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Task-Oriented Integrated Sensing, Computation

and Communication for Wireless Edge AI

Hong Xing, Guangxu Zhu, Dongzhu Liu, Haifeng Wen, Kaibin Huang, and

Kaishun Wu

Abstract

With the advent of emerging IoT applications such as autonomous driving, digital-twin and meta-

verse etc. featuring massive data sensing, analyzing and inference as well critical latency in beyond

5G (B5G) networks, edge artificial intelligence (AI) has been proposed to provide high-performance

computation of a conventional cloud down to the network edge. Recently, convergence of wireless

sensing, computation and communication (SC2) for specific edge AI tasks, has aroused paradigm shift by

enabling (partial) sharing of the radio-frequency (RF) transceivers and information processing pipelines

among these three fundamental functionalities of IoT. However, most existing design frameworks sep-

arate these designs incurring unnecessary signaling overhead and waste of energy, and it is therefore

of paramount importance to advance fully integrated sensing, computation and communication (ISCC)

to achieve ultra-reliable and low-latency edge intelligence acquisition. In this article, we provide an

overview of principles of enabling ISCC technologies followed by two concrete use cases of edge AI

tasks demonstrating the advantage of task-oriented ISCC, and pointed out some practical challenges in

edge AI design with advanced ISCC solutions.

I. INTRODUCTION

With the proliferation of massive data generated by IoT devices and their applications such as

smart transport, smart city and digital twin etc., there is unprecedented demand for the network

edge to be capable of contextual awareness and extensive computation, thus achieving ultra

reliable and low-latency intelligence acquisition. To satisfy such requirements, wireless edge

artificial intelligence (AI) has been proposed as a promising solution to pull cloud functionalities

including high-performance computation, communications and control down to the proximity of
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the IoT front end [1]. By generating and consuming data locally, and based upon it performing

task-oriented training and inference all within the network edge, edge AI solution significantly

reduces energy and end-to-end latency for network services, thus being one of the key enablers

for beyond 5G (B5G) IoT with ubiquitous perception and endogenous intelligence.

Among a variety of design components, (wireless) sensing, computation and communication

are three building blocks that are tightly coupled each other for effective edge AI. Wireless

sensing enabled by contactless sensors features non-intrusiveness, reliability, scalability and

resilience, and is thus widely adopted to support various ambient intelligence applications for,

e.g., health monitoring and traffic surveillance [2]. To exploit the wealth of sensing data to provide

services like target detection, positioning and motion recognition, it is imperative to first analyze

these raw signals by proper filtering and time-frequency analysis, and then feed the extracted

features into the input of the AI model to collectively train a shared AI model or make device-

edge co-inference, meanwhile providing reliable and low-latency communications between the

edge server and edge devices that may involve model/gradient parameters in million-to-billion or-

der of magnitudes. For example, in vehicular-to-everything (V2X) networks, a unified waveform

bearing both vehicle-to-road side unit (RSU) information and sensing signal is expected to attain

simultaneous high data-rate communication and broad field of view beyond the vehicle’s line-

of-sight. Meanwhile, real-time processing of massive sensed data for collaborative AI model

inference among RSUs is also favored to assist with safe driving. However, on one hand, it

may be infeasible to deploy such complicated DNN on edge devices for on-device inference

using limited on board computation and storage resources. On the other hand, offloading the

data to the cloud for remote inference may violate the latency requirement and incur terrible

accidents. These dilemmas, needs and opportunities facilitate the development of technologies

such as wireless edge learning/inference, and furthermore, motivate joint sensing, computation,

and communication (SC2) designs.

Most of existing SC2 solutions focus on joint design of any two factors out of the three.

Recently, the wireless sensing and communication layer tend to converge into a novel signaling

layer in the state-of-the-art (SOTA) IoT architecture [3]. In most prior arts, radio-frequency (RF)

sensing and/or communication performed at the signaling layer and AI model training/inference

employed at the upper application layer are often two processes that are separately designed,

which hardly achieves uniformly satisfactory performance across different edge AI tasks due

to, e.g., mismatch of resources. For instance, if low transmit power is tuned by battery-limited



3

wireless sensors to generate some low-resolution data that are just sufficient for anomaly de-

tection, but later these data samples are used for high-complex model training, then a waste of

computation energy is inevitable, let alone possibly poor generality performance due to over-

fitting. To streamline wireless edge AI deployment with significantly improved energy efficiency

and reduced hardware as well as signaling cost, it is critical to breaking boundaries among SC2

in a conventional design framework that separates them as three relatively independent modules

— allowing sensed information to enhance the reliability of communication and computation,

and computation performance to guide through sensing and computation in turn.

While [4] proposed a shared framework of integrated sensing, computation and communication

(ISCC) over the air, in which multiple multi-antenna IoT sensors transmit signals for simultaneous

target detection and over-the-air data fusion, and jointly optimized SC2 beamformers to improve

trade-offs between their mean squared errors (MSE). However, there is still a lack of systematic

understanding of ISCC in literature, in particular, implementations that are capable of providing

closed-loop data and control flow across the SC2 processes with feedback and adaption to tasks

except the first few attempts aiming for harnessing their mutual benefits in edge AI tasks [5], [6].

As a result, this paper advocates a design framework of fully ISCC to unleash the full potential

of edge AI for ultra-reliable and low-latency intelligence acquisition.

The structure of the article is organized as follows. Section II presents fundamental principles

and advantages of three enabling technologies for ISCC. The commonly adopted performance

metrics for edge AI tasks along with concrete case studies of human motion recognition factoring

ISCC are elaborated in Section III and Section IV, respectively. In Section V, we identify

some challenges in implementations of ISCC-based edge AI tasks with corresponding SOTA

solutions. Finally, Section VI concludes the article with discussions on some open challenges in

implementations of ISCC techniques.

II. ENABLING TECHNOLOGIES FOR TASK-ORIENTED ISCC

A. Integrated Sensing and Communication (ISAC)

With the growing demand for ubiquitous perception inherent to IoT services such as extended

reality (XR), autonomous driving, and metaverse, etc., two fundamental functionalities of any

radio-frequency (RF) systems, (wireless) sensing and communication, is experiencing paradigm

shift from separate modules with limited hardware and resources sharing to an integrated ar-

chitecture, namely, integrated sensing and communication (ISAC), with these two factors being
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Figure 1. The relationship diagram between ISCC and enabling technologies.

jointly designed in terms of both hardware platform and information processing pipeline [7].

The principle behind ISAC is that an RF waveform can serve both the purpose of conveying

information from the transmitter (Tx) to the receiver (Rx), and of retrieving Doppler shift,

angles of departure/arrival and range, etc. from its echoes. The basic ISAC-enabled system

can be classified into mono-static and bi-static setup (c.f. Fig. 1), depending on whether the

sensing information is estimated on a co-located or separate Rx. In spite of the ultimate goal of

fully unified waveform for sensing and communications with minimal modification to existing

communications infrastructure, a practical ISAC system may also partially implement the con-

cept of “ISAC” by coordinating these two functionalities over some non-overlapping network

resource, achieving partial integration gain (IG). IG refers to various advantages gained by

sensing and communication being integrated to different extents, including spectral and energy

efficiency, hardware cost and signaling latency reduction. For instance, if the knowledge of the

surrounding radio environment inferred by the sensing Rx such as channel state information

(CSI) can be accessed in a cross-function manner, the Tx can exploit such information to

facilitate communication design, further achieving coordination gain (CG) between sensing and

communication in addition to IG.
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B. Integrated Computation and Communication (ICAC)

Recent years have witnessed a rapid development of AirComp as a promising technology

for low-latency data aggregation in IoT networks [8]. The magic behind the technique is to

exploit the superposition property of wireless channels for automatic data aggregation over the

air, thus vividly turning the air into a computer. As opposed to the classic strategy of “com-

munication before computing”, AirComp essentially integrates computing into communication,

resulting in a new paradigm of integrated computation and communication (ICAC). As a result,

unlike traditional wireless communication over a multi-access channel (MAC), which requires

orthogonal transmission for successful decoding of individual messages from different devices,

AirComp allows edge devices to simultaneously transmit their respective signals on the same

frequency band with proper processing, such that the functional computation of the distributed

data is accomplished directly over the air, as shown in Fig. 1. This thus significantly improves

the communication and computing efficiency with theoretically striking performance gain in

terms of multi-access latency up to the network population, e.g., 100 times faster for a network

consisting of 100 participating devices.

C. Integrated Sensing and Computation (ISA“C”)

As next-generation wireless networks evolve, many emerging applications require intelligent

edge devices to sense their surroundings to obtain cognitive information to perform certain

computing tasks efficiently, e.g., fall detection, health monitoring, etc. Hence, the demands for

integrated sensing and computation (ISA“C”) and high energy efficiency are growing. In this

context, inspired by the brain, representative technologies, neuromorphic sensing and computing,

have emerged that enable deep integration of IoT sensors with back-end computing architectures

(neuromorphic processors), where sensing information will directly serve computation tasks com-

pared to traditional digital communications (c.f. Fig. 1). State-of-the-art neuromorphic processors

are typical of spiking neural networks (SNNs) [9]. SNNs process information encoded in the

timing of spikes, as opposed to the conventional deep neural networks (DNNs) that process

continuous real numbers. A spike characterizes a binary event, either 0 or 1. A structure of SNN

has an arbitrary topology that is formed by the interconnection of numerous neurons, where

each neuron is active only when transmitting or receiving spikes and idle otherwise. Neurons

receive timings of spikes as inputs and form a membrane potential by filtering and weighted-sum

operations to compare with a threshold, thus deciding whether it is active or not, while neurons
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in DNNs are always active. Facilitated by emerging large-scale neuromorphic chips, SNN can

be implemented on-chip to achieve extremely low energy consumption and fast computation.

Specifically, each spike only costs a picojoule of energy, leading to energy-efficient edge AI.

To sum up, when pushing towards boundaries of any combined two factors in Fig. 1, i.e.,

ISAC, ICAC, and ISA“C”, we highlight the ISCC synergy from the following aspects. First,

sensing can exploit its knowledge of surroundings to facilitate ICAC through more accurate

channel estimation; and meanwhile capture sporadic changes in the perceived environment that

is otherwise idle, thus saving a significant amount of energy for IoT devices, exemplified by

neuromorphic edge AI architecture. Secondly, computation endows ISAC with distributed edge

intelligence by directly providing highly efficient task-oriented solutions like target detection and

motion recognition, or by guiding through channel estimation and beam tracking etc. using AI-

assisted design. Lastly, communication can transform shared wireless medium into an inherent

computing engine or replace traditionally module-based transmission chain with an autoencoder

separated by wireless channels, enabling AirComp-based data aggregation or ISA“C” based

end-to-end training, respectively, both making ultra low-latency connected intelligence possible.

III. TASK-ORIENTED ISCC FOR WIRELESS FEDERATED LEARNING

This section introduces the commonly adopted performance metrics in ISCC-based wireless

FL followed by a concrete use case of human motion recognition, illustrating how joint SC2

resource allocation is implemented in the design flow ISCC to enhance the learning performance.

A. Performance Metrics

The commonly used performance metrics in wireless FL include convergence rate, learning

latency, and energy consumption. When enabled by ISCC design, they are modified as follows.

• Convergence rate: Convergence rate characterizes how the learning error, exemplified by

the optimality gap of the training loss and expected average norm square of the gradient,

varies over global communication rounds. It is nevertheless intractable to find the exact

expression of learning error for general AI training models, and therefore upper bounds on

the optimality gap of the training loss or the expected average norm square of the gradient,

depending on assumptions on smoothness and/or convexity of the local loss function, are
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Figure 2. The diagram of complete pipelines of ISCC includes: 1) wireless sensing, 2) local model updating, 3) local model

uploading, 4) global model aggregation, and 5) global model downloading, along with the time-frequency allocation within one

communication round of FL training for human motion recognition.

widely adopted to facilitate quantifying the convergence rate in the literature of wireless FL

[1].

• Learning latency: Learning latency is defined as the wall clock time for the learning process

to converge within a given accuracy. The learning latency generally refers to the number of

global communication rounds times per-round latency [10]. In the settings of ISCC-based

wireless FL, the per-round latency consists of the sensing time (including pre-processing

of raw sensing signals), computation latency (the number of local update iterations times

per-iteration computation time) for local gradient/model updating and the communication

time for local gradient/model uploading (uplink) and global model broadcasting (downlink).

• Energy consumption: Energy consumption corresponds to the sensing, computation, and

communication energy required for the overall learning process. The energy for sensing is

solely consumed by edge devices mainly for sensing signal transmission. The energy for

local computation is also consumed by edge devices for local gradient/model updating.

The energy for communication is generally consumed by both edge devices (for local

gradient/model uploading) and the edge server (for global model downloading).
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B. Use Case: Human Motion Recognition

In this subsection, we provide a concrete use case of human motion recognition based on edge

AI-enabled wireless sensing [5], demonstrating the advantage of ISCC-based resource allocation

in terms of the trade-offs among the above-mentioned performance metrics.

This use case considered ISCC-based resource allocation for a wireless FL system in which

multiple ISAC devices obtain their respective datasets for human motion recognition by wire-

less sensing, and then exchange only model updates with the edge server. The time-frequency

allocation of each ISAC device within one particular round of FL training is shown in Fig. 2.

The design flow primarily addressed two challenges in this setting: 1) how to establish between

sensing and learning a closed-loop control flow, such that the performance of FL training can be

analyzed offline and then guides through sensing process on-the-fly; 2) how to jointly optimize

SC2 resource allocation, avoiding situations when mismatch between sensing quality and uplink

transmission condition causes inefficient model aggregation at the edge server.

In this use case, sensing quality control can affect convergence rate through two factors, the

kth device’s sensing transmit power ps,k and the number b(r) of samples generated at round r.

As shown in Fig. 2, the input of the training model is the pre-processed spectrogram, and it was

verified by experiments that the quality of a spectrogram will no longer improve as long as the

sensing transmit power is large enough to combat the effects of the ground clutter and receiver

noise. This finding suggests that maintaining sensing transmit power above a threshold value is

sufficient to generate data samples of approximately the same satisfactory quality over the whole

training process. Previous theoretical results showed that the convergence rate increases with

the constant per-round batch size under some other assumptions on hyperparameters. However,

considering the task of human motion recognition, larger batch size of data samples indicates

longer sensing time T0b(r) and higher energy consumption ps,kT0b
(r) in sensing at each round,

which easily violates the total latency and energy constraints. This motivates adaptive batch

size design, i.e., proper choice of b(r) in each round to achieve optimal trade-off between the

convergence rate and the task’s latency and energy requirement. This bridges the gap between

the ultimate learning performance and sensed data quality, and thus addresses Challenge 1).

As shown in Fig. 2, since the increase in the number of sensed data samples causes longer

time as well as larger energy consumption in local computation and correspondingly quite

limited model uploading time, thus imposing a higher requirement on the uplink transmission

rate, benefits of accelerated convergence may be compromised by intolerably higher energy
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consumption or infeasible uplink transmit power. It is therefore imperative to address Challenge

2). In this use case, sensing and communication transmit power at each ISAC device, time for

sensing and communication, and adaptive batch size at each round were jointly optimized to

maximize the converge rate under practical transmit power, total latency and energy constraints.

The formulated non-convex problem was solved by being decoupled into two subproblems. The

first subproblem aims for maximizing the total number
∑

r b
(r) of data samples generated in the

training process by optimal joint SC2 resource allocation. Specifically, this subproblem problem

was equivalently transformed into another problem with relevance to only the communication

transmit power of each ISAC device, which can be further decoupled into the same number of

small-scale problems as the number of ISAC devices, with each being single-variable and then

solved at each device in parallel. The second subproblem aims for maximizing the convergence

rate by partitioning the optimized total number of data samples in the first subproblem into b(r)

at each round. To solve this problem with intractable objective function due to adaptive batch

size, the authors in [5] built upon the previous theoretical results, which suggests that the optimal

batch size is in approximately linear proportion to the decrease in the value of loss function, a

suboptimal closed-form solution for the batch size b(r).

To sum up, this use case has been among the earliest attempts to understand how the joint

ISCC design affects edge learning performance. It provides joint SC2 resource allocation to

maximize the convergence rate for a typical wireless sensing-based human motion recognition

task and serves as a novel online design framework for task-oriented wireless FL.

IV. TASK-ORIENTED ISCC FOR WIRELESS EDGE INFERENCE

In this section, we discuss the commonly concerned performance metrics in ISCC-assisted

edge inference, followed by a concrete use case of human motion recognition, illustrating how

ISCC can be designed to account for all the mentioned metrics and the trade-off among them

in the context of edge inference.

A. Performance Metrics

The commonly used performance metrics for ISCC design in edge inference include inference

accuracy, inference latency as well as energy consumption as elaborated below.

• Inference accuracy: Inference accuracy characterizes how well the trained AI model gen-

eralizes on the unseen data, which can be measured by e.g., classification error or mean
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square error for classification or regression tasks respectively. In general, it is difficult to

derive the exact expression of inference accuracy for an arbitrary AI model. Therefore,

approximate surrogates, e.g., discriminant gain as elaborated in the sequel, are needed to

develop for facilitating the tractable analysis or optimization on the metric.

• Inference latency Inference latency measures how fast the AI model can make predictions

on unseen data, which is defined as the wall clock time consumed in the processes of

sensing, computation, and communication during the inference pipeline. In contrast to that

in the FL counterpart, the concerned walk-clock time consists of only one round of forward

sensing-computation-communication delay without any iteration rounds. For those mission-

critical or delay-sensitive applications, it usually has a stringent latency requirement, e.g.,

in the millisecond level for auto-driving applications.

• Energy consumption: In the context of edge inference, energy consumption in the SC2

pipeline shares a similar definition as its FL counterpart mentioned earlier. Energy-efficient

inference techniques are highly desired to allow the widespread hardware-primitive and

energy-limited IoT devices to be substantially empowered by AI inference capability, so as

to achieve the grand vision of pervasive intelligence in B5G IoT.
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B. Use Case: Multi-view Sensing

The emerging mission-critical and latency-sensitive intelligent applications, e.g., auto-driving

and metaverse, call for tasked-oriented technologies that concern the efficient and effective

execution of edge inference over wireless networks, in which sensing, communication, and

computation are highly coupled ingredients, corresponding to data generalization, exchanging

and processing respectively, and thus need to be jointly designed. Specifically, as shown in Fig.

3, all the three processes mentioned may introduce a certain amount of distortion to the features

uploaded from the edge devices to the edge server for inference due to e.g., sensing resolution,

feature compression, and wireless channel fading and noise in the pipeline. In particular, sensing,

computation, and communication compete for the limited on-device resources (e.g., energy and

radio resources), and thus the resource allocation among the three processes has a complex

impact on the ultimate inference performance, which need to be judiciously optimized.

To better illustrate the task-oriented ISCC design principle, we consider a multi-view ISAC-

based edge split inference system for human motion recognition [6]. In this system, multiple

edge ISAC devices perform wireless sensing to obtain multi-view sensing data for a common

target area (for, e.g., environment surveillance purpose), and then offload the quantized version of

extracted features to a centralized edge server, which then conducts the model inference based on

the cascaded feature vectors as depicted in Fig. 3. The objective of this system is to attain high-

accuracy inference in real-time so as to meet the stringent delay and reliability requirement of

emerging mission-critical applications e.g., auto-driving or metaverse. The interplay among the

SCC processes in this concrete use case lies in that the sensing and communication therein

compete for the radio resources (e.g., time and energy) due to the adoption of the ISAC

technique, and the allowed communication resource further determines the required quantization

level such that the quantized features can be transmitted reliably to the edge server under the

given delay and energy constraints. That said, higher sensing quality comes at a cost of severer

quantization distortion for reducing communication bits to meet the stringent resource constraints

and vice verse. Such a tradeoff in ISCC has been mathematically cast as an inference accuracy

maximization problem with sensing and communication power, time, and quantization bits to be

optimized subject to on-device energy and latency constraints. Nevertheless, the first challenge

encountered in formulating the ISCC problem for edge inference is the lack of tractable measures

for inference accuracy. To overcome this, the authors in [6] proposed and derived an approximate

surrogate metric called discriminant gain that is defined as the centroid distance between two
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classes in the Euclidean feature space under normalized covariance. Most importantly, the

surrogate metric allows us to quantify and have a geometrical understanding of how the feature

distortion incurred in the sensing, computation, and communication processes affect the inference

accuracy, thus shedding light on the subsequent resource allocation. Remarkably, despite the non-

convexity of the problem even with a tractable inference accuracy measure, the problem was

optimally solved based on the advanced sum of ratios method [6]. The significant performance

gain of the proposed ISCC design over the classic separate SCC design can be observed as evident

by the extensive experiments provided in [6] using a high-fidelity wireless sensing simulator for

human motion recognition.

In a nutshell, this use case represents the very first attempts to characterize the interplay among

SCC processes and their combined effect on the ultimate system performance in the context

of edge inference. At a higher level, the task-oriented ISCC resource allocation frameworks

established in this use case and those in the previous section serve as two key examples to

inspire more follow-up research on developing task-oriented technology for edge AI.

V. ADVANCED TASK-ORIENTED ISCC TECHNIQUES FOR WIRELESS EDGE AI

A. Scalable Task-Oriented ISCC

With the proliferation of geo-distributed IoT devices with siloed data, distributed learning

based on PS-client architecture alone cannot satisfy growing demand for massive ISCC tasks

with stringent requirement on end-to-end latency, due to coverage or feasibility of an access

point (AP), prolonged transmission delay and limited tolerance to failure of such centralized

orchestrators. To address this issue, decentralized architecture for wireless FL relying on peer-

to-peer communication topology without a PS has emerged, where a group of edge devices

collaborate to train a shared model over wireless device-to-device (D2D) networks [11]. As

an example, in smart transport settings, intelligent vehicles (IVs) equipped with various sorts of

sensing units (camera, radar and LIDAR etc.) collect their sensing information about environment

as input data to collaboratively train a target detection model or reinforcement learning (RL)-

assisted autonomous decision making, while periodically agreeing on their local model by

vehicle-to-vehicle (V2V) communications over a fully self-organizing network.

One classical type of training algorithm adopted for reducing communication overhead in

these decentralized setups is CHOCO-SGD [12]. The work in [11] exemplified how computation

and communication can be integrated into analog wireless implementation of CHOCO-SGD to
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Figure 4. Decomposition of upper bounds on the optimality gap for different D2D topology: 1) CG, 2) planar grid with wrapping,

3) planar grid (without wrapping) and 4) star of the underlying connectivity [11].

enable communication-efficient exploit of channel uses, while providing theoretical insights into

the impact of wireless hostilities, e.g., link blockages, added white Gaussian noise (AWGN)

and fading etc., and the underlying network connectivity on convergence performance. In each

communication round of CHOCO-SGD, communication blocks are divided into equal-length

slots, and these slots are scheduled in pairs to enable AirComp. Specifically, in the first slot of

the pair, multiple center devices receive in a parallel superposition of signals transmitted by their

respective neighbors; and in the second slot of the pair, these center devices communicate back

to the associated neighbors by broadcasting. This AirComp-based decentralized FL has therefore

two major differences from ideal communication-based FL as follows. First, for each device,

the estimate of the combined model parameters from all its neighbors is obtained in multiple

slots depending on the device-scheduling scheme. Second, the actual consensus update serves as

a noisy approximation to that in ideal communication due to accumulated channel noise added

to it as shown in Fig. 4, thus negatively affecting the upper bound on the optimality gap of

the wireless FL. Fig. 4 also shows that the approximation error caused by the AWGN remains

severe even over well-connected graphs such as complete graphs (CGs) and planar grids.

In spite of benefiting from scalability and communication efficiency enabled by D2D-based

AirComp-FL, it remains challenging to mitigate the effect of accumulated AWGN due to analog
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[13].

transmissions. Possible solutions include joint algorithmic design of adaptive consensus rate

(c.f. ζ(t) in Fig. 4) and power control policies to minimize such deterioration to the learning

performance, and device sampling to identify only necessary local model aggregation. However

asynchronous consensus updates incurred by device sampling pose new challenges to conver-

gence of decentralized training algorithms. Also, the accumulated AWGN gauges additional layer

of data privacy on top of FL as long as its level is under control, which will be further discussed

in the next subsection.

B. Privacy-Aware Task-Oriented ISCC

The success of ISCC relies on massive data acquisition, however, incurs the risk of privacy

leakage. The privacy issue is more critical to edge inference where the raw data is processed

by ISCC. The sensed raw data may reveal personal information during communication or

computation out of the devices. As an example in health care, the sensed data includes location

and proximity for tracking the spread of diseases or physiological data such as blood pressure

and glucose as indicators of a person’s health status. In the context of edge learning, the FL

paradigm is in favor of privacy preservation by sharing model updates rather than raw data.

Nevertheless, the malicious third party can still infer the existence of personal data from the

shared information by membership inference attack or model inversion attack.

Differential privacy (DP) is a formal measure for quantifying information leaked about in-

dividual data points. More specifically, it measures the sensitivity of the disclosed statistics to

changes in the input data set at a single data point. The classic method to guarantee DP is to

introduce a level of uncertainty, e.g., random noise, into the shared information that is sufficient

to mask the changes of any individual data point. As a tentative example of privacy-aware ISCC,
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we consider the AirComp-enabled FL where privacy is attained by channel noise that is added to

the uncoded transmitted signals [13]. Adapting the transmitted power can attain different privacy

levels while affecting the convergence speed. As shown in Fig. 5, under a less stringent privacy

requirement or lower SNR regime, this design can guarantee privacy without compromising the

learning performance, that is, the privacy is obtained for free. AirComp can further enhance

privacy as a benefit of multi-user diversity gain. On the one hand, the change from an individual

data point can be masked by the superposition of the signals over the air, which enhances the

privacy of each individual user. On the other hand, multiple users reuse the channel noise from

the non-orthogonal MAC, thus achieving multiple DP mechanisms simultaneously.

In a more general sense, we should exploit the randomness that is inherent in ISCC due to the

electronic components or communication environments. Mitigating the randomness for a more

reliable ISCC is unnecessary in edge AI, especially under the privacy requirement. As per DP,

a more random system can better preserve privacy. However, increasing the randomness is not

monotonically enhancing the edge AI performance. An adequate amount of randomness can be

beneficial, e.g., escaping the saddle point for improving the loss function or avoiding overfitting

for a better generalization capability, while the overuse can be harmful. This motivates rethinking

the theoretical tradeoff between privacy and edge AI performance and designing privacy-aware

ISCC to be in the regime that achieves the alignment of both. Another approach to alleviating

the privacy risk is to reduce the amount of data to be exposed. The data source is generated

by sensing and thus motivates the idea of sensing when necessary. The key reason behind this

is that not all data samples are important for improving task performance. A similar principle

has been applied to reduce the communication cost where only a few data samples are selected

for transmission according to the uncertainty — a measure to quantify the improvement for the

learning accuracy [14]. Accordingly, a tractable approach for privacy-aware ISCC is to use the

current task performance and privacy requirement as feedback to control the sensing frequency,

and thus, adapt the amount of data to be used in edge AI. Reducing the data usage synergistically

alleviates the communication and computation costs toward the efficient ISCC.

C. Energy-Efficient Task-Oriented ISCC

Edge AI applications can be a serious energy drain on smart edge devices. For instance, an edge

processor equipped with a 2.1Wh battery can only run a VGG-E network for about 25 minutes

[9]. In this subsection, we introduce the state-of-the-art event-driven SNN-based neuromorphic
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Figure 6. The diagram of NeuroComm systems [15].

communications (NeuroComm) proposed in [15] in order to facilitate the development of energy-

efficient task-oriented ISCC.

NeuroComm can be regarded as an SNN-based end-to-end ISCC system, in which the coded

sensed signal is a timing of spikes and thus can be directly fed to SNNs to perform inference.

Moreover, in NeuroComm, the energy consumption of communication and computation is a

function of the activity of the sensed signal. If the sensor produces no spikes, the SNN is idle

and there is no signal to be transmitted, i.e., the communication energy consumption is zero.

This enables NeuroComm to be highly energy efficient and event-driven. Moreover, supported

by the large-scale neuromorphic chips, each spike in on-chip SNNs only costs a few picojoules.

In the NeuroComm system as shown in Fig. 6, neuromorphic sensors, SNNs, and impulse radio

(IR) transceivers are integrated. The neuromorphic sensor k captures environmental information

and encodes it as a spike timing sequence uk
l . For instance, dynamic vision sensors (DVS)

produce spikes when pixel values change significantly. The SNN-based encoder processes uk
l

and generates the encoded sequence xk
i , which is transmitted using IR transceivers employing

time-hopping modulation. In this way, the communication energy consumption depends on the

activity of the sensed signal and the encoding SNN output. Then, the receiver decodes the

received timing of spikes yi using the SNN decoder and performs inference. However, direct

use of the received signal yi for inference is challenging due to channel corruption. Previous

methods use pilots for channel equalization but lack task-oriented design. The work in [15]

utilizes a hyper-SNN, where channel coefficients are incorporated into training and inference.

The hyper-SNN maps the received pilots to the weights of the decoding SNN, while the weights

of the encoding SNN remain fixed. Finally, the entire system is trained in an end-to-end fashion,

focusing on task-oriented loss, e.g., e.g., cross-entropy for classification, instead of reconstruction
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error.

Moving forward, there are several open issues in task-oriented energy-efficient ISCC. One

area of development is the creation of transfer learning algorithms to adapt pre-trained SNNs

to new ISCC tasks. Additionally, designing high-efficient input/output interfaces between SNNs

and other modules (e.g., neuromorphic sensors and IR transceivers) holds importance in further

enhancing energy efficiency.

VI. CONCLUSIONS AND DISCUSSIONS

This article provided an overview of principles of enabling ISCC technologies, including

ISAC, ICAC, and ISA“C”, followed by two concrete use cases of edge AI tasks to demonstrate

the advantages of task-oriented ISCC. Furthermore, in scenarios where PS-client architecture

is not available due to coverage, feasibility or one-node failure, where private data is exposed

to malicious inference in spite of FL settings, or where low-energy IoT devices struggle to

afford DNN inference, we have identified some advanced techniques including decentralized

FL over wireless D2D networks, adaptive power control for DP in AirComp-based FL, and

energy-efficient NeuroComm for event-driven edge inference to address them respectively.

Finally, there still remain many open challenges in the implementation of these advanced

techniques worth of further investigation. For instance, IoT devices in decentralized wireless

sensor networks can pose drastic heterogeneity in terms of data-sample quality, local computation

and communication capacity in one round of training, which causes unbearable delay if one

device awaits model aggregation from a straggling neighbor, or very low learning efficiency if the

sensed data is too poor to extract information. One promising solution is to adopt device sampling

that accounts for both statistical and system heterogeneity, along with asynchronous decentralized

training algorithms that ensure convergence under dynamic connectivity. In addition, when

deploying AirComp-based ISCC solutions, synchronization of multiple access to the PS for

waveform superposition and accurate channel estimation for signal alignment are two major

challenges. Possible solutions encompass estimation of timing offset (TO) and carrier frequency

offset (CFO), followed by pre-equalization prior to analog transmission, and power control

policies aimed at minimizing the overall transmission deterioration to learning performance with

robustness against channel estimation error.
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