
\

Alhamed, M. and Storer, T. (2022) Evaluation of Context-Aware Language

Models and Experts for Effort Estimation of Software Maintenance Issues.

In: 2022 IEEE International Conference on Software Maintenance and

Evolution (ICSME 2022), Limisol, Cyprus, 03-07 Oct 2022, pp. 129-138.

ISBN 9781665479578 (doi: 10.1109/ICSME55016.2022.00020)

The material cannot be used for any other purpose without further

permission of the publisher and is for private use only.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from

it.

https://eprints.gla.ac.uk/305420/

 Deposited on 25 August 2023

Enlighten – Research publications by members of the University of

 Glasgow

http://eprints.gla.ac.uk

https://doi.org/10.1109/ICSME55016.2022.00020
https://eprints.gla.ac.uk/305420/
http://eprints.gla.ac.uk/

Evaluation of Context-Aware Language Models and
Experts for Effort Estimation of Software

Maintenance Issues
Mohammed Alhamed

School of Computing Science
University of Glasgow

Glassgow, UK
m.alhamed.1@research.gla.c.uk

Tim Storer
School of Computing Science

University of Glasgow
Glassgow, UK

timothy.storer@glasgow.ac.uk

Abstract—Reflecting upon recent advances in Natural Lan-
guage Processing (NLP), this paper evaluates the effectiveness of
context-aware NLP models for predicting software task effort es-
timates. Term Frequency–Inverse Document Frequency (TF-IDF)
and Bidirectional Encoder Representations from Transformers
(BERT) were used as feature extraction methods; Random forest
and BERT feed-forward linear neural networks were used as
classifiers. Using three datasets drawn from open-source projects
and one from a commercial project, the paper evaluates the
models and compares the best performing model with expert
estimates from both kinds of datasets. The results suggest that
BERT as a feature extraction and classifier shows slightly better
performance than other combinations, but that there is no sig-
nificant difference between the presented methods. On the other
hand, the results show that expert and Machine Learning (ML)
estimate performances are similar, with the experts’ performance
being slightly better. Both findings confirmed existing literature,
but using substantially different experimental settings.

Index Terms—empirical software engineering, software effort
estimation, software maintenance issues, machine learning, NLP,
BERT, TF–IDF, datasets, replication

I. INTRODUCTION

Software effort estimation (SEE) plays a critical role in plan-
ning activities during the Software Development Life Cycle
(SDLC), providing the basis for developing project budgets,
schedules and roadmaps. Numerous studies have reported on
the difficulties of producing reliable software effort estimates
for tasks, resulting in budget over-runs and/or the delivery of
low quality software. For instance, Grimstad et al. [1] found
that tight schedules give developers a reason for not assuring
the quality of their code. Expert-based SEE methods are
considered more reliable and popular than approaches based
on formal models among practitioners [2, 3]. Nonetheless,
expert-based SEE methods are both labour intensive and rely
on the availability of suitably experienced estimators.

Considerable attention has therefore been paid in the litera-
ture to methods that can automate SEE, reducing costs without
impacting accuracy. Both parametric and machine learning
(ML) based methods have been explored for this purpose
[4, 5]. Unlike parametric methods, ML methods build implicit
data models of associations between dependent (effort) and

independent variables. ML models thus potentially offers more
flexibility in identifying correlations between task features and
effort than the predefined associations in parametric methods.
Wen et al. [5] reports that in both cases, most studies use
numerical features, e.g. the number of source code lines, as
a basis for prediction. Aside from a small number of studies,
[6, 7, 8, 9], the literature lacks research into the use of a text
corpus that describes the software task to predict effort.

Recent advancements in natural language processing (NLP)
enable richer feature extraction. In particular, language models
such as Bidirectional Encoder Representations from Trans-
formers (BERT) are able to extract features from a text
corpus that is aware of the text context [10]. These techniques
allow the features of a word to depend on it’s context, or
in Firth’s summary of 1957 the underlying linguistic theory
of Distributional Structure, “You shall know a word by the
company it keeps!”.

Further, these techniques also allow general contextual
models of languages to be tuned for application in more
specialised domains, i.e. effort estimation. This approach has
already been explored by Fávero et al. [8], who used text-
based effort estimation along with BERT to extract features
from a bugs corpus. Their results indicate the potential for
effective effort prediction using this approach. Additionally,
Fávero et al. [8] compared two pre-trained embedding text
representations (Word2Vec and BERT) using the DEEP-SE
dataset [6], and their experiment resulted in promising out-
comes which suggest that using BERT as a contextualised text-
embedding representation increases the prediction accuracy.
However, Fávero et al.’s study [8] is based on the assumption
that pre-trained text representation is better than other feature
extraction methods, e.g. Term Frequency–Inverse Document
Frequency (TF–IDF).

In the case of advanced NLP language models, e.g. BERT, it
is not clear whether improvements in estimation performance
is due to better feature extraction from the text corpus, or
better classification or regression algorithms for consequent
prediction. A second concern is how such NLP advances
performance in comparison to expert-based estimates. To

evaluate the context-aware and context-less features, this paper
uses two feature extraction methods, specifically, TF–IDF as a
context-less feature extraction method and BERT as a context-
aware feature extraction method. While TF–IDF lacks context
properties a word may carry, such as multiple meanings in
homonyms and paragraph contexts, it is faster than BERT. In
addition, technical corpus such as the text in issues description
may contain content such as stack traces that may undermine
the benefits of employing advanced natural language models.

Contribution: In this paper, we therefore address this gap
by evaluating effort estimation using Random Forest (RF) and
BERT using three open-source datasets and one commercial-
based dataset. We also take a deeper investigation of recent
NLP advances and evaluate the effects of context-less and
context-aware feature extraction on prediction reliability. In
addition, we compare expert-based estimates with best per-
forming ML-based predictions.

Previous studies have treated effort estimation as a re-
gression problem, attempting to express effort as numerical
value such as person-hours. However, contemporary expert
based estimation methods such as Planning Poker [12] express
task effort in metaphorical categories that suggest increasing
uncertainty with estimate magnitude. For example, Grenning
[12] suggests using a Fibonacci sequence of story points
to indicate the margin of error between estimate sizes as
they increase in magnitude. Cohn [3] states that approximate
person-effort categories are more appropriate because it is
often unrealistic to expect person-hour precision estimates to
be accurate for software tasks. Menzies and Shepperd [13]
asserts that data discretisation concentrates signals in datasets,
which significantly enhances the ML model’s performance.
The discretisation is an essential consideration since the
datasets that are used in this paper have expert-based effort
estimates (as baseline). Further, Cohn [3] argues that teams
eventually develop a tacit interpretation of the relationship
between the relative categorical estimate and actual person-
time costs, as the completed tasks are compared to the team’s
available person-hour budget over several sprints.

In this paper, inspired by the Planning Poker [12] estima-
tion method, we therefore describe and apply a task effort
discretisation method that transforms person-time estimates
recorded in the employed datasets into categorical estimates.
This Planning Poker [12] inspired approach was used in this
paper to design a new discretisation category that avoids some
drawbacks, such as discretisation noise [14], and brings in the
concept of the magnitude of the error to discretisation. Thus,
this discretisation is referred to as magnitude discretisation
in this paper. This approach models the evaluation of effort
estimation after the predominant practice in industry [15] and
enables us in to treat effort estimation as a classification
problem, rather than regression.

The rest of this paper is structured as follows. Section II
presents related work on effort estimation and discusses the
contribution made by this paper in more detail. Section III
explains the experiment design, including choice of data sets
and feature extraction and classification methods. Section IV

details the results of three combination between the selected
classifiers and feature extraction methods. Then, Section V dis-
cusses the results along with validity threats. Finally, Section
VII sums up the paper and highlights future research.

II. RELATED WORK

In a survey of effort estimation studies Wen et al. [5]
indicates that regardless of algorithmic (parametric or ML)
approach used, most studies use numerical features, e.g.
the number of source code lines, as a basis for prediction.
However, early research has contended that analytical models
based on numerical inputs alone are insufficient for achieving
improvements in effort estimation [16].

More recent work has begun to consider text based features
for effort estimation, such as task description. For example,
Ionescu [7] found that features extracted from text offer
a more profound linkage between the issues than numeric
properties only. Recent advancements in ML and natural
language processing (NLP) enable richer feature extraction.
In particular, language models such as Bidirectional Encoder
Representations from Transformers (BERT) are able to extract
features from a text corpus that is aware of the text context
[10]. In addition, general models of language and context can
be tuned for specialist domains, i.e. software task descriptions,
enabling transfer learning.

Several studies in effort estimation [6, 17, 8] have used
different deep learning ML models to predict effort estimation
from text-based features at a task level. While none of these
studies have compared machine-based with expert based esti-
mates (this paper’s baseline), they based their comparisons on
actual effort (this paper’s ground truth) reported in the datasets
selected in their respective studies.

Choetkiertikul et al. [6] were able to produce a better
performance of effort estimates for Agile software develop-
ment projects using their ML models. The dataset collection
approach presented in the paper and Choetkiertikul et al.
[6]’s are similar. Both approaches source software issues
from open-source communities that use JIRA issue tracker
system. However, Choetkiertikul et al. [6] didn’t utilise the
existing pre-trained language models such as BERT, and thus,
Choetkiertikul et al. [6] model was trained only on a more
limited dataset compared with the results presented in this
paper. This therefore reduces the range of language features
that may be observed in the task description

Ardimento and Mele [17] focuses on finding the overall
time-to fix for bugs in their dataset by utilising the text in
the description and developer comments. Similar to this paper,
Ardimento and Mele used BERT as a base of their data model.
However, the study extracted the corpus from the Bugzilla
issue tracking system rather than JIRA, and tuned BERT data
model to predict whether a bug resolution will be in one of two
categories, slow or fast. The focus of Ardimento and Mele’s
work was focused on handling speed (slow or fast) compared
with more nuanced issue effort categorisation as described
in this paper. While predicting the time to fix may help in

prioritising issue triage, it may not help in building project
budgets and plans.

More recently Fávero et al. [8] used text-based effort
estimation along with BERT to extract features from a bug
corpus. Their experimenal results suggest an effective time
prediction. Additionally, Fávero et al. [8] compared two pre-
trained embedding text representations (Word2Vec and BERT)
using the DEEP-SE dataset [6], and their experiment resulted
in promising outcomes which suggest that using BERT as
a contextualised text-embedding representation increases the
prediction accuracy. Similar to this study, Fávero et al. used
SEEP-SE dataset and tuned BERT to predict the estimates.
However, Fávero et al.’s study [8] is built on an unveri-
fied assumption that pre-trained text representation is better
than other feature extraction methods, e.g. Term Frequency–
Inverse Document Frequency (TF–IDF). Unlike this paper
Fávero et al.’s evaluation, this paper have used two diffrent
classification methods and two feature extraction methods to
understand the source of the reported enhancement in Fávero
et al.’s evaluation.

III. EXPERIMENTAL DESIGN

This section illustrates the experimental design to evaluate
RF and BERT’s feed-forward network linear classifiers to
predict the effort estimation category. Both classifiers are se-
lected because they fall under the top three classifier categories
mentioned by both ML surveys [5, 18]. In addition, the feed-
forward network linear classifier is the default classifier that
comes with the Transformers library [19]. The experiment also
compares two feature extraction methods, BERT embeddings
and TF-IDF vectorisation. Finally, it also evaluates prediction
performance with expert estimates (baseline) for those projects
that have expert estimates. The experiment was designed to
answer the following research questions about ML-based SEE
methods:

• RQ1: How accurate are the selected ML models in
predicting actual effort?

• RQ2: Is there a significant difference between BERT
embeddings and TF-IDF vectorisation?

• RQ3: How comparable are the selected ML model pre-
dictions to expert estimates?

A. Experiment Datasets

The four datasets selected for the experiment, specifically
the JIRA Open Source Software Effort (JOSSE) [20], Planning
Poker Industry (PPI), Deep-SE [6], and Porru’s [21]. PPI
have been collected as part of the research for this paper,
and JOSSE, Deep-SE and Porru are publicly available, task-
based, annotated with text corpus and effort estimates. In all
the datasets, task description is the independent variable and
estimate category is the dependent variable. Three datasets
are drawn from open-source communities (JOSS, Deep-SE,
and Porru’s), and PPI was derived from a commercial project.
Table Igive summary information about the datasets and their
properties. The tables lists the number of records inside each
dataset (Deep-SE is the largest), and the minimum, maximum,

mean, median, and standard deviation of the dependent vari-
able (effort estimates) in both person-hours and story points.

A subset of the JOSSE dataset has previously been pub-
lished in a replication pack for the study described by Alhamed
and Storer [22], with the full archive now made available
on GitHub [20]. The JOSSE dataset [20] was collected from
three open-source communities, including Apache, JBoss, and
Spring. It consists of 16,979 issues annotated with actual ef-
fort, and 4327 issues are annotated with expert-based estimated
effort and actual effort in person-hours.

The Deep-SE dataset is derived from Choetkiertikul et al.’s
study [6]. They collected their data in the same way as for
JOSS, by mining JIRA systems. The data was collected from 9
open-source communities (Apache, Appcelerator, DuraSpace,
Atlassian, Moodle, Lsstcorp, MuleSoft, Spring, and Talend-
forge) and belongs to 17 different projects. Effort in the
Deep-SE data set is represented by story points. While this
dataset offers different attributes, e.g. lines of code, only
task description and logged effort were extracted for the
present study. Porru’s dataset was obtained from Porru et al.’s
study [21]. It was also collected using the same method as
JOSSE and Deep-SE. It consists of 4908 data points collected
from 8 open-source projects (Aptana Studio, Dnn Platform,
Apache Mesos, Mule, Sonatype’s Nexus, Titanium SDK/ CLI,
Appcelerator Studio, Spring XD).

The Planning Poker – Industry (PPI) dataset was collected
as part of the research for the present paper. The authors has
an opportunity to observe how an agile team in an industry
partner in the tourism industry. The team were workin on a
web application that provides a software as a service function.
The authors has an opportunity to observe how the team
plays Planning Poker [12] for a period of two weeks. Among
the research activities, the researchers was able to collect
data about the software development issues of a commercial
software product, which included the Planning Poker estimates
the team had prepared.

The data was collected from the company issue tracker sys-
tem (Trello). The issues were classified into different smaller
projects or sprints. Two criteria were used to find relevant
issues: the actual time spent on the issue and issue status. The
team annotated the spent time and the estimated time in the
issue’s title using square brackets. The data collection took
place during an observation period of the team practice of
Planning Poker.

The dataset consists of 282 issues that are annotated with
actual effort and estimated effort. All the issues have a
corpus that is produced by combining the issue title with its
description. For every issue, the actual effort and issue features
are provided. Expert-estimated effort was also extracted. The
issue features consist of a number of comments and a number
of activities on the issue. The number of issue activities was
extracted from the issue log. It represents a sum of all the
events that happened for a given issue. Moreover, the original
issue key is used as an identifier in the dataset. Table I present
a summary overview of the dataset. While the data points
(issues) have been classified into different categories, they all

Dataset # of
Projects

of
Records

Has
Corpus

Publish
Year

of
Expert

Estimates (%) Unit Min-Max Avg. Med. STD Skew.

JOSSE 38 23184 yes 2022 4327 (18.7%) P/I 2-2640 136 60 248 5.06
PPI N/A 282 yes N/A 282 (100%) P/I 5-1560 431 240 416 1.09
Deep-SE 16 23313 yes 2019 0 (0%) SP 1-100 6 4 10 6.00
Porru 8 4682 yes 2016 0 (0%) SP 1-6765 5 3 99 68.10

TABLE I: Summary characteristics of experimental data sets. Effort units are shown in person-minutes (P/I) or story points
(SP). Metrics presented are min/max of estimates in relevant units in the dataset, mean average, median, standard deviation
and skewness.

DEEP-SE JOSSE Porru PPI # of Records

PPI 0% 0% 0% 100% 272
Porru 13% 0% 100% 4682
JOSSE 0% 100% 16979
DEEP-SE 100% 23313

TABLE II: Pairwise evaluation of duplication between datasets
of software tasks used in the study. The table shows the
intersection of the two datasets as a proportion of the union
of the two sets.

concern the same software, and thus they are treated under
one project consisting of 282 data points.

Since PPI was collected from a commercial development
house, not permitted the publication of the data since it
contains sensitive information that may impact the company
interest. As a consequence, the description of the dataset is
limited to non-sensitive details. However, use of the dataset
in the study enables comparision of results with open source
datasets.

The four data sets were checked for distinctiveness by
performing pairwise comparison of issue identifiers. Table II,
calculating the proportion of the intersection of the two issue
datasets that appeared in the union of the datasets. As can be
seen in the results, duplication across datasets was low, with
just 13% of tasks duplicated between the Porru and Deep-SE
datasets.

B. Dataset Refinement for JOSSE and PPI

The Porru and Deep-SE datasets have already been subject
to refinement by the respective study authors. The JOSSE
and PPI datasets were subject to refinements as described in
the JOSSE Archive [20]. Specifically, Data Points Quantity
Check, Outlier Removal, Inconsistency Check and Readability
Check. Figure 1 illustrates the four data refinement procedure
described in the JOSSE archive [20] and summarized as the
following:

• Data Points Quantity Check: data points in the selected
datasets belong to different projects, and to avoid treating
different contexts of those data point as a one we group
the data points for each project and train the ML models
on those project individually. However, some projects
have as few as one issues, and thus, a 100 data points
was determined as a minimum number of data points for

each project. Any project with less than a 100 data points
were removed.

• Outlier Removal: The dataset’s outlier data points are
detected using David and Tukey’s method [23] to identify
data points outside the lower and upper fences. The
outlier detection has been done on a project basis, i.e.
data points are grouped based on their projects, then the
outliers were identified.

• Inconsistency Check: According to Bosu and Macdonell
[24], inconsistency is a lack of data point harmony in
terms of their property values. Phannachitta et al. [25]
state that inconsistency is when the assumption that
similar tasks have similar efforts is violated. In other
words, if data points have similar effort, they should
exhibit similar property values (similar to each other).
The challenge with the selected dataset is that the main
property is a corpus, and measuring similarity between
different corpuses must consider lexical similarity as
well as semantic similarity. Thus, BERT embeddings for
text corpus were extracted and then a cosine similarity
between issue embedding was calculated to determine if
there are issues with similar estimates, but with a totally
different text corpus. Overall, the datasets are cohesive,
that is, the data point properties exhibit high similarity,
except for a negligible number of data points per project
(less than 5% dissension).

• Readability Check: The data point’s corpus contains
stack traces or codes without any snippet delimiters, e.g.
“<code>”., which makes it difficult to separate such
snippets from the descriptions. Language models such
as BERT, are sensitive to language errors since they are
trained on grammar-free corpuses, and word positions
and forms have significance in BERT embeddings. Thus,
the corpus for each data point needs to be assessed for
language readability. We used the LanguageTool [26]
grammar checker to compare the number of grammar
errors against the number of corpus words, and based
on that, a percentage for the errors can be produced. We
determined that any corpus with 22% grammar errors will
probably contain a stack trace and was removed. The 22%
was the average (8%) plus the stander deviation (14%)
grammar errors resulted by running the same grammar
checking tool on data-points without stack trace.

The data refinement resulted in a 40.7% in data loss. To

Start Inconsistency
Check

Outlier
Removal

Minimum Data-
Points Quantity

Check
End Readability

Check

10.4%
Data Loss

0%
Data Loss

12%
Data Loss

18.3%
Data Loss

Fig. 1: Dataset Refinement Process as Explained in the JOSSE archive [20].

Category Low Middle High

One hour 0 1 1
Half a day 2 4 5
A day 6 8 10
Half a week 11 20 30
A week 31 40 60
Two weeks 61 80 120

TABLE III: Adopted hour-based categories and their bound-
aries for a software task effort estimate.

test whether this filtering process influenced the profile of
the issues selected, the Mean Magnitude of Relative Error
(MMRE) of the expert estimates for the filtered and unfiltered
datasets was calculated. The MMRE of the filtered dataset was
280.2% compared to 292.3% of the unfiltered dataset. Based
on the MMRE delta (12.1%) a decision was made to proceed
with the filtered version since there appeared to be a minimal
impact on the MMREs.

All the datasets are annotated with the actual effort the
software development task took. However, datasets use dif-
ferent scales and units. For example, JOSSE is annotated in
person-time, whereas Deep-SE is annotated in story points.
The actual effort is transformed into time categories with a
magnitude scale based on the Fibonacci series. Therefore, the
experiment’s dependent variable (effort) was discretised to fit
those categories. The person-time costs reported on the issues
were translated into approximate person-day and person-week
categories, labelled as one hour, half a day, one day, half a
week, one week, two weeks, and more than two weeks. The
translation followed the same scheme as in the community
issue tracker system (JIRA), where a working day is equal to
8 hours and a working week equal to 40 hours. This enabled a
comparison between predicted estimates and the person-time
or story point costs reported on the issues. To draw boundaries
between the scale categories, a relative midpoint between
the two categories was selected. Table III illustrates the low,
middle, and high possible person-hours for each category.

C. Estimation Method

The method used to estimate effort using an ML model
has two phases: data preprocessing and model training. The
data preprocessing phase is essential for a dataset that has a
corpus. During the preprocessing phase, features used to train
the ML models are extracted from each issue’s corpus. This

experiment uses two feature extraction methods, BERT and
TF-IDF, as illustrated in Figure 2.

Using the BERT language model as the feature extraction
process, the method starts by splitting the text into single
words and replacing each word with its corresponding BERT
token using the BERT dictionary. Then, the BERT-based [27]
pre-training model is used to extract corresponding embed-
dings of the tokenised corpus as fixed-length vectors. These
vectors represent the lexical and semantic meaning of a given
word in its context. In this experiment, the embedding process
considered only the first 400 words of a given corpus due to
limited computing resources available for the study. The March
11th, 2020 version of the BERT-base model was used for the
encoding.

TF-IDF was used as an alternative feature extraction
method. TF-IDF produces a vector with a length equal to the
total number of distinct words in a given corpus. Then, each
digit in the vector reflects how many times the corresponding
word occurs in the corpus. The count matrix was normalised
to avoid the dominant effect of popular words.

After producing BERT embeddings and TF-IDF normalised
vectors for the data points, the vectors were sent to the training
phase. The training was done on two ML classifiers (RF and
BERT linear classifiers). The BERT linear classifier is a single
layer of a Feed-Forward Artificial Neural Network (FFANN)
on top of BERT. Data points were divided into testing and
training subsets using K-Fold Cross-Validation (CV). The
training and testing were done on a project basis, which means
that datasets with multiple projects, such as JOSSE, were
divided into several subsets based on their projects. The Scikit-
learn [28] implementation of RF and the McCormick [29]
implementation of BERT and its classifier were used to run
this experiment. Both models used the default configuration
of their original authors [28, 29]. A replication pack of the
actual code along with the datasets is publicly available at a
GitHub repository1.

D. Evaluation Metrics

Usually, SEE studies use error measures, e.g. Median Mag-
nitude of Relative Error (MdMRE), as explained in Ali and
Gravino’s recent survey [18]. Error measures are used as a
proxy to performance for a regression ML problem. However,
in this paper, the ML task is a classification problem since the

1https://github.com/ml-see/replication-pack

Feature Extraction Process

TF-IDFBERT

Processed Software Issues Datasets

Extracted Features

Corpus
Vectorisation

BERT
Tokenisation

Text
Preprocessing

Base-model
Fine Tuning

Embedding
Extraction

BERT
Embeddings

Matrix
TF-IDF Matrix

RF Classifier
BERT Classifier

(FFANN)

JOSSE PPI Deep-SE Porru

Porru

Deep-SE

PPI

JOSSE

FFANN/BERT
Effort Estimates

RF/BERT
Predictions

RF/TF-IDF
Effort Estimates

Fig. 2: Overview all the feature extraction methods (BERT
and TF-IDF), classifiers (FFANN and RF), datasets (JOSSE,
PPI, DEEP-SE and Porru)

data has been discretised, as explained in the previous section
(III-B). Thus, accuracy is used as a performance measure of
the models.

Two accuracy measures are reported, the Area Under the
Curve Receiver Operating Characteristic (AUC-ROC) [30] and
F-score [31]. Both metrics are less impacted by imbalanced
data points, which happens to be the case for selected datasets.

Those metrics are calculated during model performance
testing. The testing method used is K-Fold Cross-Validation
(CV) [32]; a five-fold CV is implemented. In each fold, four-
fifths of the data is used for training and one fifth is used

Dataset ML
Classifier

Feature
Extraction Projects Folds FS AR

Deep-SE
FFANN BERT 7 68 0.434 0.633
RF BERT 7 68 0.351 0.613
RF TF-IDF 7 68 0.361 0.585

JOSSE
FFANN BERT 35 167 0.680 0.561
RF BERT 35 167 0.612 0.551
RF TF-IDF 35 167 0.657 0.537

Porru
FFANN BERT 4 17 0.404 0.571
RF BERT 4 17 0.314 0.556
RF TF-IDF 4 17 0.336 0.578

PPI
FFANN BERT 1 5 0.502 0.618
RF BERT 1 5 0.388 0.604
RF TF-IDF 1 5 0.616 0.754

TABLE IV: Results of different models across different
datasets. The results for JOSSE, Deep-SE, and Porru are
aggregated from results of individual projects inside each
dataset. Mean is used as the aggregation function. FS stands
for F-Score and AR stands for AUCROC

for testing. Statistical tests of their significance are carried out
using Kruskal-Wallis tests and ANOVA for AUC-ROC and
F-score, respectively, at a significance level of 0.05.

IV. RESULTS

This section details the results of predicting estimates using
FFANN and RF classifiers. The first part gives the predic-
tion performance measurements using one feature extraction
method, BERT, across two classifiers, RF and FFANN, to
assess the impact of the classifier on accuracy. The second part
evaluates feature extraction methods by using an RF classifier
across two feature extraction methods. As stated earlier in the
introduction, the aim is to examine BERT as a transfer learning
model in the SEE problem, and thus BERT is compared with
TF-IDF using the same classifier. Finally, to put the results
in context, the third part compares ML models with expert
estimates to identify more meaningful aspects from an expert
estimation point of view.

Table IV shows the summarised results across the datasets.
The performance measures of F-Score and AUC-ROC are
aggregated by averaging across all projects in the dataset.
For more detailed results, the appendix lists the performance
metrics based on individual projects for each dataset and can
be accessed using the same replication pack repository1.

A. RQ1: Accuracy of ML models

The results given in Table IV suggest that using BERT for
feature extraction and BERT’s linear classifier (FFANN) for
classification is slightly better than the other options. Across
all datasets, the FFANN-BERT combination achieved better
F-Score and AUC-ROC results than other combinations (RF-
BERT and RF-TF-IDF), except for the PPI dataset, for which
RF-TF-IDF performed better.

However, we have investigated the performance on a project
level using Kruskal–Wallis for AUC-ROC and ANOVA for F-
Score. The Kruskal–Wallis test results in 2.92 with a p-value

0.4

0.5

0.6

0.7

FFANN-BERT RF-BERT RF-TFIDF

Classifier - Feature Extractor

A
U

C
-R

O
C

 S
co

re

(a) Box Plot of AUC-ROC

0.4

0.6

0.8

1.0

FFANN-BERT RF-BERT RF-TFIDF

Classifier - Feature Extractor

F-
S
co
re

(b) Box Plot of F-Score

Fig. 3: Box plot of performance metrics for different mod-
els/feature extraction methods.

of 0.232 for AUC-ROC, and the ANOVA test results in 1.668
with a p-value of 0.192. Both tests for both metrics show
no significant difference between the three combinations, and
thus, the null hypothesis cannot be rejected. Both classifiers
have similar accuracy performance using BERT and TF-IDF
feature extraction methods.

To visualise the performance metrics, Figure 3 shows both
AUC-ROC (3a) and F-Score (3b) for the three combinations
using box plots. The figure illustrates the slight, but not
significant, difference between them.

The AUC-ROC metric gives an overall accuracy measure-
ment of a classifier for different classification probability
thresholds. Its accuracy measurement focuses on classifier
specificity. Classifier specificity measures how good the clas-
sifier is in identifying data points associated with a negative
class. A classifier with 100% specificity means that it never
misses a negative data point. Figure 3a shows that FFANN-
BERT combination did the best. BERT as a feature extraction
method also performed better than TF-IDF. Only two projects,
PPI and JBEAP (outliers), performed well using the RF-TF-
IDF combination. While these are slight differences, there is
no statistically significant difference.

On the other hand, F-Score metric gives an accuracy
measurement of a classifier based on maximum classification
probability (a single threshold). Unlike AUC-ROC, F-Score
focuses on classifier precision. Classifier precision measures
how good the classifier is in identifying data points with a
positive class. A classifier with 100% precision means that
it never misses a positive data point. Figure 3b shows that
the FFANN-BERT and RF-TF-IDF combinations performed
similarly. This time, BERT as a feature extraction method
performed worse than TF-IDF. Although all the projects are
software development projects, the noticeably wider IQR of
F-Score indicates that projects still vary in the association
between task descriptions and time logging.

While these are slight differences, there is no statistically
significant difference. For a multi-class problem, as in the case
of the SEE problem, a strategy is used which pits one class
against the rest of the classes, and then the average of the
classes’ metrics is calculated as a summary metric.

B. RQ2: Evaluation of Feature Extraction Methods

To examine whether any of the classifiers had impact on
the accuracy performance, a narrow comparison between two
combinations of FFANN-BERT and RF-BERT was performed
where the only feature extraction method used was BERT.
Applying a statistical significance test of Kruskal–Wallis on
the AUC-ROC scores of all projects, resulted in 1.1288 with
a p-value of 0.29. Similarly, applying ANOVA on F-Score
resulted in 3.34 with a p-value of 0.071. Both tests on both
metrics indicate that there is no significant difference, and thus
the classifiers have no impact on the accuracy performance.

Next, a comparison between the two feature extraction
methods using an RF classifier (RF-BERT and RF-TF-IDF)
is performed. RF was selected since FFANN is built upon
BERT and its implementation expects BERT-format input,
whereas the RF implementation accepts both TF-IDF and
BERT matrices. The aim is to see whether BERT embeddings
built upon a large language model will result in a significant
difference compared with a context-less feature extraction such
as TF-IDF.

Applying the statistical significance test of Kruskal–Wallis
on the AUC-ROC scores of all projects resulted in 0.505 with
a p-value of 0.48. Similarly, applying ANOVA on F-Score
resulted in 1.23 with a p-value of 0.27. Both tests on both
metrics indicate that there is no significant difference, and thus
BERT embeddings are not necessarily better than TF-IDF for
the SEE problem.

C. RQ3: ML models compared with expert-based estimates

To put those performance metrics in context, the F-Score of
the expert-based estimates reported in the JOSSE dataset was
calculated. Table V shows the performance of the expert-based
estimates for individual projects of JOSSE.

The average F-Score is 0.7, with the best performance being
0.812 and the worst being 0.54. Comparing these scores with
the best performing ML model, expert estimates are better than
the ML-based estimates. The ANOVA test of F-Score for those
projects resulted in 4.685 with a p-value of 0.046, indicating a
significant difference between expert and ML-model estimates.

Three projects, BATCH, EXOJCR, and INT, have a notice-
ably large number of issues (290, 489, 385 respectively). Two
of them (BATCH and INT) achieved the best F-Scores (0.813
and 0.843). This might shed light on the practice of effort
estimation in open-source projects. In addition, the percentage
of issues annotated with expert estimates [20] in those projects
is high (BATCH: 89.4% and 93.2%). This may indicate that
those projects approached effort estimation rigorously, which
may have helped in achieving higher F-Scores.

To explore this conjecture, ten members of the commu-
nities were contacted to determine how the estimates were
conducted. Only five of them responded and indicated that
there was no particular procedure or instruction around effort
estimations. One respondent stated that the development team
tries to experiment with different SEE methods but always re-
lying on their “gut feeling”. That respondent was a tester. The

Project Number of Issues F-Score

AEROGEAR 185 0.678
BATCH 290 0.813
EXOJCR 489 0.536
GTNPORTAL 166 0.713
INT 385 0.843
JBTM 114 0.554
MNG 113 0.723
RF 236 0.786
STDCXX 178 0.637

F-Score Mean 0.698

TABLE V: F-Score of expert estimates reported for selected
JOSSE projects.

respondent takes the following considerations while estimating
time for a software development task:

• The required learning about the development task and its
deployment.

• Manual versus automated deployment.
• Reproducing the software issue and creating a fix.
• Creation of test cases.
• Team members scheduled and holidays.
• Contingency time.
Further, the respondent commented that learning about the

development task and its deployment may take a long time
depending on the difficulty of the system environments. Other
respondents explained that they rely on their experience when
estimating the issues, with or without a structured process for
predicting such estimates.

V. DISCUSSION

This section discusses the results from different perspec-
tives and compares them with relevant literature. Threats to
validity are also discussed and proposes a hybrid approach to
automated effort estimation that retains the human-in-the-loop
as a next step for advancing SEE.

As presented in the results, the lack of significant differ-
ence between both classifiers in accuracy performance is also
reported by previous studies, such as the systematic literature
review of Wen et al. [5]. According to the review, the average
of the Mean Magnitude of Relative Error (MMRE) for DT-
based models in 17 experiments was 55%, whereas it was
37% for ANN-based models reported in 39 experiments. While
ANN-based models performed better, the difference is not
significant as reported earlier in Section IV in this paper.
Nonetheless, the reported metrics cannot be compared with
those in this paper, since the SEE problem in this paper is a
classification problem, whereas for the above survey it was a
regression problem. However, the improvement delta reported
in the survey agrees with what is reported in this paper.

From a different but close perspective, ensemble methods
using DT-based models ensemble significantly outperform
ensemble methods using ANN-based models, as reported by
Idri et al.’s survey [33]. The average of MMRE for DT-
based ensemble in 5 experiments was 17.57%, whereas it was
48.32% for ANN-based ensemble reported in 16 experiments.

Since Idri et al.’s survey [33] contradicts the trend reported
by Wen et al. [5], that weakens the overall difference between
the models.

Datasets are another factor, other than model algorithms,
that may affect accuracy performance. Thus, the datasets
included in this experiment were taken through a series of
refinement steps, starting with ensuring an adequate number
of data points for each project (at least 100 data points). Then,
outlier data points were removed. Inconsistent or unreadable
data points (i.e. with code or stack trace) were checked
and removed (refer to JOSSE’s paper [20] for more details).
This helped to enhance BERT classifier accuracy performance
by 16%. However, all performance measures are close to a
random prediction measure. Theoretically, random predictions
have a measure of 0.5 on both F-Score and AUC-ROC. The
reported results of the datasets shown in Table IV are close
to random prediction, with RF-TF-IDF using the PPI dataset
being the only exception.

Interestingly, TF-IDF shows slightly better performance
using the RF classifier over FFANN, which is not expected,
since FFANN relies on a state-of-the-art language model, i.e.
BERT. This can indicate that language-based models do not
necessarily offer the best feature extraction method for non-
language applications, as in effort estimation.

Another reason behind BERT’s lack of performance is the
technical nature of the language of the task descriptions.
Although such models have been pre-trained on proper English
content and fine-tuned using domain-specific datasets such as
JOSSE, software issues may not be written in proper English,
as explained in the previous JOSSE’s paper. Technical writing
may lack proper English grammar and sentence structure.
Nonetheless, BERT embeddings achieved the best perfor-
mance when used with BERT’s linear classifier (FFANN).

VI. THREATS TO VALIDITY

A possible threat to validity is that the data are collected
from open-source projects, where time control and project
management are more relaxed compared with commercial
projects. Thus, time logging for task effort and expert estimates
might not follow a specific protocol or process, as explained
in Question 3’s answer.

The threat to validity that may originate from the filtrating
process lowering the generality of the filtered version of the
dataset. It is possible that the filtering process gave advantages
to the expert estimates by excluding bad expert estimates
during the filtering process. Therefore, the MMRE of both
datasets versions, filtered and unfiltered, were 280.2% and
292.3% respectively. The delta between the MMRE indicates
that expert estimates in both versions are similar with a
neglectable difference.

To mitigate this risk, a commercial-project dataset was
collected and included in the comparison, where the devel-
opment team followed a defined effort estimation and logging
method, i.e. Planning Poker. In addition, the discretisation step
is designed to minimise the risk in two ways. Firstly, it reduces

the granularity of time to larger time buckets, and secondly,
the efforts compared are in discrete, not absolute, values.

Changes to expert estimates in the JOSSE dataset after
realising the actual effort is a threat that is mitigated by
reviewing the activity log of software issues with expert
estimates. None of them had a log entry indicating that the
field timeestimate has been changed after updating the field
timespent. timeestimate and timespent fields correspond
to the expert estimate and actual time respectively.

Conclusions about accuracy performance can be threatened
by the nature of the datasets. For instance, imbalanced datasets
have artificial effects on some accuracy scores. To minimise
such a threat, the measures F-score and AUC-ROC, which
can handle imbalanced data, were selected. In addition, the
statistical tests of Kruskal–Wallis and ANOVA were used to
draw final conclusions.

Threats to external validity is also mitigated by incorpo-
rating issues from different large software projects, including
both industrial and open-source projects. While the issues vary,
they do not represent all kinds of software. For instance,
critical system software projects, where the tightest time
management is expected, are not included.

VII. CONCLUSION

This paper reflects upon recent research in the area of ML
SEE. It focuses on ML methods since they are the most
researched methods in the recent literature [5]. ML methods
are sensitive to the data that they are trained on, and thus
datasets represent the other half of ML SEE research.

It draws a comparison between an ensemble model (RF)
and a pre-trained language model (BERT) regarding their
performance and feature extraction methods in an experimental
study. It used four datasets, specifically JOSSE, PPI, Deep-SE,
and Porru. It also used expert estimates in the JOSSE dataset
to compare ML models with experts.

The results suggest that there is no significant difference
between the presented methods. However, BERT-BERT shows
slightly better performance. On the other hand, the results
show that expert and ML estimate performances are similar,
with the experts’ performance slightly better. Both findings
confirmed what was already reported in the literature using
different experimental settings [34, 35].

While the expert estimations are significantly better than
ML, they are still unreliable, and there is room for improve-
ment. Perhaps by combining both ML and expert in one
estimation method, each could strengthen the other.

Future work for ML-based effort estimation studies may
benefit from involving human judgement in the ML process.
Effort estimation is not a trivial process, especially for intan-
gible deliverables like software. Neither text-based features
nor project characters are enough to build a reliable data
model. Perhaps involving humans in the loop may help in
comprehending estimation complexity.

REFERENCES

[1] S. Grimstad, M. Jørgensen, and K. Moløkken-
Østvold, “Software effort estimation terminology:

The tower of Babel,” Inf. Softw. Technol., vol. 48,
no. 4, pp. 302–310, 2006. [Online]. Available:
https://doi.org/10.1016/j.infsof.2005.04.004

[2] M. Usman, E. Mendes, and J. Börstler, “Effort
estimation in agile software development: a survey on
the state of the practice,” in Proceedings of the 19th
International Conference on Evaluation and Assessment
in Software Engineering, EASE 2015, Nanjing, China,
April 27-29, 2015, J. Lv, H. J. Zhang, and M. A. Babar,
Eds. ACM, 2015, pp. 12:1–12:10. [Online]. Available:
https://doi.org/10.1145/2745802.2745813

[3] M. Cohn, Agile Estimating and Planning, ser. Robert C.
Martin Series. Pearson Education, 2005.

[4] B. W. Boehm, “Software engineering economics,”
Software Pioneers, p. 641686, 2002. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-59412-0 38

[5] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, “Systematic
literature review of machine learning based software
development effort estimation models,” Inf. Softw.
Technol., vol. 54, no. 1, pp. 41–59, 2012. [Online].
Available: https://doi.org/10.1016/j.infsof.2011.09.002

[6] M. Choetkiertikul, H. K. Dam, T. Tran, T. Pham,
A. Ghose, and T. Menzies, “A deep learning model for
estimating story points,” IEEE Trans. Software Eng.,
vol. 45, no. 7, pp. 637–656, 2019. [Online]. Available:
https://doi.org/10.1109/TSE.2018.2792473

[7] V. Ionescu, “An approach to software development
effort estimation using machine learning,” in
13th IEEE International Conference on Intelligent
Computer Communication and Processing, ICCP
2017, Cluj-Napoca, Romania, September 7-9, 2017.
IEEE, 2017, pp. 197–203. [Online]. Available:
https://doi.org/10.1109/ICCP.2017.8117004

[8] E. M. Fávero, D. Casanova, and A. R. Pimentel, “Se3m:
A model for software effort estimation using pre-trained
embedding models,” arXiv preprint arXiv:2006.16831,
2020.

[9] P. Abrahamsson, I. Fronza, R. Moser, J. Vlasenko,
and W. Pedrycz, “Predicting development effort
from user stories,” in Proceedings of the 5th
International Symposium on Empirical Software
Engineering and Measurement, ESEM 2011, Banff,
AB, Canada, September 22-23, 2011. IEEE Computer
Society, 2011, pp. 400–403. [Online]. Available:
https://doi.org/10.1109/ESEM.2011.58

[10] “Open sourcing bert: State-of-the-art pre-training for
natural language processing,” Nov 2018. [Online]. Avail-
able: https://ai.googleblog.com/2018/11/open-sourcing-
bert-state-of-art-pre.html

[11] J. R. Firth, “A synopsis of linguistic theory, 1930-1955,”
Studies in Linguistic Analysis (special volume of the
Philological Society), vol. 1952-59, pp. 1–32, 1957.

[12] J. Grenning, “Planning poker or how to avoid analysis
paralysis while release planning,” Hawthorn Woods: Re-
naissance Software Consulting, vol. 3, pp. 22–23, 2002.

[13] T. Menzies and M. J. Shepperd, “Special issue on

repeatable results in software engineering prediction,”
Empir. Softw. Eng., vol. 17, no. 1-2, pp. 1–17, 2012.
[Online]. Available: https://doi.org/10.1007/s10664-011-
9193-5

[14] G. K. Rajbahadur, S. Wang, Y. Kamei, and A. E.
Hassan, “Impact of discretization noise of the dependent
variable on machine learning classifiers in software
engineering,” IEEE Trans. Software Eng., vol. 47,
no. 7, pp. 1414–1430, 2021. [Online]. Available:
https://doi.org/10.1109/TSE.2019.2924371

[15] CollabNet VersionOne, “13th annual state of agile re-
port,” https://www.stateofagile.com, May 2019.

[16] T. Mukhopadhyay, S. S. Vicinanza, and M. J. Prietula,
“Examining the feasibility of a case-based reasoning
model for software effort estimation,” MIS Quarterly,
vol. 16, no. 2, p. 155, Jun 1992. [Online]. Available:
http://dx.doi.org/10.2307/249573

[17] P. Ardimento and C. Mele, “Using bert
to predict bug-fixing time,” 2020 IEEE Con-
ference on Evolving and Adaptive Intelligent
Systems (EAIS), May 2020. [Online]. Available:
http://dx.doi.org/10.1109/eais48028.2020.9122781

[18] A. Ali and C. Gravino, “A systematic literature review
of software effort prediction using machine learning
methods,” J. Softw. Evol. Process., vol. 31, no. 10, 2019.
[Online]. Available: https://doi.org/10.1002/smr.2211

[19] “Transformers.” [Online]. Available:
https://huggingface.co/transformers/index.html

[20] A. Authors, “Josse: A software development effort
dataset annotated with expert estimates,” 2022.

[21] S. Porru, A. Murgia, S. Demeyer, M. Marchesi, and
R. Tonelli, “Estimating story points from issue reports,”
in Proceedings of the The 12th International Conference
on Predictive Models and Data Analytics in Software
Engineering, PROMISE 2016, Ciudad Real, Spain,
September 9, 2016. ACM, 2016, pp. 2:1–2:10. [Online].
Available: https://doi.org/10.1145/2972958.2972959

[22] M. Alhamed and T. Storer, “Playing planning poker
in crowds: Human computation of software effort esti-
mates,” in 43rd IEEE/ACM International Conference on
Software Engineering, ICSE 2021, Madrid, Spain, 22-30
May 2021. IEEE, 2021, pp. 1–12. [Online]. Available:
https://doi.org/10.1109/ICSE43902.2021.00014

[23] F. N. David and J. W. Tukey, “Exploratory data
analysis,” Biometrics, vol. 33, no. 4, p. 768, Dec 1977.
[Online]. Available: http://dx.doi.org/10.2307/2529486

[24] M. F. Bosu and S. G. Macdonell, “Experience: Quality
benchmarking of datasets used in software effort estima-
tion,” Journal of Data and Information Quality, vol. 11,
no. 4, 2019.

[25] P. Phannachitta, J. Keung, K. E. Bennin,
A. Monden, and K. Matsumoto, “Filter-inc: Handling
effort-inconsistency in software effort estimation
datasets,” 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC), 2016. [Online]. Available:
http://dx.doi.org/10.1109/apsec.2016.035

[26] “Spell and grammar checker.” [Online]. Available:
https://languagetool.org/

[27] I. Turc, M.-W. Chang, K. Lee, and K. Toutanova,
“Well-read students learn better: On the impor-
tance of pre-training compact models,” arXiv preprint
arXiv:1908.08962v2, 2019.

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[29] C. McCormick, 2021. [Online]. Available:
https://www.chrismccormick.ai/the-bert-collection

[30] T. Fawcett, “An introduction to ROC anal-
ysis,” Pattern Recognit. Lett., vol. 27,
no. 8, pp. 861–874, 2006. [Online]. Available:
https://doi.org/10.1016/j.patrec.2005.10.010

[31] Y. Sasaki et al., “The truth of the f-measure. 2007,” 2007.
[32] M. Stone, “Cross-validatory choice and assessment

of statistical predictions,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 36,
no. 2, p. 111133, Jan 1974. [Online]. Available:
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x

[33] A. Idri, M. Hosni, and A. Abran, “Systematic literature
review of ensemble effort estimation,” J. Syst. Softw.,
vol. 118, pp. 151–175, 2016. [Online]. Available:
https://doi.org/10.1016/j.jss.2016.05.016

[34] A. Zakrani, A. Idri, and M. Hain, “Software effort
estimation using an optimal trees ensemble: An
empirical comparative study,” Proceedings of the 8th
International Conference on Sciences of Electronics,
Technologies of Information and Telecommunications
(SETIT18), Vol.1, p. 7282, Jul 2019. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-21005-2 7

[35] M. Jørgensen, B. W. Boehm, and S. Rifkin, “Software
development effort estimation: Formal models or expert
judgment?” IEEE Softw., vol. 26, no. 2, pp. 14–19, 2009.
[Online]. Available: https://doi.org/10.1109/MS.2009.47

	Cover Sheet (AFV)
	305420

