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Abstract—Head movement holds significant importance in con-
veying body language, expressing specific gestures, and reflecting
emotional and character aspects. The detection of head movement
in smart or assistive driving applications can play an important
role in preventing major accidents and potentially saving lives.
Additionally, it aids in identifying driver fatigue, a significant
contributor to deadly road accidents worldwide. However, most
existing head movement detection systems rely on cameras, which
raise privacy concerns, face challenges with lighting conditions,
and require complex training with long video sequences. This
novel privacy-preserving system utilizes UWB-radar technology
and leverages Deep Learning (DL) techniques to address the
mentioned issues. The system focuses on classifying the five most
common head gestures: Head 45L (HL45), Head 45R (HR45),
Head 90L (HL90), Head 90R (HR90), and Head Down (HD).
By processing the recorded data as spectrograms and leveraging
the advanced DL model VGG16, the proposed system accurately
detects these head gestures, achieving a maximum classification
accuracy of 84.00% across all classes. This study presents a proof
of concept for an effective and privacy-conscious approach to
head position classification.

Index Terms—Deep learning, RF sensing, Head Movement,
UWB radar, Assistive Driving

I. INTRODUCTION

Head movement-detection is used in a growing number of
applications, such as assistive technology, video conferencing,
and virtual reality. This has led to more research into making
real-time head movement detection and tracking systems that
are robust and accurate. Since the past decade, smart driving
assistance systems have been a significant area of research.
Such technologies depend significantly on driver attentiveness
detection. It detects the driver’s state to minimize distractions
while driving. The position of the driver’s head may indi-
cate his level of concentration. Tracking the movement of
a driver’s head is a commonly used method to study driver
attentiveness, replacing the monitoring of eye movements that
can be affected by lighting conditions. In the context of head
position estimation, various techniques have been explored,
and a survey of these methods can be found in the work by
[1]. [2] proposes a method to detect a cyclist’s intention to
cross the road using posture estimation. The system analyzes
the cyclist’s body position and movements to determine if
they plan to cross. Experimental results demonstrate the ef-



fectiveness of the approach, providing valuable insights for
autonomous driving. [3] presents a driver fatigue detection
system that uses facial features and a gated recurrent unit
(GRU) model. By analyzing facial expressions, the system
accurately detects driver fatigue. The GRU model classifies
fatigue levels based on extracted facial features, improving
road safety by preventing accidents caused by drowsy driving.
In [4], a computational framework was proposed for robust
face identification and posture estimation. The researchers
employed a multi-primitive closed-loop face analysis approach
using video-arrays, which yielded precise and reliable out-
comes. This approach allowed for enhanced face recognition
and the estimation of head posture in various conditions. In [5],
facial symmetry and anthropometric measurements were em-
ployed to determine head orientation. By considering factors
such as eye distances and camera focal length, the researchers
calculated the Y-Z coordinates of the head. Additionally, head
X-axis orientation was estimated using face anthropometry.
The effectiveness of this method was evaluated using real
photographs as test samples. For accurately calculating the 3D
posture of a user’s head in real-time, a novel tracking system
based on a stochastic filtering framework was suggested in
[6]. This system calculates a user’s head posture for each
picture frame using a 3D model that was automatically created
after initialization. The estimation approach is specifically
made to define a motion model’s diffusion factor in an
adaptive manner. This approach contributes to concurrently
enhancing the performance of robust tracking against sudden
head movements and accurate pose estimation while the user
is gazing at a spot in a scene. [7] proposed an estimation
of head-pose independent method using a Biased-Manifold-
Embedding framework, however, the projection-matrix lacking
the ability to compute new data-points is a major shortcoming
of this method. [8] proposed a view-based head pose estima-
tion using eigenspaces. A study [9], showed that drivers may
involve in various activities while driving which might get
more sophisticated than driving normally. The most reported
driving activities from UK-drivers are listed in Table. I.
Computer vision based systems are one of the most frequent

Non-Driving Activities Occurrence
Read Activities 7.6%
Sleep Activities 7.2%
Call or Texting Activities 5.5%
Other work engagements 4.9%
Watch Tv or Movies 4.2%
Play Games 1.9%

TABLE I: Non-Driving Activities and its Occurrence Rate.

research approaches for detecting head movements [10]–[12]
but unless numerous cameras are utilised, a frequent restriction
of camera-based head tracking systems is that adequate facial
characteristics must be visible, which restricts the detectable
angle of head movement and, consequently, the ability to
quantify driving activities. Such techniques investigated need
powerful computing hardware and are highly susceptible to
privacy aspects of users. In [13], radar-based head movement

recognition is presented for driving scenario where four cases
of driver’s head movements were recorded namely (a) Front,
(b) Shaking head up and down, (c) Shaking head side to
side, and (d) Lowering the head. [14] developed head position
monitoring and classification system using thin strain-sensing
threads on the neck. A bluetooth module and impedance
reading circuits communicate the strain data to a computer
which is then classified using machine learning algorithm.
This study introduces a novel approach for recognizing head
movement gestures using micro-Doppler signatures captured
by a radar sensor. The proposed system considers five different
gestures: HL45, HR45, HL90, HR90, and HD. Experimen-
tal data is collected using an ultra-wideband (UWB) radar,
specifically the XeThru X4M03 model. The collected data is
transformed into spectrograms, and spatiotemporal features are
extracted using the VGG16 model. The achieved classification
accuracy is 84%. Detailed information about the experimental
setup, data collection process, deep learning algorithms, and
experimental results can be found in the subsequent sections.
The rest of the paper is organized as: Section II provides an
outline of the utilized approaches concerning the experimental
configuration, hardware details, data acquisition, and deep
learning algorithms. In Section III, evaluation criteria and
result and discussion. Our work is concluded in Section IV
with some future findings.

II. METHODOLOGY

Table 1 presents a block diagram illustrating the method-
ology employed in this investigation, which consist of two
primary stages. Firstly, diverse datasets of head movements
were collected, constructed, and annotated. Then, the VGG16
deep learning model was used to classify the head movements.
The subsequent sections offer detailed explanations of each
step in the proposed methodology.

A. Experimental setup and data collection

This study proposes a head movement recognition system
based on a UWB radar sensor (Xethru X4M03) developed
by Novelda. The radar system integrates antennas and a
transmitter, enabling highly accurate distance measurements
and capturing detailed movement information. The radar was
positioned at a distance of 0.79 meters from the subject/target
during data collection, as shown in Fig. 2. Each head move-
ment activity demonstrated in Fig. 4 was executed for a
duration of 4 seconds, and the RF signals were transmitted
and received within the designated range for each activity.
The collected data was then stored as spectrograms, where
the x-axis represents time and the y-axis represents Doppler
frequency (Hz), as shown in Fig. 3. Spectrograms provide
valuable information about the dynamic movement of the head.
To ensure an adequate number of data samples, participants
were instructed to perform each head gesture multiple times.
The data collection process involved one male and one female
participant to enhance the realism and diversity of the dataset.
In total, 250 data samples were gathered for the five distinct
head gesture classes: HL45, HR45, HL90, HR90, and HD.



The distribution of the head gesture dataset is presented in
Table. III. In each experiment, 125 data samples were collected
from each participant, with 25 samples per class. Among the
collected spectrograms, 100 were used for training and 25 for
testing. The spectrograms of all activities are visualized in Fig.
1. Further details about the experimental setup and system
parameters can be found in Table. II. The specifications of the
experimental setup and system parameters are listed in Table
II.

Parameter Value
Equipment XetruRadar (X4MO3)
Radar-Range 9 m
Distance 0.79 m
Radar-Frequency 7 GHz
Gain (Receiver) (dB) ETSI (14.1)
Power (Transmitter) 6.3 dBm
Activity Duration 4 seconds
Sample collected per class 25

TABLE II: System parameters of the experimental setup.

Classes Experimental Dataset
Subject (S1) Subject (S2) Combined Total

HL45 25 25 50 100
HR45 25 25 50 100
HL90 25 25 50 100
HR90 25 25 50 100
HD 25 25 50 100
Total 125 125 250 500

TABLE III: An overview of the collected data, number of
subjects, and performed activities.

B. Deep learning Algorithm

The architecture utilized in this model is VGG16, as
mentioned in [15], which comprises a total of 16 layers.
This architecture incorporates 3x3 filters with a stride of 1
and consists of approximately 138 million parameters. The
padding and maximum pooling layers within this architecture
are implemented using a 2x2 filter size with a stride of 2. The
hierarchy of layers in this approach includes ReLU layers,
convolutional layers, and max pool layers. ReLU combines
fast learning with effective computing. Finally, it has three
completely connected layers and an output softmax. The
parameters we have used for evaluation are Learning Rate
(L-Rate), Batch Size (B-Size), Learning Algorithm (L-Algo),
Loss Function (L-Fntn), Maximum Epochs (Max-Epochs),
Iteration per Epoch (IPE), and Elapsed time (E-time). The
parameter settings of VGG16 are shown in Table. IV.

III. SYSTEM EVALUATION AND RESULTS

In this section, we provide a comprehensive overview of
the system evaluation and discuss the classification results
achieved using the pre-trained model.

DL Model Parameters Settings

Subject (S1)

L-Rate
B-Size
L-Algo
L-Fntn
Max-Epochs
IPE
E-time for 0.79 M

0.0001
32
Adam
Cross-entropy
15
30
00:40:03

Subject (S2)

L-Rate
B-Size
L-Algo
L-Fntn
Max-Epochs
IPE
E-time for 0.79 M

0.0001
32
Adam
Cross-entropy
15
30
00:32:14

Combined

L-Rate
B-Size
L-Algo
L-Fntn
Max-Epochs
IPE
E-time for 0.79 M

0.0001
32
Adam
Cross-entropy
15
60
01:22:08

TABLE IV: Parameter settings for the selected models

A. Performance Metrics

In this context, the outcomes refer to the results obtained
from evaluating the performance of the VGG16 deep learning
model in classifying five different head movements. The
Equation (4), was used for calculated average test accuracy
which measures how accurately the model predicts the correct
head movement class. Additionally, the F1 Score is calculated
to further evaluate the model’s performance. The F1 Score is
a metric that combines both precision and recall, providing
a balanced measure of the model’s accuracy. It is calculated
using specific equations, referred to as Equation (3) and
Equation (1), which consider the number of true positives,
false positives, and false negatives.

Precision =

∑
TP∑

TP +
∑

FN
(1)

Recall =

∑
TP∑

TP +
∑

FN
(2)

F1− Score = 2
Precision×Recall

Precision+Recall
(3)

Accuracy =

∑
(TP + TN)∑

(TP + FP + TN + FN)
(4)

B. Result and Discussion

Experiments were conducted utilising test and train-split
methodology, with 80% of the data serving as training-data
and the remaining 20% serving as testing-data. The VGG16
pre trained models have 15 epochs, Adamax as the optimizer,
having a learning rate of 0.001.

The outcomes of the experiments are given in Fig. 5a, 5b,
and 5c. In this case, Fig. 5a shows the VGG16 model of a
female subject’s confusion matrix for the classification of the
considered classes. The figure shows that the majority of the
classes are accurately identified, with the lowest classification
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Fig. 1: Block diagram of the proposed architecture showcasing the UWB radar-based system, data gathering, and DL
classification model for Head Movements.

Fig. 2: Experimental setup of the proposed Head movement
recognition system.

Subject VGG16 Model
Accuracy (%) Precision Recall F1-Score

Subject (S1) 80.0 0.80 0.85 0.81
Subject (S2) 84.0 0.84 0.82 0.84
Combined 70.0 0.70 0.78 0.72

TABLE V: Metrics, including accuracy, recall, precision, and
F1-score, were compared between subjects using VGG16.

accuracy of 60% for HL45 and HL90. This shows a 40%
similarity between HR45 and HL45 and a 40% similarity
between HL45 and HL90.

Furthermore, the Male (S2) confusion matrix is shown
in Fig. 5b, in which the accuracy of the classification is
around 100% for all classes excluding the HL45 and HR45,
which seem to be similar to HR90 and HL45. Similarly,
the confusion matrix of classifying the given head movement
using combined dataset is presented in Table. 5c. With the
exception of HL45, most of the classes are correctly classified,

which exhibits resemblance with 30% HL90, 20% HR90, 10%
HR45 and HR90 show similarities with 50% of HL90 and 10%
HD. Table. V presents the total accuracy, precision, recall, and
F1-score of the DL models under consideration. It is clear
from the table that Subject (S2) performs better than Subject
(S1) and combined dataset showing an overall test accuracy
of 84.000

IV. CONCLUSION AND FUTURE DIRECTIONS

Using the Xethru UWB Radar sensor and the DL al-
gorithms, this research proposed a privacy-preserving head
movement recognition system. The study focuses on five com-
mon head movements: HL45, HR45, HL90, HR90, and HD.
Spectrograms capturing micro-Doppler features were recorded
for each movement class and used to train VGG16 deep-
learning models. The classification accuracy for most classes
approached 100%, with the Male (S2) participant showing the
highest performance. Overall, the system achieved an accuracy
of 84.00% across all five classes. This preliminary work has
resulted in a five-class head movement dataset, which will
be further expanded and improved in future studies. Also we
will take into consideration the key challenges in head-pose
estimation systems which are real-time tracking as well as
detection of non-driving activities, a few of these activities
are mentioned in Table. I.
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