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On a conjecture of Pappas and Rapoport
about the standard local model for GLd

By Dinakar Muthiah at Kashiwa, Alex Weekes at Vancouver and Oded Yacobi at Sydney

Abstract. In their study of local models of Shimura varieties for totally ramified exten-
sions, Pappas and Rapoport posed a conjecture about the reducedness of a certain subscheme
of n � n matrices. We give a positive answer to their conjecture in full generality. Our main
ideas follow naturally from two of our previous works. The first is our proof of a conjec-
ture of Kreiman, Lakshmibai, Magyar, and Weyman on the equations defining type A affine
Grassmannians. The second is the work of the first two authors and Kamnitzer on affine
Grassmannian slices and their reduced scheme structure. We also present a version of our argu-
ment that is almost completely elementary: the only non-elementary ingredient is the Frobenius
splitting of Schubert varieties.

1. Introduction

For integers n; e � 2, Pappas and Rapoport conjectured that the following subscheme:

Nn;e D ¹A 2 Matn�n W Ae D 0; det.� � A/ D �nº

of n � n matrices is reduced [11, Conjecture 5.8] (see also [12, Section 6]). Our main result is
a proof of this conjecture (Theorem 3.6).

Soon after the Pappas–Rapoport conjecture was announced in 2000, Weyman ([15])
proved two cases: (i) when the base field is characteristic zero, and (ii) when the base field has
arbitrary characteristic and e D 2. Our main contribution is proving the conjecture in positive
characteristic, which is the interesting case for arithmetic applications. We make no assump-
tions on the characteristic, so our argument also gives a new proof in characteristic zero.
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Pappas and Rapoport also proved interesting results about nilpotent orbits and affine
Grassmannians conditional upon the reducedness of Nn;e (see [11, equation (5.26), Propo-
sition 6.5, Proposition 6.6]). We can now state these results unconditionally.

Pappas and Rapoport’s conjecture arose in their investigation of local models of Shimura
varieties. Shimura varieties serve as a bridge between arithmetic geometry and automorphic
forms, and as such they play an important role in the Langlands program. Local models of
Shimura varieties, which capture the behavior that occurs when considering reduction mod p,
often allow one to reduce arithmetic problems to questions about affine Grassmannians and
flag varieties ([13]). These problems tend to be difficult but often tractible (e.g. [5, 6, 16]).

1.1. Our approach. Our solution follows naturally by building on the ideas of our
previous work [10] and earlier work by the first two authors and Kamnitzer [7]. One of our
stated goals in [10, Section 1.3.2] is to use the framework developed there to understand the
scheme structure of nilpotent orbit closures in positive characteristic. The present work is our
first success in this program.

In [10], we proved a conjecture of Kreiman, Lakshmibai, Magyar, and Weyman about the
equations defining affine Grassmannians for SLn. Their conjecture is that the defining equations
are given by certain explicit shuffle operators.

Our study led us to consider the general situation of a nilpotent operator T on a vector
space V . We consider the Grassmannian Gr.n; V /, and define a subscheme ST by explicit
T -shuffle operators generalizing the shuffle operators (cf. Section 2.1).

1.1.1. An alternate definition of ST . Let
0

ST be the subscheme of the Grassmannian
Gr.n; V / consisting of T -invariant n-planes U such that det.� � T jU / D �n. Our first result
(Theorem 2.3) is that

0

ST D ST . Theorem 2.3 should be of general interest because
0

ST is
given as a moduli functor, while ST is given by explicit homogeneous equations in the Plücker
embedding of the Grassmannian.

More can be said in the special case where dimV D de for positive integers d; e, and T
has Jordan type given by the partition .ed /. Let e0ST denote the preimage of

0

ST in the Stiefel
variety. Then we have natural maps:

(1.1)
0

ST
�
 �

e0ST '
�! Nn;e:

See Section 2.1 and Section 2.3 for explanation. The key fact is the following.

Theorem 1.1. The morphism e0ST '
�! Nn;e is smooth.

This is a corollary of one of Pappas and Rapoport’s main theorems [11, Theorem 4.1].
For the benefit of the reader we explain in Section 2.3 how their proof works in our simpler
setting.

Pappas and Rapoport consider a version of (1.1) over a discrete valuation ring that base
changes to (1.1) over the residue field. In particular, the object that base changes to

0

ST is
a particular local model. In this article, we prove that

0

ST is reduced, which implies that this
local model is flat over its discrete valuation ring of definition.

1.1.2. Applying our previous results and Frobenius splitting. In [7], we developed
some techniques for attacking a conjecture about the reduced scheme structure on Schubert
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varieties in the affine Grassmannian. We use this to prove that a certain family of ST are
reduced (Proposition 3.1). In particular, we show that these schemes are Schubert varieties in
the affine Grassmannian with their reduced scheme structure. Using the fact that Schubert vari-
eties are Frobenius split compatibly with their Schubert subvarieties, we can take intersections
and conclude that a larger family of ST are also reduced (Proposition 3.3). It follows that all
corresponding fST are reduced, since fST ! ST is a GLn-torsor.

We note that this strategy is similar to the proof of [4, Theorem 4.5.1], where the special
fiber M

loc
of a local model is expressed as an intersection of smooth Schubert varieties. One

additional difficulty for us is that we consider intersections of singular Schubert varieties.
Finally, we show that for each n and e there is some

0

ST (which we have shown is
reduced) such that the corresponding map e0ST ! Nn;e is surjective. Surjectivity is a direct
calculation (Proposition 3.5). We also know that this map is smooth, and reducedness descends
along smooth surjections. Therefore, we conclude that Nn;e is reduced.

After analyzing our argument, we found a simplified but less conceptual version that is
almost completely elementary. The only non-elementary ingredient is the Frobenius splitting
of Schubert varieties. We present this simplified argument in Section 3.1.

Acknowledgement. We would like to thank an anonymous referee for their helpful
report, and also the referee of [10] for suggesting the connection between our work and that
of Pappas and Rapoport. We thank Geordie Williamson and Xinwen Zhu for their comments
on an earlier version of this manuscript. We are also grateful to the Centre de Recherches
Mathématiques and to Joel Kamnitzer and Hugh Thomas for organizing the program “Quiver
Varieties and Representation Theory” where this project was started.

2. Preliminaries

2.1. Grassmannians and associated schemes. Let k be a field of arbitrary character-
istic. Because our goal is to prove reducedness of a scheme, we may assume k is algebraically
closed. Let V be a finite-dimensional vector space over k, and let n be a non-negative integer.
Write Gr.n; V / for the Grassmannian of n-planes in V . Let V denote the trivial bundle on
Gr.n; V / attached to V , and let T denote the tautological rank-n vector subbundle of V . Write
O.�1/ D

Vn T , which is a line subbundle of the trivial bundle
Vn

V . This defines the Plücker
embedding Gr.n; V / ,! P .

Vn
V /.

Further, let us assume that T W V ! V is a nilpotent operator. We denote by GT .n; V /

the subscheme of Gr.n; V / consisting of T -invariant subspaces (see e.g. [10, Section 5.4]).
When n and V are clear from context, we will simply write GT D GT .n; V /.

For any T -invariant n-plane U , we consider the characteristic polynomial det.� � T jU /.
This defines a regular function � W GT ! kŒ��. Notice that set theoretically � is equal to �n, but
this is not necessarily true scheme-theoretically. In particular, the non-leading coefficients of
� are all nilpotent elements of kŒGT �. We define

0

ST D
0

ST .n; V / to be the closed subscheme
of GT defined by the equation � D �n.

We define for each d � 1 shuffle operators, which are linear operators

shTd W
n̂

V !

n̂

V :

To define these, consider the kŒz�-linear operator I C zT on V ˝ kŒz�, and its n-th wedge
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power
Vn

.1C zT / (taken over kŒz�). The following equality of operators on
Vn

.V /˝ kŒz�
defines shTd :

(2.1)
n̂

.I C zT / D I C

nX
dD1

zd shTd

These operators were introduced in [10, Section 6.1], where also an explicit formula appears.
For each shTd we can consider the vanishing locus, denoted V .shTd /, which is the subvari-

ety of P .
Vn

V / given by the projectivization of the kernel of shTd . We define

ST D ST .n; V / D
\
d�1

V .shTd / \ Gr.n; V /;

and we refer to the homogeneous ideal defining ST as the shuffle ideal. In our previous work,
we proved the following.

Theorem 2.1 ([10, Theorem 6.4 and Proposition 6.6]). The subscheme ST is a closed
subscheme of GT . This closed embedding induces an isomorphism of reduced schemes.

Remark 2.2. In fact, we conjecture ([10, Conjecture 7.3]) that ST is reduced and is
therefore equal to the reduced scheme of GT .

The Stiefel variety CGr.n; V / is the open subscheme of Homk.k
n; V / consisting of rank-n

linear transformations. We have a natural map CGr.n; V /! Gr.n; V /, which is a GLn-torsor.
For any closed subscheme X ,! Gr.n; V /, we define eX to be the preimage of X inside the
Stiefel variety. For example, we define the scheme e0ST this way.

2.2. Alternative description of ST .

Theorem 2.3. We have an equality ST D
0

ST as subschemes of Gr.n; V /.

Proof. Recall that ST is defined by intersecting the Grassmannian Gr.n; V / with the
vanishing locus of shuffle operators shTd W

Vn
V !

Vn
V . Consider these as operators on the

trivial bundle shTd W
Vn

V !
Vn

V , which we can restrict to get morphisms:

(2.2) shTd W O.�1/!
n̂

V :

One can alternately define ST to be the intersection of the vanishing loci of (2.2). Observe by
Theorem 2.1 that over GT , the maps

shTd W O.�1/!
n̂

V

factor through maps shTd W O.�1/! O.�1/.
Write A1 D Spec kŒz�. We can and will interpret (2.1) as an equality of endomorphisms

of
Vn

V ˝kŒz�, the trivial bundle on Gr.n; V /�A1 with fiber
Vn

V . If we restrict to GT �A1,
we obtain a map

(2.3) I C

nX
dD1

zd shTd W O.�1/˝ kŒz�! O.�1/˝ kŒz�:
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Because O.�1/ is a line bundle, the map (2.3) is equivalent to the data of a regular function
on GT valued in kŒz�. By (2.1), this map is given by the zn�.�z�1/, where � W GT ! kŒz� is
the characteristic polynomial map defined above.

2.3. Smoothness of the map ' W
e0ST ! Nn;e . We have a map ' We0ST ! Matn�n

defined as follows. For a test ring R, we have

e0ST .R/ D ¹.U;  / W U 2 0ST .R/ and  W Rn ��! U º:

The map ' sends a pair .U;  / to the n � n matrix  �1 ı T ı  .
Because of the characteristic polynomial equation defining

0

ST , the image of ' lies in the
nilpotent cone N (even scheme theoretically). In general this map is poorly behaved, but in the
special case we consider below it is smooth.

Let d; e � 1 be integers, let V be a vector space of dimension de and suppose T is the
nilpotent endomorphism of V that is given by a standard Jordan form corresponding to the
partition .ed /. Let

0

ST D
0

ST .n; V / for some n � de. In this case, the morphism ' factors
through a map ' We0ST ! Nn;e.

Theorem 2.4 ([11, Theorem 4.1]). The morphism ' We0ST ! Nn;e is smooth of relative
dimension nd .

The proof of [11, Theorem 4.1] holds in a more complicated arithmetic situation, and it
simplifies greatly in the present one. For the benefit of the reader, we will briefly explain how
their proof works in our situation.

Define a closed subscheme V of Matn;n �Homk.k
n; V / as follows. For any test ring R,

consider the ring S D RŒt�=te. The operator T defines an S -module structure on V ˝R. Addi-
tionally, any pointA 2 Nn;e.R/ defines an S -module structure onRn, which we denote byRnA.
We define V by

V.R/ D ¹.A; '/ W A 2 Nn;e.R/ and ' 2 HomS .RnA; V ˝R/º:

It is clear that e0ST admits an open embedding into V with image equal to the set of pairs .A; '/
where ' is of maximal rank.

We also have a map V ! Nn;e, but for general T this map will not be well behaved.
However, our assumptions on the Jordan type of T imply that V ˝R is a free S -module of
rank d . Noting that there is an isomorphism

HomR.Rn; R/
�
�! HomS .RnA; S/

given by f 7! ', where '.v/ D
P
i f .A

e�i�1v/t i , one concludes that the map V ! Nn;e

is a (trivial) vector bundle of rank nd . Therefore, the map e0ST ! Nn;e is smooth because
it factors as an open embedding into a vector bundle followed by projection from the vector
bundle to its base.

Remark 2.5. For a general T with T e D 0, the fibers of V ! Nn;e are closely related
to the work of Shayman [14, Section 5], who studied certain locally closed subvarieties of the
varieties

0

ST .
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2.4. Type A affine Grassmannians. Let n � 2. Recall the GLn affine Grassmann-
ian GrGLn

parameterizing lattices L � k..t//n such taL0 � L � t�bL0 for some integers
a; b � 0 where L0 D kŒŒt ��n (see e.g. [17, Section 1.1]). We further require that

dimk.L \ L0/=L0 � dimk.L \ L0/=L D 0:

This condition means that we are only considering the connected component of the full affine
Grassmannian of GLn containing the point L0. We will not use the other connected compo-
nents, so our notation should cause no confusion.

For each pair of integers a; b � 0, we consider the linear operator Ta;b on t�bL0=taL0
given by multiplication by t . We therefore obtain a closed embedding

GTa;b D GTa;b .na; t�bL0=t
aL0/ ,! GrGLn

:

Explicitly, we identify GTa;b with the subscheme of GrGLn
parameterizing latticesL � k..t//n

such that taL0 � L � t�bL0 and dim.L=taL0/ D na. Taking direct limits, we have

(2.4) GrGLn
D lim
a;b!1

GTa;b :

This realizes GrGLn
as an ind-scheme of ind-finite type. We define the affine Grassmannian

GrSLn
for SLn to be the induced reduced structure of GrGLn

. Explicitly:

GrSLn
D lim
a;b!1

.GTa;b /red:

We may also consider STa;b D STa;b .na; t�bL0=t
aL0/. A priori, STa;b is a subscheme

of GrGLn
, but below (Corollary 3.7) we will show that STa;b is in fact equal to the reduced

scheme .GTa;b /red and is therefore a subscheme of GrSLn
.

2.4.1. Big cells. Consider the decomposition

k..t//n D L0 ˚ t
�1kŒt�1�n

and the induced projection map k..t//n ! L0. The big cell of GrGLn
is the open locus consist-

ing of lattices L such that the restricted projection map L! L0 is an isomorphism. As is well
known (see e.g. [3, Lemma 2]), the big cell is isomorphic to the ind-scheme GL.1/n Œt�1� whose
R-points are given by ¹A.t�1/ 2 GLn.RŒt�1�/ W A.t�1/ � 1 mod t�1º. The open immersion
GL.1/n Œt�1� ,! GrGLn

is given by sending a matrix polynomial A.t�1/ to the lattice spanned
by its columns. We will use this identification and simply write GL.1/n Œt�1� for the big cell.

We can intersect the big cell of GrGLn
with GrSLn

to obtain the big cell of the latter. As
above, we can identify the big cell of GrSLn

with SL.1/n Œt�1�, which is analogously defined.
Let SLnŒŒt �� be the (infinite-type) scheme whose R-points are given by SLn.RŒŒt ��/.

Observe that the group SLnŒŒt �� acts on GrGLn
by left multiplication. Note that every orbit meets

the big cell as we consider only the L0 connected component of the full affine Grassmannian
of GLn.

2.4.2. Schubert varieties. Recall that the SLnŒŒt �� orbits on GrSLn
are indexed by dom-

inant cocharacters. For a dominant cocharacter �, let Gr� be the corresponding orbit closure
in GrSLn

. By definition Gr� has reduced scheme structure. Additionally, GrSLn
is isomorphic
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to a partial flag variety for the Kac–Moody group bSLn, and the subvarieties Gr� are Schubert
subvarieties. In particular, each Gr� admits a Frobenius splitting compatible with all of its
Schubert subvarieties ([9, Chapter VIII], see also [3, Section 4] and [2, Chapter 2]). There-
fore, the scheme theoretic intersection of two Schubert varieties is Frobenius split and hence
reduced. This result is the only consequence of Frobenius splitting we will use.

The Schubert varieties relevant to us are Grpn$_1 and Grqn$_n�1 , where p; q � 1 are
integers. Here n$_1 and n$_n�1 are n times the first and last fundamental coweight, which are
the minimal multiples that lie in the cocharacter (equivalently, coroot) lattice for SLn. Recall
the standard identification of the cocharacter lattice of SLn with elements of Zn whose entries
sum to zero. Under this identification we have

n$1 D .n � 1;�1; : : : ;�1/ and n$n�1 D .1; : : : ; 1; 1 � n/:

We have

Grpn$_1 D .GTp.n�1/;p /red; Grqn$_n�1 D .GTq;q.n�1//red;

which is an explicit set-theoretic description of these Schubert varieties in terms of lattices.
Because of Theorem 2.1, one immediately obtains closed embeddings

(2.5) Grpn$_1 ,! STp.n�1/;p ; Grqn$_n�1 ,! STq;q.n�1/

that are bijective on points. Below (Proposition 3.1) we will show that these are actually iso-
morphisms of schemes. In particular, the naïve lattice description of these Schubert varieties is
scheme-theoretically correct once we add a further condition about the characteristic polyno-
mial of t (as in the definition of

0

ST ).

2.4.3. Diagram automorphism. Presentation (2.4) gives rise to a closed embedding
of GrGLn

into the Sato Grassmannian SGr D lima;b!1Gr.na; t�bL0=taL0/. Taking direct
limits of the Plücker embeddings gives the Plücker embedding of SGr into P .F /, where F is
the Fermion Fock space. As is well known (see for example [10, Section 4.1]), the Fermion
Fock space can be identified with the vector space underlying the ring of symmetric functions.

Consider the involution of the ring of symmetric functions given by swapping elementary
and homogeneous symmetric functions (denoted ! in [8, Section I.2]). This induces an involu-
tion ! of SGr that preserves GrGLn

and GrSLn
. On the level of Schubert varieties, ! maps Gr�

isomorphically onto Gr�� , where � is induced by the unique non-trivial diagram automorphism
of SLn. In particular, ! maps Grpn$_1 isomorphically onto Grpn$_n�1 . On the level of big cells
GL.1/n Œt�1� and SL.1/n Œt�1�, ! is given by the following map on matrix polynomials:

(2.6) A.t�1/ 7! J � A
�
.�1/nt�1

��T
� J�1;

where J is the n � n antidiagonal matrix with entry .�1/j in column j , and where the super-
script �T denotes the inverse transpose.

Remark 2.6. Consider the group functor SLn..t// whose R-points are SLn.R..t///.
It is common to think of the affine Grassmannian as the quotient SLn..t//=SLnŒŒt ��. Equa-
tion (2.6) defines an involution of SLn..t// which preserves SLnŒŒt ��, and hence induces an
involution on SLn..t//=SLnŒŒt ��.
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Note that there are subtle technicalities involved in precisely constructing the quotient
SLn..t//=SLnŒŒt ��, so for simplicity we have opted to define the affine Grassmannian via lat-
tices. Therefore we have defined the involution via the embedding into P .F /. However, the
reader can safely consider the definition descending from SLn..t//.

3. The main proof

Proposition 3.1. For all p; q � 1, the embeddings

Grpn$_1 ,! STp.n�1/;p and Grqn$_n�1 ,! STq;q.n�1/

from (2.5) are isomorphisms. In particular, STp.n�1/;p and STq;q.n�1/ are reduced.

Proof. First consider the embedding Grpn$_1 ,! STp.n�1/;p . Both spaces are invariant
under the action of SLnŒŒt ��, so it suffices to check that this map is an isomorphism on the
big cell GL.1/n Œt�1� � GrGLn

. Observe that the intersection STp.n�1/;p \ GL.1/n Œt�1� maps into
the closed subfunctor of GL.1/n Œt�1� consisting of matrix polynomials with degree less than or
equal to p. In [7, Corollary 2] (see also the proof of [1, Proposition 6.1]), we proved that the
intersection Grpn$_1 \ GL.1/n Œt�1� is equal as a scheme to the subscheme of matrix polynomi-
als

A.t�1/ D 1C A1t
�1
C � � � C Apt

�p

such that det.A.t�1// D 1. In [10, Theorem 4.6] we showed that the coefficients of det.A.t�1//
lie in the shuffle ideal defining STp.n�1/;p . Therefore the embedding is an isomorphism.

The second isomorphism follows by applying the diagram automorphism (Section 2.4.3)
and observing that the shuffle ideal considered in [10] is invariant under it (see [10, Corol-
lary 4.3, Theorem 4.6]).

Remark 3.2. LetL be anR-point of STp.n�1/;p \ GL.1/n Œt�1�. ThenLmay be uniquely
represented by a matrix polynomial A.t�1/ 2 GL.1/n Œt�1�. It is not difficult to show that there
is an R-basis of t�pL0=L under which the matrix of t is the companion matrix of the matrix
polynomial

A.t�1/ D 1C A1t
�1
C � � � C Apt

�p:

In particular, the characteristic polynomial of this matrix is det.�pn � A.��1//. We see that the
characteristic polynomial equation defining STp.n�1/;p (via Theorem 2.3) corresponds exactly
to the equation det.A.t�1// D 1 defining Grpn$_1 \ GL.1/n Œt�1� inside matrix polynomials
with degree less than or equal to p. This in particular gives another proof of [10, Theorem 4.6].

Proposition 3.3. Let p; q � 1, and letM Dmin¹q; p.n�1/º andN Dmin¹p; q.n�1/º.
Then STM;N is reduced.

Proof. It is clear that STM;N is equal set theoretically to Grpn$
_
1 \ Grqn$

_
n�1 . Further-

more, it is known that the scheme-theoretic intersection Grpn$
_
1 \ Grqn$

_
n�1 is reduced by

Frobenius splitting (see Section 2.4.2). We therefore obtain a closed embedding

STM;N ,! STp.n�1/;p \ STq;q.n�1/ D Grpn$
_
1 \ Grqn$

_
n�1

that is bijective on points. Because the target of this map is reduced, so is its source.
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Remark 3.4. The intersection Grpn$_1 \ Grqn$_n�1 is irreducible and is therefore also
a Schubert variety for GrSLn

(see [7, Proposition 5.4]). In fact, it is also not hard to see that
STq;p is isomorphic to Grpn$_1 \ Grqn$_n�1 and is in particular reduced (cf. Corollary 3.7
below).

Recall by Theorem 2.3 and Theorem 2.4, we have a smooth map ' W BST1;e�1 ! Nn;e.

Proposition 3.5. Let e be an integer with n � e � 1. The map ' W BST1;e�1 ! Nn;e is
surjective.

Proof. As surjectivity is a set-theoretic statement, it is sufficient to work with reduced
schemes. Dividing with remainder, write n D ce C f , where 0 � f < e, and let � D .ec ; f /
be the partition with c parts of size e and one part of size f . Then the reduced scheme of Nn;e is
exactly the nilpotent orbit closure O� � Matn�n. The map ' is GLn-equivariant, so it suffices
to check that every nilpotent orbit O� � O� has non-empty intersection with the image. Since
' is open (Theorem 2.4), it suffices to check that the zero orbit is in its image, and this is clear
since t acts trivially on L0=tL0.

Theorem 3.6. For every n, e with 1 � e � n, the scheme Nn;e is reduced.

Proof. The scheme ST1;e�1 is reduced by Proposition 3.3 (choosing p D e � 1 and
q D 1). The map

B
ST1;e�1 ! ST1;e�1

is a torsor for GLn, so BST1;e�1 is also reduced. By Theorem 2.4 and Proposition 3.5, the map

' W
B
ST1;e�1 ! Nn;e

is smooth and surjective. In particular, it is faithfully flat, and the property of being reduced
descends along faithfully flat morphisms.

3.1. Another proof. After closely inspecting the above argument, we found the fol-
lowing direct proof of Theorem 3.6. The idea is essentially the same as the more conceptual
proof above, but gets to the punchline quickly and by more elementary means. The only non-
elementary ingredient is the Frobenius splitting of Schubert varieties.

Another proof of Theorem 3.6. For any p � 0, define Zp to be the closed subscheme of
Matn�nŒt�1� that represents the functor sending any test ring R to:

Zp.R/ D
®
1CB1t

�1
C � � � CBpt

�p
2 Matn�n.RŒt�1�/ W det.1CB1t�1 � � � CBptp/ D 1

¯
:

We see thatZp is a subscheme of SL.1/n Œt�1� and it is equal as a scheme to Grpn$
_
1 \SL.1/n Œt�1�

by [7, Corollary 2] (see also the proof of [1, Proposition 6.1]). In particular, Zp is reduced.
Let X be the closed subscheme of Matn�nŒt�1� that represents the functor

X.R/ D
®
1CC1t

�1
C� � �CCn�1t

�.n�1/
2 Matn�n.RŒt�1�/ W det.1�C1t�1/ D 1; Ci D C i1

¯
:

Observe that the condition det.1 � C1t�1/ D 1 is equivalent to requiring that the characteristic
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polynomial of C1 is �n. By the Cayley–Hamilton theorem, we have C n1 D 0. Therefore,

1C C1t
�1
C � � � C Cn�1t

�.n�1/
D .1 � C1t

�1/�1

and
det.1C C1t�1 C � � � C Cn�1t�.n�1// D 1:

So X is equal to a closed subscheme of Gr.n� 1/n$
_
1 \ SL.1/n Œt�1�.

The involution (2.6) of SL.1/n Œt�1� gives an isomorphism between X and Z1. We there-
fore conclude thatX is equal as a scheme to the intersection Grn$

_
n�1 \ SL.1/n Œt�1�. In particu-

lar,X is reduced. More directly, the mapX ! Matn�n sending 1CC1t�1C� � �CCn�1t�.n�1/

to C1 induces an isomorphism between X and the nilpotent cone N .
Now consider the scheme theoretic intersection X \Ze�1, which we compute inside

Zn�1. Because Zn�1 admits a Frobenius splitting compatible with X and Ze�1, the inter-
section X \Ze�1 is reduced.

On the other hand, we directly compute .X \Ze�1/.R/ to be the set of

1C C1t
�1
C � � � C Cn�1t

�.n�1/
2 Matn�n.RŒt�1�/

such that det.1 � C1t�1/ D 1, Ci D C i1 , and Ci D 0 for i � e. Therefore, under the isomor-
phism X ! N , we see that X \Ze�1 maps isomorphically to Nn;e.

Recall that all schemes of the form STa;b are reduced (Proposition 3.3, Remark 3.4). We
can also argue this directly using the proof above. For all a; b, the map ' WASTa;b ! Nna;aCb

is smooth (but not necessarily surjective). Because reducedness ascends along smooth maps,
and ASTa;b ! STa;b is a torsor for GLna, we obtain another proof of the following:

Corollary 3.7. For all a; b � 1, the scheme STa;b is reduced.
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