizona State, GWR
output is most sensitive to any small variation in no car variable (observed in 3 counties)
when each independent variable is singly treated (Figure 3). However, as the spatial complex
nature of these variables plays an important role in GWR prediction, we can see an increase
in disability and elderly variables when the interaction among parameters is considered.
This means individual effects will not be enough to see the whole picture when we try to
understand model dependencies. Also, as we can see, the influential variables vary among
the four states. When heat vulnerability modeling efforts are in action, each state might
prioritize its resources depending on how these variables are distributed.
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Figure 1 Most influential factors to the model uncertainty based on Individual Effects of Input
Variables to Predicted Heat-related Casualty.

Figure 2 Most influential factors to the model uncertainty based on Interaction Effects of Input
Variables to Predicted Heat-related Casualty.
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Figure 3 Frequency distribution of individual effect dominant factors per state.

4 Conclusion and Future Work

The geographic focus is crucial for equitable risk planning, resilience strategies, and response
to heat risk. Moreover, it can be used to communicate results and support decision-makers.
Data acquisition is the most time and effort-consuming part of the spatial decision-making
process; but crucial as the interaction of variables produces different results. Considering
the unavoidable uncertainty, it is important to know the models’ weaknesses and strengths
and the spatial variability of the results so that the resource allocation can be optimum.
Moreover, heat vulnerabilities indicated by dominant factors depicted in Figures 1 and 2, can
help decision makers and modelers to prioritizing resources. This effort will help us identify
the influential variables and where they cluster as an initial step and can be followed by the
involvement and insight of the communities which need to be a part of the solution.
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Abstract
Change detection is a well-established process of detaining spatial and temporal changes of entities
between two or more timesteps. Current advancements in digital map processing offer vast new
sources of multitemporal geodata. As the temporal aspect gains complexity, the dismantling of
detected changes on a pixel-based scale becomes a costly undertaking. In efforts to establish and
preserve the evolution of detected changes in long time series, this paper presents a method that
allows the decomposition of pixel evolution vectors into three dimensions of change, described as
directed change, change variability, and change magnitude. The three dimensions of change compile
to complex change analytics per individual pixels and offer a multi-faceted analysis of landscape
changes on an ordinal scale. Finally, the integration of class confidence from learned uncertainty
estimates illustrates the avenue to include uncertainty into the here presented change analytics, and
the three dimensions of change are visualized in complex change maps.
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1 Introduction

Change detection (CD) is the process of capturing the spatial and temporal changes of
individual pixels, objects, or larger phenomena. Requiring a minimum of two timesteps,
the most common types of change detection include pixel-based (PBCD) and object-based
change detection (OBCD). These differ in that PBCD is focused on pixel-wise changes and
usually on the spectral value of the individual pixel with no spatial relevance to its neighbors
[7], and OBCD on the object represented by the pixels and grouping/segmenting the pixels
into clusters of their respective categories [1]. Within the very mature field of CD, many
reviews have been published to organize the different CD types [1, 7] and the vast methods
and techniques used to detect changes within the various categories [2]. Current advances in
CD are mostly built on existing foundations and are focused on the development of automatic
change detection algorithms tailored to specific topics and based on complex neural networks
or other deep learning algorithms [5].
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A large application field of CD is in detecting land use and land cover (LULC) changes
[4, 13], including habitat changes in riverine environments [11], the topic of the here presented
study. Both PBCD and OBCD are used in LULC, mostly identifying changes between only
two or three timesteps and focused on satellite data or aerial imagery [4, 13]. While some
studies exist that incorporate multiple timesteps, such as in Tonolla et al. [11], there is a
general lack in CD application with a large temporal depth of more than three timesteps,
specifically in applying CD methods between individual timesteps of such large multitemporal
data. In addition, the majority of CD methods are focused on remote sensing based data
which reflect changes only since the 1940s and may already represent disrupted environments.
Historical maps offer a unique perspective on pre-digital and perhaps pre-modified times,
yet the application of CD methods on historical map sources is poorly represented within
the literature with only few scattered examples [8]. The establishment and preservation of
CD in longer time series is a costly undertaking and hence methods analytically exploiting
such data are rarely seen. However, efforts in conceptualizing PBCD are well underway as
space-time relationships are at the core of GIS research [3]. With rapid advancements in
utilizing machine learning based digital map processing [9], more extensive sources of time
series become available, offering new opportunities for exploiting such data, as shown in this
study.

Visualization of the CD between two or three timesteps are shown in several studies in
forms of change maps. These change maps of very few timesteps visualize changes on a
binary scale of either ‘change’ or ‘no change’ [5] or show separate maps of the conditions
per timestep [4, 13]. Visualization of larger temporal extent tend to show the change event
of largest magnitude of a pixel [6], resulting in a rather static perspective of the observed
changes. The visualization approaches of CD within the literature poorly represent the
potentially very rich dynamic nature of the changes through time.

This paper presents a novel approach for the quantitative analysis of rich raster data
time series, allowing an in depth analysis of detailed change evolution vectors per individual
pixel. The experimental part of the paper illustrates the methods for multitemporal PBCD
from Switzerland’s historical maps. The pixel-wise change analytics incorporate 6 timesteps
between 1876-1946. Change is decomposed into three dimensions that are visualized in three
separate maps. A pixel flow chart illustrates changes between landuse classes. In addition,
the change analytics also incorporate class confidence (learned uncertainty) per pixel, as
model-inherent uncertainty is introduced in the extraction process from historical maps.

2 Methods

Fig. 1 illustrates the conceptual workflow from the historical map inputs to the pixel-wise
change analytics. The components of the workflow are described in detail below.

Data pre-processing. The data inputs used in this study are classified pixel clusters
extracted from the historical Siegfried map series of Switzerland. Based on training data,
hydrological features (i.e. rivers, wetlands) are defined and grouped by certain criteria of
their appearance on the maps [10] for extraction. The pixels representing these features are
then extracted from the maps by deep learning algorithms [12] which output predictions in
form of classified pixel clusters (Fig. 1a). A type of model-inherent uncertainty based on
learned confidence estimates (LCE) are an additional output from the extraction process
(see [12] for details) and the basis to determine class confidence/ uncertainty in this study.
For further application in terms of habitat changes in ecohydrological environments, the
predictions are reclassified based on a hierarchical classification scheme from aquatic to
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Figure 1 Conceptual workflow for multi-temporal change detection and derivation of pixel-wise
change analytics (t = time).

terrestrial classes to determine their directed transition between the class types (Fig. 1b).
The terrestrial class 6 presents any pixel unclassified from the predictions. Although the
methods are presented here in the context of habitat succession, they are applicable for any
geodata time series with attributes on an ordinal scale.

Integration of model-inherent uncertainty. Learned confidence estimates (LCE) show
class uncertainty per pixel of the four hydrological feature classes of rivers, wetlands, lakes,
and streams. Each pixel thus has 4 confidence values between 0-1 which depicts the models’
uncertainty of that pixels predicted class. To integrate the LCE, the classified pixels in the
predictions and the uncertainty estimates of the class identified in the associated prediction,
hereafter class confidence, are extracted by a conditional evaluation. For each pixel in each
timestep, the associated class confidence is then represented in the change analytics. Based
on the available timesteps, the mean of the class confidence per pixel is calculated to depict
the average multitemporal class confidence per pixel from t1 → tn (Fig. 1c). Note, LCE were
available only for the first four timesteps. Thus, the represented class confidence of the time
series are based on the average of the first four timesteps.

Integration of multitemporal information. For computational purposes and to avoid
large amounts of terrestrial pixels, a shell of all possible multitemporal combinations was
derived. The shell can be described as a sparsely populated array which occupies a pixel
space when one classified pixel within any of the timesteps from t1 → tn occupies that
pixel space, either from the predictions or from the LCE (Fig. 1d). Based on their spatial
distribution, the information of the reclassified pixels were joined on to the shell. From a
multitemporal perspective, not all pixel spaces have an associated class within all timesteps as
the hydrological features represented by the classes change through time. Thus, pixel-spaces
with no associated class in a given timestep are assigned the terrestrial class. The new
dataset then holds information on the class of each pixel-space through time (Fig. 1e).

Change analytics and change vector analysis. A common CD method is the change
vector analysis which can be described as the difference between the spectral pixel vector
of two images [13]. The method is adapted and modified to identify the change direction
and magnitude of class memberships per pixel in a multitemporal dataset with 6 timesteps
(Fig. 1f). On an ordinal scale between aquatic and terrestrial, the directed change between
two timesteps is evaluated as DC =

∑i=1
n=1

xi+1−xi

|x1+1−xi| , where DC is the change vector and x
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Figure 2 Visualization of the three dimensions of change in the pixel-wise change analytics,
applied on a region of the Aare river in Switzerland. The background shows the 1876 Siegfried map
before channelization. The red outline in (c) highlights a section for which the pixel flow paths
through time are shown in Fig.3. Data source swisstopo.ch.

is a pixel of timestep i. In this equation, the difference between xi+1 and xi is divided by
the absolute value of that difference. This results in a value of +1 if xi+1 is greater than
xi (i.e., a change towards terrestrial) and -1 if xi+1 is less than xi (i.e., a change towards
aquatic). The expression evaluates to 0 if there is no change. The sum of the expression
from t1 → tn then results in a change vector presenting multitemporal directed changes, the
first dimension of the here presented change analytics.

The second dimension includes an evaluation of change magnitude (CM) of all changes
which occurred between consecutive timesteps, described by CM =

∑i=1
n=1 |xi+1 − xi| > 0.

For each timestep i, the expression |xi+1 − xi| > 0 evaluates to true if there was a class
change in x between i and i+1, and false if otherwise. The absolute values ensure a positive
expression regardless of the direction of change.

Lastly, true changes with direction are differentiated from change variability, where
frequent changes between individual classes occur with no clear direction. This difference
is evaluated by CV ar = [CM ] − [|DC|] and depicts the third dimension of change. As
exemplified in pixel (i) and (ii) in Figure 1(f), large differences between CM and |DC|
indicate that the class membership of the particular pixel frequently fluctuated between
specific classes, whereas small to no differences indicate true directional change of the class
towards aquatic or terrestrial. The change analytics per pixel can then be visualized by
the calculated difference to show pixels with multitemporal variability. Where CV ar > 0,
the DC values are visualized to show the relative magnitude and direction of pixels that
observed multitemporal change.

3 Results and Discussion

The detailed change analytics per individual pixel showed regions of directional change as
well as regions of variability over the investigated time series of 1876 to 1946, with a timestep
roughly every 14 years. The presented methods allowed the decomposition of pixel evolution
vectors into three dimensions of change. Fig. 2 visualizes these dimensions of change for a
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Table 1 Areas of directed change and change variability with averaged class confidence.

(1.25m/pixel) Area (m2) full map sheet Average confidence
High variability 94’139 0.65
Low variability 2’700’396 0.84
Change aquatic 881’232 0.93
Change terrestrial 2’294’343 0.91

section of the map sheet under study. Fig. 2(a) depicts the dimension of directed change
towards terrestrial or aquatic classes with the respective magnitude, regions where no changes
occurred are shown in white. Fig. 2(b) illustrates change variability, the change dimension
where pixels observed frequent alternations between specific classes (high). Some (low)
change variability is observed when the classes alternate at least twice over the time series,
differences of three (diff=3) or change variability higher than four variations (diff>4) where
not observed. Fig. 2(c) visualizes the change magnitude observed per pixel throughout the
time series, the third dimension of change.

Table 1 summarizes the areas which observed directed change and change variability, with
the averaged multitemporal class confidence per pixel from the change analytics, for the map
sheet TA 124 under study. The results show that the majority of pixels changed towards
the terrestrial class or observed low variability, meaning that class alternations were only
observed once or twice in those pixels. The class confidence was relatively low for regions
that observed high variability, indicating that high variability in class changes also introduces
larger uncertainties in class confidence as the class membership defined per timestep are less
certain and could likely be identified as other classes in the specific timestep.

The change analytics enabled us to quantify the path of changes of each individual pixel.
With six class types and 6 timesteps, over 1000 combinations of class changes were observed
within the change analytics. Figure 3 illustrates the observed paths of individual pixels and
their classes through time. The region of path combinations shown is outlined in red in Fig.
2c. Overall, the change history shows that terrestrial and lake classes steadily increased over
time. Rivers and streams overall decreased with small increases between individual timesteps
while gravel deposits and islands steadily decreased. Wetlands varied throughout the time
series but generally increased over time.

4 Conclusion and Outlook

In this article, we proposed a novel approach to investigate changes in raster based data
time series, generating multi-dimensional change analytics per individual pixels. The here
presented methods allowed the decomposition of pixel evolution vectors into three dimensions

Figure 3 Flow paths of pixels and their observed classes through time (R package parcats).
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of change: directed change, change variability, and change magnitude. The change analytics
can be visualized by complex change maps depicting the three dimensions of change observed
per pixel-space. With a unique application of PBCD on historical map sources, the change
analytics included 6 timesteps and incorporated class confidence per pixel. Overall, the
here presented methods offer differentiated insights in complex change dynamics, and do so
considering uncertainty.

In terms of future work, we aim to incorporate the LCE for the remaining timesteps and,
instead of viewing the averaged multitemporal class confidence, integrate the class confidence
per class type and timestep into the pixel level change analytics. In addition, to make further
use of the detail gained by the change histories, we intend to incorporate overall relative
change for DC and overall absolute change for CM to capture the absolute magnitude of
overall observed changes. Further timesteps and other map sheets will be investigated to
test the robustness of the CD approach. In general, the change analytics described in this
paper and its visualization of complex spatio-temporal data has great application potential
to other fields detecting changes in multitemporal time series.
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Abstract
Understanding the movements of travelers is essential for sustainable city planning, and unique iden-
tifiers from wireless network access points or smart card check-ins provide the necessary information
to count and track individuals as they move between locations. Nevertheless, it is challenging to
deal with such uniquely identifying data in a way that does not violate the privacy of individuals.
Even though several protection techniques have been proposed, the data they produce can often
still be used to track down specific individuals when combined with other external information. To
address this issue, we use a novel method based on encrypted Bloom filters. These probabilistic
data structures are used to represent sets while preserving privacy under strong cryptographic
guarantees. In our setup, encrypted Bloom filters offer statistical counts of travelers as the only
accessible information. However, the probabilistic nature of Bloom filters may lead to undercounting
or overcounting of travelers, affecting accuracy. We explain our privacy-preserving method and
examine the accuracy of counting the number of travelers as they move between locations. To
accomplish this, we used a simulated subway dataset. The results indicate that it is possible to
achieve highly accurate counting while ensuring that data cannot be used to trace and identify an
individual.
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1 Introduction

As urbanization continues to rise, the usage of public transportation modes is increasing.
To implement policies that increase the sustainability of urban transportation systems, a
deeper understanding of travel patterns is essential. Traditional surveys and travel diaries
require significant effort and provide only snapshots [2]. Various more recent technologies
allow automated counting, e.g., Bluetooth and Wi-Fi detection systems and automated
fare collection systems. Information gathered by these systems has proved to be helpful in
improving security, physical activity, traffic safety, public transportation, communication
infrastructure [7, 5], and the overall quality of life for citizens.
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However, counting travelers at specific locations by using smart-card IDs allows tracking
their movements between locations. It is, therefore, a sensitive issue, especially if it allows
monitoring travelers over an extended period of time: the trade-off for valuable insights into
movement patterns is an infringement upon their privacy. It has been shown that a few
points are enough to identify individual travelers with simple anonymization and persistent
identifiers [4].

To prevent such situations, various regulations have been adopted, including Europe’s
General Data Protection Regulation (GDPR) [6], which requires parties to obtain explicit
consent before collecting and using personal information. Obtaining explicit consent may
reduce the completeness of the data collection, which can introduce bias and reduce the
representativeness of the results. Even if consent is granted, individuals must trust that their
data will be used responsibly and not misused for other purposes.

For these reasons, we challenge the feasibility of robust privacy protection within a system
that relies on identifying travelers to count them. Instead, we propose an alternative system
that offers statistical counts of travelers as the only accessible information. To implement
such a system, we propose to use Bloom filters, which are probabilistic data structures that
support set operations, in combination with homomorphic encryption, which is a type of
encryption that allows performing operations on encrypted data. We envision a system
that provides reliable counts of travelers moving between locations as the only retrievable
information [10].

In this paper, we explain and briefly evaluate our privacy-preserving method for its
accuracy in counting travelers moving between locations, with the aim to show its principal
working. As a case study, we consider a subway network where travelers utilize smart-card
technology to check in and out of the transportation system. To accomplish this, we use a
synthetic dataset that is accurate in representing the characteristics of a real-world subway
dataset. The results demonstrate the effective combination of Bloom filters and homomorphic
encryption in accurately counting travelers between locations while preserving individual
privacy. This finding paves the way for expanding the analysis to include multiple locations
within the subway network. Our research carries significant implications for enhancing public
transportation efficiency and safeguarding user privacy.

2 System model

Our example proof-of-concept assumes a subway network with an automatic fare collection
system. Subway networks usually consist of lines that connect specific origin and destination
stations. For each station A, we assume there is a set of nA scanners SA = {sA

1 , ..., sA
nA

},
which are used by travelers to check in and out. In our model, we trust the sensors, but
not the centralized server. For this reason, we first let a sensor collect detections to then
send this collection in encrypted form to the server. The time during which detections are
collected and aggregated before sending them to the server is called an epoch. Typically,
an epoch lasts 5 minutes. As we will discuss in detail below, the server can operate on the
encrypted collections of detections, but cannot reconstruct individual detections themselves.

A scanner s ∈ SA reads a card’s unique identifier cid. Each card reading belongs to an
epoch e ∈ E corresponding to its timestamp t, such that tstart(e) ≤ t < tend(e), where tstart

and tend mark the beginning and the end of an epoch and E denotes the set of all such
epochs. A detection is thus a triplet (cid, s, e), representing a card uniquely identified by
its identifier cid, read by scanner s during epoch e. By Ds,e, we denote the set containing
all the identifiers detected by a scanner s during an epoch e. Let DA

e denote the set of all
identifiers detected by any scanner at A during epoch e: DA

e = ∪s∈SA
Ds,e.
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Using collections of detections provides a powerful mechanism for counting travelers. One
simple example is that the size of a set Ds,e indicates the number of travelers who passed the
scanner s during the epoch e. More interestingly, for two different stations, the size of the
set DA

e1
∩ DB

e2
represents the number of travelers who were first detected at A during epoch

e1 and subsequently detected at B during epoch e2, where e2 occurs after e1.

3 Method

3.1 Bloom filter
The problem with using sets of detections is that they still contain the card identifiers
for anyone to see who has access to those sets. This issue can be addressed by using a
representation for sets, called Bloom filters [3]. A Bloom filter has the property that it
allows only for membership tests. In other words, the only way to discover which card
identifier is stored, is to go over the entire list of possible card identifiers and check for each
one of them which identifier the membership tests succeed. Although this already poses a
potentially tremendous computational burden for discovering detected identifiers, it is not
enough to prevent finding identifiers. To understand how encryption, combined with Bloom
filters, can prevent such a discovery, we must first explain what they are.

A Bloom filter is implemented as a binary vector of m bits, initially all set to zero. Adding
an element to the set involves hashing it with k different hash functions, each returning a
position in the vector. Those bits are then set to 1. To determine whether an element is in
the set, the same hash functions are applied, and the corresponding bits in the vector are
checked. When each bit is also 1, the element is considered to be in the set. An important
observation is that there is a chance that two different elements will see exactly the same bits
being set to 1. As a consequence, a membership test may return a false positive: the element
for which the test is computed is factually not in the set represented by the Bloom filter. It
is for this reason that Bloom filters are said to be probabilistic data structures. Given the
maximum acceptable probability p for false positives, along with the desired number n of
elements to be stored, one can compute the minimal length m of a Bloom filter, as well as
the minimal number k of hash functions to use: m = − n·ln p

(ln 2)2 and k = m
n · ln 2.

The size of the set represented by a Bloom filter (i.e., its cardinality c) can be estimated
when knowing only k, m, and the number t of bits that are set to 1 [8]:

c = −m

k
ln

(
1 − t

m

)
(1)

In addition to membership testing, Bloom filters also support union and intersection
operations. An intersection of two sets DA and DB can be done by taking their respective
Bloom filter representations and conducting a bitwise AND operation. To illustrate, if A is
represented by [0, 1, 1, 0, 1] and B by [1, 1, 1, 0, 0], then A ∩ B is represented by [0, 1, 1, 0, 0].
A union is computed through a bitwise OR operation. (Note that for realistic representations
of sets, Bloom filters generally have lengths of 1000s of bits.) Whereas unions do not affect
the probability of false detections, intersections do. This also means that estimating the size
of an intersection when using Bloom filters may easily see deviations. We ran extensive tests
and encountered estimates that were 15% off the real size. A more accurate estimation for
two intersecting sets is provided by [8], yet no general estimation is known for more than two
intersecting sets. For this paper, we will use the simple approximation given by Equation 1.

Ignoring encryption for the moment, detections at a scanner s are converted into Bloom
filters and sent by s to the server at the end of each epoch. To answer queries, the server may
do a series of unions and intersections on various Bloom filters, as we explained in our simple
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example above. The result is a Bloom filter representing the detections related to the query.
At that point, the server could return the estimated cardinality of the set. Unfortunately, the
server itself can still, with some computational effort, discover the detected card identifiers.
As we mentioned, in our system model, we do not trust the server. This is where encryption
comes into play.

3.2 Homomorphic Encryption
To prevent the server from discovering identifiers, Bloom filters must be combined with
encryption schemes. Homomorphic encryption [9] is a specialized form of encryption that
enables mathematical operations to be conducted directly on encrypted data without the
need for decryption. The results of these operations are also encrypted, and the output is
the same as if the operations had been conducted on unencrypted data.

The following procedure is now followed using homomorphic encryption. Suppose a user
U is interested in knowing how many travelers moved from A to B. To that end, she passes
an encryption key to the server, which is then used to encrypt all Bloom filters from the
moment the key is available (note that this means that a user cannot issue queries that relate
to the past, i.e., the time before they made the encryption key available). Also note that the
user holds the decryption key, and is thus the only entity who can decrypt the corresponding
encrypted Bloom filters. Neither the scanners nor the server can decrypt those Bloom filters.

The server now operates on bitwise encrypted Bloom filters and produces a final result,
say an encrypted Bloom filter BF representing a set R. By simply adding the entries of BF ,
it can produce an (encrypted) version t∗ of t, the number of bits that have been set to 1.
This value, along with k and m can then be handed over to the user U , who can decrypt
t∗ and compute the cardinality c. The server can also hand out BF to the user, but not
after having shuffled the entries (otherwise, the user could still decrypt BF and discover
detections). Shuffling keeps the same number of (encrypted) bits that have been set to 1,
but a shuffled version of BF has no relationship to R anymore.

4 Results and Discussion

In this section, to get a clear understanding of the effects of preserving privacy, we conduct
an experiment by using a synthetic dataset. To determine the accuracy of the responses, we
compare the statistical counts generated by our model with those from our dataset. For the
hashing part, we choose MurmurHash3 [1], which is highly efficient. The estimation formula
used by Bloom filters provides only an approximation of the number of elements likely to
be present in the original set, rather than an exact count. For this reason alone, we expect
to see deviations from the ground truth. In addition, taking intersections also affects the
probability of having false positives; which will generally lead to overestimations of the size.
We express the accuracy of the estimated count c to the real count ct as:

Accuracy = max
(

1 − |c − ct|
ct

, 0
)

(2)

To simulate real-world subway data, we generate card identifiers from a uniform distribu-
tion. As is common practice, real identifiers are often processed using a cryptographic hash
function before being used for further analysis, and our use of uniform random identifiers
similarly mimics this step. As an example, we ask ourselves how many travelers move from
one station to another. Let sA

1 , . . . , sA
nA

be the sensors at station A and sB
1 , . . . , sB

nB
the

sensors at station B, The answer is then |
⋃

ed

⋃
ea

DA
ed

∩ DB
ea

|, where we assume that ed ◁ ea.
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In other words, we take all combinations of departure epoch at A and later arrival epoch
at B, and consider the detections from all sensors at A, and intersect that with the set of
detections from all sensors at B.

To see the effects of taking intersections as unions, we count in two different ways. First,
we simply compute the size of the union of intersections, as just mentioned. Second, we take
a look at any combination of departure epoch ed and (possible) arrival epoch ea, as well as
all pairs of sensors sA

i and sB
j . Using Bloom filter representations, we compute the size of the

intersection DA
ed

∩ DB
ea

, and subsequently add those sizes for all combinations of departure
and arrival epochs:

∑
ed

∑
ea

|DA
ed

∩ DB
ea

|.

Table 1 Comparison of the accuracy of estimated counts with ground truth.

Ground truth 100 1000 10000 100000
Estimated count first method 96 1006 10001 99933
Accuracy first method 96.00% 99.40% 99.99% 99.93%
Estimated count second method 97 990 10081 107670
Accuracy second method 97.00% 99.00% 99.19% 92.33%

We conducted four experiments using 100, 1000, 10000, and 100000 trips distributed over
a single day (24h). For each experiment, we set the epoch length as 5 minutes (resulting
in 288 epochs), fixed p at 0.001, and selected n to be equal to the corresponding number
of trips in each experiment. We used optimal settings for m and k, given n and p. We ran
each experiment 50 times. In both counting methods we perform a bitwise intersection with
all possible arrival epochs for each departure epoch. The distinction between the counting
methods takes into effect when performing intersections.

Table 1 presents the results of our experiments. The table displays the ground truth, as
well as the estimated counts obtained using the two different counting methods from our
proposed approach, along with the corresponding accuracy values. The results show that the
difference between the counting methods becomes more pronounced as the number of trips
increases. This is mainly because as epochs become more crowded, i.e., when we have more
detections in a single epoch, the probability of false positives also increases when intersecting
two epochs. The impact of false positives on the counting accuracy differs between the two
methods. The first method yields an estimated count closer to the ground truth because it
also considers the union of intersections. Taking the union ensures that false positives inside
all intersections are counted only once because they are consolidated through the union
operation at the end. In contrast, the second counting method estimates the size immediately
after the intersection between each departure epoch at station A and each arrival epoch at
station B. The estimated count after each intersection also includes false positives between
the corresponding epochs. Therefore, the total count obtained at the end of this method is
the sum of the counts obtained after each intersection, which includes false positives and
leads to overestimating the total number of travelers. The first method’s estimated count of
travelers for all different numbers of trips is in close agreement with the actual count and
consistently achieves high accuracy.

The difference in accuracies comes from the way we use Bloom filters, and is seen to be
dependent on the query. Further research is needed to see how accuracies depend on different
types of queries.

The current setup and implementation allow us to run queries involving (tens and hundreds
of) thousands of travelers, often within just a few minutes, even with more intricate queries.
When considering entire networks, many queries can be subdivided into independent parts,
making them excellent candidates for processing in parallel.
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5 Conclusion

In this paper, we have used a privacy-preserving method for counting travelers moving in
public transport systems through encrypted Bloom filters. By using encrypted Bloom filters,
we can count travelers moving between stations without revealing any information about who
made these trips. Further, the information about who made which travels is unrecoverable
and hidden for all components and parties in the system: the sensors, the server, and the
client interested in the counts. The downside is that the method decreases the accuracy
of counting. We evaluate the accuracy of our method on a synthetic subway dataset. We
show that the loss of accuracy can be minimized and that it is possible to achieve highly
accurate counting while ensuring that data cannot be used to trace back to an individual.
An important observation is that the attainable accuracy is dependent on how counting takes
place. If we count too soon to aggregate counts later on, we may fail to compensate for false
counting later in the process. In other words, the accuracy of our method is dependent on
the query and when counting and aggregation actually take place.

Although we did not show in this paper, our method is not limited to counting travelers
moving between only two locations. The proposed method has the capability to handle more
complex queries, such as counting the number of travelers moving between multiple locations.
As a next step, we plan to investigate how more complex queries can also be answered with
high accuracy. In addition, we need to investigate the practical feasibility of running queries
such that answers can be provided in a reasonable time.
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Abstract
Many existing navigation systems facilitate pedestrian routing but lack the provision of personalised
route alternatives tailored to individual needs. Previous research suggests that pedestrians often
prioritise factors such as safety or accessibility over the shortest possible route. This paper investigates
ways to enhance existing pedestrian navigation systems and improve walking experiences by providing
personalised routes based on walking preferences. This is achieved by defining a set of routing
preferences and implementing a modified version of Dijkstra’s algorithm. The goal of this work is to
promote walking by enhancing mobility, accessibility, comfort, and safety.
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1 Introduction

Currently, leading navigation applications do not (or rarely) provide pedestrians with
personalised routes based on their needs. Among the widely used navigation apps utilised by
pedestrians, notable examples include Google Maps, and Citymapper2 which is particularly
popular among commuters due to its emphasis on public transit. Both applications offer turn-
by-turn directions from the starting point to the destination, with Citymapper performing
better with live public transport information. It is important to note that both Citymapper
and Google Maps predominantly suggest the shortest or fastest walking routes, and wheelchair-
accessible routes are only available if public transport is incorporated into the journey (this
is the case in London). The Mayor of London has launched the first ever Walking Action
Plan3 for UK’s capital city, and the mayor’s vision is to make London the world’s most
walkable city by 2041. We aim to support this vision by implementing a pedestrian navigation
application that provides personalised routes tailored to individual walking preferences, as
opposed to solely recommending the fastest or shortest paths. A comparison with Google
Maps shows that our generated routes excel in meeting users’ walking needs by incorporating
route features that align with user preferences.

2 Related Work

Many researchers have investigated the impact factors such as safety, travel purposes, weather
conditions and traffic flow on pedestrian route choice [2, 7]. Bovy [2] reviewed theories and
models of wayfinding behaviour and applied them in transport networks. He summarised
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the influential attributes into three categories, i.e., traveller, trip route, and circumstances.
In Asha’s study to learn routing choices [1], pedestrians cited safety and time-saving as
the two most important factors when choosing their routes. One study determined seven
criteria for pedestrian route choice: complexity, landmarks, accessible assistance, roadways,
obstacles, intersections, and personal preferences [3]. In another study, the authors suggested
SWEEP (Safety, Wealth, Effort, Exploration, and Pleasure) as significant route quality
attributes utilised in a route recommendation system survey [10]. In recent years, there
has been a growing interest in improving pedestrian navigation by integrating pavement
facilities, the walking environment and pedestrian profiles for customised path finding
[4, 11, 6, 8]. Fang et al.,[5] proposed a people-centric framework for pedestrian navigation
based on three layers, namely physical sense, physiological safety, and mental satisfaction.
The interdisciplinary review on mobile spatial navigation system [9] offered valuable design
recommendations aimed at enhancing the accessibility and inclusivity of navigation systems.
These recommendations encompassed the inclusion of physical accessibility information and
the provision of personalised route options.

3 Pedestrian Routing Preferences

Routing preferences are quantified using a set of weights or costs, which are assigned based on
characteristics related to the pavement and its surrounding environment. These preferences
determine the type of route that will be chosen. Various studies have shed light on the primary
determinant influencing pedestrians’ route selection. For instance, one study [3] delves into
the challenges confronted by visually impaired pedestrians when navigating between origin
and destination, while another study [10] identifies a range of quality attributes, including
safety and exploration, through a survey on route recommendations. Through an analysis
of the existing literature, we have identified seven walking preferences: safety, presence
of tactile paving, proximity to leisure areas, residential neighborhoods, low traffic volume,
straightforwardness, and availability of step-free access.

Safety preference indicates a secure and protected setting for pedestrians, which is
particularly beneficial for individuals, especially women, who walk alone during nighttime.
It is widely regarded as one of the most critical factors influencing pedestrians’ route
selection [9].
Tactile paving enables individuals who are completely or partially blind to navigate
along designated routes specifically equipped with tactile indicators.
Leisure spots signifies routes with attractions such as green space, wetlands, shopping
centres, and tourism spots which are particularly favoured by tourists and leisure walkers.
The preference for a residential neighborhood highlights routes that primarily pass
through residential areas, as opposed to industrial or commercial zones. This choice
results in a quieter and less crowded path for pedestrians.
The preference for low traffic volume prioritises pedestrians who prefer to avoid walking
alongside high-volume motorways. This preference suggests routes with minimal traffic
and reduced ground emissions and noises, providing a healthier and more pleasant walking
experience.
Straightforwardness promotes walking routes with minimal crossings and turns and
is particularly targeted for joggers and elderly, or anyone who would typically prefer a
straight path in order to avoid crossings and turns.
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The inclusion of step-free access suggests routes that are suitable for wheelchair users
and accommodate the needs of individuals who require barrier-free access, e.g., those
pushing pramchairs or carrying bulky luggage.

The street network is depicted as a graph, where street segments are represented by
edges and street junctions are represented by nodes. Each edge in the graph has an initial
weight value equivalent to its length. The suggested preferences are assigned to the edges
as numerical values, which are then added to the base weight. Each edge is associated
with a single weight value. The weight values are derived by pulling relevant data from
OpenStreetMap (OSM)4 and CrimeRate5. OpenStreetMap uses a variety of tags to identify
elements of street segments and junctions. Likewise, for each pedestrian preference, a
corresponding OSM tag is defined, and its value is utilised to determine the weight assigned
to a particular edge. The resulting route consists of a sequence of interconnected edges that
link the source and the destination. The total cost of the route is determined by summing the
weights of these edges. A modified version of Dijkstra’s algorithm is employed to compute
the costs of all the potential routes in such a way that the cost of each route is different based
on the users’ selection of preferences. While the conventional Dijkstra’s algorithm examines
all nodes in the graph to determine the shortest path between the starting and ending nodes,
our approach employs Dijkstra’s algorithm to analyse only specific nodes that are selected
based on the users’ preferences to identify the path with the lowest cost. The route with the
lowest cost is deemed optimal, while the other routes are considered less favorable.

4 Prototype and Evaluation

Figure 1 Workflow of the development of a prototype pedestrian navigation system.

Figure 1 depicts a workflow flowchart of the prototype navigation system, with critical
steps in each block represented. Two main data sources, OpenStreetMap and CrimeRate,
are utilised in developing the prototype of a pedestrian navigation system. The case study
focuses on an area measuring 0.7km2 situated in the borough of Harrow in northwest London.
The selection of this area is deliberate as it offers sufficient pavement and surrounding
environment features that cover the proposed walking preferences. The OpenStreetMap
data is used to construct the underlying geographical map for producing graphs that depict
street networks. Crime incidents at the street level within the study area are collected from

4 https://www.openstreetmap.org/
5 https://crimerate.co.uk/
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CrimeRate between December 2019 and November 2022. This data source was collected to
determine the weight value of “safety”. These crime incidents are classified into 12 distinct
types of crime: burglary, damage & arson, drugs, other crime, other theft, possession of
weapons, public order crimes, robbery, shoplifting, theft from person, vehicle based crimes,
and violence and sexual crimes. This data will undergo data cleaning and preparation to
convert it from its raw form (such as .osm/.xslx) and to remove any incomplete data for
further operations.

Figure 2 A visualisation of the suggested route based on user preferences by the prototype.

Figure 2 shows the web-based prototype interface, with three required inputs as the source
(blue pin), the destination (red pin), and three chosen preferences from the list of seven
preferences displayed in the left panel. The user can either click on map or type in the source
and destination input fields in the left panel to indicate where they want to go. According to
Figure 2, A user has made a specific request for a route that fulfills the following criteria:
step-free access, includes leisure spots, and has a minimal number of turns. The displayed
route connecting the blue pin and the red pin is suggested by the algorithm in such a way
that it meets the walking preferences. The coloured bubbles on the map indicate whether or
not an area contains routes that meet the user’s preferences. Routes within the green bubbles
are those that meet user preferences to the highest degree (lowest cost), while red represents
routes that meet user preferences to the lowest degree (highest cost). A yellow highlighted
area indicates that the routes in that area are moderately meeting user preferences (medium
cost). The purpose of the bubble visualization is to enhance pedestrians’ awareness of their
surroundings, enabling them to explore other route alternatives and at the same time avoid
unpleasant walking experiences.

The evaluation of the prototype is carried out between the routes computed by the
proposed routing algorithm (R1) and those generated by Google Maps (R2). In Figure 3, it
can be seen that R2 suggests a straight route from C to S, whereas R1 in Figure 4 suggests a
completely different route, which circles around the major nodes H and L and takes a longer
journey to reach the destination. The reason for this is that according to CrimeRate, a
higher number of reported crimes is reported in the vicinity of nodes H and L. Since safety is
always the top priority, the prototype generates route R1, which bypasses these crime-prone
areas thus is safer with a total cost of 169.9. In contrast, the route suggested by Google
Maps does not avoid the crime points and has a higher total cost of 270.2.



U. Shah and J. Wang 67:5

Figure 3 Suggested route from C to S by Google
Maps (R2).

Figure 4 Suggested route from C to S by
our method prioritising safety (R1).

Figure 6 shows a route suggested by R1 from processing multiple preferences (tactile
paving and straightforwardness) selected by a user. Graham Road (X-Y-Z) and Grantt
Road (N-O-P) are more accessible for visually impaired pedestrians as compared to the route
suggested by R2 suggested by Google Maps (Figure 5). Regarding the straightforwardness of
the route, there are no crossings on the route suggested by R1 and there is one crossing on
the route R2 suggested by Google Maps. Therefore, the most optimal route is R1 with a
total cost value of 17.8 compared to R2 with a total cost value of 22.3.

Figure 5 Suggested route from P to X by R2.

Figure 6 Suggested route from P to X by R1 with multiple preferences.

5 Conclusions and Future Work

This paper introduces an improved pedestrian navigation system that offers personalised
routes considering seven walking preferences. The study primarily focuses on addressing the
needs of commuters, particularly female pedestrians who have to traverse longer distances
during night time. Additionally, the system aims to cater to pedestrians with physical
challenges, the elderly, individuals accompanied by children or infants, leisure walkers and
tourists. The implemented prototype is capable of computing a range of personalised routes,
allowing users to select up to three preferences. This functionality goes beyond what major
existing navigation applications currently offer. We believe the proposed system can encourage
more walking by increasing confidence, safety and comfort in travel.
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To enhance the proposed algorithm, it is suggested to incorporate open spaces, such as
squares and parks, into the graph representation. The algorithm can be further optimised
by addressing scenarios where conflicting preferences arise, such as situations where a route
cannot simultaneously be the safest and the shortest. Enhancements can be made to ensure
that the algorithm can provide more balanced routes that strike a suitable compromise
between different preferences. Future work also includes taking into account temporal
attributes when it comes to pedestrian routing, as time has a significant impact on walking
needs. The initial application can be improved by incorporating adjustments that allow the
display of information (such as walk time, reported crimes, etc.) within the colored bubbles.
This enhancement will enable visual representation of route comparisons in a way that is
easily understandable. Additionally, conducting a human study to evaluate the real user
experiences of the prototype would be beneficial in assessing its effectiveness and gathering
valuable feedback.
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Abstract
With the increase in natural disasters, flood events have become more frequent and severe calling
for mortgage industries to take immediate steps to mitigate the financial risk posed by floods. This
study looked more closely at the underlying effects of flood disasters on historical house prices as
part of a climatic stress test. The discount applied on house prices due to a flood event was achieved
by leveraging a causal inference approach supported by machine learning algorithms on repeat sales
property and historic flood data. While the Average Treatment Effect (ATE) was employed to
estimate the effect of a flood event on house prices in an area, the Conditional Average Treatment
Effect (CATE) aided in overcoming the heterogeneous nature of the data by calculating the flood
effect on property prices of each postcode. LightGBM as a base estimator of the causal model
worked as an advantage to capture the nonlinear relationship between the features and the outcome
variable and further allowed us to interpret the contribution of each feature towards the decay of
these discounts using SHAP values.
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1 Introduction

Buying houses has been a constant activity despite the surge in property value. Mortgage
industries have profited from these purchases with the rise in house prices. However, with the
drastic climate change, there has been a concern about these changes reflected in household
insurance policies and house prices. There are two major climate change risks: physical
and transitional. Physical risks are the direct risks posed by the physical impact of climate
change like global warming, ocean circulation change, high flood levels, etc. These risks
represent losses brought on by the more frequent and severe hazards or events related to the
environment. This introduces transitional risks, or those brought on by market, technical,
legal, and policy changes resulting from the transition to a low-carbon economy. With 1.9
million people in the UK exposed to the river, coastal, or surface water flooding on a regular
basis, this danger is already of a high scale and is expected to grow further in the absence
of higher degrees of flood risk mitigation [4]. A lot of mortgage organizations developed
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an interest to participate in greening the financial system as a consequence of this drastic
climate change as it could challenge the solvency of the companies. This has given rise to
the demand for understanding the effect of flood events on house prices.

In order to better understand if severe climate change might have a significant impact on
property values, it was attempted in this study to determine if historical flood events had
an impact on house prices. The focus of this research was to identify a method that could
handle the heterogeneity of the data and capture the non-linear relationship of the variables,
which has been a challenge in this field of research. META Learner framework introduced in
the causalml Python package was used to estimate the effect of the 2013 winter flood on
Twickenham house prices and assess whether the effect eventually fades away with time.

2 Related work

Lamond et al [5] used coefficients of the regression to estimate the depression in the growth
of house prices of part of the UK within a flood zone.

Beltrán et al [1] used a similar approach, modifying the repeat sales equation and using
the coefficients to estimate the effect of flood events on different features of house prices.
The findings indicate that for the majority of property types, the average post-flood price
markdown of flood-affected properties is significant but generally transient.

Again, N. Bui et al [2] used a similar approach by integrating “the hedonic property
model in a difference-in-differences framework” and identified a discount of 9% was applied
to house prices in some parts Ho Chi Minh City, Vietnam as a result of a disastrous flood
event on 30 September 2017.

The aforementioned papers offer insightful and useful techniques into how flood occurrences
affect home prices and the price decay that follows. In this study, causal models supported
by machine learning algorithms were used in an effort to enhance the findings.

3 Methodology

3.1 Data

Hedonic approaches need many characteristics of each sold unit. Case and Shiller [3]
recommended a different strategy that uses the information on units sold repeatedly. Repeat
sales technique proponents contend that because it is based on the actual housing units’
observed appreciation, it more correctly accounts for property characteristics [3]. In this
research, the repeat sales/transactional data were provided by MIAC Analytics Ltd which
included previous price, recent price, previous transaction date, recent transaction date,
property type, and the geographic details of the properties from 1995 to 2019. The flood
data provided by the data provider of MIAC Analytics Ltd, WhenFresh Ltd included the
history of all the flood events like flood cause, flood count, flood source, flood start date,
flood end date, and property level details from the year 1900 to 2020. The elevation of each
postcode was gathered from Ordnance Survey, and Shapefiles of the historic flood map, river
and coastal bodies of the UK, area benefiting from flood defense, and geography level of the
UK were collected from DEFRA and EA. This study was conducted on the data from 2010
to 2020 to avoid the impact of the house price crash of 2008.
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Figure 1 Map of Twickenham. Blue lines: river bodies; orange shading: areas protected by
flood defence; pink shading: historic flood shadings; red shading: overlap of historic flood shading
and areas protected by flood defence; red dots: postcodes only impacted by 2013 flood; green dots:
postcodes which did not experience flood events and are outside flood risk areas.

3.2 Assumptions
When a property’s structural attributes remain constant between transactions, one or more
of the following variables could be to blame for the price variation: inflation, significant local
changes like the construction of new transportation infrastructure or a flood occurrence,
and random variation [5]. It is vital to make the assumption that all properties are equally
affected by changes in location variables other than flood occurrences when building repeat
sales models. By selecting relatively small areas for investigation and by getting access
to local knowledge about any significant events, this can be made more likely [5]. Due to
the above assumptions, all the analysis on flood effects were conducted on smaller regions
that are geographically adjacent to each other. The districts TW15, TW16, TW17, TW18,
TW19, and TW20 of Twickenham were considered for this analysis as the areas were partially
covered in historic flood, flood risk, and flood defence. Every other flood-affected region of
the UK either had fewer data points or is well protected by flood defences. The 2013 winter
flood had an influence on 1404 Twickenham transactions. Thus, Twickenham and the 2013
flood disaster were taken into account for the subsequent analysis.

3.3 Treatment Control Group
The winter flood of 2013 was considered as the treatment effect in this research. While a
small group of districts in Twickenham was considered in this study to hold other effects on
the house price constant, the area was further divided into treatment and control groups.
The treatment group was created as a collection of postcodes that experienced the 2013
winter flood, with the flooding having no influence on transactions prior to treatment but
having an impact on transactions after treatment. The control group had the collection of
postcodes that were never impacted by the flood and are outside flood risk as designated by
the Environmental Agency.

3.4 META Learners
META Learner is a framework that uses multiple base learners/machine learning algorithms
to build a model to estimate Average Treatment Effect (ATE) and Conditional Treatment
Effect (CATE). ATE is the effect of a treatment on a population whereas CATE is the effect
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of a treatment on a subgroup of the population based on a condition. causalml [6] is a
Python package provides the tree models – Random Forest, LightGBM, and XGBoost – as
the base learners for the META Learners. In this research, the four types of META Learners:
S, T, X, and R Learners were used to estimate and validate CATE. To validate which
base learner would perform the best in estimating the treatment effect, the preprocessed
covariates and outcome variables were passed through all three algorithms, and random
search hyperparameter tuning was applied to determine the best parameter. Once the best
machine learning algorithm was selected as the base algorithm, the data were passed through
all the META learners to calculate CATE. The average of CATE was used to calculate
Average Treatment Effect (ATE) which indicated the flood effect on Twickenham.

3.5 Equations
Lamond et al [5] explain the derivation of the equations used to estimate the treatment effect.
This approach was used to determine the growth effect by considering the market effect to
be constant. For property i, the growth in price (P ) from time t to t + k is:

Y = ln(Pi(t+k)/lnPit)

This term was used as the outcome variable to estimate the flood effect on the house prices
of Twickenham. While each META Learner (S, T, X, and R) has different equations, in this
section the equation of T learner is discussed as it proved to be the best learner. In the first
stage, the T learner estimates the average outcome using machine learning algorithm[6]:

µ1(x) = E[Y (1)|X = x]

µ0(x) = E[Y (0)|X = x]

where µ is the average outcome, 0 indicates the non-flooded (control) properties, 1 indicates
the 2013 winter flood-impacted (treatment) properties, X values are the features, and Y is
the outcome variable or growth effect. In the second stage, CATE (τ̂) is estimated using the
below equation[6]:

τ̂(x) = µ̂1(x) − µ̂0(x)

The ATE was further estimated by calculating the average of CATE.

4 Results and discussion

Although XGBoost outperformed all the models slightly, LightGBM was chosen as the base
learner as it captured the contribution of most of the features which seemed more ideal to
estimate the flood effect with an RMSE of 0.23. While ATE was efficient in capturing the
impact of the 2013 winter flood on Twickenham districts, CATE was effective in capturing
the impact of the flood event on each Twickenham postcode. With LightGBM as the base
learner, the results of the META learners are below:

Table 1 The flood effect estimated by all the META Learners of 2013 winter flood in Twickenham
districts. The negative sign indicates that the flood effect resulted in a discount on house prices.

META Learners S T X R
ATE -0.07 -0.08 -0.11 -0.07
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4.1 Validation
The causalml package [6] was built using synthetic data. To validate the learners, the actual
treatment effect was generated from the synthetic data and then the values of ITE and the
actual treatment effect were used to validate the results and chose the best learner. However,
in real-world applications, since the ground truth is not available, choosing the best learner
was quite challenging. So, cumulative gain plots with a theoretical curve produced by the
random model were used to validate the performance of the META learners. Once the
theoretical random curve was in place, then the learners were compared to it as a benchmark.
Every curve had the same beginning and end. Since the curve of the T learner deviated the
most from the random line, it was considered to be the best learner amongst S, X, and R
learners and the ATE value of the T learner was statistically significant. Meanwhile, from
the permutation importance, it was observed that the T learner was capturing the effect
of almost all the features. Hence, it was concluded that the T learner estimated the most
authentic flood effect, and a discount of 8% was applied to the districts of Twickenham in
2019 as a result of the 2013 winter flood.

4.2 Diminishing of flood effect over time
SHAP (Shapley Additive Explanations) values were used to interpret the Meta Learners.
Each feature is given an importance value by SHAP for a specific prediction. These values
were used to understand the Meta Learners better. As years pass by, customers tend to
forget about the flood event, and in the absence of any other issues with the property, house
prices tend to continue to increase. A slight decay in discount after 4 years of the flood
event can be observed in Table 2. Fig. 2 shows that as the months between the transaction
and the flood increase, there is growth in house prices. Whilst for semi-detached houses the
discount remained the same from 2015 to 2019, for flats, terraced, and detached houses the
discount decays and data points tend to contribute towards the growth of house prices by
2019. The SHAP plots also indicate that lesser values of the features: (a) distance from a
river body, (b) elevation from mean sea level, (c) months since the flood event happened to
contribute to higher flood discount. While properties within flood plains that experienced a
higher number of flood events contribute to flood discounts, the areas protected by flood
defence contribute to the growth of house prices.

Table 2 The flood effect estimated by T learners with CI of Twickenham districts over the years.

Years after 2013 flood Lower Bound ATE Upper Bound

2 years -0.16 -0.09 -0.02
4 years -0.16 -0.09 -0.02
6 years -0.16 -0.08 -0.02

5 Conclusion

If flood effects do not reflect on the house prices, it raises the concern that a sudden risk
re-pricing could be financially unstable if this risk is not represented in house prices. The two
major papers that dealt with a similar goal [5, 1] used the ”repeat sales method” along with
linear or generalized regression method to determine the discount. This study contributes to
the ongoing research in the field of climate change and its impact on transitional risk. The
use of the causal inference algorithm backed by machine learning, Meta learners, presented
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Figure 2 The SHAP plot of T learner over the years. Left: after 2 years of the flood event (2015).
Middle: after 4 years of the flood event (2017); Right: after 6 years of the flood event (2019).

a significant answer to the problems with the previous research efforts. First, by using
CATE to estimate the flood effect on each postcode, it is possible to capture heterogeneity.
Secondly, capturing the non-linear correlations between the data using LightGBM. Third,
the algorithms’ ability to be understood by using SHAP values.

While Beltrán et al [1] stated that “the discount is short-lived and the discount is no
longer statistically significant for properties affected by inland flooding after 5 years, which
falls to just 4 years for properties affected by coastal flooding”, we found that the discount
begins to diminish after 4 years following the 2013 flood event. However, with a longer
timeline, it could have been more interesting to capture the decay in the flood discount. One
of the shortcomings of this project would be the fact that the treatment’s random assignment
is not assured as a lot of factors could contribute to the flood occurrences. Beltrán et al [1]
agreed, as flooding occurs mostly in areas that are exposed to flood risk/hazard. It could
be argued that the property or real estate market in such areas might already possess some
special characteristics and attract households with distinctive preferences. The research was
unable to calculate the treatment effect independently for the four property types due to
insufficient data as a result of concentrating on a narrower area to hold other effects on the
house prices constant. Although the results of the treatment effects cannot be generalized
due to the assumptions associated with the repeat sales data, this methodology can be used
to estimate the effect of flood events on house prices for any area and any timeline.
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Abstract
Evaluating and monitoring the sustainable development of nations and cities requires sets of indicators.
Such indicator sets should measure equity, health, environmental, or governmental progress or recess
- among other sustainability aspects. In 2015 the United Nations ratified 17 Sustainable Development
Goals (SDG) assessed through 231 indicators. However, other - local - sets of indicators have
been developed too. In this paper we review geodata challenges that emerged when we developed
four sustainability indicator sets in Chile. Faced challenges include (geo)data availability and data
representativeness, among others. We analyse how GIScience knowledge has contributed to indicator
development and outline three priority research topics: (i) updating indicators based on automated
processes, while respecting representativeness, (ii) tools for planning scenario generation, and (iii)
methods for short- and long-term forecasting.

2012 ACM Subject Classification Information systems → Geographic information systems

Keywords and phrases geographic information, SDGs, indicators, sustainable development, Chile

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.69

Category Short Paper

Funding The authors acknowledge funding from CEDEUS – Centro de Desarrollo Urbano Sustentable
(ANID/Fondap/1522A0002).

1 Introduction

In 2015 the United Nations adopted a new development agenda with the title “Transforming
our world: the 2030 Agenda for Sustainable Development”. In this agenda 17 Sustainable
Development Goals (SDG) and 169 particular development targets are outlined that should
be met until the year 2030. The first 4 sustainable development goals address people’s
basic demands: (1) no poverty, (2) zero hunger, (3) good health and wellbeing, and (4)
quality education. Further important goals include gender equality, clean water, responsible
consumption, as well as reduced inequalities. Given that today 54 percent of the global
population lives in cities, Goal 11 has been targeted at cities. This goal has a focus on
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Figure 1 Typical process to develop a set of urban sustainability indicators.

“Make[ing] cities and human settlements inclusive, safe, resilient and sustainable”. To evaluate
progress towards reaching the development targets the SGDs are accompanied by a set
of indicators, currently being 231. However, not only the UN has published indicators
that measure coverage of people’s basic needs, sustainability, and quality of life aspects.
Other well-known globally applied indicator sets are for instance the Human Development
Index and the Environmental Performance Index with a focus on assessing and comparing
nations. But there are also indicator sets with a focus on cities, such the Happy Planet
Index and the Global City Indicators (see [12]). For Chile, home country of the authors,
several indicator sets have been developed as well. The authors directed and participated
in the development of at least four sustainability indicator sets, including the CEDEUS
Indicators (http://indicadores.cedeus.cl; [12]) and the SIEDU indicators published by
the National Council for Urban Development (CNDU). Given these experiences on indicator
development and operation, we wanted to review our work guided by the following question:
“What have been the difficulties during the operationalisation of urban indicators from a
geoinformation perspective and how did GI experts contribute?”. To answer this question, we
outline first the process to develop indicators (Section 2) and then summarize the (geo)data
issues that we faced (Section 3). We then reflect on our experiences by looking at the
geoinformation team contributions (Section 4) and further research needed to advance in our
work (Section 5).

2 The development process of urban sustainability indicator sets

To better understand the context of difficulties that may be experienced during the de-
velopment of indicators sets, we will outline the steps that may be used. We identified 9
steps that can be presented as consecutive steps (see Figure 1). However, in reality the
development process often includes several iterations until consensus among the stakeholders
may be reached. (1) The first step of the indicator development process usually addresses
the convocation of stakeholders that may be interested in using the indicators later on.
Stakeholders may include experts, including researchers, representatives from municipal and
governmental administration, local civic organizations, and NGOs [1]. (2) The first meetings
with these stakeholders have the objective to identify the purpose of the indicator set and
finding a common language. (3) In the third step a base collection of indicators may be
developed usually through an analysis of the literature with input from the stakeholders.
Often the resulting base set consists of several hundred indicators. (4) In the following step
the indicators of this base set are then analysed and discussed to select indicators that can
meet the earlier defined objectives. (5) As the resulting set of indicators may still be large
(e.g. around 100 indicators), a prioritisation exercise may be carried out. (6) Next step is a
pilot study that operationalises the indicators that are considered as of high priority. The

http://indicadores.cedeus.cl
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Figure 2 Data related challenges experienced during indicator development.

pilot study serves several purposes, including for instance the selection of indicator variables
and analysis of the calculation results so as to confirm that the indicator variables are able
to highlight differences and trends among study sites. This phase is often executed by a
geo-information or statistics team consulting with domain experts. (7) The results of the
pilot study are then presented to all stakeholders for further discussion, so as to identify
if the selected indicators and variables are able to fulfil their purpose, being sufficiently
sensitive and robust.(8) Given that all stakeholders agree on the indicators and variables,
the indicators are calculated for all cities or region(s) of interest. (9) Finally, indicator
results are to be published to inform the public. While these are the basic steps of indicator
development, it is possible that these are followed by an additional process with the objective
to develop sustainability (and quality of life) thresholds for each indicator.

3 Geodata challenges

Given our experiences, in general the processes of developing indicator sets face the problem
of data availability when indicators are proposed. While this may perhaps not be a surprise, if
one considers that our work has a focus on Chile, a country in South America, the very same
issue of data availability has also been highlighted by the authors of the U.S. Sustainable
Cities Report in their 2017 version [10]. Prakash and colleagues considered to calculate values
for 49 indicators for the 150 most populous “cities” originally, but had to resort to analyse
only the 100 most populous “U.S. Metropolitan Statistical Areas (MSA)” - out of a total of
382 MSAs - due to a lack of and problems with data [10]. Besides the in-existence of data, a
range of difficulties related to (geo)data can be found (Figure 2). In some cases data may
exist, but it may be difficult to obtain access to it. Reasons for access issues are for instance
concerns and confidentiality classifications by public administration, such as tax and crime
records in Chile, or because the data owner is actually a state-contracted survey company or
a public service provider, such as a private electricity and water services provider. Whereas
access to these locked-up data may not be impossible for the purpose of indicator calculation
eventually, it still raises the issue of completeness, transparency, and reproducibility for users
of the indicators. Further difficulties arise from the fact that responsibilities for (public)
urban data are often distributed among different levels of government (ministries, regions,
cities), and public & private service companies (see also [4]). Result of these dispersed
responsibilities is that data may lack complete geographical coverage and are dispersed as
well. This meant for some of the CEDEUS indicators that data had to be requested from 71
municipalities.

Not few times requested (tabular) data may come printed, on CD as pdf, via (snail)
mail or email, since (Spatial) data infrastructures exist only in some ministerial divisions
and a hand full of municipalities - mostly due to a lack of experts and high cost of such
infrastructure. Even if a geodata infrastructure exists, access is often possible only for
in-house users and access via data APIs are rare.
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Completeness issues do not only concern geographical coverage of data. It includes also
temporal coverage and statistical representativeness of survey data. Temporal coverage, i.e.
survey frequency, turns out to be an issue when cities grow rapidly, as in many developing
nations, when population census surveys are preformed only every 10 years. In this case
evaluation and (city) planning is often based on outdated data and “monitoring” of change
is complicated. Similarly, comparability among cities will be difficult if surveys are made in
different seasons or years. These very same difficulties were already reported by Hoornweg et
al. [5] 15 years ago (in 2007) for indicator projects at the World Bank, who found “a lack
of reliable disaggregated data that are comparable across cities and over time.” In the case
of Chile, for instance, the origin-destination travel surveys used for mobility indicators are
carried out only for mayor cities every 10 years, and surveyed in different years.

A lack of statistical representativeness of survey data for the municipal level has posed
as well problems when we aimed at operationalising indicators. Some important surveys in
Chile, such as the two-yearly socio-economic household survey CASEN, are carried out to
obtain statistics at regional level only, and are therefore representative only at this level.
However, city planning requires data at least at municipal level.

4 GIScience contributions

Changing the perspective from reviewing the encountered data challenges for indicator
implementation to the perspective of how GIScience knowledge & technology can facilitate
the process of indicator operationalisation, calculation, and communication, we identify three
broader areas of contribution:

Expertise on geodata - The expert team that is usually in charge of gathering data and
calculating the indicators often contain geographers and statisticians. Geographic information
experts are able to contribute here with their expertise when searching for indicator base
data and in the assessment of the suitability of candidate datasets. If no data could be found
that fits indicator requirements, such as geographical coverage, yearly data updates, and
geographical and socio-demographic representativeness [12], then GI experts can help to
establish criteria for the collection of new data. This includes to identify at what geographic
scale data is needed, and what data collection tools, methods, and sampling schemes may be
used to ensure representativeness.

GI Systems & Standards - A second area of GIScience contributions to indicator de-
velopment and operation concerns the utilization of GI technologies and standards. To
mention here are technical developments and standards related to Spatial Data Infrastruc-
tures (SDIs) [8]. The Open GeoSpatial Consortiums’ (OGC) standards for data description,
cataloguing, and search help to identify suitable data sources for consecutive monitoring of
urban conditions. Also other OGC standards, such as the OGC Simple Features specification
implemented in spatial databases and the W*S specifications are essential to manage effi-
ciently city or countrywide datasets. Finally, the OGC sensor web related standards permit
updating sensor-based indicators that for instance assess environmental pollution or usage of
transport modes. Other GI related tools have helped too: most prominently the scripting
languages and processing frameworks that permit to automate data processing and analysis,
such as Python and R.

The GI expert toolbox for indicator interpretation - There is a further area of expertise
and opportunity for contribution that concerns the analysis of spatial data and a profound
knowledge of the geostatistical analysis toolbox. Good indicator variables allow to identify
differences and trends among cities or perhaps even neighborhoods. To assess a variables
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geographical sensitivity that permits to identify where a policy intervention may be neces-
sary, it is necessary to assess a variables distribution function and employ (geo-)statistical
tests to identify the significance of trends and differences. The geostatistical toolbox em-
ployed for identifying meaningful indicator variables can help as well to define sustainability
thresholds for indicators. Geospatial visualization tools are further useful in producing maps
or (carto-)diagrams, during indicator development and when interpreting results. Maps
like visualizations allow to validate visually an indicator variable and its data for coherence
(with expectations) as well as its geographical sensitivity. For instance, energy consumption
patterns that reflect income segregation between city neighbourhoods [12]. Visualization of
indicators through maps and urban dashboards supports communication of indicator results
to the public and decision makers [6].

5 Three emerging research topics for GIScience

Considering our four indicator development experiences we analysed what challenges are
ahead of us when maintaining and utilizing the indicator sets. We identified three broader
challenges:

Indicator updates from Sensor Data – The first challenge concerns the ability to monitor
urban change; be it as a result of changes in natural (e.g. climate) or political conditions (e.g.
new policies). For most indicators it is sufficient to update data and indicators only once a
year, however, for some indicators monthly or even daily updates are possible. The challenge
is here to update data and indicators ideally in an automatic fashion, be it from sensor data
or civil service registries. This requires (widespread) introduction of data APIs and the
implementation of data processing chains. Implementing these becomes challenging if one
considers that the data need to be collected, evaluated, cleaned, and processed for different
cities and regions in a way that always ensures plausible and representative indicator results,
even if sensors fail or received data contain somewhat obscure values. Similarly, scaling up of
indicator results from neighborhoods to city and to regional levels requires to account for
maximal permissible errors.

Planning Scenario Modelling - A further need that we see concerns the development
of a toolbox that permits to generate and evaluate city planning scenarios, as shown for
instance by the AURIN project and the Urban FootPrint platform [9, 7]. We imagine it to
be somewhat like an online version of the computer game “Sim City”, but rather with a
focus on city policy tools & models, than the provision of a city construction toolset. The
scenarios that are created are then to be evaluated with indicator sets to assess the impact
of policy changes [11]. Even more interesting could be to develop indicator-based scenarios
via back-casting, i.e. defining what indicator values need to be obtained in the future and
see what needs to be done to get there [2].

Short- and long-term forecasting - To evaluate how indicator values may develop in the
future, spatial models need to be developed for forecasting. Of interest may be indicator
forecasting for a few days only, similar to meteorological forecasting, and forecasting for the
next year or the next five years. While it is safe to assume that policies do not change when
forecasting for a few days or weeks, forecasting for one year may and for 5 years actually
should be able to consider policy changes, so as to explore impacts of policy changes. The
task is here to keep working on forecasting methods that explicitly allow to include spatial
interdependencies among indicators (see for instance Fotheringham et al. [3]).
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6 Conclusions

As we have outlined, a paramount challenge for the development of indicator sets for the
assessment of urban sustainability is that often required data are either not existent or not
accessible. This includes in particular data needed to evaluate the UN’s 17 Sustainable
Development Goals (SDGs). Work by Prakash et al. [10] and ours show that the lack of
data is a global problem. Hence, the expertise of GIScientists and GI professionals is needed
to identify and collect required (geo)data.

While being able to contribute with knowledge on data and tools to indicator development
and monitoring, we think that GIScientists need to promote the (still new) spatio-temporal
perspective - overcoming a statistical and national perspective. This will allow to develop
geographical targeted indicators and policies that may be more suited for geographically
diverse countries. Similarly, we think that GIScience needs to promote cost and resources
effective governance and responsibility models concerning data. We believe that Europe’s
INSPIRE directive and the European Environment Agency can lead as an example that
shows how Spatial Data Infrastructures (SDIs) can facilitate access to data.
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Abstract
Densely populated urban public transportation systems can provide inducive environments for
transmitting viruses via close human contact or touching contaminated surfaces. In network analysis,
Betweenness Centrality (BC) has been used as the primary metric to measure a node’s communication
with others. This research extends from the concept of BC and develops new measures to assess the
risk of transmitting disease through public transportation links. Three new concepts are introduced:
source Total Betweenness centrality (TBC), target TBC, and Encounter Network. From a network
node (source node), the set of shortest paths from that node to all other nodes composes a sub-graph
(tree). The source TBC of this node is defined as the sum of BC of all edges of this tree. Similarly,
using the shortest path tree consists of the set of the shortest paths from all nodes to the node as
the destination, the target TBC of the node is defined as the sum of BC of all edges of this tree.
Both TBC can be weighted by edge characteristics such as travel time or trip volume. Another new
concept, Encounter Network, is constructed as the intersection between all source-target pairs of the
public transportation network. We use the source TBC of a node to evaluate the relative risk of
transmitting the disease from that node to other nodes. In contrast, the target TBC of a node can
be used to assess the relative risk of being infected by a virus transmitted from other nodes to that
node. A preliminary case study is conducted to illustrate the process and results.
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1 Introduction

Public transportation plays an essential role in many cities to achieve equitable and sustainable
goals in urban systems [11]. Public transportation has been recommended in recent decades
to reduce car dependency and externalities like traffic congestion and air pollution [2]. Despite
its many positive contributions, mass transit network also provides a conducive environment
for human contact in proximity which may lead to other effects. For instance, infectious
diseases can be spread by human contact, especially in an enclosed space. Human contact
between passengers in mass transit systems can easily facilitate the spreading of infectious
diseases [7]. The crowded indoor environment in trains and buses intensifies the transmission
of pathogens from infected passengers to others [10, 14]. To identify the network components
where high-intensity of involuntary human contact and transmission may occur, this research
proposes a new concept, encounter network (EN), a subgraph of a transit network, as well as
related measures and algorithms to derive an EN from the transit network.
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Network science techniques, such as connectivity and centrality measures, have been
widely used to study public transportation systems. The approach is useful for simplifying
the transportation network by studying the network’s topological properties [3], and it is
also effective in studying and assessing the changes and modifications in the network and
operational incidents [3, 6]. This research develops a new type of betweenness centrality
measure to assess the transmission of infectious diseases in public transportation networks.
Three concepts are introduced to study the networks where transmission of disease occurs
at their edges: source-node Total Betweenness Centrality (TBC), target-node TBC, and
network Encounter Matrix (EM). For every node of the network, the shortest paths tree or
sub-network consists of all shortest path(s) from that node to all other network nodes. The
source node TBC is defined as the sum of the BC of the edges that belong to this sub-graph.
By the same token, the target node TBC of a node could be defined based on the sub-graph
shortest paths from all network nodes to that node. Based on the TBC measure, we can
determine the stations of those passengers who are exposed to more encounters with other
passengers and consequently are more susceptible to transmission of infectious diseases. The
EM is defined between each pair of source-target nodes (stations) to measure encounter
opportunities in the network, which is achieved by extracting the intersection of shortest
paths sub-graphs from (or to) those stations. Comparing the TBC value, the higher value of
the source node TBC reveals a greater spreading influence, and the higher target node TBC
shows a higher risk of infection.

Since the spread of viruses can occur at the network’s nodes and edges, we develop the
encounter network where every source-target node pair of the original network is a node in
the encounter network. Two nodes are adjusted if and only if the corresponding shortest
paths between them in the original node pairs intersect at least on one edge. The proposed
method is implemented and tested on the Sioux Falls network.

2 Total Betweenness Centrality and Encounter Network

2.1 Total Betweenness Centrality
The complex networks theory has excellent applicability in describing different phenomena
and has received much attention in recent years [5]. In this context, various centrality
measures for quantifying the network structure have been developed and discussed [1]. The
node (edge) betweenness centrality measures the intermediary of a node (edge) and the
shortest path between all node pairs, thus it characterizing the importance of a node or link
in flow organization in the network [1].

Total betweenness centrality (TBC) is a related concept that has been introduced in
Network Science [4, 8]. In the prior work, let’s denote W as the subset of a network V, the
TBC of the subset W ⊆ V is defined as the sum of the betweenness centrality values of
its nodes, i.e., C(W ) = Σi∈W C(i). However, in the case of transmission of diseases, this
measure may not be very useful. Human encounters of indefinite length in the same enclosed
space on network edges might impose a higher risk than brief passing at nodes. An edge
with a higher BC means more chances of encountering travelers from many different routes
and, consequently, a higher risk of transmitting disease between people. Thus, this research
modifies the traditional definition of TBC by considering the BC scores of edges. To reckon
with the directionality of transportation links, we distinguish between source TBC and target
TBC as defined below.
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▶ Definition 1. Source TBC : In a directed network V, for a given source node r, the source
TBC is defined as the sum of BC values of all edges of the subgraph, Ψs(r) , that consists of
shortest paths from r to all other nodes in V. It can be expressed mathematically as follows.

TCs(r) =
∑

k∈Ψs(r)

C(k) =
∑

k∈Ψs(r)

∑
s̸=t

σst(k)
σst

(1)

▶ Definition 2. Target TBC: In a directed network V, for a given target node r, the target
TBC is defined as the sum of BC values of all edges of the subgraph, Ψt(r), that consists of
shortest paths from all other nodes to r. It can be expressed mathematically as follows.

TCt(r) =
∑

k∈Ψt(r)

C(k) =
∑

k∈Ψt(r)

∑
s̸=t

σst(k)
σst

(2)

An illustration is provided in Figure 1 using the Sioux Falls network. The directed
network consists of 24 nodes and 76 edges. In Figure 1(a), the sub-graph Ψs(r) is in bold red
color. In Figure 1-b, the sub-graph Ψt(r) is shown in bold blue color. The two sub-graphs
display all the edges where travelers from Source Node 1 might encounter travelers going to
Target Node 18.

The volume and duration of encounters on each network edge could be different, subject
to the travel time and trip volume on each. The following equations formalize the calculation
of TBC values with selected weight:

TCs
w(r) =

∑
k∈Ψs(r)

wkC(k) =
∑

k∈Ψs(r)

∑
s̸=t

wk
σst(k)

σst
(3)

TCt
w(r) =

∑
k∈Ψt(r)

wkC(k) =
∑

k∈Ψt(r)

∑
s̸=t

wk
σst(k)

σst
(4)

2.2 Encounter Network
▶ Definition 3. Encounter subgraph: the intersection sub-graph of two directed shortest-path
trees, either from the source node or to a target node, is defined as the encounter subgraph.

An encounter network is constructed with the Encounter subgraph of every pair of nodes
in the transit network. Consider Go(No, ϵo, Wo), the original weighted directed graph with
total N node number, where No = i1, i2, ..., iN is the node set, ϵo is the edge set, and Wo

is the weight set. The encounter network consists of all source-target node pairs, where
each source-target pair represent one node in the encounter network. The total nodes of
the encounter network would be N · (N − 1), and the network could be represented with
Ge(Ne, ϵe, We), where Ne = {I1, I2, ..., IN (N − 1)} is the node-set, ϵe and We are the edge
and the weight sets, respectively. In the encounter network, two nodes are neighbors if and
only if the shortest path(s) between the original source-target node pairs pass through at
least one shared edge of the original network. Denote two arbitrary nodes in the encounter
network as K and J , related to the node pairs {k − k′} and {j − j′}, respectively. The edge
between these two nodes in the encounter network is denoted as EKJ , and is defined as:

EKJ =
{

0 if σkk′ ∩ σjj′ = ∅
1 if σkk′ ∩ σjj′ ̸= ∅

(5)

The encounter network can also be either unweighted or weighted. Depending on whether
the original network is unweighted or weighted. The weight set of the network can take two
different values.
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Figure 1 Example graph. a). Shortest path tree from the source node 1 to all other nodes; b)
shortest path tree from all nodes to the target node 1; c) two shortest path trees from two source
nodes 1 and 18; d) intersection sub-graph of the two shortest paths trees.

3 Preliminary results of model testing and validation

Encounter network and the TBC measures provide a structure to study epidemic spreading
in the networks where the transmission occurs on network edges. To test the feasibility, we
adopt the SIR epidemic model to mimic the network’s spreading process. Since all contacts
are not equally facilitating contagion [12], to make the simulation more compatible with
the natural spreading process, the network’s weight structure (e.g. passenger volume, etc)
is considered to investigate the network nodes’ spreading capability. Previous studies have
assumed different transmission forms such as linear [9] or nonlinear [13] to model the infection
rate based on the edges’ weight. Here, a linear transmission rate is applied to calculate the
probability of infection of a susceptible node by an infected node. The work is ongoing and
reported here are the calculated source and target TBC values for each node, as shown in n
Figure 2. The figure shows the source and target TBCs of the Sioux Falls network for both
unweighted and weighted based on the edges’ travel time.
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Figure 2 TBC results for Sioux Fall network. a) source node TBC, b) source node weighted
TBC, c) target node TBC, d) target node weighted TBC.

4 Conclusions and Discussions

Recent infectious disease outbreaks have demonstrated the vulnerability of human communit-
ies. Human encounters are a primary medium for the spreading of contagious diseases. In
urban areas, public transportation systems can transfer infected people in the network and
provide a conducive environment for transmitting disease through direct (Person-to-person
contact) and indirect (airborne transmission or touching contaminated objects) contact
between passengers. This research extended from the betweenness centrality measures and
defined new TBC measures and a new concept of encounter network. They can be used to
represent and model encounter opportunities on a network.

The work presents a novel method to identify more influential nodes/edges that are more
likely to be the source of spreading and higher-risk nodes/edges that are more likely to
receive infection. Moreover, beyond the application to infectious diseases, encounter network
TBC measures can be used to study the communication characteristics of transportation
networks and other complex networks like social networks.
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Abstract
When studying the spatial diffusion of a phenomenon, we often know its geographic distribution at
one or more snapshots in time, while the complete history of the diffusion process is unknown. For
example, we know when and where the first Indo-European languages arrived in South America
and their current distribution. However, we do not know the history of how these languages spread,
displacing the indigenous languages from their original habitat. We present a Bayesian model to
interpolate the history of a diffusion process between two points in time with known geographical
distributions. We apply the model to recover the spread of the Indo-European languages in South
America and infer a posterior distribution of possible evolutionary histories of how they expanded
their areas since the time of the first invasion by Europeans. Our model is more generally applicable
to infer the evolutionary history of geographic diffusion phenomena from incomplete data.
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1 Introduction

Following the European colonisation of the Americas during the Age of Discovery, Indo-
European (IE) languages, such as Spanish, Portuguese and French, spread extensively in
South America, eliminating many indigenous languages. Historical records show when and
where the IE languages arrived on the continent. The current spatial distribution of languages
in South America is available in modern language maps. However, little is known about the
spatio-temporal diffusion of the IE languages between the time of first contact at about 1500
CE and today. How have the IE languages spread between the time of contact and today?
How can we infer probable evolutionary histories of this diffusion process in the absence of
relevant historical records?
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71:2 Inferring the History of Spatial Diffusion Processes

In GIScience, similar questions frequently arise when studying diffusion phenomena, such
as urban sprawl, deforestation, land cover change, segregation, or the spread of innovation.
We know the spatial distribution at two points in time, and we would like to interpolate
potential histories of how the diffusion has unfolded in between.

Various methods have been used to model the diffusion process in space. Cellular
automata (CA) were applied to simulate the urban sprawl [4]. Reaction-diffusion equations
were used to represent the demic-diffusion of modern humans theoretically [7]. Network
models were used to describe the diffusion of human culture [6] and dialects [5]. Ising models
were used to describe the diffusion of linguistic features in the UK[2, 3]. While these models
can simulate the diffusion process from a given initial spatial distribution, they cannot infer
the evolutionary history between two known points in time.

In this paper, we present a novel Bayesian model to interpolate potential histories of a
spatial diffusion process, capturing the uncertainty of the process. The model reveals the
distribution of the most likely evolutionary histories of a diffusion process, given the spatial
distribution of the process at two points in time.

We applied the model in a case study to interpolate the spatial diffusion of the invasive IE
languages in the Americas between the time of contact and today, capturing the uncertainty
of the process. The model gives the posterior probability that an IE language occupied a
given location in South America at a given time.

2 Methods

2.1 Model assumptions
We represent space as a network of n discrete nodes P1, ..., Pn, each assigned to one of K

possible states. In the case study, Pi is a cell in a regular spatial grid over South America.
The cell has two states: 1 means an IE language occupies the cell, and 0 means an indigenous
language occupies the cell. We denote the geographical distribution of states at time t with
the vector

M(t) =

x1(t)
...

xn(t)

 ,

where xi(t) is the state of node Pi at time t. In the case study, M(t) is the geographical
distribution of the IE languages in South America at a specific time in history. We model
the spatial diffusion as a Markov process, where M(t) only depends on M(t − 1) and is
independent of earlier time steps. At each time t, every node copies the state from its
neighbours at time t−1. The transmission rate aij , with 0 ≤ aij ≤ 1 and

∑n
j=1 aij = 1, gives

the probability that node Pi copies the state from Pj . The transmission rate is a constant
and must be defined before the analysis. In the case study, each cell can copy the state from
its eight neighbours and itself with equal probability:

aij =
{

1
9 if Pi = Pj or Pi and Pj are neighbours
0 otherwise

.

2.2 Bayesian inference
We use Bayesian inference to estimate the spatial diffusion M(0), ..., M(T ), i.e. the history
of the geographic distribution of states. The spatial diffusion follows a Markov process and
has the probability

P (M(0), ..., M(T )) = P (M(0))
T∏

t=1
P (M(t)|M(t − 1)).
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We know the geographic distribution at two points in time, the initial distribution at
t = 0 and the final distribution at t = T . The history between initial and final distribution,
M(1), .., M(T − 1), has posterior probability

P (M(1), ..., M(T − 1) | M(0), M(T )) = P (M(0), ..., M(T ))
P (M(0), M(T ))

= P (M(0))
P (M(0), M(T ))

T∏
t=1

P (M(t)|M(t − 1))

∝
T∏

t=1

n∏
i=1

P (xi(t) | M(t − 1)). (1)

2.3 Markov chain Monte Carlo (MCMC)
We can use the Metropolis-Hasting (M-H) algorithm to draw samples from the posterior
distribution in Equation 1, repeating the following steps:
1. Randomly choose one timestep t and one node Pi.
2. If xi(t) = k, propose k′ as a candidate state with the proposal distribution

q(k′ | k) =
{

1
K−1 if k′ ̸= k

0 otherwise
.

3. Compute the acceptance ratio

r = P (xi(t) = k′ | M(t − 1))
P (xi(t) = k | M(t − 1))

n∏
j∈N(i)

P (xj(t + 1) | xi(t) = k′, ∩(1≤l≤n,l ̸=i)xl(t))
P (xj(t + 1) | xi(t) = k, ∩(1≤l≤n,l ̸=i)xl(t))

, (2)

where N(i) is the set of neighbours of Pi, or formally the set {j | 1 ≤ j ≤ n, aji > 0}. The
conditional probabilities in expression 2 are computed with the transmission rates aij .

4. Accept the proposal with probability min(r, 1).

Letting m denote the average node degree of the network, one iteration of the MH-
algorithm runs in O(m) time.

3 Case study

In this section, we apply our model to explore the diffusion of the IE languages in South
America, and interpolate probable evolutionary histories of how they have expanded their
geographical area.

3.1 Network and diffusion model
We segmented the landmass of South America into a regular grid, each grid cell representing
a node in the network. The Moore neighbourhood gives the transmission rate between cells:
each cell may copy the state from its eight neighbours or itself with equal probability. Cells
can take two states:

k = 0 ... an indigenous language occupies the cell
k = 1 ... an IE language occupies the cell
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3.2 Data
The data comprise the geographical distributions of languages in 1510, the time of the first
invasion, and 1990, the modern geographical distribution[1]. We included additional European
arrivals between 1510 and 1990 from the literature. For example, the Spanish arrived in
Santa Marta, modern-day Colombia, in 1525, and we fixed the state of the corresponding
grid cells to 1 in the spatial distribution for this year.

3.3 Results
Figure 1 shows the posterior probability of the IE languages reaching each grid cell by 1550,
1750, and 1950. The IE languages gradually spread inland from the initial points of arrival
at the coast. Figure 2 shows the posterior distribution of the arrival of the IE languages to
selected cities along the Amazon basin.

Figure 1 Posterior distribution of IE languages reaching each grid cell by 1550, 1750, and 1950.

4 Discussion

In this paper, we presented a Bayesian model to interpolate the evolutionary history of a
spatial diffusion process between two points in time with known geographic distributions. In
a case study, the model showed likely scenarios of how the invasive Indo-European languages
drove the indigenous languages of South America out of their original habitat.

In contrast to the conventional CA models, the model is fully Bayesian and returns a
posterior distribution of possible evolutionary histories instead of just a single best history.
In the case study, the model revealed the posterior probability of the IE languages reaching
locations in South America between 1510 and 1990. Moreover, one can easily add prior
information to Bayesian models and estimate the posterior distribution of potential evolution-
ary histories considering all available knowledge in a principled way. In the case study, for
example, we added the locations of additional European entries to South America between
the two known times in history.

In our model, the transmission rate reflects the influence of Geography on spatial diffusion.
Since Bayesian models return a full posterior distribution, we can compare models with
different transmission rates, e.g. using the Bayes factor, and evaluate the effect of geographic
hypotheses on the diffusion process. For example, geographical barriers such as mountains
and rivers might hinder the diffusion of languages, blocking the displacement of human
groups. We could model this influence with lower transmission rates in mountainous terrain.
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Figure 2 Posterior distribution of the arrival of IE to selected cities.

Another possible extension includes mutation events, where a node may acquire a state
not shared by any of its neighbours with a non-zero probability. Modelling the mutation
event will enable the inference of an unrecorded arrival of an IE language not included in
the data. Comparing two models with and without the mutation event could show whether
today’s geographical distribution has been formed by continuous diffusion or discontinuous
state change. Since the geographical distribution at a given time still only depends on that
at the previous time, including the mutation event does not violate the assumptions of a
Markov process.

5 Conclusion

We present a method to infer potential histories of a spatial diffusion process between two
points in time with known spatial distributions. We applied the method to infer the history of
the IE languages spreading and displacing the indigenous languages in South America. Our
method is more broadly applicable to infer the evolutionary history of geographic diffusion
phenomena from incomplete data, frequently occurring in GIScience.
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Abstract
Affordances are an important basis for many human-environment interactions such as navigation or
geo-design. In this short paper we present an approach to modelling affordances based on treating
affordances as emergent phenomena in an agent-based simulation. We use the notion of an affordance
schema to represent the setting in which the emergence of an affordance is made possible. We use
a case study to show that (unexpected) affordances emerge during the course of the simulation.
While the general approach is promising and may be used for other emergent phenomena such as
landmarks, we also acknowledge and discuss the problems incurred during the modelling process.
The paper closes with a reflection and some ideas for future work.
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1 Understanding human-environment interaction: the modelling
challenge

In this short paper we present our recent work on how to model affordances, which are
important for many human-environment interactions such as for example navigation or geo-
design. Understanding how humans interact with their environment is part of understanding
decision-making. Affordances, according to Gibson [3], are what the environment offers
the individual in terms of interaction. Seen from the individual’s perspective, affordances
represent potential actions tied to specific objects, subjects or groups of objects, but also
tied to the current status, knowledge or beliefs of the individual.

Modelling affordances is not a new endeavour and a proper overview does not fit into this
paper. Extensions such as [10] introduce cognition into the theory of affordances. However,
all implemented approaches so far (see for example [14], [17] or [8]) treat affordances as
properties or functions of an object or as properties of the individual-object relationship as
a whole. This solution does not satisfy the emergent nature of affordances as described by
Gibson.

Sahin et al. [13] define affordances from an agent’s perspective within the context of
robot control. Their approach is different in that it acknowledges the dynamic nature
of the affordance and treating it as a relation between equivalence classes. In robotics,
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computational models of affordances have gained a new impetus as evidenced by several
overviews in recent years ([19], [1]) and a recent special issue ([11]). However, these approaches
do not (yet) provide high-level action information, remaining at the level of interpreting
sensory-motor sensor input, which is very different from our focus on understanding and
modelling affordances in human-environment interaction.

According to Gibson [3] affordances are perceived immediately without any reasoning, i.e.
they emerge from the dynamic relationship between individual and object. While Gibson
hypothesised that this perception is inborn, other ecological psychologists such as Neisser
[9] argued that the perception of action potentials is a result of a cyclical learning process.
While this discussion needs to be solved (preferably by psychologists), our concern is with the
modelling of the, let’s call it, mechanism of how affordances are supposed to work, assuming
that affordances are emergent phenomena as posited by Gibson.

The moniker of emergence originally stems from systems theory, where it describes
an observable phenomenon that was not originally visible or predictable by observing the
different parts that constitute a system. In our case the system consists of a human and an
environmental object (object collection) as well as their interaction. The interaction is the
observable result of realising the action potential of the affordance. There may be several
affordances providing distinct action potentials in any given agent-object pairing.

From a computational point of view the question arises how an emergent phenomenon
may be modelled at all. By its nature a phenomenon emerges during the model run and
should not be explicitly represented in our model. Can we then model a system in which we
increase the probability of an emergent phenomenon occurring? We approach this question
by changing from an analytic (property-oriented) paradigm to an agent-based constructive
paradigm.

2 Changing the perspective: an agent-based approach

Agent-based modelling has been shown to be able to capture emergent phenomena resulting
from the interactions of individual entities [2]. Emergent phenomena in agent-based models
are patterns, structures and behaviours that were not explicitly implemented in the model, but
arise through agents’ interaction. An agent-based model consists of dynamically interacting
agents that use rules for their own behaviour [7]. Such models are commonly used to analyse
complex systems that are characterised by a large variety of components that interact with
each other. In the case of modelling for emergent affordances, we need to determine the rules
agents follow that require some interaction with an entity, the constraints under which an
interaction may take place and the entities that may represent interaction partners. This
kind of interaction follows a pattern that is akin to a schema in cognitive science [4].

2.1 Using schemata to model affordances
Neisser [9] states that humans use schemata to make sense of their surroundings and to
minimise the facts they need to memorise. Rumelhart calls schemata the “building blocks of
cognition” [12]. Consider that you know the schema underlying the concept of a “bridge”,
then there is no need to memorise every bridge that you encounter. You will have learned
that a bridge is an instance of the link schema that allows you to connect and move between
two areas using a direct path. Schemata are recurring structures we learn that help us to
establish patterns of understanding and reasoning.

We will show that the implementation of an affordance schema provides an answer to
the modelling challenge, i.e. the emergent nature of affordances. In this implementation the
affordance schema serves as a kind of template for generating an affordance at simulation
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run-time. While the notion of an affordance schema originally served as a means to make
interactions visible and tractable [5], we can show in this paper that it also satisfies the
question of how to model emergent phenomena. The notion of a schema allows for the
required flexibility in matching the needs of the agent with the required properties of the
environment, thus not only allowing a single affordance to emerge, but producing a collection
of potential actions, including those that are unexpected or may be wrong (false affordances).
As Withagen et.al. [18] discuss, there must be a way of capturing that affordances also invite
behaviour not merely provide potential actions.

In our implementation, agents possess a list of affordance schemata for each of the activities
they may carry out. We define an affordance schema as a 3-tuple 〈EType,condition,fpriority〉
composed of

an Entity type EType,
a condition that expresses constraints under which the affordance can be generated, and
a number called fpriority that assigns a priority or preference to the combination of agent
and potential interaction partners.

During run-time an affordance 〈a, e, act, p〉 is generated, where a stands for the agent, e
stands for environmental object, act describes the activity the agent intends to perform and
p stands for preference, allowing a means of differentiating between otherwise equivalent
affordances.

Figure 1 Activity graph of affordance-enabled agent.

Figure 1 shows the activity graph of the agent where, after selecting an activity, first the
affordances are determined and then the interaction partner is selected. A detailed account
of the implementation may be found in [6] and on github2.

2.2 Case study: a visit to the park
We are applying the approach discussed above to a case study of visiting a public park. We
focus on the act of walking into a park and needing to find a place to perform a specific
activity there ([15], [16]). As an example we take the specific activity of sitting to take a
break with the option of drinking some water. The question arises which objects in the park
offer the affordance for sitting as well as drinking some water. As shown in [6] it is necessary
to break down the conditions for the activity in terms of attributes of the environmental
object tempered by knowledge about the agent. For example, in order to be able to sit, there

2 https://github.com/sabinetimpf/emergentAffordances
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must be an object or configuration there that affords sitting, which means a relatively flat,
stable surface with a certain minimal size. There should be a differentiation into required
and optional properties.

In contrast to an implementation based purely on an object’s properties, in our imple-
mentation the properties are expressed as a function of the agent’s properties, i.e. the ’certain
size’ is expressed in terms of an agent’s size, the ’stable surface’ may take the agent’s weight
as parameter, and the ’relatively flat surface’ may take preferences of the agent into account.
Please note that this customisation is only possible because of the agent-based approach that
allows tying agent and interaction object together at run-time. This allows for the affordance
to truly emerge as an individual trait between agent and object.

Figure 2 Situation of park scenario at run-time.

Figure 2 shows a detail of the simulation situation, where an agent has chosen to sit on a
relatively low concrete band surrounding a water feature. This interaction partner is unusual
but perfectly fine for the purpose of sitting and drinking some water. Of course, we did not
specify that the water in the water feature might not be safe to drink for humans.

While the current results of the implementation are encouraging, we must note that it is
quite time-consuming to put into constraints all required and optional properties of agent
and objects within an activity context for physical affordances; And as the example shows, it
is easy to forget specific aspects. However, we believe that this example shows the flexibility
of using affordance schemata to model human-environment interactions that also allows the
emergence of affordances in the original sense of Gibson, as we interpret it.

3 Reflections and future work

In this research-in-progress we have used affordance schemata as patterns that generate
affordances during an agent-based simulation. This version of modelling affordances seems
to be closer to the original idea of Gibson, who saw affordances as emerging phenomena. We
have implemented this approach, thus showing proof of concept. We are currently working
on a more detailed and extensive implementation of the park use scenario. However, there
should be a better way of defining the constraints and ensuring their completeness.

One endeavour for the future is to formally define activities and their actions as well as
the needed properties for an activity to be carried out successfully. While we have extensive
observations of park behaviour to help us with the formalisation, this might not be true for
other spatial behaviours. Our approach using schemata is promising also for modelling other
emergent phenomena such as landmarks or resilient objects, which is an avenue we would
like to explore in the future.
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Abstract
When we navigate into interactive multi-scale maps that we call pan-scalar maps, it is usual to feel
disoriented. This is partly due to the fact that map views do not always contain visual cues of the
location of the past map views of the navigation. This paper presents an online study that seeks
to understand and measure this disorientation occurring when zooming in or out of a pan-scalar
map. An online study was designed and more than 150 participants finished the survey. The study
shows a very small difference between the time to succeed in the memorising task after a zoom and
a pan, but the difference is more significant when we compare zooming in with a large scale gap to
panning. The study also shows that disorientation is not similar when zooming in and zooming out.

2012 ACM Subject Classification Applied computing → Cartography

Keywords and phrases disorientation, zoom, pan, multi-scale map, desert fog, user survey

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.73

Category Short Paper

Supplementary Material Software: https://doi.org/10.5281/zenodo.7561925

Funding Guillaume Touya: this project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 101003012 - LostInZoom).
Justin Berli: this project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 101003012
- LostInZoom).

Acknowledgements The authors want to thank all the anonymous participants of the FogDetector
survey

1 Introduction

When we use pan-scalar maps, i.e. interactive, zoomable, multi-scale slippy maps [5], it is
usual to experience disorientation when zooming in and out. As the use of these pan-scalar
maps is quite recent, we do not really know much about this disorientation feeling. Between
two zoom levels, particularly when they are not consecutive, the style and content can change
drastically, which does not completely remove the visual cues but reduces their number:
zooming from one scale to the other might thus cause disorientation [13].

The consequences of pan-scalar disorientation cannot completely be compared to geo-
graphic disorientation. People do not stop using pan-scalar maps because of this disorientation.
But it can force us to zoom out (or zoom in if we were zooming out), or at least cause a delay
in our use of the map. Disorientation makes the pan-scalar map exploration a more tedious
task. Though the need for more research on pan-and-zoom interactions with maps was
identified almost twenty years ago [6], disorientation is still significant in current pan-scalar
maps. Our long-term goal is to design pan-scalar maps where interactions are smooth or
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Table 1 Distribution of the ages of the 160 remaining participants after the cleaning step.

18-24 25-34 35-44 45-59 60+ no answer
nb of participants 12 41 39 51 16 1

fluid [3]. But before designing better pan-scalar maps, we argue that it is necessary to better
understand disorientation, to know when and how much a map reader can be disoriented.
Montello defines geographic disorientation as a phenomenon occurring “ when people are
aware they are not certain about where they are and/or where they need to go to get to their
destination.” [9]. In this definition, we can see two components of disorientation, the objective
uncertainty about where we are, and the subjective awareness of this uncertainty [4]. When
it comes to the virtual disorientation occurring during the exploration of a pan-scalar map,
it can be modelled as a reconciliation problem between the visual cues in the current map
view and the mental map of the user [13]. There are different forms of a failed reconciliation,
i.e. disorientation, and different causes [2]. In this paper, we present a user survey that seeks
to measure disorientation. The desert fog effect identified in human-computer interaction
[7] is one of the possible causes, hence the name of the presented survey. The desert fog is
the disorientation occurring in multi-scale interactive environments when the current view
does not contain visual cues referring to the past views. From a cognition perspective, this
disorientation could be caused by change blindness[14] as the display changes after a zoom,
or inattentional blindness [11], the map readers cannot focus their vision on all the details in
the map. More generally, this disorientation can be related to limits of our visual working
memory [10]. The paper is structured as follows. The survey is presented in Section 2.
Section 3 presents and discusses the survey results.

2 The FogDetector survey

2.1 Hypotheses
There are many interactions possible with an interactive pan-scalar map [12], but we are
only interested here in the two main displacement interactions available in such maps: pan
and zoom. When you switch the layers of the map or change the style of the base map,
disorientation can also occur but this case is beyond the scope of this study. Based on our
understanding of the disorientation phenomenon, we make the following hypotheses:

it takes longer to know where you are after a zoom, than after a pan (H1).
disorientation occurs differently when zooming in and zooming out (H2).
there is more disorientation when the scale difference is bigger (H3).
the style and generalisation have an effect on the intensity of the desert fog (H4).

2.2 Participants and Apparatus
We tried to select a purposeful sampling for the participants of the survey, i.e. a sampling
that represents the envisioned end-users. As anyone can be a user of a pan-scaler map,
we wanted users with very diverse ages and experiences with interactive cartography. 160
participants were recruited online. There is a fairly good distribution of ages which confirms
that it is a purposeful sample (Table 1). However, the gender distribution is skewed with 98
men, 53 women and 9 who preferred not to answer.

Table 2 shows the declared usage of pan-scalar maps by the participants of the survey.
The distribution is clearly skewed towards the regular use of such maps. Though we do not
have data on the use of such applications by the general public, our sample seems to use
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Table 2 Distribution of the declared usage of pan-scalar maps by the 160 remaining participants
after the cleaning step.

every day once a week once a month almost never no answer
nb of participants 82 55 16 4 3

Figure 1 Three of the chosen targets, a building at zoom level 17 on the left, a crossroad at zoom
level 12 in the middle, and a point of interest (a fountain in a square) at zoom level 17 on the right.

maps more regularly. Both to deal with potential COVID-related limitations and to access
our purposeful sample, we opted for a fully online survey, based on a web application. The
code of the application is openly accessible on Github1. The data are collected anonymously
to follow the guidelines of GDPR legislation.

2.3 Procedure
The FogDetector survey follows a within-subject design, i.e. the participant carries out the
task for all variable conditions, and even several times for each variable condition. The
main variable of the survey is the interaction techniques performed before the task: either
a zoom or a pan. Each of the techniques can be decomposed into several sub-techniques.
A zoom can either be a zoom-in or a zoom-out and can cover a large scale gap (4 zoom
levels difference) or a small scale gap (2 zoom levels difference). To balance the number of
interactions, panning is also divided into two sub-techniques, panning at a large scale (zoom
level 17) and panning at a small scale (zoom level 12).

In order to address (H4), the other variable in the survey is the pan-scalar map used
to perform the task. Three maps were selected: Plan IGN, OpenStreetMap, and IGN
classic. IGN classic is composed of scanned paper topographic maps produced by IGN.
Plan IGN is a new map designed by IGN as a pan-scalar map with a consistent style across
scales to reduce disorientation. Finally, OpenStreetMap is the default OpenStreetMap
pan-scalar map.

As disorientation can be caused by a loss of visual cues, we selected a task that requires
the use of visual cues to be completed. We designed a recall task [1] where a target is shown
on a map for 30 seconds. Then, the map switches to a different map view, and an animation
navigates from this map view to the area of the target, with one of the sub-techniques (zoom
or pan). Then, the user has 60 seconds to click on the location where they recall the target.
The interaction is passive to make sure the participants directly go to the good view, at the
cost of realism. The success of the task is assessed by the time of completion. The 31 targets

1 https://github.com/LostInZoom/lostinzoom-experiments
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Figure 2 (a) Box plot of the click time according to the interaction (pan or zoom). (b) Box plot
of the click time according to the type of zoom. The red diamond shape shows the mean value.

are either buildings, crossroads, or points of interest (e.g. a specific symbol on the map, the
centre of a lake, etc.) (Figure 1). The procedure is composed of a training phase, 2 blocks of
8 trials where all the sub-techniques are proposed to the participant with the same map, and
3 blocks of 6 trials where the three map designs are proposed, in order to compare them.

3 Results

Figure 2a shows the results of task completion time for pan vs zoom interactions. The
difference of median time is 312 milliseconds (2.921 s for pan, and 3.233 s for zoom). A one-
way repeated measures ANOVA was performed to compare the effect of general interaction
techniques (pan or zoom) on task completion time. The ANOVA revealed that there was
no statistically significant difference in mean completion time between the two groups
(F (1, 158) = [0.676], p = 0.41). These results invalidate (H1) in general, as the time difference
between all types of zoom and all types of pan is not statistically significant. Figure 2b shows
the results for the completion time difference between pan, zoom-in and zoom-out. The mean
time for zoom-in is 4.866 s (median = 3.257), which makes a 218 milliseconds difference
with pan (336 ms for the median). The mean time for zoom-out is 4.573 s (median = 3.104),
which makes a -75 milliseconds difference with pan (183 ms for the median). A one-way
repeated measures ANOVA was performed to compare the effect of interaction techniques
(pan, zoom in, or zoom out) on task completion time. The ANOVA revealed that there was
not a statistically significant difference in completion time between two groups, though the
p value is not too important (F (2, 346) = [1.747], p = 0.17). (H2) is not validated by this
result but the difference we can observe is not the one we expected, because if zooming in
seems to cause more disorientation than panning, zooming out appears to be an easier task.

Figure 3 shows the box plot of the completion times for each type of precise interaction:
pan at small scale, pan at large scale, zoom in with a small scale gap, zoom in with a large
scale gap, zoom out with a small scale gap and zoom out with a large scale gap. Results
about (H3): A one-way repeated measures ANOVA was performed to compare the effect of
the six precise interaction techniques on task completion time. The ANOVA revealed that
there was a statistically significant difference in completion time between at least two groups
(F (5, 790) = [5.550], p = 0.00005). A post-hoc Tukey test found that the mean completion
time value was significantly different between the two zoom-in interactions. These results
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Figure 3 Box plot of the click time according to the precise interaction used in the trial.

confirm (H3) for zoom-in, with a completion time significantly higher when the scale gap
is large. But the hypothesis is not confirmed for zoom-out where no significant difference
was found in the Tukey test. These results also partially validate (H1) and (H2). Indeed,
the mean time difference of 506 milliseconds between zoom-in large gap and pan large scale
is statistically significant, but the difference between both zoom-out interactions and the
others are never statistically significant.

To verify (H4), we also looked at the differences in time completion between Open-
StreetMap and both IGN maps. A one-way repeated measures ANOVA was performed to
compare the effect of the map on task completion time. The ANOVA revealed that there
was no statistically significant difference in mean completion time between the three groups
(F (2, 316) = [1.020], p = 0.36).

4 Conclusion and future work

To conclude, the FogDetector survey allows a first measure of the disorientation occurring
during a zoom interaction in a pan-scalar map, more than with a pan interaction. But the
difference is only measured as significant when the scale change is large during a zoom-in.
Surprisingly, the survey does not show any significant difference for zoom-out, probably due
to the visual complexity of the maps displayed after our zoom-in interactions, compared
to the maps displayed after a zoom-out. The survey shows no influence of the three maps
used in the survey, so disorientation will not be significantly reduced just by adjusting the
multi-scale style and content of the map.

To go further, the survey confirmed that the impact of disorientation was generally
comparable to the duration of the pre-attentive phase of visual search [8], i.e. the time
before we are able to focus our gaze on some target, and future studies should use quicker
tasks, where pre-attention is even more crucial. One of the problems with our protocol is
the fact that the interaction was passive, and we would like to perform a survey with active
explorations from the user. Another direction is to couple a recall task with eye-tracking
to measure cognitive load [15], as disorientation can be seen as a cause of cognitive load.
Finally, as our final goal is to reduce disorientation, this survey is a first effort to work on
pan-scalar design [5], but we know that just changing the style will not be sufficient.

GISc ience 2023
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Abstract
Index-based measures of social vulnerability to environmental hazards are commonly modeled from
composites of population-level risk factors. These models overlook individual context in communities’
experiences of environmental hazards, producing metrics that may hinder spatial decision support
for mitigating and responding to hazards. This paper introduces an interpretable, high-resolution
model for generating an individual-oriented social vulnerability index (IOSVI) for the United States
built on synthetic populations that couples individual and social determinants of vulnerability.
The IOSVI combines an individual vulnerability index (IVI) that ranks individuals in an area’s
synthetic population based on intersecting risk factors, with a social vulnerability index (SVI)
based on the population’s cumulative distribution of IVI scores. Interpretability of the IOSVI
procedure is demonstrated through examples of national, metropolitan, and neighborhood (census
tract) level spatial variation in index scores and IVI themes, as well as an exploratory analysis
examining risk factors affecting a specific sub-population (military veterans) in areas of high social
and environmental vulnerability.
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1 Introduction

Measuring and monitoring communities’ social vulnerability to environmental hazards is
a key consideration for planning decision support [19]. Social vulnerability (SV) broadly
describes a population’s collective potential for impacts from adverse events and circumstances
[1], including natural hazards [3], technological hazards [10], and social determinants of
health [18]. Measuring SV is complex, encompassing many conditions of everyday life,
including demographics, socioeconomic status, living arrangement, housing, and mobility,
that contribute to differential risk of harm or loss for communities exposed to a hazard [25].

Modeling SV often involves distilling multiple risk factors into composite indices that
provide high-level characterizations of SV in an area of interest [5]. SV indices serve as
entry points for more detailed analysis, including through descriptive characterizations of
population risk [23] and field observations. SV modeling typically combines population-level
variables (e.g., percentage in poverty, median age) into a composite score using dimensionality
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Figure 1 Conceptual illustration representing coupled Individual Vulnerability Index (IVI) scoring
(Panel 1) and Social Vulnerability Index (SVI) scoring (Panels 2A - 2C).

reduction [2] or hierarchical aggregation methods [6]. A downside of these methods is that
they exclusively compare areas’ populations, thereby overlooking characteristics of residents
who are likely to be directly impacted by hazards. In this way, ignoring individual risk factors
in index construction poses challenges for the interpretability – and therefore actionability –
of population-level SV models [11, 20].

This paper introduces an initial model for constructing an individual-oriented SV index
(IOSVI) for the United States. The IOSVI supports greater interpretation of how individual
vulnerability contributes to SV at the high spatial resolution of census tracts (1200 - 8000
people). The IOSVI is estimated from virtual or synthetic populations generated on public-use
census microdata. Relative to model interpretability paradigms [13], the mechanisms for
producing IOSVI are both transparent – built on open data and easily demonstrable [4] – and
decomposable in that any one individual’s level of vulnerability may be understood within the
context of community SV, and vice-versa. As a result, the IOSVI is also interrogable, lending
to post-hoc analysis (exploration, visualization) of individual/community characteristics
within the context of SV.

2 The Individual-Oriented Social Vulnerability Index (IOSVI)

Individual “function-based” vulnerability is measured from intersecting risk factors that
describe a person’s daily sensitivities and may compound to affect their health and safety in
adverse circumstances [17]. Common risk factors are tied to reduced socioeconomic status,
living arrangement and age sensitivity, cultural sensitivity, and issues of housing and mobility
[6]. Building upon the concept of function-based vulnerability, the IOSVI has two components:
an Individual Vulnerability Index (IVI), which is a tabulation of the number of risk factors
attributed to a member of an area’s population, and the Social Vulnerability Index (SVI),
which describes the cumulative distribution of the IVI within the area’s population. The IVI
can be a simple count of risk factors, but it can also be a hierarchical or weighted tabulation
in instances where different categories of risk factors are of interest.

Figure 1 displays the cumulative distribution of resident IVI, ranked from low to high,
for three hypothetical neighborhood areas. SVI can be measured as the difference in the
areas under the curve (AUCs) between an area’s observed cumulative IVI distribution and
a reference distribution based on a hypothetical population in which no individuals are
characterized by the risk factors of interest. A larger observed AUC corresponds to lower SVI,
since 100% of the cumulative proportion of population occurs at a low IVI score threshold
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(panel 2A). The reference AUC, which equates to the total number of possible risk factors, is
included in the SVI computation to ensure proper directionality of the scores (i.e., low scores
→ low social vulnerability; high scores → high social vulnerability).

3 Methods

The IOSVI was developed through Oak Ridge National Laboratory’s (ORNL) UrbanPop
project. UrbanPop uses a regularized version of the Iterative Proportional Fitting (IPF)
algorithm [16] to produce attribute-rich synthetic populations matched to large volumes of
variables from the American Community Survey (ACS), the U.S. Census Bureau’s primary
intercensal product [22]. Toward developing IOSVI, this enables creating customizable
representations of individuals in census tracts across the United States with respect how they
embody risk factors contributing to SV. A series of 30 replicate synthetic populations for the
development of IOSVI were produced for the United States, constrained on the ACS 2019
5-Year Estimates by adapting 14 risk factors identified by the Center for Disease Control
and Prevention’s (CDC) [6] at the individual level: socioeconomic variables including
income below poverty, unemployment, and less than high school educational attainment;
living arrangement variables including age over 65, age under 18, single-adult caregiver
households, and disability status; cultural sensitivity variables including racial/ethnic
minority status and limited English proficiency; and housing/mobility variables including
multi-unit structures, mobile homes, household crowding, group quarters residency, and lack
of a personal vehicle. SVI was computed at the tract level for each synthetic population
replicate, following the method presented in Section 2. The final IOSVI was then computed
as the Monte Carlo estimate (mean) of the replicate SVIs.

4 Illustrations

4.1 Visualizing Spatial Variation in the Social Vulnerability Index
Figure 2 maps the spatial distribution of IOSVI across the continental United States (panel
A) and demonstrates visual interpretation of IOSVI for a portion of the Houston-The
Woodlands, Sugar Land, TX Metropolitan Statistical Area (Houston MSA) (panels B, C).
In panel C, each census tract’s SVI score breaks down to four themes, identified via Multiple
Correspondence Analysis (MCA), that describe the blend of risk factors best describing each
profile of individual characteristics within the Houston MSA’s synthetic population.

4.2 Examining Coupled Individual-Social and Environmental
Vulnerability

A case study of intersecting individual, social, and physical (environmental) vulnerabilities was
developed to demonstrate post-hoc exploratory analysis of the UrbanPop model underlying
IOSVI. This example, developed for the Houston MSA, concerns a specific sub-population,
U.S. military veterans. In emergency and disaster scenarios, veterans may experience
pronounced problems of housing and livelihood recovery that impact mental and physical
health [9, 15]. ACS provides indicators of veteran status for individuals age 25 and over,
which were included as constraints for the UrbanPop model, then used to produce an indicator
of veteran status in the synthetic population.

The exploratory analysis examines the association between veteran risk factors used to
compute the IVI in combination with residency in high IOSVI - high physical vulnerability
census tracts. Physical vulnerability was represented by a composite measure of annual

GISc ience 2023



74:4 Interpretable Index of Social Vulnerability

Living Arrangement Sensitivities
Communication/Mobility Sensitivities

0 0.3SVI

IVI Theme

A B

C

Few Risk Factors

Independent Living Sensitivities

0.25

0.2

0.15

0.1

0.05

SVI

Figure 2 Mapping IOSVI to census tracts for the continental United States (Panel A), regionally
(Panel B), and in neighbhorood context relative to individual vulnerability index (IVI) themes (Panel
C) (glyph plot methodology adapted from [14]).

A B C

Figure 3 Overview of exploratory analysis of Individual-Oriented Social Vulnerability Index
(IOSVI) for the Houston MSA. Panel A: IOSVI; Panel B: Composite annualized frequency score
(AFS) of natural hazards from National Risk Index (NRI); Panel C: Bivariate Local Moran’s I
(BVMI) clusters for AFS by IOSVI. Abbreviations: H = High, L = Low, NS = Not Significant.

frequency of 18 hazard types for each census tract in the U.S. from the Federal Emergency
Management Agency’s (FEMA) National Risk Index (NRI) [26]. Bivariate Local Moran’s
I [12] was used to identify clusters of tracts in Houston with differing high (H) and low
(L) combinations of social and physical vulnerability. For the subset of veterans in each
tract’s population, the association between IVI risk factors and residency in a high social
vulnerability/high physical vulnerability (HH) tracts was evaluated against all other tract
types, including non-significant (NS), using multinomial log-linear regression, a method
specialized for dependent variables with multiple categorical labels [24].

Figure 4 reveals that risk factors frequently linked to uneven disaster recovery such as
minority race/ethnicity and poverty [7, 8] were consistently associated (coefficient < 0)with
veterans living in HH tracts in the Houston MSA, as were limited mobility (no car), less than
high school education, disability status, single-caregiver households, and housing density
(10+ units in structure).
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Figure 4 Multinomial regression coefficients and significances, BVMI (AFS by IOSVI) tract types
by IOSVI risk factors for U.S. military veterans age >= 25 (base: high IOSVI - high AFS tracts).
Abbreviations: H = High, L = Low, NS = Not Significant.

5 Conclusion and Outlook

Preliminary development of the individual-oriented social vulnerability index (IOSVI) on
synthetic populations suggests enhanced interpretability (transparent, decomposible, inter-
rogable) over existing methods that measure social vulnerability on population-level data
alone.

Illustrations provided for the Houston MSA (Sections 4.1, 4.2) demonstrate the various
ways that IOSVI may be examined: in national context, within census tracts, and for
specific sub-populations (e.g., U.S. military veterans) in areas of high social/environmental
vulnerability. Together, these insights may benefit more direct understanding of the spatial
planning and policy interventions appropriate for addressing natural and technological hazards,
as well as environmental determinants of health, at the neighborhood and community scales.

The primary limitation of IOSVI is the complexity of its design: large compute resources
are required to generate and attribute synthetic populations, as well as estimate SV scores.
This could be alleviated by developing an analytics platform for processing user requests
and facilitating exploratory analysis, as well as supporting index development for custom
geographies.
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Abstract
In this paper, we are introducing an efficient method based on the GIS technology, to design data
immediate and analysis-ready mapping from open GIS and remote sensing data, vector and raster
data into a single visualization to facilitate fast and flexible mapping, also referred to as ATLAS
maps. The Google Earth Engine approach is used to pre-process the satellite data, while ArcGIS
software is to integrate all the data layers. Since the ArcGIS software is included as a default
dependency in GIS and remote sensing data, the proposed method provides a cross-platform and
single-technology solution for handling flood mapping. For now, we conducted flood analysis using
the latest open data for Pakistan and Nigeria countries, then elaborated on the advantages of each
data for flood mapping with respect to inundated areas, rainfall analysis, and affected populations,
health, and education facilities. Given a wide range of tasks that can benefit from the method,
future work will extend the methodology to heterogeneous geodata (vector and raster) to support
seamless and make it automatic interfaces.
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1 Introduction

Urban flooding is a serious issue in many cities across the world. They cause significant losses
in terms of lives, possessions, buildings, and means of subsistence [2]. In 2022, Pakistan
and Nigeria experienced severe flooding in various regions due to their topography and
monsoon season, resulting in loss of life, property, and infrastructure. The use of Geographic
Information Systems (GIS) and remote sensing techniques can be a valuable tool in mapping
and analyzing the extent and impact of the flood. Also, social media and crowdsourcing
applications have enabled real-time data collection from citizens in flood-prone areas. This
data on integration can create situational awareness maps and inform emergency response
efforts. Then this information can be used to model flood scenarios and assess the potential
impact on communities and infrastructures. But when comes to integrating or fusing all
data layers, it makes managing and monitoring floods very challenging. Therefore, in every
flood-prone area, a thorough assessment of floods is crucial. In order to analyze flood
inundation, this work shows a logical framework based on Sentinel-1 Synthetic Aperture
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Radar (SAR) data, which is then integrated with GIS data to produce flood ATLAS maps.
A collection of different maps of the Earth or a particular area of the Earth is called an
ATLAS. The maps in ATLAS display geographical characteristics, local topography, and
political boundaries. Additionally, they provide information on a region’s social, religious,
and economic statistics [1]. The availability of open data and open-source GIS software has
made flood ATLAS mapping more accessible to researchers, policymakers, and citizens. This
has enabled the development of community-based flood management strategies and increased
public participation in disaster risk reduction. By providing a comprehensive visualization
of the flood impact, the ATLAS maps can also help to raise awareness among the public
about the severity of the flood and the need for action to mitigate its effects [4]. This study
first creates ATLAS flood maps of various factors in each province of Pakistan, including
population, inundated areas, and rainfall analysis. In addition, it includes an ATLAS map
of the torrents of Dera Ghazi (DG) Khan, depicting the water flow patterns in the region.
DG Khan is a district located in the southern part of Punjab province, Pakistan, and is
known for its rugged terrain and arid climate. The district is prone to flash floods, which can
cause significant damage to the local communities, agriculture, and infrastructures in Punjab
province. It includes a post-flood analysis showing inundated areas and affected populations,
schools, and hospitals for each state of Nigeria. In the following, there is more detail of data
and methodology in Section 2. The ATLAS maps for the flood-2022 are shown in Section 3
following the conclusion in Section 4.

2 Framework

Following Figure 1, a methodology for creating the ATLAS maps of flood disasters using
remote sensing and openly available GIS data is shown. The main step in the process is to
collect the necessary primary and secondary data. Primary data consists of Sentinel images
downloaded from GEE, which provides free access to a wide range of remote sensing data.
The data are obtained for August and October 2022, which is typically the peak monsoon
season in Pakistan [3] and Nigeria, respectively.

Figure 1 Framework for ATLAS Mapping.

The secondary data and modeling outputs from different data sources (Figure 1) are used to
compile geospatial maps. Data used in the maps are also showing the importance of open
data for flood mapping in emergencies.
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The methodology’s most crucial step is identifying the flooded areas by processing Sentinel-1
SAR data. The JavaScript programming language, which is directly integrated into the GEE
interface, is deployed in this part. In addition to image processing, analysis of images, result
visualizing, and result exporting, it covers command declaration tasks for importing image
data to the platform. Pixel values from pre- and post-flood imagery have been obtained
and compared for this investigation. A difference makes it easier to distinguish between
pixels that represent areas that are flooded during the flood season and those that represent
permanent water bodies like rivers and wetlands. The following describes the GEE flood
mapping and inundated area computation methodology: the Sentinel-1 data package and
study area boundary have been imported to GEE in the first step. In the next step, the
time frame and sensor parameters were specified for this study. For Pakistan, the base
period selected for flooding area comparison is from the 6th to the 27th of August, while
for Nigeria is from the 13th of October to the 24th of October. By setting periods, the
selection covers the specific season of the selected area. The “ descending” pass direction
and polarization “ VV” of the sensor are the specified parameters. When the pixels that
represented the flooded area were correctly identified, the extent of the flood was calculated.
The key comparison is the variation between the photographs taken before and after the
flood. The flood extent mask is made once the predetermined threshold has been applied,
and the flood result has been improved. ArcGIS has been used to display the flood extent
area data that was obtained from GEE. It is a desktop GIS tool that is cross-platform for
browsing, editing, and analyzing geographic data.
Once the flood inundation layer is created, it is used to calculate the impact of the flood on
populations, schools, and hospitals. This is done by overlaying the flood inundation layer
with other openly available data sources. The impact analysis is carried out using ArcGIS
software, which enabled the calculation of the affected population, schools, hospitals, and
rainfall analysis.
The final step in the process is to create ATLAS maps that visualize the flood inundation
and its impact. This is done using ArcGIS software and involved selecting an appropriate
symbology and colors for the map and adding labels and legends. The ATLAS maps are
designed to be visually appealing and easy to interpret with clear information. In conclusion,
the methodology for creating the ATLAS maps of flood disasters in Pakistan and Nigeria
involved collecting remote sensing and open source data, processing and analyzing the data
using ArcGIS software, and finally visualizing the extent of the flood inundation and its
impacts. This methodology can create similar ATLAS maps for other regions or different
types of natural disasters.

3 ATLAS Maps

The following ATLAS maps give an overview of all the situations showing population,
inundated area, and rainfall analysis. Starting from Pakistan, the situation in four provinces
has been shown (from Figure 2 to Figure 6) with DG Khan torrent response in Figure
3, showing the situation of water levels/pressures on different water streams, rivers, and
nullahs. Figure 7 glance into the overall status of Nigeria in terms of inundated areas, affected
population, schools, and hospitals.

4 Conclusion

This flood ATLAS summarizes the findings of the post-flood assessment that took place in
Pakistan and Nigeria in 2022. The 2022 floods in Pakistan, affected about 5 million people
in total and an area of about 55,058 km2 has been inundated. We also made an ATLAS map
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Figure 2 ATLAS Map for Punjab Province.

Figure 3 ATLAS Map DG Khan Torrent’s Response.

of Nigeria’s 2022 floods showing the affected population, flood extent, schools, and health
facilities in each state. Future damage assessments of urban areas as well as the delineation
and designation of existing floodplain boundaries, can all be updated by these maps.
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Figure 4 ATLAS Map for KPK Province.

Figure 5 ATLAS Map for Baluchistan Province.
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Figure 6 ATLAS Map for Sindh Province.

Figure 7 ATLAS Map for Nigeria.
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Abstract
Agent-based models (ABMs) are powerful tools used for better understanding, predicting, and
responding to diseases. ABMs are well-suited to represent human health behaviors, a key driver of
disease spread. However, many existing ABMs of infectious respiratory disease spread oversimplify
or ignore behavioral aspects due to limited data and the variety of behavioral theories available.
Therefore, this study aims to develop and implement a data-driven framework for agent decision-
making related to health behaviors in geospatial ABMs of infectious disease spread. The agent
decision-making framework uses a logistic regression model expressed in the form of odds ratios to
calculate the probability of adopting a behavior. The framework is integrated into a geospatial ABM
that simulates the spread of COVID-19 and mask usage among the student population at George
Mason University in Fall 2021. The framework leverages odds ratios, which can be derived from
surveys or open data, and can be modified to incorporate variables identified by behavioral theories.
This advancement will offer the public and decision-makers greater insight into disease transmission,
accurate predictions on disease outcomes, and preparation for future infectious disease outbreaks.
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1 Introduction

In the twenty-first century, society has faced several infectious disease outbreaks, such as
monkeypox, influenza, and the novel COVID-19 [2]. To mitigate these threats, decision-
makers rely on epidemiological models for predicting outbreaks and assessing the impact of
various interventions [1]. Compartmental models, while computationally efficient, struggle
to capture heterogeneous populations, spatial interactions, and individual health behaviors
- key drivers of disease trajectories [8]. An alternative approach is agent-based modeling
(ABM), which explicitly represents behavior and interactions between individual “agents”
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and their environment. ABMs provide the flexibility to assign heterogeneous attributes and
decision-making processes to each agent. In addition, spatial data can be used to represent the
built environment, facilitating the representation of individual movements and interactions
in space [8]. The ability to capture complex behaviors of individuals makes ABM an ideal
approach for better understanding the spread of diseases and supporting decision-making.

Health behaviors, actions that affect disease transmission, are often overlooked or simplified
in existing ABMs. This is mainly due to lack of data to inform agents’ behavioral parameters,
competing theories of health behavior to draw from, and institutional challenges limiting
interdisciplinary collaboration among modelers and domain experts [5]. For instance, Perez
and Dragicevic [14] model the spatial spread of disease without considering behavioral
responses like staying home when sick. Other models impose behaviors on a set of agents
without considering their individual characteristics, beliefs, or perceptions. For example,
Li et al. [10] compare COVID-19 outcomes using scenarios with different percentages of
randomly selected agents who are considered vaccinated. More complex representations of
health behavior range from the use of social contagion of adopting behaviors along a social
network [9], game theory or the rational choice model to inform adoption decisions [17], and
fuzzy cognitive maps [12]. However, in general, most models of disease spread either ignore
or incorporate health behaviors in an ad hoc manner without leveraging behavioral data or
theories. Therefore, a more comprehensive framework that has the potential to leverage both
data and theories for simulating health behaviors in ABMs of disease spread is needed.

Realistically incorporating human behaviors into ABMs of infectious disease spread
demands a combination of data-driven and theoretical approaches. The objective of this
study is to develop and implement a data-driven agent decision framework that improves
the representation of health behaviors in geospatial ABMs of infectious disease spread. The
framework is intended to leverage behavioral data and theories by implementing a logistic
regression model with a geospatial ABM of infectious disease. This is demonstrated by
simulating the spread of COVID-19 and mask-usage behavior among the undergraduate
student population at George Mason University’s (GMU) Fairfax campus in Fall 2021.

2 Methods

2.1 Data
Built Environment Data. The model environment consists of GMU’s Fairfax campus, which
was created using shapefiles obtained from GMU’s open geoportal. Datasets capturing the
buildings, parking lots, walkways, and water features were acquired and updated to reflect
the built environment on campus in 2021. Within each building are sublocations in which
agents interact, for example representing individual classrooms.

Data Informing University Patterns of Life. The agent schedules were generated using
GMU’s course data. All in-person courses offered during the Fall 2021 semester were collected
from PatriotWeb, GMU’s openly available database with a schedule of classes. 2,004 courses
were collected, along with details on their course number, course section, meeting times,
total seats, building and classroom. The data was processed into variables that directed the
agents to enroll in courses that corresponded with their undergraduate program, attend class
at the scheduled times, and travel to their course’s designated building and classroom.

Health Behavior Data. This study utilizes data from a survey conducted in August 2021
that is representative of the United States [16]. The survey gathered information on factors
influencing mask-wearing decisions when masks were optional in the U.S. 3,528 respondents
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Figure 1 A representation of how the agent decision-making framework works.

participated, providing socio-demographic details such as age, gender, ethnicity, income,
political party affiliation, and rural or urban residency. The study exclusively focused on
respondents under the age of 40, resulting in a total of 1,425 participants. Respondents were
asked how often they decided to wear a mask. Odds ratios were calculated to capture the
association between the socio-demographic variables and individuals who would wear a mask
3 or more times a week. The survey results indicated that only income, residence location,
and political party affiliation were statistically significant variables for predicting mask use.

Disease Data for Calibration. The model is calibrated using data obtained from GMU’s
Campus COVID-19 Data Archive. The dashboard includes COVID-19 case, testing, and
vaccine data among the Mason community during the Fall 2021 semester, spanning from
August 16, 2021 to December 17, 2021.

2.2 Agent Behavioral Framework
The proposed agent decision framework determines how agents in a geospatial ABM make
decisions about whether or not to adopt a specific health behavior. A visual representation
of how the agent decision-making framework is applied to the geospatial ABM in this study
is presented in Figure 1. The framework is adapted from the methods presented by Durham
and Casman [4] that uses a standard logistic regression model to calculate the probability
that an agent will adopt a behavior based on four antecedents, defined by the Health Belief
Model. The logistic regression model is expressed in terms of odd ratios, which are informed
by survey data. We modify the methods presented by Durham and Casman [4] to include
the variables that we have recognized from our survey data as important predictors of mask
usage. These variables are outlined in Section 2.1 and are expressed in Equation 1:

p(mask) =
OR0 ·

∏
i ORXi

i

1 + OR0 ·
∏

i ORXi
i

, i = 1, . . . , 3 (1)

The values of i = 1, . . . , 3 denotes each of the independent variables that will be used,
including income, residence location, and political party. ORi is the value of the odds ratio.
Xi is a binary variable that indicates the state of the independent variable where 1 is true
and 0 is false. OR0 is a constant probability when all Xi variables are low. The probability
of behavior, p(mask), is a value from 0 to 1. A threshold is used to determine whether the
individual adopts the behavior. When p(mask) > threshold, the individual will uptake the
behavior, and if p(mask)< threshold, the individual will not uptake the given behavior.
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2.3 Geospatial ABM

The geospatial ABM was developed and integrated with an agent decision framework that
can collectively leverage both behavioral theories and data to realistically implement human
health behavior during an infectious disease outbreak. The model aims to demonstrate this
framework by simulating the spread of COVID-19 and mask-wearing behavior among the
undergraduate population at GMU’s Fairfax campus in Fall 2021.

Agent Characteristics and Scheduling. The model consists of agents representing un-
dergraduate students who were registered for in-person classes in the Fall 2021 semester
and enrolled full-time. University data informed whether the student agent lives on or off
campus, as well as the elective and core courses associated with their undergraduate degree
program. Based on the joint distributions found in the survey data, agents’ demographic
profiles are generated to include three binary characteristics: residence location (rural or
otherwise), political affiliation (democratic or otherwise), and household income (below
$20,000 or otherwise). Given the odds ratios from the survey data and the demographic
profile of the agent, the probability of mask-wearing from 0 to 1 for each agent is assigned.
Additional agent characteristics that affect the disease transmission include health status,
symptomatic status, and quarantine status. The length of the incubation and infectious
periods for infectious agents is determined from a normal distribution informed by COVID-19
literature. All agents are assumed vaccinated as it was mandatory to be on campus during
the Fall 2021 semester.

The model processes discrete time steps representing one second, captures weekly patterns
(Monday-Friday from 7:15am to 11pm), and stops at the end of the semester. Agents follow
their class schedule generated at the initialization of the model, beginning each day at their
home, represented in the model as either a parking lot or a residential building on campus.
They leave for their first class 15 minutes before it starts and travel to each class throughout
the day, updating the building and sublocation where they are located. If an off-campus
agent has no class following their previous one, they go to a student center or gym until the
next class, while on-campus agents have a 50 percent chance of going to a student center/gym
or returning to their dorm. After attending all their classes for the day, agents return home.

Disease Transmission. Since COVID-19 was simulated in the Fall 2021 semester, literature
was used to define the parameters of the Delta variant. There is a probability that susceptible
agents are exposed to the virus if they come in contact with an infected agent, known as the
transmission rate, which is calibrated to 0.05 (see Initial Calibration). However, if the agent is
wearing a mask, then the transmission rate is reduced by 50% [6], resulting in a transmission
rate of 0.025. Additionally, all susceptible agents have a 0.02 off-campus transmission rate, a
value obtained from other disease spread models on a university campus [6].

Once an agent becomes exposed, they remain in the exposed stage for an average of
4.41 days, after which they have an 85% chance of becoming symptomatic [18, 13]. Both
symptomatic and asymptomatic agents stay in the infectious period for an average of 8
days [7]. However, this infectious period includes a pre-symptomatic stage of two days
because individuals can spread the virus 48 hours before symptoms appear [15]. After the
pre-symptomatic stage, symptomatic agents begin to quarantine, meaning they do not go
to campus until their infectious period has ended, where asymptomatic agents continue to
follow their schedules [15]. Individuals have immunity for 90 days, which implies that agents
remain in the recovered period for that length of time since they cannot be re-infected [3].
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Health Behavior Framework. At the initialization of the model, agents decide to wear a
mask for the period of a semester based on their demographic profile. A logistic regression
model for each agent determines based on the combination of their characteristics what the
probability of mask use is from 0 to 1. Agents will choose to wear a mask if that value is
greater than a 0.50 threshold, which may be calibrated in the future. The model currently
does not incorporate individual learning, sensing, or prediction. Future work will include
agent perception leading to dynamic health behaviors by incorporating different driving
variables such as the perceived severity or perceived susceptibility of the disease.

Initialization. The model is implemented with Repast Simphony, a freely available Java-
based modeling toolkit, and built upon a Repast Simphony program called RepastCity [11].
The model is currently not accessible online, but it will be made available in the future once
the work is completed. Before the model begins running, one agent is selected to be infectious,
and 3.5% of agents are set to be recovered. The model is initialized with 5,000 agents, which
captures 37.5% of the estimated campus population during the Fall 2021 semester. While
the model will be upscaled to include 13,500 agents in future work, for the current study, we
limited the simulation to 5,000 agents to test the proposed agent decision-making framework.

Initial Calibration. GMU’s Fall 2021 COVID-19 data archive reported 399 symptomatic
cases throughout the semester with 100% mask use. Since we simulate roughly 37% of the
campus population, we expect around 148 symptomatic cases in our model. We calibrate the
model by modifying the transmission rate in the 100% mask-use scenario so that the number
of infectious and symptomatic agents throughout the semester corresponds with the data.

3 Results

To address the variation in model results due to randomness within ABM processes, the
model was run 50 times for a duration of 105 days to represent a full 15-week semester at
GMU. Future work will validate disease outcomes using data that was not used in model
calibration prior to running scenarios and generating final results. However, we present
initial results for three scenarios here: 1) no mask, 2) 100% mask usage, and 3) mask usage
determined by the agent’s behavioral framework, where the demographic profiles in the
population determine the adoption of masks. The results are presented in Figure 2.

The preliminary results indicate that the number of cumulative cases was on average
253 for no mask-usage, 165 for mask-usage determined by the agent behavioral framework,
and 148 for 100% mask-usage. No-mask usage results in a higher peak infection level and
greater variation, whereas 100% mask usage leads to less variation across simulation runs
and a lower percentage of infections. The findings from the behavioral framework scenario
are comparable to those of 100% mask usage as most of the agent population chose to wear
masks based on their demographic profile.

4 Discussion and Conclusion

Existing ABMs of infectious respiratory disease spread often overlook or oversimplify the
complexities of human health behaviors. To address this gap, this study proposes a novel
agent decision making framework with the potential to integrate data-driven and theoretical
approaches. Limitations of this work include the use of national survey data to represent a
university population. Future work may explore the use of open data that better corresponds
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Figure 2 The results for each tested scenario, showing the daily percentage of infectious agents.

with the study area. Although, the agents’ health behaviors emerge as a function of each
agent’s demographic profile, they are unchanging. Future work will explore the effect of
agent perceptions on behavior, enabling agents to adapt and respond to new situations. This
study aims to advance ABMs of infectious disease spread by improving the representation of
how humans respond to diseases, which will ultimately offer the public and decision-makers
support with accurate predictions and intervention strategies for future outbreaks.
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Abstract
Geoforensic analyses are used to identify the location history of objects or people of interest. An
effective method for location history identification is to use joint probability or suitability of trace
materials. Species distribution models have been used to derive joint suitability distributions
using suitable biotic trace evidence such as pollen. One of the key objectives for such analyses
is to effectively reduce potential search space and search effort for investigators. This research
presents a novel framework for modeling the habitat suitability of pollen identified at the plant
species-level to generate joint suitability maps. We provide major limitations and challenges faced
by current geolocation analyses based on species distribution models, including opportunities to
improve the joint suitability analyses for search space reduction. A conditional probability approach
for geolocation identification is also demonstrated for possible future applications in real-world
forensic cases.
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1 Background

Environmental trace evidence helps link objects or people of forensic interest to time and
locations [4]. One such useful candidate for trace evidence usually found on items at scenes is
pollen because of their durability on multiple contact carriers such as soil, fabrics, and other
materials [3]. The microbial and environmentally ubiquitous characteristics of pollen also
make it easy to attach to surfaces. The ability to identify pollen is dramatically improved
using DNA-based identification methods. For example, DNA metabarcoding with high-
throughput sequencing technologies improved pollen identification in terms of both quantity
and accuracy. This improvement can help generate high-resolution plant taxonomic results,
leading to potentially more reliable applications using forensic evidence [2]. The practical
use of biotic trace materials such as pollen and spores in forensic science has also been
discussed in recent research [1, 2, 7]. New methods that estimate suitable habitats of pollen’s
parent plant taxa using species distribution models for geoforensic location analysis have
also been introduced, but have not been widely used [9, 10]. Species distribution models are
used in these studies to quantify species-environment correlations which can then be used
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to predict the habitat suitability of plants and animals [5]. Joint suitability maps based on
species distribution modeling results can then potentially reduce search areas and efforts for
investigation purposes.

To test the feasibility of this joint suitability method, a study proposed a geographic
attribution framework [10]. The authors collected bees in fieldwork and treated them as
objects of interest, and the pollen grains sampled from the bees (pollen profiles of bees)
were identified as trace evidence. Species distribution models were estimated for each
identified species and combined to reduce the search space for an object that contained
these species. Since the location of the bee (object) was known, the authors were able to
assess the geolocation accuracy of models by quantifying and mapping the potential search
space base on different percentiles. The authors used Google Earth Engine cloud-based
geospatial platform that provides petabyte data and algorithms for fast computation to apply
geographic attribution at a global scale. The inputs of this framework are georeferenced and
filtered occurrences from the parent plant taxa of the recovered pollen species from the Global
Biodiversity Information Facility, with more than 2.2 billion taxa information integrated
from multiple data sources. The framework combines relative suitability distributions of taxa
to a final prediction layer using a scaled-sum method, with percentiles indicating the priority
of search areas for investigators, corresponding to different color hues as shown in Figure 1.
These processes were also considered a set of methods for the search space reduction purpose.
The SSR score in the top-right corner of Figure 1 shows the metric of joint suitability score,
or search score, that indicates the performance of reducing the search space by comparing
the joint suitability value between the object’s location and all other locations. For more
detailed explanations on the model building and accuracy assessment, see [10].

2 Limitations

Although the geographic attribution framework described here was useful when sufficient
quantities of pollen are recovered from bee objects, some assumptions were made when we
applied the search space reduction techniques, which bring limitations to the framework that
was proposed in previous studies. The most noteworthy and challenging limitations of this
framework are summarized below:
1. Current studies that use either probability- or suitability-based approaches (such as the

use of species distribution models) to identify the geographic provenance of objects of
interest have one common challenge. They can derive one best location or a series of
probability-ranked locations. The top percentiles of location history such as the different
percentiles/color hues of areas illustrated in Figure 1 are essentially a set of ranked search
spaces. Study such as [8] has proposed methods to identify multiple traveled sites by
objects of interest through solving geographic optimization problems, where suitability
layers generated from species distribution models can be used as inputs. Although
capturing any one portion of the total location history would be potentially helpful
for investigation, discovering further methods to incorporate multiple location history
identification is important. It is also hard for [10] to assess the location identification
accuracy with information other than joint suitability of pollen, because the actual
travel/foraging pattern or preference of each bee is hard to obtain.

2. Existing studies that generate the joint probability or suitability distributions of pollen’s
parent plants need to be retrospectively assessed for the distribution of each plant
taxa. For geolocation analyses that involve combinations of multiple suitability layers,
information may not be well analyzed through the combining process. For example,
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Figure 1 An example of joint suitability maps of the geographic location history identification of
a bee object. The modeling results were made by two widely used species distribution models: (a)
Random Forest, and (b) Random Forest down-sampled, at a subcontinental scale. This bee object
has nine different pollen genus/species attached. (c): Joint suitability search areas at a global scale.
The dashed box shows the subcontinental study area in (a) and (b). Solid boxes indicate potential
search areas. Darker hues indicate areas with increasing joint suitability values.

although joint suitability of certain pollen profiles on an object of interest has returned
high accuracy of geolocation identification results, additional steps are required to know
which one pollen or group of pollen is contributing to the identification, or which pollen
is adding noise to the identification.

3. For the geographic attribution framework tested in [10], the sampling locations of bees
are assumed to be locations for accuracy assessments. However, a sampling location of
a bee should be ideally treated as one of the location history stamps. Although this is
not a problem in real-world applications since investigations would usually attempt to
identify all meaningful location history of the objects of interest instead of focusing only
on sampled/collected location, the misplaced true location could have an adverse impact
on how we understand the geolocation analysis results.
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3 Updated Concepts

We provide two concepts based on the existing geographic attribution framework to potentially
address some of the limitations mentioned above. For limitation #1, although the travel
routes of bees are hard to obtain, this information could be partially available through
inference or in some ways calculable in real-world forensic cases. Similar to [10], we set up a
study area as a customized spatial domain, where i, j are longitude/latitude grid cells that
have M · N total grid cells, where i = 1, 2, . . . , M and j = 1, 2, . . . , N . For each grid location
(i, j), we use L to denote the incident that people or objects of interest have traveled to this
specific location. The conditional probability of people and objects that have traveled at a
location (i, j) in a spatial domain is then provided as:

P (L|T1, T2, . . . , Tn) = P (T1, T2, . . . , Tn|L) · P (L)
P (T1, T2, . . . , Tn|L)P (L) + P (T1, T2, . . . , Tn|LC)P (LC) (1)

where Tk is a set of the distribution of trace evidence such as the pollen or other biotic
materials identified on objects of interest or at scenes, where k = 1, 2, . . . , n. Equation 1 is
then illustrating how the pollen distribution probability provides an adjustment to probability
surface derived by various investigation approaches, for example, criminal geographic targeting
or geographic profiling that uses a set of locations from a series of crime [6]. The joint
probability of equation 1 could be further computed with for example Bayesian inferences to
solve the posterior probability which is the probability of people or objects have traveled to a
location given that there is pollen found or corresponding plant taxa growing at this location.
The minimal spatial unit for the calculation can be any meaningful size depending on the
scales of focus, for example, a 900 m grid cell size used in the global geographic attribution
cases.

To address the limitation #2 mentioned above, one would normally want to do repeated
sampling of pollen profiles at one location, and need a method to distinguish and quantify
the contribution of a single pollen within a pollen profile recovered on an object of interest.
To achieve this, for every pollen profile of an object, one can keep one pollen out of the
joint suitability combination and calculate the joint suitability score (search score) using
the remaining pollen distribution layers, and repeat this process until every pollen found on
this object is traversed. This is a methodology similar to leave-one-out cross validation, a
procedure widely used in machine learning algorithms. To test the feasibility of this method,
we first sampled multiple locations with various pollen profiles and fit species distribution
models to obtain joint suitability search scores. Selected preliminary results from the leave-
one-out method are shown in Figure 2. Each record at the x-axis of Figure 2 is the pollen
that is left out in different pollen profiles. The mean search score difference on the y-axis is
the difference in the two search space reduction scores before and after the corresponding
pollen is left out. Negative score differences indicate that ignoring this pollen negatively
affects geolocation identification, while positive score differences mean the opposite. We
can then figure out how several pollen genus/species constantly contribute to or negatively
affect the geolocation accuracy. For example, the genus of Pinus is always reducing the
geolocation accuracy with a mean of around 0.03 for all geolocations we focused on. This
corresponds to around five million pixels with a size of 900 × 900 m per pixel at a global scale.
A possible reason for the negative contribution of Pinus is that pines as plants are growing
in a large variety of environments and almost around the globe, contributing noise to most of
the joint suitability analyses for geolocation identification. On the other hand, Amaranthus
and other genus- and species-level pollen taxa with positive search contributions are having
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Figure 2 An example of search score differences after removing pollen from an object’s pollen
profile using joint suitability analyses. This example was made from species distribution modeling
results computed from boosted regression trees (BRT) with multiple geolocations in a global spatial
domain. The horizontal red dashed line indicates no search score changed from joint suitability
analyses after ignoring this pollen taxa. Pollen taxa at the right side of the vertical red dashed line
(including Daucus carota) indicate positive search score differences, while those at the left side have
negative search score differences.

more fluctuated search score differences. This feature may suggest investigators carefully
examine available information from different cases, including objects/people’s possible ranges
of activities, when such pollen taxa are present on objects or locations of interest.

References
1 Julia S. Allwood, Noah Fierer, and Robert R. Dunn. The Future of Environmental DNA in

Forensic Science. Applied and Environmental Microbiology, 86(2):e01504–19, 2020. Publisher:
American Society for Microbiology. doi:10.1128/AEM.01504-19.

2 Karen L. Bell, Kevin S. Burgess, Kazufusa C. Okamoto, Roman Aranda, and Berry J. Brosi.
Review and future prospects for DNA barcoding methods in forensic palynology. Forensic
Science International. Genetics, 21:110–116, March 2016. doi:10.1016/j.fsigen.2015.12.
010.

3 Marzia Boi. Pollen attachment in common materials. Aerobiologia, 31(2):261–270, June 2015.
doi:10.1007/s10453-014-9362-2.

4 D. C. Mildenhall. An unusual appearance of a common pollen type indicates the scene of
the crime. Forensic Science International, 163(3):236–240, November 2006. doi:10.1016/j.
forsciint.2005.11.029.

5 Jennifer A. Miller. Species distribution models: Spatial autocorrelation and non-stationarity.
Progress in Physical Geography: Earth and Environment, 36(5):681–692, October 2012. Pub-
lisher: SAGE Publications Ltd. doi:10.1177/0309133312442522.

6 D. Kim Rossmo. Geographic Profiling. CRC Press, December 1999. Google-Books-ID:
YQlS59Pv35oC.

7 Libby A. Stern, Jodi B. Webb, Debra A. Willard, Christopher E. Bernhardt, David A.
Korejwo, Maureen C. Bottrell, Garrett B. McMahon, Nancy J. McMillan, Jared M. Schuetter,
and Jack Hietpas. Geographic Attribution of Soils Using Probabilistic Modeling of GIS
Data for Forensic Search Efforts. Geochemistry, Geophysics, Geosystems, 20(2):913–932,

GISc ience 2023

https://doi.org/10.1128/AEM.01504-19
https://doi.org/10.1016/j.fsigen.2015.12.010
https://doi.org/10.1016/j.fsigen.2015.12.010
https://doi.org/10.1007/s10453-014-9362-2
https://doi.org/10.1016/j.forsciint.2005.11.029
https://doi.org/10.1016/j.forsciint.2005.11.029
https://doi.org/10.1177/0309133312442522


77:6 How to Improve Joint Suitability Mapping for Search Space Reduction?

2019. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2018GC007872. doi:10.
1029/2018GC007872.

8 Daoqin Tong, Tony H. Grubesic, Wangshu Mu, Jennifer A. Miller, Edward Helderop, Shalene
Jha, Berry J. Brosi, and Elisa J. Bienenstock. Identifying the spatial footprint of pollen
distributions using the Geoforensic Interdiction (GOFIND) model. Computers, Environment
and Urban Systems, 87:101615, May 2021. doi:10.1016/j.compenvurbsys.2021.101615.

9 Haoyu Wang, Jennifer A. Miller, Tony H. Grubesic, and Shalene Jha. A Framework for Using
Ensemble Species Distribution Models for Geographic Attribution in Forensic Palynology. In
2022 IEEE International Symposium on Technologies for Homeland Security (HST), pages
1–7, November 2022. doi:10.1109/HST56032.2022.10025427.

10 Haoyu Wang, Jennifer A. Miller, Tony H. Grubesic, and Shalene Jha. Using habitat suitability
models for multiscale forensic geolocation analysis. Transactions in GIS, 27(3):777–796,
2023. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/tgis.13052. doi:10.1111/
tgis.13052.

https://doi.org/10.1029/2018GC007872
https://doi.org/10.1029/2018GC007872
https://doi.org/10.1016/j.compenvurbsys.2021.101615
https://doi.org/10.1109/HST56032.2022.10025427
https://doi.org/10.1111/tgis.13052
https://doi.org/10.1111/tgis.13052


Navigation in Complex Space: An Bayesian Nash
Equilibrium-Informed Agent-Based Model
Yiyu Wang #

School of Geography, University of Leeds, UK

Jiaqi Ge #

School of Geography, University of Leeds, UK

Alexis Comber #

School of Geography, University of Leeds, UK

Abstract
This study proposed an improved pedestrian evacuation ABM employing Bayesian Nash Equilibrium
(BNE) to simulate more realistic and representative individual evacuating behaviours in complex
scenarios. A set of vertical blockades with adjustable gate widths was introduced to establish
a simulation space with narrow corridor and bottlenecks and to evaluate the influences of BNE
on individual navigation in complex space. To better match with the evacuating behaviours in
real-world scenarios, the decision-making criterion of BNE evacuees was improved to a multi-strategy
combination, with 80% of evacuees taking the optimal strategy, 15% taking sub-optimal strategy,
and 5% taking the third-best one. The preliminary results demonstrate a positive impact of BNE
on individual navigation in complex space, showing a distinct decrease of evacuation time with
increasing proportion of BNE evacuees. The non-monotonicity of the variations in evacuation time
also indicates the dynamic adaptability of BNE in addressing immediate challenges (i.e. blockades
and congestions), which identifies alternative and potential faster paths during evacuations. A
detailed description of the proposed ABM and an analysis of relevant experimental results are
provided in this paper. Several limitations are also identified.
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1 Introduction

Recent research has proposed a novel ABM for pedestrian evacuation which employs Bayesian
Nash Equilibrium (BNE) to fill the gap of lacking representative and forward-looking
individual behavioural models in relevant research on pedestrian evacuating simulations [5].
This ABM has been shown to be capable of producing more realistic individual evacuating
behaviours in simple scenarios because evacuee agents following the BNE model are able
to predict future congestion levels at each time step to find faster evacuation routes. The
experimental results suggest that such model could better represent the real-world evacuating
behaviours and improve the effectiveness of emergency management strategies.[5]

On this basis, this study aims to further evaluate the influences of the BNE model on
individual navigation in complex spaces as well as its applicability in pedestrian simulations
involving different scenarios. The above initial work has been extended by improving the
decision-making logic of the initial BNE model in order to adapt to the evacuations in complex
environments. An improved BNE-informed ABM has been developed in NetLogo with a
series of vertical blockades with adjustable gate width brought into the simulation space to
form complex evacuation scenarios. A series of simulation experiments were conducted to
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examine how and whether the updated model plays roles in individual evacuation process in
these complex spaces. The implementation details of this improved model, the analysis of
the experimental results, as well as a discussion on limitations and further work have been
provided in this paper.

2 Methodology

2.1 Theoretical Background
This research adopts a refined Bayesian Nash Equilibrium (BNE) [3] as the underlying theory
of individual decision-making. BNE is a gaming strategy in which the players maximise their
expected utilities and take the best strategy according to the probability distribution of other
players’ next decisions [1]. The BNE refinement takes incomplete information into account,
which aligns with the situation in which some real-time information might be ignored by
some pedestrians in real-world evacuation scenarios [3]. The proposed model embodies
BNE as a set of utility functions and considers the probability distributions of neighbouring
evacuees’ further actions, to provide a more accurate representation of individual decision-
making process in a complex evacuation scenarios, with potential applications in optimizing
evacuation plannings in different scenarios.

2.2 Improved BNE Model
Bayesian Nash Equilibrium (BNE) was employed as a methodological framework to quantify
the individual decision-making process in complex evacuation space. A series of utility
functions have been incorporated into the improved ABM to implement the BNE behavioural
model. Due to the non-sequential decision-making in BNE games [3], the evacuees following
BNE model determined their future actions based on the values of Total Utility (Utotal) for
their neighbouring patches.

The concept of Total Utility (Utotal) is associated with three crucial factors: Distance
Utility (Ud), Comfort Utility (Uc), and Expected Comfort Utility (Uec), and designated as the
total value of Ud and Uec, as represented by Eq. (1) [5]. This parameter, which value considers
the distance to the exit, future congestion levels, and possible actions of other evacuees in
their Moore neighbourhood1, is participated in the decision-makings of BNE evacuees’ next
movements. That is, evacuees following BNE model are capable to avoid congested areas
by forecasting possible movements of other nearby evacuees. For each BNE evacuee, the
total utilities of all the passable patches in its Moore neighbourhood are calculated and
compared to determine the favourable patch to move at the next time step (see Fig. 1). The
BNE-related functions are described as follows.

Utotal = Ud + Uec (1)

A. Distance Utility. Ud is associated with the distance between an evacuee’s current position
and the exit. It should be noted that the patches representing impassable barriers are not
included in related calculations. The value is defined by a monotonically increasing function
that approaches the maximum as evacuees are close to the exit point, as shown in Eq. (2).

Ud = (D − d)/D (2)

1 Moore Neighbourhood: a square-shaped neighbourhood with radius of one cell.
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Represents	the	evacuees	moving	right
Represents	the	evacuees	moving	left

Figure 1 The candidate patches of BNE evacuees.

Where, d represents the distance of the shortest route from the current location to the
exit; D denotes the diagonal distance of the evacuation space.

B. Comfort Utility. Uc comprises a set of coefficients which is a fundamental component
of Uec. Its value is determined by the number of evacuees occupying the given patch and
reflects the individual comfort level of this patch. An inverse relation can be found between
the value of Uc and the crowd density of the certain patch, as illustrated in Eq. (3).

Uc =


1.00, n ≤ 2
0.51, n = 3
0.07, n = 4
0.00, n ≥ 5

(3)

Where, n represents the number of evacuees on the patch.

C. Expected Comfort Utility. Uec is calculated as the product of two elements: Comfort
utility Uc and the probability p(n) that a particular number (n) of evacuees will move to the
appointed patch at next time step, as shown in Eq. (4). The calculation of p(n) considers
not only the future movements of the evacuees on this patch, but also the possible actions of
those located on the Moore neighbourhood.

Uec =
4∑

n=0
p(n)Uc(n) =

4∑
n=0

Cn
N P n

m (1 − Pm)N−n
Uc(n) (4)

Where, n represents the count of evacuees on the patch at next time step; N denotes the
total number of evacuees located on the patch and its Moore neighbourhood at this time
step; Pm represents the probability of evacuees who may move to this patch at next time
step, with a default value of 50%.

2.3 Improvement Details
In the initial implementation [5], the BNE model employed a decision-making criterion that
required all the evacuees to choose the patch with maximum Utotal, resulting in 100% of
evacuees taking the best strategies. However, the experimental results indicated that this
criterion could lead to all BNE evacuees located on the same patch making identical choices
in the latter stages of simulations, which, in turn, resulted in localized congestion and reduced
exiting speeds [5]. In this paper, this challenge is addressed by including some noise to the
initial decision-making logic of BNE evacuees, by switching to a multi-strategy combination:
with 80% of evacuees taking the optimal strategy (i.e. selecting the patch with highest Utotal),
15% taking the sub-optimal strategy (i.e. choosing the patch with second-highest Utotal),
and 5% making the third-optimal choice (i.e. selecting the patch with third-highest Utotal).
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As well as the improved BNE model, two other behavioural models are included – Shortest
Route (SR) model (Dijkstra’s search algorithm [2] was introduced to replace the weak SR
strategy) and Random Follow (RF) model – as control groups in the proposed ABM to better
evaluate the performances of BNE model [5].

3 Experimental Results

3.1 Model Initialisation and Implementation Details
The initial version of the BNE-informed ABM was developed in NetLogo and published
at COMSES, which was retrieved from https://doi.org/10.25937/75wf-aa82 [4]. The
improved version is still in process and will be available once completed.

The initial configuration of the improved ABM involved the random dispersion of 2000
evacuees (agents) throughout the simulation space to the left side of the vertical blockades.
The main purpose of this research is to explore the influences of different behavioural models
on individual evacuating behaviours, with a specific focus on the capability of BNE evacuees
to discover faster evacuation routes in order to navigate around congested areas and the
barriers on their pathways. To achieve this objective, four distinct movement patterns were
provided, including Shortest Route (SR), Random Follow (RF), BNE mixed with SR, and
BNE mixed with RF. The percentage of BNE evacuees defaults to 100% in the last two
BNE combinations, and the mixing ratios could be adjusted to meet the requirements of
simulations.

To assess the effects of BNE on individual navigation in complex space, this paper
conducted a simulation study where the individual evacuating behaviours could be observed
in an evacuation space consisting of a narrow corridor defined by two vertical rectangular
blockades with an adjustable-width gate for each barrier. All BNE-related utilities were
computed at the beginning of each simulation and updated every time step. The decision-
making criterion of BNE evacuees has been improved from a single strategy to a multi-strategy
combination to better simulate the individual navigation in complex space with blockades,
bottlenecks, and congestions.

3.2 Simulation Experiments
A set of experiments simulated evacuations in a tunnel space consisting of vertical barriers
with adjustable-sized gates. The model was initialized with 2000 evacuees, where the BNE
evacuees were mixed with evacuees adhering to one of the other two behavioural models
(i.e. SR and RF). The proportion of BNE agents was adjusted from 0% to 100% at 2%
intervals, and the gate width for each blockade varied from 1 to 9 at 2-patch intervals. The
simulations were replicated 10 times for each parameter configuration and stopped once all
agents evacuate successfully through the exiting point. The exit time of each simulation was
recorded to evaluate the impacts of BNE on individual evacuations in complex space.

3.3 Result Analysis
Fig.2 illustrates the variations in evacuation time of the evacuees following BNE with SR and
with RF combinations respectively in a complex space with varied width of gates. A local line
of fit with 95% confidence interval was also generated in the plots to reflect the relationship
among exit time, percentage of BNE evacuees, and sizes of the barriers. As shown, there is
little advantage of specifying BNE when the gate width of blockades is too narrow, while
a decreasing trend of evacuation time with increasing proportion of BNE evacuees can be
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observed in the scenarios with wider gates. That is, a positive impact of BNE on shortening
evacuation time becomes salient as the increasing percentage of BNE agents participating
into the simulations.

Figure 2 Evacuation time against percentage of BNE-SR and BNE-RF combinations in complex
scenarios with varied width of gates (2000 evacuees).

The non-monotonic changes of exit time against the two BNE combinations in complex
scenarios are worthy of further discussion. A reasonable explanation for this phenomenon
is that some of BNE evacuees may be trapped in the corner of the corridor as a queue of
evacuees following other models was formed during evacuations. As shown in Fig.3, evacuees
adhering to SR model (shown in green) were observed to follow an identical trajectory to
avoid barriers and evacuate. The consistency of path selection may lead to a situation that
BNE evacuees (shown in orange) were confined within the corridor as SR evacuees were stuck
at the bottlenecks resulting in a heavy congestion.

Figure 3 The model view of the evacuation process of BNE-SR combination.

However, this queue-induced deadlock is not permanent since the BNE agents were
attempting to break free and navigate towards the relatively uncrowded area of the corridor,
finding an alternative and potentially faster evacuation route. This also demonstrates the
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dynamic adaptability of the improved BNE model in addressing the immediate challenges
during evacuations (i.e. blockades, bottlenecks, and congestions) as well as discovering
efficient evacuation pathways.

4 Discussion and Conclusion

This paper proposed an improved pedestrian evacuation model employing Bayesian Nash
Equilibrium (BNE) within an ABM approach, with the objective of producing forward-looking
and realistic individual evacuating behaviours in complex environments. The BNE-informed
model integrates a set of vertical blockades with adjustable gate widths to establish a
simulation space with narrow corridor and bottlenecks, providing a further evaluation of
the influences of BNE on individual navigation in complex space. The decision-making
criterion of BNE evacuees was improved to a multi-strategy combination, in which 80% of
evacuees take the best strategy, 15% make the second-best decision, and 5% choose the
third-best one, to improve the evacuation efficiency. The preliminary results indicate that
BNE plays a positive role in individual navigation in complex scenarios involving bottlenecks
and blockades, reflecting on the distinct decrease of evacuation time with the increasing
proportion of BNE-guided evacuees. The non-monotonicity of the variations in exit time
also reveals the dynamic adaptability of the BNE model in addressing immediate challenges
such as barriers, bottlenecks, and congestions, as well as discovering efficient route during
evacuations.

However, a few limitations still need to be addressed: 1) The non-monotonicity of the
evacuation time revealed that introducing an appropriate proportion of BNE evacuees into
simulations has a significant influence on reducing exit time, which need to be further studied
and observed at the individual level; 2) Different types of barriers should be introduced to
further assess the feasibility of the improved ABM in other complex scenarios; 3) Apart
from exit time, the model needs to be evaluated in the terms of other parameters (e.g.
comfort level, etc.) to provide a comprehensive evaluation of the role of BNE played in
individual navigation under complex situations; 4) Real-world scenarios need to be introduced
to examine the simulation accuracy of the improved ABM. The above issues will be gradually
solved in the next step of this ongoing research.
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Abstract
Geographic Information System (GIS) has become an effective and reliable tool for researchers,
policymakers, and decision-makers to map health outcomes and inform targeted planning, evaluation,
and monitoring. With the advent of big data-enabled GIS, researchers can now identify disparities
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and spatial inequalities in health at more granular levels, enabling them to provide more accurate
and robust services and products for healthcare. This paper aims to showcase the progress of the
On Tackling In-transit Delays for Mothers in Emergency (OnTIME) project, which is a unique
collaborative effort between academia, policymakers, and industrial partners. The paper demonstrates
how the limitations of traditional spatial accessibility models and data gaps have been overcome by
combining GIS and big data to map the geographic accessibility and coverage of health facilities
capable of providing emergency obstetric care (EmOC) in conurbations in Africa. The OnTIME
project employs various GIS technologies and concepts, such as big spatial data, spatial databases,
and public participation geographic information systems (PPGIS). We provide an overview of these
concepts in relation to the OnTIME project to demonstrate the application of GIS in public health
practice.

2012 ACM Subject Classification Information systems → Geographic information systems

Keywords and phrases GIS, Public Health, Accessibility, OnTIME, EmOC, Public Participation
GIS, Big Data, Google

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.79

Category Short Paper

1 Introduction and Background

In 2020, the World Health Organisation estimated that around 287,000 women lost their lives
worldwide due to maternal causes, which corresponds to nearly 800 maternal deaths occurring
every day, or approximately one every two minutes [11]. This problem is particularly prevalent
in Low- or Middle-Income Countries (LMICs), with Africa being particularly affected [11].
Africa not only accounts for the highest percentage of maternal deaths (69% of the global total
of 287,000) and stillbirths (45% of the global total of 1.9 million), but it is also undergoing
rapid urbanisation. Two-thirds of the world’s population will live in urban areas by 2050
with a significant proportion of these additional 2.5 billion urban residents concentrating
in Africa [9]. In urban settings, the odds of maternal death and stillbirth are significantly
higher, partly explained by traffic-ridden journeys with longer travel time [5, 6, 4].

Timely access to emergency obstetric care provided by trained healthcare personnel can
significantly reduce maternal deaths [12]. However, women with obstetric emergencies must
travel to healthcare facilities capable of providing EmOC to access the needed care. Delays
encountered during this journey from home to a healthcare facility providing EmOC have a
significant impact on the health outcomes of both mothers and newborns [4, 10]. Many of
these deaths are preventable with timely and effective intervention, highlighting the essentials
of receiving EmOC in time. Therefore, there is a need to understand the travel time between
the location where a need for obstetric emergency services arises and possible locations
with EmOC facilities. This is particularly critical to prevent avoidable maternal deaths
and stillbirths, as well as achieve the Sustainable Development Goals (SDG) for maternal
and newborn mortality by 20301. However, the current approaches of estimating travel
time, either reported or modelled estimates, do not accurately represent the dynamics of the
journey between the women’s location and EmOC facilities [7]. This is mainly due to lack
of observational data on healthcare seeking behaviour to robustly parameterise the access

1 https://www.who.int/europe/about-us/our-work/sustainable-development-goals/
targets-of-sustainable-development-goal-3
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models [3]. Thus, different dynamics such as traffic conditions, time of the day, weather
variations, and other eventualities are not accounted for [3]. Further, majority of existing
evaluations of travel time focus only on the public facilities, ignoring the significant role
played by the private sector. In addition, these analyses evaluate travel time to the nearest
facility, ignoring the possibility that a closer facility may be bypassed for alternative choices.

The OnTIME Consortium2 is a cutting-edge partnership that brings together academics,
decision-makers, and Google to offer solutions to the challenges encountered by pregnant
mothers and caregivers in LMICs. The goal of the OnTIME project being delivered by the
Consortium is to first assemble a geo-coded database of public and private hospitals with
EmOC in major African conurbations and second, use this database to estimate close-to-
reality travel times to the closest, second-closest, and third-closest facilities capable of EmOC
services. A key deliverable of the OnTIME project is a digital dashboard3 (Figure 1) that
enables policymakers to optimise the geographic accessibility of EmOC by providing more
realistic estimations of travel time and geographic coverage within policy actionable units.
The availability of more accurate coverage data represents the next frontier in policy-making
and research for improving EmOC access in urban settings of LMICs [3]. The OnTIME
project has a phased approach, starting with the most populated conurbations in Nigeria in
phase 1. The second phase will focus on selected conurbations in Africa that have publicly
available lists of health facilities with attributes of service provision, and eventually to
other LMICs in Southeast Asia and Latin America (phase 3). In the completed first phase
(2022-2023), focus group discussions and interviews were conducted with policymakers in
Nigeria, and an online survey involving over 200 policymakers and researchers across Africa
was carried out to obtain insights on the essential components and the implementation of the
proposed dashboard. A facility functionality verification was conducted in 15 cities across
public and private hospitals in Nigeria, which were selected based on a population of at least
1 million in 2022 or projected to reach 1 million by 2030. This effort led to the development
of the digital dashboard that displays the time it takes for pregnant women to access EmOC
of different levels in the selected urban areas of Nigeria. The displayed travel catchment
areas reflect the functional geographical coverage and accessibility of EmOC, indicating areas
of inequitable access that require prioritisation. This dashboard will inform and catalyse
policy actions to improve geographical accessibility, contribute to Nigeria’s commitment to
universal health coverage and SDG 3, and ultimately lead to reduced maternal and perinatal
mortality. There is an open database of generated travel time accompanying the dashboard
(discussed in 2.1). The subsequent sections illustrate the GIS approaches employed in the
initial phase of the OnTIME project.

2 Spatial Mapping and Big Data

Spatial mapping is commonly employed in public health to offer valuable understandings
into the arrangement and availability of healthcare resources. This data can guide choices
concerning the positioning of healthcare facilities and the distribution of healthcare resources.
One of the current advancements in GIS is coming from our increasing capability of collect-
ing, storing, processing and visualising mass volume of information of great complexity, a
phenomenon known as “big data” [8]. By including the geographic coordinates in big data, it
becomes big spatial data. As stated by the UK’s national mapping agency Ordnance Survey,
“with this additional spatial dimension, much deeper insights about the records in a dataset,
and their relationships can often be drawn” [13].

2 https://www.ontimeconsortium.org/
3 https://emergencyobstetriccare.webapps.google.com/overview
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Figure 1 OnTIME project’s core deliverable: a digital dashboard displaying geographic access to
emergency obstetric care designed for policymakers.

The OnTIME project involves several big spatial datasets. The data retrieved from Google
Directions API includes spatial data on road networks, real-time and historical traffic data.
Our industrial partner, Google, incorporated this vast amount of data to generate realistic
routes between locations and predict the driving time between settlements and facilities
providing EmOC. From the retrieved data, the following summaries can be computed: i)
travel times to the first, second, and third nearest EmOC facilities, ii) the count of health
facilities within 15, 30, and 60 minutes of driving time, and iii) proportion of women of
child bearing age (15-49 years) within the same time thresholds. These time estimates are
disaggregated by facility ownership (public, private and a combination of both), for eight
traffic scenarios at different time of day and day of week.

The project also includes a large geo-coded dataset4 that stores information on the
functionality and capability of both public and private hospitals offering EmOC from 15
cities in Nigeria. In the second and third phases of the project, comparable large-scale
spatial databases will be constructed, concentrating on other LMIC urban areas. The extent
of the 15 Nigerian cities was established by using spatial overlays to cross-reference the
shapefiles of the local government area (LGA) boundaries5 with WorldPop6’s gridded surface
of population (at a resolution of 100 m2), Google Maps, and the Global Human Settlement7

layers showing gridded surfaces of urban areas. Where applicable, locals were consulted to
confirm the results. The centroids (as origins) of a 600 m2 gridded dataset covering the entire
study region were used to compute routes to the nearest EmOC facilities (as destination)
using the Google Directions API.

3 Public Participation GIS

PPGIS is a “field within geographic information science that focuses on ways the public uses
various forms of geospatial technologies to participate in public processes, such as mapping
and decision making” [14]. Surveys and interviews are frequently used tools in PPGIS as
a way to engage with stakeholders and gather their opinions and feedback on particular

4 https://www.ontimeconsortium.org/relevant-databases
5 https://grid3.org
6 https://www.worldpop.org/
7 https://ghsl.jrc.ec.europa.eu/
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issues or topics. To ensure a fit-for-purpose dashboard, we conducted an online survey
with policymakers and researchers to understand key considerations needed for developing a
policy-ready dashboard of geospatial access to EmOC in Africa. We gathered information
about participants’ knowledge of the locations where poor geographic accessibility to EmOC
is a concern, the technological resources currently utilised for EmOC service planning, their
dashboard feature preferences, and the possibility of a dashboard to tackle the issue of
inadequate EmOC accessibility.

Moreover, government stakeholders at both the state and federal levels in Nigeria were
involved through a combination of in-person and virtual semi-structured interviews. These
interviews were conducted with six policymakers and 17 senior civil servants, representing
seven states across five geopolitical zones and the Federal Capital Territory, Abuja. Results
[2] suggests that technocrats recognise the ideal of data-driven needs assessment in enhancing
maternal care, although this is frequently impacted by various factors such as political
pressures, persistent community advocacy, irregular short-term administrative cycles, and
donor-driven funding decisions. Despite the possibility of obstacles, there is substantial
enthusiasm and acceptance for the use of GIS-enabled dashboard to aid in health planning,
particularly in circumstances where innovation and technology are already ingrained in the
current government’s administrative approach [2].

4 Discussion and Future Work

This paper showcases how GIS can be used to collect, represent, and reason data, leading
to better public health planning and decision-making. Specifically, it illustrates the use of
spatial mapping, big data, spatial database and PPGIS to address maternal care delays in
the OnTIME project. To enable more informed decision-making, it is essential to incorporate
geospatial data and leverage advanced GIS techniques. The potential future work includes:

A further in-depth investigation of access inequality between regions can be conducted.
Spatial auto-correlation could be used to assess the spatial agglomeration characteristics
of accessibility. To explore the underlying reasons for the imbalance in geographic
accessibility, socio-economic factors are extracted, thus enabling further analyses to
investigate spatial associations by spatial statistical techniques such as geographically
weighted regression.
The adoption of the spatiotemporal exploratory data analysis in the project. This is a
methodological approach to detect and describe patterns, trends, and relations in data in
both space and time [1]. Spatiotemporal analysis can be used to examine the trends and
patterns of EmOC utilisation and need over time.
Propose an ontology that identifies and decomposes geographic access elements of maternal
healthcare into a hierarchy of categories, which is further systematised using extensions
of existing formal ontologies. This way, we can provide a methodology- and context-
independent measure of geographic accessibility that could then be used to extrapolate
conceptual models for a variety of wider public health applications.

Ultimately, the OnTIME Consortium is committed to contribute to global efforts to
reduce maternal mortality by generating closer-to-reality assessments of geographic access
gaps to critical maternal health services. The Phase I has already strongly shown that a
collaborative and participatory approach makes GIS data more meaningful and yields greater
impact, especially in a time in which the global community is committed to “leave no one
behind”.
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Abstract
As an important part of the economic and social fabric of urban areas, high streets were hit hard
during the COVID-19 pandemic, resulting in massive closures of shops and plunge of footfall. To
better understand how high streets respond to and recover from the pandemic, this paper examines
the performance of London’s high streets, focusing on footfall-based clustering analysis. Applying
time series clustering to longitudinal footfall data derived from a mobile phone GPS dataset spanning
over two years, we identify distinct groups of high streets with similar footfall change patterns. By
analysing the resulting clusters’ footfall dynamics, composition and geographic distribution, we
uncover the diverse responses of different high streets to the pandemic disruption. Furthermore,
we explore the factors driving specific footfall change patterns by examining the number of local
and nonlocal visitors. This research addresses gaps in the existing literature by presenting a holistic
view of high street responses throughout the pandemic and providing in-depth analysis of footfall
change patterns and underlying causes. The implications and insights can inform strategies for the
revitalisation and redevelopment of high streets in the post-pandemic era.
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1 Introduction

Over the past 3 years, the COVID-19 pandemic, a global public health crisis of unprecedented
scale, has brought about substantial changes to urban environment [7]. Although the COVID-
19 is no longer a public health emergency of international concern [9] by the time this paper
was written, the long-term effects linger and continue to shape urban landscapes.

Among the most affected urban areas are spaces of consumption such as high streets
which are often the heart of local communities, serving as centres for commerce, social
interaction, and cultural activities. Important as they are, high streets across the UK suffered
a devastating blow during the pandemic, with over 17500 chain stores and other venues
closing in Great Britain [2] and footfall decreasing by over 80% [5]. Given the pivotal role of
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high streets in the economic and social fabric of urban systems, it is of great importance to
explore the impacts of pandemic on high streets’ performance to comprehend the broader
consequences on local economies, businesses, and communities.

Existing studies have utilised various forms of data to assess the economic performance
of consumption spaces, such as vacancies [3] and footfall [8]. Within the COVID-19 context,
Enoch et al. used footfall data to analyse the impact of COVID-19 pandemic on six high
streets in England [4]. Ballantyne et al. used a mobile phone app location dataset to examine
the recent recovery of retail centres from the pandemic [1]. Although they provided empirical
evidence of the impact of the pandemic, there are some limitations remained to be addressed.
Firstly, the COVID-19 pandemic and its aftereffects last several years, with several rounds of
national lockdowns enacted, but existing studies do not cover the whole period, thus cannot
present the full picture of the responses of high streets. Secondly, existing literature only
focus on the change of footfall counts, lacking in-depth analysis of the change patterns and
its underlying causes. To fill the research gaps, we examine and evaluate the performance
of London’s high streets during the pandemic using longitudinal footfall data. Specifically,
footfall data spanning over two years was calculated from a mobile phone GPS dataset and
time series clustering was applied to generate multiple groups of high streets with similar
patterns. By analysing the distinctive footfall change patterns of resulting clusters and their
geographic distribution, we unravelled the varying responses of different high streets to the
disruption and the spatial patterns of different clusters of high streets. Furthermore, we linked
the clustering results to the existing typology of retail centres and gained further insight into
how the different composition of clusters corresponds to their performance. Lastly, we delved
into the cause of particular change patterns by looking at the number of local and nonlocal
visitors.

In the following sections, we describe the dataset used in this study, followed by a brief
introduction of the methods employed. We present and analyse the results, discuss their
implications, and provide recommendations for policymakers and urban practitioners. We
conclude the paper by summarising the main findings and pointing out directions for future
work.

2 Data

Mobile phone GPS trajectory data: it is a large-scale mobility dataset which contains
millions of anonymous users’ mobile phone GPS trajectory data (collected from tens of
location-based service apps) provided by Location Sciences under GDPR compliance.
The dataset spans 3 years, and we define our study period from the first Monday of
February 2020 (03/02/2020) to the last Sunday of April 2022 (24/04/2022), spanning 812
days (116 weeks). The number of unique devices in London in February 2020 exceeds
610,000. The data collection method and sampling rate over the whole country remains
consistent throughout the study period.
High street boundary dataset: provided by the Greater London Authority2, this
is a shapefile containing the boundaries of 616 London high streets located outside the
Central Activity Zone.
Lower Layer Super Output Areas (LSOAs): It is a geographic hierarchy designed to
improve the reporting of small area statistics in England and Wales. This study utilised
the LOSAs dataset created in the most recent 2021 census and only those within Greater
London area were included.

2 https://data.london.gov.uk/dataset/gla-high-street-boundaries

https://data.london.gov.uk/dataset/gla-high-street-boundaries
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3 Methods

In this section, we present the workflow of footfall calculation and give a brief introduction
to the K-means clustering method.

Footfall calculation

The workflow consists of the following steps:
1. Home detection: obtain the LSOA-level home location of each individual, which is denoted

as home_lsoa. Here, the home of a person is defined as the LSOA where they generate
the greatest number of GPS points during night time (e.g., 22:00-07:00).

2. Stop detection: to get the stop which is where people remain stationary for more than a
specific amount of time (we set 5 minutes as the threshold in this study).

3. Identity inference: infer the identities (being one of resident and non-resident) of the
people visiting a certain high street. If the home_lsoa of a person is one of the LSOAs
that intersects with the high street, then this person is considered as a local resident,
otherwise, a non-resident.

4. Footfall calculation: join people’s stops with high street boundaries and calculate the
footfall w.r.t resident and non-resident by day and sum the 2 types to get the overall
footfall.

The output is daily footfall counts on each of the high street in London. We further
aggregate the daily footfall into weekly ones by summing over 7 days of each week. This
step can not only smooth the time series but also reduce the length of it, which can improve
the results of clustering. We also normalise the footfall counts to convert them into relative
values between 0 and 1, which is an essential pre-processing step for clustering.

K-means time series clustering

We employ a K-means time-series clustering algorithm to cluster the time-series of weekly
overall footfall on the high streets. We use the Euclidean distance as the metric for clustering.
One advantage of this method is that the distance between any two objects is not affected
by the addition of new objects to the analysis, which may be outliers [6]. Elbow method and
the Silhouette score are used to identify the optimal cluster number K.

4 Results

High street clusters and their spatial distribution and composition

Three high street clusters are identified based on the time-series pattern in footfall. The
share of high streets in each cluster are 39 %, 33 % and 28 %, respectively. Figure 1 shows
the footfall time series for the entire study period across the three clusters. Cluster 1 had the
smallest drop when the first national lockdown came into effect. But after the third national
lockdown, it remained the lowest while the other two (especially Cluster 3) recovered better.
Cluster 2 and 3 exhibited similar trend, but Cluster 3 surpassed Cluster 2 (and Cluster 1)
significantly during the “stepping out of lockdown” period, reaching its pre-pandemic level.
The results demonstrate the varied ability of high streets to weather crises.

Figure 2 shows the spatial distribution of the clusters where some degree of spatial
clustering is notable. Most of the high streets in Cluster 1 are located in inner London area,
while Cluster 3 finds more high streets in outer London. Combining the spatial distribution

GISc ience 2023



80:4 The Ups and Downs of London High Streets Throughout COVID-19 Pandemic

Figure 1 Time-series pattern of the three identified high street clusters (the pink shades indicate
the period of three national lockdowns).

and performance, We can draw the crude conclusion that high streets located at the periphery
of the city tend to recover better than those closer to the city centre. High streets in Cluster
2 are more evenly distributed, but are relatively bigger in sizes.

To gain more information about what types of high streets each cluster contains, we
further look into the composition of each cluster by linking the high streets with Retail
Centre Typology provided by CDRC 3. Figure 3 shows the composition of each cluster, where
we can see that Cluster 1 has the highest proportion of small local centres compared to
Cluster 2 and 3. In Cluster 2, only 38.7% of the high streets are small local centres, the
lowest among the three clusters, while higher percentages of district centre and town centre
are found in this cluster. As for Cluster 3, the composition is very similar to Cluster 1, but
the proportion of high streets located in the outer London area is much higher than that of
Cluster 1 (referring to Figure 2).

Local and nonlocal visitors

It is of great interest to us to uncover the underlying cause that made the three clusters
affected so disproportionately by the pandemic. In particular, the compositions of Cluster 1
and 3 are very similar, yet they have such distinctive responses during multiple rounds of
lockdowns and after-lockdown recovery period. With the question in mind, we calculated
the number of local visitors (residents) and nonlocal visitors (non-residents) in each cluster
and present the result in Figure 4.

Clearly, the stronger resilience Cluster 1 showed during the first national lockdown is
owing to the preservation of local residents, while its downfall in the recovery phase is largely
due to the continued loss of local residents (possibly because of people moving out of city
[10]). The rise of Cluster 3 after the third national lockdown is much explained by the rapid
increase in the number of both local residents and nonlocal visitors.

3 https://data.cdrc.ac.uk/dataset/retail-centre-boundaries-and-open-indicators

https://data.cdrc.ac.uk/dataset/retail-centre-boundaries-and-open-indicators
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Figure 2 Spatial distribution of high streets in three clusters.

Figure 3 The proportion of different high streets in three clusters.

Figure 4 The local (resident) and nonlocal (non-resident) visitors in three clusters.
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5 Discussion and conclusions

By analysing the full trajectory of high street footfall, we made a significant discovery that
the resilience of high streets towards pandemic is very complicated both in space and time:
in general, high streets located at the periphery of the city have recovered better and those
which endured better through lockdowns may not recover well in post-pandemic period. We
also made the first attempt to uncover the underlying cause of such varied responses of
high streets. The interesting finding that local residents is the “key to success” highlights
the importance of community engagement for London high streets. Policymakers and local
authorities might consider organising more local events and activities, as well as launching
initiatives such as community-led regeneration projects, to help strengthen the high streets’
attractiveness, bring back residents and create a sense of ownership and pride among them.

In conclusion, this paper is a first step towards the quantification and clustering ana-
lysis of high streets performance throughout the COVID-19 pandemic. By identifying the
variations in footfall among different high streets, it provides evidence-based insights for
decision-making processes related to urban regeneration, infrastructure development, and the
formulation of policies that support local businesses. Policymakers can tailor interventions
and allocate resources more effectively, ensuring a targeted approach that addresses the
unique characteristics and needs of each high street. For future work, we will incorporate
more contextual features into our clustering analysis, such as catchment demographics and
built environment information to investigate the mechanisms in which high street response
to disruptions.
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Abstract
People’s opinions are one of the defining factors that turn spaces into meaningful places. Online
platforms such as Yelp allow users to publish their reviews on businesses. To understand reviewers’
opinion formation processes and the emergent patterns of published opinions, we utilize natural
language processing (NLP) techniques especially that of aspect-based sentiment analysis methods (a
deep learning approach) on a geographically explicit Yelp dataset to extract and categorize reviewers’
opinion aspects on places within urban areas. Such data is then used as a basis to inform an
agent-based model, where consumers’ (i.e., agents’) choices are based on their characteristics and
preferences. The results show the emergent patterns of reviewers’ opinions and the influence of
these opinions on others. As such this work demonstrates how using deep learning techniques on
geospatial data can help advance our understanding of place and cities more generally.
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1 Introduction

People’s opinions about places reflect their emotional attachment to locations that hold
meanings to them. With the rise of social media platforms such as Google Reviews, Tri-
pAdvisor, and Yelp, vast numbers of opinions about local businesses, including restaurants,
have been published online. These text reviews provide valuable insights into various aspects
of the dining experience, such as the quality of food and service. Studying these reviews
through aspect-based sentiment analysis (ABSA) can help identify key aspects that customers
care about and understand the rationales behind customers’ needs and preferences. The
present work aims to address the following research questions (RQ): How to utilize recent
advancements in natural language processing (NLP) techniques to: 1) help identify key
aspects that customers care about when choosing restaurants, and 2) help inform consumer
choice modeling in the context of visitation patterns to restaurants?

Over the last several decades, a body of literature has grown with respect to studying
consumers’ choice factors when choosing which restaurant to visit. For example, Auty [2]
identified several main choice variables (e.g., food type, food quality, location, etc.) in
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the restaurant selection processes, and how their relative importance varied with respect
to consumers’ demographic segments such as age and income. Focusing on quick-casual
restaurants, Ryu and Han [10] analyzed the relationships between restaurant qualities (i.e.,
food, service, and physical environment) and consumers’ perceived price, and how they in
turn affected customer satisfaction and their behavioral intention. Similarly, Bujisic et al.
[3] investigated the interactions between restaurant qualities and their effects on consumers’
intentions. However, most of the existing studies have used qualitative methods (e.g., surveys,
interviews, focus groups) to collect consumer responses. As a result, they are limited by
small sample sizes of a few hundred people, and the scope of these studies are either towards
specific demographic groups (e.g., students, senior citizens) or specific types of restaurants
(e.g., fast-food, Chinese, Korean) [8].

More recently, there has been an emergence of computational social science (CSS) which
aims to analyze social phenomena through computational approaches [4]. Accompanying
the abundance of digitized text data, one approach in CSS is to develop and utilize new
algorithms and toolkits to conduct automated content analysis (e.g., [9]). Sentiment analysis,
in particular, aims to automatically estimate or extract subjective sentiments that are
expressed through texts, and it can be conducted at different levels. For instance, one may
be interested in examining the overall sentiment from an article, or break down an article
into sentences or words with their sentiments analyzed separately [7]. Methods that have
been utilized to perform such analysis fall into two broad categories: dictionary-based and
machine learning.

Dictionaries (or sometimes referred to as lexicons) contain a selected set of words with
associated pre-defined sentiment scores. However, one drawback of this category of text
analysis is that word order is often neglected. However, it may be crucial for certain types of
sentiment analysis, especially at the aspect-level. For instance, an online restaurant review
(e.g., from Yelp) may contain several aspects with different sentiments (e.g., good food but
poor service) in a single sentence. Ignoring word order may not accurately estimate these
aspect-based sentiments. Machine learning methods overcome this issue by encoding and
processing texts in a sequential manner, where useful information about word order can be
retained. As a result, the performance of machine learning models are often superior to
dictionaries, as observed in several studies (e.g., [11]). Deep learning models in particular,
have gained popularity in terms of ABSA over recent years [6]. Much work has been carried
out to develop new models focusing on improving their predictive power, but they often fall
short of advancing theory in explaining and understanding why and how people produce
sentiments. It is our aim in this work to demonstrate how these predictive models can be
used to investigate salient factors driving peoples’ sentiments and link with existing results
from qualitative studies, using online restaurant reviews as a case study.

Another approach in CSS is using agent-based modeling (ABM) to simulate complex
systems by modeling individual agents and their interactions. In recent years, there have
been a trend of integrating machine learning algorithms in and for agent-based models
[5]. For example, dimensionality reduction and clustering algorithms have been utilized to
analyse model outcomes. Machine learning models have also been used to train on human
behavior data and subsequently represent agents during model executions. Agents may
collaboratively optimize context-specific goals under the reinforcement learning framework.
In order to answer our research question, we combine these two strands of CSS to explore
how to utilize deep learning techniques to inform an agent-based model of consumer choices.
In what follows, we briefly describe our methodology (Section 2) before presenting the results
(Section 3). Finally, Section 4 proved a summary of the paper and identifies areas of further
work.
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(a) Total number of restaurant reviews by year.
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Figure 1 Temporal (a) and spatial (b) distributions of restaurant reviews.

2 Methodology

The Yelp dataset is publicly available at https://www.yelp.com/dataset and contains
more than 6 million text reviews on over 150,000 businesses in the United States from 2005
to 2021. In this study, we focus on a sampled set of reviews on restaurants prior to the
outbreak of COVID-19. Our rationale for this is that COVID-19 has substantially altered
consumer behaviours with respect to visiting restaurants. Figure 1a shows the total number
of reviews over time while Figure 1b shows the number of reviews in representative cities.

We use a NLP approach to conduct ABSA on these Yelp restaurant reviews. Following
the standard text pre-processing procedures in NLP, sampled texts are pre-processed to
remove stop words, punctuation, and so on. Next, we draw on theories from computational
linguistics and machine learning (e.g., [1]) to extract and categorize salient aspect terms
from the text reviews, such as food, service, price, and ambiance, by applying a pre-trained
language model from the PyABSA framework [13]. We also assign sentiments (i.e., positive,
negative, and neutral) to these categorized aspects. Finally, a linear regression model is used
to identify common sentiment patterns and examine how these patterns vary across different
aspects.

While we can estimate casual effects of choice factors on star ratings through theoretical
and statistical models, the results are only at an aggregate level, and it is difficult to gain
insights on how they may differ for different consumer segments. This is mainly due to
the lack of individual data which is a consequence of privacy and ethical concerns. As
such, we turn to agent-based modeling to simulate artificial, heterogeneous agents (i.e.,
consumers) and their restaurant visiting patterns. During model initialization, restaurants
are created with locations using information from Yelp, along with their average sentiment
scores from the pre-trained language model mentioned above. Consumer agents are created
at random places with a random attribute (i.e., student, middle-aged, or senior), which
subsequently determines their restaurant preferences. For example, student agents are more
sensitive to the price factor, whereas senior agents prefer restaurants with higher ambience
score, following findings from past studies through surveys and interviews [8]. At each step,
consumer agents are informed by the NLP model results and visit the best restaurant based
on their preferences. We also implement a null model in which consumer agents make random
decisions on which restaurant to visit. An overview of the model logic is shown in Figure 2.
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Figure 3 Average star rating vs. average sentiment by aspect category for 200 randomly selected
restaurants in the City of St. Louis, MO.

3 Results

The pre-traind language model [13] transforms each text review and assigns a value to each
main aspect category: food, service, price, and ambience, ranging from negative (-1), neutral
(0), to positive (1). Although each text review from Yelp also includes a star rating ranging
from 1 to 5, this information is never used during the model training. That is, model results
are purely based on text data. To help answer RQ 1, we use star ratings as a proxy for
consumer satisfaction, and plot average sentiment score of each aspect category against star
ratings, for 200 randomly selected restaurants in the City of St. Louis, MO. The results are
shown in Figure 3. Unsurprisingly, food appears to be the choice factor that is most strongly
correlated with average star ratings while ignoring all other factors. This validates, and at
the same time is validated by, previous qualitative studies through surveys and interviews
[8]. Notably all results in Figure 3 are statistically significant (p < 0.001).

To understand consumers’ decision-making processes and address RQ 2, we create a
prototype model for the City of St. Louis using the Mesa framework in Python and its GIS
extension Mesa-Geo [12]. A screenshot of this prototype model is shown in Figure 4a. Figure
4b shows the average results of 100 simulation runs, and compares it to the null model.
Figure 4c shows the actual number of check-ins from Yelp. However a direct comparison
between check-ins and visits is difficult to make because not all Yelp users do check-ins on
each visit. Our model shows that there are significantly more consumer visits to restaurants
with a star rating above 3 than to those with a star rating below 3. For the null model,
restaurant visits are evenly distributed regardless of star ratings, which is to be expected. To
some extent, this is also reflected in the actual number of check-ins versus actual star ratings.
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(c) Actual number of check-ins vs. star rating from
the Yelp data.

Figure 4 The prototype agent-based model (a) with simulated (b) and actual visiting patterns (c).

4 Summary and Areas of Further Work

Online customer reviews can provide valuable insights into various aspects of people’s dining
experience, such as the quality of food and service. In this paper we have utilized ABSA
methods on the Yelp dataset to extract and categorize reviewers’ opinions on restaurants in
urban areas. Theses estimated opinions form a basis for subsequent statistical analysis and
simulation through agent-based modeling. Within the context of this paper we see several
areas of further work. A potential area to be further improved regarding sentiment analysis
is to experiment with alternative language models of higher predictive performance, and
fine-tune such models with more restaurant review data. In terms of the agent-based model,
there is always room to extend and refine them. The first relates to incorporating more
census data into the model when initializing the consumer agents in order to better stylize
and build our synthetic population. It would also be interesting to explore a more finer time
granularity that would capture different parts of the day such as mornings, afternoons and
evenings as this might also impact visitation to different types of restaurants. Lastly, efforts
could be made to calibrate model parameters and validate model results with restaurant
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check-in data from Yelp or other check-in data sets such as Google. Even with these areas of
further work, this paper demonstrates how using deep learning techniques can help advance
our understanding of people’s choices when it comes to visiting various locations within a
city and how such analysis can be incorporated within agent-based models to explore how
people interact with places and influence each other.
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Abstract
The paper deals with the calculation of the photovoltaic potential of vertical structures. Photovoltaic
systems are a core technology for producing renewable energy. As roughly 50% of the population on
planet Earth lives in urban environments, the production of renewable energy in urban contexts is
of particular interest. As several papers have elaborated on the photovoltaic potential of roofs, this
paper focuses on vertical structures. Hence, we present a methodology to extract facades suitable for
photovoltaic installation, calculate their southness and percentage of shaded areas. The approach is
successfully tested, based on a dataset located in the city of Graz, Styria (Austria). The results
show the wall structures of each building, the respective shadow depth, and their score based on a
multi-criteria analysis that represents the suitability for the installation of a photovoltaic system.
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1 Introduction

Renewable energy resources are crucial for sustainable development and mitigating the impact
of climate change to achieve carbon neutrality. Solar energy is the largest inexhaustible
source of clean energy in the world [12]. Solar photovoltaic (PV) systems play a vital role in
harnessing solar energy and account for 10% of the world’s electricity in the year 2022 [13].

The utilization of solar energy requires the assessment of the solar energy potential that
quantifies the physically available solar radiation on the earth’s surface [1]. Of special interest
is the assessment of solar energy potential in urban environments, as almost 50% of the
world’s population currently lives in urban areas. Buildings are key structures in urban
settings and understanding their solar potential is essential for the optimal utilization of solar
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energy in urban environments. Aside from rooftop [6] or ground mounted [8] PVs, there is
an emerging interest in the solar potential of vertical structures (vertical PV) in recent years
[4, 11]. Building facades provide additional space for the installation of PV systems that can
complement the PVs installed on rooftops increasing the solar potential by 10-15% [2].

However, the assessment of the solar potential of building facades at a large scale (e.g.
city level) is a challenging task. Most of the current solutions use complex radiation and
shadow computation models that are computationally intensive and are not scalable from a
few buildings to city level [2]. So, one of the major challenges for the assessment of vertical
PV potential is the reasonable computational time [12]. Thus, computing the solar potential
of building facades in urban areas needs to address the following challenges:

1. Extraction of Facades: Facades are vertical surfaces that show discontinuities in elevation
models. Extracting vertical surfaces (facades) from elevation models is a complicated task.
In addition, all facades of a building will not receive the same amount of solar radiation.

2. Shadow Analysis: Mutual shadowing due to the surrounding environment (other neigh-
boring buildings, trees, etc) will reduce the solar radiation and this temporally varies.

In this paper, we address the aforementioned challenges by providing a novel approach
for the assessment of vertical PV potential. The solution is computationally viable as
it uses simple radiation and shadow computation models. The work takes the following
simplifications and assumptions. (1) Only direct sunlight is considered for the radiation
model. (2) We only consider facades with a minimum height of 3m and an area over 50m2.

This paper has the following major contributions. (1) It presents a novel approach for the
assessment of the PV potential of building facades that uses an efficient technique for shadow
computation without using sky maps. (2) It provides an analysis of the important features
for the vertical PV including southness, shading, height and width of building facades.

The remaining sections of the paper are organized as follows. In section 2 we provide an
overview of existing approaches for assessing PV potential. Section 3 explains our proposed
approach. In section 4 we demonstrate our approach on a small dataset. Finally, section 5
concludes this paper with a discussion of the contributions and an outlook of future work.

2 Related work

It is possible to estimate PV potential with statistical data, as [7] did on a country level (Aus-
tria) by describing the feasible potential of facades including physical/theoretical, technical,
economic, and ecological/social limitations. However, approaches on a building level are
more precise, but require a spatial data basis such as light detection and ranging (LiDAR)
[4, 10], CityGML [14], aerial photogrammetry [9], or cadastral data where 2D to 3D objects
can be extracted. E.g., a combination of LiDAR data, 2D, and 2.5D cadastral data was used
by Desthieux et al. [4] to analyze the PV potential on rooftops and facades.

To handle the third dimension, shadow casting and solar radiation modeling were applied
to 3D hyper-points covering the facade areas grid-like. Similar point-cloud-based methods
were used in [11, 10], by calculating the sky view factor values for each point of a facade. The
density of the points determines the accuracy and computational costs. Our approach uses
3D building data for vertical PV estimation too but it avoids computationally demanding
point-cloud-based methods. This makes it applicable to large areas. We also introduce the
southness indicator for building facades which was not addressed by literature yet.
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3 Methodology

The approach proposed in this paper determines the PV potential of vertical surfaces (e.g.
buildings facades). The developed workflow uses a raster containing shadow depth information
to determine the PV potential of vertical structures (e.g. buildings). The shadow depth
describes the height of a shadow cast by surrounding structures (e.g. trees, etc.).

The developed approach consists of six major steps. (1) Split into segments, (2) orientate
geometries, (3) compute southness, (4) compute the wall area, (5) map shadow raster to wall
segments and (6) the multi-criteria-analysis (MCA).

In more detail this means (1) we split buildings into wall segments and (2) orientate their
geometries to ensure the outside of the building is to the left of the wall. (3) We then use
this orientation to determine the southness of the wall segments, which is a value derived
from the geographic direction that the outside of the wall segments is facing (see Section 3.2).
(4) Based on the height and the length of the wall segments, their areas are derived. (5)
To determine the shadowed area of the facade we map the shadow depth raster to vertical
walls. This is done by computing the mean shadow depth in front of the wall segment
(see Section 3.3). Consequently, the sun area of the facade is calculated by subtracting the
shadowed area from the overall facade area. We also derive the percentage of the wall that is
shadowed or non-shadowed from these values. Finally, (6) the PV potential of the walls is
determined with an MCA. Scores and weights are assigned to the attributes percentage of
sun area, normalized southness indicator, and facade area (see Section 3.4).

3.1 Preparation of vertical structures
Calculating vertical PV potential for a high quantity of buildings over large datasets can be
computationally demanding and can be simplified by applying additional measures to the
buildings. Firstly, instead of analyzing individual buildings, they can be dissolved into larger
blocks. We propose a weighted average height for the dissolved building blocks. The weight
is derived from the ratio of the area of the individual building to the total area of the block.

Secondly, once the buildings are dissolved into larger blocks they can be simplified further
with line simplification algorithms such as the Douglas-Peucker algorithm [5]. This algorithm
simplifies lines by excluding points based on a distance threshold.

3.2 Southness of the facades
One of the most important features that determines how much sunlight exposure a facade will
get is its orientation. The facade facing south is likely to receive more sunlight than the one
facing north, while facades facing east and west are expected to fall in between. To capture
and quantify this feature, we have come up with a normalized southness indicator that ranges
from 0 for north-facing facades to 1 for south-facing facades and graduates equally between
them regardless if the facade is facing east or west. Firstly, the azimuth of the facade is
reduced to a value between 0°and 180°, and this value is then normalized. The reduction
process differs depending on the azimuth and the exact formulae are shown in Table 1.

3.3 Mapping 2D-shadow raster to vertical walls
One step of assessing the potential of vertical areas is gaining information on the area covered
by shadow. We map a 2D-Shadow-Raster to the wall segments by (1) buffering the outside
of the walls, (2) intersecting the buffered wall with the shadow-raster and (3) deriving the
mean shadow depth in front of the wall from the mean of the intersecting pixel values. The
mean shadow depth is a negative value thus it is inversed to receive the mean shadow height.
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Table 1 Calculation of the normalized southness indicator depending on the azimuth of the line.

Azimuth [α] α < 90° 90° ≤ α < 180° 180° ≤ α < 270° 270° ≤ α < 360°
Reduced Azimuth [αr] 90° − α α − 90° α − 90° 180° − (α − 270°)
Southness Indicator αr/180°

Figure 1 The top-down view shows the buffers in front of the walls that mark the shadow area
of interest. The side view shows the different shadow heights in front of the facade covering up the
facade area. To compute the mean shadow height, the shadow height must be reduced to the facade
height to avoid shadow overhead.

We compute the shadow depth raster with an adjusted version of the QGIS Terrain
shading plugin [3]. It uses the vertical angle and the horizontal angle (azimuth) of the sun
to compute the shadow depth over the elevation model. We use an average shadow depth
raster built from 12 rasters which represent 4 different days of the year with 3 times around
noon for each day.

Figure 1 shows the problem at hand from two perspectives. To avoid a false mean shadow
height we reduce the intersected height values to the wall’s height. Without this, the shadow
height overhead can cause mean shadow height to exceed the wall height. By multiplying
the mean shadow height with the length of the facade, the shadowed area is determined.

The wall buffer which is meant to capture the area in front of the building can intersect
with the roof of the building itself or nearby treetops, leading to false shadow depth values.
This is solved by filtering false shadow depth values with a threshold as they are considerably
lower than the correct shadow depth values due to the height of these structures.

3.4 Multi-Criteria-Analysis
We derive the attributes that play a key role in the assessment of the PV potential of vertical
structures by interviewing stakeholders and experts. Aside from binary filtering attributes
like a minimum height or a minimum area, we determine the percentage of sun area, the
normalized southness indicator, and the total area as properties for the assessment of the PV
potential. With the percentage of sun area being the non-shadowed part of the facade area.

For the MCA it is required to assign the same score range to each property. Further,
the three properties percentage of sun area, normalized southness indicator and total facade
area are assigned weights based on their importance. This importance is gained from the
knowledge of stakeholders and experts. The sum of all weights must be 1. By multiplying
the weights with the assigned scores and building the sum of the weighted scores a total
score is obtained that describes the PV potential of the vertical structure.
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Figure 2 The 200m by 200m test area consisting of 217 walls of which 117 walls are suitable for
PVs depending on their MCA score.

Table 2 The number of walls and the mean of the MCA attributes, as well as the mean total
score by direction.

Count Mean Southness Indicator Mean Sun Area
Percentage (%) Mean Total Score

North 35 0.16 43 39.76
West/East 40 0.43 47 48.19
South 42 0.79 74 73.82

4 Experiment

We test the proposed approach on a set of buildings in Graz, Styria (Austria). The test area
is selected based on the even distribution of north, east/west and south facing faccades (see
2). It has a size of 200m × 200m. It consists of 63 buildings, which we split into 217 walls. Of
these walls, we determine 117 walls suitable for PVs based on the binary attributes. These
are a minimum height of 3m and a minimum facade area of 50m2 . By applying weights
to the scores of the three properties we receive an overall PV suitability score ranging from
0 - 100. The used weights are 0.7 for percentage of sun area, 0.2 for normalized southness
indicator, and 0.1 for total facade area.

Figure 2 visualizes the result for the test area. It shows the walls filtered by the
binary attributes and the ones suited for PVs colored by their MCA score. It is visible
that southward-facing walls tend to have a higher suitability score, than the ones facing
northwards or east/west. A look at table 2 supports this. With an average total score
of 73.82 southern walls tend to have the highest suitability, while northern walls have the
lowest with 39.76. One aspect of interest is that the average percentage of the non-shadowed
areas between north-facing walls and east-/west-facing walls only differs by 4%. As expected
south-facing walls have the highest percentage of sun-covered area with a value of 74%.
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5 Discussion and Outlook

In this paper, we present a novel approach for determining the PV potential of vertical
surfaces. Further, we discuss the necessary pre-processing steps for the building data at hand.
We highlight the normalized southness indicator as an attribute of assessing the PV potential
of vertical surfaces. Additionally, we discuss our approach for determining the shadowed /
non-shadowed area of vertical surfaces. The normalized southness indicator as well as the
percentage of non-shadowed surface area play a vital role in multi-criteria-analysis of the PV
potential of the vertical surfaces.

The key contributions of this paper are (1) the approach of assessing the PV potential
of vertical surfaces, (2) the analysis of the relevant measures and indicators for vertical PV
potential such as southness, shading, height and width of the facades. Further, (3) the
findings may support the energy transition by finding potential facades for renewable energy
production, and (4) it enables stakeholders and administration to make informed decisions
concerning vertical PV areas which is of particular interest in urban contexts.

Future research aspects consist of evaluating the performance of the proposed approach
by comparing it to existing methodologies. Further, it could be extended with additional
attributes such as window surface area.
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Abstract
Centrality metrics are essential to network analysis. They reveal important morphological properties
of networks, indicating e.g. node or edge importance. Applications are manifold, ranging from
biology to transport planning. However, while being commonly applied in spatial contexts such as
urban analytics, the implications of the spatial configuration of network elements on these metrics
are widely neglected. As a consequence, a systematic bias is introduced into spatial network analyses.
When applied to real-world problems, unintended side effects and wrong conclusions might be the
result. In this paper, we assess the impact of node density on betweenness centrality. Furthermore,
we propose a method for computing spatially normalised betweenness centrality. We apply it to a
theoretical case as well as real-world transport networks. Results show that spatial normalisation
mitigates the prevalent bias of node density.
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1 Introduction

Betweenness centrality is a key metric for assessing node and edge importance in networks.
It is based on computing the share of shortest paths that pass each edge or node in relation
to the total number of paths in a network. Thereby it reveals the relative importance of
edges or nodes for enabling interaction within the network. While centrality metrics can
generally be applied to spatial networks, many complex effects occur that are still to be fully
understood [2]. As direct consequence of the definition of betweenness centrality, the number
of nodes, their location, and their morphological embedment within the network determine
centrality. The key aspect to be questioned within spatial applications is the assumption
that each pair of nodes has equal influence on centrality. This characteristic implies that the
spatial density of nodes strongly influences betweenness centrality.

State of the Art

Due to the generic network science origin of centrality metrics, their focus lies on topological
rather than spatial properties of networks. However, important steps for integrating spatial
aspects into centrality concepts have been accomplished e.g. by considering the spatial length
of edges and paths in betweenness centrality. Further research assessed how different forms
of spatial networks influence centrality and how such networks can be characterised through
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the use of centrality metrics [2]. Various studies applied betweenness centrality for assessing
spatial transport networks - for Indian railways[6], Paris and London transport[4] or urban
road networks in Germany[5]. All these examples have in common that they do not consider
the impact of spatial configuration on centrality metrics, thus neglecting its potential bias.

Application-driven research proposed domain-specific concepts for weighting origin-
destination pairs in computation of centrality, which may mitigate bias of spatial configuration.
In urban analytics and transport modelling, weighting based on flow estimation is common.
Spatial interaction between origins and destinations is modelled, resulting in an estimate
for travel demand. Despite the long history of such methods, adequate modelling is highly
complex and has been found not to meet real-world observed patterns in many cases.

Research Gap

While numerous studies applied betweenness centrality to spatial networks, effects of the spa-
tial configuration of nodes on centrality have not been regarded systematically. Furthermore,
we identified the lack of a simplistic null model of betweenness centrality for applications in
spatial networks that avoids introducing complex (behavioural) models.

To fill this gap, we first assess the problem in more detail and then provide a method to
compensate the influence of spatial node density. Motivated from the application domain
of urban analytics and mobility, we focus on edge betweenness centrality as known key
measure from which node betweenness centrality may easily be derived [2]. Where helpful,
we motivate our theoretical considerations using examples of real-world transport networks.

2 Method

The Problem Illustrated

To illustrate the impact of node density on edge betweenness centrality (cB), we use a
simplistic reference case. In a network constructed as a regular grid, cB is known to be
highest in the spatial centre, as shown in figure 1 a). If we subdivide one grid cell by adding
an additional node per edge and one node at the cell centre, we observe a shift in high
cB towards the newly subdivided area, visualised in figure 1 b). One may think of this
as a city block to which access paths for pedestrians have been added. While the overall
structure of this virtual residential area remained the same (i.e. no buildings have been
added or removed), centrality shifted significantly. This can be explained by the fundamental
definition of cB . As we introduce new nodes - in the given case five nodes are added to a cell
originally consisting of four nodes - each of these new nodes introduces an equally important
origin and destination for all shortest paths computation. As a consequence, the influence of
paths from and to this cell increases in relation to all paths within the given network.

To quantify this gain in influence, we can calculate the change in contribution of paths
from and to the given cell relative to all paths within the network. Following the definition
of cB (see equation 1), it is more precisely the number of origin-destination relations that
start or end within the given cell that we are interested in. As known from normalisation of
cB , the total number of origin-destination relations in a directed graph consisting of n nodes
is n(n − 1). As one single node has the role as origin as well as destination for o-d relations
to all other nodes, it contributes 2(n − 1) o-d relations. Consequently, we can express the
relative contribution of one node to all possible relations as 2(n−1)

n(n−1) . In a more generic form,
we can quantify the contributed relations of i nodes to the network beyond the given cell as
2i(n−1)−i(i−1)

n(n−1) .
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cBref

[0.000, 0.016]
(0.016, 0.032]
(0.032, 0.048]
(0.048, 0.063]
(0.063, 0.079]
(0.079, 0.095]
(0.095, 0.111]

(a) Regular grid network.

cB

[0.026, 0.041]
(0.041, 0.056]
(0.056, 0.071]
(0.071, 0.086]
(0.086, 0.102]
(0.102, 0.117]
(0.117, 0.132]

(b) Same network with subdivision added.

Figure 1 The problem illustrated: Influence of node density on centrality.

Considering the case of adding subdivision to a regular grid, we can assess the contribution
I of nodes forming a given cell C and the subdivided cell C ′ as follows:

IC = 2a(n − 1) − a(a − 1)
n(n − 1) and IC′ = 2(m + a)(n + m − 1) − (m + a)(m + a − 1)

(n + m)(n + m − 1)
where a denotes the number of nodes originally constituting the cell and m denotes the
number of nodes added through subdivision.

The relative increase in influence of cell C can be assessed as IC′
IC

which for a ≪ n and
m ≪ n can be approximated as: n2(a + m) −2n

−2an3 = a+m
a . Thus, the influence of the given

cell on centrality increases approximately proportional to the increase in node count for the
same area for commonly large networks.

For our minimalistic example with n = 36; a = 4; m = 5, the cell’s influence increases by
81

205 / 67
315 ≈ 1.858. Due to the small network size and relatively high a and m, this value does

not reach the approximate value for large networks of 4+5
4 = 2.25.

To summarise this section, we were able to show that the influence of spatial node density
on betweenness centrality can be assumed to be proportional for commonly large networks.
Consequently, spatial variation in node density has significant impact on betweenness cent-
rality. While this might be intended in specific application cases, it appears unintended for
generic, unbiased assessments and remains hard to control for in general.

Proposed Method: Spatial Betweenness Centrality

To mitigate the effect of varying node density on betweenness centrality, we propose a method
for computing spatially normalised betweenness centrality. We refer to edge betweenness
centrality as cB and to our proposed spatial edge betweenness centrality as cSB . The main
idea behind cSB is to weight all paths contributed to centrality per origin-destination pair
relative to the area covered by their origin and destination nodes.

Our proposed method consists of two steps: 1) determining the spatial coverage per node,
and 2) computing spatially weighted centrality based on node coverage.

Determining the spatial coverage per node. Spatial coverage of nodes can be determined
using tessellation of the network space. While tessellation using Voronoi polygons is common
e.g. for retrieving a network null model, it does not render suitable in the given case.
Especially in networks with high variability in edge length, Voronoi polygons may intersect
non-adjacent edges. Furthermore, motivated from the mobility domain, we assume that
interaction is generated along edges rather than at nodes. Therefore, we propose utilising an
edge-based tessellation such as the method described by Araldi and Fusco using proximity
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bands [1] or network-based Thiessen tessellation. The area of each polygon then describes
the spatial coverage per edge. Each node’s spatial coverage can thus be derived as the total
spatial coverage of all edges adjacent to a node divided by two.

Compute spatially weighted centrality based on node coverage. Edge betweenness
centrality cB(e) is defined for a graph G(V, E), where V refers to the set of nodes and E

refers to the set of edges as follows:

cB(e) =
∑

s,t∈V ;s̸=t

σs,t(e)
σs,t

(1)

In this formula, for any pair of origin s and destination t nodes, σs,t denotes the number
of shortest paths from s to t, and σs,t(e) refers to the quantity of paths that pass edge e.

In standard cB , each origin-destination pair contributes equally to centrality. Consequently,
the weight each o-d relation contributes equals to one: wrelation(s, t) = 1. For spatial
normalisation we want to weight the paths contributed to centrality per o-d pair proportionally
by their origin and destination node spatial influence (weights). Therefore, we propose a
weight function that distributes an origin node’s spatial influence (area covered) to all other
nodes proportionally to their relative spatial influence as a destination:

wrelation(s, t) = w(s) w(t)∑
u∈V ;u̸=s

w(u)
for s, t ∈ V ; s ̸= t

where w(v) refers to the weight of a node v, respectively its spatial coverage. The full
definition of our proposed spatial betweenness centrality metric consequently reads as:

cSB(e) =
∑

s,t∈V ;s̸=t

σs,t(e)
σs,t

w(s) w(t)∑
u∈V ;u̸=s

w(u)
(2)

In order to obtain normalised values for cSB , the absolute values are divided by the total
area covered by origin nodes: cSBnorm(e) = cSB(e)/

∑
v∈V w(v).

We propose an implementation based on spatial interaction incorporated betweenness
centrality (SIBC)[7]. It builds upon Brandes algorithm [3] and adds a weight function f(s, t),
which represents a measure of spatial interaction - known flow or estimated flow based on a
gravity model [7]. If one pre-computes the o-d weight matrix, it can be employed as spatial
interaction matrix in the SIBC method. For applicability in large networks, we suggest
computing o-d weights stepwise per origin, alongside solving the single-source shortest path
(SSSP) problem.

3 Results

In this section we provide centrality assessments for different networks using both, standard
edge betweenness centrality cB and our proposed spatial variant cSB .

The artificial case: regular grid network. As first example we assess the network that we
used to illustrate the problem in section 2.

In figure 1 we can observe that cB shows a shift of high centrality towards the subdivided
cell, whereas such a shift is not present in cSB shown in figure 2 a) and b). The differences
between cSB for the subdivision case and cB for the regular grid case are relatively small. In
contrast, figure 2 c) highlights the mitigated shift of high centrality when applying cSB .
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cSBref
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(0.016, 0.032]
(0.032, 0.048]
(0.048, 0.064]
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(0.079, 0.095]
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(a) Regular grid network.
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(b) Network with subdivision.

cB, cSB [%]

[-35, -25]
(-25, -15]
(-15,  -5]
( -5,   5]
(  5,  15]
( 15,  25]
( 25,  35]

(c) Difference compared to cB .

Figure 2 Spatial betweenness centrality applied to the original problem case.

The real-world case: street networks. Additionally, we computed cB and cSB for several
extracts of real-world road networks of varying form. For brevity, we only present one example
here and provide more cases online at https://doi.org/10.5281/zenodo.8125632.

cB

[0.000, 0.024]
(0.024, 0.049]
(0.049, 0.073]
(0.073, 0.098]
(0.098, 0.122]
(0.122, 0.147]
(0.147, 0.171]

(a) Betweenness Centrality cB .

cSB

[0.000, 0.022]
(0.022, 0.043]
(0.043, 0.065]
(0.065, 0.086]
(0.086, 0.108]
(0.108, 0.130]
(0.130, 0.151]

(b) Spatial Betweenness Centrality cSB .

cB, cSB

[-0.12027, -0.08595]
(-0.08595, -0.05157]
(-0.05157, -0.01719]
(-0.01719,  0.01719]
( 0.01719,  0.05157]
( 0.05157,  0.08595]
( 0.08595,  0.12028]

(c) Difference: cSB − cB . (d) Tessellated input network.

Figure 3 Betweenness centrality for a subset of a real-world street network (Stuttgart, Germany).

Results for the real-world case using a subset of Stuttgart, Germany are presented in
figure 3. High node density is present in the North, whereas lower node density is prevalent
in the centre and South, which is visible in subfigure d). Accordingly, the size of tessellation
polygons decreases with higher node density. When comparing subfigures a) and b) or
assessing the differences in subfigure c), cB puts a clear emphasis on routes linking the
high-density areas. For cSB , part of these links also show above-average centrality. However,
additional links in the centre and South are more pronounced in cSB .

For all networks assessed, we can observe a tendency of higher centrality values for cB in
proximity of areas with higher node density compared to spatially normalised centrality cSB .
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4 Discussion and Outlook

We showed that spatial variation in node density has significant influence on betweenness
centrality for spatial networks. Unless node density is an intended indicator to consider in a
specific application case, we regard this as systematic bias that needs to be addressed. E.g.
for applications in mobility, standard betweenness centrality cB may only render suitable
results, if node density spatially correlates with population density.

With the concept of spatial betweenness centrality cSB we propose a generic solution
that utilises spatial normalisation to weight the contribution of individual relations. Results
applying cSB show a clear mitigation of bias introduced through variations in node density
in cB. Spatial betweenness centrality cSB can therefore provide a generic null model of
betweenness centrality in spatial networks.

For practical application of cSB, edge effects need to be considered. One may utilise
a network covering larger extent than the area of interest for assessment to allow shortest
paths on edges outside the area of interest and to avoid edge effects in tessellation. Future
research should shed more light on specific edge effects of cB and cSB .

Depending on the domain-specific application case, additional factors may be integrated
into cSB assessments. Non-uniform weight may be applied to areas of e.g. different land use.
This also allows for excluding certain areas from contributing to centrality computation as
orign and destination. Furthermore, combination e.g. with population data can open new
application scenarios.

We see great potential in the use of spatial betweenness centrality cSB for unbiased, generic
assessment of spatial networks. It combines both, morphological properties with spatial
embedment of the network. However, it may depend on the specific domain application,
whether cSB or an advanced domain-specific modelling approach is preferable.
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Abstract
Human mobility exhibits power-law distributed visitation patterns; i.e., a few locations are visited
frequently and many locations only once. Current research focuses on the important locations of users
or on recommending new places based on collective behaviour, neglecting the existence of scarcely
visited locations. However, assessing whether a user will return to a location in the future is highly
relevant for personalized location-based services. Therefore, we propose a new problem formulation
aimed at predicting the future visit frequency to a new location, focusing on the previous mobility
behaviour of a single user. Our preliminary results demonstrate that visit frequency prediction is a
difficult task, but sophisticated learning models can detect insightful patterns in the historic mobility
indicative of future visit frequency. We believe these models can uncover valuable insights into the
spatial factors that drive individual mobility behaviour.
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1 Introduction

Large-scale tracking data collected from mobile phone users are crucial for location-based
services such as place recommendations [8]. One field of research is the so-called next location2

prediction, which is concerned with finding the immediate next location an individual will
visit [7]. Such predictions could be used for recommendations, navigation advice or on-demand
transport services. The developments in this field, however, suffer from the heavy-tailed
distribution of visit frequencies [3]; i.e., many locations are visited only once and are thus
difficult if not impossible to predict [11]. Specifically, Cuttone et al. [1] find that 70% of
locations are visited only once, and 20-25% of the visits are to new locations. The interest
of users in these locations is primarily assessed upfront via recommendation systems that

1 Corresponding author
2 Since the term ”place” describes the subjectively experienced form of a geographic location [19], we will

use the term ”location” throughout the paper to objectively denote a user’s activity cluster.
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leverage insights from aggregated user behaviour, e.g., the general popularity of a place.
Many systems were developed for this purpose, mainly based on data from location-based
social networks (LBSN), and employ (context-aware) collaborative filtering [9, 2, 18]. For a
recommender system to successfully suggest entirely new locations to the user, data from
many users in the same region must be available, which is often hampered due to the sensitive
nature of tracking data [4].

At the same time, the mobility of a single user already allows one to draw insights about
a user’s interest in new locations. For example, the spatial layout [10] and topology of
the mobility behaviour [20, 16], or the category frequencies of the user’s previously visited
locations [17] can help to estimate the spatial distribution of future visitation patterns [11].
In light of this possibility, we argue for a new problem formulation: Predicting the frequency
of future visits to a newly visited location, given the historic mobility of a single user.
In other words, assuming that we observe a user visiting a location for the first time,
can we predict whether they will return to this location, in a scenario where knowledge
about collective mobility patterns is scarce? We argue that this problem is mistaken as
a subtask of recommender systems or next location prediction. In contrast, it requires
special modelling approaches to learn efficiently from individual historic mobility patterns.
Successful approaches could decide whether a location will become part of a user’s activity
set [6] and possibly unveil hidden patterns in the user’s location preferences. Moreover, the
gained knowledge will support the online next location prediction that needs to consider new
locations at runtime, or improve individualized transport recommendation and planning.

In this paper, we formalize our new problem termed “visit frequency prediction”, and
present an approach to frame it as a supervised learning task. We experiment with self-
attention-based and graph-based neural network models to efficiently process the historical
tracking data. As expected, predicting the visit frequency to new locations is challenging due
to the lack of information about the user’s motives for visiting the location. Nevertheless, we
find that neural network models can find patterns in the historic mobility that are predictive
of future visits, improving over the baseline methods.

2 Problem formulation

Let Lu = {lu
1 , . . . , lu

m} denote the set of all locations visited by user u. A location is defined by
point coordinates or an area, where the user performed some stationary activity (e.g., working
or catering). Locations can be derived, e.g., by clustering GNSS data or from check-ins to
known POIs in LBSN. In practice, a user visits these locations sequentially, represented as
a list Su of n visit events, for example, Su = [lu

2 , lu
1 , lu

2 , lu
4 ] with n = 4. The visit frequency

ν(l) is thereby the number of visits to location l, e.g., ν(lu
2 ) = 2 in the example. Let Si:j be

the excerpt of the chain from the i-th until the j-th element in S (excluding the j-th). We
assume that at a specific point t, we observe that a new location lu

θ /∈ Su
1:t. The task is to

predict ν(lu
θ ) in Su

t:n given the historic mobility Su
1:t.

One potential approach is to train a model to learn a mapping g such that, optimally,
ν(lu

θ ) = g(Su
1:t, lu

θ , u), where the model could leverage 1) feature representation of the
previously visited locations f(l), l ∈ Su

1:t and the visit frequency ν(l) of these locations, 2)
user characteristics u, and 3) features of the new location f(lu

θ ). Note that the model can be
fitted to the data of many users, but, at inference time, it should be possible to apply the
model to the data from a single user, potentially in a different geographical region.
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3 Methods

location features f(l) #visits 

...

...

Historic mobility of user u:

Test sample

Figure 1 Approaching the visit
frequency prediction problem as a
supervised task.
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Figure 2 Graph-based model for learning visit frequency of
new locations from the historic location graph. The graph is
embedded and concatenated with the new location’s features.

We propose a supervised approach to tackle the visit frequency prediction problem. In
each training step, one location lu

θ is removed from the user’s overall tracking data (see
Figure 1). The pruned mobility data Lu \ lu

θ and Su \ lu
θ (i.e., the historic mobility, pretending

that lu
θ was never visited), as well as features of the removed location f(lu

θ ) are provided as
input, and the visit frequency ν(lu

θ ) is the desired output. We utilize the following features
as f : The projected coordinates of l relative to the home location, the location purpose
encoded as a one-hot vector, the average start hour of visits to l, and POI features. This
leads to a vector of 24 entries. We implement a simple median and a k-nearest neighbor
(kNN) approach as baselines and then test a fully connected neural network (MLP), a
multi-head self-attention (MHSA) model, and a graph convolutional network (GCN) on the
task. Each model is described in the following. For implementation details, see our code and
supplementary material available at https://github.com/mie-lab/predict-visits.

The simple median baseline is given by ν̂(lu
θ ) = median({ν(lu) | lu ∈ Lu}). This approach

yields the same output for all queried locations of a user. For a more informed baseline, we
consider a kNN approach, estimating the unknown visit frequency as ν̂(lu

θ ) = 1
k

∑
l∈N(lu

θ
) ν(l),

where N(lu
θ ) is the set of k nearest neighbors of lu

θ in Lu \ lu
θ . We measure the distance

between locations by the Euclidean distance of their feature vectors f .

For the MLP and the MHSA model, we provide a fixed set of m locations from the historic
mobility of a single user, Lu \ lu

θ , and the new location lu
θ as input. We hypothesize that the

locations with the highest activity are most predictive of the visit frequency to new locations,
and therefore select the m locations with the highest visit frequency. They are sorted by the
frequency and are featurized by f , leading to an input matrix of size (m+1)×24. The matrix
is flattened to be fed into the model. The MLP is a simple fully-connected two-layer network,
whereas our MHSA follows the implementation by Hong et al. [5] for location prediction. A
graph approach, on the other hand, allows for a variable number of input locations per user.
Our approach is shown in Figure 2. The graph is passed through a Graph-Resnet [13], and
the node embeddings are combined with average pooling, yielding a single vector of fixed size.
This graph embedding is then concatenated with the embedding of the new location features
f(lu

θ ) passed through a single layer. The last layer yields the estimated visit frequency.
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4 Results

4.1 Data
We utilize high-quality and activity-labelled GNSS data from three tracking studies: Green
Class 1 (GC1), Green Class 2 (GC2) [12] and yumuv [15]. All three studies were executed in
collaboration with the Swiss Federal Railways (SBB) and aimed to evaluate the impact of
Mobility-as-a-Service offers. The participants were tracked via a GNSS-based app and were
asked to manually label their activities. The app already preprocesses the raw GNSS track
points by inferring stationary staypoints and continuous movement triplegs, which are further
processed with the Python library Trackintel [14]. Trackintel derives a set of visited locations
from a user’s tracking data using the DBSCAN clustering algorithm. After preprocessing, we
included 139 users for GC1, 48 for GC2 and 653 for yumuv, who visited 104.5k, 35.7k and
127.3k distinct locations respectively. To align the tracking period, we split the data into time
bins of three months. Finally, following Martin et al. [16], we transform the tracking data
into a location graph for the GCN-based approach with the same hyperparameter setting.
By the visit frequency prediction definition given above, the model should be applicable
to unseen users in other geographic regions. Therefore, we split the data into train and
test set on a dataset-level for the experiment; i.e., the train set Dtrain comprises randomly
sampled data from the GC1 and yumuv studies, and Dtest is sampled from GC2. To focus
on rarely-visited locations, we only use locations that were visited up to ten times as test
locations (lθ). This cutoff on average excludes three locations per person.

4.2 Model comparison
Figure 3 shows the results for all tested models. We first consider the mean absolute error
(MAE), i.e. 1

|Dtest|
∑

lu
θ

∈Dtest
|ν̂(lu

θ ) − ν(lu
θ )|. The absolute error is generally low (around 1.8)

for all models, and complex models only improve marginally over the baselines. However, the
MAE is misleading due to the imbalance between the visit frequencies: Many locations are
visited only once, whereas very few are visited ten times. For a more insightful evaluation, we
propose to consider the balanced MAE: 1

10
∑10

i=1

(
1

|Dtest|
∑

lu
θ

∈Dtest with ν(lu
θ

)=i |ν̂(lu
θ )−ν(lu

θ )|
)

As Figure 3 (middle) shows, the balanced MAE is 3.99 for the simple median baseline
and improves to 3.78 for the best kNN model. The neural network models yield a substantial
improvement if they are also trained with balanced data (denoted by ”bal.” in Figure 3),
meaning that the batches at train time were sampled such that each visit frequency from
1 and 10 appear equally often. The balanced GCN and balanced MHSA model yield the
best performance with a balanced MAE of 2.43, indicating that these models can indeed
learn patterns in historic mobility. The results for the balanced GCN are also visualized as a

0 1 2
Absolute error

KNN (k=25)
KNN (k=5)

MLP
MLP (bal.)

GCN
GCN (bal.)

MHSA
MHSA (bal.)

Simple
median 0 2 4

Balanced abs. err
0.0 0.1 0.2 0.3
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Figure 3 Model comparison on the visit frequency prediction problem for new users.
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Figure 4 Violinplot of visit frequency predicted by the GCN
compared to the ground truth.

Figure 5 Spatial distribution
of predicted visit frequencies.

violin plot in Figure 4. While the test set is imbalanced and the predictions are very noisy,
there is a clear shift in the distribution of predicted frequency with increasing ground truth
visit frequency.

Finally, the Pearson correlation coefficient ρ of predicted and ground truth visit frequencies
of the test data is shown in Figure 3 (right). The GCN and MHSA models again achieve
the best performance with ρ up to 0.3. In general, the results indicate that predicting visit
frequencies to newly visited locations is a difficult task. The value of the predicted frequencies
for real applications is limited so far, even though they are more accurate than the baselines.

5 Discussion and outlook

The increasing availability of user location data gives rise to new research opportunities in
the context of location recommendation and prediction. We have introduced a new problem
that, for the first time, regards the importance of newly visited locations by approximating
their projected visit frequency. Our preliminary results show that the task suffers from
similar difficulties as next location prediction, namely noisy data, lack of information and
inherent stochasticity in user decisions. The difficulty is also due to the strong imbalance
of the ground-truth visit frequency. However, other models or additional context data may
improve performance.

A well-trained visit frequency prediction model could also be applied to map the probability
of visits to new locations. This analysis would yield insights into the spatial distribution
of visit frequencies learnt by the model. An example is shown in Figure 5, where we
systematically sampled locations within the convex hull of the visited locations of one user.
The heatmap of predicted visits is based on hidden patterns detected in the ground-truth
visit frequencies (dots, locations that are only visited once are filtered out for visibility).
An analysis of the spatial visitation patterns, e.g., with respect to the spatial layout and
distances of frequently visited locations, may improve the understanding of user behaviour.
Thus, we believe that visit frequency prediction is an exciting endeavour, and we hope that
our problem formulation and preliminary methodology inspire further research on this topic.
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Waffle Homes: Utilizing Aerial Imagery of
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Abstract
A primary function of the Population Density Tables Project (PDT) at Oak Ridge National
Laboratory is to produce residential population densities per 1000 sq. ft. for each country and
their associated first-level administrative units. This is accomplished by utilizing the average size
of different types of dwelling areas (urban, rural, single-family, multi-family, etc.) and the average
household size provided by a country’s Census or statistical bureau records. This data is available
for the majority of Europe, North America, and large swathes of Asia, but is less easily found in
Africa and South America. In these regions, Censuses generally report dwelling area by number of
rooms, which poses the challenging question of how we can translate number of rooms to dwelling
size when no dwelling size areas are available with which to compare. Using sub-meter resolution
satellite imagery of Accra, Ghana, this challenge can be tackled using imagery of roofless buildings
currently under construction that show the interior floor plan of the dwelling. A sample of buildings
from the different neighborhoods of Accra can be digitized to provide an estimate and range of
average room sizes of dwellings. This average room size can then be translated to a total dwelling
area using the “number of rooms occupied by a household” variable from the Ghanaian Census.
This intermediate step between average dwelling size and number of rooms occupied, fills the missing
link that prevents PDT from continually producing new population densities for countries where
dwelling size is unavailable through any official means.
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1 Introduction

Oak Ridge National Laboratory’s Population Density Tables (PDT), is an information system
with a graphical user interface that measures population density for over 60 facility types by
people per 1000 sq. ft. [9]. Generally, this is performed under a Bayesian approach using
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Figure 1 Waffle Home Example (Accra, Ghana) [4].

prior knowledge from expert elicitations and from gathering new data on individual facility
types in a region to update the model [10]. Uncertainty is propagated throughout each
model, starting at the data entry stage, where a range of data can be input into the PDT
interface. Using this approach, PDT estimates ambient building occupancy at the national
and subnational level. To model residential building occupancy, PDT uses the RevengC
R package to reverse engineer census data and produce an uncensored table of population
density probabilities. This R package is used in PDT in the form of the Census Tool, which
uses average household size and average dwelling size as inputs to produce a residential
dwelling density per 1000 sq. ft. These inputs are primarily obtained from country statistical
bureau produced censuses or statistical documentation as PDT views Census data as the
most authoritative sampling source [2].

Dwelling sizes are generally accounted for in national censuses and state statistical bureaus
in the form of floor area in sqm. or sq. ft. However, in the majority of Africa and South
America, recent censuses account for dwelling size in the form of “number of rooms occupied”
in a dwelling unit. Without knowing the actual size of these rooms occupied, it poses a
challenge to measure residential population density for a large portion of the world.

To use the data provided from censuses where dwellings are measured by number of
rooms occupied as opposed to floor area, a link between the rooms inhabited and the actual
size of these rooms is needed. We found this intermediary in Accra, Ghana (AOI), and its
large volume of unfinished “honeycomb” structures where one can easily see the interior
layout of the building as seen in Figure 1. These were coined “waffle homes” due to their
grid iron like appearance, and along with Accra, were found in several other large African
cities, like Lagos, Khartoum, and Conakry. From this type of imagery, one can easily identify
the separate rooms in a building. Subsequently, individual rooms can be digitized using GIS
software. With a statistically robust sample of digitizations, an average room size can be
defined.
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2 Related Works

Traditionally, the compound house is one of the most common typologies of housing in Accra,
and tends to be the subject of research in this area. This is a common home style for lower
income households and generally consist of a series of single hall units surrounding an open
courtyard with shared kitchen and bathroom facilities, and generally cover an area of 100
sqm. [1]

However, compound homes have been losing popularity and are considered outdated
as households prefer single-family living structures, which encourages builders to prioritize
more single-family homes and apartments. This trend coupled with the continued influx of
people to Ghana’s urban areas, has increased the need for housing and rooms built, with
an estimated 5.7 million rooms having been required to house the population by 2020 [6].
Many compound homes are not expected to survive the new wave of construction as new
and affordable housing targets the middle class [3].

This wave of new building can be seen in the aerial imagery of Accra. Little research
could be found using the aerial imagery of under construction homes to determine dwelling
and average room sizing, but there has been research using architectural floor plans to
study the general area of different types of rooms in different housing layouts [5]. This
work relied on published floor plans from New Zealand to measure room area and went
further by differentiating rooms by function and floor layout. Our study only relies on the
aerial imagery of under construction dwellings without the ability to ascertain each room’s
individual function, but the New Zealand study did show that knowing the average area of
different rooms of a home can lead to an accurate estimate of the home’s total floor area [5].
While building typology differs greatly between New Zealand and Accra, the same idea of
measuring room size can be used to find dwelling areas in our AOI.

3 Methodology

The Greater Accra Region, a subnational unit of Ghana including the country’s capital, was
used as the AOI for this new methodology. This region works as an ideal case study due
to its lack of a census designated average dwelling floor area and its large number of waffle
home type structures from which to sample. In addition, the 2021 Ghana Population and
Housing Census recently became available which provided the necessary data on dwelling
size by number of occupied rooms as well as average household sizes. This number of rooms
occupied data provided by the 2021 Ghana Census will be used in conjunction with the
waffle home digitizations to determine an average floor area [7].

Samples of waffle homes were gathered using Digital Globe/Maxar imagery from the
Greater Accra Region. Samples were manually identified using imagery tiles from each
district of the Greater Accra Region, and a total of 1267 sample points were identified by
their unique grid-iron appearance in aerial imagery. A point data set was created from these
structures, and the embedded PDT smart sampling tool was used to create a statistically
robust selection of buildings across Accra. The embedded smart sampler tool works by
randomly selecting points from the data set to digitize until the sample is large enough to
closely represent the “true average” of the initial data set. It does this by having the data
set pass three statistical tests before being considered a statistically robust selection of the
data set. This was done due to time constraints and to lessen the number of buildings and
rooms that needed to be digitized to create a data set of room sizes.

The first test the embedded smart sampler tool uses is a consistent distribution check,
which ensures the data has the same estimated distribution, in this case a log-normal
distribution. Then, the data set must pass a mean percentage change check, to ensure that
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as each new data point is sampled, the average is moving closer to the true average. An
acceptable mean percentage change was set at 5 percent for each time a new data entry is
added, and once the entries fall within this threshold a specified number of times, it passes
this test. The last test, a Margin of Error check, sets a maximum margin of error, here it is
10 percent, and the embedded tool will calculate a range of values using a confidence interval
of 95 percent. Once each new entry falls within the margin of error range a specified number
of times, it will pass test three.

A data set of 697 rooms was created using the smart sampler tool by randomly selecting
from the 1267 waffle house points to digitize the areas of each defined room in the dwelling.
The 2021 Ghana Census’s definition of an “occupied room” was used, which states that
occupied rooms include living rooms, bedrooms, sleeping rooms, and dinning rooms, but
excludes closets and bathrooms. This definition was used along with the 2018 Ghana Building
Codes stipulation that an occupied room shall not be less than 9.5 sqm. to uniformly remove
any bathrooms/closets from the room data set.

4 Results

This new data set of 697 rooms averages out to be 20.38 sqm. per room. Throughout this
process, an additional 45 “waffle house” points were sampled and each of the rooms were
digitized during further testing and research. This brought the total rooms data set up to
1089 rooms, and a new room average of 20.37 sqm. per room. Even with the addition of 393
rooms to the data set, the change in area was only .01 sqm. This supports the assumption
that expanding the survey to additional points across the region would still return a similar
average room size.

The resulting sample data set of waffle-home rooms shows a log-normal distribution with
the majority of samples falling under 30 sqm., reaching a cumulative frequency of 85.49
percent at 30 sqm. The majority of the samples themselves fell between 10 to 20 sqm with
578 of the 1089 sample areas. Figure 2 shows the area distribution of the data set.

The Ghana Living Standards Survey of 2008 (GLSS5) was used as a comparison metric.
While dated, it provides the average dwelling floor area for the Greater Accra area that the
2021 Ghana Population and Housing Census lacks [8]. The Ghana Population and Housing
survey was used to determine the average area occupied by using the average number of rooms
occupied (2.09) of the Greater Accra Region (GAMA), along with the newly determined
average room size [7]. Table 1 shows a comparison of average areas between the two studies.

Table 1 GLSS5 and Waffle Home Data set Comparison.

GLSS5 Urban [8] GLSS5 GAMA [8] Waffle Homes GAMA
Average Room Size 19.59 sqm 23.66 sqm 20.37 sqm

Average Area Occupied 33.3 sqm 42.6 sqm 42.57 sqm

The results produced by the Waffle Home methodology are similar to those produced
by the GLSS5. Validation is difficult in this scenario as there are no recent state produced
dwelling area averages against which to compare for Ghana or from the neighboring countries.
More data will be needed, either from a state sponsored survey or additional waffle home
POIs, to provide a more rigorous validation.

PDT’s future goal is to build upon our current Bayesian modeling process to utilize this
new method of sampling room floor areas along with the “rooms occupied” tables provided
by state-level censuses to create total dwelling areas. PDT observation models capture
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Figure 2 Histogram and Cumulative Frequency of Waffle Home Data set.

uncertainty at the data entry level and propagate it through the model so it can be observed
in the resulting probability density function. This feature will be necessary in the model
expansion for this format of data to capture the uncertainty associated with using average
room sizes and will likely utilize a range of average room sizes to better represent the dwelling
areas of a region.

5 Discussion

This method’s main limitation for future research is the time intensive process used to
manually pinpoint and digitize the hundreds of individual rooms used to obtain the average
room size. Ideally, this process would be able to expand to the entire country to create an
Overall Residential population density number for all of Ghana, including the rural regions.
Additionally, there is human error and bias associated with manually obtaining data points
for digitization. We can address this by building onto one of our current PDT projects,
which is a geospatial object detection tool, that will be trained to identify each instance of
a waffle-home structure from the tiles of Digital Globe/Maxar imagery. This will create a
data set of nearly every waffle home point in a country that can then be sampled in a similar
manner as described in the methodology to find the average room size. This will ensure a
wider spatial range of rooms identified to provide an average that better represents the wide
spatial array of dwelling sizes. This image detection system can be easily implemented into
existing imagery processing pipelines.

A secondary challenge involves the actual waffle home data points themselves. As seen
from the literature, building priority has been placed on single-family and apartment style
homes for a growing middle-class and less on compound style homes. As this study only
samples buildings under construction from the past three years, there is a likelihood for the
average room size to skew on the higher end. Samples were taken from more informal-type
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settlements and rural areas, but the majority were drawn from new urban construction. The
use of the object detection system would increase the overall sample size of the waffle homes.
Using this expanded sample, we could ensure a better balance in samples from rural and
urban settlements towards a more representative sample of waffle homes. This, along with a
future emphasis to breakout residential densities into socio-economic classes, as PDT already
incorporates in its modeling, will be used to ensure lower-income and informal housing is
better represented in these estimates.

This new methodology of utilizing the aerial imagery of rapidly expanding construction
and GIS software to measure room areas has the potential to fill in data gaps for large patches
of the world where normal data collection methods are unavailable. There is a need to model
residential population density across the world, not only to be able to model as much of the
world as possible, but also to better apply aid in humanitarian crises and environmental
disasters. Unique data collection methods are necessary in areas where available data is
lacking the necessary information. While this method has a fairly simple but unconventional
approach, it is important to find new methods of data acquisition to circumnavigate challenges
in data gaps.
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Abstract
Flash floods, as a type of devastating natural disasters, can cause significant damage to infrastructure,
agriculture, and people’s livelihoods. Mapping flash flood susceptibility has long been an effective
measure to help with the development of flash flood risk reduction and management strategies.
Recent studies have shown that machine learning (ML) techniques perform better than traditional
statistical and process-based models in estimating flash flood susceptibility. However, a major
limitation of standard ML models is that they ignore the local geographic context where flash floods
occur. To address this limitation, we developed a local Geographically Weighted Random Forest
(GWRF) model and compared its performance against other global and local statistical and ML
alternatives using an empirical flash floods model of Jiangxi Province, China.
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1 Introduction

Flash floods are one of the most devastating natural disasters, which often occurs within a
short period of time and can be caused by a variety of factors such as intense rainfall, rapid
snow melt, landslides, and dam failure. Given their rapid speed and strong force, flash floods
can cause significant damages to properties, infrastructures, and even loss of life. As a result,
flash flood risk mitigation and management are of fundamental importance if sustainable
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development is to be achieved. Flash flood susceptibility estimation has long been an effective
means adopted by practitioners and policymakers to assist with development of flood risk
reduction strategies, land use planning and emergency resource deployment [6] [8].

Common approaches that have been widely adopted in the estimation of flash flood
susceptibility include statistical, hydrodynamic models and geographical information system
(GIS) based spatial analyses. The examples of statistical models include regression analysis,
frequency ratio, weights-of-evidence, and analytical hierarchy process, among others [6].
Hydrodynamic models usually predict the propensity of an area to flash floods by simulating
the water flow during a rainfall event [13]. GIS-based approaches often combine potential
factors that contribute to flash floods (e.g., rainfall topography and land use) to identify
areas at risk, mainly utilizing remote sensing images [12].

In recent years, with the emergency of big data (e.g., weather and water levels) collected
by various sensors as well as the advances in high-performance computing techniques,
artificial intelligence (AI) particularly machine learning (ML) has been increasingly applied
in evaluating and predicting flash flood susceptibility [9]. Common ML approaches such as
support vector machine (SVM), random forest (RF), neural network (NN) have demonstrated
better performance than traditional methods like statistical and hydrodynamic models [8]
[2] [1]. However, a major limitation of existing ML approaches is that they ignore the
geographic nature of flash floods. Often, the same set of hyperparameters are employed for all
observations without considering the geographic context of each flash flood event. It is worth
mentioning that there have been several recent developments in GeoAI that incorporate
spatiality into modeling.

[3] developed Geographical Random Forests (GRF), in which a separate RF model is
fitted for each location. One limitation of GRF is that, although it considers the local nature
of the phenomenon, it does not allow geographical weighting in the training, which ignores
the distance-decay effect for most geographical processes. [4] improved GRF to incorporate
geographical weighting, but the prediction process for unseen data is less explicit and does
not allow the weighting kernel to vary spatially. [5] developed a Geographically Weighted
Neural Network (GWNN) model, in which geographical weighting is imposed on the loss
function during model training. However, GWNN does not allow hyperparameters to vary
spatially, thus failing to account for local variations in the underlying processes.

To this end, in this paper, we address limitations in recent GeoAI developments by allowing
geographical weighting in model training and prediction as well as allowing hyperparameters,
which include both the model hyperparameters and the bandwidth parameter that controls
the geographical weighting, to vary spatially. In this regard, both complex spatial and
non-spatial processes can be fully considered. We use a random forest model as an example
of this generic local modelling framework, which can be naturally extended to other popular
models such as neural networks and gradient boosting, for both regression and classification
tasks. We benchmark its performance against other global and local statistical and ML
alternatives with an empirical flash flood model of Jiangxi Province, China.

2 Methods

Four models are included in comparison to predict a binary flash flood occurrence: 1) logistic
regression (LR); 2) geographically weighted logistic regression (GWLR); 3) random forest
(RF) and 4) geographically weighted RF (GWRF), They represent the four quadrants of
model (as shown in Table 1) ) types consisting of global/local and statistical/ML, respectively.
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Table 1 Four model types.

Model Type Global Local

Statistical Logistic Regression (LR) GW Logistic Regression (GWLR)

Machine learning Random Forest (RF) GW Random Forest (GWRF)

Listing 1 GWRF Algorithm
For each location in all locations :

1. Find a set of hyperparameters and local bandwidth that
minimises geographically weighted loss with a 5-fold cross
validation ;

2. Train the local RF model using the best set of
hypterparameters and local bandwidth ;

3. Use the local RF to predict at any unknown locations weighted
by its distance away from unknown locations ;

Sum of all the distance weighted predictions to be the final
predictions .

LR is a global statistical model used to predict binary outcomes. It’s a linear model with
a logit link function that transforms continuous outcomes into probabilities bounded between
0 and 1. GWLR is a local statistical approach that accounts for location-specific effects
when generating the outcome of interest. It fits a geographically weighted logistic regression
model at each location using a distance decay kernel governed by a kernel function and
kernel bandwidth. This approach allows for parameters in the model to vary spatially. RF is
a machine learning algorithm that utilizes ensemble learning methods to make predictions
by combining multiple decision trees. While RF is widely used in various applications
due to its flexible and accurate predictions, it’s considered a global model since the same
hyperparameters that govern the tree structure remain constant regardless of geographic
location. The last model GWRF is the proposed approach. It trains a separate local RF
model at each location allowing different hyperparameters for the RF model and bandwidth
for geographical weighting. Each local RF is optimised using a geographically weighted
loss function. Then the prediction at an unseen location can be computed as the distance
weighted predictions from all RFs. The specific training and prediction process are described
as follows:

LR and RF are implemented using the sklearn python package [11], GWLR is fitted
using the mgwr python package [10], and GWLR is implemented using both sklearn and
mgwr. Code and data that produce the results can be found at this repository: https:
//anonymous.4open.science/r/global_local_ML_GIScience-48F9.

3 A Case Study of Jiangxi Province, China

3.1 Study area
The case study area is Jiangxi, a province in south-eastern China. Jiangxi has long been
one of the places suffering flash floods every year in China, which is primarily due to its
unique geography and climate. It is located in a mountainous region with over 3,000 rivers
and lakes, which accounts for 78% of the total area. The largest freshwater lake in China,
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Poyang Lake, is located in the north of the province. Further, Jiangxi is in a subtropical
climate zone and experiences a high amount of rainfall during the monsoon season from
May to September. Flash flood risk reduction and management is a major challenge to local
government with respect to sustainable development. In addition to dams and other flood
control infrastructure, mapping flash flood susceptibility has become an effective measure to
assist with land use planning as well as to improve public knowledge of flash floods.

Figure 1 Historical flash flood events in Jiangxi Province, China.

3.2 Data

The main dataset used in this research is the flash flood inventory map provided by the
Flood Control and Drought Relief Division, Emergency Management Department of Jiangxi,
which contains historical flash floods in Jiangxi during 1950-2015. Among 12,388 catchments
within the province, 940 contain historical flash flood events. Accordingly, 971 catchments
without historical flash floods are randomly selected across space. The final dataset contains
1,911 observations labelled either 1 (flash floods) or 0 (non-flash floods). The resulting flash
floods distribution map can be seen in figure 1.

In addition, four ancillary datasets are used to derive potential factors that contribute
to flash floods, including the DEM dataset of China (2014), Statistical Parameter Atlas of
Rainstorms in China (2010), River System in China (2012) and the Landsat 7 Collection
1 Tier 1 Annual NDVI Composite. Based on those datasets, 10 influencing factors are
calculated or extracted: slope, elevation, shape factor, concentration gradient, topographic
wetness index, rainfall, peak discharges per unit area, time of concentration, normalized
difference vegetation index (NDVI) and distance to the nearest river, which are selected
based on previous studies and data availability.
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3.3 Results
The dataset was split 80/20, with 20% of the unseen data being used for out-of-sample
accuracy assessment, the results of which are shown in Table 2. Three accuracy measures
are included:

Accuracy = (TP + TN)/(TP + FP + TN + FN)

Recall = TP/(TP + FN)

Precision = (TP/TP + FP)

where TP is True Positive; TN is True Negative; FP is False Positive; and FN is False
Negative.

Table 2 Accuracy, recall and precision for four models.

Model Accuracy Recall Precision

LR 0.70 0.80 0.66
GWLR 0.75 0.60 0.86

RF 0.81 0.65 0.96
GWRF 0.85 0.76 0.91

Regarding the overall accuracy of models, local models have been observed to have
approximately a 5% advantage over their global counterparts. This suggests that allowing
parameters to vary spatially can lead to an increase in model accuracy. Furthermore, machine
learning (ML) approaches have been found to be approximately 10% more accurate than
statistical approaches, indicating that complex non-linear and interaction effects are present
and can be captured by ML but not by statistical approaches. The proposed GWRF,
which allows for non-linearity, interaction, and spatial heterogeneity, has emerged as the
best-performing model, achieving a promising overall accuracy of 85%. Additionally, the
GWRF model demonstrates the second-highest precision and recall, resulting in a more
well-rounded and balanced performance in estimating flash flood occurrences.

4 Summary

Flash floods can pose significant threats to the environment, properties, and life. Recent
advances in AI particularly ML techniques provides new opportunities for assessing and
estimating the susceptibility of flash floods – an effective measure that can help with
designing flash flood risk reduction strategies. This research develops a novel Geographically
Weighted Random Forest (GWRF) within a generalisable local ML framework and compares
against other local and global statistical and machine learning approaches in estimating flash
flood susceptibility. The preliminary results show that GWRF has the best performance
among others with higher accuracy and more balanced precision and recall. The initial
findings suggest the importance of incorporating geographic space into ML approaches
to improve model performance. However, one drawback of ML is its black-box nature,
which limits interpretability. The recent development of eXplainable AI methods (XAI)
offers opportunities to estimate the effects of ML models and has been demonstrated to be
effective when modeling spatial data [7]. The next step of this research is to investigate the
explainability of the ML model to explore spatial and non-spatial relationships, enhancing
better understanding of flash flood processes.
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Abstract
Financial precarity is a growing and pressing issue in many countries, which refers to a precarious
existence which lacks job security, predictability, and psychological or material welfare. Its negative
effects can be observed in cognitive functioning, emotional stability and social inclusion. Financial
precarity has been proved to be impacted by multifaceted factors ranging from poor quality,
unpredictable work, unmanaged debt, insecure asset wealth and insufficient money and resource.
However, the geographical variation of financial precarity and the embedded social-spatial inequalities
remain understudied. This paper addresses this research gap by introducing a new geodemographic
classification of financial precarity, which is developed from a series of small area measurements
covering employment, income, asset, liability and lifestyle characteristics of neighbourhoods. The
research is conducted within the spatial extent of England and Wales.
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1 Introduction

Precarity has been broadly used to define the state of lacking security and predictability
of material and psycho-social deprivation [1]. Particularly, financial precarity refers to the
precarious state of being financially insecure or at risk of economic hardship. In social science
research, the concept of precarity has been closely associated with employment and work[2][7].
However, since Ettlinger first argued for an “unbounded approach” to study precarity[3], there
is a growth in geographical understanding of the multi-dimensional nature of contemporary
precarity[11]. A main contribution from geographers relates to the spatialisation of precarity,
and its situation as a feature of broader life rather than something specific to related to work
or income[10]. Such a dualistic characterisation of approach leads to the concept of precarity
encompassing both “labour” and “life”, and also lays the foundation for our research to
understand the geography of financial precarity. Previous research recognises the detrimental
consequences of financial precarity[6] and investigates the structural and institutional drivers
of these patterns[5]. There is however dearth of understanding about the geographic variation
and characteristics of financial precarity, especially at the small spatial scale.
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This research aims to develop new understand about the multidimensional nature and
geography of financial precarity through a geodemographic framework encompassing measures
of employment status, income and benefits, assets, liabilities and lifestyle factors. The output
is a Financial Precarity Classification which maps the residential differentiation of financial
precarity across different neighbourhoods in England and Wales at the small area level.

2 Material and methodology

This research captures a variety of structural factors collected at the Lower Super Output
Area (LSOA) level to depict the multidimensional facets of financial precarity. These small
area measures are used as inputs to a geodemographic classification which groups the 35,672
LSOA zones of England and Wales into different clusters by the common shared salient
characteristics. A framework for the typology was developed around five domains related to
the main drivers and influences of financial precarity; including “Employment”, “Income”,
“Assets”, “Liabilities” and “Lifestyle”. There are further disaggregated into a series of
dimensions, which are used as the basis for identifying measures.

Data used to create measures were derived from a variety of sources including the 2021
Census (covering all the employment measures and other dimensions ranging from housing
tenure, second address, overcrowding, cars, age band, household composition and health).
Other secondary datasets such as Department for Work and Pensions (DWP) Statistics,
Energy efficiency statistics, UK Finance Statistics and County Court Judgement (CCJ)
Records are used to describe the aggregated level of social benefits, energy consumption,
loan and lending, and debt in the LSOAs. In addition, two customer behaviour surveys -
GambleAware Treatment and Support Survey and the FCA Financial Behaviour Survey –
were included as alternative to derive measures through small area estimation microsimulation.
After the correlation analysis between each of the candidate variables, These there are 52
measures formed the input variables to the classification (as listed in Figure 2).

The direct and small area estimated measures offer insights into a spectrum of spatial
inequality of financial precarity from multifaceted perspectives. But such multidimensional
results are hard to interpret or draw insightful conclusions in isolation. Geodemographics
classification is a computational technique used to cluster small areas according to the
similarity in area level characteristics[4]. It is a well established and effective method
to highlight salient multidimensional characteristics from a body of small area measures.
Geodemographic classification has adopted in numerous contexts to create neighbourhood
classifications, for example, related to education or digital inclusion[12][8]; and is widely used
in consumer segmentation for marketing and other business practices[9].

3 A Classification of the Financial Precarity

A K-means clustering algorithm was implemented to develop the multivariate classification
after the standardisation and normalisation of the input variables. The standardisation
includes centring and scaling, which transformed the variables to mean zero and standard
deviation 1; the normalisation is was conducted through Box Cox transformation which
transforms the variables to a normal distribution. Before implementing K-means clustering,
a Clustergram was used to decide on the number of clusters of the Supergroup, and after
partitioning, the process was repeated for each of the Supergroups to determine the number of
Subgroups. As a result, the geodemographic classification clustered the 35,672 LSOA across
England and Wales into 6 Supergroups and 14 subgroups. Here we present the characteristics
of the 6 Supergroups. Figure 1 shows these on a map for England and Wales, with Greater
London as inset.
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Figure 1 A map of the Financial Precarity Classification (FPC) for England and Wales.

To better understand the salient characteristics of the classification outcomes, the input
variables of each Supergroup were compared with the mean scores for their cluster. These
scores are visualized in Figure 2. A significantly higher or lower index score indicates the
measure is a key differentiator of the Supergroup. By doing so, each of the 6 Supergroups
can be profiled by the combination of their salient measures.

The interpretation of the geodemographic classification is normally based on the index
score list as in Figure 2 and presented with labels and descriptions. The “pen portraits” of
the Financial Precarity Classification Supergroups are as follows:

1: Emerging Financial Climbers (8.5%)

Predominantly located in London and other provincial cities and comprises mainly of young
professionals and full-time students. This well-educated young Supergroup exhibit the lowest
rates of asset ownership such as houses and cars within the UK, and a lack of savings and
investment. They typically reside in expensive neighbourhoods and pay high private rentals
for over-occupied houses. The younger age of this group is also associated with better health
conditions.

2: Financially Secure Suburbia (16.3%)

Residents of these areas mainly consist of family households living as couples, with and
without dependent children. A notable characteristic of this group is their financial security,
typically with significant financial assets. They not only own houses outright in expensive

GISc ience 2023



87:4 Understand the Geography of Financial Precarity in England and Wales

Figure 2 Index scores of the 6 Financial Precarity Classification Supergroups.
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areas with high sales and rental prices, but often also own a second address as a holiday
home, and posses more than two cars. Their houses are typically under-occupied, leading to
the highest gas and electricity consumption among all supergroups. This group also shows a
clear inclination towards the elite, particularly in employment as managers, directors, and
senior officials.

3: Suburban Financial Balancers (19.2%)

This group has the highest employment rate, which even spread across all spectrums of
occupations but higher in the administrative and secretarial occupations compared to other
Supergroups. Its secured employment status also embodies in especially low rate in part-time
job less than 15 hours. It is a rather average group with few noteworthy variables – only
couples with dependent children, partial ownership of houses (own with a mortgage or shared
ownership) and personal loans.

4: Mature Financial Security (25.4%)

Residents of these areas are characterised by single-family households consisting of people
aged 66 and over. They have solid property assets including outright ownership of houses
and multiple cars, although do not necessarily live in the most upscale neighbourhoods. They
live comfortably as their houses are more likely to be under-occupied. While retirement
and state pensions are common, these areas also observe a mild prevalence of skilled trades
occupations. Despite not having the highest gross household income, this group has a quite
solid financial status - with an extremely low value for the CCJ debts and high levels of
saving and investments. As the area has an ageing population, their health is below the
national average.

5: Challenged Precarious Families (20.9%)

This working-class group shows a significant share of social rented housing, with a high
incidence of poor health and disabilities, resulting in a notable score in Personal Independence
Payment (PIP) benefit claimant counts but more moderate Universal Credit claimants. It
also has a relatively lower level of education. Poorer health also leads to economic stress,
through higher unemployment and the lowest average household income. Employment tends
to be in operational and elementary occupations, routine or semi-routine, service and sales
jobs. There are also higher instances of lone parents and dependent children in this group.

6: Financially Struggling Families (9.6%)

This is overall the most financially vulnerable Supergroup, with high levels of unemployment,
financial vulnerability, rates of problem gambling, outstanding debts and low in income.
Given their financial precarity, rates of savings and investments or other property assets like
houses and cars are very low. Such issues are exacerbated as there are high instances of
dependent children and lone parents, with households often being overcrowded. There are
a high proportion of residents below 65 and high rates of unemployment. Those who are
working, tend to be in elementary, operational and services occupations. As a result, this
group relies heavily on social benefits like Universal Credit and PIP.
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4 Discussion and Future Work

Financial precarity is a complex issue, particularly given the current context of the cost of
living crisis. In this paper, we developed the Financial Precarity Classification in England
and Wales to examine the geographic variation of the socio-spatial inequalities in household
financial precarity. A wide spectrum of measures was incorporated to provide unique evidence
from separate domains of Employment, Income, Asset, Liability and Lifestyle. The Financial
Precarity Classification is a two-tier typology and in future work we will discuss the second
tier of the classification. A further agenda is the evaluation of the classification. The internal
validation has been conducted with the help of FCA financial behaviour surveys. But external
evaluation is also necessary to examine the utility of the classification. The work has the
potential to provide spatial insights to policymakers and practitioners associated with the
household financial supports and wellbeing. In future, we also plan to consider the temporal
changes in the classification to understand the dynamics of neighbourhood financial precarity.
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Abstract
To support a shift to active travel there is a vital need for better data to understand active
travel networks: their extent, attributes and current utilisation. Using a big dataset of volunteered
geographic information from an outdoor mapping smartphone app, a methodology has been developed
to analyse recorded routes to identify missing links in a routable street and path network and to
visualise the relative importance of different links of the active travel network. This methodology
has then been used to analyse the network for a case study area around Winchester, UK, with
new pathways equivalent to 8% of the existing network dataset identified. The automated method
developed can be readily applied to other locations and the outputs used to augment existing network
datasets and to inform the planning and development of active travel infrastructure.
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1 Introduction

To meet the UK’s target of net zero carbon emissions by 2050, tackle local air pollution, and
address the obesity public health crisis, there needs to be a step-change in the use of active
travel modes1. However, the data needed by users of the active travel network, and those
who maintain and develop it, is lacking. There is no single dataset that encompasses the
entirety of the active travel network, and limited information on its utilisation and attributes.
This gap in data provision poses a significant challenge to the successful delivery of active
transport policies.

Existing routable network datasets are primarily focussed on meeting the needs of
motorised transport and are unsuited to the accurate analysis and planning of active travel.2
They mainly consist of street centrelines with attributes that are inadequate for reliable and
safe pedestrian and cyclist routing (for example, pavement presence information is lacking).
Relatively little attention has been given to how well these data describe the actual active
travel network, in terms of both scope and real-world usability. Data from other tracking
apps have been used to understand active travel, most notably Strava Metro (for example,
see [5] for a review of its use to monitor cycling). However, the Strava dataset is mapped to
OpenStreetMap ways so cannot be used to identify unknown parts of the network.

The research described in this paper is part of a larger on-going project - Routable Active
Travel Infrastructure Network (RATIN) - being carried out by researchers at the University
of Southampton and funded by Ordnance Survey. Phase one of the project was a scoping
study to identify data and methods which could help provide a comprehensive routable active

1 Active travel is defined as journeys made by transport modes that are fully or partially people-powered,
irrespective of journey purpose, for example: walking, using wheelchairs, and cycling (including e-bikes).

2 The two main options currently available for generating routable transport networks in Great Britain
(GB), are OpenStreetMap (OSM) and the MasterMap Highways Network from Ordnance Survey.
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travel network dataset. This included a work package to develop methods for identifying and
understanding real world active travel networks from volunteered geographic information in
the form of GPS traces derived from smartphone apps. In particular, the research sought to
analyse a large dataset from OSMaps.3 The aim of the research described in this paper was
to process GPS recorded routes to identify parts of the active travel network that are not
currently incorporated in the Ordnance Survey (OS) Mastermap (MM) Highways and Urban
Paths products and to assess the suitability of the data to understand where active travel is
taking place. The only previous research to use this dataset developed a classification to
describe and group walking routes based on environmental characteristics [2].4

2 Data and Methods

2.1 Data and study area
The OS smartphone app, OSMaps, is a popular outdoor mapping product in GB that enables
users to plan future routes (by manually plotting them) or to record routes (via a smartphone
built-in GPS device) as they walk or cycle (or undertake other outdoor activities). Data
was provided for all routes intersecting the Hampshire and Southampton Unitary Authority
areas that were generated from 2019–2021. Following data cleaning (see section 2.2) and
methodological development (see section 2.3), the routes within the Winchester area, NGR
squares SU43SE and SU42NE, were analysed.

The raw data (an 80GB CSV file) was imported into a PostgreSQL/PostGIS database
and contained 325,532 routes that were entirely within a bounding box around the Hampshire
and Southampton boundary. The bulk of the information for each record is held as a complex
JSON (not GeoJSON) formatted object in one column. The route information (without
GPS timestamps) is stored in a child element that consists of one or more coordinate arrays
which each contain two key:value pairs; one for latitude and one for longitude. Native JSON
support within PostgreSQL (jsonb) was utilised to extract information from the JSON object
making use of lateral joins to generate linestrings from the individual latitude and longitude
coordinates making up route features. Information indicating whether the route was “plotted”
(recorded by GPS), “routed” (manually created) or “imported” was also extracted.5

2.2 Data cleaning
When the extracted routes were visualised it was apparent that the data contained substantial
‘noise’. As shown in Figure 1a, there are many straight lines criss-crossing the area and
routes with large distances between vertices making their representation of pathways followed
on the ground inadequate. The following inclusion rules were applied using SQL queries
to improve the dataset for subsequent analysis: entire route not a straight line; maximum
segment length (distance between vertices) < 250 metres; average segment length < 125
metres; and number of segments > 2 (i.e., at least 4 vertices).

The data cleaning process reduced the number of routes from 325,532 to 66,587. The
geometry of the cleaned routes is shown for an example area in Figure 1b. The median
route length in the cleaned dataset was 6.4km with first and third quartiles of 3.9km and
9.9km respectively. The distribution of routes is left-skewed with a small number of routes

3 See: https://osmaps.com/en-GB
4 OS has also produced visualisations of the raw data, e.g., see: https://bit.ly/42HvoY5.
5 A route can consist of a mix of “plotted” and “routed” components.

https://osmaps.com/en-GB
https://bit.ly/42HvoY5
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(a) Before processing. (b) After processing.

Figure 1 OSMaps route data before and after cleaning in an example area.

extending to 75km and beyond. The user specified activity type is overwhelmingly walking
(82%), with cycling and running accounting for 10% and 7% respectively, and other activities
1%. The vast majority of the routes are recorded by GPS (62,052 or 93%).

2.3 Map construction methodology
Map construction methods are used to automatically generate (or update) a street network
from multiple GPS traces recorded from within vehicles. This is an active research area and
many algorithms have been developed to solve the problem (see [1] for a review). In this
study, the approach was used to convert the OSMaps routes into a vector map of the active
travel network. A density-based map construction method was used based on the work of [3]
and discussed in [1], and implemented using algorithms within the QGIS application. The
method consists of line density estimation, skeletonization, conversion to vector data and a
topology cleaning/refinement process. The processing steps are detailed below with example
outputs shown in Figure 2. Only routes based on GPS were used for the map construction.

Line density estimation

The QGIS line density interpolation tool was used to calculate a density measure of the routes
within a circular neighbourhood of each cell across a raster surface. For each raster cell the
length of line segments that intersect its circular neighbourhood is summed and divided by
the area of the neighbourhood. A cell size of 2m was selected with a neighbourhood radius
of 10m. The resultant raster is useful for visualising and analysing levels of use on the active
travel network (see Figure 2b). This was followed by conversion to a binary raster, where
a threshold line density is applied so that only cells with a high likelihood of a well-used
pathway passing through them are assigned a value of 1 (see Figure 2c).

Skeletonization and thinning

The GRASS r.thin tool was used to ‘skeletonize’ the binary raster. The tool uses the
algorithm described by [4] to thin the non-null cells that represent active travel routes into
linear features of single pixel width (see Figure 2d). This step is necessary so that the raster
can then be converted into a vector linestring layer using the GRASS r.to.vect tool.

Topology cleaning and refinement

The vector layer was simplified by removing vertices with a tolerance of 5m and short dangles
up to 15m using the GRASS v.clean tool. The resulting vector layer was compared with
ground-truth (the known road and urban path network), enabling identification of parts
of the active travel map that are not represented by these products. These were extracted

GISc ience 2023
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(a) Cleaned data. (b) Line density raster. (c) Binary raster (0.2 threshold).

(d) Skeletonized raster. (e) After topology cleaning. (f) New paths (red), MM (blue).

Figure 2 Outputs from the active travel map construction process for a small example area.

by retaining lines (or line parts) outside of a variable width buffer based on the average
real-world width of the MM roadlinks or 5 metres for the urban pathlinks (see Figures 2e and
2f). The PostGIS ST_ClusterIntersection function was used to identify interconnected edge
clusters which were then converted to simple line features using ST_CollectionHomogenize.
This enabled the length of these features to be calculated and assessed.

3 Results and Discussion

The line density raster generated for the recorded routes within the two 5km grid squares
covering the case study Winchester area is shown in Figure 3a, with darker reds indicating
higher line density (and therefore higher level of use). Some of the most popular active travel
locations include central streets, such as Christchurch Road, St James’ Lane and parts of
the High Street, and off-street paths alongside the River Itchen, near Bridge Street and (via
Garnier Road) near Saint Catherine’s Lock (part of the Itchen Way long distance footpath).

The case study area contains approximately 375km of road links (excluding motorways
that are not available for active travel) and 126km of urban path links from the OS MM
network dataset. Based on a binary raster with a line density threshold of 1, a total of
38.8km of potential new links was identified, equivalent to 8% of the known network and
consisting of 1049 identified line clusters. Many of these clusters are very small artefacts
(789 are less than 1 metre) and the median length is 7.7m with the first and third quartiles
1.1m and 22.1m respectively. The top 10% of line clusters are 60m or more in length and
account for 28.3km (73%) of the newly identified paths. These are shown in green in Figure
3b overlain on the line density raster with the MM streets and urban paths.

Many of the additional links of the active travel network identified may be available in
other datasets, for example the definitive maps of public rights of way (which are available
as GIS datasets from some local authorities in GB) or recorded in OpenStreetMap (which
may also be partly sourced from the definitive maps, although investigations have shown
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(a) LD raster - darker lines indicate greater level
of use (more recorded routes).

(b) LD raster overlain with MM roads (blue),
paths (purple), and new paths >60m (green).

Figure 3 Outputs from the active travel map construction process for Winchester area.

that OSM does not include all the additional links). However, the actual path used may
differ from that recorded in the definitive map. An example is shown in Figure 4a, where the
extracted path (red) is not recorded as a legal right of way and is the preferred route to the
A3090 as indicated by the line density raster (Figure 4b).

Limitations and future work

Users of OSMaps are a self-selecting group of outdoor enthusiasts who have chosen to use
this app. It will be biased towards longer leisure journeys rather than shorter travel to work,
school or functional journeys. This will affect the relative levels of use of different parts of
the network identified by the line density raster. Some important routes, for example a path
giving access to a school, may appear insignificant in the line density raster and be excluded
when the line density threshold is applied when creating the binary raster. Recorded tracks
that on the ground relate to different paths that are close and parallel to one another can
appear to be a single path when the binary raster is created. It may be possible to limit this
by using a smaller cell size and adjusting the line density neighborhood distance.

Future work will develop methods to automatically link newly identified paths to the
existing MM network and seek to improve the extraction of new paths, perhaps using
map-matching algorithms that are usually used to identify the road network link (centreline)
that is being driven by a vehicle [6]. The use of buffers around paths and roads can be
indiscriminate and more problematic in built-up areas where GPS traces can be deflected
from their true position by tall buildings. Future work will also consider how this data
(potentially with other big data sources) could be incorporated into a decision-making tool
that would enable local authorities to understand how active travel networks are being used
and thus aid future planning for maintenance, enhancement and additions to infrastructure.
This will include further disaggregation of the data to analyse different types of activity.

GISc ience 2023
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(a) New path shown in red, existing legal right of
way shown as green diamonds.

(b) line density raster with line intensity indicat-
ing relative level of use of the two paths.

Figure 4 Example of new pathway identified that has higher level of use than existing right of
way.

4 Conclusion

While substantial effort is put into monitoring motorized traffic (for example, the statistics
compiled by DfT6), much less attention, beyond some monitoring of on-street cycle use, is
given to understanding the use of active travel networks. This research has shown how a big
dataset of volunteered geographic information from an outdoor leisure mapping smartphone
app can be used to visualise where active travel is taking place, understand the relative
importance of different parts of the active travel network, and through an automated process
identify pathways that are not currently contained within a motorized vehicle-oriented street
and urban path based network. The automated method that has been developed is readily
transferable to other locations and/or other sources of this type of data.

References
1 Mahmuda Ahmed, Sophia Karagiorgou, Dieter Pfoser, and Carola Wenk. Map Construction

Algorithms. Springer, softcover reprint of the original 2015 edition, 2019.
2 Andrea Ballatore, Stefano Cavazzi, and Jeremy Morley. The context of outdoor walking: A

classification of user-generated routes. The Geographical Journal, Advance online publication,
2023.

3 James Biagioni and Jakob Eriksson. Inferring Road Maps from Global Positioning System
Traces: Survey and Comparative Evaluation. Transportation Research Record: Journal of the
Transportation Research Board, 2291(1):61–71, 2012.

4 B.-K. Jang and R.T. Chin. Analysis of thinning algorithms using mathematical morpho-
logy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(6):541–551, 1990.
Conference Name: IEEE Transactions on Pattern Analysis and Machine Intelligence.

5 Kyuhyun Lee and Ipek Nese Sener. Strava Metro data for bicycle monitoring: a literature
review. Transport Reviews, 41(1):27–47, 2021.

6 Mohammed A. Quddus, Washington Y. Ochieng, and Robert B. Noland. Current map-
matching algorithms for transport applications: State-of-the art and future research directions.
Transportation Research Part C: Emerging Technologies, 15(5):312–328, 2007.

6 see: https://www.gov.uk/government/collections/road-traffic-statistics

https://www.gov.uk/government/collections/road-traffic-statistics


Geography and the Brain’s Spatial System
May Yuan # Ñ

Geospatial Information Sciences, The University of Texas at Dallas, TX, USA

Kristen Kennedy # Ñ

Cognition and Neuroscience, The University of Texas at Dallas, TX, USA

Abstract
Extensive research in spatial cognition and mobility has advanced our knowledge about the effects

of geographic settings on human behaviors. This study, however, takes an alternative perspective to
examine how the brain’s spatial system may mediate the geographic effects on spatial behaviors. Our
previous research using data from OpenStreetMap, SafeGraph POIs, and human participants from
the National Alzheimer’s Coordinating Center (NACC) resulted in a model with 83.33% prediction
accuracy from geographic settings to the zonal categorization of the cognitive state based on NACC
participants. A follow-up study showed that the complexity of a geographic setting has a direct
effect on cortical thickness in the brain’s spatial cell system. In this study, we leverage findings from
the two studies and interrogate the geographic settings to discern environmental correlates to zonal
cognitive categorization. We conclude with thoughts on the implications of brain-inspired GIScience.
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1 Introduction

Tolman’s [13] concept of cognitive maps, as an essential mental representation of space,
prevails in GIScience literature. The discoveries of place cells [8] and grid cells [7] in the
hippocampal formation in mammalian brains gave new insights into cognitive maps with
neural connections and activities. Yet recent advances in neuroscience unveiled the brain’s
spatial system much different from the conventional GIS. Although what works in the brain
may not be the most effective strategy for computer systems, understanding the brain’s
spatial system may provoke new ideas for spatial encoding or algorithms that are more
flexible and perhaps more powerful than what the prevalent GIScience research can offer.

This study is part of a larger project that investigates the correlative effects of envir-
onmental complexity on Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD).
The project is based on the premise that people living in a geographically more complex
environment are more often able to retrieve information on spatial relations among landmarks
and places when navigating the environment. Traffic dynamics further motivate them to
build cognitive maps and recall route options. MCI and AD diseases weaken such cognitive
mapping abilities as four out of 10 early warning signs of dementia relate to spatial functions
(Figure 1).
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Figure 1 Four out of 10 early warning signs of dementia are related to spatial cognition: 4, 6, 7,
and 9.

Moreover, neural research showed early neuropathology of AD in the brain’s spatial
system [11], leading to spatial navigation impairments which differentiated MCI and AD
patients from healthy aging adults [9, 1]. We hypothesize that regularly navigating a complex
environment can strengthen the brain’s spatial system responsible for cognitive map building
and lead to non-pharmaceutical mitigation of MCI and AD.

The next section highlights key ideas and findings from the two previous studies as
background information. We will then report findings from this study on environmental
measures that correlate to zonal cognitive categorization. From the findings and recent
advances in the brain’s spatial system, we contrast the brain’s spatial system with GIScience
approaches to spatial representation and computing for potential new ideas moving forward
in GIScience.

2 Our recent studies

Lynch’s seminal work: The Image of the City, defined the concept of city legibility by the
pattern of interrelations among five elements: paths, edges, districts, nodes, and landmarks
[6]. Our previous study followed Lynch’s ideas to compute network measures and points of
interest (POI) to represent the complexity of an environment, with which we developed a
neural network model to predict zonal cognitive status based on NACC participants’ cognitive
tests and diagnoses across the US [14]. Both environmental and cognitive measures were
summarized into 3-digit zipcode zones, the finest spatial resolution available to researchers.
We categorized the cognitive status (normal or AD-inclined) for 154 individual zipcode zones
based on cognitive diagnoses (normal, MCI, or AD) of 22,553 NACC participants. Taking the
approach of categorical prediction commonly used in medical science, we developed a neural
network model that used environmental measures (discussed in Section 3) to predict the
cognitive status of each zipcode zone. The input data inherited high spatial heterogeneity and
spatial uncertainty. These 3-digit zipcode zones varied from less than 2 to more than 35,000
km2. More often than not, environmental measures and cognitive diagnoses were unevenly
distributed within individual zones. Participants might travel across zipcode zones or relocate
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across zones. Other researchers showed PM2.5, ozone, nitrogen dioxide and nanoparticles
and other environmental factors might increase the risk of MCI and AD [5, 4, 10]. Despite
the massively noisy data, the model was able to make predictions at 83.87% accuracy, 95.23%
precision, 83.33% recall, and 0.89 F1-score. The model suggested AD-inclined zones likely
associated with longer street segments, higher circuity, and fewer points of interest (i.e., lower
environmental complexity).

Following the initial study, Shin (2023) explored the associations among environmental
complexity, regional brain volumes and cortical thicknesses, against diagnoses of 660 NACC
participants with structural brain MRI images[12]. The study compared two sets of brain
regions (Figure 2): (1) the hippocampus and the parahippocampal cortex, and posterior
cingulate cortex responsible for the allocentric frame of reference in which locations of entities
and their relations are external to and independent of the agent who interacts with the
environment; (2) the posterior parietal cortex, responsible for the egocentric frame of reference
in which all entities, their locations, and relations are based on the agent’s location and
perspective. ANOVA analyses suggested no interactions between environmental complexity
and age on MCI/AD diagnoses, while both showed significant associations. Shin then applied
structural equation modeling (SEM) to test the effects of environmental complexity and age
on AD diagnoses and the brain’s egocentric and allocentric regions and spatial cognition. His
SEM suggested a significant effect of higher environmental complexity on a greater volume
in the brain’s allocentric regions, but not in the egocentric regions. The SEM also suggested
a significant pathway with higher environmental complexity to higher allocentric volume
then to lower MCI/AD diagnosis. However, the direct effect of environmental complexity
on MCI/AD was insignificant. Shin concluded that the relationship between environmental
complexity and spatial cognitive deficits in MCI/AD was indirect and was mediated by
the brain’s allocentric regions. Compared to other social and economic determinants (like
gender, income, and education), the direct association of environmental complexity and the
allocentric brain implied possibilities of geographically induced neural plasticity and a new
role for geography in non-pharmaceutical interventions to MCI and AD.

Figure 2 Distinct brain regions responsible for allocentric (blue shades) and egocentric (orange
shade) frames of reference. Adapted from [12].

GISc ience 2023
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3 Environmental measures, zonal cognitive prediction, and the brain’s
allocentric system

Initially, we considered 40 environmental measures from street networks, POI types, and POI
distributions. We reduced the number of environmental measures to 12 by removing highly
correlated measures and those with extremely skewed distributions across zipcode zones. We
applied Shapley additive explanations (SHAP) tools to evaluate the contributions of these
environmental measures to model prediction on the test data (Figure 3). The model predicted
binary zonal categories: 0 for cognitively-normal zones and 1 for AD-inclined zones. All
POI measures (transportation, shops, dining, auto, leisure, groceries, culture, and education)
and intersection counts were linear density measures (i.e., frequency over total street length
in a zone). Education institutions, cultural landmarks, and averaged number of streets
per node (streets_per_node_avg) contributed minimally to the model prediction, while
intersection counts, auto services, averaged street length, diners, shops, and transportation
stations appeared as major discriminators to differentiate normal from AD-inclined zones.
Moreover, more transportation stations, diners, auto services, and intersection counts as well
as shorter averaged street lengths appeared as the primary push for “normal” predictions
(Figure 3b). The other environmental measures showed large overlaps between measures and
model prediction and gave mixed signals on their effects on model prediction.

(a) Contributions of environmental measures to
model prediction.

(b) Correlations of model prediction with environ-
mental measures.

Figure 3 Twelve environmental correlates for zonal categorical predictions.

The measure of shop density over street length was counter-intuitive as higher shop
density was more correlated to “AD-inclined” prediction (Figure 3b). We consider two
possible explanations. First, zoning regulations restrict shops clustered in malls or plazas in
the US. Therefore, shops are seldom evenly distributed along a street, so the shop density
over unit street length is unlikely meaningful in many US places. Second, except for major
stores, such as the Home Depot, Macy’s, or Barnes & Noble, shop signage is often invisible
from the street. Therefore, most shops likely provide little help for spatial cognition but may
create complications in learning the environment.

The primary environmental measures (transportation, diners, average street length, auto
services, and intersection counts) relate well with the brain’s spatial system for allocentric
navigation: grid cells, place cells, head orientation cells, boundary cells, object vector cells,
and goal direction cells (Figure 4). Grid cells reside primarily in the entorhinal cortex.
Each grid cell is responsive to locations in a hexagonal configuration. Grid cells located
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towards the dorsal end of the entorhinal cortex are responsive to finer hexagonal grids. Head
direction cells, boundary vector cells (a.k.a border cells), object vector cells, reward cells,
goal direction cells, place cells, and social place cells in the hippocampal formation have
specialized firing fields when the agent (i.e., animals or humans) faces a particular direction,
nears a boundary, observes objects, seeks a goal, and recognizes a reward location, one’s
own location, or locations of one’s own kind. Grid cells provide the allocentric reference
frame necessary to position objects, boundaries, destinations, one’s own location, and others’
locations in a common framework and create a cognitive map. The major environmental
measures contributed to our prediction model correspond to edges, connections, and nodes
in creating navigation routes. Nodes likely correspond to object vector cells, connections
to head direction cells, and edges to boundary cells. As one navigates in a geographic
environment (i.e., the entire environment is not visible from a single vantage point, and
learning the environment requires one to traverse through the environment and mentally
integrate spatial observations and experiences from location to location), the sequential
firings of place cells and head direction cells, as well as other spatial cells, in the common
framework provided by the grid cells allow the hippocampus to construct a cognitive map
and perform path integration. Degradation in the entorhinal cortex and hippocampus leads
to spatial dysfunctions commonly observed in early MCI and AD patients [1, 3].

Figure 4 Environmental complexity, the brain’s spatial system, and spatial cognitive degradation.

There are many neural implications for GIScience. We highlight three points here. First,
the multiple resolutions of grid cells collectively fire to transmit signals to downstream spatial
cells. Simultaneously imposing hexagon configurations of varying resolutions allows for
capturing the bigger picture and fine details for everything, everywhere, all at once. On the
contrary, GIS data or functions commonly stay in one scale or resolution. A common practice
is to separate data at different resolutions into separate layers or sets. Vertical integration of
data representing different themes at different resolutions remains underdeveloped.

GISc ience 2023
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Secondly, a place cell’s firing field is context-dependent. As one moves from one envir-
onment to another, place cells remap firing fields accordingly. Only sparse place cells fire
in a given environment. Among the place cells that fire, some place cells fire immediately,
but others fire late. The fast-firing place cells are generalists, rapidly recognizing the general
spatial configuration of one’s location; for example, I am in a school. The late firing place
cells refine location recognition to, say, my daughter’s high school. By doing so, the brain’s
allocentric system allows one to recognize the kind of environment quickly and then the
specifics of the environment. On the other hand, grid cells have no remap functions, hence
providing persistent references to different environments and facilitating spatial integration
across environments. Research on geospatial ontology and semantic knowledge graphs has
been building hierarchical structures of geographic kinds. Multiple place cells with different
responses may give rise to algorithms for ontological or semantic computing.

Thirdly, the current GPS design gives users turn-by-turn instructions or has users follow
a blue dot in close view without any geographic context. Even when we safely arrive at a
destination on time, we have no idea about where we are and what we have passed by. Like
people losing arithmetic skills due to over-reliance on calculators, the popularity of GPS
navigation systems likely deskills people’s spatial cognition and wayfinding, or worse yet,
increases the risk of MCI and AD. Redesigning GPS navigation systems should attend to
means that can encourage cognitive map building and attend to geographic contexts. New
auditory GPS, for example, promises a viable alternative [2]

The brain encodes and processes spatial information differently from conventional GIS
technologies. Many AI researchers seek inspiration from neuroscience to develop new
algorithm architectures or learning pipelines. GIScience researchers should also explore
the brain’s spatial functions, not only for GeoAI but for Brain-inspired GIScience.
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Abstract
The issue of human mobility has been a focal point of research among numerous scholars in the
field of geography for decades. Among them, the visualization of origin-destination (OD) data is an
important branch of geographic flow studies. In this paper, we vectorize and represent immigration
flows using OD flow data of U.S. immigrants in the year 2000, constructing an immigration space.
Through data validation, it is confirmed that the vector field satisfies the Gauss’s theorem and is
irrotational, demonstrating that the field can be derived from a potential and that the field is uniquely
determined by the potential. Scalar potential fields are inferred from the vector field, providing a
more intuitive and convenient description of the underlying flow patterns in geographical interaction
matrices. Additionally, this paper employs potential fields and applies a density-equalizing areal
cartogram to reconstruct the global representation of functional space, constructing cartogram maps
based on potential magnitudes.
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1 Introduction

The issue of human mobility has long been a focus of research in the field of geography.
These studies encompass various areas such as urban spatial structure, urban and regional de-
velopment, transportation and infrastructure planning, environmental pollution [1], elections
and political polarization [3], among others. The visualization of OD data is an important
branch of geographic flow research. Plane used a reverse doubly constrained gravity model to
calibrate and estimate the cognitive or functional distances between states based on observed
interstate migration flows, choosing distances to represent observed flows and visualizing
“migration space” as distorted maps [6]. In 1976, Tobler introduced the concept of vector
fields and proposed a vector representation method based on OD data, considering the scalar
potential of vector fields as a way to describe hidden forces [7]. In recent years, scholars have
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applied vector fields to the study of urban spatial structure. For example, Mazzoli et al. used
data from multiple cities to demonstrate that vector fields constructed from flow data satisfy
the Gauss (divergence)’s theorem and possess irrotationality. They also explored the utility
performance of gravity and radiation models in vector fields based on flow data [4]. Yang,
H et al. based on Mazzoli’s vector representation method, defined anomalous fields, source
fields, and dispersion fields to identify abnormal human flows [9]. Furthermore, scholars have
used spatio-temporal potential fields to predict traffic flows [8] and analyzed trade flows in
regional science and spatial economics using vector gradient methods and gravity models [5].

Tobler proposed that Mij refers to the flow from location i to location j. Flows occur
between various scales, such as communities, cities, and regions. The OD matrix Mij

only contains information about the origin and destination of trips and does not include
information about intermediate points along the trajectories or visits. The directional
attribute of the vector representing the flow is represented by a unit vector from location i
to location j. Tobler demonstrated through a series of algebraic transformations that the
frequency of the differences between interactions in both directions divided by their sum
(i.e. (Mij- Mji)/(Mij + Mji)) is considerably high and robust. Therefore, this quantity
is introduced as a component for constructing vectors. Finally, the vectors pointing from
the origin location i to the destination location j are summed, defining a vector field in
space. Another approach to construct vectors is directly using net migration flow as the
numerator in the vector representation [4]. Additionally, besides the aforementioned methods
of constructing vectors, error terms can also be utilized [2]. The vector representation method
based on error terms incorporates detailed errors related to observed flows between regions
(such as model errors and missing variables like individual preferences), measurement errors
(pertaining to the variables themselves), and pure random effects. On the other hand, the
vector c⃗i represents half the difference between opposing direction error terms.

Every vector field can be written as the gradient of a scalar field plus an additional vector
field. These two components are respectively referred to as the scalar potential and the
vector potential. If the second field is everywhere zero and only then, the original vector field
can be identified as the gradient of a scalar field. In order to recover this scalar potential,
the gradient operation can be reversed through integration to compute the scalar potential.
Therefore, if we want to determine the scalar potential of a vector field, it is necessary to
ensure that the rotational vector at every point of this vector field is zero, indicating a
curl-free condition. The curl-free property of a field implies that the field can be derived
from a potential, where the field is uniquely determined by the potential alone.

Currently, research related to representing flows using vectors is relatively scarce. Besides,
the majority of existing flow visualization techniques primarily involve flow mapping, which
provides a descriptive representation of the flow. In contrast, our method employs the concept
of potentials to interpret the flow, offering a distinct visualization approach. As a result,
these two methods are not directly comparable. In this study, based on interstate migration
data from the United States, we will investigate the problem starting from the core concept
of vector space. We will begin with the vector field constructed from OD flow data and
generate a potential field through integration.

2 Data and Methods

2.1 Data
The primary data for this study consists of population migration data between states in
the United States from the 1965–1970, 1975–1980, 1985–1990, and 1995–2000 censuses.
Additionally, data on the physical distances between states during each time period and the
population centroid coordinates for each state are included.
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2.2 Theoretical models
In terms of vector definition, two different approaches have been identified based on methods
applied in various literature. The first approach, proposed by Tobler, involves constructing
vectors based on relative net flow. The second approach, employed by Mazzoli, utilizes
absolute flow.

(1) Vector Representation Based on Relative Migration Flow

As mentioned earlier, dij represents the physical distance between the population centroids
of locations i and j; C⃗i denotes the vector aggregation centered at the population centroid of
location i, originating from the origin point O. The vector space should contain 48 vectors
located at the population centroids of each state, with distinct directions and magnitudes.
The formulas are shown in (1) and (2).

d2
ij = (Xj − Xi)2 + (Yj − Yi)2 (1)

C⃗i = 1
n − 1

n∑
j=1

Mij − Mji

Mij + Mji

1
dij

[(Xj − Xi), (Yj − Yi)] (2)

(2) Vector Representation Based on Absolute Migration Flow

Tij represents the migration flow from location i to j, u⃗ij represents the unit vector (directional
attribute) from i to j. Then, the vectors pointing to all destination locations j are summed to
obtain the resulting vector at each location i. mi represents the total outflow from location i.
Finally, the vector W⃗i can be constructed as shown in equation (3) These vectors define a
field in space, determining the average outward direction of movement at each point.

W⃗i = T⃗i

mi
=

n∑
j

Tij

mi
u⃗ij (3)

mi =
n∑
j

Tij (4)

3 Results

Using US migration data from the period of 1995–2000, we constructed vector fields, three-
dimensional grid visualizations of migration potential, and contour maps of migration
potential based on the different vector representation methods (Figure 1 and 2).

Among them, the visualizations of the vector representation method based on net flow
(Tobler’s method) for the time periods of 1965–1970, 1975–1980, 1985–1990 are shown in the
following figures (Figure 3, 4, and 5):

4 Discussion

Based on the migration flows in and out of each state, California consistently ranks at the
top in terms of both incoming and outgoing population numbers among all states. Following
closely are states like Texas, Florida, and New York, which also exhibit significant flows of
population in and out. It is noteworthy that Texas and Florida are located in the moderate
climate region known as the “Sun Belt”. This aligns with the notable trend of population
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Figure 1 Vector representation based on relative net flow(1995–2000).
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Figure 2 Vector representation based on absolute traffic(1995–2000).
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Figure 3 Vector representation based on relative net flow(1965–1970).
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Figure 4 Vector representation based on relative net traffic(1975–1980).
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Figure 5 Vector representation based on relative net flow(1985–1990).

migration from northern regions of the United States to warmer southern areas, often referred
to as the “Sun Belt.” During the time period of 1985–1990, there was a significant decline
in both incoming and outgoing population flows across states. This could be attributed to
various socio-economic and political factors, including the stabilization of the U.S. economy
during that period. Such factors likely influenced people’s decisions regarding migration,
leading to a decrease in population mobility between states.

The results obtained from the vector representation method based on absolute flow
exhibit overall similarities to those obtained from Tobler’s method, depicting similar patterns
at a macro level. This discrepancy arises from the different definitions of vector flows,
leading to distinct underlying interpretations of the vector fields. The three-dimensional grid
visualization of the scalar potential in Figure 1b) exhibits greater complexity compared to
Figures 2b), featuring two peaks. This complexity is particularly meaningful in exploring
the implicit forces underlying interactions. Similar to how Tobler conceptualizes the flow
field as “wind,” this wind implies a potential function that facilitates interactions in specific
directions, aiding in uncovering the causes of asymmetric interactions.

In the vector representation method based on relative net flow, the visualizations in
Figures 3, 4, and 5 reveal certain migration patterns during the 1970s and around that
time, indicating that the central region of the United States was a primary destination for
population movements (Figure 3a)). From the mid to late 1980s, there were noticeable
fluctuations in both the origins and destinations of migrants, gradually shifting towards
the northeastern part of the country (Figure 4a)). The trend of migration towards the
central region persisted in the 1990s (Figure 5a)). However, in the period from 1995 to 2000,
significant changes in migration patterns occurred, particularly in California, where a major
shift in immigration patterns was observed, along with slight outward migration from some
northeastern states (Figure 3a)). Figure 3b), 4b), and 5b) represents the migration potential,
revealing implicit forces that can be further explored.

5 Conclusion

Functional spaces are closely connected to human perception and utilization of physical
spaces. Conceptualizing the spatial patterns of functional relationships embedded within
physical spaces is crucial for understanding the spatial interaction processes that shape
geographical phenomena. The use of vector fields to introduce and describe implicit forces
in interactions proves valuable. Vector fields approximate the gradient of scalar potentials,
which can be used to explain flows. While vector field methods do not directly transform
relative distances into functional spaces, they offer an alternative perspective for integrating
spatial interaction patterns and aid in developing a global view of functional spaces.

GISc ience 2023
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From a visualization perspective of geographic flows, this paper proposes a methodological
framework for constructing migration flow vector spaces. Two vector construction methods
are introduced: 1) constructing interaction force fields based on the difference between
interactions in two directions divided by their sum; 2) representing vectors based on absolute
flow quantities to establish the vector space. After demonstrating the irrotational of the field
and satisfying the Gauss (divergence)’s theorem, a scalar potential field is inferred through
integration, facilitating the description of implicit flow patterns within geographic interaction
matrices.

This research exploration can be further extended to different aspects of vector space,
such as different vector expressions, vector aggregation methods (at the origin or destination),
vector weighting approaches, and vector field superposition methods. By constructing different
vector representations of OD flows and comparing their visual effects and inherent properties,
we can explore their suitability for various research topics and applications. Furthermore, the
migration space constructed in this study mainly focuses on inter-city or inter-state scales.
There is potential to investigate vector fields and scalar potentials of intra-city commuting
flows. This would provide valuable insights into urban spatial organization, city centers,
urban boundaries, infrastructure planning, and public services, among other aspects.
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Abstract
Spatial causal inference is an emerging field of research with wide ranging areas of applications. As
a key methodological challenge, spatial confounding and spatial interference can compromise the
performance of standard statistical inference methods. In the current literature, there is a lack of
appreciation of the connections between spatial confounding and interference. This could potentially
lead to overspecialized silos of research. Therefore, we need further research to bridge such gaps
theoretically, and to find creative solutions for complex spatial causal inference problems. This
short paper offers a brief demonstration: It discusses the connections between spatial confounding
and interference. An illustrative simulation study shows how commonly used approaches compare
across four test scenarios. The simulation study is discussed with an emphasis on the promising
performance of counterfactual prediction based inference methods.
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1 Introduction

Knowledge of cause and effect plays an important role in explaining past events and planning
for future ones. Causal inference is, broadly speaking, the empirical quest for such knowledge.
The last seventy years have witnessed the formation of statistical inference frameworks that
revolutionised empirical approaches to causal inquiries. Most notably, we have the Potential
Outcomes (PO) framework [9] which approaches the inference of causal effect via an analogy
to randomised experiments. It would also be fitting to describe this progress as part of a
wider intellectual movement propelled by mutually reinforcing forces such as the vogue of
evidence-based policy, the availability of data, and the maturity of causal theories.

Spatial causal inference is causal inference in the presence of substantive spatial causal
mechanisms. Here, space can be interpreted as either geographical or relational. Over recent
years, spatial causal inference has emerged as an independent area of research. On the one
hand this is motivated by empirical topics that are irreducibly spatial. For example, policing
and neighborhood crimes, vaccination and disease spread, air pollution and health... This
makes spatial causal inference a valuable methodological endeavour with real world impact.
On the other hand, this is also characterised by unique analytical challenges associated with
spatial causal mechanisms that cannot be simply conceptualised as standard randomised
experiments.

This short paper aims to offer a synthesis of two key concepts in spatial causal inference
with illustrative examples. The paper was motivated by my observation that, in the current
literature, there is a lack of appreciation of the connections between key analytical concepts,
which could potentially lead to overspecialised silos of methodological research. Despite
recent efforts to document progress in spatial causal inference (e.g. [8]), we have more of an
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assemble of techniques rather than a cohesive picture of the field. I believe the field will
benefit from a consolidation of existing understandings of spatial causal problems as well as
approaches to meeting the analytical challenges. In this short paper specifically, the focus
will be placed on spatial confounding and interference. In the rest of the paper, I will first
reflect on the two concepts. Then, with a simulation study, I will compare commonly used
approaches across settings of spatial confounding and/or interference. The simulation will
be discussed with an emphasis on the promising performance of counterfactual prediction
based causal inference methods as an example of creative approaches that are able to engage
multiple methodological topics.

2 Challenges in spatial causal inference

Spatial causal inference is characterised by its unique methodological challenges. Individual
units are embedded in spatial contexts, and they interact in a spatially structured way.
This tends to create more complex dependence structures than standard non-spatial causal
inference methods admit. The resulted statistical problems are commonly captioned as
spatial confounding, spatial interference, and spatial heterogeneity. Here, let’s focus on
spatial confounding and spatial interference. Specifically, I want to draw attention to the
connections between spatial confounding and interference. Besides conceptual connections,
the two problems often coexist in real world scenarios. Therefore, although methodological
developments typically target one or the other, it is important that we understand how
spatial causal inference methods engage with and perform under both spatial confounding
and interference.

2.1 Spatial confounding
Confounding is a classic causal inference problem. Confounders influence both the treatment
allocation and the outcome, and therefore not adjusting for the confounder admits a spurious
correlation between the treatment and outcome variables. In spatial causal inference, we are
particularly interested in confounders with significant spatial patterns (e.g. Figure 1.a), a
condition which makes confounding adjustment amenable to spatial statistical techniques.
The best way to think of spatial confounding is as a shorthand for spurious correlation due
to omission of spatial variables. In recent literature, spatial confounding is mainly covered
by the area of research on causal effects under unmeasured confounding. Under unmeasured
confounding, the causal parameter in a PO model (typically the Average Treatment Effect,
ATE) cannot be fully identified. Progress has been made on identification with propensity
score matching (e.g. [2] [7]), using confounder proxy variables (e.g. [3]). For causal effect
estimation, there are techniques to derive bounds for the causal parameter, for example,
through sensitivity analysis (e.g. [1]), nonparametric bounding and interval estimates (e.g. [5]).

2.2 Spatial interference
In causal inference, ‘interference’ refers to the existence of dependence of an observational
unit’s outcome on the treatments of other units. In the PO framework, no interference is one
of the basic assumptions, commonly known as one component of the Stable Unit Treatment
Value Assumption. Spatial interference refers to scenarios of causal interference resulted
from spatial interaction among the units. A typical case is treatment spillover, where a
unit is exposed to a direct treatment as well as an indirect spillover treatment from its
neighbours (e.g. Figure 1.b). This is what makes the interference problem unique, as we may
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Figure 1 Illustrative Directed Acyclic Graphs (DAG) for spatial confounding and interference.
(Subscript denotes location.)

be interested in more than one causal estimands. The identifiability of causal effects under
interference has been thoroughly investigated, among others, by Manski [6], and Forastiere [4].
Short of fieldwork-based exposure mapping to obtain true exposure levels, the estimation
relies on strong restriction assumptions about the structure of causal interaction. Apart
from interaction restrictions, the identification also relies on assumptions of no unmeasured
confounding.

2.3 Common sources and shared solutions?

One way to appreciate how confounding and interference are connected is to reflect on
the relationship between causal mechanisms and their reduced statistical representations.
Although spatial confounding and spatial interference are conceptually distinct, they could
be manifestations from the same underlying causal mechanism. In other words, it is possible
that a given spatial causal mechanism, when translated as a statistical model, can present
with either confounding or interference or both. As an illustrative case: When measuring the
effect of vaccination on disease spreading, it can be conceptualised as an interference case
(where the unvaccinated population receives a spillover protection from the vaccinated via
mediation of group immunity, Figure 1.c); or it can be conceptualised as a confounding case
(where the neighbourhood context of individuals confounds their actually received levels of
protection as well as health outcome, Figure 1.a). Spatial confounding and interference can
also coexist (e.g. Figure 1.d). With the example of neighbourhood crime rate interventions:
The interference aspect is that intervention on one neighbourhood could affect crime rates of
adjacent ones. There could coexist an element of confounding if intervention and crime rate
variables are spatially distributed and a shared spatial trend creates a spurious dependence
between them.

We can also try to understand the connection between spatial interference and confounding
through the language of statistical causal inference. In a way, we can say that, a spatial
interference problem is a spatial mediation problem wrapped within a confounding problem
(e.g. Figure 1.e). After we peel away the confounding part with, for example, propensity score
methods, the task of estimating direct and indirect effects is in spirit a task of estimating
path specific causal effects. In the style of mediation analysis, the effect of direct treatment
can be estimated conditional on indirect treatment levels and vice versa (e.g. [10]; [11]) . In
other words, an indirect effect is a causal effect mediated by the spatial interaction structure
of the observational units, while the existence of such a structure usually also implies some
degree of spatial confounding.
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If spatial interference and confounding are so closely linked, what does this mean for
methodology developments? To approach this question, first we have to better understand
how the performance of existing methods generalises over spatial confounding and interference
problems. So far, we have limited knowledge on this issue, as confounding and interference
have been handled in separate strands of literature. To gain some insights, an illustrative
simulation study is carried out.

3 Simulation study

The simulation study covers test scenarios of spatial confounding, spatial interference, and
the coexistence of the two. Tested methods include two popular approaches to spatial causal
inference: propensity score based adjustments, and spatial regression. Also tested is causal
effect estimation based on counterfactual prediction of unobserved potential outcomes (also
known as imputation based method). The counterfactual prediction approach is relatively
new and has shown potential in addressing complex spatial causal inference problems.

3.1 Experiment design
The experiment is based on a basic setup. For the basic setup, the test dataset is generated
in the following way: We have n observational units characterised by k covariates Xz drawn
from a uniform distribution. Each unit inhabits a random location on a square. Its neighbours
are defined as the set of units within a certain distance band. Its neighbourhood attributes
Xg are represented by the average values of its neighbours’ covariates. The assignment of
direct treatment is independently determined by a unit’s attributes Xz . The treatment Z is
drawn from a Bernoulli distribution based on treatment propensity ez(Xz). A unit’s outcome
is determined only by its direct treatment status, Z = 1 treated and Z = 0 not treated.
Accordingly, each unit has two potential outcomes, one of which is observed. The potential
outcomes corresponding to direct treatment Z are Y z = Z ∗ τz + Xz ∗ β + ϵ, ϵi.i.d. ∼ N(0, 1),
where τz is the average treatment effect parameter of interest. To reflect spatial causal
inference problems, different spatial causal mechanisms are added to the basic setting. This
includes the following test scenarios:
(a) Spatial interference: In this scenario, besides direct treatment, a unit’s outcome is also

affected by its exposure to a neighbourhood treatment spillover G , G = 1 receiving
spillover and G = 0 no spillover. The neighbourhood exposure G is determined by a
unit’s neighborhood covariate levels based on propensity eg(Xg). The marginal potential
outcome corresponding to neighbourhood exposure G is Y g = τg ∗ G , where τg is the
average indirect treatment effect parameter. A unit’s observed outcome is Y = Y z + Y g.
Accordingly, each unit has four potential outcomes, one of which is observed.

(b) Spatial confounding: To introduce spatial confounding, the Xz covariates are spatially
smoothed, which introduces a common spatial pattern in the treatment and outcome
variables.

(c) Interference and confounding: A test scenario where both interference and confounding
from scenarios (a) and (b) are present.

(d) Non-linearity: On top of scenario (c), a non-linear function is used to generate the
outcome variable.

The following list of causal inference methods are tested. They are denoted as:
IMP: Imputing unobserved potential outcomes with non-parametric models, followed by
inverse probability weighting to estimate average causal effects.
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NS: A baseline non-spatial PO model.
NSP: Non-spatial PO model with propensity score adjustment.
S: A baseline spatial model. The model takes the form of a spatial regression, as spatial
econometric models are common in the estimation of spillover effects. The model is
formulated as a PO model with spatially lagged treatment and confounder variables.
SP: Model S with propensity score adjustment.

Some further clarifications: In the simulation, all the methods are implemented in their
basic form for a fair comparison. While misspecification of the interference structure and
inaccuracy of propensity score estimation are important sources of bias, in this experiment
the test is kept simple. Where needed, true propensity scores and true interference network
is used. For each scenario, the tests are run with sample size 1000, covariate dimension 5.

Figure 2 Main results of simulation experiments.

3.2 Test results
Test results are reported in Figure 2. The four subplots corresponds to the four test scenarios.
For each test scenario, the estimated average treatment effects from the five models are
benchmarked on ground truth. A few findings from the results:
(1) Across all test scenarios, comparing the performance of models ‘NS’ with ‘S’, and models

‘NSP’ with ‘SP’, we can see that the incorporation of spatial regression adjustment does
not necessarily help to improve estimation accuracy. More generally, in applied cases it is
difficult to verify the specification of spatial regression models, which can be a significant
problem for causal inference tasks.

(2) Comparing the performance of models ‘NS’ with ‘NSP’, and models ‘S’ with ‘SP’, the
incorporation of propensity scores helps to adjust the estimates in the correction direction
for most test scenarios. This is including the scenario with spatial interference and no
confounding (Figure 2.b).

(3) Comparing Figure 2.c with other scenarios, we can see that the coexistence of interference
and confounding is challenging, as most models perform worse under this scenario.
Meanwhile, compared with other models, the estimation accuracy of the counterfactual
prediction based method ‘IMP’ does not deteriorate significantly when spatial confounding
and interference coexist, suggesting a robustness of this approach.

(4) Across all test scenarios, comparing the performance of ‘IMP’ models with others, we
can see that the counterfactual prediction based method performs as well as the other
methods in recovering the true causal effect. While propensity score based adjustments
and spatial regression techniques are mainstream and have enjoyed decades of refinement,
the counterfactual prediction approach is relatively new to spatial causal inference.
Recently, the approach has been employed by Davis et al. [2] in a spatial confounding
setting, and by Forastiere et al. [4] in a network interference setting. I believe the
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counterfactual prediction approach is a promising direction of further methodological
research. It is flexible enough to accommodate complex cases of spatial causal inference.
And, it provides alternative ways to derive uncertainty quantification for models and
parameters.

4 Conclusions

Spatial causal inference is an emerging field of research with wide ranging areas of applica-
tions. It is one of the methodological frontiers in the ongoing causal modelling movement.
Complementary to existing review papers, this short piece offers a synthesis of two import-
ant concepts in spatial causal inference: spatial confounding, and spatial interference. A
key message here is that: In the current literature, there is a lack of appreciation of the
connections between core analytical concepts. This could potentially lead to overspecialised
silos of research. Respectively, I believe several directions of research could benefit the field:
Theoretically, we need further efforts on consolidating existing understandings of spatial
causal problems and approaches to meeting the analytical challenges. Methodologically,
counterfactual prediction is a promising direction of research which could potentially lead to
flexible methods for complex spatial causal inference cases.
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Abstract
Decarbonising transport is crucial in addressing climate change and achieving the Net Zero target.
However, limitations arising from traditional data sources and methods obstruct the provision of
individual travel information with comprehensive travel modes, high spatiotemporal granularity
and updating frequency for achieving transport decarbonisation. Mobile phone application data, an
essentially new form of data, can provide valuable travel information after effective mining and assist
in progress monitoring, policy evaluation, and system optimisation in transport decarbonisation.
This paper proposes a standardised methodology to unlock the power of mobile phone application
data for supporting transport decarbonisation. Three typical cases are employed to demonstrate
the capabilities of the generated individual multimodal dataset, including monitoring Londoners’
20-minute active travel target, transport GHGs emissions and their contributors, and evaluating
small-scale transport interventions. The paper also discusses the limitations of mobile phone
application data, such as issues surrounding data privacy and regulation.

2012 ACM Subject Classification Information systems → Geographic information systems; Applied
computing → Transportation

Keywords and phrases Transport decarbonisation, Mobile phone application data, Application,
London

Digital Object Identifier 10.4230/LIPIcs.GIScience.2023.92

Category Short Paper

1 Introduction

Greenhouse Gases (GHGs) emissions, which contribute significantly to anthropogenic climate
change, have emerged as a pressing global concern. The transport sector, a major source
of GHG emissions, accounted for approximately 37% of worldwide CO2 emissions from
fuel combustion in 2021 [3]. Decarbonising transport is a multifaceted challenge involving
the addressing of a variety of interrelated issues in policy, technology, and behavioural
interventions. This includes encouraging model shifting, decreasing the high dependency on
fossil fuels, expanding clean infrastructure investment, delivering transport interventions and
regulations, and developing transport carbon credit trading market, etc [2]. In the meantime,
numerous data-related challenges associated with these measures must also be resolved to
support progress monitoring, intervention and policy evaluation, and the creation of effective
policies and system optimisation for accelerating transport decarbonisation.
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To be more specific, the availability of high-quality, detailed spatiotemporal data on
travel behaviour, GHG emissions, and energy consumption is often limited, which hampers
the creation of targeted interventions and the evaluation of their effectiveness. Secondly,
tracking active travel data, which involves irregular trips and informal infrastructure, is
challenging. This difficulty complicates the evaluation of modal shifts towards sustainable
mobility and the optimisation of transport policies and infrastructure. Thirdly, inconsistencies
in data collection methodologies and reporting standards across different jurisdictions prevent
effective comparisons and the aggregation of data for regional or global analyses. These
inconsistencies also influence the creation of decarbonisation targets and the assessment of
progress in transport decarbonisation. Fourthly, near real-time data is vital for the operation
of a transport carbon credit trading market and for promptly responding to (un)planned
transport disruptions. While efforts have been made to address these data challenges, existing
limitations continue to hinder progress towards transport decarbonisation.

Mobile phone data, a new form of data, holds several unique advantages, including
high spatiotemporal granularity, large-scale coverage, passive data collection, real-time
information, and integration with other geospatial data. Coupled with advancements in
geospatial analysis and artificial intelligence, it becomes feasible to infer more holistic travel
mode and personal activities information. For instance, its fine spatiotemporal granularity
can inform infrastructure planning, from the expansion of cycling and public transit networks
to the deployment of electric vehicle charging stations. Additionally, this data can bolster
emissions models, aiding targeted mitigation efforts and enhancing our understanding of the
connection between transport and emissions [4]. While mobile phone data offers substantial
potential, its full utilisation to accelerate transport decarbonisation remains a significant
challenge. The intricacies of processing massive data, the lack of standardised methodologies,
and privacy concerns are areas that require further exploration and research.

This paper mainly introduces how do we develop a standardised methodology for un-
locking the power of mobile phone application data and applying it to support transport
decarbonisation. In the next section, we will introduce the superior characteristics of mobile
phone application data and the used dataset. The third section will introduce the proposed
methodology for mining the mobile phone application dataset and its potential applications.
The fourth section will demonstrate the applications in monitoring active travel, estimating
transport GHGs emissions, and evaluating transport interventions. In the last section, we
will draw conclusions and discuss the potential limitations of mobile phone dataset.

2 Mobile phone application dataset

With the widespread adoption of smartphones and an increasing reliance on mobile networks,
mobile phone data has become an abundant and valuable resource for researchers, businesses,
and policymakers. Mobile phone data is derived from two sources, including cellular tower
data and mobile phone application data. Cellular tower data is inferred from the connection
of mobile devices to cell towers. Mobile phone application data is generated from built-in
sensors and collected by popular public applications equipped with location-based services.
In addition to the general characteristics, mobile phone application data has three advantages
over cellular tower data, which enables a more detailed understanding of mobility patterns,
travel modes, and location-based activities:

Higher spatiotemporal granularity: mobile phone sensors (e.g., GPS) can provide more
accurate location information compared to cellular network-based data, which relies on
cell tower triangulation.
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Rich variety of sensors: mobile phone is equipped with numerous sensors, including
accelerometers, gyroscopes, and magnetometers, which can provide additional context
and information about individual activities, such as speed and heading.
Higher sample rate: mobile phone application usually has higher collect data at specific
time intervals or based on user-triggered events, allowing for the collection of high-
frequency data.

In this study, we utilise a mobile phone application dataset from Location Science AI,
which is collected and combined from more than 50 popular mobile phone applications. This
dataset encompasses about 1 million+ unique devices in 2020 and 2021 in the UK. On
average, we have about 80 data points per device per day, with the horizontal accuracy
being approximately 21.7 meters. This effectively alleviates the potential sample bias in
the mobile phone application data from a single source and increases the data sample per
device. The obtained dataset, collected from the UK from January 2019 to the present
(live feeding), provides a robust approach to investigating transport decarbonisation across
multiple periods.

3 Methodology

This research presents a standardised methodology to harness the power of mobile phone
application data for accelerating transport decarbonisation (Figure 1). The methodo-
logy comprises two main steps: (1) the provision of travel information. (2) the potential
applications.

Mobile phone application data  

The applications 
in transport 

decarbonisation

The provision of 
travel information 

Travel mode detection

Movement Stationary

Travel speed estimation
Travel routing generation 

Trip purpose inference
People group identification

Monitoring progress
Multimodal travel behaviour

Active travel target

Utilisation of road space
Transport GHGs emission

…….

Evaluating policies
Novel travel modes

Traffic calming measures

Transport infrastructures
Local transport interventions 

…….

Optimising transport system
Reallocating road space
EV charging stations 

Public transit operation
Share mobility facilities

…….

Figure 1 the methodology for unlocking the power of mobile phone application dataset.

Given the raw mobile phone application dataset does not offer any travel-related in-
formation, it is essential to adopt and improve novel algorithms to mine travel information
from it. In this framework, travel mode detection plays a pivotal role in providing travel
information. We improve the moving window SVM model and combine spatial analysis for
accommodating the massive data volume of mobile phone application dataset [1, 5]. Seven
typical travel modes are detected, including car, bus, train, tube, cycle, walk, and stationary.
After classifying the raw dataset into movement and stationary groups, we first further deliver
individual travel information (e.g., speed and routing), which can be further aggregated to
street-level traffic flow or regional-level OD flow. Besides, trip purpose (e.g., working and
shopping) and people groups (i.e., residents, people with trip attractions, pass-through people)
can be identified based on machine learning and spatial analysis methods by combining other
spatial datasets (e.g., land use and POIs).
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With detailed and comprehensive travel and activity information, many specific chal-
lenges in progress monitoring, policy evaluation, and transport system optimisation can be
addressed. Mobile phone application dataset and this standardised methodology become the
linkages between these three key aspects, thereby accelerating the achievement of transport
decarbonisation. It should be noted that this framework only presents a part of travel-
related information extraction and its applications, which could be further expanded to other
unexplored fields.

4 Applications

In this study, we choose London as the study area and demonstrate three applications
of transport decarbonisation based on mobile phone application data, specifically: active
travel target achievement, transport GHGs emissions estimation, and transport intervention
evaluation.

4.1 Monitoring the progress of active travel target
According to the Mayor of London’s Transport Strategy, all Londoners should engage in at
least 20 minutes of active travel by 2041. This means that local residents should be able to
access essential services, amenities, and recreational opportunities within a 20-minute walk
or cycle from their homes. This approach encourages people to use active and sustainable
modes of transport, instead of relying on private cars. Consequently, it’s important to
monitor progress towards these targets to better direct sustainable mobility infrastructure
development and related intervention formulation. However, continuous monitoring of active
travel, including cycling and walking, is challenging with traditional statistics and surveys.
Mobile phone application data could easily monitor local residents’ active travel and assess
the target achievement, making it simpler to optimise infrastructure investment and transport
interventions. Figure 2 presents the achievement of 20-minute active travel target at Middle
Super Output Area (MSOA) level in London. Most MSOAs have not fully achieved the
target, and MSOAs located in inner London have better progress in target achievement.

Figure 2 the achievement of 20-minute active travel targets in London.

4.2 Estimating transport GHGs emissions
Estimating transport GHG emissions is a critical task for understanding the environmental
impact of transport systems and for developing effective decarbonisation strategies. However,
due to the complex nature of transport systems, the variability in vehicle technologies,
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Figure 3 The spatial distribution and contribution of transport GHGs emissions.

and user behaviours, estimating transport GHG emissions can be challenging. With the
provided travel information, transport GHGs emissions can be further estimated by using
distance-based estimation methods. Besides, the allocation of transport GHGs emissions
could be further conducted based on travel modes and people groups derived from the mobile
phone application dataset. Figure 3 illustrates the transport GHGs emissions at MSOA
level, as well as the shares of contributors (i.e., residents versus pass-through people) in
London, both before and after the COVID-19 pandemic. The transport GHGs emission in
inner London is no longer significantly higher than those in the outer, and the proportion of
local transport GHG emissions produced by residents is higher than pre-pandemic. These
changes may be attributed to shifts in travel behaviour and lifestyle, such as the increased
prevalence of remote work. The findings will aid in formulating decarbonisation policies and
foster the development of carbon credit trading markets.

4.3 Evaluating transport interventions

Transport interventions are crucial in promoting transport decarbonisation and steering
towards more sustainability. They aim to reduce GHG emissions by endorsing low-carbon
transportation modes, improving energy efficiency, and encouraging behavioural change.
Key interventions include enhancing public transportation, supporting active travel modes,
incentivising electric vehicle adoption, and implementing policies such as congestion pricing
and low-emission zones. After the outbreak of the COVID-19 pandemic, London rapidly
introduced Low Traffic Neighbourhood Scheme (LTN) across many boroughs, with the goal
of encouraging active travel, preventing traffic through traffic, and keeping social distances.
Given the scheme’s small scale (approximately 1 km2) and uncertain implementation period,
traditional datasets struggle to capture its impacts. Fortunately, the high spatiotemporal
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granularity of mobile phone application dataset enables us to unpack LTNs’ impacts. Figure 4
illustrates the re-routing of individual driving routes after introducing St Peter LTNs in
London. According to the travel information delivered from mobile phone data, it is easy to
track the redistribution of multimodal traffic flow and road space usage. This is a powerful
approach for authorities to evaluate transport interventions and identify potential side-effects.

Before After

Car

Travel mode

Car

Travel mode

Figure 4 the re-routing of an individual driving route.

5 Conclusions

This study demonstrates how to unlock the power of mobile phone application data to
accelerate transport decarbonisation and its potential applications. We reviewed the data
challenges in transport decarbonisation and proposed a methodology to overcome them. We
present three applications demonstrating how mobile phone application data can facilitate
progress monitoring, transport GHGs emissions estimation, and policy and intervention
evaluation. While mobile phone application data holds significant potential to support
transport decarbonisation, two key limitations must be addressed in the future.

Firstly, while mobile phone application data offers valuable insights, it also contains
sensitive information about individuals’ movements and behaviours. It’s crucial to strike a
balance between utilising the potential of this data and ensuring privacy.

Secondly, data protection regulations, like the General Data Protection Regulation
(GDPR) in the European Union, have been proposed or implemented worldwide to address
growing data privacy concerns. These regulations dictate strict compliance regarding data
collection, storage, and processing, which in turn pose new challenges to data availability
and application. To mitigate these challenges, advanced data processing and management
strategies, such as federated learning, should be developed or applied.
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Abstract
The rapid advancement of artificial intelligence (AI) such as the emergence of large language
models ChatGPT and DALL·E 2 has brought both opportunities for improving productivity and
raised ethical concerns. This paper investigates the ethics of using artificial intelligence (AI) in
cartography, with a particular focus on the generation of maps using DALL·E 2. To accomplish
this, we first created an open-sourced dataset that includes synthetic (AI-generated) and real-world
(human-designed) maps at multiple scales with a variety of settings. We subsequently examined
four potential ethical concerns that may arise from the characteristics of DALL·E 2 generated
maps, namely inaccuracies, misleading information, unanticipated features, and irreproducibility.
We then developed a deep learning-based model to identify those AI-generated maps. Our research
emphasizes the importance of ethical considerations in the development and use of AI techniques in
cartography, contributing to the growing body of work on trustworthy maps. We aim to raise public
awareness of the potential risks associated with AI-generated maps and support the development of
ethical guidelines for their future use.
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1 Introduction

Cartographers long have recognized the significance of developing ethical and trustworthy
maps, i.e., maps that truthfully depict geographic information while minimizing the introduc-
tion of misinformation or bias [15, 6]. With the rapid advancements in Artificial Intelligence
(AI), the use of AI in map-making has brought both opportunities and concerns [12, 9].
On the one hand, (Geo)AI techniques can facilitate map creation processes and even have
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demonstrated the potential to support human creativity in cartographic design. For instance,
cartographers have employed (Geo)AI to support cartographic design decisions on the artistic
aspects of maps such as map style transfer [10, 3], map generalization [4, 18], and map design
critique [2]. On the other hand, despite its promise, cartographers have expressed ethical
concerns about the uncertainty and opacity (i.e., machine learning and deep learning models
often are considered as “black-boxes”) of AI for generating maps [21, 9]. As [6] asks: “How
much should we trust a machine-generated map?”

Recently, generative models such as ChatGPT and DALL·E 2 have attracted significant
public attention [16, 19]. These generative language models have demonstrated impressive
capabilities in tasks such as language generation and image synthesis. Yet, they have fueled
debates surrounding the ethical concerns related to the development of generative AI [13, 22].
The advancement of these generative AI models also raises critical questions about the future
of labor [20] and the consequences of unbridled technological development [19, 14]. Therefore,
there is an urgent need for careful consideration and ethical evaluation of AI technologies in
myriad domains to ensure their responsible and beneficial use.

As cartographers and geographers, we have a particular interest in investigating the
ethical implications of maps created by these advanced generative models. The emergence of
powerful tools such as DALL·E 2 has made it increasingly accessible to generate high-quality
map images by providing specific prompts. However, this also has introduced new challenges
related to the accuracy and trustworthiness of these synthetic maps generated by AI. While
these maps may look realistic, they also may contain inaccuracies or be influenced by biases
embedded in the AI models, resulting in the proliferation of potentially meaningless, and, at
worse, harmful maps online [17]. To address these issues, it is necessary to build solutions
for detecting and mitigating the risks associated with using such maps, as suggested by [21].
Hence, it is crucial to offer timely detection of “fake” maps to assess the trustworthiness of
web maps and minimize the potential negative impacts associated with their use.

To this end, we aim to investigate the use of AI in generating maps and the associated
ethical implications of AI-generated maps. We ask the following two fundamental questions:
(1) What potential ethical concerns arise from the characteristics of maps generated by
DALL·E 2? and (2) How can AI-generated maps be identified to ensure their trustworthiness
on web maps? To accomplish this, we first created a dataset that contains synthetic maps
generated by DALL·E 2 with diverse prompts at multiple spatial scales (hereafter referred
to as AI-generated maps). We also collected real-world maps using search engines (hereafter
referred to as human-designed maps). In addition, we trained a deep learning-based model
capable of identifying AI-generated maps. In this paper, we hope to use this study to
apply ChatGPT-like generative models (e.g., DALL·E 2) in cartography. Our research
contributes to the growing body of work on trustworthy maps and the ethics of cartography by
highlighting the importance of ethical concerns in the development and use of AI techniques
with cartography for the public.

2 Data and Methodology

2.1 Construction of Dataset

We first created an AI-generated map dataset using the DALL·E 2 that relies on prompts
to generate images. Specifically, we generated the maps using the following prompt format:

“A {MapType} of {Region} on {Place} with {Description}”
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This format allows us to specify the type of map, the region of maps, the location where
the map is put, and additional descriptive information for the AI model to generate a
corresponding map.

The first two parameters for all prompts, MapType and Region, are required, while Place
and Description are optional. For instance, to generate a United States choropleth map that
is placed on the desk in warm colors, the prompt could be: “A choropleth map of United
States with warm colors”. Then, we randomly selected options and combines them to generate
a diverse set of maps covering various regions and themes. We have made the dataset openly
available on GitHub at: https://github.com/GISense/DALL-E2-Cartography-Ethics. As a
comparison, we developed a Python web scrapper to collect maps from the Google search
engine at the same levels and administrative regions. To do so, we entered a search query in
the format “{Region} maps”, such as “United States maps”. We adopted such a strategy used
in prior studies to construct map datasets for country and continent levels [5, 8]. Regarding
images at the state level, we directly utilized the dataset released from [8].

Figure 1 The computational framework of this study.

2.2 Development of AI-generated Map Detector
Based on the datasets, we developed an AI-generated map detector that can identify AI-
generated maps which may offer potential solutions for creating trustworthy maps. Such
a detector was developed based on a ResNet-18 model [7], a Deep Convolutional Neural
Network (DCNN) that has been widely used in computer vision tasks due to its outstanding
performance. Given its mature and high accuracy in image classification, we utilized the
ResNet model in our study to classify maps as either generated by AI or created by humans.
To train the model, we combine the two datasets, namely, AI-generated maps and human-
designed maps, and input them into the ResNet-18 model.

3 Results

3.1 Ethical Issues of AI-generated maps
Based on our qualitative observations of AI-generated maps, we summarize four potential
ethical concerns of such maps: inaccuracies, misleading information, unanticipated features,
and the inability to reproduce results. We have included several examples of these map
characteristics in figure 2, and we summarize our definitions of these characteristics below.

The inaccuracies observed in AI-generated maps are symbolized by unclear shapes of
areas. Specifically, AI-generated maps may have unclear and distorted borderlines between
different regions (e.g., states, and counties) or even unreasonable deformation of a certain
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Figure 2 Example AI-generated maps: (1) inaccuracies, (2) misleading information, (3) unanti-
cipated features, and (4) irreproducibility.

area. At the same time, AI-generated maps from Dall-E 2 are limited to square output
shapes since users cannot set the scale of images and they typically only display certain
content of a region.

Moreover, AI-generated maps also can produce misleading information. AI-generated
maps also can contain pseudo-words, non-existent provinces, or symbols, which create a false
impression of the current map with a given input prompt. These features potentially can
lead to the spread of misinformation or the distortion of popular notions of reality and have
unintended geopolitical consequences and raise significant ethical concerns.

In addition to the inaccuracies and misleading information, AI-generated maps may create
unexpected or unanticipated features. For instance, AI-generated maps are unaware of the
underlying geographic processes that lead to repeated patterns in the landscape, particularly
for the build environment in our study, resulting in distorted polygons or depicting a heat map
as lava. The presence of polygons or lava suggests that the model may have misunderstood
the meaning of the prompt. In addition, AI models may generate specific themes of maps
that reflect certain geopolitical identities, even if not input in keyword prompts. Further
work is needed to evaluate the degree to which AI-generated maps may stoke nationalism
and thus reinforce xenophobic or otherwise biased geopolitical discourse.

Finally, AI-generated maps cannot be reproduced even with the same prompt. Due to
the randomness inherent in the generation process of DALL·E 2, it is impossible to generate
two maps that have the exact same map content, map shapes, map styles, or overall layouts.
Without greater reproducibility, cartographic research on GeoAI cannot be validated or
replicated, and therefore poise ethical questions about the effectiveness of a conventional,
science-based peer-review system, and what “counts” as knowledge and scholarship more
broadly. From a technical perspective, the model may reproduce the same outputs if we have
the same hyperparameters (e.g., random seed, steps, prompts, weights). However, DALL·E
2 is not currently open-sourced and therefore is not reproducible at this time.



Q. Zhang, Y. Kang, and R. Roth 93:5

3.2 System Results of our AI-generated Map Detector
We evaluated the performance of our deep learning-based AI-generated map detection model
on the test set. Based on the results, we computed four commonly used metrics in machine
learning, namely, accuracy, precision, recall, and F1 score, to measure the performance. The
system achieved an accuracy of 0.908, precision of 0.87, recall of 0.878, as well as an F1 score
of 0.874 on the testing dataset. These metrics suggest the system is robust and effective in
distinguishing between human-generated and AI-designed maps.

4 Discussions and Conclusions

While generative AI such as DALL·E 2 and ChatGPT have the potential to assist the
cartographic design process, they also raise significant ethical concerns. In this paper, we
present an AI-generated map dataset using DALL·E 2 and investigate the potential ethical
issues associated with AI-generated maps based on their characteristics. The findings reveal
that despite their promises, such AI-generated maps may deliver inaccurate and misleading
information, contain unanticipated features, and lack reproducibility. In addition, we develop
an AI-generated map detector with deep learning that can identify whether a map is generated
by humans or by AI. This map detector is intended to be used in various applications, such
as identifying potential cases of AI-generated maps being used to spread misinformation
on online social media platforms. Inaccurate or misleading maps, whether intentionally or
unintentionally created, may cause significant negative impacts, particularly in sensitive
political or cultural contexts. It is possible for this map detector to help prevent the spread
of misinformation and reduce the potential harm caused by AI-generated maps.

We acknowledge several limitations that are worth examining in the future. First, the
dataset we collected in this paper was limited in geographic coverage and diversity since
more diverse characteristics are required for the generalizability of our findings. Second,
this paper has only investigated the maps generated by DALL·E 2 while numerous other
models have been available that can produce maps. In this early stage of the application of
AI technology, it is also important to explore more options in prompts and other parameters.
More settings and models allow for a wide range of cartographic applications in generative
AI that can be incorporated into future studies.

The future of AI in cartography involves generating more accurate and visually appealing
maps through the rapid evolution of (Geo)AI technology, an emerging field known as “GeoAI
for cartography”, “CartoAI”, or “MapAI”. It’s critical for cartographers to collaborate with
AI developers to ensure cartographer-in-the-loop developments by addressing the limitations
and minimizing potential ethical concerns. Also, AI could be used to facilitate collaborative
mapping efforts [1]. By integrating multiple data sources, AI may make maps more accessible.
However, the potential ethical issues (e.g., bias, trustworthiness) should be monitored or
reduced. Participatory mapping, incorporating local knowledge, could improve map accuracy,
promote community engagement, and foster collaboration, while addressing ethical concerns.
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Abstract
The utilisation of big data has emerged as a critical instrument for land use classification and
decision-making processes due to its high spatiotemporal accuracy and ability to diminish manual
data collection. However, the reliability and feasibility of big data are still controversial, the most
important of which is whether it can represent the whole population with justice. The present study
incorporates multiple data sources to facilitate land use classification while proving the existence of
data bias caused digital injustice. Using Nairobi, Kenya, as a case study and employing a random
forest classifier as a benchmark, this research combines satellite imagery, night-time light images,
building footprint, Twitter posts, and street view images. The findings of the land use classification
also disclose the presence of data bias resulting from the inadequate coverage of social media
and street view data, potentially contributing to injustice in big data-informed decision-making.
Strategies to mitigate such digital injustice situations are briefly discussed here, and more in-depth
exploration remains for future work.
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1 Introduction

Land use classification is an essential part of resource distribution such as conducting
infrastructure upgrading projects and services provision activities. It is widely accepted to
classify land use types using remote sensing data with census, survey, or interview [3]. Despite
providing high-accuracy information, the traditional classification methods have common
disadvantages of being labour-intensive, time-consuming, low spatial resolution and requiring
substantial financial resources, which create barriers for the Global South countries to apply
[5]. It is crucial to offer cost-effective and easily accessible methods for land use classification
to decision-makers in the Global South. This would enable underprivileged countries to
receive timely and precise information required for emergency assistance provision.
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Unlike traditional survey-based data, big data - referring to sensor-collected automatic
data - has gradually become a low-cost, timely, cost-efficient supplement to the traditional
data sources in the Global South countries [6]. As a by-product of advancing technology and
digitalisation, new data sources (e.g., social media, street view image) are generally collected
by Internet of Things sensors and smart devices in the form of social media data, street
view data, and remote sensing data [9]. The datasets can contain various information such
as geo-referenced text, images, and GPS signals. This information can be used to analyse
people’s social activity patterns, and even hence infer the land use types.

However, it is estimated that 37% of the global population remains to have restricted or
no access to the internet, and the disconnected proportion is unsurprisingly high in Global
South countries. Those with no access to smart devices or the internet are called ‘digitally
invisible’ since they have less opportunity to generate data that could influence policy or
benefit from data-informed analysis [2]. This data-caused discrimination, together with
visibility and engagement with technology, was concluded as a data justice challenge by Prof.
Linnet Taylor [8]. Data bias and the impact of digital injustice have created an obstacle
to the application of big data. However, limited research has been conducted to verify
digital injustice and to propose effective strategies for its mitigation. Therefore, this research
aims to identify instances of digital injustice by performing a land use classification using
multi-source publicly available data, with a case study of Nairobi, Kenya. The question of
who constitutes the digitally invisible groups and where they reside remains an unresolved
issue for future work.

2 Study Materials and Methodology

The case study city of Nairobi is the capital city of Kenya, which has been the economic centre
of East Africa [4], experiencing overwhelming population growth and informal settlements
expansion. These informal settlement areas accommodate more than 60% of the total
population while occupying less than 5% of the city’s residential land area [1]. Due to the
rapid pace of development, the land use and extent of informal settlements can change
significantly within a short period of time. Therefore, frequently updated land use data
would be beneficial for local decision-makers.

The 2010 land use map shapefile of Nairobi, Kenya, created by Columbia University’s
Center for Sustainable Urban Development and obtained from the World Bank Data Catalog,
served as the training dataset. However, due to the prolonged interval since its release and
the swift pace of urban development in Kenya, various modifications were implemented based
on field investigations and comparisons using Google Maps. The initial dataset encompassed
13 categories, which were subsequently condensed to 8 categories in accordance with the
Nairobi land use policy, namely, commercial, industrial, residential, informal settlements,
vegetation, water, recreational, transportation, and institutional.

Multiple sources of open sensor data were employed to conduct the research, and the
relevant information is summarised in the table 1.

Table 1 Data source and feature.

Raster Data Vector Data

Data (abbr.) Satellite images (R) Night-time light (N) Building footprints (O) Social media posts (T) Street view images (S)

Source Sentinel-2 MSI VIIRS-DNB Google Open Building Twitter posts Mapillary

Information Spatial resolution 10m Spatial resolution 760m Polygon Text point Image point

Feature selection Bands, NDVI, NDWI, NDBI2 Night Band Building density Tweet language and time Object detected

Feature interpretation Land physical char Urban extent Building char Social activity Sectional physical environment
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Figure 1 Land use map with 8 categories.

The raster data was resampled to a unified spatial resolution of 30 meters to provide
detailed information suitable for community and city-level analysis. However, this resolution
was chosen primarily for illustration purposes, and the accuracy trend is expected to perform
similarly across different spatial units. Twitter posts were categorized into three categories:
working/school, leisure time, and home time, based on whether the post was made on a
weekday or weekend and the time of the post. The content of the posts was analysed using
language detection techniques. A panoramic segmentation of the street view images was
conducted using Detectron2, a pre-trained object detection algorithm developed by Meta.
The processed vector dataset was then rasterized to a 30-meter resolution to align with the
remote sensing data.

In this study, the random forest was employed as the benchmark classifier for land use
classification for illustration purposes, since it has been widely applied and considered to
be the most effective method for land use and land cover classifier [7]. Random forest is a
supervised learning technique, whereby the classification categories can be allocated from
the training dataset. A sample of 1000 pixels was randomly selected from each category
and split into training and test sets. The forest number was set to 200. It is worth noting,
however, that the selection of the classifier does not constitute the primary objective of this
research, and other classifiers could be utilised in lieu of random forest. Although the overall
accuracy of different data combinations may differ, significant modifications to the ranking
of overall accuracy are not anticipated.

3 Result and Discussion

3.1 Land use map
The predicted Nairobi land use map with a 30m spatial resolution is presented in Figure 1.
Figure 2(a) illustrates the change in OA with different data combinations. The combination
of all datasets achieved the highest overall accuracy of 71.57%. As hypothesised, the
aggregation of multiple data sources significantly enhanced the effectiveness of the OA of
land use classification. This trend is consistent across different spatial resolutions, as shown
in Figure 2(b).

2 NDVI: Normalised Difference Vegetation Index, NDWI: Normalised Difference Water Index, NDBI:
Normalised Difference Build up Index
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Figure 2 Land use classification (a) OA of 30m spatial resolution; (b) OA across spatial resolution.

Figure 3 Twitter data biased spatial distribution.

This performance could be attributed to the fact that data aggregation allowed for a
full range of information to be revealed. The satellite images, night-time light images, and
building density reflect the physical features of the land. In addition, social and economic
features, such as different languages (English, Swahili, or others) found in Twitter posts, can
provide insight into the people’s education levels and social connectivity, as they may use
English exclusively for professional and outreach activities in commercial areas. Industrial
areas are among the most commonly used places for Swahili, which could contribute to
increased accuracy. Moreover, the presence of umbrellas in street view images could be used
to directly infer the presence of a commercial area, as it is a unique indication of a local
roadside market. These findings provide further evidence of the importance of using mobility
data to identify social and economic features.

3.2 Mitigating data injustice
The results also highlighted the existence of low-data areas in Nairobi, as can be seen in
Figure 3. Some highly populated area (colour in red and yellow in the background), especially
the informal settlements of Kibera and Mathare, was not covered by Twitter post. After
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Figure 4 KDE and convolution (a) Regional performance (b) OA performance.

dividing the city into a grid with a spatial resolution of 30 meters, there were a total of 792,534
grid cells. However, only 307,632 cells had valid Twitter posts with identified language,
which accounted for 38.82% of the total area. People who live in places where no data is
collected are digitally invisible groups. The existence of digitally invisible groups would
reduce classification accuracy, and potentially lead to biased decision-making.

The possible reasons for this uneven data distribution were: (1) genuinely less populated
areas: the urban outskirt contains underdeveloped bare land and agricultural land. (2) low
internet or smart device penetration: as mentioned before the rural area would have lower
smartphone access. (3) a preference for other social media platforms: according to research
done by Kepios (Kemp, 2022), the social media preference ranking: Facebook (42.6%),
LinkedIn > (12.4%) > Instagram (10.7%) > Snapchat (7.5%) > Twitter (5.8%).

Tobler’s First Law of Geography suggests that neighbouring areas are more similar than
distant ones. Based on which, we assume that increasing the impact of a single data point
could potentially cover nearby no-data areas and amplify the voices of digitally invisible
groups. This could be implemented by performing a kernel density estimation (KDE),
followed by a Gaussian convolution, as shown in Figure 4(a). The land use classification
accuracy with all bands (at a spatial resolution of 30 m) increased from 57.68% to 70.24%.
This result proved our assumption that nearby land use can be inferred using single data
points.

Determining the impact range of a single data point remains a critical question. To
understand the effect of distance on land use classification accuracy, an optimisation of the
parameter has been plotted as shown in Figure 4(b). The optimal performance distance for
Twitter posts in Nairobi was approximately 700 meters, resulting in an OA of 72.72%. This
finding suggests that land use types tend to remain consistent within a 700-meter radius in
Nairobi. However, it should be noted that this approach only addresses digital injustices
within a specific range. As the distance increases, land use categories may differ significantly,
and thus, data gaps for large data-missing areas cannot be inferred. Therefore, designing
surveys and interviews as supplementary data collection to visualise the digitally invisible
groups for large data-missing areas would be beneficial.

4 Limitation and Future Work

This project is subject to certain limitations that need to be acknowledged. Firstly, the
findings highlight the presence of data bias and digital injustice, along with a brief analysis
of their spatial extent. However, the quantitative spatial coverage and representativeness of
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the sensor data were not fully explored, which leaves open questions about the demographic,
spatial, and temporal distribution of the digitally invisible population. Consequently, only
limited mitigation approaches were provided, and no information was provided about who
should be the target group for the small data collection. The unresolved inquiries also include
whether big and small datasets can represent different social groups and whether performing
data fusion can be implemented to mitigate digital injustice. These questions will be further
explored in the next phase of our research.

The predicted land use map may not fully capture areas with multiple functions due
to the relatively coarse 30m spatial resolution. This limitation is caused by the limited
computing capacity of GEE. However, for city-level decision-making, a 30m resolution is
generally sufficient. To overcome this limitation for more granular analyses, one can zoom in
to a smaller area or switch to another server.
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Abstract
Mobile map apps are rapidly changing the way we live by providing a broad range of services
such as mapping, travel support, public transport, and trip-booking. Despite their widespread use,
understanding how people use these apps in their everyday lives is still a challenge. In order to design
context-aware mobile map apps, it is important to understand mobile map app usage behaviour. In
this study, we employed a novel approach of recording touchscreen interactions (taps) on mobile
map apps and combined them with users’ distances from their homes to capture everyday map app
usage. We analysed data from 30 participants recorded between February 2021 and March 2022
and applied two different data-driven analysis techniques to evaluate map apps usage. Our results
reveal two distinct tapping signatures: a “home behaviour”, characterised by high interactions with
map-related apps close to home, and a “travel behaviour”, defined by lower interactions scattered
over a range of distances. Our findings have important implications for future work in this field and
demonstrate the potential of our new approach for understanding mobile map app usage behaviour.
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this need by introducing a novel approach, tappigraphy, which records usage behaviour with
mobile apps by leveraging smartphone touchscreen interaction data (i.e. taps on a device
display). Tappigraphy originated and is widely used in neuroscience to uncover behavioural
patterns [1]. Recently, it has been shown to be applicable to GIScience as an ecological
momentary assessment (EMA) tool to study mobile map usage behaviour [5]. Unlike other
EMA methods, tappigraphy solely involves recording the taps on the screen of a smartphone
and deliberately does not require the knowledge of any other private information about the
individual (e.g. gender, nationality). Moreover, unlike lab-based investigations, recording
touchscreen tapping data offers a new, unobtrusive way to observe human behaviour in
everyday activities. Furthermore, it is not limited to selected apps and can be flexibly used
to evaluate multiple apps in the aggregate. With this paper, we aim to employ tappigraphy
in analysing map app usage behaviour in relation to the study participants’ distance from
their home location. By analysing the frequency of map-related taps at various locations to
the participant’s home, we intend to infer similar or different user behaviour pertaining to
map apps.

2 Methodology

Through the MapOnTap app, we collected data for a minimum of two-weeks from thirty-eight
participants. Data recording took place between February 2021 and March 2022. Participants
were asked to install the free Android MapOnTap app on their smartphones. It is based
on a tap counting app, which operates in the background on a smartphone. The recording
of participants’ phone sessions starts the moment they began unlocking the screen and
continued until it was locked again. Within each phone session, tapping data on the active
foreground apps were recorded as a series of timestamps, including the total number of
taps, the start and end time, the apps used during each phone session, the participant’s
randomised ID code, the device ID (i.e. a generated code for each participant’s device) and
the Google Play Store app category associated with the used app. In addition to the tapping
data, the app optionally records GPS coordinates. For the purpose of our study, we asked
our participants to use their smartphones as usual and activate the MapOnTap app for at
least two consecutive weeks. Participants were free to stop recording, turn GPS tracking off,
or delete the app any time they wished. We did not collect any other information about the
participants. The data collection was approved by the ethical board of University of Zurich.

From our initial dataset, we excluded three participants whose data collection period
was less than two weeks. The duration of data collection for each individual, varied from a
minimum of 14 days to a maximum of 313 days (M: 121 days, SD: 94 days). We applied
different pre-processing steps to analyse our data. First, we calculated the Euclidean
distances to the participants’ home locations for each phone session. For the participants’
home locations, we assumed that the most frequent coordinate pairs corresponded to the
home of our participants. Given that part of the data collection occurred during the Covid-19
pandemic-related restrictions, it is reasonable to assume that the mobility patterns of our
participants may have been influenced by pandemic-induced factors. In order to analyse
the data, we first calculated the distances from participants’ homes for each tap record, and
then we aggregated the total number of taps for each app category. We used the category
list from the Google Play Store as a reference for this process. We specifically selected the
categories of “Maps and Navigation” (MN) and “Travel and Local” (TL), as they are the
only two categories that are explicitly related to map apps. Subsequently, we excluded five
participants from the study whose tapping data did not include any recordings for the MN
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and TL app categories. Our dataset revealed 74,304 distance values ranging from 0 to 9,000
km from home. To identify and exclude any outliers, we applied the interquartile range
method. As a result, we eliminated 2,121 extreme values from the dataset. The resulting
distances ranged from 0 to 1,393 km from participants’ home locations. Next, we calculated
distance intervals by applying the Fisher-Jenks algorithm. With this, we were able to assign
the recorded distances to 100 distance interval bins and label them with the median distance
value of each bin. Our two final datasets consisted of 30 rows representing the final number
of participants included in our analysis and 100 columns representing the number of taps
corresponding to each distance bin that we computed for the two aforementioned app-related
categories. Finally, the tap values were standardised by calculating the z-score.

3 Results and Discussion

3.1 Descriptive Statistics on Tappigraphy Data
A total of 1087 unique apps were found in our dataset, catalogued in 33 categories according
to Google Play Store (e.g. Social, Communication, etc.). Of these categories, only MN
and TL refer to map-related apps were selected. We found 25 unique apps related to the
MN category. For instance, navigation tools, mapping, and public transportation apps (e.g.
Petal map, a mapping service from Huawei and apps of public railways companies, such as
SBB). For the TL category, we identified 63 unique apps. For example, travel-booking tools,
ride-sharing apps, trip management tools, and tour-booking apps (e.g. Booking, TripAdvisor,
Publibike). Upon examining the total number of taps in our dataset, the TL category has,
on average, more than twice as many taps recorded (M:3,798, SD:5,775) as the MN category
(M:1,707, SD:4,218). Further, the TL category also had a greater maximum number of
taps (132,923) than the MN category (59,734). The relatively high standard deviation can
be attributed to the varying degrees of participation and data collection duration among
participants, as the data collection period spanned almost a year. This unbalanced nature of
the dataset is a trade-off of the study design, and may have impacted our results.

In terms of tap records in association with distances from home, the tapping data is not
uniformly distributed but concentrated within a range of 200 km, with 84% of taps recorded
for the MN category and 62% of taps for the TL category falling within this distance range.

3.2 Hierarchical Cluster Analysis (HCA) and Archetypal Analysis
Our main goal was to uncover potential map app usage patterns at varying distances from
participants’ home locations. To this end, we focused on two methods: HCA and Archetypal
Analysis. HCA is an unsupervised algorithm that forms ordered subgroups, which can help
individualise data clusters that are more closely or distantly related [4]. We employed
Ward’s criterion to optimise homogeneity within clusters by minimising the within-cluster
sum of squares. HCA is typically represented by a dendrogram, where the height of branches
represents the distance or dissimilarity between clusters. To determine the optimal number
of clusters, we partitioned the dendrogram to maximise nodes’ distances between the tree
[4]. The HCA analysis resulted in two clusters, with cluster 1 comprising 17 participants,
and cluster 2 comprising 13 participants. Figure 1 illustrates the mean standardised tapping
counts of participants for both the MN and TL categories over distances from participants’
home location of both clusters. It can be observed that participants in cluster 1 exhibit a
strong interaction pattern within approximately 1 km of distance to their home location for
both app categories. In contrast, cluster 2 is characterised by a more dispersed interaction
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Figure 1 Bar chart displaying the HCA clustered mean tapping counts of participants, for two
categories: Maps and Navigation (left) and Travel and Local (right).

behaviour, with peaks at distances ranging from 5 km to 10 km, 100 km to 150 km, around
300 km and an additional smaller interaction peak at a distance of 1300 km from home. This
trend is similar for both categories.

For comparison purposes, we also applied Archetypal Analysis as an unsupervised machine
learning technique. Archetypal analysis finds unique combinations of features (or “pure
types”) in a dataset (i.e. archetypes) that best represent its properties [3, 2]. Data points of
the dataset are then positioned on a spectrum between archetypes without being assigned
to only one particular archetype (unlike the results of cluster analysis). With archetypal
analysis, we can assess the membership of each data point to these different archetypal
signatures (similar to cluster analysis) while preserving individual differences [2]. Based on
the RSS value, we chose four archetypes to best represent our data (RSS value of 0.68)

Figure 2 shows the participants’ distribution on the archetypal spectrum of the four
calculated archetypes. Most of our participants have strong affiliations to archetype A2,
as most data points are around that archetype. The directional lines of each data point
indicate the direction and strength of affiliation to the different archetypes. Based on that,
most data points near A2 also have strong affiliations to archetype A3. Figure 3 visualises
the standardised tapping counts for each archetype over home distances and for each app
category. While the signature of each archetype differs in some ways, the tapping behaviour
between the two app categories for each archetype is rather similar. Archetype A2 is defined
by a strong usage behaviour of both app categories and a distance that is close to home
(mainly within a range of 13 km). Many of our participants also have strong affiliations to
archetype A3. A3 is defined by a usage behaviour that is mainly distributed over a distance
range up to 200 km from home. Comparing archetypes A2 and A3, it is possible to derive
differences in interaction behaviour. A2 consists of a behaviour where participants used
both app categories and are close to home; A3 indicates a behaviour where participants are
also farther away from home, with a scattered and predominant usage behaviour of the TL
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Figure 2 Distribution of participants on the archetypal spectrum.

Figure 3 Bar chart displaying the results of the archetypal analysis. Tapping data distribution is
plotted for the four archetypes for the selected categories of Maps and Navigation (left) and Travel
and Local (right).

app category. Hence, we see a distinction between A2 (home behaviour) and A3 (travel
behaviour). Archetypes A1 and A4 show distinct behaviour and could be considered outliers,
with one and two participants affiliated with these archetypes, respectively. The tapping
signature of A1 and A4 is defined by using both app categories at distances mostly between
300 km and 600 km for A1 and between 100 km and 200 km for A4.

Comparing the cluster analyses results with those of the archetypal analysis, we found
two main interaction behaviours: home behaviour and travel behaviour. However, archetypal
analysis also allowed us to identify a spectrum of participants’ interactions and their direction
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towards the different archetypes, which is an advantage over cluster techniques such as
HCA. In terms of limitations, we aggregated map-related apps to the category level of
each app that the Google Play Store provided. Although we initially aimed to analyse
each app’s individual tapping data, the recorded apps exhibited high usage variability and
frequency among participants. This resulted in scattered contributions from each app, which
we considered insufficient for an individual analysis. Future studies should include more
participants and collect consistent data points for individual apps to overcome this limitation.

4 Conclusion

This study aimed to expand our understanding of everyday map app usage by extracting
as much information as possible from a minimal set of data. Our results provide distinct
tapping signatures that point to how participants’ app usage behaviour may differ at different
distances from home. This is a valuable starting point for evaluating tappigraphy as a method
for collecting behavioural data on mobile map use in a non-intrusive and continuous manner.
In future studies, we plan to extend our research by using tappigraphy in combination with
additional sensors of smartphones (e.g. accelerometer, gyroscope, ambient light sensor, etc.)
to consider interactions with map apps in relation to environmental factors.
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