

Long, Q., Anagnostopoulos, C., Puthiya, S. and Bi, D. (2024) FedDIP:
Federated Learning with Extreme Dynamic Pruning and Incremental
Regularization. In: IEEE ICDM 2023, Shanghai, China, 1-4 December
2023, pp. 1187-1192. ISBN 9798350307887
(doi: 10.1109/ICDM58522.2023.00146)

There may be differences between this version and the published version.
You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/305983/

Deposited on 5 September 2023

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1109/ICDM58522.2023.00146
http://eprints.gla.ac.uk/305983/
http://eprints.gla.ac.uk/

FedDIP: Federated Learning with Extreme
Dynamic Pruning and Incremental Regularization

Qianyu Long
School of Computing Science
University of Glasgow, UK

2614994L@student.gla.ac.uk

Christos Anagnostopoulos
School of Computing Science
University of Glasgow, UK

christos.anagnostopoulos@glasgow.ac.uk

Shameem Puthiya
School of Computing Science
University of Glasgow, UK

Sham.Puthiya@glasgow.ac.uk

Daning Bi
Hunan University, China

College of Finance and Statistics
daningbi@hnu.edu.cn

Abstract—Federated Learning (FL) has been successfully
adopted for distributed training and inference of large-scale Deep
Neural Networks (DNNs). However, DNNs are characterized
by an extremely large number of parameters, thus, yielding
significant challenges in exchanging these parameters among
distributed nodes and managing the memory. Although recent
DNN compression methods (e.g., sparsification, pruning) tackle
such challenges, they do not holistically consider an adaptively
controlled reduction of parameter exchange while maintaining
high accuracy levels. We, therefore, contribute with a novel FL
framework (coined FedDIP), which combines (i) dynamic model
pruning with error feedback to eliminate redundant information
exchange, which contributes to significant performance improve-
ment, with (ii) incremental regularization that can achieve
extreme sparsity of models. We provide convergence analysis
of FedDIP and report on a comprehensive performance and
comparative assessment against state-of-the-art methods using
benchmark data sets and DNN models. Our results showcase
that FedDIP not only controls the model sparsity but efficiently
achieves similar or better performance compared to other model
pruning methods adopting incremental regularization during
distributed model training.

Index Terms—Federated Learning, dynamic pruning, extreme
sparsification, incremental regularization.

I. INTRODUCTION

Federated Learning (FL) [1] is a prevalent distributed learn-
ing paradigm due to its ability to tackle learning at scale.
FL plays a significant role in large-scale predictive analytics
by enabling the decentralisation of knowledge discovery. FL
contributes towards privacy preservation, which overcomes
fundamental issues of data governance and ownership [2]. Dis-
tributed training and deploying large-scale Machine Learning
(ML) models, i.e., Deep Neural Networks (DNNs), impose
significant challenges due to the huge volumes of training data,
large models, and diversity in data distributions.

Distributed computing nodes, mainly located at the network
edge being as close to data sources as possible, collaboratively
engineer ML models rather than depending on collecting all
the data to a centralized location (data centre or Cloud) for
training [3]. This computing paradigm, coined Edge Com-
puting, has been successfully applied to various predictive

modelling, mining, and analytics applications, e.g., in finance
[4], healthcare [5] and wireless sensor networks [6].

DNNs are characterised by an extremely large number of
parameters. For instance, the Convolutional Neural Networks
(CNN) ResNet50 [7] and VGG16 [8] consist of 27 and 140
million parameters, respectively, while generative AI models,
like GPT-2 have more than 1.5 billion parameters [9]. Evi-
dently, this places a great burden on distributed computing
nodes when exchanging model parameters during training,
tuning, and inference.

Model size reduction (pruning) methods, e.g., [10], [11],
[12] aim to retain the prediction accuracy while reducing
the communication overhead by decreasing the number of
model parameters exchanged among nodes. However, most
pruning methods focus on the compression of model gradients.
Even though they yield high compression rates, they do not
achieve significantly compact models for exchange. But in
general, methods that can produce compact models along with
significant redundancy in the number of DNN weights by
sophisticatedly pruning the weights are deemed appropriate
[13]. In contrast to model gradient compression, model weight
compression significantly shrinks the model size by setting
most of the weights to zero. This is desirable for eliminating
redundancy in model exchange during distributed knowledge
extraction. But often such models result in performance degra-
dation. Therefore, the question we are addressing is: How to
effectively introduce model pruning mechanisms in a decen-
tralized learning setting that is capable of achieving extremely
high compression rates while preserving optimal predictive
performance? We contribute with an efficient method based
on dynamic pruning with error feedback and incremental
regularization, coined FedDIP. FedDIP’s novelty lies in the
principle of adapting dynamic pruning in a decentralized way
by pushing unimportant weights to zeros (extreme pruning)
whilst maintaining high accuracy through incremental reg-
ularization. To the best of our knowledge, FedDIP is the
first approach that combines incremental regularization and
extreme dynamic pruning in FL.

The paper is organized as follows: Section II reports on
related work and our contribution. Section III provides pre-
liminaries in FL and model pruning methods. Section IV
elaborates on the FedDIP framework, while Section V reports
on the theoretical properties of FedDIP and convergence
analysis. Our experimental results in Section VI showcase
the efficiency of FedDIP in distributed learning. Section VII
concludes the paper with future research directions.

II. RELATED WORK & CONTRIBUTION

A. Model Gradient & Model Weight Sparsification

Expensive and redundant sharing of model weights is a
significant obstacle in distributed learning [14]. The size of
the exchanged models among nodes can be reduced by com-
pression and sparsification. The work in [11] adopts magnitude
selection on model gradients to yield sparsification when using
Stochastic Gradient Descent (SGD). Instead of dense updates
of weights, [10] proposed a distributed SGD that keeps 1%
of the gradients by comparing their magnitude values. The
method in [15] scales up SGD training of DNN via controlling
the rate of weight update per individual weight. [16] develops
encoding SGD-based vectors achieving reduced communica-
tion overhead. [17] proposed the periodic quantized averaging
SGD strategy that attains similar model predictive performance
while the size of shared model gradients is reduced 95%. In
[18], the authors argued that 99% of gradients are redundant
and introduced a deep gradient compression method, which
achieves compression rates in the range 270-600 with sac-
rificing accuracy. The gTop-k gradient sparsification method
in [19] reduces communication cost based on the Top-k
method in [18]. [20] develops a method based on [21] that
adaptively compresses the size of exchanged model gradients
via quantization.

In contrast to gradient sparsification, the shrinkage of the
entire model size is of paramount importance in distributed
learning. It not only eliminates communication redundancy
during training but also enables less storage and inference
time, which makes FL welcome in distributed knowledge sys-
tems. However, so far, only centralized learning adopts model
compression via, e.g., weight pruning, quantization, low-rank
factorization, transferred convolutional filters, and knowledge
distillation [22], with pruning being our focus in this work.
SNIP [23] introduces a method that prunes a DNN model once
(i.e., prior to training) based on the identification of important
connections in the model. [24] proposes a centralized two-
step method that prunes each layer of a DNN via regression-
based channel selection and least squares reconstruction. The
method in [25] prunes CNNs centrally using the Alternating
Direction Method of Multipliers (ADMM). Following [25], the
PruneTrain method [26] uses structured group-LASSO regu-
larization to accelerate CNN training in a centralised location
only. The DPF [27] method allows dynamic management of
the model sparsity with a feedback mechanism that re-activates
pruned weights.

B. Contribution

Most of the approaches in FL take into account only
the communication overhead and thus adopt gradient spar-
sification. Nonetheless, weight sparsification is also equally
important and can lead to accurate distributed sparse models.
Such sparse models are lightweight, thus, suitable for storage,
transfer, training, and fast inference. As shown in [28], model
weights and gradients averaging policies are equivalent only
when the local number of model training epochs equals one.
FedDIP tries to bridge the gap of weights average pruning
in FL by obtaining highly accurate sparse models through
incremental regularization and reducing communication during
training through dynamic pruning.

To the best of our knowledge in distributed learning,
PruneFL [12] and LotteryFL [29] methods attempt model
pruning. However, LotteryFL focuses on a completely different
problem from ours. LotteryFL tries to discover sparse local
sub-networks (a.k.a. Lottery Ticket Networks) of a base DNN
model. In contrast, FedDIP searches for a sparse global DNN
model with mask readjustments on a central server, as we will
elaborate on later. PruneFL starts with a pre-selected node to
train a global shared mask function, while FedDIP generates
the mask function with weights following the Erdős-Renéyi-
Kernel (ERK) distribution [30], as we will discuss in the later
sections. Our technical contributions are:

• An innovative federated learning paradigm, coined Fed-
DIP, that combines extreme sparsity-driven model prun-
ing with incremental regularization.

• FedDIP achieves negligible overhead keeping accuracy
at the same or even higher levels over extremely pruned
models.

• Theoretical convergence and analysis of FedDIP.
• A comprehensive performance evaluation and compara-

tive assessment of FedDIP with benchmark i.i.d. and non-
i.i.d. datasets and DNN models. Our experimental results
reveal that FedDIP, in the context of high model com-
pression rates, delivers superior prediction performance
compared to the baseline methods and other approaches
found in the literature, specifically, FedAvg [1], PruneFL
[12], PruneTrain [26], DPF [27], and SNIP [23].

Notations Definition
N,K N : total number of nodes, where K < N nodes

participated in each training round
n indexes a node; z indexes a DNN layer; n ∈ [N], z ∈ [Z]
[N] abbreviates the integer sequence 1, 2, . . . , N
Dn, Dn Dataset and its size on node n.
(x, y) ∈ Dn x, y are features and labels in node n’s dataset
f(·),∇f(·) Loss function and its derivative
ρn, η Weight percentage and learning rate
ωG, ωn, ω′

n Global, local and pruned local model parameters
T, L, τ, ℓ Global and local rounds, global and local epochs
λ Regularization hyperparameter
⊙ Element-wise (Hadamard) product
s0, st, sp initial sparsity, sparsity at round t, final sparsity

TABLE I: Table of Notations

…

Client 1 Client 2 Client N

f1 f2 fN

Server node

ω'G
ω'G ω'Gω'G

ω'G = agg({ωn})

ω1 ω2 ωn ωN

Fig. 1: An instance of the FedDIP framework.

III. PRELIMINARIES

A. Federated Learning

For the general notations and definitions, please refer to
Table I. Consider a distributed learning system involving a set
of N nodes (clients) N = {1, 2, . . . , N}. Let Dn = {(x, y)}
be the local dataset associated with a node n ∈ N such that
x ∈ X ⊂ Rd, y ∈ Y ⊂ R, and Dn = |Dn|. In the standard FL
setting, given a subset of K < N nodes Nc ⊂ N , the local
loss is given by:

fn(ω) =
1

Dn

∑
(x,y)∈Dn

L(G(ω,x), y) (1)

where ω is the model parameter, G is the discriminant function
that maps the input space to output space and L is a loss
function that measures the quality of the prediction , e.g.,
mean-squared-error, maximum likelihood, cross-entropy loss.
The global loss function for all the selected nodes n ∈ Nc is:

f(ω) =
∑
n∈Nc

ρnfn(ω), where ρn =
Dn∑

j∈Nc
Dj

. (2)

The model training process spans periodically over T global
rounds with L local rounds. Let t ∈= {0, 1, . . . , T − 1} be
a discrete-time instance during the training process. Then,
τ = ⌊ t

L⌋L is the start time of the current global epoch. At
τ , the nodes (clients) receive updated aggregated weights ω̄τ

from the node responsible for aggregating the nodes’ model
parameters, a.k.a. the server node. The local training at client
n at local epoch l = 1, . . . , L proceeds as:

ω(τ+l)+1
n = ωτ+l

n − ητ+l∇fn(ω
τ+l
n), (3)

where η ∈ (0, 1) is the learning rate. The weight averaging
policy on the server node can be written as:

ω̄τ =
∑
n∈N

ρnω
τ
n. (4)

B. Model Pruning

In centralized learning systems (e.g., in Cloud), where all
data are centrally stored and available, the model pruning [31]
aims to sparsify various connection matrices that represent the
weights of the DNN models. Notably, sparsity, hereinafter
noted by s ∈ [0, 1], indicates the proportion of non-zero

weights among overall weights. A 100% sparse (s = 1) model
indicates that all the weights are negligible (their values are
close to 0), while a 0% sparse (s = 0) model stands for the full
model with original weight values. Typically, the reduction of
the number of nonzero weights (pruning) of a DNN model is
achieved using mask functions. A mask function m acts like an
indicator function that decides whether the parameter/weight
at a certain position in a layer of a DNN model is zero or
not. The model pruning based on mask functions requires a
criterion to select the parameters to prune. The most common
pruning criterion considers the absolute value of the weights of
each parameter in a layer. Generally, a parameter is removed
from the training process if its absolute value of the weight is
less than a predefined threshold.

On the other hand, model pruning in FL is vital in light of
reducing communication cost in each training round. More-
over, the global number of rounds should be reduced as
this significantly contributes to the overall communication
overhead. Hence, in FL, pruning aims at extreme model
compression rates, i.e., s ≥ 0.8 with a relatively small com-
promise in prediction accuracy. It is then deemed appropriate
to introduce a distributed and adaptive pruning method with
relatively high and controlled DNN model sparsity, which
reduces communication costs per round along with ensuring
convergence under high sparsity with only marginal decrease
in prediction accuracy.

The pruning techniques are typically categorized into three:
pruning before training (e.g., SNIP [23]), pruning during
training (e.g., PruneTrain [26] and PruneFL [12]), and pruning
after training DPF [27]. In this work, we concentrate on the
two former techniques, which deal with efficient model train-
ing. The pruning after training approach offers limited utility
in the context of distributed learning. The two commonly
employed techniques for pruning are: (i) Regularization-based
Pruning (RP) and (ii) Importance-based Pruning (IP) [32].
The interested reader may refer to [24], [25], [32] and the
references therein for a comprehensive survey of RP and IP
techniques. RP uses intrinsic sparsity-inducing properties of
L1 (Manhattan distance) and L2 (Euclidean distance) norms
to limit the importance of different model parameters. The
sparsity-inducing norms constrain the weights of the unim-
portant parameters to small absolute values during training.
Moreover, RP can effectively constrain the weights into a
sparse model space via tuning the regularization hyperparam-
eter λ. Whereas in IP, parameters are pruned purely based on
predefined formulae that are defined in terms of the weights
of the parameters or the sum of the weights. IP techniques
are originally proposed in the unstructured pruning settings
that can result in sparse models not capable of speeding up
the computation. Even though RP techniques are considered
superior to IP techniques, they struggle with two fundamental
challenges: (C1) The first challenge pertains to controlling the
sparsity value s during pruning. For example, in PruneTrain
[26], employing a pruning threshold value of 10−4 to eliminate
model parameters does not guarantee the delivery of a sparse
model. (C2) The second challenge is dynamically tuning a reg-

ularization parameter λ. A large λ leads to model divergence
during training, as the model may excessively lean towards
penalty patterns. By adding regularization terms in DNN
training traditionally aims for overfitting issues. However,
additional regularization for prunable layers is required for
RP, which is the core difference between traditional training
and RP-based training.

IV. THE FEDDIP FRAMEWORK

The proposed FedDIP framework integrates extreme dy-
namic pruning with error feedback and incremental regulariza-
tion in distributed learning environments. Figure 1 illustrates
a schematic representation of the FedDIP, which will be
elaborated on in this section. FedDIP attempts to effectively
train pruned DNN models across collaborative clients ensuring
convergence by addressing the two challenges C1 and C2
prevalent in RP-based methods discussed in Section III-B.

The dynamic pruning method (DPF) in [27] demonstrates
improved performance in comparison with other baselines
under high sparsity. Given the SGD update scheme, the model
gradient in DPF is computed on the pruned model as:

ωt+1 = ωt − ηt∇f(ω′
t) = ωt − ηt∇f(ωt ⊙mt), (5)

taking into account the error feedback (analytically):

ωt+1 = ωt − ηt∇f(ωt + et), (6)

where et = ω′
t − ωt. In (5), ⊙ represents the Hadamard

(element-wise) product between the two model weights, ωt

represents the entire model parameters, ω′
t represents the

pruned model parameters, and m is the adopted mask function
used for pruning as in, e.g., in [12], [26], and [27]. The
mask is applied on the model parameters ωt to eliminate
weights according to the magnitude of each weight, thus,
producing the pruned ω′

t. Applying the gradient, in this case,
allows recovering from errors due to premature masking out
of important weights, i.e., the rule in (5) takes a step that best
suits the pruned model (our target). In contrast, all the pruning
methods adopted in FL, e.g., [12], led to sub-optimal decisions
by adopting the rule:

ωt+1 = ω′
t − ηt∇f(ω′

t). (7)

One can observe that the update rule in (5) retains more
information, as it only computes gradients of the pruned
model, compared to the update rule in (7). This is expected to
yield superior performance under high sparsity.

Moreover, it is known that the multi-collinearity1 challenge
is alleviated by the Least Absolute Shrinkage and Selection
Operator (LASSO). LASSO performs simultaneous variable
selection and regularisation [33]. LASSO adds the L1 reg-
ularization term to the regression loss function, providing a
solution to cases where the number of model parameters is
significantly larger than the available observations. Apparently,
this is the case in DNNs, which typically involve millions

1In multi-collinearity, two or more independent variables are highly corre-
lated in a regression model, which violates the independence assumption.

of parameters with only tens of thousands of observations.
The two challenges reported in Section III-B deal with se-
lecting appropriate dynamic policies for sparsity control and
regularization hyperparameter λ. To address the challenge C1,
we dynamically drop the least s · 100% percentile according
to weights magnitude. The challenge C2 is addressed by in-
crementally increasing the regularization parameter departing
from the principles of LASSO regression. It is also evidenced
in [32] that growing regularization benefits pruning. Based
on these observations, we establish the FedDIP algorithm
to maintain the predictive model performance under extreme
sparsity with incremental regularization and dynamic pruning.
To clarify terminology, we refer to our algorithm that directly
applies dynamic pruning as ‘FedDP’ (addressing challenge
C1), while ‘FedDIP’ represents the variant that also adds
incremental regularization (addressing both challenges C1 and
C2). Collectively, we refer to these variants as ‘FedD(I)P’.
Each node n ∈ N first trains a local sparse DNN model,
which contains weights with relatively small magnitudes (see
also Fig. 1). Then, the node n optimizes the proposed local
incrementally regularized loss function at round t as:

fn(ωt) =
1

Dn

∑
(x,y)∈D

L(G(ωt,x), y) + λt

Z∑
z=1

∥ω(z)
t ∥2, (8)

where the step t dependent regularization parameter λt con-
trols the degree of model shrinkage, i.e., the sparsity, and
Z is the number of the DNN layers (this, of course, de-
pends on the DNN architecture; in our experiments, it is the
sum of convolutional and fully connected layers). The norm
∥ω(z)∥2 = (

∑
k|ω

(z)
k |2)1/2 is the L2 norm of the pruned

zth layer of model weights ω(z). We then introduce the
incremental regularization over λt based on the schedule:

λt =



0 if 0 ≤ t < T
Q

...
...

λmax·(i−1)
Q if (i−1)T

Q ≤ t < iT
Q

...
...

λmax(Q−1)
Q if (Q−1)T

Q ≤ t ≤ T

(9)

with quantization step size Q > 0. The influence of Q on
regularization is controlled by adapting λmax. Such step size
divides the regularization parameter space from λmax

Q to λmax

to achieve a gradual increase of regularization at every T
Q

rounds. In addition, each node n adopts dynamic pruning to
progressively update its local model weights ωτ+L

n to optimize
(8) as:

ωτ,l+1
n = ωτ,l

n − ητ∇fn(ω
′(τ,l)
n), (10)

where ω
′(τ+l)
n is obtained through pruning based on a global

mask function mτ generated by the server node. Moreover,
our gradual pruning policy modifies the sparsity update policy
per round from [34] by incrementally updating the sparsity as:

st = sp + (s0 − sp)
(
1− t

T

)3

, (11)

where st represents the sparsity applied to the model pruning
at round t, s0 is the initial sparsity, and sp is the desired/target
sparsity. Notably, in our approach s0 is strictly non-zero; this
can be a moderate sparsity of s0 = 0.5. Such adaptation
differentiates our method from [34], where s0 = 0. In essence,
we permit the sparsity to increment from moderate to extreme
levels throughout the process. If considering s0 > 0, the layer-
wise sparsity of the initial mask follows the ERK distribution
introduced in [30]. At the end of a local epoch l, the server
node collects K < N model weights ωτ+l

n from the selected
nodes n ∈ Nc, and calculates the global weights average as:

ω̄τ+l
G =

∑
n∈N

ρnω
τ+l
n . (12)

In addition, the mτ mask function is generated based on
pruning on ω̄τ+l

G with current sparsity sτ . The FedDIP process
is summarized in Algorithm 1, where only pruned models
are exchanged from server to nodes, while pruning is locally
achieved in the clients. Note: FedDIP achieves data-free
initialization and generalizes the DPF [27] in dynamic pruning
process. When we set initial s0 = 0 and no incremental
regularization, i.e., λt = 0, ∀t, then FedDIP reduces to DPF.
Moreover, we obtain our variant FedDP if we set λt = 0, ∀t
with s0 > 0 w.r.t. ERK distribution.

Remark 1. FedDIP uses a reconfiguration horizon R during
model training for updating the mask function. Specifically,
for every R global round (when τ mod R = 0), the mask
function mτ should be updated to obtain a smooth (accuracy)
learning curve. Such a horizon is empirically derived. If the
mask function is not updated during the horizon T , the model
might converge to a local optimum. On the other hand, if the
mask function is updated frequently, the updates in the model
might not match the updates in the sparse model structure.

Remark 2. Since (8) might not be differentiable, we denote
by ∇fn(ω

τ+l
n) the gradients or sub-gradients of fn(ω

τ+l
n)

and omit the explicit closed formula for the calculation of the
gradient due to the various model architectures. In practice,
this is solved by the auto-gradient function in [35].

V. THEORETICAL & CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of FedDIP
including the convergence Theorem 1 ensuring stability in
training models w.r.t. incremental regularization and dynamic
extreme pruning. Note for Proofs: Due to space limitation,
the proofs of our Theorem 1 and lemmas are omitted; the
authors are committed to making them available on the
accepted version of this paper.

At each global round t ∈ {1, . . . , T}, K out of N nodes
participate, each one selected with probability ρn aligned with
[36], [37] and

∑N
n=1 ρn = 1. Let ωt

n and ω
′(t)
n be the weights

and pruned ones at round t on node n, respectively, with

ω′(t)
n = ωt

n ⊙ mt. (13)

Let also vt
n and ṽt

n be the expected and estimated gradients
at t, respectively, on node n. Based on ω

′(t)
n , we obtain:

Algorithm 1 The FedDIP Algorithm

Input: N nodes; T global rounds; L local rounds; initial and
target sparsity s0 and sp; maximum regularization λmax;
quantization step Q; reconfiguration horizon R

Output: Global pruned DNN model weights ω′
G

1: //Server initiliazation
2: if s0 > 0 then
3: Server initializes global mask m0 (ERK distribution)
4: end if
5: //Node update & pruning
6: for global round τ = 1, . . . , T do
7: Server randomly selects K nodes Nc ⊂ N
8: for selected node n ∈ Nc in parallel do
9: Receive pruned weights ω

′(τ−1)
G from server node

10: Obtain mask mτ−1 from ω
′(τ−1)
G

11: Train ωτ
n over L rounds on data Dn using (10)

12: if incremental regularization is chosen then
13: Optimize (8) with incremental λτ in (9)
14: else
15: Optimize (1)
16: end if
17: end for
18: //Server update, aggregation & reconfiguration
19: Server receives models and aggregates ωτ

G in (12)
20: if τ mod R == 0 then
21: Reconfigure global mask mτ based on pruning ωτ

G

22: end if
23: Server prunes global model with mτ and obtains ω′(τ)

G

24: Server node returns ω
′(τ)
G to all nodes.

25: end for

v
′(t)
n = ∇f(ω

′(t)
n) while ṽ

′(t)
n is the estimated one. The global

aggregated model for FedAvg is:

ω̄t =
1

K

∑
n∈Nc

ωt
n, (14)

while before the server sends the model, it is pruned as

ω̄′(t) =
1

K

∑
n∈Nc

ωt
n ⊙ mt. (15)

The global estimated aggregated gradient and expected global
gradient, respectively, are:

ṽt =
1

K

∑
n∈Nc

ṽt
n and v̄t =

1

K

∑
n∈Nc

vt
n. (16)

Similarly, for DPF, we have that:

ṽ′(t) =
1

K

∑
n∈Nc

ṽ′(t)
n and v̄′(t) =

1

K

∑
n∈Nc

v′(t)
n . (17)

In FedAvg, ω̄t is updated as: ω̄t+1 = ω̄t − ηtṽ
t, while the

update rule based on DPF at node n is:

ωt+1
n = ωt

n − ηtṽ
′(t)
n , (18)

where ωt
n = ω̄′(t). Similarly, ω̄t+1 is updated as:

ω̄t+1 = ω̄′(t) − ηtṽ
′(t). (19)

Definition 1. According to [27], the quality of pruning is
defined by the parameter δt ∈ [0, 1] as:

δt :=
∥ωt − ω′(t)∥2F

∥ωt∥2F
(20)

where ∥.∥2F is the square of Frobenius matrix norm. δt
indicates the degree of information loss by pruning in terms
of magnitude. A smaller δt stands for less information loss.

Definition 2. Following the Definition 1 in [38], a mea-
surement γ of non-i.i.d. (non-independent and identically
distributed) data is defined as follows:

γ =

∑N
n=1 pn∥∇fn(ω)∥2

∥
∑N

n=1 pn∇fn(ω)∥2
, (21)

with γ ≥ 1; γ = 1 holds in i.i.d case.

We list our assumptions for proving the convergence of
FedDIP in the learning phase.

Assumption 1. M−Smoothness. ,∀ωt1 ,ωt2 ∈ Rd, M ∈ R

f(ωt1) ≤ f(ωt2) + (ωt1 − ωt2)⊤∇f(ωt2) +
M

2
∥ωt1 − ωt2∥2

Assumption 2. µ−Lipschitzness. ∀ωt1 ,ωt2 ∈ Rd and µ ∈ R

∥f(ωt1)− f(ωt2)∥ ≤ µ∥ωt1 − ωt2∥ (22)

Assumption 3. Bounded variance for gradients. Following
Assumption 3 in [37], the local model gradients on each node
n are self-bounded in variance:

E[∥ṽt
n − vt

n∥2] ≤ σ2
n. (23)

Assumption 4. Bounded weighted aggregation of gradients.
Following Assumption 4 in [38], the aggregation of local
gradients at time t are bounded as:

∥
N∑

n=1

ρnv
t
n∥2 ≤ G2, (24)

where
∑N

n=1 ρn = 1 and
∑N

n=1 ρnv
t
n stands for the weighted

aggregation of local gradients; G ∈ R.

Before providing the FedDIP convergence Theorem 1, we
stress that:

E[f(ω̄′(t+1))− f(ω̄′(t))] = E[f(ω̄′(t+1))]− E[f(ω̄(t+1))]

+ E[f(ω̄(t+1))]− E[f(ω̄′(t))], (25)

where the mask update only happens at server, with ω̄′(t) being
the global model received by nodes at round t, at the start of
the local model training phase.

Lemma 1. Given any mask function m := {0, 1}n×p for
pruning, the Frobenius norm of model weight/gradients matrix
ω is greater than or equal to the pruned one m⊙ ω, i.e.,

∥ω∥ ≥ ∥m⊙ ω∥. (26)

Proof. Refer to ‘Note for Proofs’ at the beginning of this
section.

Lemma 1 ensures that the quality of pruning δt ∈ [0, 1].

Lemma 2. Given Definition 1 and Assumption 2, the effect of
pruning on pruned weights at server (δt+1) is bounded by:

E[f(ω̄′(t+1))]− E[f(ω̄t+1)] ≤ µE[
√

δt+1∥ω̄t+1∥] (27)

Proof. Refer to ‘Note for Proofs’ at the beginning of this
section.

Lemma 3. Under Assumptions 1 and 4, E[f(ω̄t+1)] −
E[f(ω̄′(t))] is bounded by:

E[f(ω̄t+1)]−E[f(ω̄′(t))] ≤ (γ − 1)M2η2t + η2tM

2K

N∑
n=1

ρnσ
2
n+

(γ − 1)γLη2tM
2

2

t+L∑
k=t+1

∥
N∑

n=1

ρnv
′(k)
n ∥2 − ηt

2
∥∇f(ω̄′(t))∥2+

γη2tM − ηt
2

∥
N∑

n=1

ρnṽ
′(t)
n ∥2. (28)

Proof. Refer to ‘Note for Proofs’ at the beginning of this
section.

Theorem 1 (FidDIP Convergence). Consider the Assumptions
1, 2 and 3, Lemmas 1, 2, 3, and let ηt = 1

tM , M > 0. Then,
convergence rate of the FedDIP process is bounded by:

1

T

T∑
t=1

∥∇f(ω̄′(t))∥2 ≤ 2ME(f(ω1)− f∗)+

2M

T∑
t=1

[µE[
√
δt+1∥ω̄t+1∥] + π2

3M2
χ, (29)

where f(ω1) and f∗ stand for the initial loss and the final
convergent stable loss, with χ = (γ−1)M2+M

2K

∑N
n=1 ρnσ

2
n +

(γ−1)γL2M2G2

2 , and γ defined in Definition 2.

Proof. Refer to ‘Note for Proofs’ at the beginning of this
section.

In Theorem 1, the first term of the right-hand side of the
inequality (29) denotes the gap between the initial and final
loss, while χ goes to zero as K ≫ 1 and the i.i.d. case
assumption holds. This also suggests that non-i.i.d. case re-
sults in large boundaries. The quantity 1

T

∑T
t=1 ∥∇f(ω̄′(t))∥2

is bounded by the loss produced by pruning. Overall, the
convergence result shows that the L2 norms of the pruned
gradients parameters vanish over time, which indicates that a
stable model is obtained at the end (recall, a stable gradient
vector enables a small change on the model under SGD).

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup
Datasets and Models: We experiment with the datasets

Fashion-MNIST [39], CIFAR10, and CIFAR100 [40]. Fashion-
MNIST consists of 60, 000 training and 10, 000 test 28x28
grayscale images labeled from 10 classes. Both of CIFAR
datasets consist of 50, 000 training and 10, 000 test 32x32
colour images; in CIFAR10 and CIFAR100 there are 10 classes
(6000 images per class) and 100 classes (600 images per
class), respectively. We consider the i.i.d. (independent and
identically distributed) case to compare all the algorithms and
extend FedDIP to be applied for non-i.i.d. cases. To test and
compare the efficiency of FedDIP, we use different well-known
CNN architectures: LeNet-5 [41], AlexNet [42] and Resnet-
18 [7] as backbone (dense or unpruned) models, with the
baseline FedAvg [1] and the pruning baselines PruneFL [12],
PruneTrain [26], DPF [27] (equivalent to FedDP as discussed
above), and SNIP [23]. For the non-i.i.d. case, we adopt the
pathological data partition method in [1], which assigns only
two classes for each node. We merge FedDIP with FedProx
[43], a generalization and re-parametrization of FedAvg to
address the heterogeneity of data (coined FedDIP+Prox), and
compare with baseline FedAvg and FedProx. Our target is
to evaluate FedDIP’s accuracy, storage, and communication
efficiency in FL environments under extreme sparsity.

Configurations: Table II details our configurations. For
PruneFL and PruneTrain, we experimentally determined the
optimal reconfiguration intervals R to be 20 and 1, respec-
tively, to ensure the best possible model performance; the
same for step size Q for all models. As SNIP prunes the
model before training, the global mask is pruned via one-shot
achieving the target sparsity sp. We used grid-search to fix the
penalty factor for PruneTrain ranging from 10−1 to 10−5 for
different experiments. When necessary, other hyperparameters
were set to match ours. In non-i.i.d. case, the penalty for
the proximal term in FedProx is determined via grid-search
ranging from 10−1 to 10−5. FedDIP+Prox adopts optimal
combination of penalty values for FedDIP and FedProx.

Hardware: Our FedDIP framework and experiments are
implemented and conducted on GeForce RTX 3090s GPUs in
the institution’s HPC environment.

B. Performance Under Extreme Sparsity
To demonstrate the performance of FedDIP and other base-

line methods under extreme sparsity, we set target sp = 0.9
for both Fashion-MNIST and CIFAR10 tasks and sp = 0.8 for
the CIFAR100 task. Notably, as sp = 0.9 causes divergence
during the training of AlexNet with SNIP, we adjust sp to 0.8
for SNIP in this particular case.

1) Accuracy: Figures 2a, 3a, and 4a demonstrate that
FedDIP surpasses other baselines in achieving the highest
top-1 accuracy (ratio of the correctly classified images) while
maintaining the same extreme target sparsity. As indicated in
Table III, to attain target sparsity of sp = 0.9 and sp = 0.8
respectively, FedDIP only compromises LeNet-5 and ResNet-
18 model accuracy by 1.24% and 1.25%, respectively. For

AlexNet, FedDIP can even improve model performance 0.7%,
compared with FedAvg with sp = 0.9.

2) Cumulative Communication & Training Cost: To make
a fair comparison of cumulative communication cost during
training (amount of information exchanged in MB) w.r.t. a
fixed budget, we showcase the relationship between commu-
nication cost and accuracy. Figures 2b, 3b, 4b, and specifically
Table IV present a comprehensive overview, emphasizing that
FedDIP, when provided with adequate communication cost
(budget), effectively prunes the model across all experiments
outperforming the other models. This indicates the trade-off
between model performance and communication/training cost.
FedDIP demonstrates comparable communication efficiency to
other baselines, principally due to the minimal decrement in
model performance. Through our experiments, it is evidenced
that FedDIP achieves optimally pruned models under condi-
tions of extreme sparsity, while incurring less or equivalent
communication costs compared to FedAvg. Even in the early
stages (i.e., in restricted budget cases), FedDIP manages to
match the communication efficiency of other pruning methods
in the CIFAR experiments. This underscores the capacity of
our approach to effectively balance model performance and
communication expenditure. All in all, FedDIP introduces
only minor computational overhead due to the incremental
regularization, while achieving high accuracy compared to
baselines. This computational requirement is on par with that
of PruneTrain, PruneFL, and SNIP, given the same sparsity
at each epoch. A slight increase in computational cost can
be justified by the improvements achieved in the final model
performance considering extremely high sparsity. The size of
the pruned CNN models (Table III) has been significantly
reduced (∼ 1 order of magnitude) from the un-pruned models
in FedAvg.

3) Experiments with non-i.i.d. data: As shown in Table
V, our methodology exhibits strong adaptability to FedProx
(non-pruning), yielding commendable results on non-i.i.d.
data. When juxtaposed with FedAvg, our approach manages
to maintain comparable results even after pruning 90% of
model parameters, albeit at a slight trade-off of 1-2% in
model accuracy in the experiments with LeNet-5 and AlexNet.
Across a span of T = 1000 rounds, FedDIP emerges as the
superior performer in terms of top-1 accuracy, particularly at
sparsity sp = 0.8 in ResNet-18. This comprehensive suite of
results underscores the adaptability of FedDIP in effectively
managing non-i.i.d. cases, even in extreme sparsity.

C. FedDIP Sparsity Analysis

1) Layerwise sparsity: Figure 5 shows the sparsity per
layer of ResNet-18 (sp = 0.8), LeNet-5 (sp = 0.9), and
AlexNet (sp = 0.9). Notably, the first layers of all models
are the least pruned (0.3 ≤ s ≤ 0.4), which is attributed to
their significant role in general feature extraction. Furthermore,
there is a correlation between the number of weights per layer
and the corresponding sparsity level. This stems from the
initial ERK distribution, which allocates a higher degree of
sparsity to layers containing more weights, although we adopt

Datasets Fashion-MNIST CIFAR10 CIFAR100
DNN/CNN Model LeNet-5 AlexNet ResNet-18
Number of pruning layers (Z) 5 8 18
Initial learning rate (η0) 0.01 0.1 0.1
Number of clients per round (K) 5 (out of 50) 5 (out of 50) 5 (out of 50)
Batchsize in SGD 64 128 128
Initial sparsity (s0) 0.5 0.5 0.05
Global rounds (T) 1, 000 1, 000 1, 000
Reconfiguration interval (R) 5 5 5
Regularization step size (Q) 10 10 10
Local round (L) 5 5 5
Maximum penalty (λmax) 10−3 10−3 5 · 10−3

TABLE II: Configuration Table

0 200 400 600 800 1000
Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p

1
A

cc
ur

ac
y

LeNet5 on Fashionmnist

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain

(a) Test accuracy.

0 1000 2000 3000 4000 5000
Communication Cost (in MBs)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

To
p

1
A

cc
ur

ac
y

LeNet5 on Fashionmnist

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain

(b) Test accuracy vs. communication budget.

Fig. 2: Fashion-MNIST experiment with LeNet-5.

global magnitude pruning in a later process. Such correlation
is remarkable in both convolutional and fully-connected layers
of the models. In convolutional layers, the correlations are
found to be perfectly linear for LeNet-5 with a correlation
coefficient ϱ ≃ 1, for AlexNet we obtain ϱ = 0.86, while for
ResNet-18 ϱ = 0.8. For fully-connected layers, since only one
exists in ResNet-18, we obtain ϱ = (0.91, 0.82) for LeNet-5,
AlexNet, respectively. These findings highlight the dependency
of layerwise sparsity and the number of weights per layer,
reflecting the influence of the ERK distribution in FedDIP’s
initialization.

2) FedDIP in extreme sparsity: We examine the efficiency
of FedDIP under varying conditions of extreme sparsity. For
Fashion-MNIST and CIFAR10 experiments, we investigate two

0 200 400 600 800 1000
Rounds

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p

1
A

cc
ur

ac
y

AlexNet on CIFAR10

FedAvg
FedDP
FedDIP
PruneFL
SNIP sp = 0.8
PruneTrain

(a) Test accuracy.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Communication Cost (in MBs) 1e6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

To
p

1
A

cc
ur

ac
y

AlexNet on CIFAR10

FedAvg
FedDP
FedDIP
PruneFL
SNIP (sp = 0.8)

PruneTrain

(b) Test accuracy vs. communication budget.

Fig. 3: CIFAR10 experiment with AlexNet.

additional extreme sparsity levels sp = 0.95 and sp = 0.99,
and for CIFAR100 experiments, we investigate sp = 0.9 and
sp = 0.95. These conditions provide a robust assessment
of FedDIP’s performance across a range of extreme sparsity.
As shown in Figure 6, under extreme sparsity like 0.95 and
0.99, the largest drops ∆ in classification accuracy are only
∆ = 6.97%, ∆ = 5.03%, and ∆ = 8.08%, respectively. This
also comes with further 90%, 89%, and 74% reduction on
LeNet-5, Alex-Net, and ResNet-18 model sizes, respectively.
This indicates (i) FedDIP’s efficiency in storing and managing
trained and pruned models as well as (ii) efficiency in inference
tasks (after training) due to relatively small models. All in
all, the pruned DNN models’ performance is relatively high
with small accuracy drops and high model compression (92%)

0 200 400 600 800 1000
Rounds

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p

1
A

cc
ur

ac
y

ResNet18 on CIFAR100

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain

(a) Test accuracy.

0.0 0.5 1.0 1.5 2.0 2.5
Communication Costs (in MBs) 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

To
p

1
A

cc
ur

ac
y

ResNet18 on CIFAR100

FedAvg
FedDP
FedDIP
PruneFL
SNIP
PruneTrain

(b) Test accuracy vs. communication budget.

Fig. 4: CIFAR100 experiment with ResNet18.

TABLE III: Test Accuracy (top-1)

Model Performance (%)1 with target sparsity sp
Model LeNet;sp = .9 AlexNet;sp = .9 ResNet;sp = .8
FedAvg 89.50 (.09) 85.07 (.13) 70.92 (.10)
FedDP 88.06 (.08) 84.81 (.18) 69.23 (.14)
FedDIP 88.26 (0.09) 85.14 (.22) 69.67 (.10)
PruneFL 86.00 (.10) 81.64 (.17) 68.17 (.20)

SNIP 86.08 (.15) 80.10 (.15) 51.46 (.11)
PruneTrain 84.36 (.10) 79.73 (.10) 69.39 (.08)

param.(FedAvg) 62K 23.3M 11.2M
param.(pruned) 6.1K 2.3M 2.2M
1 Mean accuracy; standard deviation in ‘()’.

across different tasks.

VII. CONCLUSIONS

We propose FedDIP, a novel FL framework with dynamic
pruning and incremental regularization achieving highly ac-
curate and extremely sparse DNN models. FedDIP gradually
regularizes sparse DNN models obtaining extremely com-
pressed models that maintain baseline accuracy and ensure
controllable communication overhead. FedDIP is a data-free
initialization method based on ERK distribution. We provide
a theoretical convergence analysis of FedDIP and evaluate it
across different DNN structures. FedDIP achieves comparable
and higher accuracy against FL baselines and state-of-the-
art FL-based model pruning approaches, respectively, over
extreme sparsity using benchmark data sets (i.i.d. & non-

TABLE IV: Communication Efficiency

Model Performance (%) with communication budget
Case LeNet-5(1) AlexNet(2) ResNet-18(3)

FedAvg 86.76 78.98 70.06
FedDP 86.54 82.29 69.10
FedDIP 86.62 82.58 69.57
PruneFL 85.57 81.73 68.4

SNIP 86.32 80.11 51.63
PruneTrain 82.68 78.16 69.42
Communication budget (1)4 · 103MB, (2)1.8 · 106MB, (3)2 · 106MB

TABLE V: Extension to non-i.i.d. data

Model Performance1 (%) (non-i.i.d. case)
Case LeNet-5 AlexNet ResNet-18

FedAvg 76.42(0.28) 61.59 (0.73) 16.44 (0.49)
FedProx 76.63(0.34) 65.74 (0.26) 18.48 (0.91)

FedDIP+Prox 74.49 (0.09) 60.47 (0.52) 19.22 (0.8)
1 Mean of the highest five top-1 test accuracy during T rounds.

i.i.d. cases). Our agenda includes addressing heterogeneity in
personalized FL environments.

ACKNOWLEDGEMENT

This work is partially funded by the EU Horizon Grant ‘In-
tegration and Harmonization of Logistics Operations’ TRACE
(#101104278).

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[2] G. A. Kaissis, M. R. Makowski, D. Rückert, and R. F. Braren, “Secure,
privacy-preserving and federated machine learning in medical imaging,”
Nature Machine Intelligence, vol. 2, no. 6, pp. 305–311, 2020.

[3] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated
learning,” Synthesis Lectures on Artificial Intelligence and Machine
Learning, vol. 13, no. 3, pp. 1–207, 2019.

[4] G. Long, Y. Tan, J. Jiang, and C. Zhang, “Federated learning for open
banking,” in Federated learning. Springer, 2020, pp. 240–254.

[5] J. Xu, B. S. Glicksberg, C. Su, P. Walker, J. Bian, and F. Wang,
“Federated learning for healthcare informatics,” Journal of Healthcare
Informatics Research, vol. 5, no. 1, pp. 1–19, 2021.

[6] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for
wireless communications: Motivation, opportunities, and challenges,”
IEEE Comm. Magazine, vol. 58, no. 6, pp. 46–51, 2020.

[7] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE CVPR, 2016, pp. 770–778.

[8] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[9] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” 2019.

[10] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” in EMNLP’17, 2017, pp. 440–445.

[11] D. Alistarh, T. Hoefler, M. Johansson, N. Konstantinov, S. Khirirat,
and C. Renggli, “The convergence of sparsified gradient methods,”
NeurIPS’18, vol. 31, 2018.

[12] Y. Jiang, S. Wang, V. Valls, B. J. Ko, W.-H. Lee, K. K. Leung, and
L. Tassiulas, “Model pruning enables efficient federated learning on edge
devices,” IEEE TNNLS, 2022.

[13] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proc. of IEEE, vol. 107, no. 8, pp. 1738–1762, 2019.

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18
Layers of ResNet-18

0

20

40

60

80

S
pa

rs
ity

 (%
)

Layerwise Sparsity of ResNet-18

(a) Distribution of layer sparsity; ResNet-18.

f0w f3w f6w f8w f10w c1w c4w c6w
Layers of AlexNet

0

20

40

60

80

100

S
pa

rs
ity

 (%
)

Layerwise Sparsity of AlexNet

(b) Distribution of layer sparsity; AlexNet.

f0w f3w c0w c2w c4w
Layers of LeNet-5

0

20

40

60

80

S
pa

rs
ity

 (%
)

Layerwise Sparsity of LeNet-5

(c) Distribution of layer sparsiy; LeNet-5.

Fig. 5: Layerwise pruning sparsity; f0w stands for (f)eatures
layer, layer index (e.g, 0), and (w)eights, respectively. c stands
for the fully-connected classifier layer (the same notation is
used for other layers). ResNet-18 consists of 18 pruning layers.

[14] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Proc. Maga-
zine, vol. 37, no. 3, pp. 50–60, 2020.

[15] N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in 16th Intl Conf Speech Comm. Assoc., 2015.

[16] J. Konečnỳ and P. Richtárik, “Randomized distributed mean estimation:
Accuracy vs. communication,” Frontiers in Applied Mathematics and
Statistics, vol. 4, p. 62, 2018.

[17] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed
deep learning with sparse and quantized communication,” NeurIPS’18,
vol. 31, 2018.

[18] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep Gradient
Compression: Reducing the communication bandwidth for distributed
training,” in ICLR, 2018.

[19] S. Shi, K. Zhao, Q. Wang, Z. Tang, and X. Chu, “A convergence analysis
of distributed sgd with communication-efficient gradient sparsification.”
in IJCAI, 2019, pp. 3411–3417.

[20] J. Sun, T. Chen, G. Giannakis, and Z. Yang, “Communication-efficient

LeNet
sp = . 9

LeNet
sp = . 95

LeNet
sp = . 99

AlexNet
sp = . 9

AlexNet
sp = . 95

AlexNet
sp = . 99

ResNet
sp = . 8

ResNet
sp = . 9

ResNet
sp = . 95

Model and Sparsity Level

0

20

40

60

80

A
cc

ur
ac

y
(%

)

 -1.24 -1.66
 -6.97

 0.07
 -3.74 -5.03

 -1.25
 -5.37

 -8.08

Model Performance at Different Sparsity Levels

Fig. 6: FedDIP performance on extreme sparsity values.

distributed learning via lazily aggregated quantized gradients,” Advances
in Neural Information Processing Systems, vol. 32, 2019.

[21] T. Chen, G. Giannakis, T. Sun, and W. Yin, “Lag: Lazily aggregated
gradient for communication-efficient distributed learning,” NeurIPS’18,
vol. 31, 2018.

[22] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

[23] N. Lee, T. Ajanthan, and P. H. Torr, “Snip: Single-shot network
pruning based on connection sensitivity,” ICLR 2019 arXiv preprint
arXiv:1810.02340, 2018.

[24] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in IEEE ICCV, 2017, pp. 1389–1397.

[25] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in ECCV, 2018, pp. 184–199.

[26] S. Lym, E. Choukse, S. Zangeneh, W. Wen, S. Sanghavi, and M. Erez,
“Prunetrain: fast neural network training by dynamic sparse model
reconfiguration,” in SC’19, 2019, pp. 1–13.

[27] T. Lin, S. U. Stich, L. F. Barba Flores, D. Dmitriev, and M. Jaggi,
“Dynamic model pruning with feedback,” in ICLR, no. CONF, 2020.

[28] X. Yao, T. Huang, R.-X. Zhang, R. Li, and L. Sun, “Federated learning
with unbiased gradient aggregation and controllable meta updating,”
arXiv preprint arXiv:1910.08234, 2019.

[29] A. Li, J. Sun, B. Wang, L. Duan, S. Li, Y. Chen, and H. Li, “Lot-
teryfl: empower edge intelligence with personalized and communication-
efficient federated learning,” in IEEE/ACM SEC. IEEE, 2021, pp. 68–
79.

[30] U. Evci, T. Gale, J. Menick, P. S. Castro, and E. Elsen, “Rigging the
lottery: Making all tickets winners,” in ICML. PMLR, 2020, pp. 2943–
2952.

[31] M. Zhu and S. Gupta, “To prune, or not to prune: exploring the efficacy
of pruning for model compression,” arXiv preprint arXiv:1710.01878,
2017.

[32] H. Wang, C. Qin, Y. Zhang, and Y. Fu, “Neural pruning via growing
regularization,” in ICLR, 2021.

[33] W. Fu and K. Knight, “Asymptotics for lasso-type estimators,” The
Annals of Statistics, vol. 28, no. 5, pp. 1356–1378, 2000.

[34] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” PMLR, vol. 2, pp.
429–450, 2020.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in NeurIPS’19. Curran Associates,
Inc., 2019, pp. 8024–8035.

[36] F. Haddadpour and M. Mahdavi, “On the convergence of local descent
methods in federated learning,” CoRR, vol. abs/1910.14425, 2019.
[Online]. Available: http://arxiv.org/abs/1910.14425

[37] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” in ICLR, 2019.

[38] S. Wan, J. Lu, P. Fan, Y. Shao, C. Peng, and K. B. Letaief, “Conver-
gence analysis and system design for federated learning over wireless
networks,” IEEE JSAC, vol. 39, no. 12, pp. 3622–3639, 2021.

[39] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[40] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[41] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[42] A. Krizhevsky, “One weird trick for parallelizing convolutional neural
networks,” CoRR, vol. abs/1404.5997, 2014. [Online]. Available:
http://arxiv.org/abs/1404.5997

[43] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in PMLS, vol. 2,
2020, pp. 429–450.

	Enlighten Accepted coversheet
	305983
	Enlighten Accepted coversheet
	ICDM2023.pdf

