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Abstract
Objectives: Randomized controlled trials are the gold-standard for determining therapeutic efficacy, but are often unrepresentative of
real-world settings. Statistical transportation methods (hereafter transportation) can partially account for these differences, improving trial
applicability without breaking randomization. We transported treatment effects from two heart failure (HF) trials to a HF registry.

Study Design and Setting: Individual-patient-level data from two trials (Carvedilol or Metoprolol European Trial (COMET),
comparing carvedilol and metoprolol, and digitalis investigation group trial (DIG), comparing digoxin and placebo) and a Scottish HF reg-
istry were obtained. The primary end point for both trials was all-cause mortality; composite outcomes were all-cause mortality or hospi-
talization for COMET and HF-related death or hospitalization for DIG. We performed transportation using regression-based and inverse
odds of sampling weights (IOSW) approaches.

Results: Registry patients were older, had poorer renal function and received higher-doses of loop-diuretics than trial participants. For
each trial, point estimates were similar for the original and IOSW (e.g., DIG composite outcome: OR 0.75 (0.69, 0.82) vs. 0.73 (0.64,
0.83)). Treatment effect estimates were also similar when examining high-risk (0.64 (0.46, 0.89)) and low-risk registry patients (0.73
(0.61, 0.86)). Similar results were obtained using regression-based transportation.

Conclusion: Regression-based or IOSW approaches can be used to transport trial effect estimates to patients administrative/registry
data, with only moderate reductions in precision. � 2023 The Author(s). Published by Elsevier Inc. This is an open access article under
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Randomized controlled trials (RCTs) are the gold-
standard for determining the efficacy and safety of treat-
ments [1,2]. However, participants in heart failure (HF)
RCTs are generally younger, more likely to bemen, and have
fewer comorbidities such as chronic respiratory or kidney
disease than those encountered in clinical practice [3,4]. If
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the patient characteristics that are underrepresented are also
associated with differences in treatment efficacy (e.g., if ef-
ficacy is lower in older people), the applicability of trial find-
ings to clinical practice is attenuated. Partly for this reason,
RCTs report baseline characteristics (such as age, sex, and
disease severity) as well as treatment effects stratified by sub-
groups. However, individual patients may have many coex-
isting characteristics (for instance anemia and renal
dysfunction) which are not represented in trial analysis with
one-variable-at-a-time subgroup reporting [5].

Statistical trial transportation, also called calibration or
population adjustment in other contexts [6e8], addresses
these difficulties by weighting trial results to reflect the
characteristics of target populations more closely and,
importantly, without breaking randomization. Briefly, trans-
portation apportions greater weight to randomized
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What is new?

Key findings
� Regression-based and inverse odds of sampling

weights approach can be performed in heart failure
trials to improve trial applicability without
breaking randomization, albert with a moderate
loss of precision.

What this adds to what was known?
� While trials may have limited applicability when

applied to the real-world population, our statistical
transportation methods have demonstrated they can
be enhanced.

What is the implication and what should change
now?
� Accessing individual participant data (IPD) for tri-

als and registries is challenging. Changes in trial
reporting (providing variance-covariance matrix
for a treatment effect model including treatment-
covariate interactions) could improve the situation.

� Similarly, if summary data on the joint distribution
of patient characteristics was provided from the
registry, trialists with IPD could calibrate trials
accordingly.

L. Wei et al. / Journal of Clinica
participants that were underrepresented in the trial
compared to the target population and less weight to partic-
ipants who were overrepresented in the trial, compared to
the target population [6,9]. Calibration has been used in
other conditions such as HIV [10] and lung cancer [11]
and in dual antiplatelet therapy (DAPT) study [12] but we
are not aware of any previous attempt to transport HF trials
to a clinical practice registry for patients with HF to esti-
mate effects in clinical practice. RCTs require considerable
resources, in terms of research staff, finances and patient
commitment [13]; it is important to maximize their utility
for clinical practice.

Accordingly, we examined the effect of transporting two
landmark HF trials to patients from a Scottish clinical prac-
tice HF registry using two different methods with differing
assumptionsdinverse odds of sampling weights (IOSW)
and regression modeling.
2. Methods

2.1. Data sources

The rationale, design, methods, and principal results of
COMET, digitalis investigation group trial (DIG) have been
described by the original investigators [14e17], but each
are briefly described below.

2.2. Carvedilol or Metoprolol European Trial (COMET)

COMET was a multicenter, randomized, double-blind,
parallel-group comparison of carvedilol, and metoprolol
in participants with a left ventricular ejection fraction
(LVEF) of 35% or less. Conducted in 15 European coun-
tries, 1,511 participants were randomly assigned to carvedi-
lol and 1,518 to metoprolol tartrate. The mean trial duration
was 58 months. The primary end points were all-cause mor-
tality, and a composite of all-cause mortality or all-cause
hospitalization [14,15].

2.3. The Digitalis Investigation Group Trial

DIG was a randomized, double-blind trial of the effect
of digoxin compared to placebo among people with chronic
HF. Studied in 302 centers, 7,788 participants were
involved. The main trial was conducted for 6,800 partici-
pants with an LVEF of 45% or less. The average follow-
up time was 37 months. The primary outcome was all-
cause mortality. Worsening HF culminating in death or hos-
pitalization was a combined secondary outcome [16,17].

2.4. Heart failure registry

A clinical practice HF registry of 8,012 individuals pre-
dominantly with reduced ejection fraction (HFrEF) was ob-
tained from the largest regional health authority in Scotland
(National Health Service Greater Glasgow & Clyde,
NHSGGC), which covers 1.3million people (almost a quarter
of the Scottish population) [18]. People with HF in the region
who were assessed by community HF nurses or HF clinics
were included in the registry. Each patient’s clinical features
(diabetes, ischemic heart disease, etc.); therapy; vital signs
including heart rate, systolic blood pressure (SBP), etc; re-
sults of blood tests (serum sodium, potassium, creatinine,
etc.) were routinely recorded in an electronic health record
to support clinical care. Missing values in the HF registry
were imputed by a predictive mean matching algorithm with
one imputed dataset being generated for simplicity [19]. The
imputation includes diabetes (12%), SBP (14%), heart rate
(12%), serum sodium (24%), estimated glomerular filtration
rate (eGFR, 24%) and loop diuretics (17%) with dose ex-
pressed in furosemide equivalents (e.g., 1 mg of
bumetanide 5 40 mg of furosemide).

2.5. Statistical methods

Each trial was analyzed separately. For the primary end
point (all-cause mortality in both trials) and the composite
end point (all-cause mortality or all-cause hospitalization in
COMET and worsening HF culminating in death or hospi-
talization in DIG), each trial was calibrated to the 8,012 pa-
tients in the HF registry, first using a regression-based
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method (Supplementary Figure S2) and then using IOSW
(Figure S3). Each method is described below, with detailed
steps provided in the Supplementary.
2.6. Regression-based transportation

A model based on the trial data was first constructed.
Variables were included as model covariates based on their
availability in both the trial and registry and their potential
to modify treatment effectiveness (as Table 1).

Detailed description and implementation of the
regression-based transportation are described in the
Supplementary Appendix. Briefly, 2 parametric survival
models were built separately for the trial data and the registry
with the same distribution of the best model fit and with
model diagnostics. The model conducted for the trial
included main effects of all covariates (age, SBP, etc.) and
2-way interactions with the treatment variable (treatment
by age interaction, etc.). The natural history model for regis-
try did not contain treatment main effects and interactions
compared with the trial model as the treatment effects are
estimated solely using the trial data. Coefficients for treat-
ment main effect and interactions from the trial model and
coefficients from the registry model of the main effects of
other variables (age, SBP, etc.) were extracted to form an in-
tegrated set of coefficients. Assuming that patients in the reg-
istry receive the same intervention and comparator as in the
trial and then applying the integrated set of coefficients to the
registry, enables the risk of each outcome and the effect of
intervention to be estimated. Uncertainty in the coefficients
was propagated to the final model via simulation, with
100,000 samples being generated. The outcome predictions
and treatment effects were calculated for each sample and
summarized via the mean (geometric mean for relative mea-
sures) with the uncertainty expressed via the 2.5th and 97.5th
percentiles (95% confidence interval (CI)).

In additional analyses, we used the natural history model
fitted to the registry data to estimate the risk of the covari-
ates (e.g., age, male, SBP) and outcomes (all-cause death
et al. corresponding with trial outcomes) to estimate the
predicted risk for each individual in the register, ranked
these, then selected the top 10 percentile highest and top
10 percentile lowest into the highest and lowest risk sub-
groups respectively. We then repeated the final step of the
above analysis (applying the regression coefficients to indi-
viduals with this set of covariates) for these high and low
risk subgroups.
2.7. Inverse odds of sampling weights (IOSW)
transportation

Briefly, using the same covariates as regression-based
method, the trial and registry datasets were aggregated to
obtain counts of individuals with each combination of char-
acteristics (Supplemental Table S5). The probability that an
individual from the HF registry is included in the trial
sample, conditional on covariates, divided by the probabil-
ity of not being in the trial sampledthe inclusion oddsd
was then estimated by comparing these counts.

We then estimated the treatment effects as standard by
comparing the odds of the outcome in each treatment arm;
except that instead of all participants having the sameweight
in the analysis, different participants were weighted differ-
ently according to their inclusion odds. As an example, if
there were 500 individuals with a given set of characteristics
in the registry, and 5 participants with that set of characteris-
tics in the trial, the odds of being sampled would be 1% (5/
500). This would translate to a rawweighting of 100 (1/odds)
for those 5 participants. Final weights for all participants
would then be calculated by dividing each participant’s
weight by the sum of weights for all participants. See
Supplementary Appendix for details on the methods used
to calculate the inclusion odds and weightings, and to esti-
mate the treatment effects using the weightings.

In additional analyses we also refitted the IOSW models
based on the same high and low risk subgroups from the HF
registry identified using the regression-based approach.

All analyses were conducted in R (R 3.4.0 for trial and R
3.5 for the registry). The parametric survival models were
fitted using the ‘‘flexsurv’’ package [20] and the weighted
logistic regression models were fitted using the ‘‘survey’’
package [21].
3. Results

3.1. Baseline characteristics

The clinical characteristics of patients in the three data-
sets are shown in Table 1. Patients in the registry were older
than trial participants and had lower eGFR and higher doses
of loop diuretics. The proportion of patients who were men
was higher in both trials compared to the registry.

3.2. Effect of baseline characteristics on outcomes

The parametric survival model with a generalized
gamma distribution had the best fit and was used for the
HF registry and each trial. The coefficient for the covariates
for the HF registry and trials are shown in Fig. 1 and
Supplementary Table S6. These coefficients are mutually
adjusted. In both trials, male sex, older age, and history
of diabetes predicted a worse prognosis and higher eGFR
predicted longer survival. In COMET, use of higher dose
loop diuretics also predicted a worse outcome, higher
serum sodium concentration, and higher SBP predicted bet-
ter prognosis.

3.3. Effect of baseline characteristics on treatment
efficacy

The estimates for the treatment effects (at the mean of
all the covariate levels) and the treatment-covariate



Table 1. Baseline characteristics in each dataset included in calibrations

Variables HF registry (N [ 8,012) COMET (N [ 3,029) DIG (N [ 6,800)

Age (yr) 73 (12) 62 (11) 64 (11)

Men, n (%) 4,906 (61%) 2,412 (80%) 5,281 (78%)

History of diabetes, n (%) 1,863 (23%) 728 (24%) 1,933 (28%)

Heart rate (beats per minute) 73 (13) 81 (13) 79 (13)

Systolic blood pressure (mm Hg) 120 (21) 126 (19) 126 (20)

Serum sodium (mmol/l) 138 (4) 140 (3) –

eGFR (mL/min/1.73 m2) 59 (23) 67 (21) 62 (21)

Loop diuretics (mg/day) 62 (31) 20 (46) a

Categorical variables are shown as counts (%s) and continuous variables as means (standard deviations).
– Not available.
Abbreviations: COMET, Carvedilol or Metoprolol European Trial; DIG, Digitalis Investigation Group Trial; HF, heart failure; eGFR, estimated

glomerular filtration rate.
a In DIG loop diuretics was recorded as a categorical variable (whether participants had taken it or not or unknown) and the dosage information

was not available.
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interactions are shown in Fig. 2 and Supplementary Table
S7. The treatment-covariate interaction estimates were
wide, and for some variables the magnitude and direction
of the point estimates varied between trials. For both
COMET and DIG, treatment efficacy appeared to be lower
for patients with diabetes (accelerated failure time (AFT)
ratio: 0.95 (0.66, 1.37) and 0.93 (0.67, 1.29) for COMET
all-cause death and composite outcome; 0.90 (0.71, 1.15)
and 0.81 (0.59, 1.10) for DIG all-cause death and compos-
ite outcome) and greater for heartrate (AFT ratio: 1.06
(0.90, 1.25) and 1.13 (0.98, 1.31) for COMET and 1.07
Fig. 1. Main effects in HF registry and two trials. (For interpretation of the re
version of this article.)
(0.96, 1.20) and 1.12 (0.97, 1.30) for DIG), but the CIs
almost all included the null.
3.4. Effect of transportation on treatment effects

Fig. 3 and Supplementary Table S10 show the calibrated
treatment effects. For either primary or composite outcome
in DIG over a period of 3 years, the uncalibrated and cali-
brated effect estimates (odds ratios, ORs) were similar (OR:
0.99 (0.91, 1.07) vs. 1.06 (0.92, 1.21) vs. 1.05 (0.86, 1.28)
for uncalibrated analysis, IOSW and regression-based
ferences to color in this figure legend, the reader is referred to the Web



Fig. 2. Treatment and treatment-covariate interactions in two trials. (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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transportation for all-cause death and 0.75 (0.69, 0.82) vs.
0.73 (0.64, 0.83) vs. 0.84 (0.78, 0.91) for the composite
outcome), indicating similar efficacy in the trial and HF
registry. For COMET the efficacy was higher for IOSW
Fig. 3. Measure of effects in uncalibrated and calibrated analyses in two tria
(ARR). (For interpretation of the references to color in this figure legend, th
(OR: 0.62 (0.39, 0.99) and 0.87 (0.59, 1.30) for all cause
death and composite outcome over a period of 4 years)
but lower for the regression-based transportation (0.97
(0.72, 1.27) and 1.08 (0.81, 1.39)) although the 95% CIs
ls. (A) Odds ratio; (B) Risk of the outcome; (C) Absolute risk reduction
e reader is referred to the Web version of this article.)
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overlapped those of the uncalibrated estimates (0.83 (0.74,
0.93) and 0.94 (0.86, 1.02)). The impact of transportation
was similar where the trials were calibrated to the high-
risk and low-risk subgroups (Supplementary table S12
and Figure S6).

Where the calibrated and uncalibrated results differ, the
contribution of each covariate to this difference can be esti-
mated as the covariate-treatment interaction multiplied by
the mean difference in the covariate between the registry
and trial population. For COMET (death), eGFR and loop
diuretics dose were the main drivers, for COMET (compos-
ite) age and heartrate were the main drivers and for DIG,
male sex and heart rate were the main drivers
(Supplementary Table S8).

Compared to the uncalibrated and IOSW models, the
estimated risk of the outcome within each treatment arm
(except for metoprolol arm in COMET all-cause death, pla-
cebo arm in DIG composite) was larger for the regression-
based model (Fig. 3B), for example, the estimated mortality
in the digoxin arm of DIG was 35%, 33% and 43% in the
uncalibrated, IOSW and regression-based analysis respec-
tively. However, these differences of risk in each treatment
arm did not translate to large differences in the absolute risk
reductions (see Fig. 3C).
3.5. Effect of transportation on precision of treatment
efficacy

As expected, compared to the standard analysis, the
standard errors (SEs) were generally larger for the cali-
brated effect estimates (Supplementary Table S13). For
transportation to the overall target population, this ranged
from no increase to 4.6-fold wider SEs (e.g., SEs are
0.06, 0.15, and 0.24 for uncalibrated analysis, regression-
based and IOSW transportation for COMET all-cause mor-
tality). Where the results were calibrated to the highest and
lowest risk subgroups of the registry, which by design were
more different from the trial populations based on baseline
characteristics than was the overall population, the SEs
ranged from 1.2-fold to 12.7-fold wider. After excluding
the 1% patients with the lowest odds (highest weights) of
trial inclusion (Supplementary Tables S12 and S13), the
SE ranged from no increase to 3.1-fold wider for overall
target population, and it ranged from 1.2-fold to 7.8-fold
wider for highest and lowest risk subgroups.
4. Discussion

We calibrated two landmark HF trials to a Scottish
‘‘real-world’’ population using two approaches,
regression-based and IOSW. Both were straightforward to
perform, with only moderate loss of precision manifested
as larger SEs. This suggests that trials can be calibrated
to registry data, maximizing representativeness and appli-
cability while preserving the benefits of randomization.
Previous studies have used calibration using IOSW or
generalization via inverse probability of sampling weights
(IPSW) [10e12]. In DAPT study, using IOSW no longer
showed a significant effect of prolonged DAPT on reducing
stent thrombosis, major adverse cardiac and cerebrovascu-
lar events, but the increase in bleeding persisted [12]. Cole
and Stewart used IPSW to calibrate a major HIV trial, using
counts of people with HIV in the US stratified by age, sex
and cluster of differentiation 4 count to define the target
population [10]. The GetReal project calibrated a trial of
chemotherapy for nonsmall cell lung cancer to a cohort
study using IPSW with 15 baseline characteristics and
IPSW showed a similar hazard ratio for pemetrexed
compared with gemcitabine with greater uncertainty (a
wider CI) [11]. We add to this literature by showing that
HF trials can be calibrated to the more complex populations
encountered in clinical practice with only moderate loss in
precision, yielding similar results for both IOSW and a
regression-based approach. Furthermore, HF trials can be
calibrated to different risk subgroups based on multiple
characteristics. Unlike conventional subgroup analyses this
approach simultaneously accounts for the impact of all
measured characteristics which differ between the trial
and real-world settings.

In our analyses the calibration was performed to
improve transportability rather than generalizability. When
reweighting for generalizability, the technique is identical,
except that the inverse of the probability of trial inclusion
is used rather than the inverse odds.

Both IOSW and regression make assumptions
(Supplementary Table S1). It is essential that the main ef-
fects and interactions are correctly modeled in the
regression-based approach, and that all variables that pre-
dict both heterogeneity in participation and the outcome
have been included in the trial inclusion odds model for
the IOSW-approach. For both approaches, we also assume
that there are no treatment-covariate interactions for un-
measured variables; although it is worth noting that the cur-
rent standard approach of applying the relative treatment
effect from trials to target populations makes the more
extreme assumption that there are no covariate-treatment
interactions of any kind (measured or unmeasured). Impor-
tantly, athough transportation helps address underrepresen-
tation, caution is needed when extrapolating trial results to
patients who could not have been included in the trial (thus
violating the positivity assumption), in this case, for
example, children or people living in Africa. From a purely
technical point of view, there are differences between the
different approaches when extrapolating the trial findings
to patients with combinations of characteristics beyond
the range of the trial data. Using the IOSW approach, it
is technically impossible to reweight the estimates for
levels of characteristics beyond the range of the trial data
(e.g. if no trial participants were aged over 65 years one
cannot estimate relative effects in a population over the
age of 65). In contrast, in the regression-based approach,
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so where covariates are modeled as continuous variables
(e.g. linear terms, polynomials, etc.) it is technically
straightforward to extrapolate beyond the data. Nonethe-
less, whether applying regression or IOSW it is important
to consider whether the applicability of the predicted effect
estimates, on the required scale, are genuinely transportable
to the desired target population. In other words, whether the
relevant assumptions are met. Furthermore, participant/pa-
tient characteristics are only one way in which the circum-
stances of the trial may differ from the target population,
for example, there may be differences in clinical settings
or time periods of enrollment. Differences in diagnosis,
treatment delivery and monitoring may lead to differential
efficacy (e.g. due to improved adherence, better tailoring
of dosages, etc.) [22].These also need to be carefully
considered when assessing the transportability of effect es-
timates, and are generally less amenable to the kind of ad-
justments described in our manuscript.

Differences in the assumptions of IOSW and regression
approaches alone, provide justification for performing
both. However, they also provide different information.
For example, the IOSW approach involves calculating the
trial inclusion odds, and this then provides an overall single
summary measure for all trial participants and registry pa-
tients. This allows comparisons within and between these
populations, to determine, for example, whether the trial
and registry populations are sufficiently similar to under-
take calibration. This is analogous to an advantage of pro-
pensity score weighting in pharmacoepidemiologic
analyses (e.g., control for measured confounding, identify
barriers for treatment such as age) [23]. In contrast, an
advantage of the regression approach is that we can
explore which differences between trial participants and
registry patients are driving any observed discrepancies be-
tween calibrated and uncalibrated treatment effect esti-
mates. This can be done by examining the magnitude of
covariate-treatment interactions and comparing levels of
these covariates between trial participants and registry
patients.

The regression-based calibration approach builds on the
standard evidence synthesis modeling process for produc-
ing absolute treatment effects in a target population, recom-
mended in NICE technical support document 5 [24],
wherein:- i) a standard care model for absolute outcomes
is fitted to data representative of the target population, ii)
a relative treatment effect model is fitted to trial data and
iii) the two models are combined (usually using Monte Car-
lo methods or bootstrapping) to estimate absolute treatment
effects. Our model differs in two ways. First, we do not as-
sume homogeneity of relative treatment effects but allow
these to differ according to individual participant character-
istics. Secondly, rather than having a single estimate for the
natural history model, or having two or more estimates
stratified by some important characteristics (e.g. disease
severity), we allow the rates to differ according to individ-
ual patient characteristics. Importantly, this approach works
on the assumption that relative treatment effects are trans-
portable between trial and target populations conditional
on the covariates included in the relative effects model in
the trial data, with the standard care model fitted in the
target population providing the baseline absolute rates to
which the transported relative effects are applied. This is
in contrast to alternative standardization/g-computation ap-
proaches (e.g., as described by Dahabreh et al. [25]) which
solely use the trial data-derived model to produce absolute
predictions in the target population (i.e., the standard care
model is estimated within the trial), and thus are based
on the assumption that absolute effects are transportable be-
tween trial and target populations. This is a much more
stringent assumption to meet because differences in all
prognostic factors and effect modifiers between trial and
target population must be accounted for instead of just
the effect modifiers, and is generally considered far less
plausible. When noncollapsible relative effects measures
are used (e.g., odds ratios or hazard ratios), we must addi-
tionally take care to ensure that the parameters from the
standard care model are compatible with the parameters
from the relative treatment effects model; that is, that they
are conditioned in the same manner. This is not necessarily
true in our analysis as some of the individuals in the register
were taking digoxin and/or carvedilol. However, in many
applications where a standard care population can be
readily defined (e.g., because a new treatment is being
considered), this condition is likely to be true; because
the standard care population is restricted to (i.e., condi-
tioned on) a common standard treatment and so the param-
eters of the standard care model have the same
interpretation as their counterparts in the relative treatment
effects model. This condition is trivially met by alternative
standardization/g-computation approaches that use only the
trial data to produce absolute predictions from one single
model, although as noted above these approaches make
much stronger assumptions to transport absolute effects.
Since they exhibit different assumptions, some researchers
may wish to explore the use of both approaches as a trian-
gulation exercise.

We focused on comparing two methods of calibration
(regression-based and IOSW-based). However, it is also
possible to combine both using what are termed doubly
robust approaches where both regression and inverse-
weighting are used together. For an example of this, see.
Li et al. [26].

Butala et al. [12] suggested to trim the extremely large
weights which may be caused by small sample size to
ensure stable estimates. This can be achieved by truncating
the top weights (such as 1%) or normalizing weights. In our
additional analyses (Supplementary Table S12 and S13),
the exclusion of individuals with largest 1% weights in
the IOSW transportation slightly changed the point esti-
mates, SEs and narrowed the CI. This 1% extreme large
weights were characterized by older age, higher loop di-
uretics doses, and lower eGFR (Figure S5).
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A challenge of calibration is the need to access individ-
ual participant data (IPD) for both the trial and target pop-
ulations. This is complex (e.g., data sharing agreements and
regulatory approvals) and requires considerable analyst
time. However, as illustrated in Figure S2 in the supple-
mentary, changes in trial reporting could improve this situ-
ation. Were trialists to provide the coefficients and the
variance-covariance matrix for a treatment effect model
including all nonnegligible treatment-covariate interac-
tions, secondary researchers (with access to registry IPD)
could produce calibrated treatment effect estimates for spe-
cific target settings. To enable such an approach would also
require trialists to select the relevant covariates and to
correctly specify the treatment covariate analysis. To be
widely practiced, it would likely also require consensus
among trialists and guidance from regulatory agencies.
Similarly, it may also be possible in the future for estimates
to be produced by trialists if those managing disease regis-
tries (such as NHSGGC) were able to provide adequate
summary data to reconstruct the joint distribution of patient
characteristics. We illustrate some of the information that
would be need in Supplementary Table S14 for HF clinical
trials (age, sex, SBP, etc.). As has previously been shown,
joint covariate distributions may be reconstructed from
routinely collected data given published marginal summary
statistics (e.g. means, standard deviations) and correlation
matrices if we are willing to make assumptions about the
functional form of the marginal distributions and the corre-
lation structure, for example, by using a multivariate
normal a copula to capture the correlation structure [27].
Moreover, simulation studies have shown that the results
are likely to be robust to the assumptions used to recon-
struct the joint distribution [28]. However, for such an
approach to be adopted, additional methodological work
is first needed to i) reassure those holding routinely
collected data that the risk of reidentifying individuals is
sufficiently low and ii) reassure analysts that this para-
metric summary of the data is generally adequate for trial
calibration. For the widespread adoption of transportation,
the reporting of such summaries would need to be standard-
ized [29]. Clinical trials are already highly standardized and
sophisticated with mature ontologies and reporting stan-
dards [30]. These would need to be expanded to cover re-
porting of treatment-covariate interactions from
multivariable models. Current proposals to standardize
and harmonize HF registries would also need to incorporate
reporting standards for population summaries. Consider-
able efforts by the HF research community would be
required to implement such changes in both trial and regis-
try settings. Our observation that calibration yielded more
applicable estimates with only a moderate loss of precision
suggests that this effort is worthwhile.

There are several important limitations in our analysis.
We used routine data to define the target population
because it was highly representative of patients encoun-
tered in clinical practice. However, some important
variables were incompletely recorded, such as the New
York Heart Association classification and LVEF and there-
fore could not be included in the transportation. Although a
numerical value for LVEF was available for only 15% of
patients, a semiquantitative measure of LVEF was available
and indicated that patients in the registry are predominantly
HFrEF.
5. Conclusion

Calibration of HF trials to HF registry data is feasible
and may be used, without breaking randomization, to help
address concerns about the representativeness of trials to
patient population encountered in clinical practice. Consid-
eration should be given to trial reporting standards and
harmonization of HF registry data to facilitate transporta-
tion of clinical trials into clinical practice.
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