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A B S T R A C T

Modern computational soft-tissue mechanics models have the potential to offer unique, patient-
specific diagnostic insights. The deployment of such models in clinical settings has been limited
however, due to the excessive computational costs incurred when performing mechanical
simulations using conventional numerical solvers. An alternative approach to obtaining results
in clinically relevant time frames is to make use of a computationally efficient surrogate
model, called an emulator, in place of the numerical simulator. In this work, we propose an
emulation framework for soft-tissue mechanics which builds on traditional approaches in two
ways. Firstly, we use a Graph Neural Network (GNN) to perform emulation. GNNs can naturally
handle the unique soft-tissue geometry of a given patient, without requiring any low-order
approximations to be made. Secondly, the emulator is trained in a physics-informed manner
to minimise a potential energy functional, meaning that no costly numerical simulations are
required for training. We present results showing that our framework allows for highly accurate
emulation for a range of soft-tissue mechanical models, while making predictions several orders
of magnitude more quickly than the simulator.

1. Introduction

Major developments have been made recently in computational soft-tissue mechanics [1]. Models of soft-tissue systems and
rgans, such as the liver [2], heart [3], brain [4], cartilages [5] and blood vessels [6] have grown from simplified idealisations to
ophisticated models that allow for highly realistic, patient specific simulations to be made in silico. The mechanical functioning of
oft-tissue bodies is critical to the optimal functioning of the organism itself [7]. For example, the loss of myocytes in the myocardium
fter myocardial infarction can result in an imbalanced stress/strain micro-environment, impeding the efficiency of the heart’s pump
ycle [8]. Computational models have the potential for transformative clinical advances in this area, by allowing for patient-specific,
ynthetic simulation data to be generated. This enables experiments and analyses to be performed beyond what is possible with
urely observational data [9,10], including for example sensitivity analyses [11,12], inverse problems [13–15] and treatment design
ptimisation [16–18].

Simulation of soft-tissue mechanics involves numerically solving for the dynamics which satisfy the underlying physiological
artial differential equations (PDEs), which are in general non-linear. The finite element method (FEM) [19] has become the
tandard numerical method to solve complex systems described by PDEs, due to its capability of handling realistic geometries,
aterial nonlinearity at multiscales, time-varying boundary conditions and multiphysics coupling, with well-developed commercial

nd open-source software available. However, the FEM is too expensive to provide real-time results when hundreds or thousands of
igh fidelity simulations are required, for instance for solving inverse problems, a computational bottleneck which has limited the
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Nomenclature

𝛺0 Reference configuration
𝛺 Current configuration
𝑿 Coordinates in reference configuration
𝒙 Coordinates in current configuration
𝒖 Displacement
σ Cauchy stress tensor
𝒃 Body force in current configuration
𝛺𝑑 Dirichlet boundary in current configuration
𝒖𝑑 Prescribed displacement on Dirichlet boundary
𝛺𝜎 Neumann boundary in current configuration
𝒏 Surface normal vector in current configuration
𝒕 Traction force on Neumann boundary
𝑭 Deformation gradient
𝑪 Right Cauchy-Green tensor
𝐽 Determinant of 𝑭
𝐼1 First invariant of 𝑭
𝛹 Strain energy density function
𝛱 Total potential energy
∕̃ Graph / augmented graph
∕̃ Graph nodes / augmented graph nodes
𝒗𝑖 Node feature vector
∕̃ Graph edges / augmented edges
𝒆𝑖→𝑗 Edge feature vector
𝜽 Global graph parameters / material parameters
𝝎 Trainable emulator parameters
𝒎𝑘

𝑗→𝑖 Message from node 𝑗 to node 𝑖 at processor step 𝑘
�̂� Emulator predicted displacement
𝑼 Array of displacements from simulator
�̂� Array of displacements from emulator

deployment of soft-tissue mechanic models in clinical decision support [9]. Clearly then, there is need for more efficient simulation
methods to be developed.

The bottleneck imposed by traditional numerical simulation methods is common to high fidelity models across computational
hysics, which has lead in turn to the development of the field of surrogate modelling, or emulation [20,21]. An emulator is a machine

learning model that approximates the numerical solver, or simulator, while incurring significantly lower expense at prediction time.
Commonly used emulation approaches include Gaussian processes [22], polynomial chaos [23] and deep neural networks, both fully
connected and convolutional [24, Chapters 13–14]. These approaches have been successfully deployed for emulation of a wide range
of physical systems, with recent examples including computational fluid dynamics [25], aerodynamics [26], climate models [27]
and nonlinear dynamical systems [28].

Emulators are typically trained in a data-driven manner against a large set of simulation results from the numerical solver [21].
There are disadvantages to the data-driven approach, however. Firstly, a large dataset may be required to train an accurate surrogate
model, which will be expensive to obtain. Also, with a purely data-driven training, any a-priori known underlying physical properties
of the system under consideration (which could include momentum conservation, for instance) are not explicitly incorporated into
the emulator. Instead, such properties are only implicitly incorporated via the simulation data. Physics-informed machine learning
approaches constitute an alternative approach to emulation, whereby properties or constraints of the underlying physical system are
explicitly accounted for in the structure of the emulator, and/or into the training procedure. Early work in the field includes the use
of both neural networks [29–31] and Gaussian processes [32,33] for solving forward and inverse problems involving differential
equations. A major development was the seminal work of Raissi et al. (2019) [34], which introduced physics-informed neural
networks (PINNs). PINNs explicitly incorporate the underlying equations of the model (typically PDEs) into the training of the
neural network surrogate model. PINNs can be trained on a loss function solely derived from the underlying PDEs, or in a multi-
task learning framework where observational data is also included. PINNs were originally implemented using the strong form of
the underlying PDEs, with all required partial derivatives computed using automatic differentiation, but have subsequently been
extended to model PDE systems using variational [35] and energy minimisation [36,37] approaches. PINNs have become one

of the most highly researched areas of scientific machine learning, for purposes including forward, inverse, control and model
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discovery problems across a range of disciplines. To give a handful of examples, this includes computational fluid dynamics [38],
hyperelasticity [36], electromagnetics [39] and molecular dynamics [40]. Several detailed survey papers on PINNs are also available,
providing a comprehensive overview of the field [41,42].

PINNs have also been applied in soft-tissue mechanics, for emulation of the dynamics of the left ventricle of the heart for the entire
ardiac cycle [43], and during the passive diastolic phase [44], with both approaches making use of fully connected neural networks
FCNNs). One issue with applying FCNNs in soft-tissue mechanics is that the geometries of individual organs or vessel networks vary
cross the population, meaning that a different computational mesh representation must be generated for each subject. This makes
t difficult to construct an accurate emulator using a traditional approach, especially one that can generalise to geometries not seen
n the training phase, due to the so-called curse of dimensionality. In Buoso et al. (2021) [43], a low rank approximation to both
he left ventricle (LV) geometry and displacement field is required to overcome this issue and allow the FCNN to generalise to new
V geometries, while in Zhang et al. (2022) [44], only a simple cuboidal geometry is considered, not a real heart geometry.

A new generation of surrogate models has emerged in recent years based on Graph Neural Networks (GNNs), which overcome
any of the challenges faced by traditional approaches in modelling high fidelity simulation data. GNNs form an extremely active

rea of research in modern machine learning, with applications to graph structured data in physics [45,46], chemistry [47],
iology [48], among other areas [49–51]. Various approaches to GNN architecture design have been proposed in the literature,
ncluding spectral methods based on the graph Laplacian and spatial graph convolution approaches [24, Chapter 20]. For the specific
ase of surrogate modelling, message passing GNNs have proven particularly successful [45,52,53]. The key step required to apply
GNN for surrogate modelling is to represent the physical system under consideration in the form of a graph. For a mesh based

imulation for instance, the vertices of the graph representation can be taken as simply the nodes of the underlying mesh, while
he graph topology can be extracted from the mesh topology. A message passing GNN then learns the underlying physical dynamics
sing a series of message passing steps between neighbouring nodes of the graph representation. This allows a learned representation
f each node to be found, from which system dynamics are decoded. There are a number of advantages to using GNNs for surrogate
odelling. For instance, the architecture of the GNN can be designed to exactly satisfy a-priori known invariances or equivariances

of the system under consideration [54]. In addition, GNNs have been demonstrated to operate well on very large datasets [45] and
generalise to systems not seen in the training phase [55]. This is particularly useful for soft-tissue mechanics, as the specific geometry
will be unique from subject to subject. Despite the potential for application of GNN surrogate models in soft-tissue mechanics, there
has been relatively little development in this area. One exception is a recent publication by the present authors on data-driven GNN
emulation of passive cardiac mechanics [56], the results of which demonstrated a clear gain in accuracy for a GNN over the results
obtained using an FCNN.

1.1. Contributions

In this manuscript we present an emulation framework for soft-tissue mechanics based on GNNs. As we have demonstrated
in previous work [56], GNN emulation is particularly suited to soft-tissue mechanics, where the geometries of the bodies under
consideration can have highly irregular shapes. Here we build upon our existing work by making use of physics-informed training
through application of the principle of minimum total potential energy, in place of a data-driven approach based on numerical
simulation data. This is illustrated schematically in Fig. 1. Training on a potential energy objective function is enabled by the
use of transformation barrier functions which explicitly incorporate known physical constraints and stabilise the objective. A
range of realistic soft-tissue mechanics models are considered, including highly non-linear, fibre reinforced materials. Experimental
results demonstrate that strong out-of-sample accuracy can be achieved, i.e. the emulator can generalise to input points not seen
during the training phase. Additional experimental comparisons indicate that physics-informed training allows for a more physically
realistic deformation to be consistently captured in comparison to data-driven training. Finally, significant computational savings
at prediction time are made over the finite-element based simulator.

The manuscript is laid out as follows; Section 2 first describes the methods used, including the underlying mechanics framework
considered and the proposed physics-informed emulation approach. Section 3 then presents emulation results for a number of
mechanics models. Section 4 discusses these results, before Section 5 concludes.

2. Methods

2.1. Mechanics framework

Consider a continuum body made of a hyperelastic material. Let 𝛺0 ⊂ R3 be the reference configuration of the body, comprised
of material points 𝑿 = (𝑋1, 𝑋2, 𝑋3)⊤ ∈ 𝛺0. Under external loading, the body can deform into current configuration 𝛺, comprised of
material points 𝒙 = (𝑥1, 𝑥2, 𝑥3)⊤. The material points in the current and reference configurations are related as 𝒙 = 𝝌(𝑿, 𝑡) = 𝑿 + 𝒖,
with 𝝌 the (invertible) motion map and 𝒖 = 𝒖(𝑿, 𝑡) the displacement. The present work considers quasi-static, nonlinear boundary
value problems, in which case the displacement field is found as that which satisfies momentum balance subject to prescribed
boundary conditions, i.e.,

⎧

⎪

⎨

⎪

∇ ⋅ σ + 𝒃 = 𝟎 in 𝛺,
𝒖 = 𝒖𝑑 on 𝜕𝛺𝑑 ,

𝜎

(1)
⎩

σ ⋅ 𝒏 = 𝒕 on 𝜕𝛺 .
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Fig. 1. Schematic illustration of the distinction between previous work [56] and the present manuscript. In [56], different emulation methods were considered
(both traditional methods and GNNs) using the same data-driven learning paradigm. In the present work, GNN emulation making use of physics-informed training
is considered, with experimental comparisons to data-driven training.

Here σ ∈ R3×3 is the Cauchy stress tensor, 𝒃 ∈ R3×1 is the body force, 𝒖𝑑 ∈ R3×1 is the prescribed displacement on the Dirichlet
boundary 𝜕𝛺𝑑 , 𝒏 ∈ R3×1 is the surface normal vector and 𝒕 ∈ R3×1 the applied traction density to the Neumann boundary 𝜕𝛺𝜎 .
An important quantity for quantifying the forward map from the reference to the current configuration is the deformation gradient
tensor, which is defined as 𝑭 ∈ R3×3 = 𝜕𝒙

𝜕𝑿 = ∇𝒖 + 𝑰 , with 𝑰 the identity tensor. For a hyperelastic material, the stress σ and strain

or 𝑭 ) tensors can be related by a constitutive law, 𝛹 , i.e. σ = 𝐽−1
(

𝜕𝛹
𝜕𝑭

)𝑇
, where 𝐽 = det(𝑭 ). Three constitutive laws are considered

in this work: Neo-Hookean [57], Holzapfel–Ogden [3] and Guccione [58].1
The Neo-Hookean model is derived from first principles on the properties of cross-linked polymer chains, and is suitable for

sotropic plastic and rubber-like materials [57]. The strain energy density for a compressible Neo-Hookean material is given by

𝐍𝐞𝐨-𝐇𝐨𝐨𝐤𝐞𝐚𝐧 ∶ 𝛹 (𝑭 ,𝜽) = 1
2
𝜆[log(𝐽 )]2 − 𝜇 log(𝐽 ) + 1

2
𝜇
(

𝐼1 − 3
)

. (2)

Here, 𝐼1 = tr(𝑪) is the first invariant with 𝑪 = 𝑭 ⊤𝑭 the right-Cauchy–Green deformation tensor. The parameters 𝜆 and 𝜇 are the
Lame material parameters, which are denoted collectively as 𝜽. The Neo-Hookean model can be equivalently parameterised in terms
of Young’s modulus 𝐸 and Poisson ratio 𝜈, which are related to the Lame parameters as:

𝜆 = 𝐸𝜈
(1 + 𝜈)(1 − 2𝜈)

, 𝜇 = 𝐸
2(1 + 𝜈)

. (3)

The Holzapfel–Ogden (H-O) model is a phenomenologically derived anisotropic hyperelastic material model for describing the
assive response of the myocardium [3]. The fully incompressible strain energy density function of a transversely isotropic H-O
aterial is given by

H-O : 𝛹 (𝑭 ,𝜽) = 𝑎
2𝑏

(

𝑒𝑏(𝐼1−3) − 1
)

+
𝑎f
2𝑏f

(

𝑒𝑏f(max(𝐼4f ,1)−1)2 − 1
)

. (4)

Here 𝐼1 is defined as above, while the transversely isotropic invariant 𝐼4f is equal to 𝒇0 ⋅ (𝑪𝒇0), where 𝒇0 ∈ R3×1 is the unit vector in
the myofibre direction in the reference configuration. The material parameters are 𝜽 = (𝑎, 𝑏, 𝑎f, 𝑏f). The max() term in Eq. (4) ensures
that the myofibres only support extension but not compression. The use of the transversely isotropic version of the H-O material is
motivated by the results of an earlier sensitivity study of the full H-O law [12]. In our numerical implementation, we consider the
myocardium nearly incompressible, which is a widely used practice in cardiac models, using the F -bar method to Eq. (4) to ensure
numerical stability [59]. By decomposing 𝑭 into a deviatoric (�̄� = 𝐽−1∕3𝑭 ) and volumetric component (𝐽 1∕3𝑰), the F -bar method
will relax the near-incompressibility constraint. Accordingly, we have

�̄� = �̄� 𝑇 �̄� , 𝐼1 = tr(�̄�), 𝐼4 = �̄� 𝒇0 ⋅ �̄� 𝒇0, (5)

and the H-O model is modified as

𝛹 (𝑭 ,𝜽) = 𝑎
2𝑏

(

𝑒𝑏(𝐼1−3) − 1
)

+
𝑎f
2𝑏f

(

𝑒𝑏f(max(𝐼4f ,1)−1)2 − 1
)

+ 
2
(𝐽 − 1)2, (6)

1 Experiments involving the Guccione law are performed in Appendix A.
4
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where the final term in the equation, known as the penalty function, enforces the near-incompressibility constraint of the
myocardium via the Lagrange multiplier  ∈ R+, which may also be referred to as the bulk modulus. In this study,  is pre-
et to be a fixed value, however  can also be treated as an unknown field variable based on the multi-field variable principles
60, Chapter 8].

The Guccione model [58] also describes the mechanical response of the passive myocardium, with the strain energy density
unction given by

𝐆𝐮𝐜𝐜𝐢𝐨𝐧𝐞 ∶ 𝛹 (𝑭 ,𝜽) = 𝐶
2
(

𝑒𝑄 − 1
)

+ 
2
(𝐽 − 1)2, with (7)

𝑄 = 𝑏f�̄�
2
11 + 𝑏t

(

�̄�2
22 + �̄�2

33 + �̄�2
23 + �̄�2

32
)

+ 𝑏fs
(

�̄�2
12 + �̄�2

21 + �̄�2
13 + �̄�2

31
)

.

Here �̄� = 1
2 (�̄� − 𝑰) is the Green–Lagrange strain tensor, and we have material parameter vector 𝜽 = (𝐶, 𝑏f, 𝑏t, 𝑏fs).

.2. Numerical methods

In this work, we propose a GNN emulation approach for boundary value problems of the form of Eq. (1), with particular emphasis
n applications in soft-tissue mechanics. Emulation results are benchmarked with numerical simulations obtained using the nonlinear
inite-element method. Before a numerical solution for the displacement field can be found using either the FEM simulator or GNN
mulator, a number of processing steps are required.

Firstly, the nonlinear boundary-value problem (BVP) of Eq. (1) is very challenging to be solved analytically, in particular for
omplex geometries. In this study, we consider the quasi-static BVP to be a conservative mechanical system, which requires the
xistence of an energy functional 𝛱 for both the stresses of a deformable body and the loads. Such an assumption is commonly used
n solid mechanics. Based on the stationary energy principle, and further treating 𝒖 as the only unknown, then of all the admissible
, we seek the solution that minimises the total potential energy [60, Chapter 8]. In other words, the first variation of the total
otential energy 𝛿𝛱 needs to vanish in static equilibrium. In the case of a hyper-elastic continuum, the total potential energy 𝛱 of
q. (1) is given by:

𝛱 = ∫𝛺0

𝛹𝑑𝑉 − ∫𝛺0

𝒃0 ⋅ 𝒖𝑑𝑉 − ∫𝜕𝛺𝜎
0

𝒕0 ⋅ 𝒖𝑑𝐴, (8)

n which 𝒃0(𝑿) = 𝒃(𝝌−1(𝒙, 𝑡), 𝑡 = 0) is the body force density with respect to the reference configuration, and 𝒕0(𝑿) = 𝒕(𝝌−1(𝒙, 𝑡), 𝑡 = 0)
s the traction force density with respect to the reference configuration. Mathematically, the desired solution can be obtained by
equiring the directional derivative (or Gateaux derivative) of 𝛱 with respect to 𝒖 to vanish in all directions 𝛿𝒖, that is

𝛿𝛱(𝒖, 𝛿𝒖) = 𝑑
𝑑𝜖

𝛱(𝒖 + 𝜖𝛿𝒖)|𝜖=0 = 0. (9)

Further details of the principle of stationary potential energy can be found in [60, Chapter 8].
The FEM is the most commonly used approach to numerically solve this type of BVP. Before a solution can be found using FEM,

the reference configuration of the body under consideration needs to be discretised with 𝑛 elements, denoted as {ℎ}ℎ>0. Specifically,

𝛺0 ≈ {ℎ}ℎ>0 =
𝑛
⋃

𝑒𝑙=1
𝑇𝑒𝑙 , (10)

here in this work we consider each 𝑇𝑒𝑙 to be a tetrahedron. This means that in practice a finite-dimensional projection of the full
isplacement field is solved for when minimising Eq. (8). The continuous displacement field within each element is represented as
weighted sum of a finite set of basis functions

𝒖(𝑿) =
𝑛𝑒
∑

𝛼=1
𝒖ℎ𝛼𝑖𝑁𝛼(𝑿), (11)

n which 𝒖ℎ𝛼𝑖 is the displacement component along the 𝑖th direction at the 𝛼th node, 𝑛𝑒 is the number of nodes in one finite element,
and 𝑁𝛼 is the finite element basis function at the 𝛼th node.

2.3. Graph neural network surrogate model

There has been considerable research into the application of GNNs to surrogate modelling in recent years [45,61–63]. A GNN
can be seen as a generalisation of a Convolutional Neural Network (CNN) which allows for data without a regular grid-like
neighbourhood structure to be modelled. GNNs are particularly well suited to emulation of systems represented by a computational
mesh, because the mesh can be easily converted to a graph representation. We define a graph to be the following three-tuple

 ≜ ( ,  ,𝜽), (12)

where  is the set of nodes of the graph,  is the set of directed edges which define the graph topology, and 𝜽 ∈ R𝐷𝜽 is a vector of
global parameters of the graph. The nodes 𝑛1, 𝑛2,… , 𝑛

|| ∈  are simply taken to be the nodes from the FE mesh, while the directed
edges {𝑛→𝑛 } ∈  are found by converting each undirected edge in the FE mesh into two directional edges, which point in opposite
𝑖 𝑗

5



D. Dalton, D. Husmeier and H. Gao Comput. Methods Appl. Mech. Engrg. 417 (2023) 116351

(
𝑼
t
p
t
w

i

u

Algorithm 1 PrimalGraphEmulator
Input: ̃ = ( ∪ ̃ ,  ∪ ̃ ,𝜽); trainable parameters = 𝝎
Output: �̂� = {�̂�𝑖 for all 𝑛𝑖 ∈ }

Encoder:
1: 𝒗0𝑖 = 𝑓𝑉

(

𝒗𝑖
)

for all 𝑛𝑖 ∈  ∪ ̃
2: 𝒆0𝑖→𝑗 = 𝑓𝐸

(

𝒆𝑖→𝑗
)

for all {𝑛𝑖→𝑛𝑗} ∈  ∪ ̃ where 𝑖 > 𝑗

Processor:
3: for 𝑘 = 1 ∶ 𝐾
4: 𝒎𝑘

𝑖→𝑗 = 𝑔𝑘𝐸
(

𝒆𝑘−1𝑖→𝑗 , 𝒗
𝑘−1
𝑖 , 𝒗𝑘−1𝑗

)

for all {𝑛𝑖→𝑛𝑗} ∈  ∪ ̃ where 𝑖 > 𝑗

5: 𝒎𝑘
𝑖→𝑗 = −𝒎𝑘

𝑗→𝑖 for all {𝑛𝑖→𝑛𝑗} ∈  ∪ ̃ where 𝑖 < 𝑗

6: 𝒗𝑘𝑖 = 𝒗𝑘−1𝑖 + 𝑔𝑘𝑉

(

𝒗𝑘−1𝑖 ,
∑

𝑗∈ ̃
𝑖
𝒎𝑘

𝑗→𝑖

)

for all 𝑛𝑖 ∈  ∪ ̃

7: 𝒆𝑘𝑖→𝑗 = 𝒆𝑘−1𝑖→𝑗 +𝒎𝑘
𝑖→𝑗 for all {𝑛𝑖→𝑛𝑗} ∈  ∪ ̃ where 𝑖 > 𝑗

8: end for
9: 𝒛local

𝑖 = (𝒗𝐾𝑖 ,
∑

𝑗∈ ̃
𝑖
𝒆𝐾𝑗→𝑖) for all 𝑛𝑖 ∈ 

Decoder:
10: 𝒛𝜽 = 𝑓𝑃 (𝜽)
11: �̂�𝑑𝑖 = ℎ𝑑 (𝒛𝜽, 𝒛local

𝑖 ) for all 𝑛𝑖 ∈  for 𝑑 = 1, ..., 𝐷
12: �̂�𝑖 = (�̂�1𝑖 , ..., �̂�

𝐷
𝑖 ) for all 𝑛𝑖 ∈ 

directions. Finally, the global parameters 𝜽 are taken in this work to be the material properties of the underlying soft-tissue body.2
Before the graph can be passed to the GNN, each node 𝑛𝑖 is assigned a feature vector 𝒗𝑖 ∈ R𝐷𝑛 , while edges are assigned a feature
vector 𝒆𝑖→𝑗 ∈ R𝐷𝑒 . The form of the node and edge features will depend on the application context — see Section 2.4.5 for further
details.

When working with the nodes and edges directed extracted from the FE mesh, it may take a prohibitive amount of processor
stages for information to be propagated around the graph representation. For this reason, we augment the original graphs using
virtual nodes and edges, which offer a more coarse representation of the geometry, improving the efficiency of the processor stage
of the GNN with respect to the number of message passing steps performed. For a comprehensive overview of this, see Section 2.3
of Dalton et al. (2022) [56]. In brief, the virtual nodes ̃ and virtual edges ̃ are generated in a recursive manner, making use
of the original FE nodes  . The first layer of virtual nodes is generated by clustering the FE nodes into a set of points of lower
cardinality. Inter-layer virtual edges are then created by assigning edge connections between each real node and its cluster centre
node. Intra-layer virtual edges between the virtual nodes are found using 𝜅 nearest neighbours. This process is then repeated for
the desired number of steps, where at each step, the clustering is performed on the virtual nodes from the previous step. The entire
augmented graph on which the emulator operates is then

̃ = ( ∪ ̃ ,  ∪ ̃ ,𝜽). (13)

Algorithm 1 presents the GNN architecture used in this work, which defines a forward map of the form 𝙿𝚛𝚒𝚖𝚊𝚕𝙶𝚛𝚊𝚙𝚑𝙴𝚖𝚞𝚕𝚊𝚝𝚘𝚛 ∶
̃,𝝎) → �̂� , with 𝝎 used to denote the trainable parameters of the network (see Section 2.3.1 below for further details), and where
̂ is the predicted displacement field over the FE nodes. The algorithm applies an encode–process–decode approach to perform
he forward map, which is illustrated schematically in Fig. 2. This GNN architecture is almost identical to that introduced in
revious work [56], with some minor adjustments as here we concentrate on emulation of systems with a fixed geometry rather
han considering varying geometry data. Extending the PI-GNN framework to handle varying geometries will be the remit of future
ork.

The first stage of the algorithm is the Encoder. One line 1, the node feature vectors 𝒗𝑖 are encoded into a high dimensional
embedding 𝒗0𝑖 using a fully-connected neural network (FCNN), denoted 𝑓𝑉 ∶ R𝐷𝑛 → R𝑀 , where 𝑀 ≫ 𝐷𝑛. One line 2, edge features
𝒆𝑖→𝑗 are similarly encoded into embedding vectors denoted 𝒆0𝑖→𝑗 , using the edge-encode FCNN 𝑓𝐸 ∶ R𝐷𝑒 → R𝑀 . This feature encoding
ncreases the expressive power of the final learned representations.

The second stage of the algorithm is the Processor, during which the node and edge embeddings from stage one are iteratively
pdated over 𝐾 ∈ N message passing steps. At each step 𝑘 = 1,… , 𝐾, a message vector 𝒎𝑘

𝑖→𝑗 is first computed over all edges in
the graph. For those edges {𝑛𝑖→𝑛𝑗} where 𝑖 > 𝑗, the corresponding message vectors are explicitly computed on line 4 using the
edge-process FCNN 𝑔𝑘𝐸 ∶ R3𝑀 → R𝑀 . For those edges {𝑛𝑖→𝑛𝑗} where 𝑖 < 𝑗, the message vectors are simply found as the negative
of the message from its twin edge {𝑛𝑗→𝑛𝑖} on line 5. Computing the messages in this manner enforces the symmetry 𝒎𝑘

𝑖→𝑗 = −𝒎𝑘
𝑗→𝑖

for all twin pairs of directed edges, which is inspired by interpreting the messages as forces and then applying Newton’s third law

2 This is why here we re-use the 𝜽 notation from Section 2.1.
6
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Fig. 2. The GNN emulator maps the initial state of the soft-tissue body (in this case a liver geometry) to its end state using a three-stage, encode–process–decode
approach.

of motion [55,56]. The updated node-embeddings 𝒗𝑘𝑖 are then found on line 6 using the node-update FCNN 𝑔𝑘𝑉 ∶ R2𝑀 → R𝑀 for all
𝑛𝑖 ∈  ∪ ̃ . Neighbourhood information is accounted for in the update by summing over the incoming messages to each node. The
set of all nodes 𝑛𝑗 ∈  ∪ ̃ which send a directed edge to node 𝑛𝑖 is called its graph neighbourhood  ̃

𝑖 , defined as

 ̃
𝑖 ≜ {𝑛𝑗 ∈  ∪ ̃ ∣ {𝑛𝑗→𝑛𝑖} ∈  ∪ ̃}. (14)

he updated edge-embeddings 𝒆𝑘𝑖→𝑗 are found on line 7 by simply adding the associated message vector 𝒎𝑘
𝑖→𝑗 to the embedding from

the previous step, 𝒆𝑘−1𝑖→𝑗 . After 𝐾 steps of message passing are performed, a local learned representation 𝒛local
𝑖 is returned for all real

nodes 𝑛𝑖 ∈  on line 9.
The third and final stage of the algorithm is the Decoder. On line 10, the global parameters 𝜽 are encoded to the embedding

vector 𝒛𝜽 using the parameter-encode FCNN 𝑓𝑃 ∶ R𝐷𝜽 → R𝑀 . The global parameter embedding 𝒛𝜽 and local node embedding 𝒛local
𝑖

are then used by the node-decode FCNN ℎ𝑑 ∶ R3𝑀 → R on line 11 to output predicted displacement values �̂�𝑑𝑖 for all real nodes
𝑛𝑖 ∈  , over each spatial dimension 𝑑.

One feature of this architecture to note is that the material parameter information 𝜽 is only included after the message-
assing steps have been completed [56]. When considering repeated forward evaluations for a fixed input geometry under different
aterial parameter configurations, as required for example in an inverse problem, the processor must only be computed once

nitially. Subsequent evaluations then just require the decoder to be performed. Since the processor stage constitutes the bulk of the
omputational requirements of the GNN, forward evaluations of the surrogate can be made highly efficiently in this case — this is
xplored further in Section 3.2 (see Table 2).

.3.1. GNN surrogate training
The GNN surrogate is comprised of (3+2𝐾+𝐷) internal FCNNs: three encoders {𝑓𝑉 , 𝑓𝐸 , 𝑓𝑃 }, two processors for each of 𝐾 rounds

f message passing, {𝑔𝑘𝑉 , 𝑔
𝑘
𝐸}

𝐾
𝑘=1, and 𝐷 decoders {ℎ𝑑}𝐷𝑑=1, where 𝐷 is the dimensionality of the system. One node-decode FCNN with

𝐷 outputs could have been used instead here, however we found during experimentation in previous work that this lead to less
accurate results [56]. A layer normalisation operation (LayerNorm) is applied after each FCNN (with the exception of the decoder
FCNNs) and in the creation of 𝒛local

𝑖 to normalise the intermediate values, which increases numerical stability during training [64].
The trainable parameters of the GNN, which we denote collectively as 𝝎, consistent then of all the weights and biases of the internal
FCNNs along with the LayerNorm parameters.

Neural network surrogate models are typically trained in a data-driven approach, using a loss function derived from a dataset of
numerical forward simulations. Denote a simulation dataset as {(𝑗 ,𝑼𝑗 )𝑁𝑗=1}, the data-driven approach to learning a point estimate
of 𝝎 is then

Data-Driven : 𝝎∗ = argmin
𝑁
∑

𝐿
(

𝑼𝑗 (𝜽𝑗 ), �̂�𝑗 (𝑗 ;𝝎)
)

(15)

𝝎 𝑗=1

7
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Fig. 3. Schematic illustration of physics-informed training of 𝝎, the tunable parameters of a GNN emulator.

where 𝐿 ∶ R||×3×R||×3 → R is a user-specified loss function, for example root mean-squared-error. Eq. (15) is generally minimised
using an iterative, gradient based updating scheme. Instead of a batch approach, where the gradients are computed from all 𝑁 data
points, we have used the concept of mini-batches. This is equivalent to a stochastic gradient descent scheme, which tends to be
faster, less susceptible to entrapment in local optima, and more robust with respect to overfitting [65].

Physics-Informed training is an alternative approach, whereby instead of considering simulation data, training is performed
against known properties of the physical system being modelled, which can be formulated using balance equations, PDE residuals,
or conservation principles [41]. In this work, we make use of a loss function based on the total potential energy functional 𝛱
(Eq. (8)), which is illustrated schematically in Fig. 3. Specifically, a point-estimate of the network parameters is learned as:

Physics-Informed : 𝝎∗ = argmin
𝝎

𝑁
∑

𝑗=1
𝛱

(

�̂�𝑗 (𝑗 ;𝝎),𝜽𝑗
)

(16)

A clear difference between the two approaches is that physics-informed training is not dependent on simulator outputs 𝑼𝑗 , in
contrast to data-driven training — further differences are explored in Section 3.1. Note that a surrogate model can also be trained
in a multi-task manner, using a loss function which incorporates both a data fit term and a physics-informed term [34].
8
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2.4. Implementation details

2.4.1. FEM simulation details
All FEM simulations were performed using first-order tetrahedral elements. For any simulations involving a traction force, an

terative solution approach was taken whereby the pressure was linearly increased from zero to the final prescribed value.

.4.2. Computation of total potential energy
To calculate the total potential energy in Eq. (8), the deformation gradient 𝑭 must first be found. Because first-order tetrahedral

lements were used, 𝑭 only needs to be computed at the centroid of each element. Denoting the coordinates of the four vertices of
tetrahedron in the current (reference) configuration as 𝒙𝑖, 𝒙𝑗 , 𝒙𝑘, and 𝒙𝑙 (𝑿𝑖, 𝑿𝑗 , 𝑿𝑘 and 𝑿𝑙), then 𝑭 is found as

𝑭 =
[

𝒙𝑗 − 𝒙𝑖, 𝒙𝑘 − 𝒙𝑖, 𝒙𝑙 − 𝒙𝑖
] [

𝑿𝑗 −𝑿𝑖, 𝑿𝑘 −𝑿𝑖, 𝑿𝑙 −𝑿𝑖
]−1 , (17)

here the position vector for each node is treated as a column vector. Eq. (17) is the same as the method used in [43]. The integrals
equired for the calculation of 𝛱 are computed in the reference configuration 𝛺0. As a result, we will need to express both the body
orce and the traction force in the reference configuration, 𝒃0 and 𝒕0, respectively. Here, the body force is taken to be gravity which
s independent of the deformation, thus it remains the same. If the traction force is not a dead load but resulted from a pressure
oad 𝑃 , then according to Nanson’s formula, the traction force in the reference configuration can be expressed as

𝒕0 = −𝐽 𝑃𝑭 −𝑇𝑵 , (18)

n which 𝑵 is the normal of the boundary faces of the elements where a pressure load is applied. Finally the total potential energy
Eq. (8)) can be approximated as

𝛱 ≈
𝑛
∑

𝑒𝑙=1
∫𝛺𝑒𝑙

𝑒

𝛹 (𝑭 )𝑑𝑉 −
𝑛
∑

𝑒𝑙=1
∫𝛺𝑒𝑙

𝑒

𝒃0 ⋅ 𝒖𝑑𝑉 −
𝑛𝑓
∑

𝑓𝑙=1
∫𝜕𝛺𝑓𝑙

𝑒

𝒕0 ⋅ 𝒖𝑑𝐴, (19)

here 𝛺𝑒𝑙
𝑒 is the domain occupied by the 𝑒𝑙th tetrahedral element in the reference configuration, 𝜕𝛺𝑓𝑙

𝑒 is the 𝑓𝑙th face on the
eumann boundary with 𝑛𝑓 the number of faces on the Neumann boundary. The differential volume 𝑑𝑉 and the differential area
𝐴 are computed in the reference configuration. The total potential energy is approximated using the first-order Gauss quadrature
ule, that is

𝛱 ≈
𝑛
∑

𝑒𝑙=1
𝛹 (𝑭 𝑒𝑙)𝑉 𝑒𝑙

𝑒 −
𝑛
∑

𝑒𝑙=1

(

𝒃𝑒𝑙0 ⋅ 𝒖𝑒𝑙𝑒
)

𝑉 𝑒𝑙
𝑒 −

𝑛𝑓
∑

𝑓𝑙=1

(

𝒕𝑓𝑙0 ⋅ 𝒖𝑓𝑙𝐴
)

𝐴𝑓𝑙
𝑒 , (20)

n which 𝒖𝑒𝑙𝑒 is the displacement vector at the centroid of the 𝑒𝑙th element, and 𝒖𝑓𝑙𝐴 is the displacement vector at the centroid of
he 𝑓𝑙th face, both of which are linearly interpolated from the nodal displacements 𝒖𝑖. 𝑉𝑒 and 𝐴𝑒 are the volume and area of the
ssociated element and face in the reference configuration, respectively, which can be precomputed in advance of emulator training.

.4.3. Stabilising potential energy computations
Training an emulator directly on the discretised potential energy functional 𝛱 from Eq. (20) is numerically difficult. During

he early stages of training, the surrogate may produce physically unrealistic predictions, leading to extreme behaviour (such as
ivergences) in the computation of 𝛱 . In [44], the authors overcome this issue by initially training on a small subset of parameter
pace, before gradually expanding the training domain. In the present work, we make use of the entire material parameter domain
hroughout training, where numerical stability in 𝛱 is ensured by the use of certain barrier transformation functions, which we
ow detail.

Firstly, due to the invertibility of the forward map 𝝌 and because volumes cannot be negative, we know 𝑎 − 𝑝𝑟𝑖𝑜𝑟𝑖 that any
olumetric change ratios from the reference to current configuration must be strictly positive. Mathematically, this means that
> 0. An untrained emulator could however make a prediction to the displacement field which violates this condition. For this

eason, we apply the following transformation to 𝐽 before evaluating 𝛱 ,

𝐽 𝑡𝑟𝑎𝑛𝑠 =

{

exp(𝛽1𝐽 + 𝛽2) + 𝛽3, if 𝐽 ≤ 𝐽 𝑐ℎ

𝐽 , otherwise.
(21)

ere 𝐽 𝑐ℎ is the point after which the transformation changes to the identity map, and {𝛽1, 𝛽2, 𝛽3} are parameters of the transformation
hose values must be specified. Elementary algebraic manipulations and the asymptotic behaviour of the exponential function can
e combined to show that setting

𝛽1 =
1

𝐽 𝑐ℎ − 𝐽𝑚𝑖𝑛 , 𝛽2 = log(𝐽 𝑐ℎ − 𝐽𝑚𝑖𝑛) − 𝐽 𝑐ℎ

𝐽 𝑐ℎ − 𝐽𝑚𝑖𝑛 and 𝛽3 = 𝐽𝑚𝑖𝑛 (22)

ensures 𝐽 𝑡𝑟𝑎𝑛𝑠 > 𝐽𝑚𝑖𝑛, and that the transformation is both continuous and differentiable at the change point 𝐽 𝑐ℎ. For all experiments,
we set 𝐽𝑚𝑖𝑛 = 0.001 and 𝐽 𝑐ℎ = 0.05, whereas for quasi-incompressible materials 𝐽 ≈ 1.
9
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For the H-O and Guccione constitutive laws, a similar issue arises due to their use of the exponential function. Physically

nrealistic emulator predictions during the initial phase of training can lead to large predicted values for 𝐼1, 𝐼4𝑓 or 𝑄, which when
exponentiated lead to overflow in the computation of 𝛱 . We prevent this behaviour through use of the following transformation

�̂�𝑡𝑟𝑎𝑛𝑠 =

{

tanh(�̂� −𝑍𝑐ℎ) +𝑍𝑐ℎ, if �̂� ≥ 𝑍𝑐ℎ

�̂�, otherwise.
(23)

where �̂� ∈ {𝐼1, 𝐼4𝑓 , �̂�} is the relevant value computed from the emulator’s prediction and 𝑍𝑐ℎ ∈ {𝐼𝑐ℎ1 , 𝐼𝑐ℎ4𝑓 , 𝑄
𝑐ℎ} is the change

point after which the non-linear transformation is applied. This transformation is continuous and differentiable at 𝑍𝑐ℎ, and ensures
�̂�𝑡𝑟𝑎𝑛𝑠 < 𝑍𝑐ℎ + 1. We do not have rigorous finite upper bounds for 𝐼1, 𝐼4𝑓 or 𝑄. Instead, we set the bounds to be higher than is
expected for the simulation results, but low enough to prevent overflow from becoming an issue. These specific values were 𝐼𝑐ℎ1 = 10,
𝐼𝑐ℎ4𝑓 = 8 or 𝑄𝑐ℎ = 15.

Finally, we initialise the weights and biases in the final layer of the decoder FCNNs to zero. This ensures that the untrained
emulator predicts zero displacement for all material parameter values, give further numerical stability in the initial stages of training.

2.4.4. Enforcing Dirichlet boundary conditions
For each model considered, we explicitly enforce the outputs of the GNN emulator along the Dirichlet boundary 𝛺𝑑 to satisfy

the prescribed displacement values. This is achieved through an additional post-processing step after evaluation of the emulator,
where the prescribed values are substituted in place of the predicted values on 𝛺𝑑 . In principle, these boundary conditions could
be softly enforced using a penalty method, however we found training was significantly easier when using explicit enforcement —
similar results were reported in [63].

2.4.5. GNN emulation details
Performing emulation with the PrimalGraphEmulator architecture (see Algorithm 1) requires the number of message-passing

steps 𝐾, the dimensionality 𝑀 of the internal embedding vectors, and the structure of the internal FCNNs to be specified. For all
experiments, we fixed 𝐾 = 5, 𝑀 = 40 and used FCNNs with CELU activation function [66] and two hidden layers, each of width
128. The choice of these hyper-parameters is based on extensive numerical experiments conducted in previous work [56]. With
these values, the emulator had approximately 510,000 trainable parameters for each model considered. Training is performed using
Adam [67], with a batch size of one on a single GPU (Dual NVIDIA RTX A6000). The effect of changes in learning rate on emulator
training is explored in Appendix A - we find that a learning rate of 1 × 10−4 is optimal in the early stages of training. In data-driven
training of neural networks, the use of techniques such as early stopping can be critical to prevent overfitting and ensure good
generalisation performance. However we found during experimentation that this was not required for physics-informed training,
where overfitting was not observed during longer training runs.

The node and edge features for each model considered were specified to have the following form

𝒗𝑖 = (𝑑𝑖) or (𝑑𝑖,𝒇 𝑖) (24)

𝒆𝑖→𝑗 = (𝒙𝑗 − 𝒙𝑖, ‖𝒙𝑗 − 𝒙𝑖‖2), (25)

where 𝑑𝑖 is a Boolean variable indicating if the node lies on the Dirichlet boundary, and 𝒇 𝑖 is the unit vector in the fibre direction.
Fibre information is only included for models with non-isotropic constitutive law and spatially varying fibre field in the reference
configuration. Node and edge features are normalised element-wise to mean zero and unit variance before being inputted to
the emulator. Note how absolute positional information is not included in the node features, instead only relative positions are
incorporated via the edge features. This ensures that the emulator is invariant under translations of the underlying geometry in
space.

2.4.6. Data and code availability
All experiments were implemented in Python. FEM simulations were performed using FEniCS [68], and PI-GNN computations

were performed using the JAX [69], Flax [70] and Optax [71] libraries. All data and code is available on GitHub3.
All data and code will be made available if accepted for publication.

3. Numerical experiments

We conducted numerical experiments to evaluate the performance of the PI-GNN emulation framework involving a total of five
different mechanics models.4 In each case, a fixed geometry is considered, and an emulator is trained over a specified material
parameter domain using the GNN architecture detailed in Section 2.4.5. Complete details of each model are given in Sections 3.1–
3.4, while Table 1 presents a summary. The column for 𝜼 refers to the cardinalities of the layers of virtual nodes created from the
base FE nodes — see Algorithm 1 of Dalton et al. (2022) [56] for details. Benchmarking of emulation results is performed primarily
in terms of error in prediction of the displacement 𝒖, the deformation gradient 𝑭 , the first invariant 𝐼1 and the total potential energy
𝛱 . Errors on these quantities are quantified using the metrics from Eq. (26), where the hat symbol denotes results from the emulator

3 https://github.com/dodaltuin/soft-tissue-pignn
4 Four additional models are considered in the supplementary material.
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https://github.com/dodaltuin/soft-tissue-pignn


D. Dalton, D. Husmeier and H. Gao Comput. Methods Appl. Mech. Engrg. 417 (2023) 116351

D

a
e

Table 1
Summary of models considered for emulation.
Model Material 𝜽 𝜼 𝑁𝑛𝑜𝑑𝑒 𝑁𝑒𝑙𝑒𝑚

OnceClampedBeam Neo-Hookean (𝜆, 𝜇) [97, 24] 390 1440
TwiceClampedBeam Neo-Hookean (𝜆, 𝜇) [97, 24] 390 1440
TwistingCube Neo-Hookean (𝐸, 𝜈) Varying Varying Varying
Liver Neo-Hookean (𝜆, 𝜇) [233, 58, 14] 935 4408
LeftVentricle Holzapfel–Ogden (𝑎, 𝑏, 𝑎f , 𝑏f ) [392, 98, 24] 1570 6176

Fig. 4. Illustration of the rectangular beam models considered as 2-D slices in the (𝑋1, 𝑋3) plane (not to scale), where the dashed lines indicate a clamped
irichlet boundary, 𝜌 is the density of the material and 𝑔 the acceleration due to gravity.

nd ‖ ⋅‖𝐹 is the Frobenius norm. The error metric on 𝒖 is an absolute value measured in (mm) while 𝑒𝑟𝑟𝑭 , 𝑒𝑟𝑟𝐼1 and 𝑒𝑟𝑟𝛱 are relative
rrors, measured in (%).

𝐄𝐫𝐫𝐨𝐫 𝐌𝐞𝐭𝐫𝐢𝐜𝐬 ∶
𝑒𝑟𝑟𝒖 = ‖𝒖 − �̂�‖2 (mm),

𝑒𝑟𝑟𝐼1 =
|

|

|

|

|

𝐼1 − 𝐼1
𝐼1

|

|

|

|

|

× 100 (%),

𝑒𝑟𝑟𝑭 =
‖𝑭 − �̂�‖𝐹
‖𝑭‖𝐹

× 100 (%),

𝑒𝑟𝑟𝛱 =
|

|

|

|

|

𝛱 − �̂�
𝛱

|

|

|

|

|

× 100 (%).
(26)

3.1. Data-driven and physics-informed training comparison

The first model considered, 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 is illustrated in Fig. 4(a). This model involves a beam with 𝛺0 = [0, 100] × [0, 10]2

(mm), discretised using 390 nodes and 1440 elements. The beam is clamped at the left end 𝜕𝛺𝑑
0 = {𝑿 ∈ 𝛺0 ∶ 𝑋1 = 0}, and displaced

under gravitation from its own weight. Specifically, 𝒃 = (0, 0,−𝜌𝑔)⊤, with 𝜌 the density of the beam and 𝑔 the acceleration due to
gravity. No traction force is applied. A Neo-Hookean material model is assumed (see Eq. (2)), with material parameters 𝜆, 𝜇 ∈
[5, 10] kPa. The second model considered, TwiceClampedBeam, is illustrated in Fig. 4(b). This is similar to the first model, except
we have 𝛺0 = [0, 150] × [0, 10] × [0, 2] (mm), and both ends of the beam are clamped, that is 𝜕𝛺𝑑

0 = {𝑿 ∈ 𝛺0 ∶ 𝑋1 = 0 or 𝑋1 = 150}.
We use these models to compare the performance of a GNN emulator trained in a data-driven manner as in Eq. (15) (DD-

GNN) with physics-informed training as in Eq. (16) (PI-GNN). For training of the DD-GNN, 200 simulations were first run from
randomly sampled material parameter values. Training was then performed for 5000 epochs using a fixed learning rate of 1 × 10−4.
For consistency, the PI-GNN was trained at the exact same material parameter inputs, with the same number of training epochs
and learning rate. For evaluation, an independent set of 100 simulations were performed for each model. The average magnitude
of the nodal displacements ‖𝒖‖2 for 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 was 15.7 mm, with maximum value of 50.1 mm. For 𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖, the
corresponding values were 2.3 mm and 6.0 mm respectively, where the disparity in displacement magnitudes is due to the additional
clamped boundary constraints at both ends of the 𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model.
11
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Fig. 5. Comparison of data-driven and physics-informed emulation results on 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model.

Fig. 5 shows emulation results for the 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model, using density plots which compare the test-set accuracy of the
wo training approaches in terms of the four error metrics from Eq. (26). Note that we present density plots on the log scale, as
e believe this makes them more easy to interpret. Panel (a) indicates that the DD-GNN, which as been trained on displacement
ata, achieves lower error in prediction of the displacements, with median 𝑒𝑟𝑟𝒖 value of 6.5 × 10−3 mm compared to 2.0 × 10−2 mm
or the PI-GNN. Nevertheless there is a high degree of overlap between the errors. By contrast, there is a sharp divergence between
he distributions of 𝑒𝑟𝑟𝛱 for the two emulators in panel (b), as the median 𝑒𝑟𝑟𝛱 value incurred by the DD-GNN of 1.7% percent is
wo orders of magnitude higher that the corresponding median value of 6.6×10−2% seen with the PI-GNN. Furthermore, there is no
verlap between the distributions, i.e. the lowest 𝑒𝑟𝑟𝛱 value for the DD-GNN is larger than the highest 𝑒𝑟𝑟𝛱 value with the PI-GNN.
his shows that the predictions of the PI-GNN are consistently more physically realistic in terms of the potential energy state. The
ore realistic deformation captured by the PI-GNN is reflected in the prediction errors for 𝑭 and 𝐼1 displayed in panels (c) and (d),
here we see lower errors obtained for the PI-GNN. Specifically, the DD-GNN incurs median error of 1.8 × 10−1% for 𝑒𝑟𝑟𝑭 against
.7 × 10−2% with the PI-GNN, while the median 𝑒𝑟𝑟𝐼1 value is 1.1 × 10−1% for the data-driven approach is approximately one order
f magnitude greater than for the PI-GNN, which had median 𝑒𝑟𝑟𝐼1 value of 2.0 × 10−2%.

Fig. 6 shows emulation results for the 𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model. The pattern of results is similar to that seen in Fig. 5, but here
he data-driven method performs less well relative to the physics-informed approach. For errors in displacement space in panel (a),
he PI-GNN achieves a slightly lower median error value of 9.6 × 10−3 mm versus 1.1 × 10−2 mm for the DD-GNN, albeit with large
verlap between the two error distributions. For 𝑒𝑟𝑟𝛱 again we see no overlap between the errors, with the median value of 𝑒𝑟𝑟𝛱
or the DD-GNN of 5.3% three orders of magnitude higher than the corresponding median value for the PI-GNN of 1.6 × 10−3%.
inally, for the difference between the accuracy for the predictions of 𝑭 and 𝐼1 was even more pronounced in this model, with
I-GNN errors typically one or two orders of magnitude lower. Specifically, the DD-GNN incurs median error of 8.0×10−1% for 𝑒𝑟𝑟𝑭
gainst 3.8×10−3% with the PI-GNN, while median 𝑒𝑟𝑟𝐼1 value is 1.0×10−1% for the data-driven approach, compared to 7.9×10−4%
or the PI-GNN.

One possible reason why the DD-GNN performs better relative to the PI-GNN on the 𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model is the fact that the
isplacements 𝒖 for this model had greater magnitude and variation across the test data compared to the 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model.
he DD-GNN has the advantage of operating in normalised space by making use of summary statistics for the displacement field
ound on the training data, whereas the PI-GNN is trained in the original space, meaning the network weights have to be trained

o values with larger magnitude to capture the variation in the data.
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Fig. 6. Comparison of data-driven and physics-informed emulation results on 𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model.

3.2. 𝚃𝚠𝚒𝚜𝚝𝚒𝚗𝚐𝙲𝚞𝚋𝚎

We next consider emulation of a model 𝚃𝚠𝚒𝚜𝚝𝚒𝚗𝚐𝙲𝚞𝚋𝚎 involving a cuboidal geometry (𝛺0 = [0, 10]3 mm) discretised with 343
nodes and 1296 elements, based on a similar example from the FEniCS documentation [68]. Here, no external forces are explicitly
applied. Instead the cube is clamped at the left most end 𝜕𝛺𝑑0

0 = {𝑿 ∈ 𝛺0 ∶ 𝑋1 = 0}, and the following rotational displacements
are prescribed at the right end 𝜕𝛺𝑑1

0 = {𝑿 ∈ 𝛺0 ∶ 𝑋1 = 1}:

𝒖 =(0,

(0.5 + (𝑥2 − 0.5) cos(𝜋∕3) − (𝑥3 − 0.5) sin(𝜋∕3) − 𝑥2)∕2,

(0.5 + (𝑥2 − 0.5) sin(𝜋∕3) + (𝑥3 − 0.5) cos(𝜋∕3) − 𝑥3)∕2). (27)

The Neo-Hookean material model is used (see Eq. (2)), parameterised in terms of Young’s modulus 𝐸 and Poisson ratio 𝜈, with ranges
𝐸 ∈ [1, 25] and 𝜈 ∈ [0.1, 0.4]. A PI-GNN emulator was trained for 1000 epochs over (𝐸, 𝜈) space. During the first 500 epochs, a fixed
set of 200 material parameter configurations were used for training (selected using a Latin Hypercube Sampling (LHS) design), with
learning rate of 1 × 10−4. For the remaining epochs, the learning rate was reduced to 1 × 10−5, and at each epoch, a new set of 200
material parameters were randomly sampled using a uniform distribution. To evaluate the trained emulator, 50 simulations were
performed using the FEM to act as independent test set. Density plots for 𝑒𝑟𝑟𝒖 and 𝑒𝑟𝑟𝐼1 on the test set are given in Fig. 7. The
density plot of 𝑒𝑟𝑟𝒖 shown in Panel (a) shows that the displacement predictions of the emulator are extremely accurate, achieving
median 𝑒𝑟𝑟𝒖 value of 8.5 × 10−4 mm with no errors exceeding 7.0 × 10−3 mm (for reference, the mean and max values of ‖𝒖‖2 over
the test data were 1.1 mm and 3.5 mm respectively). From Panel (b), the errors in 𝐼1 are also very low, with median 𝑒𝑟𝑟𝐼1 value of
1.2 × 10−2%, while no errors are in excess of 2.0 × 10−1%.

The emulation results for the test-set simulation for which the PI-GNN achieved the median value of Mean(𝑒𝑟𝑟𝒖) are visualised in
Fig. 8. Panel (a) shows the reference configuration of the cube, panel (b) the current configuration as given by the FEM simulation,
while panel (d) shows the current configuration as predicted by the PI-GNN. No differences between the two results are apparent.
Panel (c) shows the distribution of 𝑒𝑟𝑟𝒖 on the surface of the reference geometry, and indicates that greater errors are incurred in
the centre of the cube along the edges, although no prediction errors are observed in excess of 3.0 × 10−3 mm.
13
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Fig. 7. Error density plots for 𝚃𝚠𝚒𝚜𝚝𝚒𝚗𝚐𝙲𝚞𝚋𝚎 model (343 FE nodes). The vertical lines indicate median values.

Fig. 8. Median out of sample emulation results for 𝚃𝚠𝚒𝚜𝚝𝚒𝚗𝚐𝙲𝚞𝚋𝚎 model (mm).

To investigate how the density of the FE mesh affects emulation results, we repeated the above experiments using four additional
FE meshes, which had 1000 (4374), 4096 (20 250), 13 824 (73 002) and 21 952 (119 098) nodes (elements) respectively. All other
model and implementation details remained the same, with the exception of the mesh with 13 824 (21 952) nodes, where emulator
14
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Fig. 9. Emulation results for 𝙻𝚒𝚟𝚎𝚛 model. The top row shows density plots of 𝑒𝑟𝑟𝒖 and 𝑒𝑟𝑟𝐼1 , where the vertical lines indicate median error values. The bottom
row displays loss heatmaps of 𝑒𝑟𝑟𝒖 and 𝑒𝑟𝑟𝐼1 over the space of Lame parameter (i.e. (𝜆, 𝜇)) configurations considered. The dashed lines indicate the boundary of
he domain considered during training.

Table 2
Summary of emulation results for TwistingCube model using different mesh densities. The final row presents prediction times
when only the final, decoder stage of Algorithm 1 is evaluated.
𝑁node 343 1000 4096 13 824 21 952
𝑁elem 1296 4374 20 250 73 002 119 098

Mean(𝑒𝑟𝑟𝒖) 1.3 × 10−3 1.1 × 10−3 1.2 × 10−3 1.1 × 10−3 1.7 × 10−3

Train time 150min 176min 190min 1166min 2325min
Prediction time 1.7 × 10−3 s 1.9 × 10−3 s 4.1 × 10−3 s 1.1 × 10−2 s 1.6 × 10−2 s
Decoder time 2.1 × 10−4 s 2.2 × 10−4 s 2.4 × 10−4 s 5.0 × 10−4 s 5.9 × 10−4 s

training was performed for an additional 4000 (6500) steps to ensure convergence of the total potential energy. Table 2 gives the
average 𝑒𝑟𝑟𝒖 values obtained at each mesh density, where the errors are considered for those points where 𝑋1 = 0.5, that is a slice in
he (𝑋2, 𝑋3) plane. Errors remain roughly constant for all mesh densities, indicating that the accuracy of the PI-GNN is not sensitive
o mesh density. Note however that fewer training epochs are required to reach the same level of accuracy for less dense meshes.
able 2 also presents training and prediction times for the different meshes. Training and prediction times scale by roughly the
ame order of magnitude. When the message passing stage of the GNN is precomputed however, prediction times for the decoder
ncrease by less than a factor of three when the number of nodes rises by almost two orders of magnitude from 343 to 21 952. This
llustrates the advantage of our GNN architecture design (see Algorithm 1). By decoupling material parameter information from
he message-passing stage of the GNN, predictions can be made extremely efficiently for a fixed input geometry once training is
omplete, even for very dense meshes. This is useful for inverse problems for example, where a large number of forward evaluations
ay be required to allow the material parameters for a given subject to be inferred from experimental data [72].
15
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Fig. 10. Median out of sample emulation results for Liver model (mm).

3.3. Liver

We next consider a model of a human liver, the reference configuration of which can be seen in Fig. 10(a). No traction force is
applied, with external loading consisting solely of gravitational force. The Dirichlet boundary consists of half of the bottom surface of
the geometry, where zero displacement is allowed. The geometry used is that made available by the authors of Zhang and Chauhan
(2020) [73]. In this work, we use the same Dirichlet boundary surface as [73], and also assume the same Neo-Hookean material
model (see Eq. (2)). We additionally re-scaled the geometry to have a length of 150 mm, approximately the average value for an
adult human [74].

We trained a GNN emulator for the 𝙻𝚒𝚟𝚎𝚛 model over parameter space 𝜽 = (𝜆, 𝜇) ∈ [3.5, 10]2 kPa initially for 500 epochs with
fixed learning rate of 1 × 10−4 using a fixed set of 200 material parameter configurations. Training was then continued for an

dditional 500 epochs with learning rate 1 × 10−5, with randomly sampled material parameters at each epoch. The out of sample
rediction results of the trained emulator are presented in Fig. 9. These results were evaluated on a set of 482 simulations performed
sing the FEM, each of which made use of a randomly sampled material parameter vector.

The emulator exhibits strong accuracy in prediction of the displacement values, as is illustrated in the density plot in Fig. 9(a).
he median out of sample prediction error is 8.8×10−3 mm and only a tiny fraction of errors exceed one-tenth of a mm (for reference,
he mean and max values of ‖𝒖‖2 over the test data were 7.9 mm and 58.5 mm respectively). From Panel (b), the errors in 𝐼1 are also
ery low, with median 𝑒𝑟𝑟𝐼1 value of 1.9 × 10−2%, while virtually no errors exceed half a percent. The two plots on the bottom row
isplay loss heatmaps over material parameter space. We consider the performance of the emulator under extrapolation by extending
he heatmaps beyond the domain considered during training, the boundary of which is illustrated by the dashed lines. The plots
xhibit broadly similar patterns, with very low errors within the training domain, with a smooth deterioration in prediction accuracy
s we move outside this area. Fig. 10 visualises results for the test data simulation where the emulator achieved median value of
ean(𝑒𝑟𝑟𝒖). Panels (b) and (d) show the current configurations of the body outputted by the FEM and PI-GNN, respectively. It is

ifficult to visually discern any differences between the two results. The distribution of 𝑒𝑟𝑟𝒖 values is given in Panel (c), which shows
−2
hat errors are highest towards the end of the geometry where ‖𝒖‖2 is highest, however these errors do not exceed 4.3 × 10 mm.
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Fig. 11. Short-axis illustration of boundary conditions for 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model at the base of the geometry (idealised, symmetric geometry only used for
llustration purposes). The figure shows in the (𝑋1 , 𝑋2) plane — the 𝑋3 direction runs from the apex to the base (see Fig. 13(a)). Here 𝜕𝛺𝑑

0 indicates the clamped
base of the LV where zero displacements are allowed, 𝜕𝛺𝜎

0 the inner surface of the LV (the endocardium) where outward pressure is applied, represented by 𝑝.

3.4. LeftVentricle

In the final emulation experiment, we consider a model for the passive mechanics of the left ventricle (LV) of the heart. The LV
geometry considered is a real model, extracted from the cardiac magnetic resonance (CMR) imaging scans of a healthy volunteer
at early diastole. Both long and short axis CMR scans were used for the reconstruction, which was performed using segmentation
software developed in-house. For further details on LV geometry reconstruction, see [8,75]. A layered myofibre structure is typically
incorporated into LV models, but imaging of myofibres in-vivo remains a challenging problem. For this reason, we adopt a rule based
method (RBM) to describe the layered myofibres in this work [76]. Here a fibre-sheet-normal local material coordinate system is
defined, where we vary the fibre angle linearly from −90◦ at endocardium to 90◦ at epicardium. The geometry is approximately
75 mm in length from base to apex, and is discretised using 1570 nodes and 6176 elements. The passive filling of the myocardium
is modelled by a linearly increased cavity pressure applied to the inner surface of the LV, with no body force applied. The base
of the LV is fully constrained with zero displacements. These boundary conditions are illustrated via a 2-D diagram of the base of
the LV in Fig. 11. The H-O material model is used to describe the mechanical response of the myocardium. The ranges considered
for each material parameter (see Eq. (4)) were 𝑎 ∈ [0.1, 2.6] kPa, 𝑏 ∈ [1., 4.2], 𝑎f ∈ [1.5, 5.18] kPa and 𝑏f ∈ [1, 4.46]. These ranges

ere chosen so as to match the mean parameter values found on real data [8], with roughly double the level of variance around
he mean. The final pressure loading on the endocardium is allowed to range from 4 to 10 mmHg, and it is incorporated in the
NN by concatenation to the material parameter vector 𝜽. We set the parameter  to equal 25 kPa (5 kPa was used in [44]) to
llow some compressibility in the myocardium. Note that it is still debatable whether the myocardium shall be treated to be fully
ncompressible or compressible [77]. In future work, we will consider multi-field variational principles as an alternative approach
o handle incompressibility — this is discussed further in Section 4.4. The reference configuration of the LV is shown in Fig. 13(a),
hile Panel (b) shows an FEM simulation result.

A PI-GNN emulator for the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model over the four dimensional material parameter space was trained for 15 000
pochs, with a learning rate of 1 × 10−4 during the first half of training and 1 × 10−5 for the second half. More training epochs were
sed here over previous models based on examination of the traceplots of the potential energy. A test data set of 150 points was
enerated using the FEM to evaluate the out of sample performance of the trained PI-GNN, where each simulation was performed
ith a different randomly sampled material parameter vector and pressure loading value. Note that further details of the training
rocedure used are given in Section 2.4.

Density plots of emulation error on the test set are presented in Fig. 12. From Panel (a), the bulk of displacement prediction
rrors fall within an order of magnitude of the median 𝑒𝑟𝑟𝒖 value of 2.8 × 10−2 mm, however the tail of the distribution approaches
.5 × 10−1 mm (for reference, the mean and max values of ‖𝒖‖ over the test data were 6.8 mm and 26.3 mm respectively). The
2

17



D. Dalton, D. Husmeier and H. Gao Comput. Methods Appl. Mech. Engrg. 417 (2023) 116351

d
r
e

Fig. 12. Error density plots for 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model. The vertical lines indicate median values.

istributions of 𝑭 and 𝑒𝑟𝑟𝐼1 errors are both slightly more peaked around their median values of 1.9 × 10−1% and 4.7 × 10−2%
espectively. We also consider the emulation error in predicting the volume 𝑉 enclosed within the cavity of the LV, using the
rror measure

𝑒𝑟𝑟𝑉 =
|

|

|

|

|

𝑉 − 𝑉
𝑉

|

|

|

|

|

× 100, (28)

as cavity volume is an important quantity for clinicians in the diagnosis of certain cardiovascular diseases [78]. The distribution of
𝑒𝑟𝑟𝑉 from Panel (d) indicates strong agreement between the simulator and emulator on the test data, with median error value of
3.7 × 10−2%, while the largest error incurred was less than half a percent.

Emulation results for the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model for the test simulation where the emulator achieved the median value of
Mean(𝑒𝑟𝑟𝒖) are visualised in Fig. 13. Comparing the FEM and PI-GNN results from panels (b) and (d) respectively shows strong
agreement between the two. The distribution of 𝑒𝑟𝑟𝒖 values from panel (c) indicates that errors are highest further from the base of
the LV, and approach 1 × 10−1 mm at the apex.

In addition to strong emulation accuracy, the emulator offers significant computational savings at prediction time over the FEM.
A single forward evaluation for the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model takes 2.7×10−3 s, and once the message-passing stage is precomputed, only
2.3×10−4 s.5 By contrast, simulations of the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model in FEniCS can take in excess of one hour.6 Simulation times could
however be reduced to the order of minutes by exploring parallel computing and solver optimisation in software such as ABAQUS.
Nevertheless, even a one minute simulation time is prohibitively expensive for real-time applications where thousands of simulations
need to be performed in sequence, as would be required for example with the use of a sampling-based Bayesian inference method
for an inverse problem. As a consequence of the reduction in the computational costs, Bayesian sampling with our method becomes
practically feasible. This indicates that our methodological improvements enable sound parameter inference with proper uncertainty

5 Dual NVIDIA RTX A6000.
6 Dual Xeon Gold 6254.
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Fig. 13. Median out of sample emulation results for LeftVentricle model (mm).

uantification in real time, which would otherwise would not be feasible, thereby paving the path to genuine impact in the clinic.
t is also trivial to parallelise the GNN to handle multiple input configurations simultaneously, using the vmap functionality in the
AX library.

. Discussion

.1. Data-driven and physics-informed training comparison

The experiments from Section 3.1 reveal interesting differences between data-driven (DD) and physics-informed (PI) training.
or the 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model, the DD-GNN achieves better accuracy in prediction of the displacements, whereas under the
𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model, where the magnitude of the displacements was lower, the results in displacement space were almost
dentical. However for both models, there is a clear divergence in how accurately the predictions of the two emulators recover
he true minimum total potential energy state. For the DD-GNN, 𝑒𝑟𝑟𝛱 values tended to be in the range of 1%–10%, whereas the
I-GNN errors were typically at least one order of magnitude lower. This indicates that the PI-GNN is consistently capturing a more
19
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physically realistic displacement that the DD-GNN. This is reflected in the errors observed in the prediction of the deformation
gradient 𝑭 and first invariant 𝐼1, where for both models we see again lower error values incurred by the PI-GNN. In Appendix B we
e-perform these experiments using a DD-GNN where the loss function also includes a penalty term on 𝑭 . We find that this leads

to improved accuracy, but nevertheless PI-GNN achieves lower values of 𝑒𝑟𝑟𝛱 , 𝑒𝑟𝑟𝑭 and 𝑒𝑟𝑟𝐼1 .
These results indicate that, while data-driven training may lead to accurate results in displacement space, these results are not

uaranteed to respect the underlying physics. Therefore if further quantities of interest are required beyond the displacements, for
xample stress and strain values, the use of physics-informed training will lead to more accurate results.

.2. Computational costs

The results from Table 2 indicate that an increase in mesh density leads to an increase in training and prediction times of a
imilar order of magnitude. We have not emphasised optimisation of training time in this work. Possible methods for doing so
nclude mixed precision training, utilisation of multiple GPUs, or use of a second order optimisation approach such as conjugate
radients. Note that the particular advantage of a GNN emulator is that training can be done offline — again, see [56] for details.

Once the processor stage of the emulator is precomputed however, we see from Table 2 that prediction times only increase by a
actor of three when the mesh density increase by approximately a factor of sixty. This illustrates the advantage of our architecture
esign, which combines the modelling benefits of a GNN with the computational efficiency of an FCNN at prediction time.

.3. 𝙻𝚒𝚟𝚎𝚛 And 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 emulation results

The strong emulation accuracy for the 𝙻𝚒𝚟𝚎𝚛 and 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 models highlights the ability of our PI-GNN approach to handle
ealistic models involving complex soft-tissue geometries.7 The PI-GNN can also be applied to a soft-tissue geometry on which it
as not seen during the initial training phase, which is demonstrated in Appendix E.

Comparing the results for the two real soft-tissue models, we see that higher accuracy was obtained for the 𝙻𝚒𝚟𝚎𝚛 model, which
ssumed a Neo-Hookean material, compared to the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎, where the more nonlinear H-O material model was used. This
uggests that it may be easier to train in a physics-informed manner for more linear constitutive laws. A further comparison is
xplored in Appendix C, where the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 emulation experiments are re-performed under the Neo-Hookean model. The
esults indicate that the emulator can consistently obtain a better approximation to the true 𝛱 under the more linear model, with
ower error values in both 𝒖 and 𝑭 observed in turn. Nevertheless, predictions for the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model using the Holzapfel–
gden material model were still highly accurate. For instance, the worst error observed in LV cavity volume of approximately half a
ercent is an order of magnitude lower than typical error measurements from manual segmentation of CMR scans [79]. In addition to
trong predictive accuracy, the emulator is also several orders of magnitude less computationally expensive at prediction time when
ompared to the FEM. Furthermore, our PI-GNN implementation can be automatically differentiated using JAX, allowing 𝜕�̂�∕𝜕𝜽 to be
omputed to machine precision at negligible additional computational costs. This combination of rapid, highly accurate predictions
ith end-to-end differentiability completely changes the range of applications for which soft-tissue models can be deployed in real

ime. For example, the parameter inference problem for passive cardiac mechanics considered in [8], which took over one week
sing the FEM, could be performed in seconds using a PI-GNN emulator.

.4. Limitations and future work

The principle of minimum total potential energy is a fundamental concept in mechanics and engineering, and has been used in
his work to handle soft-tissue mechanics problems using PI-GNNs, in a similar manner to some recent studies [43,80]. An alternative
pproach can be derived from the weak formulation of PDE residuals based on the principle of virtual work, as done in [63]. With
his approach, a physics-informed loss function may be defined as 𝐿 =∥ (∫𝛺 ∇ ⋅ 𝝈 + 𝒃) ⋅ 𝜼𝑑𝑣 ∥2, with 𝜼 the test function. There
re a number of potential advantages to this approach, including the flexibility of handling time-dependent dynamic problems,
iscontinuous problems and non-conservative systems, i.e. shocks.

The strain energy density functions of the myocardium used here are considered to be slightly compressible, making use of
he so-called F -bar method. To fully address incompressibility, future work can make use of the so-called multi-field variational
rinciples [60, Chapter 8], where additional variables are introduced to take into account the incompressibility constraint.

In future directions of work we will extend the PI-GNN to consider higher-order finite elements with quadratic shape functions.
his is to enhance the robustness of our method to the locking phenomenon which is a well-known issue when using linear
etrahedral elements for FE computations [81], in particular for incompressible or nearly-incompressible materials. A wider range
f PDE systems with unstructured data could also be considered, for example material science [82], fluid dynamics (i.e. arterial
lood flow [38,83]), structural mechanics [63], and other large-scale engineering systems [84].

In this study, a preliminary mesh convergence study was carried out using the TwistingCube model (see Table 2). These
esults show that PI-GNN can match the FEM results well for different mesh densities, thus it can be expected that with increased
esh density, the emulator will obtain more accurate and reliable results. In real applications for clinical decision making, the
I-GNN may also need a fine discretisation as is the case for the FEM. However, the mesh density required by the surrogate model

7 In Appendix D we also consider emulation involving a biventricle cardiac geometry.
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might be different from the classical FEM. There are some studies in the literature which explore this problem from a theoretical
perspective, see for example He et al. [85] which draws an analogy between ReLU deep neural networks and linear finite elements.

Finally, the natural progression of the present work is to consider the inverse problem, that is to infer material parameters for
oft-tissue bodies from clinical data using a PI-GNN, and quantify the inference uncertainty. For the left ventricle, we have previously
ound that some parameters are weakly identifiable given observed strain values at 24 landmark points on the myocardium [12].
mulation of the entire displacement field with a PI-GNN may provide important additional information that will reduce the
osterior uncertainty. However, a verification of this hypothesis is beyond the remit of the present article and will be addressed in
ur future work.

. Conclusion

This paper has presented a PI-GNN emulation framework for application to soft-tissue mechanics. The GNN can operate directly
n the unstructured mesh representation of a given soft-tissue geometry and is trained in a physics-informed manner by applying
he principle of minimum total potential energy. Physics-informed training is enabled by the introduction of barrier transformation
unctions which stabilise the objective function by explicitly incorporating known physical constraints such as the impenetrability of
atter. A range of hyper-elastic models are considered, including realistic models of the human liver and left ventricle. Furthermore,

ignificant computational savings at prediction time are made compared to the FEM. The authors believe this work is an important
tep in the development of real-time clinical applications of computational soft-tissue mechanics.
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ppendix A. Effect of learning rate on emulator training

We use four beam models to explore the effect that learning rate has on emulator training. The first two models, 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖
and 𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 were also considered in Section refsec:ddComparison for the data driven and physics informed training
comparison. For the third model 𝚃𝚛𝚊𝚌𝚝𝚒𝚘𝚗𝙱𝚎𝚊𝚖𝙷𝙾, we have 𝛺0 = [0, 100] × [0, 10]2 (mm), represented using 176 nodes and 440
elements. The beam is clamped at the left most end 𝜕𝛺𝑑

0 = {𝑿 ∈ 𝛺0 ∶ 𝑋1 = 0}, and subject to a pressure of 0.15 kPa on its bottom
surface 𝜕𝛺𝜎

0 = {𝑿 ∈ 𝛺0 ∶ 𝑋3 = 0}, with no body force applied. The H-O constitutive law is used (see Eq. (4)), with 𝜽 ∈ [.75, 2.5]4

where 𝑎 and 𝑎f are in kPa, and a fixed myofibre field with 𝒇0 = (1, 0, 0)⊤ is assumed throughout 𝛺0. The setup of the final beam model,
𝚃𝚛𝚊𝚌𝚝𝚒𝚘𝚗𝙱𝚎𝚊𝚖𝙶𝚞𝚌𝚌𝚒 is identical with the exception that the Guccione material model is used (see Eq. (7)), with 𝜽 ∈ [1.75, 3.5]4. The
reference configuration and boundary conditions for both traction-force models is shown in Fig. A.14.

Fig. A.14. Illustration of the 𝚃𝚛𝚊𝚌𝚝𝚒𝚘𝚗𝙱𝚎𝚊𝚖𝙷𝙾 and 𝚃𝚛𝚊𝚌𝚝𝚒𝚘𝚗𝙱𝚎𝚊𝚖𝙶𝚞𝚌𝚌𝚒 models as 2-D slices in the (𝑋1, 𝑋3) plane (not to scale). The dashed lines indicate a
clamped Dirichlet boundary, and 𝑝 represents a pressure applied to a Neumann boundary surface.
21
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Fig. A.15. Traceplots of mean(𝛱) for four beam models using different learning rates.

For each model, training was performed over 200 randomly sampled input material parameter values. An additional 100
independent simulations were used as a test set for evaluation of out of sample performance. Three different fixed learning rates
were considered; 1 × 10−5, 5 × 10−5 and 1 × 10−4. 5000 epochs were used for training, which was a sufficient number to make
comparisons between the different rates. Learning curves for the four beam models are displayed in Fig. A.15, with the mean
potential energy value obtained at the 200 training input configurations plotted against number of training epochs performed. For
all models, the higher learning rate of 1 × 10−4 allows the emulator to reach the minimum of the potential energy most rapidly.
Training diverged in each case when a higher learning rate of 5 × 10−4 was used(not shown in figure to avoid clutter). Fig. A.16
again displays learning curves, except here the mean 𝑒𝑟𝑟𝒖 value across the 100 test simulations is plotted against number of epochs.
A similar pattern is observed, whereby a high learning rate yields faster training. Significant variation in the 𝑒𝑟𝑟𝒖 traceplots are
present however when using a higher learning rate, suggesting that lowering its value at the end of training may be useful to
settle on the optimal displacement values. For this reason we used a two-phase training approach for the emulation experiments in
Sections 3.2–3.4 whereby a learning rate of 1 × 10−4 was used for the first half of training, before this was reduced by one order
of magnitude for the second half of training. We found that this simple strategy was highly effective at finding the minimum total
potential energy state, and hence we did not pursue more complex approaches in this work, such as second order methods. Note
that we also initially experimented with an automatic learning rate finder approach similar to [86] and different decay schedules,
however we consistently found that using a fixed learning rate of 1 × 10−4 was optimal during the early stages of training.

Appendix B. Additional data-driven and physics-informed emulation experiments

The results from Section 3.1 illustrate that while data-driven can achieve strong accuracy in terms of displacements, the results
obtained do not approximate the true potential energy state to the same accuracy as with physics-informed training, which is
reflected in greater errors in the deformation gradient 𝑭 and first invariant 𝐼1. A possible way of alleviating this issue would be to
train a data-driven emulator against both displacement and deformation gradient data. To test this approach, we re-performed the
22
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Fig. A.16. Traceplots of mean(𝑒𝑟𝑟𝒖) for four beam models using different learning rates.

data-driven emulation experiments by making use of the following loss function

𝝎∗ = argmin
𝝎

Mean
[𝑁sim
∑

𝑗=1

𝑁node
∑

𝑖=1
‖𝒖𝑗𝑖 − �̂�𝑗𝑖(𝝎)‖2 +

𝑁sim
∑

𝑗=1

𝑁elem
∑

𝑘=1
‖𝑭 𝑗𝑘 − �̂� 𝑗𝑘(𝝎)‖𝐹

]

, (B.1)

which includes a penalty term for in terms of the Frobenius norm ‖𝑐𝑑𝑜𝑡‖𝐹 . We refer to a GNN trained using this loss function as
an ‘‘FDD-GNN’’. Figs. B.17 and B.18 then replicate the corresponding figures from Section 3.1 for both the 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 and
𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 models, except this time the FDD-GNN results are also included. For each model, we see that including a penalty
term on 𝑭 in the data-driven loss function leads to improved emulation accuracy, particularly in terms of the 𝑒𝑟𝑟𝛱 , 𝑒𝑟𝑟𝑭 and 𝑒𝑟𝑟𝐼1 ,
ut nevertheless the PI-GNN still achieves better accuracy on these three error metrics.

ppendix C. Comparison of Neo-Hookean and Holzapfel–Ogden material models

The higher level of accuracy obtained for the 𝙻𝚒𝚟𝚎𝚛 model in Section 3.3, which used the Neo-Hookean law, compared to the
𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 emulation results in Section 3.4, where the Holzapfel–Ogden law was assumed, suggests that the PI-GNN is easier to
rain when the underlying constitutive relationship is linear or near-linear. For further insight here, in this section we re-perform the
𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 emulation experiments using the Neo-Hookean material model. Specifically, was trained over material parameter
pace and LV pressure profiles between 4 and 10 mmHg, with Neo-Hookean constitutive law parameterised by Lame material
arameters 𝜆 and 𝜇, where both parameters varied in the range [8, 10] kPa. Emulator performance of the surrogate was evaluated

on a test set of 150 simulations obtained using the finite-element method (FEM). Fig. C.19 displays error density plots for this
emulator, compared with results from Section 3.4 for the original PI-GNN which made use of the H-O law. In all cases, we see
noticeably better performance under the Neo-Hookean model. For relative errors in 𝑢 seen in panel (a), median errors under the
Neo-Hookean model are almost one order of magnitude lower than for the H-O model. For 𝑒𝑟𝑟𝐼1 displayed in panel (b), there is even
greater disparity between the results, with very little overlap between the two densities. If we consider 𝑒𝑟𝑟𝛱 in panel (c), we see
that the PI-GNN consistently achieves a better approximation to the true minimum potential energy value, indicating it is easier to
23
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Fig. B.17. Comparison of data-driven and physics-informed emulation results on 𝙾𝚗𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model. The PI-GNN is following Eq. (16) of the manuscript,
the DD-GNN is trained purely on displacement data as in Eq. (15) of the manuscript, while the FDD-GNN additionally incorporates a loss on the deformation
gradient 𝑭 following Eq. (B.1) above.

train the emulator when the material model is near linear. Finally, for 𝑒𝑟𝑟𝑉 in panel (d), the difference between the two results is
less pronounced. While lower errors are achieved under the Neo-Hookean model, there is a high degree of overlap between the two
distributions. This results suggest that further experimentation could be required here to determine how PI-GNN accuracy can be
increased for more non-linear material models. One possible approach could be the use of feature transformations of the material
parameter vector 𝜽.

Appendix D. Application to biventricle cardiac geometry

Here we demonstrate the application of a PI-GNN to the filling of a biventricular cardiac geometry. For this illustrative example,
idealised symmetric ventricles are considered, the Neo-Hookean material model is assumed and the same cardiac pressure is used
in each cavity. A PI-GNN emulator was trained for 1000 steps. Prediction results against an FEM simulation are shown in Fig. D.20,
where the mean 𝑒𝑟𝑟𝒖 value is 4.8 × 10−2 mm. Visually we see strong agreement, however relative errors are higher than seen in the
𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model, which may be alleviated by more training steps or a larger number of message passing steps.

ppendix E. Emulation on new LV geometry

The geometry of a soft-tissue body will vary from patient to patient, therefore it is essential that the emulator can generalise
o a new geometry not seen in the training phase. Note we have already addressed this in earlier work [56], where a GNN was
rained on a dataset where each simulation was performed using a different left ventricle geometry. In this work, we take a simpler
pproach by considering the generalisation of the PI-GNN for the 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model in the case of one new LV geometry, again

extracted from cardiac imaging scans. Note that this geometry had a different mesh topology (1268 nodes and 4847 elements) to
the original LV (1570 nodes and 6176 elements).

To test how the GNN can generalise to the new geometry, we took the pre-trained PI-GNN from the original LV, and transfer
learned for 12 epochs or approximately 90 s on the new geometry (we refer to this as the ‘‘Transfer Learned’’ emulator). For baseline
comparison, we consider a PI-GNN trained for the same computational budget (i.e. 12 steps/90 s), but from randomly initialised
network parameters (we refer to this as the ‘‘Baseline’’ emulator). Comparing the transfer learned results with the baseline allows

the gain achieved by sharing information from the original geometry to be quantified. Finally, as reference we consider the results
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Fig. B.18. Comparison of data-driven and physics-informed emulation results on 𝚃𝚠𝚒𝚌𝚎𝙲𝚕𝚊𝚖𝚙𝚎𝚍𝙱𝚎𝚊𝚖 model. The PI-GNN is following Eq. (16) of the manuscript,
the DD-GNN is trained purely on displacement data as in Eq. (15) of the manuscript, while the FDD-GNN additionally incorporates a loss on the deformation
gradient 𝑭 following Eq. (B.1) above.

we the performance of a PI-GNN again trained from scratch, but this time for 15 000 epochs (we refer to this as the ‘‘Reference’’
emulator). After training, emulation performance of the three emulators was then evaluated on a test set of 150 simulations run
using the same material model (Holzapfel–Ogden) and material parameter domain as the original LV geometry, with fixed cardiac
pressure of 6 mmHg.

Fig. E.21 shows density plots of test set emulation errors for the three emulators considered. In each case, we see a clear gain in
performance when re-using the network weights over the Baseline PI-GNN with randomly initialised weights. With 𝑒𝑟𝑟𝒖 for instance,
the increase in accuracy is approximately one order of magnitude. The accuracy of the full-trained Reference emulator is then one
order of magnitude lower again. Performing over one thousand times as many training steps has allowed the Reference emulator
to obtain clearly more accurate results.

Panel (c) shows the error in total potential energy 𝛱 incurred by the emulator, which illustrate allowed the fully-trained
Reference PI-GNN to reach a better approximation of the true minimum potential energy state than the two PI-GNNs that were
trained for 12 steps. However, the transfer learned emulator has clearly benefited from the initialisation at the weights found on
the other LV geometry, as the worst 𝑒𝑟𝑟𝛱 is lower seen in the transfer-learning case is lower than the smallest error seen with the
Baseline, randomly initialised PI-GNN. A similar pattern is observed in panel (d), which displays density plots of 𝑒𝑟𝑟𝑉 . Here however
the transfer-learned emulator more closely matches the performance of the fully-trained Reference emulator. While lower errors are
attained in general with full training, there is significant overlap between the two error distributions, and for the transfer-learned
PI-GNN, only a small fraction of errors exceed 1%.

Fig. E.22 displays emulation plots for the new geometry for the simulation which gave median out of sample error. In the left
column, we see that the errors incurred by the transfer learned PI-GNN are consistently higher across the surface of the geometry
than for the Reference PI-GNN. In the right column, differences between the two are only slightly visually apparent, and the 𝑒𝑟𝑟𝑉
values were very similar for each surrogate — for the Reference PI-GNN, 𝑒𝑟𝑟𝑉 error was 0.03%, while for the transfer-learned
PI-GNN, the corresponding error was 0.04%.

These results suggest that for macro level quantities of interest such as cardiac volume, where precise node-wise accuracy levels,
the PI-GNN exhibits reasonable generalisation performance when applied to a new geometry. It is likely that more accurate results
can be obtained by incorporating a larger number of different geometries into the training routine as done in [56], which is the
direction we will pursue in future work.
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Fig. C.19. Comparison of emulation results for 𝙻𝚎𝚏𝚝𝚅𝚎𝚗𝚝𝚛𝚒𝚌𝚕𝚎 model under the Neo-Hookean and Holzapfel–Ogden material models.
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Fig. D.20. Comparison of simulation and emulation results for biventricular cardiac geometry.
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Fig. E.21. Comparison of emulation results for new LV geometry for GNN trained from scratch for 15 000 epochs (Reference), versus a transfer-learned GNN
trained for 12 epochs (Transfer Learned) and a randomly initialised GNN trained for 12 epochs (Baseline).
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Fig. E.22. Median out of sample emulation results for LeftVentricle model (mm) using new geometry. Top row shows a fully trained PI-GNN, bottom row
hows a PI-GNN transfer-learned for 90 s.
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