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A B S T R A C T   

Accurate wind power forecasting is vital for (i) wind power management, (ii) penetration increment of the power 
generated into the power grid, and (iii) making maintenance more efficient. Motivated by the recent application 
of wavelet transforms and advancements in deep learning methods, a hybrid forecasting method is developed 
based on the wavelet packet decomposition [WPD], Long Short-Term Memory Network [LSTM], and Convolu-
tional Neural Network [CNN] to improve the accuracy of wind power forecasting. WPD is employed to 
decompose pre-processed wind power data into sublayers with different frequencies. Sequential Model-Based 
optimisation (SMBO) with the Tree Parzen Estimator (TPE) is then used to tune the hyper-parameters of 
LSTM and CNN, efficiently. The optimised LSTM is employed to predict the low-frequency sub-layer that has both 
long-term and short-term dependencies, and CNN is used to forecast the high-frequency sub-layers with short- 
term dependencies. To evaluate the prediction performance of the developed method, seven forecasting 
models, including random forest (RF), feed-forward neural network (FFNN), CNN, LSTM, WPD-FFNN, WPD- 
CNN, and WPD-LSTM models, are considered as comparison models. Comparing the prediction results of all 
involved models proves that the developed model improves the prediction accuracy by at least 77.4% compared 
to methods that do not use WPD. In addition, the proposed combination of optimised CNN and LSTM improves 
the forecasting accuracy by 26.25% compared to methods that use only one deep learning model to forecast all 
sub-series.   

1. Introduction 

Before the current gauge-political in Europe, the world was rapidly 
developing renewable energy production to reduce the harmful effects 
of burning fossil fuels, including pollution, climate change, and deple-
tion of the ozone layer [1]. Numerous international agreements have 
been made between countries around the world in recent years to move 
away from burning fossil fuels for energy production. Paris Agreement 
2015 to reduce global greenhouse gas emissions by limiting the global 
temperature to 2 ◦C above the pre-industrial level in century 21st, as 
well as the recent Glasgow Climate Pact (COP26) to keep 1.5 ◦C, can be 
mentioned as examples. These agreements are based on an increased 
focus towards renewable energy sources [2]. The war in Ukraine has 
disrupted the global energy supply, and the rapid ‘hike’ in the price of oil 
and gas due to the following economic sanctions (in response to the 
invasion) has further highlighted the need to develop renewable energy 
sources [1]. 

During the last decade, by amplifying the impact of climate and 
environmental changes, governments and scientists increasingly 
considered a variety of renewable energy resources such as wind, solar, 
wave, tidal, etc. They started to address the existing and rising chal-
lenges in harvesting renewable energy generation. Among all those re-
sources, wind power is a success story and plays a critical role in 
replacing fossil fuels [3]. However, the high level of uncertainty due to 
wind speed fluctuations still acts as the main obstacle in front of wind 
power penetration into the power grids [1]. Accurate wind power 
forecasting is necessary for proportional electricity distribution planning 
to meet consumers (industrials and households) demands. It is also 
important for determination of the optimum operating conditions and 
maintenance planning to reduce the levelised cost of energy for the fair 
pricing objective. 

In general, two steps need to be taken to develop an accurate wind 
power forecasting model: (i) prediction and (ii) optimisation. While the 
prediction aspect is carried out by the application of prediction methods, 
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the optimisation step improves the prediction performance through 
signal processing or parameter optimisation of the prediction models 
[4]. 

Power forecasting methods are categorised into three main methods, 
including physical, statistical and hybrid approaches. Physical processes 
utilise Numerical Weather Prediction (NWP) data, geographic de-
scriptions of wind turbines/farms and weather information to model 
onsite conditions. The provided model is then used for wind speed and 
wind power predictions. These models are computationally complex and 
therefore require considerable computing resources. In addition, due to 
the high sensitivity to initial conditions, there is a need for synchroni-
sation with other methods to improve prediction performance [3]. 

A precise mapping between input variables (e.g. NWP data, historical 
data, etc.) and target variables (like wind speed or wind power) is the 
foundation of statistical approaches [3]. Time series-based and machine 
learning (ML) are the two main methodologies used in these techniques 
[1]. The wind speed or wind power predictions in time series-based 
approaches are achieved by application of the historical forecasted 
variable itself. Time series-base methods have employed for very 
short-term (a few minutes to a few hours) prediction as they are able to 
recognise the hidden random features of wind speed. One of the most 
popular statistical techniques is the autoregressive integrated moving 
average (ARIMA) model established by Box-Jenkins [5], though it 
cannot handle non-linear dependencies. By understanding the correla-
tions between input and output variables, ML techniques like neural 
networks (NNs) can build deductive models. These techniques are sim-
ple to develop, do not need more geographic details or specifics about 
wind farms or turbines, and have a more significant time horizon for 
prediction. However, their performance is highly dependent on the 
selected parameters. As a result, these methods are combined with 
various methods of feature selection or parameter optimisation to 
improve prediction performance. 

Hybrid methods combine different methods to utilise their unique 
merits and improve the overall prediction accuracy. Table 1 presents 
some proposed hybrid methods in the recent years, along with their 
main features and performance improvements. What is clear is that 
although combining different methods improves overall performance, 
on the other hand it complicates the model and increases the required 
computation time. Hence, it is vital to obtain a balance between accu-
racy and efficiency. 

Choosing the appropriate input features is also critical for the ac-
curacy and reliability of wind power forecasting models. As shown in 
Table 1, wind power is used more often than other variables in wind 
power prediction models developed over the past few years. Neverthe-
less, some research indicates that additional inputs may improve wind 
power forecasts. For example [6], et al. in the development of a wind 
power forecasting model based on fandom forest (RF) showed that more 
accurate predictions can be made when the average wind speed and 
wind direction are added to the wind power as the input features. 
However, adding these features sometimes degrades the results signifi-
cantly. In another research, Velazquez et al. [7] investigated the impact 
of wind speed, wind power density, and power output on the perfor-
mance of ANN models. According to the findings, considering wind di-
rection as an input can decrease the forecasting errors. 

The accuracy of deep learning methods used in hybrid wind power 
prediction methods strongly depends on the proper selection of hyper- 
parameters [15]. Instead of manual tuning which can be extremely 
time consuming, grid and random search are used widely to set up a 
network of hyper-parameters and then run the train, predict and eval-
uation cycle automatically [16]. Nevertheless, without considering the 
past evaluated hyper-parameters, these tuning methods are relatively 
inefficient as they spend a significant amount of time evaluating 
improper hyper-parameters, i.e., wrong selection of activation functions 
of deep learning models. Bayesian model-based methods in contrast, 
through evaluation of hyper-parameters that appear more promising in 
the past results, can find better hyper-parameters in less time [17]. 

Signal processing methods such as data decomposition, data 
denoising or data feature selection can effectively improve the accuracy 
of power forecasting methods. All decomposition-based forecasting 
models published in the literature use the same framework. In this 
framework, the original non-stationary time series is decomposed into 
stationary sub-series. Then, independent forecasting models are used to 
predict each sub-series. Finally, all predictions are added together to 
form the final forecast. Independent forecasting of each sub-series can 
efficiently enhance the prediction accuracy [18]. 

Su et al. [19] decomposed the wind speed data into four 
low-frequency and four high-frequency components by WPD. Then the 
four high-frequency components were decomposed into 60 intrinsic 
mode functions (IMFs) through ensemble empirical mode decomposi-
tion (EEMD). These components were then fed to individual LSTM 
models with yaw error and rotor speed data. The power prediction re-
sults of the proposed approach showed an improvement in accuracy. 
However, the effect of the direct application of the wind power dataset 
for prediction was not investigated. Zu et al. [20] used WPD to 
decompose wind power time series into three levels. The gained 
sub-series were fed to a gated recurrent unit (GRU), and the predictions 
were reconstructed to obtain the results. Experimental results showed 
that the proposed WPD-GRU-SELU model has a higher prediction ac-
curacy than other Recurrent Neural Network (RNN) models. In another 
research, Mujeeb et al. [21] combined Wavelet Packet Transform (WPT) 
and Deep convolutional neural network (DCNN) to predict the 
day-ahead hourly wind power of ISO New England’s wind farm, how-
ever, the authors did not attempt to forecast the sub-series with different 
independent methods. In addition to WPD, other wavelet transform 
methods have recently been used in the wind power prediction field. For 

Table 1 
Hybrid wind power prediction models.  

Combined 
model 

Year Inputs Accuracy 
improvement 

Features 

BPNN, 
RBFNN, 
LSSVM [8] 

2017 wind speed 
& direction, 
temp. 

Significant 
improvement in 
accuracy. 

Pearson 
correlation 
coefficient (PCC) 
is used to 
improve the 
mapping 
accuracy 

MODA, ELNN 
[9] 

2018 Wind speed 43.96% MAPE 
reductions 
compared to 
comparison 
models 

MODA 
application for 
ELNN 
optimisation 

LSTM, GMM 
[10] 

2019 wind speed Up to 4.96% 
RMSE 
improvement over 
traditional 
methods 

LSTM used for 
prediction and 
GMM for 
uncertainty 
description 

CNN, RBFNN, 
DGF [11] 

2019 wind power accurate than 
traditional models 
for 24 h-ahead 
wind power 
prediction 

the novel double 
Gaussian function 
(DGF) employed 
for RBFNN 

ICEEMDAN, 
MOMFO, 
Wavelet NN 
[12] 

2020 wind power 62.38% 
improvement in 
MAPE compared 
to wavelet NN 

A robust hybrid 
method with 
appropriate 
accuracy and 
stability 

GA, LSTM [13] 2021 wind power Up to 30% 
accuracy 
improvement 
compared to 
existing methods 

GA application 
for LSTM window 
size and neurons 
number 
optimisation 

IF, GRU, LSTM 
[14] 

2021 wind power IF filtering 
improved 
forecasting 
performance by 
over 92%. 

A robust model 
with less 
sensitivity to 
noise in SCADA 
data  

S. Hanifi et al.                                                                                                                                                                                                                                   



Renewable Energy 218 (2023) 119241

3

example, Azimi et al. [22], with a combination of the K-means clustering 
method with discrete wavelet transform (DWT) and multilayer percep-
tron neural network (MLPNN), improved the wind power forecasting 
accuracy of the National Renewable Energy Laboratory (NREL). Shi 
et al. [23] employed variational mode decomposition (VMD) and LSTM 
to provide hourly predictions of day-ahead wind power of a Chinese 
wind farm. In another study, Liu et al. [24] combined empirical mode 
decomposition (EMD), LSTM and Elman neural network (ENN) to 
develop a hybrid model and obtained satisfactory results for multi-step 
wind speed predictions. To obtain better forecasting results, some re-
searchers use error correction mechanisms through application of the 
double decomposition methods. For example, Ma et al. [25] used this 
decomposition approach with LSTM model and proved the better pre-
diction performance of the proposed model than models without double 
decomposition. 

This research proposes a novel hybrid forecasting model for 10-min- 
ahead wind power forecasting of an offshore wind turbine in Scotland. 
The proposed model is based on applying WPD, optimised CNN and 
LSTM models without imputing future weather forecasting data. The 
proposed model is applicable when a complex non-linear relationship 
between the variables exists in the wind power time series data. The 
novelty of this research lies in creating an ensemble forecasting method 
by intelligent combination of WPD and sequential model-based opti-
mised (SMBO) CNN and LSTM models for short-term offshore wind 
power forecasting. WPD can decompose the original time series data 
into different sub-series with different frequencies. With access to both 
high-frequency and low-frequency components, patterns and trends 
displayed in wind power time series can be extracted and analyzed more 
effectively. In this way, it is possible to focus on the most important 
features of the data while reducing noise and irrelevant details. In this 
study, various mother wavelets and decomposition levels have been 
analyzed for the first time, to determine which would yield the best 
performance for WPD. Deep learning models with different performance 
in learning short-term and long-term dependencies can extract linear 
and non-linear relations from historical wind power data to make an 
accurate prediction. The present study is the first to employ CNN models 
for forecasting high-frequency components of wind power time series, 
and LSTM models for forecasting low-frequency components. In addi-
tion, the hyperparameters of both the LSTM and CNN models were tuned 
by SMBO with the Tree Parzen Estimator (TPE) that has never been used 
in the wind power prediction field. This method can significantly 

increase hyperparameter selection speed, resulting in improved pre-
diction accuracy and efficiency. 

2. Methodology 

The framework of the proposed WPD-LSTM-CNN model is demon-
strated in Fig. 1, and the entire process is depicted in detail in the 
following steps: 

Step 1) The raw SCADA data of an offshore wind turbine are pre- 
processed by removing the negative power values as obvious out-
liers, imputing the missed data, and resampling. The detail of the pre- 
processing part is described in section 3. 
Step 2) WPD decomposes the pre-processed wind power time series 
into several approximations and detail coefficients (sub-series). The 
detail of the decomposition method is described in section 2.1. 
Step 3) The optimised CNN with surrogate optimisation method is 
used to predict the high-frequency sub-layers obtained from the 
WPD. Details and structure of this method are provided in section 
2.2. 
Step 4) The LSTM is tuned and employed for predicting the low- 
frequency sub-layer with details described in section 2.3. 
Step 5) After the prediction of each sub-layer, the final forecasting 
result is generated by summing all the predictions of the sub-layers. 
The result is compared with models including RF, feed-forward 
neural network (FFNN), CNN, LSTM, WPD-LSTM and WPD-CNN to 
evaluate the forecasting performance of the developed method. 

2.1. Wavelet packet decomposition (WPD) 

As a signal processing method, WPD is an efficient mathematical 
solution for decomposing signals into approximation and detail com-
ponents with different time frequencies [26]. WPD uses low-pass and 
high-pass filters to decompose the signals to the components mentioned 
above. The approximate coefficient, obtained by applying a low-pass 
filter, has the low-frequency part of the signal and represents the 
long-term dependencies. On the other hand, the detailed coefficients 
gained by applying a high-pass filter include high-frequency compo-
nents and depict the short-term dependencies [27]. In contrast to the 
wavelet decomposition (WD) process in which only the approximation 

Fig. 1. Diagram of the applied methodology.  
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coefficients are decomposed, in WPD, the detail coefficients can also be 
decomposed [28]. As a result, it can contribute to higher accuracies in 
signal analysis than normal wavelet transforms methods. In addition, 
through decomposition by WPD, the high-frequency component of the 
signal can have a better resolution [29]. 

There are two types of WPDs; discrete wavelet transform and 
continuous wavelet transform. Continuous wavelet transform for a 
signal f(t) can be described as: 

CWTf (a, b)= 〈f (t),Ψa,b(t)〉 =

∫ +∞

− ∞
f (t)Ψ ∗ ((t − b) / a)

/ ̅̅̅
a

√
dt (1)  

where Ψ(t) denotes the selected mother wavelet function, a and b are the 
scale and translation coefficients, respectively, and * indicates the 
complex conjugate. The scale and translation coefficient in discrete 
wavelet transform can be explained by: 
{

a = 2j

b = k2j (2)  

where j and k are scale and translation factors, respectively, the 
following equations can illustrate the decomposition process of WPD: 
⎧
⎨

⎩

P2i− 1
j (t) = HPi

j− 1(t)

P2i
j (t) = GPi

j− 1(t)
(3)  

and the reconstruction process can be described as follows: 

Pi
j(t) =H ∗ P2i− 1

j+1 (t) + G ∗ P2i
j+1(t) (4)  

where t is the time index, Pi
j represents the i-wavelet packet for level j 

and H and G are the low- and high-pass filters. 
The performance of WPD is highly dependent on the selected mother 

wavelet and the chosen level of decomposition. According to the liter-
ature, the normal decomposition level is in the range of 2–4 for time 
series prediction models [30]. In this study, the 2-level framework of 
WPD is employed with the schematic diagram shown in Fig. 2. 

In addition, various mother wavelets are examined due to the impact 
of the mother wavelet on the decomposition performance and prediction 
accuracy. In this study, sixteen wavelets from four widely used wavelet 
families in the literature (Daubechies, Haar, Sym, and Coif) were 
selected, and their performance in prediction improvement of fore-
casting models, including linear regression (LR), RF, FFNN and LSTM 
are assessed. 

As seen in Table 2 and Fig. 3, the Daubechies wavelets of order 5 
have the best performance and are therefore selected as the mother 
wavelet in this study. 

The corresponding decomposition result of the application of WPD 
for the wind power time series used in this research is shown in Fig. 4. 
The upper graph in this Figure represents the wind power time-series 

before decomposition and the next four graphs show four sub-series 
obtained after decomposition. 

In this research, to improves the decomposition which leads to more 
accurate predictions, the single branch reconstruction method is used. In 
fact, during the reconstruction of each component of the final decom-
position to the original level, the values of other components of the same 
level were considered zero [28]. 

High-frequency components of wind power time series have short- 
term dependencies, while low-frequency components have long-term 
dependencies. Detection of short-term dependencies in high-frequency 
components is possible with fully connected layers, and calculations 
are performed faster than LSTM recurrent layer [31]. Therefore, this 
paper selects the CNN model to predict the high-frequency sublayers. On 
the other hand, the LSTM recurrent layer, which can better sequentially 
process the temporal data with long-term dependencies, is used for 
predicting the low-frequency sub-series. 

2.2. Convolutional neural network (CNN) 

CNN is an effective method of extracting hidden features by auto-
matically creating filters [31]. Although it is more common in the field 
of image processing, it has shown great potential for dealing with time 
series, including wind speed forecasting [32], wind power prediction 
[11], and solar irradiance forecasting [28]. CNNs are a multilayer per-
ceptron (MLP) version that can resist overfitting data [33]. While the full 
connection of neurons in each layer to neurons in other layers in MLP 
exposes them to overfitting, CNNs benefit from the hierarchical pattern 
in data and gather increasingly complex patterns using easier patterns 
embossed in their filters. Each convolutional layer in CNN can be rep-
resented as follows: 

hk
ij = f

((
Wk ∗ x

)

ij + bk

)
(5)  

where f represents the activation function and Wk represents the con-
nected kernel weights to the kth feature map. In this study, the CNN 
models consist of two convolutional layers and a fully connected dense 
layer. The optimiser algorithm independently selects the channel num-
ber of each convolutional layer and the activation function for different 
datasets and sub-series. 

2.3. Long short-term memory (LSTM) 

The LSTM model with details and features explained in the [15] is 
employed in this study based on its great capability of processing the 
temporal data with long-term and short-term dependence [34]. The 
number of LSTM units in the hidden layer, the batch size (the number of 
processed samples before updating the weights), the iterations through 
the dataset training, the sample number in each epoch during weight 
updating, and the difference order that makes data stationary are some 

Fig. 2. Schematic diagram of WPD with two layers.  
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of the hyper-parameters for LSTMs. 
To Specify the best LSTM model for wind power forecasting, it is vital 

to determine the best combination of their hyper-parameters. In this 
way, overfitting is prevented, and the generalisation of the algorithm is 
improved. 

2.4. Hyper-parameter optimisation 

To improve both the CNN and LSTM models’ prediction accuracy, 
hyper-parameters can be estimated through iterative trial and error. 
This process can be very challenging, leading to prediction errors. As a 
result, researchers try to find hyper-parameters through methods such as 
grid search or random search. The grid search process is very time 
consuming and needs considerable computing resources as it tries all 
possible combinations of hyper-parameters without considering the past 
evaluated hyper-parameters [35]. On the other hand, a random search 
algorithm looks randomly for a set of combinations rather than 

searching for better results. 
The forecasting models in this study are tuned using the Optuna 

optimisation method. The open-source optimisation software Optuna 
[34] has a number of benefits over other optimisation frameworks. 
Depending on the algorithm used to choose the parameters, other 
optimisation techniques typically vary. Gaussian Processes are used, for 
instance, by GPyOpt and Spearmint [35], Random Forests are used by 
SMAC [36], and a Tree-structured Parzen Estimator is used by Hyperopt 
[37]. (TPE). Three issues with these approaches stand out. First, for 
large-scale experiments with numerous possible parameters, definying 
the parameter search space is a very challenging procedure. Further-
more, they lack a powerful pruning approach for high-performance 
optimisation while using constrained resources. Thirdly, they are un-
able to conduct extensive handling trials with a basic setup. With 
Optuna’s define-by-run architecture, the user can dynamically create 
the search space. Optuna includes two strategies for finding the best 
hyper-parameters, a Sampling strategy for concentration on areas of 

Table 2 
RMSE values of wind power forecast (kW) based on the application of different mother wavelets.  

Model db1 db2 db3 db4 db5 db6 db7 db8 db9 db10 haar sym2 sym5 sym8 coif 1 coif 5 

LR 795 788 783 784 712 799 804 804 799 795 774 788 801 803 786 803 
RF 799 755 735 722 687 710 714 713 711 704 722 757 730 734 729 719 
FFNN 822 773 757 732 686 737 730 753 750 764 754 774 765 768 757 761 
LSTM 812 764 746 722 690 723 717 733 730 728 746 765 747 751 743 740  

Fig. 3. Prediction performance of forecasting models based on decomposition with different mother wavelets.  

Fig. 4. Wavelet packet decomposition result of wind power time series.  
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hyper-parameters with better results and a Pruning strategy with 
constantly checking the training process to terminate combination with 
worse results [15]. In this study, the Tree-structured Parzen estimator 
algorithm is used for sampling and the median stopping rule is employed 
to prune trials. More details of the optimisation process of this package 
can be found in Ref. [36]. 

The first step of the optimisation algorithm is providing the search 
space for the dynamic generation of the hyper-parameters for each trial. 
The search space for the hyper-parameters of the CNN and LSTM models 
in this research is defined in Table 3. 

2.5. Prediction performance criteria 

To evaluate the performance of the developed hybrid forecasting 
model, four prediction performance evaluation metrics were used: the 
mean absolute error (MAE), the mean square error (MSE), the root mean 
square error (RMSE), and R-square (R2). These metrics can be computed 
as: 

MAE =
1
N

∑N

i=1
|Yi − Ŷ i| (12)  

MSE =
1
N

∑N

i=1
(Ŷ i − Yi)

2 (13)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

i=1
(Ŷ i − Yi)

2

√
√
√
√ (14)  

R2 = 1 −
∑N

i=1

(Yi − Ŷ i)
2

(Yi − Y)2 (15)  

where Yi represents the recorded offshore wind power at the time step t, 
Ŷ i is the prediction of wind power values for the identified time step, Y is 
the mean power value, and N represents the number of data points. For 
further comparison of the forecasting performance of the proposed 
model with existing prediction models, the PMSE as the promoting per-
centages of mean square error, PRMSE as the promoting percentages of 
root mea , and PMAE as the promoting percentages of mean absolute 
error can be calculated from Eq. (16) to Eq. (18). In these equations, 
index 1 is related to the existing prediction models and index 2 is related 
to the proposed WPD–CNN–LSTM model. 

PMSE = |(MSE1 − MSE2) /MSE1| (16)  

PRMSE =

⃒
⃒
⃒
⃒
RMSE1 − RMSE2

RMSE1

⃒
⃒
⃒
⃒ (17)  

PMAE = |(MAE1 − MAE2) /MAE1| (18)  

3. Case study 

The Leven mouth Demonstration Turbine (LDT), an offshore wind 
turbine in Scotland with configuration and key parameters detailed in 
Refs. [15,37], provided the source SCADA data used in this investiga-
tion. The datasets were recorded for four months, from January 1, 2019 
to April 30, 2019. The 574 different observations of each timestamp in 
this time series data include generated power, wind speed at various 
levels, blade pitch angle, nacelle orientation, etc. With the exception of 
the time stamp, wind speed, and active power, all extraneous variables 
were deleted to reduce the dataset’s size and speed up calculations. 
Selection of these input features has been based on previous researches 
using the same wind power dataset [12,13]. 

An assessment of active power values revealed some obvious errors 
in the SCADA data, with plenty of negative values. In wind energy power 
prediction, negative values have no real-world applications. Shen et al. 
hypothesised that these numbers represent time stamps taken when the 
turbine’s control system was in use and the blades were not rotating, 
which resulted in no power being produced [38]. These values were 
replaced with zero to keep the time continuity of the time series. In 
addition, to decrease the negative effect of wind turbulence on the 
correlation between the measured wind speed and the output power 
[15], the resolution of data averaged 10 min. This resolution value 
corresponds to the recommended average time by the international 
standard for power performance measurements of electricity-producing 
wind turbines (IEC 61400-12-1) [39]. It is also equivalent to the 
maximum sampling rate used to predict wind speed and wind power in 
the survey conducted by Hanifi et al. [1]. 

4. Experimental results and discussions 

In order to investigate the prediction performance of the proposed 
method, the data processed in section 3 is divided into four equal 
experimental parts, each including 4200 samples, the 1st-3800th sam-
ples are used for training, and the 3801th-4200th samples are consid-
ered for testing. Fig. 5 shows these four power time series, and Table 4 
provides their statistical descriptions. 

For comparison, seven wind power forecasting models, including the 
RF, FFNN, CNN model, LSTM model, WPD-FFNN model, WPD-CNN 
model, WPD-LSTM model, and the proposed WPD–CNN–LSTM model 
were selected. 

Python programming language and packages are employed to carry 
out all the steps of the proposed method. A PC with Intel Core™ 
i7–11850H 2.5 GHz CPU and 16 GB RAM (without GPU processing) is 
used to run the numerical experiments. To better investigate the fore-
casting performance of the various models, all selected models have 
similar parameters; for example, the selected time lag (input layer 
length) was set at 10 for all of them. The values of MAE, MSE, RMSE and 
R-square of all prediction models for the four datasets are shown in 
Tables 5 and 6. 

Fig. 6 shows the prediction results of all forecasting models for the 
last day of the dataset 1, and Fig. 7 shows the same forecast for only 2 h 
of the last day. 

As can be seen from Tables 5 and 6 and Figs. 6 and 7, when the wind 
power generation encounters abrupt changes, the methods that use WPD 
to decompose the data have a better prediction performance than the 
other methods. Figs. 8–11 show the forecasting results of the proposed 
WPD-LSTM-CNN model for datasets 1 to 4, respectively. 

Based on Figs. 6–11 and Tables 5 and 6, the following conclusions 
can be drawn:  

1) Comparing the prediction performance of the FFNN, CNN and LSTM 
models with WPD-FFNN, WPD-CNN and WPD-LSTM models, 
respectively, the significant impact of WPD on improving the pre-
diction capability is evident; 

Table 3 
Search space for hyper-parameters of CNN and LSTM models.  

LSTM Model CNN Model 

Hyper- 
parameter 

Search Space Hyper-parameter Search Space 

Batch size 50, 100, 150, 200 1st convolution 
layer channels 

12, 16, 20, 24, 28, 
32, 36, 40 

Epoch numbers 100, 150, 200, 
250 

2nd convolution 
layer channels 

12, 16, 20, 24, 28, 
32, 36, 40 

LSTM units 20, 40, 60, 80, 
100 

Epoch numbers 100, 150, 200, 
250 

Neurons in 
dense layer 

20, 40, 60, 80, 
100 

Activation function Sigmoid, tanh, 
Relu 

Activation 
function 

Sigmoid, tanh, 
Relu, Softmax    
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2) The developed WPD–CNN–LSTM model has the highest prediction 
precision among all the models which are considered here;  

3) A combination of two optimised deep learning methods, CNN, and 
LSTM, for the prediction of different sub-series increases the fore-
casting accuracy compared to forecasting all sub-series with only one 
of them; 

For further assessment of the forecasting performance of the pro-
posed hybrid model, the PMSE, PRMSE, PMAE of the trial tests are used to 

provide a clear comparative analysis between the WPD-LSTM-CNN 
model and other forecasting models. Table 7 provides a comparative 
analysis between the proposed model and other involved forecasting 
models for the four experimental tests, respectively. 

Based on the reported promoting percentages in Table 7 and it can be 
recognised that:  

1) The developed WPD-LSTM-CNN is the most accurate short-term 
forecasting model for wind power time series among all evaluated 
models;  

2) The WPD-LSTM-CNN model outperforms all forecasting models 
based on the use of non-decomposed data. For example, in experi-
mental dataset 1, the RMSE value of the WPD-LSTM-CNN model, 
compared to models RF, FFNN, CNN and LSTM, was reduced by 
79.08%, 78.43%, 77.72% and 77.4%, respectively, and the MAE 
value of the proposed model for the same experimental dataset, 
compared to models RF, FFNN, CNN and LSTM was reduced by 
77.62%, 77.41%, 76.84% and 76.49%, respectively; 

Fig. 5. Four sets of 10-min averaged wind power time series.  

Table 4 
Statistical descriptions of the wind power data.  

Data Mean Min Max Standard Derivation 

Dataset 1 1794.2 0 6566.9 2167.8 
Dataset 2 2029.7 0 6567.5 2316.3 
Dataset 3 1372.4 0 6569.6 2040.3 
Dataset 4 2121.3 0 6551.2 2349.9  

Table 5 
Performance comparison between WPD–CNN–LSTM and other models for datasets 1 and 2.  

Comparison models Dataset 1 Dataset 2 

MSE RMSE MAE R-square MSE RMSE MAE R-square 

RF 350741.8 592.2 405.8 0.836 177039.3 420.8 190.5 0.73 
FFNN 329902.1 574.3 402 0.846 140227.3 374.4 158.9 0.786 
CNN 309210.7 556.1 392.1 0.856 144140.7 379.6 167.1 0.78 
LSTM 300599.8 548.3 386.2 0.858 142455.1 377.4 208.1 0.783 
WPD-FFNN 28240.2 168 118.5 0.987 9741.4 98.6 48.3 0.985 
WPD-CNN 16890.39 129.9 99.88 0.8937 6970.04 83.5 44.66 0.891 
WPD-LSTM 16844.8 129.7 95.3 0.992 6348.4 79.6 46.1 0.99 
WPD–CNN–LSTM 15354.9 123.9 90.8 0.993 6336.4 79.6 40.6 0.99  

Table 6 
Performance comparison between WPD–CNN–LSTM and other models for the datasets 3 and 4.  

Comparison models Dataset 3 Dataset 4 

MSE RMSE MAE R-square MSE RMSE MAE R-square 

RF 1303094 1141.5 636.5 0.741 287230.2 535.9 300.8 0.914 
FFNN 1297934.5 1139.2 667.3 0.741 254659.1 504.6 269.8 0.923 
CNN 1249351.3 1117.7 658.3 0.751 241560.7 491.5 269.1 0.928 
LSTM 1181880.9 1087.1 631 0.769 235092.6 484.9 272.6 0.929 
WPD-FFNN 66242.6 257.3 172.2 0.986 16465.3 128.3 72.1 0.995 
WPD-CNN 44450.1 210.8 148.2 0.991 13064.04 114.3 71.39 0.8964 
WPD-LSTM 46707.87 216.1 161.37 0.8919 11220.9 105.9 64.7 0.997 
WPD–CNN–LSTM 42461.7 206.1 146.7 0.991 11876.4 108.9 64.9 0.996  
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Fig. 6. Forecasting results of the involved models for dataset 1.  

Fig. 7. Forecasting results of the involved models for 2 h of dataset 1.  

Fig. 8. Wind power forecasting with the proposed WPD-LSTM-CNN model for data set #1.  
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3) Comparing the proposed model with other decomposed-based 
models, as shown in Table 7, the WPD-LSTM-CNN model can 
significantly outperform the WPD-FFNN model. For example, in 
experimental dataset 2, the RMSE values of the developed model are 
reduced by 19.27%, the MSE value is reduced by 34.95%, and the 
MAE level is reduced by 15.94% compared to the WPD-FFNN;  

4) The developed model can also outperform the WPD-CNN model. As 
can be seen from the evaluation criteria of the experimental dataset 
3, for example, the RMSE, MSE and MAE values of the WPD-LSTM- 
CNN model, compared to the WPD-CNN, are reduced by 2.23%, 
4.47% and 1.01%, respectively.  

5) The WPD-LSTM-CNN can also outperform the WPD-LSTM model. For 
example, in experimental dataset 4, the RMSE, MSE and MAE values 
of the WPD–CNN–LSTM model, compared to the WPD-LSTM, are 
decreased by 2.75%, 5.52% and 0.31%, respectively. 

5. Conclusions 

This paper proposes a novel wind power forecasting method based 
on the combination of WPD, optimised LSTM and CNN models. In the 
developed WPD-LSTM-CNN model, first, the obvious outliers that 

diminish the prediction accuracy, are removed and the resolution of 
data averaged over 10 min in order to mitigate the influence of turbu-
lence. After an assessment of various mother wavelets and selection of 
the db5 mother wavelet, resulting in the best performance, WPD is 
employed to decompose the pre-processed wind power time series into 
several sub-series with different frequencies. The appropriate decom-
position of signals into several sub-series increases the stationary of data 
and thus makes the prediction models more efficient. Three tuned in-
dependent CNNs are employed for the prediction of the high-frequency 
sub-series, and one optimised LSTM model is adopted to complete the 
forecasting of the low-frequency sub-layer. For the optimisation of these 
deep learning models, the SMBO method as a formalisation of Bayesian 
optimisation, provided in the Optuna optimisation package, is used to 
reduce the dependence on computational resources. 

For the prediction performance assessment of the proposed model, 
various forecasting models were employed, including the RF model, 
FFNN model, CNN model, LSTM model, WPD-FFNN model, WPD-CNN 
model, and WPD-LSTM model. 

Based on the prediction results for four different datasets it is 
observed that WPD, through extracting the hidden features of the signals 
and reducing noise and irrelevant details can effectively improve the 

Fig. 9. Wind power forecasting with the proposed WPD-LSTM-CNN model for data set #2.  

Fig. 10. Wind power forecasting with the proposed WPD-LSTM-CNN model for data set #3.  
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prediction performance of the forecasting models. This improvement is 
more pronounced during time steps when the wind power encounters 
abrupt changes. Considering the four different datasets, using WPD 
improved the average accuracy of the FFNN, CNN and LSTM models, by 
74.10%, 78.13% and 78.38%, respectively. 

It is also observed that the optimised CNN and LSTM models have 
good performance in learning the short-term and long-term de-
pendencies of the wind power time series. Using SMBO methods for 
hyper-parameter selection of these deep learning models, instead of 
commonly used methods such as grid and random search, increases the 
prediction accuracy and efficiency. Using only the CNN model increases 
the forecasting accuracy by 6.56% and 1.57% on average compared to 
the RF and FFNN models, respectively. Likewise, the application of only 

the LSTM model improves the prediction accuracy by an average of 8% 
and 3.05% compared to the RF and FFNN models, respectively. 

Furthermore, the simultaneous application of the CNN and LSTM 
models to predict the approximation and detail components of the 
decomposed time series, instead of using only one of them to predict 
both components, was shown to improve the prediction performance. 
The results of the simulations have shown that this approach leads to an 
improvement in accuracy of up to 11.93% and 14.11%, compared to the 
application of only the CNN and LSTM models, respectively. 

This research validated the ability of an ensemble method employing 
the WPD, CNN, LSTM and SMBO for short-term offshore wind power 
forecasting. The proposed model can potentially be adapted for onshore 
wind power prediction. However, some factors including geographical 
differences, data adaptation, and temporal and seasonal variabilities 
need to be considered before transition. Geographical differences be-
tween offshore and onshore wind turbines can lead to variations in wind 
patterns, turbulence, and other atmospheric conditions that affect 
generated power. In the case of data adaptation, a significant amount of 
onshore wind power data needs to be gathered for retraining the model. 
This is to ensure the required level of accuracy. The proposedforecasting 
method has the potential to advance wind power prediction applica-
tions. During the simulations carried out in this study, the effect of 
random initialisation while training the deep learning methods was 
observed. As a result, in future work, this issue will be assessed to pro-
vide the most robust prediction model with less sensitivity to the random 
initialisation. In addition, due to the lack of access to different wind 
power data sets, the model proposed here is limited to predicting the 
generated power of only one wind turbine. Future research should 
investigate the performance of the model for predictions based on other 
wind power data sets. Meanwhile, we aim to increase the forecasting 
horizon up to several hours, or even longer. 
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Fig. 11. Wind power forecasting with the proposed WPD-LSTM-CNN model for data set #4.  

Table 7 
Promoting percentages of the involved forecasting models by the 
WPD–CNN–LSTM model.  

Promoting 
percentages 

Dataset 
1 

Dataset 
2 

Dataset 
3 

Dataset 
4 

Average 

PRMSE (%) 

RF 79.08% 81.08% 81.94% 80.24% 80.59% 
FFNN 78.43% 78.74% 81.91% 79.01% 79.52% 
CNN 77.72% 79.03% 81.56% 78.45% 79.19% 
LSTM 77.40% 78.91% 81.04% 78.16% 78.88% 
WPD-FFNN 26.25% 19.27% 19.90% 17.46% 20.72% 
WPD-CNN 4.62% 4.67% 2.23% 7.35% 4.72% 
WPD-LSTM 4.47% 0.09% 4.63% 2.75% 2.99% 

PMSE (%) 
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FFNN 95.35% 95.48% 96.73% 95.59% 95.79% 
CNN 95.03% 95.60% 96.60% 95.35% 95.65% 
LSTM 94.89% 95.55% 96.41% 95.23% 95.52% 
WPD-FFNN 45.63% 34.95% 35.90% 31.85% 37.08% 
WPD-CNN 9.09% 9.09% 4.47% 14.11% 9.19% 
WPD-LSTM 8.84% 0.19% 9.09% 5.52% 5.91% 

PMAE (%) 

RF 77.62% 78.69% 76.95% 78.49% 77.94% 
FFNN 77.41% 74.45% 78.02% 76.02% 76.47% 
CNN 76.84% 75.70% 77.72% 75.96% 76.55% 
LSTM 76.49% 80.49% 76.75% 76.27% 77.50% 
WPD-FFNN 23.38% 15.94% 14.81% 10.26% 16.10% 
WPD-CNN 9.09% 9.09% 1.01% 9.38% 7.14% 
WPD-LSTM 4.72% 11.93% 9.09% 0.31% 6.51%  
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Nomenclature 

Latin symbols 
a Scale coefficient 
b Translation coefficient 
db Daubechies 
f Activation function 
G High pass filter 
H Low pass filter 
ht LSTM overall output 
ht− 1 cell state vector at time step t − 1 
it LSTM input gate 
ot LSTM’s output gate 
Pt measured wind power at the time t 
P̂t+k/t predicted wind power for the future time k 
P̂t+k/t predicted wind power for the future time k 
t Time index 
Ui, Uo, Uf LSTM assigned weights 
Wi,Wo,Wf LSTM assigned weights 
Wk kernel weights 
xt neuron input at time step t 
Yi Measured Wind Power 
Ŷ i Forecasted wind power 
Y Mean wind power  

Greek symbols 
σl Activation function 
σs activation function 
φt ARIMA model coefficient 
θt ARIMA model coefficient 
Ψ(t) mother wavelet function  

Abbreviation 
ANN Artificial Neural Network 
ARIMA Auto-Regressive Integrated Moving Average 
CEC Constant Error Carousel 
CNN Convolutional Neural Network 
CWT Continuous Wavelet Transform 
DBN Deep Belief Network 
DCNN Deep convolutional neural network 
DGF Double Gaussian Function 
EEMD ensemble empirical mode decomposition 
FFNN Feed Forward Neural Network 
GRU Gated Recurrent Unit 
IMFs intrinsic mode functions 
LDT Levenmouth Demonstration Turbine 
LSTM Long Short-Term Memory 
MAE Mean Absolute Error 
ML Machine Learning 
MSE Mean Square Error 
NN Neural Network 
NWP Numerical Weather Prediction 
ORE Offshore Renewable Energy 
PRMSE promoting percentages of root mean square error 
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PMAE promoting percentages of mean absolute error 
PMSE promoting percentages of mean square error 
RBF Radial Basis Function 
RMSE Root Mean Square Error 
RF Random Forest 
RNN Recurrent Neural Network 
R2 R-square 
SCADA Supervisory Control and Data Acquisition 
SMBO Sequential Model-Based Optimisation 
TPE Tree Parzen Estimator 
VMD variational model decomposition 
WPD Wavelet Packet Decomposition 
WPT Wavelet Packet Transform 
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