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Extracting Visual Micro-Doppler Signatures from
Human Lips Motion Using UoG Radar Sensing

Data for Hearing Aid Applications
Umer Saeed, Syed Aziz Shah, Yazeed Yasin Ghadi, Muhammad Zakir Khan, Jawad Ahmad, Syed Ikram

Shah, Hira Hameed and Qammer H. Abbasi, Senior Member, IEEE

Abstract— This study proposes a secure and effective lips-
reading system that can accurately detect lips movements, even
when face masks are worn. The system utilizes radio frequency
(RF) sensing and ultra-wideband (UWB) radar technology, which
overcomes the challenges posed by traditional vision-based sys-
tems. By leveraging deep learning models, the system interprets
lips and mouth movements and achieves an overall accuracy
of 90% for both mask-on and mask-off scenarios. The study
utilized a trusted dataset from the University of Glasgow (UoG),
consisting of spectrograms of lips motions stating five vowels
and a voiceless class from distinct participants. The cutting-edge
deep learning algorithm, Residual Neural Network (ResNet50),
was used for the evaluation of the dataset and achieved an 87%
accurate detection rate with a mask-on scenario, which is a 14% improvement compared to prior published work. The
findings of this study contribute to the development of a robust lips-reading framework that can enhance communication
accessibility in applications such as hearing aids, voice-controlled systems, biometrics, and more.

Index Terms— ResNet50; InceptionV3; VGG16; RF sensing; UWB radar; lips-reading; speech recognition.

I. INTRODUCTION

A potential technique that provides significant benefits
over conventional methods for speech recognition is radio
frequency (RF) sensing. Speech recognition using RF sensing
is better for applications that require privacy and convenience
than optical-based systems since it does not need a line of
sight and can pass through barriers such as walls or masks [1].
Moreover, RF sensing can provide precise and reliable speech
recognition in noisy or busy circumstances where other meth-
ods would not work. Several industries, including healthcare,
smart homes, security and the military, are likely to greatly
benefit from this technology. Without cameras or microphones,
which can cause privacy problems, it can offer hands-free
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communication in hospital settings or speech recognition in
smart homes [2], [3]. RF sensing-based speech recognition
can improve the usability of the technology for those with
hearing or speech problems.

Hearing aids are essential tools for people with hearing
loss. However, traditional hearing aids have certain limitations.
They can intensify background noise, making it difficult for
users to concentrate on discussions [4]. Furthermore, in loud
surroundings, hearing aids are often ineffective. Researchers
are investigating cutting-edge wireless technologies and artifi-
cial intelligence to create the next generation of hearing aids
to solve these problems [5]. The ability to hear sounds at a
volume of 20 dB or above is referred to as normal hearing.
Hearing disorders severely hamper effective communication
and learning and it is estimated that 700 million people will
have hearing impairments by 2050 [6]. In the United Kingdom,
there are 11 million people with hearing disability and age
associated hearing loss is becoming a major issue. This calls
for disruptive multi-modal processing that is not constrained
by speech or sound augmentation requirements. Humans need
more than just sound to understand spoken words, which
means the use of optical information.

An essential component of speech recognition is the use of
lips-reading as an optical cue. However, privacy issues arise
when hearing aid cameras collect optical data [7]. The legal
effect of such devices alone would discourage their broad
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Fig. 1: Block diagram of the proposed scheme. A system using radar technology interprets lips and mouth movements with
deep learning models. The implementation of this system has the potential to enhance communication accessibility in various
devices such as hearing aids, voice-controlled systems, biometric devices, and other similar technologies.

usage in private and public settings since it is against the law to
record someone without their consent in many places around
the world. Modern hearing aids with optical information have
limitations, with the face mask used during the COVID-19
pandemic period being a significant one [8]. RF sensing can
be used to monitor the movements of the lips and mouths,
helping to meet the need for next-generation hearing aids.
Lips-reading using RF detection can provide hearing aids
with precise indications for distinguishing spoken sounds and
finding speech patterns utilizing deep learning and machine
learning methods that have been effectively used in the past for
different applications [9]. In contrast to visual-based systems,
RF-based lips-reading is unaffected by face mask restrictions.
RF signals can pass through the mask to pick up optical cues
like lips and mouth movements that optical hearing aids would
normally miss. This offers a unique chance to include RF
sensing in next-generation multi-modal hearing aids, which
could only need one antenna to be added to the device [10].

Lips-reading is gaining popularity due to its uses in interact-
ing with the deaf population and biometric identification. It has
also been investigated in the contexts of voice augmentation
and visual speech recognition. Nevertheless, camera-based
lips-reading systems have disadvantages, including privacy
problems, inadequate illumination and trouble with face masks
[11]. RF sensing is presented as a remedy to these restrictions,
especially in the period of COVID-19 when face coverings
are prevalent. The intensity of the wireless signals fluctuates
in response to lips and mouth movement. As these signals
are analyzed, machine learning algorithms look for patterns
representing spoken sounds like words or characters [12].

In this work, a practical method for hearing through face
masks using RF sensing has been proposed. The suggested RF
sensing device can work independently or assist in detecting
hearing aids via lips-reading when face masks are worn,
which often obscure optical indications for hearing aids in
visual-based techniques. The system, based on ultra-wideband
(UWB) radar, has been tested for lips-reading applications
using deep learning models that has been effectively used
in the past for distinct healthcare applications [13]–[15]. To

detect different lips motions, the radar-based device recognizes
Doppler shift spectrograms. This lips-reading framework can
find usage in a number of devices such as voice-controlled
systems, automobile systems, biometric security systems and
hearing aids. A block diagram of the proposed system is
presented in Figure 1. Moreover, the contributions of this study
are outlined as follows.

• A state-of-the-art radar sensing system has been intro-
duced for transforming human lips motions into visual
micro-Doppler signatures for applications such as hearing
aids, voice-controlled systems and biometrics.

• Multiple deep learning algorithms such as Residual Neu-
ral Network (ResNet50), InceptionV3 and VGG16, have
been utilized on the novel radar dataset for lips-reading
spectrogram classification.

• An advanced model, ResNet50, achieved a reliable de-
tection rate of 87% with a mask on scenario and 93%
with a mask off scenario.

• Compared to the work in [16], which achieved the highest
accuracy of 73% with a mask on and 85% with a mask
off, the accuracy has improved by 14% for the mask on
scenario and 8% for the mask off scenario.

• Additionally, the classification has been performed for
each class of vowels and voiceless class and the results
are presented in the form of a confusion matrix.

II. RELATED WORK

RF sensing has been used in the past for various applications
[17]–[19]. To detect lips and mouth movement, the majority
of techniques analyzed visual information. For instance, in
[20], the authors created a laptop-based lips-reading system.
This method uses a number of algorithms to identify lips,
faces and other characteristics before extracting features and
using dynamic programming to identify lips motions. By
matching input instructions with pre-registered databases, it
can allow real-time interactions and manage various camera
positions. Another visual-based method that compared face
motions from various perspectives was suggested by authors
in [21]. Also, by identifying frames in a film, authors in [22]
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developed a useful lips-reading method. The method described
in [23] employs visual cues and a small number of visemes
to identify a large variety of languages and words that were
not trained in the system. It is a neural network-based lips-
reading system. The study’s contributions include a newly
developed transformer for identifying visemes in continuous
speech, utilizing visemes as a classification schema for lips-
reading sentences and converting visemes to words using
perplexity analysis to improve accuracy. While these visual-
based methods can achieve excellent identification accuracy,
they are constrained by their sensitivity to lighting conditions
and are thus ineffective in low-light situations. The possible
applications for such systems are severely constrained by this
restriction [24], [25].

Recently, lips-reading recognition based on wireless sensing
techniques has gained the attention of researchers due to its
clear advantages over visual-based approaches. In [26], the
authors discussed MIMO technology where reflected signals
can be extracted and received by Wi-Hear. Wi-Hear uses
beamforming technology and wavelet analysis to amplify and
concentrate on the properties of oral motion, allowing fine-
grained detection of lips and tongue motions. Speaking ac-
tivities normally cause negligible Doppler shift and amplitude
variation. Similar to this, the authors in [27] developed a Wi-
Fi-based method to precisely predict human postures even
when obstacles like walls and occlusions are present. The
Wi-Fi technology has been successfully used in the past for
several healthcare applications such as abnormal respiratory
detection [28]–[30]. To identify various mouth motions, in
[31], the authors analyze the Doppler shift in the reflected
ultrasonic signals from a smartphone. A unique method of
biometric identification for mobile devices that relies on lips-
reading and acoustic signals has been explored by the authors
in [32].

Furthermore, the authors in [33] proposed HearMe, a real-
time lips-reading system based on commercial radio frequency
identification (RFID) readers that can quickly and effectively
identify words from a predefined vocabulary list. To increase
recognition accuracy, the system makes use of an efficient
data-gathering method and feature extraction techniques. By
improving model resilience in cross-environment situations,
HearMe’s transfer-learning-based technique lowers training
costs and increases accuracy in identifying speaking gestures
and distinguishing between words in a lexicon, as shown by
experimental findings. The authors in [16] from University of
Glasgow explored a novel lips-reading approach that inspired
our research. We utilized their publicly available dataset to
conduct our analysis. The paper explored an RF-based lips-
reading framework that employs Wi-Fi and radar technologies
to identify vowels from lips movements. The framework
overcomes the constraints of camera-based systems such as
occlusion and privacy problems and is functional even when
individuals are wearing face masks.

III. APPROACH

A. Experimental Setup
The complete block diagram of the paper is depicted in

Figure 1, while Figure 2 showcases the experimental setup

Fig. 2: Data collection experimental setup [16].

TABLE I: XeThru X4M03 UWB radar sensor parameters
configuration.

Parameter Value
Range 9.6 m

Subject’s Distance 0.45 m
Operating Frequency 7.29 GHz

Transmitter Power 6.3 dBm
Activity Period 6 sec

Acquired Samples Per Activity 50

utilized for data collection. The data was gathered from both
male and female participants, with and without masks, while
enunciating vowels. The UWB radar sensor XeThru X4M03
was employed for experimentation that has been efficiently
used in the past for other applications [34]. The configuration
parameters for the radar sensor are provided in Table I. The
radar sensor is equipped with a built-in receiver and transmitter
antenna, with an utmost detecting range of 9.6 meters. The
experiment was carried out by placing the radar sensor on top
of the computer screen.

During the experiment, the participant sat 0.45 meters
away from the radar and pronounced different vowels. The
participant maintained a normal body position with minimal
movements such as lips movements and slight head motions
commonly associated with speech. Each activity, representing
the data acquisition of an individual vowel from an individual
participant, lasted approximately 6 seconds. During this time,
the radar transmitted and received the RF signal. To extract
features from the radar, we utilized the short-time Fourier
transform (STFT), which provided spectrograms indicating the
radar Doppler shift resulting from mouth and lips gestures. By
analyzing these spectrograms, we were able to identify distinct
differences among vowels due to variations in lips and mouth
movements. To recognize the vowels, we employed various
deep learning algorithms such as ResNet50, InceptionV3 and
VGG16.
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Fig. 3: Sample spectrograms of lips-reading vowels acquired using UWB radar sensor.

TABLE II: Dataset description.

Subject Sex Class Training Samples Testing Samples Total Samples

1 Male With Mask 210 90 300
Without Mask 210 90 300

2 Female With Mask 210 90 300
Without Mask 210 90 300

3 Female With Mask 210 90 300
Without Mask 210 90 300

Overall: 1260 Overall: 540 Overall: 1800

B. Data Collection

The experimental setup used for data collection is depicted
in Figure 2. The experiments were conducted using UWB
radar technology. The data collection focused on five vowels:
A, E, I, O, U, along with a blank letter where the partici-
pants remained voiceless with their lips in a normally closed
position. A block diagram in Figure 1 illustrates the lips
movements required to pronounce all the vowel classes. Figure
3 showcases the spectrograms of lips motion while pronounc-
ing vowels and the voiceless state. To ensure a diverse and
realistic dataset, three participants, consisting of two females
and one male, took part in the data acquisition. The inclusion
of multiple participants aimed to introduce variations in the
dataset.

In total, 1800 data samples were composed during the
experimentation, covering six classes: A, E, I, O, U and
voiceless (representing silence). Each class consisted of 50
samples. The data collection involved participants wearing
face masks and participants without face masks, resulting in a
total of 900 samples in each scenario. The radar collected data
while each participant performed the speaking task 50 times
for each vowel, once while wearing a mask and another time
without a mask. As a result, each participant contributed a
total of 600 data samples for the six classes. Table II provides
a description of the acquired dataset.

C. Data Processing

Initially, the radar chip was programmed via the XEP
interface using the x4driver. Information was then gathered
from the module at a rate of 500 frames per second (FPS)
in the form of floating-point message data. A loop was
implemented to read the data file and store it in a data stream
variable, which was subsequently transformed into a matrix
representing complex ranges and time intensities. Following
this, a moving target indication (MTI) was employed to obtain
the Doppler range map. Subsequently, a Butterworth fourth-
order filter was employed as the second MTI filter. This filter
was used to create spectrograms by adjusting parameters such
as overlap percentage, window length and padding factor of
fast Fourier transform (FFT). For this objective, a padding
factor of 16 and a window length of 128 samples were
deliberately selected.

The process of creating a range profile involved convert-
ing each chirp and then performing an FFT. Subsequently,
a second FFT was performed on a predefined number of
sequential chirps within a specified range bin. In order to
obtain information about both time and frequency, spectro-
grams were generated using STFT, which includes dividing
the data into segments and applying Fourier transforms to
each segment. The frequency and temporal resolutions are
inversely influenced by modifying the length of the window,
so increasing one will decrease the other. The amount of
Doppler information present in the radar data is resolute
by the sampling capability of the hardware. The maximum
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unambiguous Doppler frequency in the radar is determined by
Fd,max = 1

2 tr, where tr represents the chirp time. In this
study, we investigate lips-reading recognition from a specified
location such as the mouth, at a distance D(t). The variable
V (t) denotes the movement of the target in front of the radar,
while Ts represents the transmitted signal.

Ts(t) = A cos(2πft) (1)

Rs(t) is the signal that has been received.

Rs(t) = Ȧ cos

(
2πf

(
t− 2D(t)

c

))
(2)

The coefficient of reflection is denoted by A and the speed
of light is represented by c. The signal that bounces back from
the target at an angle θ relative to the radar’s direction can be
mathematically expressed as Rs(t).

Rs(t) = Ȧ cos

(
2πf

(
1 +

2v(t)

c

)(
t− 4πD(θ)

c

))
(3)

Its corresponding Doppler shift can be expressed as.

fd = f
2v(t)

c
(4)

The signal that is received back is combined with various
moving parts, including the head and lips. Each component
travels at its acceleration and speed. The signal that was
received can be expressed as follows if we assume that i
represents the different moving parts of the lips.

Rs(t) =

N∑
i

Ai cos

(
2πf

(
1 +

2vi(t)

c

)(
t− 4πDi(0)

c

))
(5)

The frequency shift brought on by movement is the outcome
of a complicated interaction between a number of frequency
changes brought on by the movement of various face com-
ponents. The accurate identification of lips movements for
lips-reading depends on the exact features presented by the
frequency signatures. The spectrogram dataset that illustrated
the distinguishing features of different vowels and voiceless
was acquired after the subject’s activity. The recommended
pre-trained deep learning classification techniques were then
used on the dataset to identify vowels.

D. Deep Learning Models
1) ResNet50: The deep learning technique known as

ResNet50, or Residual Network with 50 layers, is commonly
employed in computer vision applications, notably in image
categorization. The authors in [35] first discussed it in their
publication. On several benchmark datasets, ResNet50 has
achieved state-of-the-art performance, demonstrating its high
degree of efficacy. The fundamental idea of ResNet50 is
the use of residual learning, which aids in addressing the
degradation issue that deep neural networks experience. Due to
the difficulties of deep learning deep networks, the degradation
problem develops when increasing the network depth results

in lower accuracy. Skip connections, often referred to as
residual connections, are included in ResNet50 to overcome
this problem and allow the gradient to pass across the network
without degrading.

The following is a mathematical illustration of ResNet50.
The intended underlying mapping is designated as H(x),
while the input to the network is denoted as x. By stacking
residual construction pieces, the ResNet50 network comes
close to H(x). Following batch normalization and ReLU
activation, each construction block is composed of a number
of convolutional layers. It can be expressed as F (l, x), where
l stands for the block’s index to indicate the output of the l-
th construction block. The output Y (l) of each construction
block is added to the input x to create a residual connection.

Y (l) = F (l, x) + x (6)

The network attempts to maximize the following goal in
order to understand the residual mapping.

minimize ∥H(x)− Y (L)∥2 + λΣ∥W (i)∥2 (7)

W (i) represents the weights of the ith layer, L represents
the total number of building blocks and λ regulates the
degree of load decay normalization. ResNet50 simplifies deep
network optimization by using residual connections to help
the network distinguish between the intended mapping and
the input. Skip connections allow gradient flow throughout the
network, solving the degradation issue and making it easier to
train more complex models.

2) InceptionV3: Developed by Google researchers, Incep-
tionV3 is a deep learning model that includes a number of
architectural improvements to boost performance and produc-
tivity in computer vision tasks. The model achieves effective
multi-scale feature capture by using inception modules, which
consist of parallel convolutional branches. It also utilizes
dimensionality reductions and factorized convolutions to sim-
plify computations while maintaining accuracy. To improve
convergence and reduce overfitting, InceptionV3 includes aux-
iliary classifiers. The model has demonstrated outstanding
performance on benchmarks for picture categorization and is
widely used in both academic and real-world settings.

3) VGG16: VGG16 is a renowned deep learning model
developed by researchers at the University of Oxford. Its
consistent design and ease of use have made it widely used
in computer vision studies and applications. The model learns
hierarchical representations of images effectively using narrow
receptive fields and ReLU activation functions. It has 16 layers,
including convolutional and fully connected ones. VGG16 has
shown to be exceptionally effective on picture classification
tests like the ImageNet dataset despite its processing require-
ments. It is a well-liked option in computer vision research due
to its straightforward architecture and deep layer structure.

IV. RESULTS AND DISCUSSION

Data was gathered, processed, and spectrograms generated
for further analysis. The spectrogram samples used to train
three different deep learning algorithms, ResNet50, Incep-
tionV3, and VGG16, are displayed in Figure 3. The dataset
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Fig. 4: ResNet50 model (a) accuracy and (b) loss during
training on with mask lips-reading scenario.

used for testing and training purposes is described in Table
II. Training was carried out across a variety of epoch counts,
including 20, 30, 40, and 50, to evaluate the effectiveness of
deep learning algorithms. The algorithms’ performance did not
improve with the number of epochs, and steady accuracy was
only attained at about 20 epochs. This is due to the fact that the
dataset used in this paper is not huge and even with a certain
number of epochs, better performance can be achieved. This
is demonstrated in Figure 4 (a) for ResNet50 model accuracy
and Figure 4 (b) for ResNet50 model loss.

Figure 5 presents the performance of the cutting-edge deep
learning model ResNet50 in terms of a confusion matrix for
the classification of spectrogram images of six distinct classes:
A, E, I, O, U and voiceless. The scenarios include multiple
subjects, either male or female and either wearing a mask
or not wearing a mask. The ResNet50 performance in terms
of a confusion matrix shows how often the model correctly

or incorrectly classified the images. The confusion matrix of
the ResNet50 model was analyzed for six scenarios: (a) male
subject 1 wearing a mask, (b) male subject 1 not wearing
a mask, (c) female subject 2 wearing a mask, (d) female
subject 2 not wearing a mask, (e) female subject 3 wearing
a mask and (f) female subject 3 not wearing a mask. As can
be seen in Figure 5, for all subjects, the scenario without a
mask is better detected compared to the scenario with a mask
and this is due to the obvious fact that a mask covering can
be a resistance towards accurate detection of lips movement
through RF signals.

Table III presents the performance of different deep learning
algorithms on scenarios with masks and without masks for
three subjects, one male and two female. We compared the
performance of ResNet50 with InceptionV3 and VGG16. For
subject 1, the accuracy of ResNet50 was 98% without a
mask and 87% with a mask. For subject 2, the accuracy of
ResNet50 was 92% without a mask and 88% with a mask.
With and without a mask, ResNet50 accuracy for subject 3 was
90% and 86%, respectively. InceptionV3 was 74% and 58%
more accurate than ResNet50 for the subject 1 without and
with mask scenarios, respectively. For subject 2, InceptionV3
attained accuracy of 64% without a mask and 41% with a
mask. With and without a mask, InceptionV3 was accurate
for subject 3 attaining score of 77% and 63%, respectively.
For subject 1 without and with a mask scenario, VGG16
outperformed ResNet50 and InceptionV3 with accuracy rates
of 89% and 72%, respectively. For subject 2, the accuracy of
VGG16 was 83% without a mask and 73% with a mask. For
subject 3, VGG16 achieved an accuracy of 88% and 70%,
respectively, without and with a mask.

Furthermore, Figure 6 presents a bar chart that displays the
average performance for multiple subjects with masks, without
masks and overall. As can be seen from the graph, ResNet50
attained the highest accuracy with an 87% accurate detection
rate with a mask scenario, 93% without a mask scenario
and 90% overall. Compared to InceptionV3 and VGG16 for
the lips-reading scenario with masks, ResNet50 enhanced
the performance by 33% and 16%, respectively. ResNet50
achieves better performance than InceptionV3 and VGG16
due to its deep architecture with skip connections, residual
learning, parameter efficiency and pre-training on large-scale
datasets. These factors enable ResNet50 to capture more
complex features, optimize weights efficiently and generalize
well, resulting in improved performance. However, the most
suitable deep learning model selection depends on the trade-
offs and constraints of the particular use case.

V. CONCLUSION AND FUTURE WORK

This research introduces a lips-reading framework based
on RF sensing that utilizes radar technology. The radar com-
ponent involves the adoption of the XeThru X4M03 UWB
radar sensor, which produces Doppler signals that are plotted
in frequency-time diagrams. This RF sensing system can
function independently or provide assistance to hearing aids
by interpreting lips and mouth movements, particularly in
scenarios where visual cues are hindered by face masks, as
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Fig. 5: ResNet50 model outcome in terms of confusion matrix of (a) subject 1 male with mask scenario (b) subject 1 male
without mask scenario (c) subject 2 female with mask scenario (d) subject 2 female without mask scenario (e) subject 3 female
with mask scenario (f) subject 3 female without mask scenario.

TABLE III: Lips-reading detection accuracy through distinct deep learning algorithms.

Subject Sex Class ResNet50 Accuracy InceptionV3 Accuracy VGG16 Accuracy

1 Male With Mask ≈ 87% ≈ 58% ≈ 72%
Without Mask ≈ 98% ≈ 74% ≈ 89%

2 Female With Mask ≈ 88% ≈ 41% ≈ 73%
Without Mask ≈ 92% ≈ 64% ≈ 83%

3 Female With Mask ≈ 86% ≈ 63% ≈ 70%
Without Mask ≈ 90% ≈ 77% ≈ 88%

Avg. with mask: 87% Avg. with mask: 54% Avg. with mask: 71%
Avg. without mask: 93% Avg. without mask: 71% Avg. without mask: 86%

Avg. overall: 90% Avg. overall: 62% Avg. overall: 78%

Fig. 6: Distinct deep learning algorithms accuracy comparison
for lips-reading. ResNet50 excelled InceptionV3 and VGG16
in terms of detection accuracy.

is typically experienced in vision-based schemes. The team
at the University of Glasgow published a publicly available

dataset involving three subjects, consisting of two females
and one male, which was utilized. This dataset encompassed
five vowels (A, E, I, O, U) and a voiceless class where no
lips movements occurred. Subsequently, various deep learn-
ing algorithms such as ResNet50, InceptionV3 and VGG16
were trained and evaluated using this dataset. The primary
objective of this study was to propose a secure lips-reading
system capable of accurately identifying lips movements in
the presence of masks, employing RF sensing technology and
a deep learning model. Compared to InceptionV3 and VGG16,
ResNet50, an advanced model, was able to accurately detect
lips motions with a mask on scenario with an 87% detection
rate and without a mask with a 93% detection rate. Overall,
it attained 90% accuracy. This is a significant improvement
compared to the results achieved in the study by [16], where
the highest accuracy achieved was 73% with a mask on and
85% with a mask off. The accuracy has improved by 14% for
the mask on scenario and 8% for the mask off scenario using
ResNet50.

The accuracy and quality of the radar sensing system are
affected by various limitations. Signal interference and reduced
effectiveness in detecting and tracking targets can occur due
to coupling with nearby systems. Additionally, external factors
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such as weather conditions and electromagnetic disturbances
can further compromise the system’s ability to provide reliable
data.

The current system is a proof-of-concept and is intended to
underscore the significance and effectiveness of lips detection
using RF sensing technology like radar. Future work will
involve real-time detection of different words or sentences
from various angles, not directly in the line of sight. Further-
more, the experiments were carried out in a static environment
with minimal limb movements. In the future, we aim to
perform experimentation that is not completely static. Using
advanced deep learning algorithms, other body movements can
be discarded, and the RF signal can be focused only on the
target activity.
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