

OFEME Abstracts for Conference Proceedings

This form will be used to populate the conference proceedings. Please check you are happy with the content and return this form by 22nd September (emehub@lboro.ac.uk)

I confirm that I will display my poster	
Lead Author (please list affiliation)	Julien Le Kernec (University of Glasgow)
Presenting on the day	Julien Le Kernec (University of Glasgow)
Co-Authors (please list affiliations for all Co-Is)	Ran Yu (University of Glasgow)
Email Address for correspondence	Julien.LeKernec@glasgow.ac.uk
Title	Elderly care: Human activity recognition using radar pre-
	processing techniques to enhance classification accuracy
	with cyclostationarity
Abstract	Radar-based human activity recognition is considered as a
	competitive solution for elderly care health monitoring
	problem, compared to alternative techniques such as
	cameras and wearable devices. However, raw radar signals
	are often contaminated with noise, clutter, and other
	artifacts that significantly impact recognition performance,
	which highlights the importance of prepossessing techniques
	that enhance radar data quality and improve classification
	model accuracy. In this paper, we have proposed two
	different human activity classification model incorporated
	with pre-processing techniques. We introduce wavelet
	denoising methods into a cyclostationarity-based
	classification model, resulting in a substantial improvement
	in classification accuracy. To address the limitations of
	conventional pre-processing techniques, we propose a deep
	neural network model called Double Phase Cascaded
	Denoising and Classification Network (DPDCNet), which
	performs end-to-end signal-level classification and achieves
	state-of-the-art accuracy. The proposed models significantly
	reduce false detections and would enable robust activity
	monitoring for older individuals with radar signals thereby
	bringing the system closer to a practical implementation for
	deployment