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Contrastive Graph Prompt-tuning for Cross-domain

Recommendation
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Recommender systems commonly sufer from the long-standing data sparsity problem where insuicient user-item interaction

data limits the systems’ ability to make accurate recommendations. This problem can be alleviated using cross-domain

recommendation techniques. In particular, in a cross-domain setting, knowledge sharing between domains permits improved

efectiveness on the target domain. While recent cross-domain recommendation techniques used a pre-training coniguration,

we argue that such techniques lead to a low ine-tuning eiciency, especially when using large neural models. In recent

language models, prompts have been used for parameter-eicient and time-eicient tuning of the models on the downstream

tasks - these prompts represent a tunable latent vector that permits to freeze the rest of the language model’s parameters. To

address the cross-domain recommendation task in an eicient manner, we propose a novel Personalised Graph Prompt-based

Recommendation (PGPRec) framework, which leverages the eiciency beneits from prompt-tuning. In such a framework, we

develop personalised and item-wise graph prompts based on relevant items to those items the user has interacted with. In

particular, we apply Contrastive Learning (CL) to generate the pre-trained embeddings, to allow an increased generalisability in

the pre-training stage and to ensure an efective prompt-tuning stage. To evaluate the efectiveness of our PGPRec framework

in a cross-domain setting, we conduct an extensive evaluation with the top-k recommendation task and perform a cold-start

analysis. The obtained empirical results on four Amazon Review datasets show that our proposed PGPRec framework can

reduce up to 74% of the tuned parameters with a competitive performance and achieves an 11.41% improved performance

compared to the strongest baseline in a cold-start scenario.

CCS Concepts: · Information systems→ Recommender systems.

Additional Key Words and Phrases: Personalisation, Recommender system, Graph Neural Network

1 INTRODUCTION

Personalised recommendation techniques, which learn user preferences and ind items related to their interest,
have been increasingly developed in the last decades. In particular, for a recommender, the efective personalisation
of the recommendation results, frequently rely on rich available data, such as historical user-item interactions,
domain knowledge, as well as the user demographics and proiles [18]. However, in the recommendation literature,
the performance of a personalised recommender system deployed on a single domain, often sufers from the
commonly observed data sparsity issue. This refers to an insuicient number of user-item interactions, which
hinders accurate recommendation generation [29]. Therefore, Cross-Domain Recommendation (CDR) [47, 63],
which relies on shared users over pairs of domains to transfer relevant information from the source domain to
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Fig. 1. Overview of conventional graph fine-tuning and personalised graph prompt-tuning in Cross-Domain Recommendation

(CDR).

the target domain, is typically used to alleviate the negative efect of sparse interactions, so as to improve the
recommendation performance when applied to a diferent target domain.
Inspired by recent advances in natural language processing [6] centred on the paradigm of irst pre-training

then ine-tuning, some cross-domain recommendation techniques [50, 66] considered the application of this
pre-training and ine-tuning mechanism. In particular, a common development routine for shared users in
cross-domain recommendation (CDR) involves irst the pre-training of the recommendation model using data
from the source domain to learn domain-invariant knowledge (e.g. user proiles). Subsequently, the knowledge
contained in the pre-trained model is used to initialise the user/item embeddings in the target domain. Such
a strategy has been shown to be efective in alleviating the mentioned data sparsity issue [56]. Moreover, a
myriad of pre-training recommendation models [32, 50] have been proposed to leverage the structural data from
the source domain, which can leverage collaborative iltering signals to yield better user/item representations
by leveraging the high-order connectivity via graph convolutional operations[19]. However, the efectiveness
of recommendation on the target domain can be negatively impacted if the pre-trained model learns from
non-relevant domain-speciic features in the source domain. Moreover, the ine-tuning of a pre-trained model
causes all parameters of the model to be updated, even in the case where not all parameters need to be updated
to obtain an efective model. This makes ine-tuning ineicient. Therefore, such an eiciency limitation provides
a motivation for devising a new framework that can eiciently transfer efective pre-trained embeddings.
Recently, in the Natural Language Processing (NLP) ield, prompt-tuning [1, 20] has been widely applied to

address many NLP tasks and has shown its usefulness in extracting useful information from a pre-trained model,
such that it can be adapted to a downstream task with less eforts. Several prompt-variants have been proposed,
such as term illing-based text templates [1, 8] or continuous embeddings (i.e. soft prompt) [21, 35], which efec-
tively bridge the pre-training process in various natural language processing tasks. In adapting prompt-tuning for
recommender systems, several studies [5, 9, 55] have investigated the application of prompt techniques within
the recommendation context, focusing on leveraging user and item information to generate customised prompts
that can efectively address speciic recommendation tasks. For example, Wu et al. [55] proposed a soft preix
prompt based on users’ proiles to tackle the cold-start problem in a sequential recommendation setting. Another
stream of work [5, 9] attempted to convert the available data resources, such as the user-item interactions, the
user descriptions, the item metadata, and the user reviews, into natural language sequences. Next, they used
a composition of such sequences as a prompt and the pre-trained models for eiciently addressing various
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downstream tasks of the recommender system (e.g., cold-start recommendation, few/zero-shot recommendation
and user proile prediction). The aforementioned examples show that existing prompt tuning-based recommenda-
tion techniques rely on sequential patterns in the users’ interacted items and mimic NLP models designed for
sequential text. This demonstrates the efective application of the prompt-tuning techniques in the context of
recommendation systems.
Inspired by the success of prompt-tuning in sequential recommendation, we introduce the prompt-tuning

paradigm into Graph Neural Networks (GNN)-based recommendation models to alleviate their low eiciency
limitation, as highlighted in [22]. However, it is challenging to design a prompt-tuning technique that makes
a full use of knowledge from structural data rather than from sequential data in the existing recommendation
techniques. Therefore, it is essential to bridge the GNN recommendation models with the existing prompt-tuning
techniques, which use a sequential modelling of data. In this paper, we show that the language models in the
NLP domain could be a special form of a GNN (as will be detailed in Section 3.3.1), which allows us to propose
novel templates for the personalised graph prompts. These templates could then be applied to GNN-based
recommenders. As an illustrative example, Figure 1 shows how our proposed prompt-tuning framework contrasts
with conventional ine-tuning approaches in a CDR setting. The existing CDR solutions typically pre-train a
graph encoder in a source domain. Then, they ine-tune the well-trained graph encoder with the interaction
data for recommendation in the target domain. Therefore, in this paper, we propose a prompt-tuning framework
instead of the ine-tuning process, to improve the tuning eiciency by leveraging personalised graph prompts
while ixing the pre-trained parameters. To be more speciic, we build personalised graph prompts with a series
of relevant items, which we call the neighbouring-items1 and leverage these prompts to eiciently enhance
the inal user/item representations. Hence, we argue that, in a CDR setting, GNN recommenders enriched
with our proposed graph prompt can eiciently leverage the learned knowledge from the source domain to
efectively improve the recommendation performance in the target domain. Furthermore, we propose a novel
Personalised Graph Prompt-based Recommendation (PGPRec) framework, which encapsulates our proposed
personalised prompts as well as a Contrastive Learning (CL)-empowered GNN recommender for cross-domain
recommendation. Indeed, with the integration of a graph-based contrastive learning, the pre-trained model
enforces the divergence of the learned user/item embeddings [54], which makes them generalisable to various
target domains2 with an improved recommendation performance.

To summarise, our contributions are four-fold:

• We propose a personalised graph prompt-based recommendation framework for cross-domain recommen-
dation, which uses contrastive learning to enhance the user/item representations in both the pre-training
and tuning stages and improves the eiciency of the tuning phase.
• We introduce item-wise personalised prompts to be used in a user-item bipartite graph to efectively
enhance the user/item representations in the target domain.
• We conduct extensive experiments on four Amazon Review datasets. We perform a TOST test [42] to
demonstrate that PGPRec shows a signiicantly improved eiciency in comparison to the state-of-the-art
GNN recommenders while achieving a comparable recommendation performance.
• We further conduct a detailed analysis of the cold-start users in the target domain using four Amazon
Review datasets. Our indings show that PGPRec signiicantly outperforms the strongest baseline in a
cold-start scenario.

1 Given an item, we denote by its "neighbouring-items" those items that share its same attributes in the target domain, i.e. the set of items

with the same attributes. In this work, we deine the neighbouring-items according to three types of available metadata ś i.e. also_bought,

also_viewed and bought_together ś and refer to them as ‘neighbouring-items’ throughout this paper. 2 In this paper, we also evaluate the

contribution of using the contrastive learning through the application of PGPRec to distinct source-target domain pairs.
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The remainder of this paper is organised as follows: In Section 2, we position our proposed PGPRec framework
in the literature. Section 3 describes our methodology and the speciic implementations of the personalised graph
prompts during the training stage as well as the optimisation objective of the cross-domain recommendation
task. The experimental setup and the results of our empirical experiments are presented in Section 4, followed by
concluding remarks and future work in Section 5.

2 RELATED WORK

In this section, we discuss related methods and techniques to our conducted study, namely pre-training recom-
menders, cross-domain recommenders and prompt-tuning techniques.

2.1 Pre-training in Recommendation

Recently, pre-training techniques, which learn knowledge from large-scale datasets for an improved model
performance, have achieved several successes in addressing the recommendation task [64]. A typical approach
for learning a recommendation model using the pre-training techniques involves irst the initialisation of the
model with knowledge obtained from a pre-training stage and subsequently the ine-tuning of the model using
supervised signals from the target recommendation scenario. This pre-training and ine-tuning paradigm enables
the model to efectively incorporate prior knowledge while adapting to the speciic characteristics of the target
domain [64]. For example, BERT4Rec [45] pre-trains a BERT transformer architecture to learn a sequential
pattern of items to model the user behaviour sequences, thereby leading to a promising performance in sequential
recommendation. Similarly, ASReP [27] pre-trains a transformer to generate fabricated historical items at the
beginning of short sequences and then ine-tunes the transformer based on the new sequences to alleviate the
cold-start problem.
On the other hand, there have been several eforts to pre-train recommenders by designing self-supervised

auxiliary tasks to discover supervised signals from the raw data. Contrastive learning recommendation is
increasingly considered to be a promising approach within the family of self-supervised learning recommendation
approaches [60], which can be applied for various recommenders by perturbing the raw data. For example,
CL4SRec [57] performs masking, cropping and reordering operations to augment the input items sequence then
contrasts the augmentations to pre-train a transformer-based encoder for sequential recommendation. Another
example of contrastive learning recommendation model is PCRec [50], which also uses contrastive learning
to enhance the cross-domain recommendation. PCRec pre-trains a GIN encoder [58] by contrasting a random
walk-based augmentation in the source domain and then transfers the pre-trained user/item embeddings to
initialise a MF model in the target domain. As illustrated by the aforementioned models, contrastive learning has
demonstrated its ability in learning generalisable representations in pre-training recommendations.

Another line of work [32, 56, 61] attempted to use extra knowledge to enhance the positive efect of pre-training.
For example, UPRec [56] encapsulates various pre-training tasks based on user attributes and social relations
to learn comprehensive user representations for an improved user-item sequence modelling. Another example,
PeterRec [61], also pre-trains the user representations based on the user-item interactions, but applies the learned
model to a diferent domain (i.e. the target domain in a cross-domain setting). As can be seen from the above work,
cross-domain recommendation is well-aligned with the pre-training and ine-tuning paradigm, which aims to
transfer useful knowledge from the source domain to beneit the efectiveness of the resulting recommendations
in the target domain. Moreover, the existing Cross-Domain Recommendation (CDR) models typically transfer
knowledge learned from sequential patterns while very few approaches attempt to beneit from the learned
structural knowledge [36]. Therefore, diferently from the existing approaches that learn from sequential data,
we propose PGPRec to leverage contrastive learning to pre-train the GNN-based recommenders. Our proposed
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PGPRec framework extracts intrinsic and structural knowledge from the pre-trained models in a cross-domain
recommendation setting.

2.2 Cross-domain Recommendation

In general, cross-domain recommendation (CDR) is an application of transfer learning to recommendation
scenarios involving two domains, namely a source domain (which provides us with additional useful knowledge,
in order to reduce data sparsity and therefore improve recommendations on a separate target domain. While
diferent CDR scenarios exist, namely shared-users, shared-items and shared-nothing,3 in this paper we focus
upon shared-users, where user proiles on the source domain are used to permit improved personalisation of
recommendations in the target. For example, CMF [47] ś a classical CDR approach ś jointly factorises the rating
matrices from two domains with a shared global user embeddingmatrix. Another approach, CoNet [14], introduces
a cross-connection unit to transfer the user-item interaction features between two domains. Similarly, CBMF [33]
uses a cluster-based matrix to learn the correlation between the user clusters and the item clusters in diferent
domains and then uses this matrix to alleviate the cold-start problem. With the rise of Graph Neural Networks
(GNNs) in recommender systems, PPGN [65] adopts the GNN technique to explore the high-order connectivity
between users and items on a joint interaction graph of two domains so as to allow the knowledge-transfer with
shared user features.

Among the CDR approaches, those in the literature [50, 62, 64, 66] that have focused on pre-training in a source
domain and ine-tuning in the target domain are the most relevant to our proposed PGPRec framework. For
instance, EMCDR [29] pre-trains a multi-layer perceptron (MLP) as a mapping function in a source domain and
then transfers the learned user representation into the target domain for cold-start users. Similarly, PCRec [50]
irst pre-trains a graph encoder and then transfers the learned user features to the target domain for an improved
performance after ine-tuning the resulting recommendation model. However, the existing approaches assume a
prediction objective during pre-training on the source domains, which could lead to sub-optimal representations
that can impede the efectiveness of the resulting recommender models [50]. Unlike these existing approaches,
we adopt contrastive pre-training to encourage the pre-trained models to learn more generalisable features, with
an emphasis on transferring domain-invariant knowledge. This contrastive pre-training strategy allows for a
higher divergence in the representation of learned features from the source domain, providing the model with a
better initialisation point for diverse target domains. By focusing on the transfer of domain-invariant knowledge,
our approach fosters the development of recommendation systems that can efectively harness the power of
cross-domain techniques, thereby contributing to the ield of domain adaptation in recommendation systems.
Beyond addressing the issue of sub-optimal training objectives, the pre-training and ine-tuning paradigm has
a critical limitation when applied to cross-domain recommendation, namely its low eiciency [2]. Indeed, the
necessity to train the model twice results in signiicant time and computational costs associated with the model’s
parameters. To address this low-eiciency challenge, we propose the PGPRec framework, a tailored solution for
cross-domain recommendation systems, which uses a personalised graph prompt-tuning technique to adapt the
users’ preferences in the target domain. By leveraging pre-trained knowledge and personalised graph prompts,
PGPRec provides a more eicient solution for cross-domain recommendation. On the other hand, in order to
investigate the cold-start problem in cross-domain recommendation, we also leverage contrastive pre-training
and personalised graph prompts to beneit the cold-start users, i.e. those users that have sparse interactions in a
target domain.

3 Actually, improvements identiied in shared-nothing cross-domain recommendation have been shown to simply be due to increased model

capacity [30].
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2.3 Prompt-tuning

A prompt originally refers to a preixed plain text and is combined with the input of the pre-trained models for an
improved semantic understanding of the task [37]. For example, GPT-3 [1] leverages manually devised prompts
for transfer learning in Natural Language Processing (NLP). With the follow-up work on prompt-variants [16, 43],
there has been a growing number of recent prompt design methods, including hard and soft prompts, following
the łpre-train, prompt, and predict" paradigm [24]. Hard prompts are discrete textual terms [1, 41] while soft
prompts are one or many continuous learned embeddings [20, 21, 25]. In particular, soft prompts are randomly
initialised and then optimised via parameter-tuning. Consequently, prompt-tuning, using soft prompts, narrows
the gap between the objectives of the source tasks and that of the downstream tasks by transforming the inputs
to the target model in a certain format [53]. In addition, the prompt-tuning methods only rely on ine-tuning a
small set of parameters within the soft prompts to achieve a competitive performance compared to the ine-tuned
models, which endows the inal user/item representations in an eicient manner.

To the best of our knowledge, only a limited number of work have recently applied prompt-tuning to recom-
mender systems. In order to address various downstream tasks in recommender systems, [5, 9] attempted to
follow the techniques from the NLP domain in leveraging the prompt-tuning paradigm. M6-Rec [5] considered
the user behaviour as a sequence of ‘text’ and addressed both the click-through-rate (CTR) prediction and the
explainable recommendation tasks with the assistance of randomly initialised soft prompts [9]. Similarly, P5 [9]
converted the user descriptions, the itemmetadata, and the user reviews to natural language sequences as prompts
to efectively leverage a pre-trained transformer model. On the other hand, Wu et al. [55] treated cold-start
recommendation as the downstream task of sequential recommendation and enhanced the performance by
building preixed soft prompts based on the user proiles. Although prompt-tuning has also been applied to
sequential recommendations, the existing approaches relied on the sequential pattern of the input data. In this
work, we argue that another possible strategy is to transfer the structural pattern of a user from the user-item
bipartite graphs. Indeed, we introduce novel personalised graph prompts, which leverage the neighbouring-items
and the tunable continuous vectors as hard and soft graph prompts, to address cross-domain recommendation
with improved training eiciency. Moreover, to investigate the characteristics of prompt-tuning on graphs, we
ensure that PGPRec leverages the pre-trained knowledge and informative personalised graph prompts to beneit
the cold-start users, which have sparse interactions in a target domain.

3 METHODOLOGY

In this section, we irst present the cross-domain recommendation task (Section 3.1). Next, we describe the
composition of our proposed personalised graph prompts and training process (Section 3.2). We also describe how
to derive the personalised graph prompt-tuning paradigm by justifying the equivalence between the transformer
and GNN (Section 3.3), along with the detailed implementations and objectives during the training phases
(Section 3.4).

3.1 Preliminaries

In this paper, we focus on addressing the ranking-based recommendation task in a cross-domain setting. Con-
ceptually, we consider two domains, the source domain DS and the target domain DT. The set of users in both
domains is shared, and denoted by U (of sizem = |U |). Let the set of items in IS (of size ns = |DS |) and IT (of
size nt = |DT |), respectively. Then, we aim to make efective and eicient recommendations to users inU with a
ranked list of items from the target domain DT , while leveraging the learned knowledge from the source domain
DS. In particular, we devise two bipartite graphs GS and GT for both the source and target domains, where the
nodes represent users/items and the edges indicate interactions between the users and items. Formally speaking,
with the interaction graphs GS and GT , we pre-train a graph encoder f in a selected source domain DS and adapt
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it to the target domain DT for an enhanced knowledge of the user preferences so as to efectively and eiciently
recommend the top-k items related to their interests. The notations that we will use throughout this paper are
summarised in Table 1.

Table 1. Notations used in this paper to describe the proposed PGRec framework.

Symbol Description

DS the source domain
DT the target domain
IS the set of items in DS

IT the set of items in DT

U the set of users which is shared by both the source domain and the target domain
GS the user-item interaction graph in DS

GT the user-item interaction graph in DT

V the node set
E the edge set

M ,M ′ the masking vectors on the edge set E
Nu the neighbour nodes of user u in the interaction graph
Ni the neighbour nodes of item i in the interaction graph
R(u) the ground-truth set of items that user u has interacted with

R̂(u) the ranked list of items generated by a recommender

hℓ the node representation at the ℓ-th layer
eu ,ei the embedding vector of the ℓ-th layer for users and items
eph the embedding vector of the neighbouring-item as a hard prompt
eps the random initialised embedding vector as a soft prompt
B the batch size

λ1, λ2 the regularization term
Θ the parameters of the model

3.2 The PGPRec Framework

First, we provide an overview of our proposed recommendation framework, Personalised Graph Prompt-based
Recommendation (PGPRec). In particular, Figure 2 shows and illustrates the major components included in our
proposed framework. Speciically, for our cross-domain recommender, we adopt the GNN technique to model the
data from each domain, for capturing the high-order features and allowing the transfer of additional structural
knowledge aside from the typical user/item features (e.g. the user proiles and item attributes). To instantiate the
discussed GNN technique, we are not limited to the commonly used GCN model [19]. Indeed, PGPRec is also
lexible in allowing to use other GNN-based techniques, such as GAT [49], NGCF [51] or LightGCN [12]. Inspired
by the recent success of applying prompt-tuning in the NLP domain, we also introduce the graph prompts to assist
the cross-domain recommendation. In particular, as a rationale for applying prompt-tuning to a graph model, we
argue that the GNN technique can be considered as another type of a transformer model. Note that we explain
and justify this argument in Section 3.3. In our PGPRec framework, we propose a mixture of hard and soft graph
prompts for personalised recommendation, which we collectively denote as personalised graph prompts. First, we
describe the hard graph prompts. For each user, we develop personalised prompts according to the associated
relevant items (denoted as the neighbouring-items). Given an item, we denote by its "neighbouring-items" those
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Fig. 2. An illustration of the PGPRec framework using a specific example. The framework is mainly composed of two steps.

(a) In the pre-training stage, PGPRec trains a GNN model to learn the source domain’s transferable knowledge through a

contrastive objective. (b) Then PGPRec uses the pre-trained GNN model and the personalised graph prompts to enable the

prompt-tuning in the target domain through multi-task learning.

items that share its same attributes in the target domain, i.e. the set of items with the same attributes. For example,
in this paper, we refer to the use of relevant items according to three available attributes in the metadata (i.e.
also_bought, also_viewed and bought_together) in the used Amazon datasets. However, such neighbouring-items
are not necessarily ixed and can be naturally changed or extended depending on the used datasets. Next, we
consider such neighbouring-items as adjacent nodes to a target user node. For example, consider a useru0 that has
interacted with items i0 and i1. Other users that interacted with item i0 also_bought items i2 and i3. Then, items i2
and i3 will be considered as the adjacent nodes to the user node u0. Afterwards, we use such neighbouring-items
as a type of personalised graph prompts and call them as ‘hard graph prompts’. Note that we ignore the users’
interacted items as adjacent nodes when devising prompts to avoid the possible over-itting of the inal learned
model. In addition, we also introduce a diferent type of personalised graph prompts, namely ‘soft graph prompts’,
which consists of a pre-deined number of randomly initialised embedding vectors. Overall, we deine both the
hard graph prompts and the soft graph prompts as the personalised graph prompts of a given user. Finally, such
personalised graph prompts will be leveraged to assist the graph encoder that is pre-trained from the source
domain to improve the recommendation eiciency and efectiveness. In particular, to guide the pre-trained model
in learning richer user/item representations, we embrace the use of the contrastive learning technique in the
pre-training stage. To further enhance the model tuning in the target domain, we combine the contrastive learning
loss and the BPR loss in a multi-task manner. In next section, we introduce the rationale and motivation for
leveraging the personalised graph prompts in the tuning stage.

3.3 Personalised Graph Prompts

In this section, we irst justify the equivalence between Graph Neural Networks and the transformer to explain
the rationale of introducing our personalised graph prompts. Then, we further describe our proposed graph
prompts and illustrate them with GNN recommender models. Furthermore, we explain the rationale behind the
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incorporation of graph prompts in cross-domain recommendation, emphasising the beneits and implications of
this approach within the context of recommendation systems.

3.3.1 Comparing a Transformer and GNNs. Transformer: The transformer architecture consists of a composition
of transformer layers [48]. Each transformer layer has two parts: a self-attention module and a position-wise feed-
forward network (FFN). Let hℓ denote the input of the self-attention module on a certain layer. The propagation
rule of the transformer updates the hidden feature h at position i of a sentence S from layer ℓ to layer ℓ + 1 as
follows:

hℓ+1i =

∑
j ∈S

wi j

(
W ℓ

Vh
ℓ
j

)
(1)

wi j = sotmaxj

(
W ℓ

Qh
ℓ
i ·W

ℓ
Kh

ℓ
j

)
(2)

where j ∈ S denotes the set of words in the sentence andWQ ,WK ,WV are learned linear weights. In natural
language processing, the transformer sums over all the words in a sentence and outputs the next hidden feature
by applying a weighted summation on the values.
Graph Neural Network: Modern GNNs [19, 49] follow a learning schema that iteratively updates the repre-
sentation of a node by aggregating the representations of its irst or higher-order neighbours. Let hℓ denote the
representation of a nodevi at the l-th layer. GNNs update the hidden features h of node i at layer ℓ via a non-linear
transformation of the node’s own features added to the aggregation of features from each neighbouring node
j ∈ N (i) :

hℓ+1i = σ
©«
W ℓ

Uh
ℓ
i +

∑
j ∈N(i)

wi j

(
W ℓ

Vh
ℓ
j

)ª®¬
(3)

whereWU ,WV are learned weights of the GNN layer and σ is a non-linear transformation. GNNs exploit high-
order connectivity by summing over the feature vectors hℓj from the adjacent nodes withwi j set to 1 and output

the next hidden feature. Givenwi j is a learned weight that is dependent on nodes i and j, the GNN layer can be
interpreted as a layer in a single head-based GAT [49] and is similar to the calculation of the hidden features in a
transformer layer (see Equation (1)).

To conclude, a transformer sums over all words in a sentence and a GNN sums over the local neighbourhood.
Moreover, a transformer uses self-attention to have a weighted sum for feature transformation since self-attention
can be seen as the inference of a soft adjacency matrix. Indeed, compared to the transformer architecture, a GNN
can be considered as a simple transformer that applies a linear-weighted sum on a randomly permuted sentence,
since the neighbouring nodes compose a ‘sentence’ and the ‘words’ are in random order without the positional
embeddings. Inversely, the transformers can also be viewed as a special case of GNNs on a fully connected graph
of words [17].

3.3.2 Prompt-tuning in a Transformer and GNNs. Equation (1) and Equation (2) describe the dot-product attention
mechanism, which provides a weighted summation over the words in a sentence. Here, we derive an equivalent
form of Equation (1) as follows:

hℓ+1i = Atn
(
hℓiWQ ,h

ℓ
jWK ,h

ℓ
jWV

)
= Atn

(
QWQ ,KWK ,VWV

) (4)

whereWQ ,WK ,WV are learned weights on the layer input Q and the key-value pairs.
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The mechanism of prompt-tuning changes the attention module through prepending the tunable vectors to the
original attention keys and values at every layer [11, 21]. Speciically, two sets of preix vectors PK , PV ∈ R

l×d are
concatenated with the original attention keyK and valueV . Here, we provide an alternative view of prompt-tuning
in a transformer:

hℓ+1i = Atn
(
QWQ , (PK ∥ KWK ) , (PV ∥ VWV )

)
= sotmax

(
QWQ (PK ∥ KWK )

⊤

[
PV

VWV

] )
= (1 − λ) sotmax

(
QWQW

⊤
K K⊤

)
VWV + λ sotmax

(
QWQP

⊤
K

)
PV

= (1 − λ)Atn
(
QWQ ,KWK ,VWV

)
+ λAtn

(
QWQ , PK , PV

)
(5)

where ∥ is the concatenation operator, and λ is a scalar that represents the sum of normalised attention weights
on the preixes:

λ =

∑
i exp

(
QWQP

⊤
K

)
i∑

i exp
(
QWQP

⊤
K

)
i
+

∑
j exp

(
QWQW

⊤
K
K⊤

)
j

(6)

Note that the irst term in Equation (5), Atn
(
QWQ ,KWK ,VWV

)
, is the original attention without preixes,

whereas the second term is the attention modiication term, which changes the attention module through linear
interpolation on the original output of a transformer:

hℓ+1i ← (1 − λ)hℓ+1i + λ∆hℓ+1j , ∆hℓ+1j = sotmax
(
QWQP

⊤
K

)
PV (7)

Inspired by the success of prompt-tuning methods, we prepend the mixture node embeddings to be the item-
wise graph prompts in the CDR scenario. Speciically, we append such node embeddings as prompts to the output
of the pre-trained GNNs to update the learned features of nodes. These prompts further incorporate additional
items or nodes, referred to as neighbouring-items or continuous learned vectors discussed in Section 1, for a
target user. As a consequence, each user node obtains a speciic number ofm prompts. Next, we update the
embeddings of the items using their respective adjacent user nodes. When we apply the prompt-tuning to GNNs,
we can obtain an updated propagation rule on top of Equation (3):

hℓ+1i = σ
©«
WUh

ℓ
i + (1 − λ)

∑
j ∈N(i )

(WVh
ℓ
j ) + λ

∑
r ∈N(i )

(PV
′hℓr )

ª®¬
(8)

where r is a neighbouring-items node such as r ∈ N (i). r is used to act as a new adjacency node of the given

node, thereby creating a new edge connection in the graph; λ = |Nr |

|Nj |+ |Nr |
is an item-related weight factor.

��Nj

��
and |Nr | denote the irst-hop neighbours item j and the neighbouring-item r , respectively. Similar toWV , P

′

V is
a learned weight matrix of the GNN layer. It is worth noting that during the tuning stage, the second term of
Equation (8), without (1−λ), is the output from a pre-trained graph encoder with frozen parameters. Furthermore,
the third term of Equation (8), speciically the learned matrix P

′

V , is the only learned matrix within the context of
the target domain DT. As a result, tuning only on a small set of parameters is expected to improve eiciency
in the tuning stage. The number of tuning parameters of the graph encoder is determined by considering the
learned parameters associated with the number of both hard and soft prompt nodes. These nodes are aggregated
as supplementary nodes within the graph encoder, and their combined parameters hence contribute to the total
number of the learned parameters. As such, we argue that the resulting GNN model using the personalised graph
prompts is capable of eiciently leveraging the useful knowledge from the pre-trained GNN models, while also
reducing the tuning parameters required during the tuning stage.
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3.3.3 Hard Prompts and Sot Prompts. In this section, we provide a comprehensive overview of both hard and soft
prompts in our PGPRec framework, detailing their selection, initialisation, and integration within the framework.
Hard Prompts. Informative personalised prompts necessitate the inference of correlations among items. Indeed,
the implementation of a straightforward yet eicient approach for determining item correlations is essential for
generating personalised hard prompts that enable suicient learning within a target domain. Following [26],
we introduce a model-based method to infer correlations between the interacted items and their corresponding
neighbouring itemswithin the target domain. Liu et al. [26] suggested that a model-based correlationmeasurement
is more desirable than alternative methods such as relying solely on the user frequency counts of the given
items. Since the item representations are jointly learned with the graph encoder during the prompt-tuning
phase, this correlation score is inherently model-based. In this work, we use the dot-product to measure the
correlation between items. Let ej be the representations of all the j items that a given user has interacted with,
and similarly er denotes the representations of all of the neighbouring-items r in the target domain. It follows
that the model-based correlation score can be deined as follows:

Core(j, r) = ej · er (9)

In our proposed PGPRec framework, we select the top-m items from the neighbouring-items r, determined by
the correlation score, as hard prompts wherem represents the number of hard prompts integrated within the
framework. The hard prompts, which originate from the actual nodes within the graph and which are updated
independently, directly afect the total number of parameters. As mentioned in Section 3.3.2, the number of
these hard prompts is pre-determined based on the top-m correlation score, leading to a consistent parameter
scale. This selection approach ensures that the most relevant and informative neighbouring items are used for
generating the hard prompts, thereby enhancing the overall recommendation performance in the target domain.
Soft Prompts. Diferent from the hard prompts, the soft prompts adopt a lexible and adaptive approach to
capture the underlying item relationships within the target domain. In particular, the soft prompts are randomly
initialised and subsequently embedded into trainable vectors. These soft prompts serve as auxiliary nodes that
establish connections with the target users within the target domain. This process facilitates the collection of
contextual information from the user-item interactions, thereby enabling our PGPRec framework to generate
more efective user/item representations. As a consequence, the number of parameters increases proportionally
to an increase in the number of soft prompts. Furthermore, since the soft prompts are trainable, they can adapt to
the data during the training process, thereby aligning the user/item embeddings with the underlying structure of
the target domain data. As such, this adaptability results in smoother user/item representations, since the soft
prompts can better capture more ine-grained user/item embeddings compared to the hard prompts.

3.3.4 Why Prompt-tuning in GNNs? Applying prompt-tuning in GNNs ofers several potential advantages for
cross-domain recommendation tasks, such as improved tuning eiciency, the provision of additional collaborative
signals for the target domains, and an easier deployment in large-scale graphs. (1) Tuning eiciency: Tuning
a smaller set of parameters within GNNs using both hard and soft prompts is essential, as it allows for the
customisation of the model, enabling it to capture the unique characteristics speciic to the target domain. As
illustrated in Equation (8), prompt-tuning in GNNs leverages pre-trained graph encoders and concentrates on a
limited set of parameters by tuning solely with the personalised prompts. Subsequently, the obtained embedding
is combined with that generated by the pre-trained graph encoder, therefore leveraging the previously pre-trained
knowledge while maintaining the model eiciency. (2) Additional collaborative signals: Prompt-tuning in
GNNs ofers a lexible solution capable of incorporating supplementary collaborative signals for the target
domain [7, 46]. In our proposed PGPRec framework, the personalised graph prompts, which include both the hard
and soft prompts, can indeed serve as auxiliary side information for the target domain. These prompts can be
tailored to enhance the recommendation performance in speciic cases, thereby likely improving the accuracy and
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efectiveness of the cross-domain recommender system. (3) Easier deployment: Applying personalised graph
prompts on adequately pre-trained GNNs leads to less parameters to store [46], rendering it a more convincing
option for large-scale graph applications where the training of GNNs necessitates signiicant computational
resources and memory. In our proposed PGPRec framework, by freezing the GNNs once they are pre-trained
and tuning the graph prompts in an eicient and scalable manner, as described in Section 3.3.2, PGPRec can
potentially be deployed for various applications without the need for extensive training.

3.4 Contrastive Learning in PGPRec

Unlike the existing approaches, we adopt the Contrastive Learning (CL) scheme [34] to ensure an efective
training in both the pre-training and ine-tuning phases. In the pre-training stage, we employ contrastive learning
to optimise the graph encoder with the data from the source domain DS. Speciically, the contrastive pre-training
stage comprises three main components: 1) a graph augmentation tool, which builds distinct sub-graphs for
generating the representation variants of identical nodes, 2) a graph encoder to model the developed sub-graphs,
and 3) a corresponding contrastive loss function for the graph encoder optimisation. On the other hand, to
further enhance the recommendation performance in the tuning stage, we also leverage the contrastive learning
technique and introduce a joint-learning loss that comprises both the contrastive loss and the commonly used
BPR [38] loss. To better illustrate the training process of PGPRec, Algorithm 1 provides the training pseudo-code.

3.4.1 Contrastive Pre-training of PGPRec. We now describe the contrastive learning component in our PGPRec
framework. Following [54], we generate two augmented sub-graphs via the edge dropout technique and feed them
into the graph encoder f . As mentioned in Section 3.2, PGPRec is a model-agnostic framework that is lexible
to accommodate the commonly used GNN models. In this paper, we adopt a special case of LightGCN 4 [12] as
the graph encoder, which is a simple yet eicient GNN recommender [31]. Speciically, we use the edge dropout
augmentation with the best reported performance in SGL [54] which is an efective graph contrastive learning
method. Then, we can obtain two augmented sub-graphs as follows:

GS ′ = (V,M ⊙ E), GS ′′ = (V,M
′ ⊙ E) (10)

whereV is the node set, whileM andM ′ are two diferent masking vectors on the edge set E.
By using the augmented sub-graphs and a graph encoder, we can generate diferent embedding representations

of an identical node (i.e. positive pair). For example, consider a given node q. We can obtain its embeddings eq and
eq′ after encoding two sub-graphs with the graph encoder f . Then, to obtain a negative pair of sub-graphs, we
apply an in-batch random sampling strategy (e.g. a pair of node representations eq and ek of two diferent nodes
q and k). By contrasting the positive and negative pairs, we expect that the resulting user/item representations of
users/items can efectively improve the recommendation performance when applied to the target domain. As
such, the learned feature embeddings from the source domain allow the model to start from a better initialisation
point and provide promising results after a light ine-tuning [10] in various target domains.

Next, after obtaining the positive and negative pairs, we follow SimCLR [3] to generate a better representation
via data augmentations and adopt the contrastive loss, InfoNCE [34], to maximise the agreement of the positive
pairs and minimise that of the negative pairs:

Luser
cl = − log

exp
(
e⊤q eq′/τ

)
∑n

i=1 exp
(
e⊤q ek/τ

) (11)

4 Since the only trainable model parameters in LightGCN are the user/item embeddings at the 0-th layer, LightGCN cannot transfer the

structure knowledge with the feature transformation matrices from the source domain. Hence, following [59], we adopt LightGCN with the

attention aggregator to explicitly learn transferable knowledge.
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where τ is a hyper-parameter that adjusts the dynamic range of the resulting loss value. Analogously, we obtain
the contrastive loss of the item side Litem

cl
. Combining these two losses, we obtain an objective function for the

contrastive task as follows:

Lcl = L
user
cl + Litem

cl (12)

3.4.2 Contrastive Tuning of PGPRec. Once we obtain the pre-trained GNN model from the source domain, we
transfer the learned model to the target domain. Recall the discussion in Section 3.2 where we introduced two
variants of the personalised graph prompt, namely the soft and hard graph prompts in order to improve the
recommendation eiciency and efectiveness in a CDR setting. Diferently from the pre-training phase, we
optimise both a pairwise ranking task objective and a contrastive learning objective Lcl to further integrate the
prediction signals during the tuning phase:

L =Lr ec + λ1Lcl + λ2 ∥Θ∥
2
2

whereLr ec =

∑
(u,i, j)∈Ds

−logσ (eu
⊤(ei − ej))

(13)

where Lr ec is the Bayesian Personalised Ranking (BPR) loss [38], eu is the user embedding, ei denotes the
positive item embedding and yui is the ground truth value, Ds = {(u, i, j)|(u, i) ∈ R

+, (u, j) ∈ R−} is the set of
the training data, R+ indicates the interacted user-item pairs and R− indicates user-item pairs from the users’
unseen items. Moreover, σ (·) is the sigmoid function, Θ is the set of model parameters in Lr ec while λ1 and λ2
are hyper-parameters to control the strengths of the CL and L2 regularisation, respectively.

4 EXPERIMENTS

To demonstrate the eiciency of PGPRec and provide evidence for its efectiveness , we conduct experiments to
answer the following four research questions:
RQ1: How do the PGPRec framework perform in cross-domain recommendation compared with existing base-
lines?
RQ2: How do diferent hard graph prompts and soft graph prompts and their combination impact the recommen-
dation performance?
RQ3: Are the personalised graph prompts more eicient than the ine-tuning in cross-domain recommendation?
RQ4: Are the personalised graph prompts efective in a cold-start scenario?

4.1 Experimental Setup

4.1.1 Datasets. To evaluate the efectiveness of our PGPRec framework, we conduct experiments on four
Amazon Review datasets 5, namely Electronics (Elec for short), Cell Phones (Phone for short), Accessories, Sports
and Outdoors (Sport for short) & Clothing Shoes and Jewelry (Cloth for short). Since the Amazon Review
datasets include information from items in diferent domains, they are suitable for evaluating cross-domain
recommendation [52]. In particular, these datasets are considered into 4 pairs of source-target datasets as shown
in Table 2. Each pair of datasets shares the common users between the source and target datasets. The exact
statistics of the used pairs of datasets are listed in Table 2. By comparing the statistics across all datasets in Table 2,
it is clear that each source-target dataset pair exhibits a similar density level. When processing the datasets, we
transform the ratings into 1 or 0, indicating whether the user has rated the item or not. Following [23], we denote
those users that have more than 5 interactions in a given dataset as the regular users while the cold-start user are
those users with less than ive ratings.

5 https://jmcauley.ucsd.edu/data/amazon/
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Algorithm 1: The overall training process of the PGPRec framework

Input:

The user-item interaction graphs GS and GT ;

The batch size B;

The hyper-parameters λ1, λ2;

The ID representations of neighbouring-item eph as hard prompts;
Output:

The inal user/item embeddings eu , ei ;

1 Initialise epoch t = 0;

2 Initialise the model parameters Θ with the default Xavier distribution;

3 // Pre-training parameters in the source domain DS

4 repeat

5 t = t + 1;

6 Obtain the original ID representations eu , ei for each user u and item i based on GS ;

7 Obtain the sub-graphs GS ′ and GS ′′ with a graph perturbation on GS with Eq.(10);

8 Obtain the perturbed user/item representations eq , eq′ based on sub-graphs GS ′ and GS ′′ with Eq.(3) ;

9 Calculate the InfoNCE losses Luser
cl

and Litem
cl

with eq and eq′ , according to Eq.(11);

10 Calculate the combined InfoNCE loss Lcl with Eq.(12) ;

11 Backpropagation and update model parameters Θ with L;

12 until convergence;

13 // Tuning parameters in the target domain DT

14 Initialise epoch t = 0;

15 repeat

16 t = t + 1;

17 Obtain the original ID representations eu , ei for each user u and item i based on GT ;

18 Acquire the hard prompt representations eph through neighbouring-items;

19 Acquire the soft prompt representations eps with random initialised embedding vectors;

20 Encode the user/item representations eu , ei through the pre-trained model parameters Θ with Eq. (3);

21 Combine the embeddings of eph and eps into the user/item representations eu , ei with Eq. (8);

22 Calculate the BPR loss LBPR with Eq. (13);

23 Obtain the perturbed user/item representations eq , eq′ based on sub-graphs GT ′ and GT ′′ with Eq. (10)

;

24 Calculate the InfoNCE loss Lcl for contrastive learning with eq and eq′ , according to Eq. (11);

25 Calculate the joint learning loss L with Eq. (13) ;

26 Backpropagation and update the model parameters Θ with L;

27 until convergence;

28 return the inal user/item embeddings eu , ei in the target domain DT

4.1.2 Evaluation Metrics. In this work, we adopt two widely used evaluation metrics to evaluate the performance
of our PGPRec framework as well as the used baselines. Speciically, suppose there is a set of items to be ranked.

Given a user u, let R̂(u) represent a ranked list of items that an algorithm produces, and let R(u) represent a
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Table 2. Statistics of the used Amazon Review datasets. The column ’Users’ donates the number of overlapping users and

the column ’Cold-start users’ donates the number of cold-start users in the test set.

Dataset Users Cold-start users Items Interactions Density

Elec 12,739 2,014 36,183 465,545 0.101%

Phone 12,739 2,014 12,772 178,973 0.110%

Sports 6,755 893 31,514 93,666 0.044%

Cloth 6,755 893 35,131 87,805 0.037%

Sports 4,017 617 19,396 52,202 0.067%

Phone 4,017 617 12,517 40,225 0.080%

Elec 11,611 1,803 49,730 202,095 0.035%

Cloth 11,611 1,803 47,265 137,198 0.025%

ground-truth set of items that user u has interacted with. For the top-k recommendation task, only the top-ranked
items are important to consider. Therefore, we list the used metrics below:

• Recall at top-k positions: Recall is a metric for computing the fraction of relevant items out of all relevant
items and is deined as follows:

Recall@k =
1

|U |

∑
u ∈U

|R̂(u) ∩ R(u)|

|R(u)|
, (14)

where R̂(u) is the ranked list of items generated by the recommenders and |R̂(u)| is the size of the ranked

list R̂(u), R(u) is the ground-truth set of items that user u has interacted with and |R(u)| represents the size

of the item set R(u),U denotes the user set with size |U |. Here, |R̂(u)| = k .
• Normalised Discounted Cumulative Gain at top-k positions: Normalised Discounted Cumulative Gain
(NDCG) is a metric devried from Discounted Cumulative Gain (DCG) [15], which takes the positions of the
correct recommended items into consideration, where the positions are discounted logarithmically [39].
NDCG accounts for the position of the hit by assigning higher scores to hits at the top ranks [13] and is
deined as follows:

NDCG@k =
1

|U|

∑
u ∈U

1

Z

|R̂(u) |∑
x=1

2I(R̂x (u)∈R(u)) − 1

log2(x + 1)
(15)

where R̂x (u) denotes for the item recommended at the x-th position, and Z is a normalised factor, which
denotes the ideal value of DCG given R(u).

We measure the recommendation efectiveness on four Amazon Review datasets described in Section 4.1.1 in
terms of Recall and NDCG calculated to rank depth 10. To evaluate parameter-eiciency, we count the parameters
associated withm graph prompts hr and the weighted matrix PV , as deined in Equation (8), and compare these to
the parameter counts of the pre-trained GNN model. Additionally, we evaluate the time-eiciency by measuring
the total tuning time, the time per epoch, and the number of epochs needed for convergence as per early-stopping
criteria. Moreover, we follow the experimental setup in [4] and randomly split a given dataset into training,
validation, and testing sets with an 8:1:1 ratio. For statistical signiicance comparisons with the baselines, we
use the two one-sided equivalence test (p < 0.05) and apply the HolmśBonferroni multiple testing correction, as
per best practices in information retrieval [40]. Moreover, we calculate the used metrics based on the generated
ranking list of items and report the average score over all test users.
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4.1.3 Baselines. To evaluate the efectiveness of our proposed approach, we compare PGPRec with the following
existing state-of-the-art baselines. The baselines can be roughly categorised into four groups: (1) NGCF, LightGCN
and SGL are single domain collaborative iltering methods, (2) CMF, CoNet and PPGN are joint-learning methods
for cross-domain recommendation, (3) NGCF, LightGCN, and SGL are graph pre-training and ine-tuning methods,
(4) our PGPRec is a graph pre-training and prompt-tuning method. Table 3 summarises the baselines as well as
PGPRec across diferent aspects, namely single-domain, joint-learning, and pre-training followed by ine-tuning.
Below, we provide a brief description of all the used baselines.
CMF [47]: This is a joint-learning approach, which factorises matrices of multiple domains simultaneously by
sharing the user latent factors. CMF irst jointly learns on two domains and then optimises the target domain.
CDMF [28]: This is also a joint-learning approach. Diferent from CMF, CDMF leverages factorisation machines
to model interactions between users and items across diferent domains. CDMF learns shared latent factors across
these domains by representing user-item interactions as feature vectors and applying factorisation machines
to model their relationships. Such an approach enables CDMF to capture more complex interaction patterns
between users and items, as well as to share latent factors in cross-domain recommendations.
CoNet [14]: This is also a joint-learning method, which transfers knowledge across domains by leveraging
cross-connections between the feed-forward neural networks. Diferent from CMF, CoNet optimises both source
and target domains with a joint-learning objective.
PPGN [65]: PPGN is a joint-learning graph method, which fuses the interaction information of the two domains
into a graph, and shares the features of users learned from the joint interaction graph by stacking multiple graph
convolution layers. Finally, it inputs the learned embeddings to the domain-speciic MLP structure to learn the
matching function.
NGCF [51]: NGCF is a single-domain GCN-based model. It irst captures the high-order connectivity information
in the embedding function by stacking multiple embedding propagation layers. Next, it concatenates the obtained
embeddings and uses the inner product to make predictions. In order to examine the efectiveness of single
domain GNNs as well as the ine-tuning of GNNs in Cross-Domain Recommendation (CDR), we perform two
diferent training strategies with NGCF: (1) single domain training where we directly train in the target domain
(denoted by NGCFSD ) ś this is the typical training strategy in single-domain recommenders, and (2) pre-training
in a source-domain then ine-tuning in the target domain (denoted by NGCFPT ).
LightGCN [12]: This is also a single-domain GCN-based model that omits learned weight matrices from
NGCF. It simpliies the design in the feature propagation component by removing the non-linear activation and
the transformation matrices. Similar to NGCF, we also perform both the single domain training (denoted by
LightGCNSD ) and the "pre-training then ine-tuningž process (denoted by LightGCNPT ).
SGL [54]: This is a single-domain CL-based method. With LightGCN as the encoder of the users/items, it adopts
diferent augmentation operators such as edge dropout and node dropout, on the pre-existing features of the
user/items. Similar to NGCF and LightGCN, we also perform both the single domain training (denoted by SGLSD )
and the "pre-training then ine-tuningž process (denoted by SGLPT ) but using an auxiliary contrastive loss as
described in Section 3.4.1.
BiTGCF [23]: This joint-learning graph approach extends LightGCN for cross-domain recommendation tasks by
employing dual linear graph encoders to generate user and item representations in each domain. Subsequently, a
feature transfer layer is used to fuse user representations across domains, efectively capturing the underlying
relationships and facilitating enhanced recommendations in the target domain.
PGPRec-BPR: This is a variant of PGPRec. Diferently from PGPRec, which pre-trains with a contrastive
loss, PGPRec-BPR uses a BPR loss to optimise the GNN model. Moreover, it tunes with the same joint loss
(Equation (13)) as PGPRec. It is a pre-training and prompt-tuning method. Hence, PGPRec-BPR allows us to gauge
the added-value of leveraging contrastive learning.
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Table 3. Summary of compared approaches across diferent aspects.

Method CMF CDMF CoNet PPGN BiTGCF NGCF LightGCN SGL PGPRec

Single-domain × × × × × ✓ ✓ ✓ ×

Joint-learning ✓ ✓ ✓ ✓ ✓ × × × ×

Pre-training & Fine-tuning × × × × × ✓ ✓ ✓ ×

Pre-training & Prompt-tuning × × × × × × × × ✓

4.1.4 Implementation Details and Hyper-parameter Setings. For a fair comparison between our PGPRec frame-
work and the used baselines, we conduct all experiments on the same machine with a GeForce RTX 2080Ti GPU.
Moreover, we use the learned parameters at the pre-training stage to initialise the model parameters at the tuning
stage. In the pre-training stage, the dropout rate ρ of nodes and edges are set to 0.1 and the softmax temperature
τ in the contrastive learning loss is set to 0.2, which are reported with the best performance of the original SGL
paper [54]. Furthermore, in the tuning stage, we tune the hyper-parameters of our PGPRec framework on the
validation set. The learning rate is selected from

{
10−2, 10−3, 10−4

}
. For those hyper-parameters unique to PG-

PRec, we tune λ1, λ2, τ and ρ within the ranges of {0, 0.1, 0.2, ..., 1.0}, {0, 0.1, 0.2, ..., 1.0}, {0, 0.1, 0.2, ..., 1.0} and
{0, 0.1, 0.2, ..., 0.9}, respectively. We adopt two widely used evaluation metrics, namely Recall@K and NDCG@K
to evaluate the performance of top-K recommendations, which were described in Section 4.1.2. We follow [44]
and set K = 10 and report the average performance achieved for all users in the test set. The negative items of each
user are deined as those having no interactions with the user. Following [12], the dimensions of user and item
embedding are set to 64 to achieve a trade-of between performance and time cost, which is determined by a grid
search in the range of {16, 32, 64, 128, 256}. We tune NGCFPT , LightGCNPT , SGLPT and PGPRec-BPR as described
in Section 4.1.3 on the validation set. For the other cross-domain recommendation baselines corresponding to
joint-learning approaches (CMF, CDMF, CoNet, PPGN, BiTGCF), we follow the reported optimal parameter
settings by the authors of these baselines. For our PGPRec framework, we tune the hyper-parameters as described
above on the validation set. Moreover, we adopt the Xavier initialisation to initialise all the models’ parameters
and use the Adam optimiser for the model optimisation with a batch size of 1024. We apply early-stopping during
training, terminating the training when the validation loss does not decrease for 50 epochs.

4.2 PGPRec Efectiveness Evaluation (RQ1)

Table 4 reports the empirical results of our PGPRec method in comparison to all of the baselines, which were
described in Section 4.1.3. We evaluate our PGPRec framework in comparison to three distinct recommendation
approaches: GNN-based recommenders, single-domain recommenders and joint-learning recommenders. Specii-
cally, we compare our PGPRec framework to the GNN-based recommenders (NGCF, LightGCN, SGL), which are
trained in both the single domain (SD for short) setting as well as in the pre-training (PT for short) setting. In
addition, we compare our PGPRec framework to the joint-learning methods (CMF, CDMF, CoNet, PPGN, BiTGCF).
Among the evaluated baselines, LightGCNSD generally outperforms the joint-learning CDR methods, with the
exception of BiTGCF. This observation highlights the importance of investigating the nonlinear interaction
relationship between users and items through graph neural networks, as mentioned in Section 4.1.3. Notably,
BiTGCF is a tailored approach that builds upon LightGCN. The comparison between LightGCNSD and BiTGCF
further supports the efectiveness of the GNN-based methods in capturing complex user-item relationships within
the cross-domain recommendation context. Furthermore, when comparing SGLPT with NGCF and LightGCN, as
well as their single-domain (NGCFSD , LightGCNSD ) and pre-trained variants (NGCFPT , LightGCNPT ), SGLPT
exhibits a superior performance in 88% of the cases (28 out of 32 instances), with a signiicant diference. This
result emphasises the advantages of employing contrastive learning during both the pre-training and tuning
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Table 4. Experimental results for PGPRec and the used baselines. The best performance is highlighted in bold and the second

best result is highlighted with an underline. ∗ and △ mean p <0.05 in the t-test and TOST test (AP=0.05) compared to the

result of PGPRec with the HolmśBonferroni correction. SD/PT are the abbreviations for Single-Domain and Pre-Training,

respectively.

Dataset Elec-Phone Sport-Cloth Sport-Phone Elec-Cloth

Methods Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

CMF 0.4015∗ 0.2543∗ 0.4309∗ 0.2685∗ 0.3348∗ 0.1927∗ 0.3054∗ 0.1836∗

CDMF 0.4457∗ 0.2612∗ 0.4561∗ 0.2874∗ 0.3808∗ 0.2242∗ 0.3524∗ 0.2356∗

CoNet 0.4514∗ 0.2696∗ 0.4912∗ 0.3128∗ 0.3854∗ 0.2331∗ 0.3546∗ 0.2353∗

PPGN 0.4464∗ 0.2629∗ 0.4678∗ 0.2930∗ 0.3677∗ 0.2240∗ 0.3404∗ 0.2184
BiTGCF 0.5064∗ 0.2999∗ 0.5360∗ 0.3315△ 0.4688∗ 0.3072∗ 0.4209 0.2783∗

NGCFSD 0.4501∗ 0.2643∗ 0.4889∗ 0.3027∗ 0.3955∗ 0.2431∗ 0.3878∗ 0.2483∗

LightGCNSD 0.4776∗ 0.2993∗ 0.5327∗ 0.3358△ 0.4557∗ 0.3006∗ 0.4261 0.2699∗

SGLSD 0.4722∗ 0.2941∗ 0.5296∗ 0.3219∗ 0.4486∗ 0.2749∗ 0.4012∗ 0.2569∗

NGCFPT 0.4665∗ 0.2969∗ 0.4983∗ 0.3253△ 0.4251∗ 0.2681∗ 0.3723∗ 0.2359∗

LightGCNPT 0.4821∗ 0.3044∗ 0.5196∗ 0.3268△ 0.4543∗ 0.2986∗ 0.4137 0.2727∗

SGLPT 0.5071 0.3282△ 0.5398 0.3119∗ 0.4721 0.3114△ 0.4301△ 0.2967∗

PGPRec 0.5213 0.3386 0.5678 0.3281 0.4607 0.3086 0.4233 0.2854

%Dif. 2.80% 3.17% 3.27% - 2.29% - 2.41% - 0.10% - 1.58% - 3.80%

stages, since it facilitates the generation of richer user representations, ultimately enhancing the recommendation
performance. Comparing PGPRec and SGLPT , we observe that PGPRec is competitive and comparable with
SGLPT on all datasets. In fact, PGPRec has even a better performance in 75% of the cases (3 out of 4 instances) on
the Elec-Phone and Sport-Cloth datasets, thereby demonstrating the general efectiveness of personalised graph
prompts. However, PGPRec performs worse than SGLPT on the Sport-Phone & Elec-Cloth datasets. This may be
due to PGPRec being more sensitive to diferences between domains, such as variations in user-item interaction
patterns or preferences, compared to SGL-PT. As a result, such sensitivity may afect the PGPRec’s performance
when transferring knowledge between distant domains. This observation warrants further investigation to better
identify the factors inluencing PGPRec’s performance in such scenarios. We leave such an investigation to future
work.

Hence, in answer to RQ1, we conclude that PGPRec successfully leverages the contrastive learning loss to
efectively pre-train a graph encoder and further enhances the recommendation performance by leveraging the
personalised graph prompts on two of the four datasets used. As a result, our PGPRec framework successfully
enriches the user representations in the target domain, by leveraging the knowledge from the pre-trained model.

4.3 Ablation Study (RQ2)

To investigate the impact of each component of our PGPRec framework, in Table 5, we compare the results of
PGPRec to its variants that employ diferent types of personalised prompts (soft/hard) as well as PGPRec variants
with varying pre-training loss functions (BPR/contrastive loss). In particular, we aim to examine the impact of
these components on the overall performance of the framework. Table 5 presents the efect of these components
on the overall performance of the framework. In particular, we evaluate the statistical signiicance of the diference
in performance between PGPRec and its variants with the paired t-test (p < 0.05). We irst compare PGPRec to its
variants with diferent types of personalised prompts (PGPRec-soft and PGPRec-hard), which sorely use soft
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Table 5. PGPRec performance in terms of Recall@10 andNDCG@10 on the used datasets. The best performance is highlighted

in bold and the second best result is highlighted with an underline. ∗ denotes a significant diference compared to the result

of PGPRec using the paired t-test with the Holm-Bonferroni correction for p < 0.05.

Dataset Elec-Phone Sport-Cloth Sport-Phone Elec-Cloth

Methods Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10 Recall@10 NDCG@10

PGPRec-BPR 0.4851∗ 0.3006∗ 0.5332∗ 0.3149∗ 0.4361∗ 0.2593∗ 0.3918∗ 0.2603∗

PGPRec-soft 0.4716∗ 0.2845∗ 0.5216∗ 0.3063∗ 0.4468∗ 0.2610∗ 0.4033∗ 0.2662∗

PGPRec-hard 0.5172∗ 0.3244∗ 0.5532∗ 0.3193∗ 0.4537∗ 0.2856∗ 0.4231 0.2814∗

PGPRec 0.5213 0.3386 0.5678 0.3281 0.4607 0.3086 0.4233 0.2854

and hard prompts, respectively. From the table, we observe that for all four used datasets, PGPRec signiicantly
outperforms PGPRec-soft and PGPRec-hard in 94% of the cases (15 out of 16 instances). This observation indicates
the efectiveness of combining both hard and soft prompts for better user/item representations by transferring
the knowledge from a source domain and tailoring the user/item representations to a target domain. On the other
hand, comparing the variants PGPRec-soft and PGPRec-hard, we observe a noticeable performance gap between
the two, with PGPRec-hard outperforming PGPRec-soft on all datasets and metrics. This inding indicates that
the neighbouring-items carry more informative content than the randomly initialised learned vectors. Hence,
these hard prompts can better assist user representations in adapting to the target domain. This comparison
between PGPRec-soft and PGPRec-hard highlights the importance of leveraging the appropriate item-level
information, as provided by hard prompts, to enhance the recommendation performance in cross-domain settings.
Furthermore, we also compare PGPRec to PGPRec-BPR, which uses the BPR loss as a training loss function
during the pre-training stage while PGPRec employs a contrastive loss when pre-training the graph encoder.
From Table 5, we observe that PGPRec signiicantly outperforms PGPRec-BPR by a large margin across all used
datasets, demonstrating the rationality of incorporating contrastive learning to ensure an efective pre-training.
The observed enhanced performance highlights the importance of leveraging contrastive learning to extract
valuable knowledge from the source domain, and ultimately beneiting the downstream target domain.

To further investigate the impact of diferent combinations of personalised prompts, Figure 3 shows how the
performance of PGPRec changes as we use diferent numbers and combinations of hard and soft graph prompts.
In particular, Figure 3 shows the results of a comprehensive ablation study using diferent combinations of hard
prompt nodes and soft prompt nodes. For ease of illustration and visual clarity, in addition to the performance
of PGPRec as we vary the number of used hard and soft prompts, the igure only reports the best-performing
combination of soft and hard prompts, which was consistently the same across the used datasets. Note that
we use Recall@10 to report the performance of diferent PGPRec variants, since using NDCG@10 also leads to
the same conclusions across the used datasets. In particular, Figure 3 shows that the PGPRec variant (the bar
in orange) that combines ive hard prompt nodes and three soft prompt nodes achieves the best performance
in both the Elec-Phone and Elec-Cloth datasets. This promising performance is due to the supplement of the
neighbouring-items from the available metadata in the used datasets as well as the use of a continuous vector as
a prompt. For the PGPRec variants that only use the hard prompts (bars in blue) in Figure 3, the performance of
PGPRec improves with more neighbouring-items, which can be viewed as if more adjacent nodes of a target
node are added/taken into consideration. However, the improvement becomes marginal when the number of
hard prompt nodes increases to over ive. In particular, we can observe that the performance of the variant with
seven hard prompts is on a par with the variant in orange on the Sport-Phone and Elec-Cloth datasets, which
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Fig. 3. Performance of the PGPRec variants in terms of Recall@10 on four Amazon Review datasets.

combines both hard and soft prompts. This further supports that the hard neighbouring-items contribute most in
the personalised graph prompts while the contribution of the soft prompts is marginal. By comparing the results
observed on the Elec-Phone and Elec-Cloth datasets, we ind that the best number of hard prompts depends
on the scale of the target domain dataset, which indicates that a larger scale target dataset always requires
more prompts to facilitate more divergent user/item representations. Moreover, we observe from Figure 3 that
the performance of CDR is further enhanced by the addition of soft prompt nodes. One possible reason is that
embedding soft prompt nodes provides an additional supervised signal when optimising through contrastive
learning. Indeed, through contrastive learning, the collaborative signal is further enhanced by mining graph data
in a self-supervised manner. However, as observed in Figure 3, a large number of soft prompt nodes impedes the
CDR recommendation performance, which shows the diiculty for the graph model to train a useful user/item
embedding from scratch.
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Fig. 4. Performance of diferent tuning methods on the four used datasets with the pre-trained GNN models

Hence, in answer to RQ2, we conclude that PGPRec successfully leverages hard graph prompts to learn efective
user/item representations. It also further enhances performance by optimising the learned soft prompt nodes’
embeddings.

4.4 Eficiency of Graph Prompt-tuning (RQ3)

To answer RQ3, we investigate the superiority of personalised graph prompts in terms of parameter eiciency
(Section 4.4.1) and tuning eiciency (Section 4.4.2).

4.4.1 Parameter Eficiency. First, we investigate how many tuned parameters can be reduced by using our
personalised graph prompt-tuning on all four used datasets. Speciically, we examine the parameter eiciency by
comparing the number of tuned parameters of the personalised graph prompts with the number of ine-tuned
parameters of the GNN baselines. In particular, we use the two most efective PGPRec variants as reported in
Section 4.3 and calculate the number of tuned parameters. Since eiciency and efectiveness are both critical in
our study, we irst compare the calculated number of tuned parameters in PGPRec as well as in the conventionally
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ine-tuned GNN baselines in Section 4.1.3 (NGCFPT , LightGCNPT and SGLPT )
6. Figure 4 shows a comparison

of the efectiveness and eiciency of the ine-tuned GNN baseline models in comparison to the variants of
PGPRec. For conciseness, we use Recall@10 to report the efectiveness of PGPRec and the used baselines in
Figure 4, since the use of NDCG@10 also leads to the same conclusions across the used datasets. As shown in
Figure 4, LightGCNPT and SGLPT have the same number of tuned parameters but less so than NGCFPT , which has
additional learned weight matrices compared to LightGCNPT and SGLPT (see Section 4.1.3). Note also that SGLPT
has the best efectiveness among the baselines. We observe that the two PGPRec variants need only 41% and 47%
of the required ine-tuned parameters of SGLPT to achieve an even higher efectiveness on the Elec-Phone dataset.
Similarly, the two PGPRec variants only need 33% and 38% of the tuned parameters required by SGLPT on the
Sport-Cloth dataset. Next, we also compare our PGPRec variants with NGCFPT . Consider the Elec-Phone dataset
as an example. Figure 4 shows that the two PGPRec variants need only 34% and 39% of the required ine-tuned
parameters of NGCFPT , respectively. Similarly on the Sport-Cloth dataset, the two PGPRec variants need 27%
and 31% of the ine-tuned parameter required by NGCFPT , respectively. Similar conclusions can also be observed
on the Sport-Phone and Elec-Cloth datasets, demonstrating the parameter eiciency of PGPRec. Overall, the
results in terms of both efectiveness and eiciency on both datasets demonstrate that our personalised graph
prompt-tuning is more parameter-eicient than the conventional ine-tuning when transferring pre-trained
knowledge to a target domain. Meanwhile, our PGPRec framework can achieve a competitive performance
compared to the ine-tuned GNN baselines on both datasets.
To investigate the parameter-eiciency impact of both hard and soft graph prompts within our PGPRec

framework, we conduct a comparative analysis on the number of tuned parameters, taking into account the
diferent types of graph prompts used. This comparative analysis encompasses two types of PGPRec variants -
one exclusively employs hard prompts (indicated by the red line) while the other uses a combination of hard and
soft prompts (indicated by the green line) - as well as the ine-tuned SGLPT baseline. Note that we use SGLPT for
comparison in this experiment because it is the most efective baseline. For a fair comparison, both the PGPRec
variants and SGLPT use the same GNN encoder (i.e LightGCN). Figure 5 shows the results of the two PGPRec
variants in comparison to the ine-tuned SGLPT baseline on all four used datasets. From Figure 5, we observe that
the efectiveness of the variant that uses seven hard prompts (in red) is on a par with the variant that combines
ive hard prompts with three soft prompts (in green) while reducing the number of tuned parameters on the
x-axes of all four used datasets. This result suggests that the hard prompts are overall more eicient in estimating
the users’ preferences in the target domain. In particular, the PGPRec variant that leverages seven hard prompts
only needs 41% and 33% of the tuned parameters of SGLPT to achieve an even better performance on both the
Elec-Phone dataset and the Sport-Cloth dataset, respectively. This means that the personalised prompt-tuning
allows to reduce 59% and 67% of the parameters in comparison to using SGLPT , while also attaining an improved
efectiveness. Similarly, the PGPRec variant that uses seven hard prompts can reduce by 54% the number of
tuned parameters of SGLPT on the Sport-Phone dataset, and the PGPRec variant that uses ive hard prompts can
reduce by 74% the number of tuned parameters of SGLPT on the Elec-Cloth dataset, while ensuring a competitive
performance on both datasets. To verify that the reduction in the number of tuned parameters does not lead to a
signiicant degradation of efectiveness in comparison to SGLPT on all 4 used datasets, we apply a two one-sided
equivalence test (TOST). This test is performed to ascertain an efectiveness equivalence with the SGLPT model.
In Figure 5, a point marker (corresponding to a green or red dot) indicates that the corresponding performance
is signiicantly equivalent with SGLPT using the TOST test. The TOST results validate our argument that only
tuning on the parameters of graph prompts with all other pre-trained parameters remaining unchanged can
achieve a competitive performance in comparison to SGLPT on all used datasets.

6 Recall, that in cross-domain recommendation, all the pre-trained parameters of the GNN recommenders are ine-tuned in the target domain,

while in PGPRec, we only ine-tune the parameters from the personalised graph prompts in the target domain.
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Fig. 5. A parameter comparison between two types of PGPRec variants: one with only hard prompts and another that

combines hard and sot prompts. The peak performances of the two types of PGPRec variants, denoted by the red and

green lines respectively, are highlighted with text annotations. A point marker, represented as a red dot for the PGPRec

variant with hard prompts and a green dot for the PGPRec variant that combines hard and sot prompts, indicates that the

corresponding performance is significantly equivalent over the SGLPT baseline using the TOST test.

4.4.2 Eficiency of Tuning Time. We now analyse the time eiciency of PGPRec. As described in Section 4.1.4,
for a fair comparison, we use one Geforce RTX 2080Ti GPU to conduct the time eiciency experiments. For
conciseness, we report the tuning times for PGPRec and the two most efective baselines (LightGCNPT and
SGLPT ) on the Elec-Phone dataset, since the conclusions on the other datasets are similar. Table 6 compares
the eiciency of various PGPRec variants on the Elec-Phone dataset in terms of tuning time. Speciically, we
compare the efective PGPRec variants from Section 4.3, namely the variants with seven hard prompts (denoted
by PGPRechard ), three soft prompts (denoted by PGPRecsof t ) and the mixture of ive hard prompts along with
three soft prompts (denoted by PGPRecmixture ) to LightGCNPT and SGLPT . Note that we do not compare with
NGCFPT as it has additional learned weight matrices compared to LightGCNPT and SGLPT . From Table 6, we
observe that all PGPRec variants have a faster training speed (seconds per epoch) than the LighGCNPT and SGLPT
baselines, which indicates the eiciency of using prompts to tune on a small portion of parameters. Moreover,
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Table 6. Eficiency comparison on the Elec-Phone Dataset in terms of tuning time. PGPRechard , PGPRecsof t and

PGPRecmixture refer to the PGPRec variants with hard prompts, sot prompts and mixture prompts, respectively.

Model Time/Epoch Nbr of Epochs Training Time Recall@10

LightGCNPT 63s 294 309m 0.4821

SGLPT 68s 138 157m 0.5071

PGPRecmixture 57s 423 402m 0.5213

PGPRecsof t 26s 367 159m 0.4716

PGPRechard 44s 147 108m 0.5172

Table 7. Cold-start analysis results for PGPRec and the SGLPT baseline, where PT is the abbreviation for Pre-Training.

’Cold-start’ denotes the cold-start users and ’Regular’ denotes the regular users in the used datasets. ∗ denotes a significant

diference between PGPRec and SGLPT using the paired t-test with p<0.05.

Datasets PGPRec (Recall@10) SGLPT (Recall@10) %Improv.

Elec-Phone
Cold-start 0.4671* 0.4314 8.27%
Regular 0.7501* 0.7343 2.15%

Sport-Cloth
Cold-start 0.5185* 0.4653 11.41%
Regular 0.6735* 0.6564 2.60%

Sport-Phone
Cold-start 0.4224* 0.4042 4.5%
Regular 0.5483 0.5687 -3.59%

Elec-Cloth
Cold-start 0.3876* 0.3764 2.98%
Regular 0.6192 0.6354 -2.62%

PGPRechard takes the least training time while achieving a competitive performance compared with SGLPT and
PGPRecmixture . This demonstrates the eiciency of prompt-tuning compared with conventional ine-tuning as
well as the efectiveness of hard prompts in enhancing the pre-trained embeddings. However, Table 6 also shows
that PGPRecsof t and PGPRecmixture take more epochs to converge, which indicates the diiculty of the graph
encoder (LightGCN) in PGPRec to train useful soft graph prompts from scratch.
To answer RQ3, according to Figure 4 and Figure 5, we conclude that PGPRec empowered by personalised

graph prompts is more parameter-eicient than ine-tuned GNNs such as NGCFPT , LightGCNPT and SGLPT .
Moreover, as shown in Table 6, we ind that only using hard graph prompts helps to further improve the eiciency
of tuning time while maintaining a competitive efectiveness.

4.5 Cold-start Analysis (RQ4)

To investigate the efectiveness of transferring knowledge to the cold-start users using our personalised graph
prompts, we examine our PGPRec framework in a cold-start scenario. Speciically, we use the most efective
PGPRec variant from Section 4.3, namely the PGPRec variant with ive hard prompts and three soft prompts,
and perform a cold-start analysis on four Amazon Review datasets. Table 7 shows the performances of PGPRec
for both the cold-start and regular users, in comparison to the best used baseline, SGLPT , in terms of Recall@10
(similar trends can be observed with NDCG@10). The results show that PGPRec beneits the cold-start users more
than SGLPT and signiicantly according to the paired t-test on all four datasets. This observation suggests that
PGPRec successfully leverages the neighbouring-items and the learned vectors as graph prompts to bring useful
information to estimate a user’s preferences. In particular, PGPRec outperforms SGLPT by 8.27% and 11.41% on
the Elec-Phone dataset and the Sport-Cloth datasets, respectively, thereby demonstrating the successful feature
transfer from the source domain and the added-value of personalised graph prompts as additional information.
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Signiicant improvements on the cold-start users in comparison to SGLPT are also obtained on the Sport-Phone
and Elec-Cloth datasets, although their scale is smaller (4.5% and 2.98%, respectively. This latter observation
indicates that the transferred features from the source domain are not suiciently informative to enhance the
prediction of cold-start users’ preference in a distant target domain. In fact, given the scale of improvements in
Table 7, we observe that our PGPRec framework actually beneits the cold-start users more than the regular users.
For example, on the Sport-Cloth dataset, PGPRec improves the performance by 11.41% for the cold-start users in
comparison to SGLPT , while it only improves the performance by just 2.60% for the regular users. This suggests
that PGPRec is particularly helpful in cold-start scenarios. This result suggests that the PGPRec framework
successfully leverages the personalised graph prompts to act as additional adjacent items to a cold-start user,
thereby enriching the representations of users with sparse interactions in the target domain.
Overall, in response to RQ4, we conclude that our PGPRec framework successfully leverages the pre-trained

features and the personalised graph prompts as auxiliary information to efectively enhance the recommendation
performance on cold-start users.

5 CONCLUSIONS

In this work, we proposed a Personalised Graph-based Prompt Recommendation (PGPRec) framework to enhance
the eiciency of conventional ine-tuning in cross-domain recommendation. Speciically, we devised novel
personalised graph prompts to further enrich the pre-trained embeddings in the target domain. In particular, we
used the neighbouring-items as hard prompts and used randomly initialised embedding vectors as soft prompts.
We leveraged the personalised graph prompts to enhance the eiciency of the tuning stage. Our results on four
cross-domain datasets showed that PGPRec eiciently leverages the prompt-tuning along with the state-of-the-art
graph recommenders and achieves a competitive performance compared with the strongest baseline (SGLPT ).
Moreover, we conducted an ablation study investigating diferent combinations of the personalised graph prompts.
We showed that the hard prompts make a key and marked contribution in the tuning stage while the soft prompts
can provide limited improvement to top-k recommendation in the target domain. Furthermore, we showed that a
PGPRec variant with ive hard prompts can markedly reduce the number of the required tuned parameters by a
large margin (e.g., a 74% reduction in the number of tunable parameters of the strongest baseline SGLPT on the
Elec-Cloth dataset). By comparing the tuning time of the existing ine-tuned GNNs with that of several PGPRec
variants, we showed that our PGPRec framework tunes faster (e.g., 31% faster on the Elec-Phone dataset), when
using only hard prompts, leading to a marked training eiciency. Finally, we conducted a cold-start analysis to
investigate whether our proposed PGPRec framework beneits the cold-start users. The results obtained on four
datasets showed that PGPRec successfully alleviates the cold-start problem, and achieves efective cross-domain
recommendations (e.g. an 11.41% performance improvement on the Sport-Cloth dataset in comparison to the
strongest baseline SGLPT ) for cold-start users.
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