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ABSTRACT
While depression has been studied via multimodal non-verbal be-
havioural cues, head motion behaviour has not received much
attention as a biomarker. This study demonstrates the utility of
fundamental head-motion units, termed kinemes, for depression
detection by adopting two distinct approaches, and employing dis-
tinctive features: (a) discovering kinemes from head motion data
corresponding to both depressed patients and healthy controls, and
(b) learning kineme patterns only from healthy controls, and com-
puting statistics derived from reconstruction errors for both the
patient and control classes. Employing machine learning methods,
we evaluate depression classification performance on the BlackDog
and AVEC2013 datasets. Our findings indicate that: (1) head motion
patterns are effective biomarkers for detecting depressive symp-
toms, and (2) explanatory kineme patterns consistent with prior
findings can be observed for the two classes. Overall, we achieve
peak F1 scores of 0.79 and 0.82, respectively, over BlackDog and
AVEC2013 for binary classification over episodic thin-slices, and a
peak F1 of 0.72 over videos for AVEC2013.
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1 INTRODUCTION
Clinical depression, a prevalent mental health condition, is consid-
ered as one of the leading contributors to the global health-related
burden [19, 26], affecting millions of people worldwide [31, 44]. As
a mood disorder, it is characterised by a prolonged (> two weeks)
feeling of sadness, worthlessness and hopelessness, a reduced in-
terest and a loss of pleasure in normal daily life activities, sleep
disturbances, tiredness and lack of energy. Depression can lead to
suicide in extreme cases [18] and is often linked to comorbidities
such as anxiety disorders, substance abuse disorders, hypertensive
diseases, metabolic diseases, and diabetes [10, 41]. Although effec-
tive treatment options are available, diagnosing depression through
self-report and clinical observations presents significant challenges
due to the inherent subjectivity and biases involved.

Over the last decade, researchers from affective computing and
psychology have focused on investigating objective measures that
can aid clinicians in the initial diagnosis and monitoring of treat-
ment progress of clinical depression [11, 33]. A key catalyst to this
progress is the availability of relevant datasets, such as AVEC2013
and subsequent challenges [43]. In recent years, research on de-
pression detection employing affective computing approaches has
increasingly focused on leveraging non-verbal behavioural cues
such as facial expressions [9, 13], body gestures [23], eye gaze [4],

head movements [5] and verbal features [12, 22] extracted from
multimedia data to develop distinctive features to classify individu-
als as depressed or healthy controls, or to estimate the severity of
depression on a continuous scale.

In this study, we examine the utility of inherently interpretable
head motion units, referred to as kinemes [27], for assessing de-
pression. Initially, we utilise data from both healthy controls and
depressed patients to discover a basis set of kinemes via the (pitch,
yaw, and roll) head pose angular data obtained from short overlap-
ping time-segments (termed two-class kineme discovery or 2CKD).
Further, we employ these kinemes to generate features based on the
frequency of occurrence of distinctive, class-characteristic kinemes.
Subsequently, we discover kineme patterns solely from head pose
data corresponding to healthy controls (Healthy control kineme
discovery or HCKD), and use them to represent both healthy and
depressed class segments. A set of statistical features are then com-
puted from the reconstruction errors between the raw and learned
head-motion segments corresponding to both the depressed and
control classes (see Figure 1). Using machine learning methodolo-
gies, we evaluate the performance of the features derived from the
two approaches. Our results show that head motion patterns are
effective behavioural cues for detecting depression. Additionally,
explanatory class-specific kinemes patterns can be observed, in
alignment with prior research.

This paper makes the following research contributions:
• A study of head movements as a biomarker for clinical

depression, which so far has been understudied.
• Proposing the kineme representation of motion patterns as

an effective and explanatory means for depression analysis.
• A detailed investigation of various classifiers for 2-class

and 4-class categorisation on the AVEC2013 and BlackDog
datasets. We obtain peak F1-scores of 0.79 and 0.82, respec-
tively, on thin-slice chunks for binary classification on the
BlackDog and AVEC2013 datasets, which compare favor-
ably to prior approaches. Also, a video-level F1-score of
0.72 is achieved for 4-class categorisation on AVEC2013.

The remainder of this paper is organised as follows. Section 2 pro-
vides an overview of related work. Section 3 describes the kineme
formulation, followed by Section 4 that details the explainable
kineme features used as a representation of motion patterns. The
methodology is presented in Section 5, while Section 6 provides
details of the datasets, experimental settings, and classifiers used
in this study. The experimental results are shown and discussed in
Section 7. Finally, the conclusions are drawn in Section 8.
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Figure 1: Overview: We learn kinemes for the control class, and the reconstruction errors between the raw and reconstructed head-motion
segments, obtained via kineme clustering, are computed for both the control and depressed classes. Statistical descriptors over the yaw, pitch
and roll dimensions (a total of 8 × 3 features) are utilized for depression detection via machine learning techniques.

2 RELATEDWORK
In this section, we briefly review the literature focusing on (a)
depression detection as a classification problem, and (b) depression
detection using head motion patterns.

2.1 Depression Analysis as a Classification Task
Traditionally, depression detection has been approached as a su-
pervised binary classification task, with many studies relying on
discriminative classifiers to distinguish between healthy controls
and patients [3, 5, 11]. A typical recognition accuracy of up to 80%
demonstrates the promise of behavioural cues such as eye-blink
and closed-eye duration rate, statistical features computed over
the yaw, pitch and roll head-pose features, etc. to differentiate the
two classes. However, challenges involved in depression detection
such as limited clinically validated, curated data and a skewed data
distributions have been acknowledged in the literature [5, 30].

Recent efforts have sought to learn patterns indicative of only
the target class and reformulate depression detection as a one-
class classification problem to mitigate the issues with imbalanced
datasets [1, 32]. Studies have attempted to learn features associated
with control participants and treat inputs that deviate from these
patterns as anomalous [17, 29]. Gerych et. al. [17] formulate the task
as anomaly detection by leveraging autoencoders to learn features
of the non-depressed class and treating depressed user data as out-
liers. Similarly, Mourão-Miranda et. al. [29] employ a one-class SVM
to classify patients as outliers compared to healthy participants
based on the fMRI responses to sad facial expressions. Conversely,
a few studies explore one-class classification by learning features
characterising the depressed class, and treating non-depressed sub-
jects as outliers [1, 32].

2.2 Depression Detection via Head Motion Cues
Many studies have focused on non-verbal behavioural cues, such
as body gestures [23, 24], facial expressions [9, 13, 21], their com-
bination [34] and speech features [12, 22, 36] as biomarkers for
depression diagnosis and rehabilitation utilising computational
tools [37]. Head motion patterns have nevertheless received little
attention. Psychological research on depression assessment has
identified head motion as a significant non-verbal cue for depres-
sion with more pronounced behavioural changes in hand and head
regions as compared to other body parts for depressed patients [35].
Waxer et. al. [45] found that depressed subjects are more likely to
keep their heads in a downward position and exhibit significantly
reduced head nodding compared to healthy subjects [16]. Another
study focusing on social interactions identified the reduced involve-
ment of depressed patients in conversations, where their behaviour
was characterised by lesser encouragement (head nodding and
backchanneling while listening) and fewer head movements [20].

From a computational standpoint, only a few studies have em-
ployed head pose and movement patterns for automatic depres-
sion detection. Alghowinem et al. [5] analysed head movements
by modelling statistical features extracted from the 2D Active Ap-
pearance Model (AAM) projection of a 3D face and demonstrated
the efficacy of head pose as behavioural cue. Another study [24]
generated a histogram of head movements normalised over time
to highlight the diminished movements of depressed patients due
to psychomotor retardation, characterised by a more frequent oc-
currence of static head positions than in healthy controls. Several
studies [11, 14, 28, 40] explored the utilisation of head motion as a
complementary cue to other modalities to enhance detection perfor-
mance. For instance, several studies [4, 6] combined head pose with
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speech behaviour and eye gaze to develop statistical features for
depression analysis. Generalisation across different cross-cultural
datasets was attempted in [3] by using head pose and eye gaze based
temporal features. Kacem et. al. [25] encoded head motion dynam-
ics with facial expressions to classify depression based on severity,
while Dibeklioglu et. al. [15] included vocal prosody in combination
with head and facial movements for depression detection.

2.3 Novelty of the Proposed Approach
From the literature review, it can be seen that while a number of
studies have employed head movements as a complementary cue
in multimodal approaches, only few studies have deeply explored
head motion as a rich source of information. Further, the explain-
ability of behavioural features, especially head motion features, for
depression detection has not yet been explored in the literature.
This study (a) is the first to propose the use of kinemes as depression
biomarkers, (b) explores multimodal cues derived from head motion
behaviour as potential biomarkers for depression; specifically, we
show that kinemes learned for the depressed and control classes, or
only the control class enable accurate depression detection, and (c)
the learned kinemes also explain depressed behaviours consistent
with prior observations.

3 KINEME FORMULATION
This section describes our approach to discovering a set of elemen-
tary head motion units termed kinemes from 3D head pose angles.
These head pose angles are expressed as a time-series of short over-
lapping segments, which enables shift invariance. The segments
are then projected onto a lower-dimensional space and clustered
using a Gaussian Mixture Model [38].

We extracted 3D head pose angles using the OpenFace tool [7] in
terms of 3D Euler rotation angles, pitch (𝜃𝑝 ), yaw (𝜃𝑦 ) and roll (𝜃𝑟 ).
The head movement over a duration 𝑇 is denoted as a time-series:
𝜽 = {𝜃1:𝑇𝑝 , 𝜃1:𝑇𝑦 , 𝜃1:𝑇𝑟 }. We ensure that the rotation angles remain
non-negative by defining the range in [0◦, 360◦].

For each video, the multivariate time-series 𝜽 is divided into
short overlapping segments of length ℓ with overlap ℓ/2, where the
𝑖𝑡ℎ segment is represented as a vector h(𝑖 ) = [𝜃𝑖:𝑖+ℓ𝑝 𝜃𝑖:𝑖+ℓ𝑦 𝜃𝑖:𝑖+ℓ𝑟 ].
Considering the total number of segments in any given video as
𝑠 , the characterisation matrix H𝜽 for this video is defined as H𝜽 =

[h(1) , h(2) , · · · , h(𝑠 ) ]. Thus, for a training set of 𝑁 samples, the
head motion matrix is created as H = [H𝜽 1 |H𝜽 2 | · · · |H𝜽𝑁

] with
each column of H representing a single head motion time-series for
a given video sample. We decompose H ∈ R𝑚×𝑛

+ into a basis matrix
B ∈ R𝑚×𝑞

+ and a coefficient matrix C ∈ R𝑞×𝑛+ using Non-negative
Matrix Factorization (NMF) such that𝑚 = 3ℓ , 𝑛 = 𝑁𝑠

min
B≥0,C≥0

∥H − BC∥2𝐹 (1)

where𝑞 ≤ 𝑚𝑖𝑛(𝑚,𝑛) and ∥ . ∥𝐹 denotes the Frobenius norm. Rather
than clustering the raw head motion segments, we employ a more
interpretable and stable approach by clustering the coefficient vec-
tors in the transformed space. To this end, we learn a Gaussian
Mixture Model (GMM) using the columns of the coefficient matrix
C to produce a C∗ ∈ R𝑞×𝑘+ where 𝑘 << 𝑁𝑠 . These vectors in the
learned subspace are transformed back to the original head motion

subspace defined by the Euler angles using H∗ = BC∗. The columns
of matrix H∗ represent the set of 𝐾 kinemes as {K𝑖 }𝐾𝑖=1.

Now, we can represent any head motion time-series 𝜃 as a se-
quence of kinemes discovered from the input video set by associ-
ating each segment of length ℓ from 𝜃 with one of the kinemes.
For each 𝑖𝑡ℎ segment in the time-series, we compute the charac-
terisation vector h(𝑖 ) and project it onto the transformed subspace
defined by B to yield c(𝑖 ) such that:

ĉ = arg min
c(𝑖 ) ≥0

∥h(𝑖 ) − Bc(𝑖 ) ∥2𝐹 (2)

We then maximise the posterior probability 𝑃 (𝐾 |ĉ) over all kinemes
to map the 𝑖𝑡ℎ segment with its corresponding kineme 𝐾 (𝑖 ) . In the
same way, we compute the corresponding kineme label for each seg-
ment of length ℓ to obtain a sequence of kinemes: {𝐾 (1) · · ·𝐾 (𝑠 ) },
where 𝐾 ( 𝑗 ) ∈ K for all segments of time-series 𝜃 .

4 EXPLAINABLE KINEME FEATURES
We now examine kineme patterns obtained from the depression
datasets, namely BlackDog [4] and AVEC2013 [43] (described in
Sec. 6.1). Using the Openface [7] toolkit, we extracted yaw, pitch and
roll angles per frame, and segmented each video into 2s and 5s-long
chunks with 50% overlap for the AVEC2013 and BlackDog datasets,
respectively. Considering 𝐾 = 16 [38], we extracted kinemes from
both patient and healthy control segments, following the procedure
outlined in Sec. 3. We further examined the kinemes learned for
each dataset to identify the set of distinctive kinemes for the two
classes. To obtain the most discriminative kinemes, we computed
the relative frequency of occurrence for each kineme for the control
and patient data, and selected the top five kinemes per class based
on their relative frequency difference (see Sec. 5.1).

Selected kinemes corresponding to the maximal difference in
their relative frequency of occurrence for the control and patient
classes are visualised in Figures 2 (BlackDog) and 3 (AVEC2013).
Examining the control-specific kinemes in Figs. 2 and 3, we observe
a greater degree of movement for healthy subjects as compared
to a predominantly static head pose conveyed by the depressed
patient-specific kinemes. Head nodding, characterised by pitch os-
cillations, and considerable roll angle variations can be noted for at
least one control-class kineme; conversely, patient-specific kinemes
exhibit relatively small changes over all head pose angular dimen-
sions. These findings are reflective of reduced head movements in
the depressed cohort compared to healthy individuals, which is
consistent with observations made in past studies [5, 20].

5 CLASSIFICATION METHODOLOGY
In this section, we outline the methodology for discovering kinemes
from short overlapping video segments. Initially, we discovered
kinemes utilising data segments from both control and patient
classes (two-class kineme discovery or 2CKD approach; see Sec-
tion 4). Subsequently, we learned kinemes solely from the healthy
control cohort and utilised them to represent the head pose data of
depressed patients (denoted as healthy control kineme discovery
or HCKD) approach.

Given a time series 𝜽 , we divide it into short overlapping seg-
ments of uniform length, with a segment duration of 5𝑠 for the
BlackDog and 2𝑠 for the AVEC dataset. These segment lengths
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Figure 2: Plots of kinemes that occur more frequently for the control (left) and patient (right) cohorts in the BlackDog dataset.

Figure 3: Plots of kinemes that occurmore frequently for theminimally depressed (left) and patient (right) cohorts inAVEC2013.

were empirically chosen and provided the best results from among
segment lengths spanning 2𝑠 to 7𝑠 for both datasets. For both ap-
proaches, a total of 𝐾 = 16 kinemes are learned from the two
datasets as per the procedure outlined in Section 3.

5.1 Kineme Discovery from Two-class Data
To examine whether the kinemes discovered from head pose angles
of both classes are effective cues for depression detection, we learn
kinemes from segments corresponding to both patient and control
videos. Upon discovering the kineme values, the relative frequency
𝜂𝐾𝑖

of each kineme 𝐾𝑖 is computed over the two classes as:

𝜂𝐾𝑖
=

f (𝐾𝑖 )∑16
𝑖=1 f (𝐾𝑖 )

(3)

where f(𝐾𝑖 ) represents the frequency of occurrence of the kineme
𝐾𝑖 for a particular class. We then compute the relative frequency
difference for each kineme between the two classes to identify
the ten most differentiating kinemes (four kinemes per class are
depicted in Figs. 2, 3). Next, we generate a feature set by extracting
the frequencies of the selected kinemes over the thin-slice chunks
considered for analysis. Thus, we obtain a 10-dimensional feature
vector representing kineme frequencies for each chunk.

5.2 Kineme Discovery from Control Data
Here, we learn kinemes representing head motion solely from the
control cohort. Subsequently, head pose segments from both the pa-
tient and control classes are represented via the discovered kinemes,
and reconstruction errors computed. Let the raw head pose vector

h(𝑖 ) for the 𝑖𝑡ℎ segment in the original subspace be denoted as:

h(𝑖 ) = [𝜃𝑖:𝑖+ℓ𝑝 𝜃𝑖:𝑖+ℓ𝑦 𝜃𝑖:𝑖+ℓ𝑟 ] (4)

Let the kineme value associated with this segment be 𝐾 (𝑖 ) . Based
on the kinemes discovered from the control cohort alone, we cal-
culate the reconstructed kineme for the 𝑖𝑡ℎ segment as h̃(𝑖 ) . The
reconstructed vector for each kineme is determined by converting
the GMM cluster centre for each kineme from the learned space
to the original pitch-yaw-roll space. The reconstructed head pose
vector for the segment is:

h̃(𝑖 ) = [𝜃𝑖:𝑖+ℓ𝑝 𝜃𝑖:𝑖+ℓ𝑦 𝜃𝑖:𝑖+ℓ𝑟 ] (5)

To compute the reconstruction error for both depressed patients
and healthy controls, we compute the signed difference between the
two vectors for each segment to account for the difference between
raw head pose vector and the GMM cluster centres. We calculate
the difference vector d(𝑖 ) for each 𝑖𝑡ℎ segment as:

d(𝑖 ) = h(𝑖 ) − h̃(𝑖 ) = [𝑑𝑖:𝑖+ℓ𝑝 𝑑𝑖:𝑖+ℓ𝑦 𝑑𝑖:𝑖+ℓ𝑟 ] (6)

These signed differences values are added over each angular dimen-
sion of pitch (p) , yaw (y), and roll (r) for the segment.

𝑠𝑒
(𝑖 ) =

ℓ∑︁
𝑛=1

𝑑𝑖:𝑖+𝑛𝑒 (7)
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where each 𝑠𝑒 (𝑖 ) is calculated for each angular dimension 𝑒 ∈
{𝑝,𝑦, 𝑟 } over all segments of both classes. Depending on the thin-
slice chunk duration considered for classification, we compute dif-
ferent descriptive statistics to generate the feature set. Consider-
ing number of elementary kineme chunks in the considered time-
window to be 𝑛𝑐 , we obtain the following feature vector for each
angle 𝑒 ∈ {𝑝,𝑦, 𝑟 }:

ase = [|𝑠𝑒 (1) |, |𝑠𝑒 (2) |, · · · , |𝑠𝑒 (𝑛𝑐 ) |] (8)
where |·| represents the absolute value. We then calculate eight
statistical features from the above vectors, namely, minimum, max-
imum, range, mean, median, standard deviation, skewness, and kur-
tosis (total of 8 × 3 features over the yaw, pitch, roll dimensions).

6 EXPERIMENTS
We perform binary classification on the BlackDog and AVEC2013
datasets, plus 4-class classification on AVEC2013. This section de-
tails our datasets, experimental settings and learning algorithms.

6.1 Datasets
We examine two datasets in this study: clinically validated data
collected at the Black Dog Institute – a clinical research facility
focusing on the diagnosis and treatment of mood disorders such as
anxiety and depression (referred to as BlackDog dataset) – and the
Audio/Visual Emotion Challenge (AVEC2013) depression dataset.

BlackDog Dataset [4]: This dataset comprises responses from
healthy controls and depression patients selected as per the criteria
outlined in the Diagnostic and Statistic Manual of Mental Disor-
ders (DSM-IV). Healthy controls with no history of mental illness
and patients diagnosed with severe depression were carefully se-
lected [4]. For our analysis, we focus on the structured interview
responses in [4], where participants answered open-ended ques-
tions about life events, designed to elicit spontaneous self-directed
responses, asked by a clinician. In this study, we analyse video data
from 60 subjects (30 depressed patients and 30 healthy controls),
with interview durations ranging from 183 − 1200𝑠 .

AVEC2013 Dataset [43]: Introduced for a challenge in 2013,
this dataset is a subset of the audio-visual depressive language
corpus (AViD-corpus) comprising 340 video recordings of partici-
pants performing different PowerPoint guided tasks detailed in [43].
The videos are divided into three nearly equal partitions (train-
ing, development, and test) with videos ranging from 20 − 50𝑚𝑖𝑛.
Each video frame depicts only one subject, although some partici-
pants feature in multiple video clips. The participants completed
a multiple-choice inventory based on the Beck Depression Index
(BDI) [8] with scores ranging from 0 to 63 denoting the severity of
depression. For binary classification, we dichotomise the recordings
into the non-depressed and depressed cohorts as per the BDI scores.
Subjects with a BDI score ≤ 13 are categorised as non-depressed,
while the others are considered as depressed.

AVEC2013 Multi-Class Classification: For fine-grained de-
pression detection over the AVEC2013 dataset, we categorise the
dataset based on the BDI score into four classes as detailed below:

• Nil or minimal depression: BDI score 0 - 13
• Mild depression: BDI score 14 - 19
• Moderate depression: BDI score 20 - 28
• Severe depression: BDI score 29 - 63

6.2 Experimental Settings
Implementation Details: For binary classification, we evaluate
performance for the smaller BlackDog dataset via 5-repetitions
of 10-fold cross-validation (10FCV). For the AVEC2013, the pre-
partitioned train, validation and test sets are employed. We utilise
the validation sets for fine-tuning classifier hyperparameters.

Chunk vs Video-level Classification: The videos from both
datasets are segmented into smaller chunks of 15𝑠 − 135s length, to
examine the influence of thin-slice chunk duration on the classifier
performance. We repeated the video label for all chunks and metrics
are computed over all chunks for chunk-level analysis. Additionally,
video-level classification results are obtained by computing the
majority label over all video chunks in the test set.

Performance Measures: For the BlackDog dataset, results are
shown as 𝜇 ± 𝜎 values over 50 runs (5× 10FCV repetitions). For
AVEC2013, performance on the test set is reported. For both, we
evaluate performance via the accuracy (Acc), weighted F1 (F1), pre-
cision (Pr), and recall (Re) metrics. The weighted F1-score denotes
the mean F1-score over the two classes, weighted by class size.

6.3 Classification Methods
Given that our proposed features do not model spatial or temporal
correlations, we employ different machine learning models for
detecting depression as described below:

• Logistic Regression (LR), a probabilistic classifier that
employs a sigmoid function to map input observations to
binary labels. We utilise extensive grid-search to fine-tune
parameters such as penalty ∈ {𝑙1, 𝑙2, 𝑁𝑜𝑛𝑒} and regulariser
𝜆 ∈ {1𝑒−6, · · · , 1𝑒3}.

• Random Forest (RF), where multiple decision trees are
generated from training data whose predictions are ag-
gregated for labelling. Fine-tuned parameters include the
number of estimators 𝑁 ∈ [2, · · · , 8], maximum depth
∈ [3, · · · , 7], and maximum features in split ∈ [3, · · · , 7].

• Support Vector Classifier (SVC), a discriminative clas-
sifier that works by transforming training data to a high-
dimensional space where the two classes can be linearly
separated via a hyperplane. For SVC, we examine differ-
ent kernels ∈ {𝑟𝑏 𝑓 , 𝑝𝑜𝑙𝑦, 𝑠𝑖𝑔𝑚𝑜𝑖𝑑} and fine-tune regulari-
sation parameter 𝐶 ∈ {0.1, 1, 10, 100} and kernel coefficient
𝛾 ∈ {0.0001, · · · , 1, 𝑠𝑐𝑎𝑙𝑒, 𝑎𝑢𝑡𝑜}.

• Extreme Gradient Boosting (XGB), a model built upon a
gradient boosting framework, and focused on improving a
series of weak learners by employing the gradient descent
algorithm in a sequential manner. The fine-tuned hyperpa-
rameters include the number of estimators {50, 100, 150},
maximum depth ∈ [3, · · · , 7] of the tree and learning rate
∈ [0.0005, · · · , 0.1].

• Multi Layer Perceptron (MLP), where we employed a
feed-forward neural network with two hidden dense layers
comprising 12 and 6 neurons, resp., with a rectified linear
unit (ReLU) activation. For training, we employ categorical
cross-entropy as the loss function and fine-tune the follow-
ing hyperparameters: learning rate ∈ {1𝑒−4, 1𝑒−3, 1𝑒−2},
and batch size ∈ {16, 24, 32, 64}. We utilise the Adam opti-
miser for updating the network weights during training.
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7 RESULTS AND DISCUSSION
Table 1 shows the classification results obtained for the BlackDog
dataset with the 2CKD and HCKD approaches (Section 5). Table 2
presents the corresponding results for the AVEC2013 dataset. These
tables present classification measures obtained at the chunk-level
(best results achieved over 15−135𝑠-long chunks for the two datasets
are presented), and the video-level (label derived upon computing
the mode over the chunk-level labels). Based on these results, we
make the following observations:

• It can be noted from Tables 1 and 2 that relatively lower ac-
curacies and F1 scores are achieved for both datasets using
the 2CKD approach, implying thatwhile class-characteristic
kinemes are explanative as seen from Figs. 2 and 3, they
are nevertheless not discriminative enough to effectively
distinguish between the two classes.

• In comparison, we note far superior performance with the
HCKD method over all classifiers. As a case in point, we
obtaine peak chunk-level F1-scores of 0.79 and 0.62, resp.,
for HCKD and 2CKD on BlackDog, while the corresponding
F1-scores are 0.82 and 0.61, resp., on AVEC. This observation
reveals considerable and distinguishable differences in the
reconstruction errors for the patient and control classes,
and convey that patient data are characterised as anomalies
when kinemes are only learned from the control cohort.

• Examining the HCKD precision and recall measures for
both datasets, we note higher precision than recall at the
chunk-level for the BlackDog dataset. Nevertheless, higher
recall is achieved at the video-level with multiple classifiers.
Likewise, higher chunk-level precision is noted for AVEC,
even if ceiling video-level precision and recall are achieved.

• Comparing HCKD chunk and video-level F1-scores for both
datasets, similar or higher video-level F1 values can be seen
in Table 1. F1-score differences are starker in Table 2, where
video-level scores are considerably higher than chunk-level
scores. These results suggest that aggregating observations
over multiple thin-slice chunks is beneficial and enables
more precise predictions as shown in [27].

• Examining measures achieved with the different classifiers,
the support vector classifier achieves the best chunk-level
F1-score on both datasets, with the LR classifier perform-
ing very comparably. All classifiers achieve very similar
performance when video-level labels are compared.

7.1 Comparison with the state-of-the-art
Our best results are compared against prior classification-based
depression detection studies in Table 3. For the BlackDog dataset, Al-
ghowinem et al. [5] analysed statistical functional features extracted
from a 2D Active Appearance Model, whereas Joshi et al. [24] com-
puted a histogram of head movements by estimating the displace-
ment of fiducial facial points. Compared to N -average recall of
0.71 reported in [5], and an accuracy of 0.72 noted in [24], our
kineme-based approach achieves better chunk and video-level ac-
curacies (0.75 and 0.80, resp.), and superior chunk-level recall (0.81).
As most previous studies on the AVEC2013 dataset focus on con-
tinuous prediction, we compare our model’s performance with the
AVEC2014 [42] results examining visual features.

AVEC2014 used the same subjects as AVEC2013, but with addi-
tional, specific task data (Northwind, Freeform) extracted from the
AViD videos. For video analysis, Senoussaoui et al. [39] extracted
LGBP-TOP features from frame blocks to obtain an accuracy of 0.82
using an SVM classifier. On the other hand, Al-gawwam et al. [2]
extracted eye-blink features from video data using a facial landmark
tracker to achieve an accuracy of 0.92 for the Northwind task and
0.88 for the Freeform task. Comparatively, our work achieves an
accuracy of 0.82 at the chunk-level and 1.00 at the video-level. The
next section will detail the performance of a more fine-grained
4-class categorisation on the AVEC2013 dataset.

7.2 AVEC2013 Multi-class Classification
Table 4 depicts video-level 4-class classification results achieved on
the AVEC2013 dataset via the HCKD approach. The 4-class cate-
gorisation was performed to further validate the correctness of the
HCKD approach, which produces ceiling video-level F1, Precision
and Recall measures on AVEC2013 in binary classification. Results
are reported on the test set, upon fine-tuning the classifier models
on the development set. Reasonably good F1-scores are achieved
even with 4-class classification, with a peak F1 of 0.72 obtained
with the LR, RF and support vector classifiers. Cumulatively, our
empirical results confirm that kinemes encoding atomic head move-
ments are able to effectively differentiate between (a) the patient
and control classes, and (b) different depression severity bands.

7.3 Ablative Analysis over Thin Slices
Tables 1 and 2 evaluate detection performance over (thin-slice)
chunks or short behavioural episodes, and over the entire video,
on the BlackDog and AVEC2013 datasets. We further compared
labelling performance at the chunk and video-levels using chunks
spanning 15 − 135𝑠 . The corresponding results are presented in
Figure 4. For both plots presented in the figure, the dotted curves
denote video-level F1-scores, while solid curves denote chunk-level
scores obtained for different classifiers.

For the BlackDog dataset (Fig. 4 (left)), longer time-slices (of
length 75− 105𝑠) achieve better performance than shorter (15− 60𝑠
long) ones at both the chunk and video-levels across all classifiers;
these findings are consistent with the finding that more reliable pre-
dictions can be achieved with longer observations in general [27].
However, a performance drop is noted for very long chunk-lengths
of 120 − 135𝑠 duration. Decoding results on the AVEC2013 dataset,
consistent with Table 3 results, a clear gap is noted between the
chunk and video-level results, with the latter demonstrating su-
perior performance. Very similar F1-scores are observed across
classifiers for various chunk lengths. No clear trends are discernible
from video-level F1-scores obtained with different chunk-lengths,
except that the performance in general decreases for all classifiers
with very long chunks.

7.4 Ablative Analysis over Angular Dimensions
To investigate the impact of the head pose angular dimensions on
chunk-level binary depression detection performance, we perform
detection utilising (8 × 1) statistical features over each of the (pitch,
yaw, and roll) angular dimensions, and concatenate features (8 × 2)
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Table 1: Chunk and Video-level classification results on the BlackDog dataset with the 2CKD and HCKD approaches. Accuracy
(Acc), F1, Precision (Pr) and Recall (Re) are tabulated as (𝜇 ± 𝜎) values.

Condition Classifier Chunk-level Video-level
Acc F1 Pr Re Acc F1 Pr Re

2CKD

LR 0.60±0.15 0.61±0.14 0.67±0.22 0.65±0.22 0.60±0.20 0.59±0.21 0.55±0.30 0.65±0.33
RF 0.58±0.13 0.60±0.12 0.67±0.21 0.61±0.21 0.61±0.19 0.62±0.19 0.59±0.32 0.59±0.32
SVC 0.60±0.15 0.62±0.15 0.68±0.25 0.62±0.25 0.62±0.19 0.63±0.19 0.61±0.32 0.59±0.33
XGB 0.55±0.17 0.54±0.16 0.63±0.21 0.71±0.22 0.53±0.17 0.50±0.20 0.54±0.23 0.79±0.21
MLP 0.53±0.15 0.52±0.17 0.60±0.22 0.71±0.21 0.51±0.20 0.47±0.21 0.53±0.27 0.74±0.32

HCKD

LR 0.77±0.13 0.78±0.12 0.85±0.19 0.74±0.21 0.79±0.16 0.78±0.17 0.81±0.30 0.66±0.31
RF 0.71±0.13 0.73±0.12 0.75±0.25 0.71±0.20 0.76±0.15 0.76±0.16 0.75±0.26 0.82±0.25
SVC 0.78±0.14 0.79±0.13 0.87±0.18 0.74±0.20 0.80±0.18 0.80±0.19 0.83±0.30 0.70±0.31
XGB 0.72±0.13 0.72±0.12 0.75±0.18 0.81±0.15 0.78±0.17 0.78±0.17 0.74±0.27 0.82±0.27
MLP 0.75±0.13 0.76±0.12 0.78±0.21 0.81±0.21 0.76±0.16 0.76±0.16 0.74±0.29 0.77±0.28

Table 2: Chunk and Video-level classification results on the AVEC2013 dataset with the 2CKD and HCKD approaches. Accuracy
(Acc), F1, Precision (Pr) and Recall (Re) are tabulated as (𝜇 ± 𝜎) values.

Condition Classifier Chunk-level Video-level
Acc F1 Pr Re Acc F1 Pr Re

2CKD

LR 0.58 0.58 0.54 0.65 0.61 0.61 0.57 0.71
RF 0.61 0.61 0.57 0.59 0.72 0.72 0.67 0.82
SVC 0.61 0.61 0.57 0.63 0.64 0.64 0.61 0.65
XGB 0.59 0.58 0.57 0.44 0.67 0.67 0.65 0.65
MLP 0.56 0.56 0.52 0.60 0.58 0.58 0.65 0.65

HCKD

LR 0.80 0.80 0.77 0.81 0.94 0.94 0.94 0.94
RF 0.78 0.78 0.78 0.75 1.00 1.00 1.00 1.00
SVC 0.82 0.82 0.83 0.77 1.00 1.00 1.00 1.00
XGB 0.80 0.80 0.79 0.77 1.00 1.00 1.00 1.00
MLP 0.81 0.80 0.80 0.77 1.00 1.00 1.00 1.00

Table 3: Comparison with prior works for the two datasets.

Dataset Methods Features Evaluation metrics
Acc F1 Pr Re

BlackDog

Alghowinem et al. [5] Head movement - - - 0.71
Joshi et al. [24] Head movement 0.72 - - -
Ours (Chunk-level) Kinemes 0.75 0.76 0.78 0.81
Ours (Video-level) Kinemes 0.80 0.80 0.83 0.70

AVEC2013

Senoussaoui et al. (AVEC2014) [39] Video features 0.82 - - -
Al-gawwam et al. (AVEC2014 - Northwind) [2] Eye Blink 0.85 - - -
Al-gawwam et al. (AVEC2014 - Freeform) [2] Eye Blink 0.92 - - -
Ours (AVEC2013 at chunk-level) Kinemes 0.82 0.82 0.83 0.87
Ours (AVEC2013 at Video-level) Kinemes 1.00 1.00 1.00 1.00

Table 4: Video-level 4-class categorization results on the AVEC dataset obtained with the HCKD approach. Accuracy (Acc), F1,
Precision (Pre) and Recall (Re) are tabulated.

Condition Classifier Video-level
Acc F1 Pr Re

HCKD

LR 0.71 0.72 0.73 0.71
RF 0.74 0.72 0.80 0.74
SVC 0.74 0.72 0.75 0.74
XGB 0.71 0.69 0.68 0.71
MLP 0.69 0.66 0.64 0.69
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Figure 4: Chunk vs video-level performance comparison for the BlackDog (left) and AVEC2013 (right) datasets.

Figure 5: Comparing F1 scores with different descriptors for the BlackDog (left) and AVEC2013 (right) datasets across classifiers.

for the dimensional pairs to evaluate which angular dimension(s)
are more informative.

Figure 5 presents F1-scores obtained with the different classi-
fiers for uni-dimensional and pairwise-dimensional features. On
the BlackDog dataset, a combination of the pitch and yaw-based
descriptors produce the best performance across all models, while
roll-specific descriptors perform worst. For the AVEC2013 dataset,
pitch-based descriptors achieve excellent performance across mod-
els. The F1-scores achieved with these features are very compara-
ble to the pitch + yaw and pitch + roll combinations. Here again,
roll-specific features achieve the worst performance. Cumulatively,
these results convey that pitch is the most informative head pose
dimension, with roll being the least informative. With respect to
combinations, the pitch + yaw combination in general produces
the best results. These results again confirm that responsiveness in
social interactions, as captured by pitch (capturing actions such as
head nodding) and yaw (capturing head shaking), provides a critical
cue for detecting depression, consistent with prior studies [5, 20].

8 CONCLUSION
In this paper, we demonstrate the efficacy of elementary head mo-
tion units, termed kinemes, for depression detection by utilising
two approaches: (a) discovering kinemes from data of both patient
and control cohorts, and (b) learning kineme patterns solely from

the control cohort to compute statistical functional features derived
from reconstruction errors for the two classes. Apart from effective
depression detection, we also identify explainable kineme patterns
for the two classes, consistent with prior research.

Our study demonstrates the utility of head motion features for
detecting depression, but our experiments are restricted to classifica-
tion tasks involving a discretisation of the depression scores. In the
future, we will investigate (a) the utility of kinemes for continuous
prediction (regression) of depression severity, (b) the cross-dataset
generalisability of models trained via kinemes, and (c) the develop-
ment of multimodal methodologies combining kinemes with other
behavioural markers, and evaluating their efficacy.
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