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Galois representations over pseudorigid spaces

par REBEccA BELLOVIN

RESUME. Nous étudions la théorie de Hodge p-adique pour les familles de
représentations galoisiennes sur les espaces pseudo-rigides. De tels espaces sont
des espaces analytiques non-archimédiens, qui peuvent étre de caractéristique
mixte, et qui apparaissent dans I’étude des variétés de Hecke au bord de
I’espace des poids. Nous introduisons des anneaux de périodes surconvergents,
parfaits et imparfaits, et utilisons la methode de Tate—Sen pour construire les
(p,T')-modules surconvergents associés aux représentations galoisiennes sur
les espaces pseudo-rigides.

ABSTRACT. We study p-adic Hodge theory for families of Galois represen-
tations over pseudorigid spaces. Such spaces are non-archimedean analytic
spaces which may be of mixed characteristic, and which arise naturally in
the study of eigenvarieties at the boundary of weight space. We introduce
perfect and imperfect overconvergent period rings, and we use the Tate-Sen
method to construct overconvergent (¢, I')-modules for Galois representations
over pseudorigid spaces.

1. Introduction

In this article, we study p-adic Hodge theory for families of representa-
tions of Galg, where K/Q), is a finite extension, and the families vary over
certain analytic spaces, in the sense of Huber [9]. Such families have been
considered by a number of authors in the classical rigid analytic setting,
where p is invertible in R, but working in Huber’s setting permits us to
study Galois representations with coefficients which are characteristic p or
mixed characteristic.

Roughly speaking, p-adic Hodge theory is the study of representations
of Galois groups, where both the Galois group and the coefficients are
p-adic or characteristic p. One of the most powerful tools for studying p-
adic Galois representations is the theory of (¢, I')-modules, which provide
an equivalence between Galois representations and a certain category of
modules equipped with an operator ¢ and the action of a 1-dimensional
p-adic Lie group, called étale (p,T")-modules.

The category of étale (p,I')-modules is a full subcategory of the category
of all (¢,T")-modules, and it often happens that the (¢, I')-module attached
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to an irreducible Galois representation becomes reducible in this larger
category. Moreover, this reducibility is closely related to subtle p-adic Hodge
theoretic invariants of the representation. If the (¢, I')-module attached to a
Galois representations is the successive extension of rank-1 (¢, I')-modules,
the representation is said to be trianguline.

One key feature of (p,I')-modules is that they behave well in rigid an-
alytic families. Given a Galois representation with coefficients in a Q-
affinoid algebra, the work of Berger and Colmez [4] constructs a family of
(¢, I')-modules. Their construction is functorial, and so globalizes to sheaves
of Galois representations over general rigid analytic spaces.

However, in recent years, interest has developed in families of Galois
representations parametrized by analytic spaces which are not defined over
a field. For example, Andreatta—lovita—Pilloni constructed the eigencurve
in mixed characteristic [1], and their construction was extended to more
general eigenvarieties by Gulotta [8] and Johansson—Newton [11].

In this note, we study Galois representations with coefficients in similar
rings. More precisely, we consider projective modules M over pseudoaffinoid
algebras R equipped with a continuous R-linear action of Galg (pseudoaffi-
noid algebras, and their associated pseudorigid adic spaces, are a class of
analytic adic spaces studied in [11] and [16]).

Before we can construct and study families of (¢,I")-modules, we need
to define the appropriate overconvergent period rings. In the rigid analytic
setting, it was enough to take completed tensor products of Q,-Banach

algebras and the overconvergent period rings BL’; i defined in e.g. [3]. This

is not possible in our setting because neither R nor BL’; x has the p-adic
topology. However, both are affinoid Tate rings, and in this setting it is
possible to define fiber products of the associated adic spaces. We provide
a construction in Appendix A for the convenience of the reader.

We then define both perfect and imperfect overconvergent rings, which
we denote by Ag (45 and Ag 44, k- Let x : Galg — Z denote the cyclo-

tomic character and let Hg := ker x; there is an action of Hx on A R,[a,b]-
We study this Galois action on the perfect rings, and show that we have
appropriate normalized trace maps R, : Kg,}[{O,b] — o "A R,[0.p—"b].K -

This lets us prove our main theorem, on the construction of (¢,T’)-
modules attached to Galois representations:

Theorem 1.1. Let R be a pseudoaffinoid algebra, and let M be a finite
projective R-module of rank d equipped with a continuous action of Galg,
for a finite extension K/Q,. Then there is a functorially associated pro-
jective (¢, T )-module Dy i (M). This (¢,T')-module is equipped with a
Galg- and p-equivariant isomorphism

AR 04 @Ap a5 D0, (M) = Mg 04 @r M
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We conclude by showing how to compute the Galois cohomology of M
in terms of Dgy) (M), using the Fontaine-Herr—Liu complex.

In subsequent work [2], we study the cohomology of (p,I')-modules over
pseudorigid spaces, and give applications to eigenvarieties at the boundary
of weight space.

2. Classical rings of p-adic Hodge theory

Let CII’, = @1 C,, and let ﬁ% be the subset of 2 € C? such that
x—xP P p

20 ¢ Oc,. Then Cg is an algebraically closed field of characteristic p with

ring of integers % L Colmez calls these rings E and E*, respectively. There

is a valuation v defined by v((z®)) = v,(z(?), and CZ is complete with
respect to this valuation. There is also a Frobenius (given by raising to the
pth power).

Let F be a finite unramified extension of Q, with ring of integers &7 and
residue field kp (so that Op = W(kp)). Let € := ((©, e 2 ) e ﬁ%p
be a choice of compatible pth power roots of unity with e® =1 and
e £ 1. There is a natural map kg (7)) — C; given by sending 7 to € — 1;
we denote its image by Ep, we denote by E the separable closure of Ep
inside CZ, and we denote by ET the valuation ring of E.

Let Ajf := W(ﬁ%p) and A = W(CZ). There are two possible topologies
on Ay and A, the p-adic topology or the weak topology; they are complete
for both.

The p-adic topology is defined by putting the discrete topology on each
quotient W(CZ,)/p”W(CZ), and taking the projective limit topology on A;
Ajyr is given the subspace topology. The weak topology is defined by putting
the valuation topology on C; and giving A the product topology; Ajns is
again given the subspace topology.

Alternatively, the weak topology on A is given by taking the sets

Uk = pk;& + [p]" Ajns for k,n >0
to be a basis of neighborhoods around 0, where p € ﬁ%p is any fixed element

with p(©) = p (i.e., p is a system of compatible p-power roots of p). The
weak topology on A;.s is similarly generated by the sets

Uk;,n N Ainf = pkAinf + [ﬁ]nAinf

The weak topology on Aj,s is equivalent to the (p, [w])-adic topology, for
any pseudo-uniformizer w € CIJ’D.

Both rings carry continuous bijective actions of Frobenius (for either
topology). However, the Galois action is continuous for the weak topology,
but it is not continuous for the p-adic topology because the Galois actions
on ﬁ%p and C;Z are not discrete.
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Explicitly, Frobenius acts by
¢ (ZP’“[%M) = p[af)]
k=0 k=0
and the Galois group Galg acts by
o (Z Pk[%]) = o))
k=0 k=0

Now consider the pre-adic space Spa Aj,r and its analytic adic subspace
Y (i.e., Y is Spa Aj,¢ minus the point corresponding to the maximal ideal).
If w is a pseudo-uniformizer of CZ, there is a surjective continuous map
k:Y — [0,00] given by
o) o =)

log|p(7)|

where T is the rank-1 generization of z. If I C [0,00] is an interval, we
let V; := xk~!(I). The Frobenius on Aj,¢ induces isomorphisms Y; — Ypr
(since k o ¢ = pkr). Note that log|[w](Z)],log|p(Z)| € [—o0,0), since p and
[co] are both topologically nilpotent, and therefore |[z0](Z)|, |p(Z)| < 1.

Following Scholze, we choose w = p, that is, a compatible sequence of
p-power roots of p. Suppose a,b € [0, 0] are rational numbers and a < b.
Then Y|, is an affinoid subspace of Y, and we write

Vias) = Spa(Apa s AT, )

The inequalities
_logll=)@) _,

loglp(@)|
translate to the conditions
alog|p(z)| > log|[ww](Z)| > blog|p(Z)|
or equivalently, [p(Z)|* > |[@](Z)| > |p(%)[". Thus,

Here we take p/[w]™ := 1/[w] and we take [w]>*/p :=
Z>([1/p]U{oc}, this is the pair of rings denoted (A[S(b)ys(a)} [[—1]
in [3] (since v(p) =1 and v(7) =p/p —1).
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In the special case I = [a,b] = [0,], (K[O,b]’xfo,b}) is the pair of rings
denoted (A0 ATs(®)), where s(b) = (p —1)/pb. We can write these rings
more explicitly as subrings of A:

o0
Ay = AP0 — {x = Zpk[mk] €A
k=0

T € ﬁ%p,wkwk/b — 0}

and -
K[O,b] = A(O’b] = {:E = Zpk[l‘k] S A
k=0
If [a, b] # [0, 0], then the pair (/N\[a,b], Kfa’b]) is a Tate algebra; if a # 0,
then p is a pseudo-uniformizer, and if b # oo, then [w] (and [7]) is a pseudo-
uniformizer. _
We can equip Ay with a valuation

vall0®l () .= (ch (k) + K/b)

kak/b — O}

inf
k>0
It is separated and complete with respect to this valuation, and /N\‘[DO ] is the
ring of integers.
Since C; is algebraically closed, we can extract arbitrary roots of w; we
may therefore define another valuation vy, on Ay by setting
vp(z) = sup —r

reQ:[w]TmGK‘[’O’b]

We observe that vy([w]z) = 1 + vp(z) for any x € K[o,b}-
Lemma 2.1. Forz € 1~X[07b], val O () = vy ().

Proof. We observe that [w]"x € Kfo p) if and only if vall®([w]"z) = r +
vall®?(2) > 0, which holds if and only if vall®®!(z) > —r. Since we may

approximate vall0?) (z) from below by rational numbers, it follows that
val O (2) = vy (). O

There are versions of all of these rings with no tilde; they are imperfect
versions of the rings with tildes.

Let m € Ajy denote [¢] — 1, where [¢] denotes the Teichmiiller lift of
e. Then there is a well-defined injective map Op[X][X~!] — A given by
sending X to 7; we let Ap denote the p-adic completion of the image. This
is a Cohen ring for Ep. We define A to be the completion of the integral
closure of the image of Z,[X][X '] in A}, and we let AT := AN Ay

Because extensions of Ep correspond to unramified extensions of
Ap[1/p], we get a natural Galois action on A and AT. If K/Q, is an
arbitrary finite extension, we may therefore define A g := A& and Al =
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(AT)Hx_ When K is unramified over Q,, this agrees with our original def-
inition of these rings.
We define the overconvergent subrings of A x: For be [0, o0], let Ay g :=

Ax QJK[O,b} and let A([joyb],K = AKHJNXf()’b]. These rings are given the topology
induced as closed subspaces of X[O,b}- Thus, A}r( = Ap,o),x and Ag =
Afo,0],k-

Since we have isomorphisms ¢ : /N\fa{fg] = Kﬁ;{%b Jp)r W have induced
Frobenius maps ¢ : Ajg )k — Ajo,p/p) k- However, as E is imperfect, these
maps are no longer isomorphisms. Indeed, Ay o) x is free over p(Ajg ) k) of

rank p, with a basis given by {1,[e],...,[e?~'}. We may therefore define a
left inverse v : A0,k — Ajo,0,x t0 ¥ Via

1 5
Y= p? TrA 0100/ 0,01.00)

Proposition 2.2. Ifb € (0,00), then Ajgy) x is a Tate ring with ring of
definition Afo,b],K and pseudo-uniformizer w. If b = oo, then Ajg ok = AL
is an adic ring topologized by the ideal (p,T).

Proof. We first observe that the cokernel of the inclusion Ax — Afx
has no p- or w-torsion, so the same holds for the cokernel of the inclu-
sions Afy ) <= (Kf07b})HK for b > 0. Thus, the natural map Ay ), x/p —
Aflff /p = ﬁ%w remains injective; since Ajg o) x has the closed subspace
topology from Aﬁf and the topology on ﬁAg(oo is 7-adic, the topology on
Ao,k 18 (p, T)-adic. Similarly, for b € (0, 00), the natural map Afo,b],K/W —
)H

(/NXFM])HK /m remains injective. Since 7 € (A,

nilpotent unit of Kgﬁ], the ideal (7) C (INX‘[’O’H)HK is an ideal of definition

and (AFO,b])HK /7 is discrete. It follows that (7) C Afy 4y, i 1 also an ideal of
definition. O

K and 7 is a topologically

We can be more explicit about the structure of Ay x when b is small.
Recall that 7 :=e -1 € ﬁ%p, so that it is a uniformizer of Er. Then for
any ramified extension K/F, we may choose a uniformizer 7x of Ex, and
we may lift Tx to mx € A. We fix a choice of wx for every K and work
with it throughout (when F/Q, is unramified, we set 7p = m). Let F’ be
the maximal unramified extension of F' in K, and let

MF((/]’b} = {Z Ay X™

meZ

am € Opr,vp(am) + mb — oo}

be the ring of integers of the ring of bounded analytic functions on the
half-open annulus 0 < v,(X) < b over F’. Then [7, Proposition 7.5] states
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that for b < rx (where rg is a constant depending on the ramification of
Ex/EFR), the assignment f — f(mx) is an isomorphism of topological rings

%g}bvcz (7)) 0,b]

from to Ajgp),x- Furthermore, if we define a valuation ol

on ;zfp(?’b] by v, ez amX™) := inf ez (vp(am) + mb), then

vl (i) = 00 ()

It follows that after inverting p, we have an isomorphism from the ring
of bounded analytic functions on the half-open annulus to Ay g x[1/p],

equipped with the valuation val®?! Note that when K /Qp is ramified, this
isomorphism depends on a choice of uniformizer of E.

3. Rings with coefficients

Now we wish to introduce coeflicients. We wish to consider Galois rep-
resentations with coefficients in pseudoaffinoid algebras, in the sense of [16]
and [11] (or more generally, Galois representations on vector bundles over
pseudorigid spaces).

Definition 3.1. Let E be a discretely-valued non-archimedean field and let
O be its ring of integers. A pseudoaffinoid Og-algebra is a complete Tate
Og-algebra R which has a ring of definition Ry that is formally of finite
type over Og. A pseudorigid space over O is an adic space X over Spa(0)
which is locally of the form Spa(R, R°) for a pseudoaffinoid &'g-algebra R.

When R is a pseudoaffinoid algebra, we will write Spa R for Spa(R, R°).
Let R be a pseudoaffinoid algebra over Z,, and let u € R be a pseudo-
uniformizer. Throughout this section, we assume that p ¢ R*, since if
R has the p-adic topology, we are in the classical setting treated in [4].

m/

Borrowing the notation of [16], for any positive rational number A = -

with (m,m') =1 and m,m’ > 0, we let (D,, DY) denote the pair

(@0 {2) [ 20 {2)

Then by [16, Lemma 4.8], there is some sufficiently small A such that R is
topologically of finite type over D). In particular, there is a ring of definition
Ry C R which is itself strictly topologically of finite type over DS.

Every element of D) can be written uniquely as a power series ),z a;u’
with a; € Z,, and we define a valuation vp, on D) via

UD, (Z aiui> := inf {Up(ai) + ;\}

i€Z !
If R is a topologically of finite type over D), each presentation of R over D)
will induce a valuation on R. Different presentations will induce different
(but equivalent) valuations, however, just as in the classical setting.
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If A< N with A =™ and ) = | there is a natural map Dy — Dy.

Indeed, (5:/)71 = prm—m'n (p—:,)m ; since mn' —m/n > 0, we see that 5:/
is power-bounded in D)y/. Thus, we have a totally ordered inverse system
of adic space {D,}; since they are uniform, the inverse limit exists, and it
is straightforward to check that it is equal to Spa(F,((u))).

We define a descending sequence of ideals I; C Rg via [; := RN Ry.
Then for all j > 1, Ry/I; is a u-torsion-free (Z/p’)[u]-algebra. Since Ry is
noetherian, the I; are finitely generated, and I;/I;41 is a finite u-torsion-
free Ry/I;-module.

In this section, we will construct and study perfect and imperfect over-
convergent period rings “with coefficients in R”. The rings we construct will
depend on our choices of both Ry and wu, but for compactness of notation,
we suppress u from the notation.

3.1. Perfect overconvergent rings. We fix a pseudoaffinoid Og-algebra
R, for some finite extension E/Q,, and we fix a ring of definition Ry C R
and pseudouniformizer u € Ry such that Ry is strictly topologically of finite
type over DS for some sufficiently small A € Q~o.

The adic space Y is covered by the two open subspaces V(g 0] and Vo c0);
which are the subspaces where p # 0 and [w] # 0, respectively. Thus, to
study the fiber products Vg, := Spa Rox )Y and Vg := Spa R x Y, it suffices
to study the fiber products of Spa Ry or Spa R with each of these subspaces.
We are primarily interested in Spa Ro Xz, Vo) and Spa R Xz, Y|y «) (since
if p is invertible, the theory reduces to the case of classical rigid analytic
spaces).

We define perfect overconvergent rings with coefficients in R:

Definition 3.2. Fix a € Q>¢ and b € Q-0 U {oo} such that a < b. Then
we define Ag 1,5 to be the evaluation of ﬁyRO on the affinoid subspace
defined by the conditions u < [@]'/® # 0 and [@]Y/* < u # 0. We let

KRO,[a,b],O C KRO,[a,b] be the ring of definition (Rp ® Ainr) <[w?1/b7 #»
and we let /NXRj[aJ,] = /NXROJM] (1] and KR,[a,b],O = ]\Ro,[@b],o[%]- Here we fix
the conventions —f,— = u and @ := 0, so that Ap 0,0c] = Ro ® Aint.
We also make auxiliary definitions
- ~ 1N - - 1
ARy 0,0 = (Bo ® Ajnt) {[w]} and AR 0,0 = ARy 0,0 [u]

where the completion is u-adic. We give A R,[0,0] the weak topology generated
by the basis

{uk(Ro ® Aint) <[;]> + [@]"(Ro ® Ainf)}

k,n



Galois representations over pseudorigid spaces 291

Note that Ag (44 and Ag 4y only differ when a = 0 (since otherwise
both rings contain 2).

The motivation for this definition is to describe natural affinoid sub-
spaces of

= U Spa R(] X Zp Spa‘(x[ovr} ’ K([DO:T})
r>0
and

Yr = U Spa R Xz, Spa(]\[o,r],j\fo,r])
r>0
These will be pre-adic spaces (and in general not affinoid or quasi-compact),
and they will be exhausted by pre-adic spaces of the form

Spaind ((Ro Oz, Mjy,p) <wu1/b> {[jﬂ} : <(Ro ®z, M 1) {[Uﬁl/brnty)

or

v [w]? ~ u (=™ '
Sp 1nd<(R0®z A[OT])<W>’[U]>{[;]711L]’ ((R+®z,)Afo,r]){Wﬂ[z” ) )

respectively, where Spa™ is as in Definition A.1 (which is taken from [19]).

~ Int
Here b is a positive rational number, (Ry®z, A‘[’O,r]) { [,W]Ll/b } ™ denotes the in-

tegral closure of (R ®zp1~\[o,r]) [M#/b} in (Ry®z, Kfo,r}) <[w]$1/b’ @> [ = }’

[=]

~ Int
and (R° ®z, A‘EOJ]) [L @} denotes the integral closure of (R° ®z,

[w}l/lm u

Koy ) [ 2] in (Ro @z, &5, [ 22 [, 4],

Proposition 3.3. Suppose that R is a Dx-algebra and r € Qso U {o0}
satisfies r > %. Then there is a continuous homomorphism

(Ro ®z, A[O’A]) <wu1/b> {[lw]} — (Ry &z, Af ) <[ ]1/b> {['lﬂ}
and the image of (Ry ® A[ A]) <[W]L1/b> in (Ro ®Zp <[w]1/b> [%}

a ring of definition. In particular, the image of (Ro ® A[o 2}) <[w]1/b> mn
DY

ARy, [0,00] <ML1/I)> [ﬁ] is a ring of definition.

Remark 3.4. We write ]\Ro,[a,b},o,)\ to denote the image of the ring of
definition

o u w 1/a U 1
(Ro @ Apg 1)) <W,a [i> (Ro ©z, A[O,ﬂ) <W’> {[W]}

inside A Ro,ab]-
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Proof. Since Ry is a DS-algebra, we may compute that
() ()" = o = (o)
u™ [w] 1/b [w]m’/b [w])\/b
p
[w]*/®

n (Ry ® Agng) <[#/b> [[w]} It follows that
(Ro® Aint) <W]¢l/b> {[w]} , hence in (R0®A[0 ) <[w?1/b> {ﬁ}, and we obtain

the desired continuous maps

S () 1] o5 o () ]

b u 1 .
On the other hand, if » > £, then (Ry ®z, A[ A]) <W> {H} is an

is power-bounded in

Ry ®zp [0 T]—algebra in which [w] is invertible and is power-bounded.

[w]l/b
Therefore, there is a canonical continuous map

o 5 { e ]~ e i () [

These maps are clearly inverse to one another, and since they are continu-
ous, the images of (Ry ®z, A‘[DO&}) <[W]L1/b> and (Ry ®z, Afo,r]) <W]L1/b> are
both rings of definition. O

In other words, for any r € Q>0 and any choice of b < 7\, the pre-adic
space

Spa <(Ro ®z, ./N\([)o,r}) <[w]u1/b> [[iﬂ} ,(Ro &, K([DOW}) <wu1/b>lnt>

is isomorphic to the rational localization Spa Ag [0,o] <[w]“‘1 75 >

Corollary 3.5. The pre-adic space Spa Ry Xgpa(z,) V]o,c0) @S €Thausted by

open subspaces of the form Spa Ag [0,00] <['ﬂ#/b> for positive rational num-
bers b € Q.

Similarly, we prove

Corollary 3.6. The pre-adic space Spa R Xgpa(z,) Y[0,00) 5 ezhausted by

w [w}l/a

open subspaces of the form Spa Ag (0,5 <
numbers a,b € Qo with a < b.

>, for positive rational

Remark 3.7. If R is a ring such that p = 0, the natural maps

053 () o () 1)
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[0,%]
yield rings of definition. In fact, A, 45,02 = ARy, [a,0],0-

are not injective, because A /p has [w]-torsion. However, the images still

If b € (0,00), A Ro,la,p) 18 @ Tate ring with pseudo-uniformizer [w]. We
may define valuations vp (44 and vg 4,1 On it via

VR (ab] (x) == sup —ch(a)
aec;:[a}xeARo,[a,b],o

and

VR o)\ (T) 1= sup —ve (@)
aeC;:[a]xeARo’[a’b]’oﬂ\
When a = 0, we also denote these valuations by vgj and vg z, respectively.
If [a, b] C (0, 00), then ideals of definition of A Ro,Ja,b),0 are principal, and u
and [w] both generate ideals of definition. In particular, A Rolab] = A Ry[a,b]
is Tate with pseudo-uniformizers v and [w].
If (R, R°) = (Qp, Z,) with u = p, this definition recovers JN\[avb].
'

We have seen that if p™u™"™ is power-bounded in R, then there is a

natural map (Ry ® KFO g}) <W]L1/b> — /~\Ro,[0,b]7 whose image is a ring of
TA

definition. In particular, the image of A°

[0.3]
tion shows that Ag, (44,02 behaves better than Ag; (44,0 for making some
comparisons with the classical story:

is bounded. The next proposi-

Proposition 3.8. If z € 7\[07%]’ then vrp(w) > vy (7) — @, If Ry =

Dy for some A = %’, then vy x(7) > vrp(w), as well. Similarly, vrpa(T) >
vy (), and if Ry = DS, we have equality.

Proof. Tt suffices to consider the image of Pii/b for all £ > 0. Since the
k

[w]®
image of [wi”T/b is in Ag, 10,500, We see that vgy \(x) > vy(2). Additionally,
since ([w]%/b)m € /N\Ro,[o,b},()a we may assume 0 < k < m. But then we may

kMY to get an element of *’N\Ro,[O,bLO’ S0

k
D kX (m—1)A
- > - > 7
VR ({w]m/b> =T = b

When Ry = DS, we observe that <[w}pvb>m = (pm,) . ( U )m , and we

multiply by [w]

claim that
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and
m ” m’
UR,b,\ << m/> : <W> ) =0
Then
b b
0>m-vRy ([w]/\/b) , M - VR b A ([w]/\/b)
SO

0> vRrp <[w]p/\/b) s UR,b,A (wp)\/g,)

On the other hand, vy, (W) = 0 and the result follows.
To prove the claims, we write

g oa0 = ((Zp[ul] (X) /(™' X = p™)) & Aune) (V) /([@]V7Y — )

and /~\D§,[0,b],0,/\ as the quotient of

((Zolul () /(' X = ™)) & (Aune (X) /(@MK= 9)) ) (V) /()Y — )

by [w]-torsion (in particular, XY™ = X'™). Then the claim is that if
we reduce modulo the ideal [mﬁbc ], the image of X - Y™ is non-zero. We
p

actually compute in
KDf\,[O,b],O/(pa [mﬁgp]) =Fy[X,Y]
and
/N\Dg,[o,b],o,A/[mﬁbcp] > F[X, X' Y]/(XY™ — X™)
which are visibly domains, so we are done. O

In the special case p € uRy (in particular, if p = 0 in R), this implies that
there is a map Ay — Ap o) such that vgy(z) > vy(x) for all z € Ay

Remark 3.9. The rings /~\Roy[a7b], KRO,[a,b},Ov and KRD,[a.bLO,/\ depend on the

choice of ring of definition Ry C R, but Ag 45 and Ag (44,0 do not. How-
ever, both depend on our choice of u € R.

Proposition 3.10. Let f : R — R be a homomorphism of pseudoaffinoid
rings, and let R}y := f(Ro) and v’ := f(u). Then R{®g, ARy (0] = ARy fab)-
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Proof. By [11, Lemma 2.2.5], f is topologically of finite type, so Ry is a
ring of definition of R’ formally of finite type over Z,. Then

Ry ®ry Ay

= R @Ry ARy (0,00 (X, V) /([@]P X —u,uY — []/%, XY —[w] /oY)
= AR 00c (X, Y)/ ([@)PX — o/ WY — [@]/*, XY — []/o1/h)

0,8 -

We do not know whether Vg, and Vg are adic spaces (even though
Spa Ry, Spa R, and Y are). However, we have the following partial result:

Proposition 3.11. Suppose {Spa R;}; is an affinoid cover of Spa R, and
let Spa R;; := Spa R;NSpa R;. Then if [a,b] C [0,00) we have a strict exact
sequence

0_>AR (a,b] _>HAR17ab] _>H Rij,[a,b]
4,J

Proof. We may assume that {Spa R; }; is a finite cover by rational subspaces
of Spa R, where (R;, RY) = (R, R°) <f°’f > for some finite set fy,..., fn €
R which generate the unit ideal. We may further assume that f; € Ry
for all 4. The ring of definition Ry is admissible in the sense of [5], so
we may consider the scheme-theoretic blowing up X — Spec Ry and the
admissible formal blowing up X — Spf(Ry) along the ideal (fo,..., fa).
Then Ox ®pg, A Ro,[a,b],0 18 & quasi-coherent &x-module, so we have an exact
sequence

fO fn

7 fi QR ARO,[a,b],o

0—I'(X,0x) ®g, ARO,[a b0 — HRO [

fu
%HR [flf] fzf]@)RO Arofado

The [w]-adic completion

0= T(X,0x) ®ry Mgy jap1.0 = H Ry <§0 §n> ®Ro Mo a0
— H Ry <f0 J}n> ® Ry A/N\Ro,[a 8,0

is exact, as well, and since I'(X, Oy) is Ro—ﬁnite and satisfies

(X, 0) [1

Y-

the result now follows from inverting u. O
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We have a similar sheaf property with respect to rational localization on
Y. Since Ry ®z, Ainr has no u- or [w]-torsion, if [a,b] D [a’, V], there is an
injective map

U [w]l/a u [w]l/a’
ARO,[O,oo} [Wﬂ u} — ARO,[o,oo} [W, T

(since both rings are subrings of Ag, (o] [% .

@]’ u

Proposition 3.12. The above map extends to an injection

u [w]l/a ” [w]l/“’
ARO,[O,OO] <W)7 u> — ARO7[0,oo} < [w]l/b/’ u

and therefore an injection /~\R7[a7b} — ]\R,[a/,b/]

Proof. As in the proof of [3, Lemme 2.5], the map ARO [a,b],0 = ARO @/ ¥],0

factors as ARO [ab,0 — ARO [ab],0 = ARO (@], 0 and we may assume that
either a = a’ or b = b'. We treat the case a = a’ = 0 here; the other cases
follow as in [3].

We need to show that the natural map

Ay f0.00] (X) /(@] /X =) = Ay jo.oc) [X] /([@]X = 1)

is injective. This map carries f(X) € Ap (0,00 (X) tO fu[w]' =2 X); to
show it is injective, we need to check that if f(u[w]'~'/*X) is a multiple
of [@]X — 1 in Agy [0,x] [X]2, then f(uX) is a multiple of u[w]X — u in
ARO,[O,oo] <u[w]1*1/bX>.

Writing f(uX) = ([w]X —1)g(X), where g(X) = 352 ¢; X7 and ¢; — 0
u-adically, we need to show that ¢; € uj+1[w]j(1_1/b)ARo,[07oo] for all j >
0. We may also write f(uX) = 3772, d;(u[w]' =P X)I, where d; — 0 u-
adically. Then for j > 1, we have d;u/ [@)/(1=1/% = [w]c;_1 — ¢;.

Since the ¢; tend to 0 u-adically, for each j there is some N; > j such
that cy, is a multiple of v/. This implies that [w]cy; 1 is also a multiple of
u/, and since (Ro/u/) ® Ay has no [w]-torsion, cn;—1 itself is a multiple
of u’. Repeating this argument, we see that ¢;_; is a multiple of u/.

We may write ¢; = uch;». Since AR, j0,00] has no u-torsion, we have
d;[w) 110 = [w]c}_y — ucj for all j > 1, which implies that uc} is a
multiple of [w]' /. But Ry ® (Ajnt/[w]' /) has no u-torsion, so c’l itself
is a multiple of [w ]1*1/ b We now proceed by induction on j; if c _ is
a multiple of [w]U~D0-1/8) then ucj is a multiple of [w]’ J(A-=1/b) Wthh
implies that ¢} itself is a multlple of [w])(1-1/8), O
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Proposition 3.13. Suppose [a,b] # [0, 00]. Then there is an exact sequence
(of Ro-modules)

u [w}l/a
0 = ARy, [0,00) = ARo,[0,00] <[w]l/b> @ ARy [0,00] < " >

u [w]l/a
— ARO,[O,OO] < [w]l/b’ w > —0

Proof. This is an adaptation of the proof of [3, Lemme 2.15]. We first treat
the case where a = b.
The natural map

u =]/ u_ (=]
ARO:[OvoO] <[,w]1/a,> @ ARO7[O:OO] < U > - ARO:[OvoO] <[w]1/a’ u

is clearly surjective, so it only remains to check that the kernel is exactly
Ry ®z, Aint-
We first verify this modulo .

u

(Aroiooe) (i ) /) = Ay oot V) /(21 /2Y,)

=]
=]/

(ARO,[O,OO]< ” >> /(1) 2 (Ro/u) @z, At [X] /([]"*)

(A <“ [w]”a>>/<>
Ry,[0,00] [w]l/“’ U U

Moreover, the map

(ARO,[o,oo} <Mu1/a>> /(u) = (ARO,[o,oo} <[w§t1/aa [wil/a >> /(u)

is given by Y — X1, and it factors through

(Ar00 ( i7m ) ) /0 21172) = (o/) @3, AuelY1/([=11")
But the intersection
((Ro/u) © Asue/([]/*)) [X] 1 ((Ro/w) © Asue/([]"/*)) [X 1]

inside ((Ro/u) ® Amf/([w]l/“))[X,X_l] is just (Ro/u) ® A/ ([@]/). It
follows that the image of

u [w]l/a
ARy, [0,00] <[w]1/a> N AR, [0,00] < " >

is contained in the image of Ag (0 o)-

1

(Ro/u) ®a, Aut X, X /([]Y*)
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[w}l/a

Thus, given x € Ag [0,00] <['ﬂ$1/“> N ARy, [0,00] < >, there is some ele-

1/a
ment y € Ag [0,00] Such that x —y € (u)Ag, [0,] <['ﬂ#/‘“ [WL > By con-
sidering the reductions of all of these rings modulo wu, this implies that

o 1/a
rT—y€E uARO,[O,oo} <[ L >

and
U 1/a
Tr—yEc uARO,[D,oo] W + [=] AR07[0700]

There is therefore some z € [w]/?A Ro,[0,00] Such that

U
T —y— 2 € ulpy (0,00 <[w]1/“>

[w]/* [w]/*

o € ARy [0,00] < u > and the intersection

u [w]l/a
ARO,[O,oo] <W> N ARO,[O,oo] < " >

. l/a .
inside Ag [0,00] <W]L1/“’ %> has no wu-torsion, we have

) w© 1/a
T—y—z€Eu (ARO,[O,OO] <[w]1/a> N ARO,[O,OO] <[ L >>

Since

Since Agy [0,00] 18 (1, [ww]'/%)-adically separated and complete, we can iterate
this argument, and the conclusion follows.
To handle the general case, we consider the diagram

w]l/a

0 — ARy 0,00 = AR, [0,00] <[7W]L1M>@AR0,[O,OO] < [w]ul/a> = AR [0,00] < =]/ =L > —0

I I

0 Arg f0.0) = Arofo.e) 72 ) B Ao 0,001 { =5 ) > Ao o) i =) =0

Since the bottom row is exact, and the top row is exact except possibly in
the middle, and the vertical arrows are injections, a diagram chase shows
that the top row is exact. ]

Corollary 3.14. Suppose Iy = [a1,b1] and Iy = [ag, bs] are intervals such
that I1NIy # 0. Then Ar, 1, 0N ARy.1,,0 = ARy.1yuL,.0 (where the intersection
is taken inside ARy 1,n15,0)-

Proof. We may assume that a; < ag < by < bo, so that I} N Iy = [ag, b1]
and [; Uy = [al, bﬂ. If fe AROJLO N ARO,[%[), we may write

f=g1+hi=g2+ho
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with
91 € ARy ay,000,0 and h1 € ARy j06:1,0
92 € ARO,[G%OO],O and hy € ARO,[OJD],O

Then (g1 — g2) + (h1 — h2) = 0, with

g1—9g2 € ARO,[az,oo],o and hi1—ho € ARo,[o,bl],o

It follows from the previous proposition that
g1—92=ha —h1 = ' € Ay [0,0q]

Then f =~(91 — )+ (hi+ f) = (g1 — f) + ho; since g1 — f' € /~\R0,[a1,oo],o
and hg € AR, [0,5,),0, We are done. O

3.2. The action of Hg on KR,[a,b]. Since UC;([W]) = pp%lvclbj([f]), we

define s : (0,00) — (0,00) via s(a) = pp;al. From now on, we assume that
s(a), s(b) € p%. Then we can rewrite /NXRm[a’b]’O as the rational localization
ARy [0,] <[ﬂ%’ w> Since Hp acts trivially on w and [7], this implies
that the action of Hx on Ajy induces an action on Apg g4

If (R,R°) = (Qp,Zp) and u = p, it is easy to read off from the Witt

vector description of (A[07r],A[°07T}) that

(K[o,rlaxfo,rJ)HK - (A nt <[7r]€<’“>> [[wl]] Auf < [wﬁ(’")»

Moreover, it follows from [3, Lemme 2.29] that

~ ~o Hg o H [ﬂ(pmp”—l 1 H [ﬂ(pﬂ)p"_l
(A[p—n’oo]a A[p—”,oo]) = (Ainﬁ( <p [W} ,Ain? ——

The same argument as in the proof of Proposition 3.13 shows the follow-
ing:

Proposition 3.15. There is an exact sequence (of Ro-modules)

" " u H [7)*(@)
0= Aggiooc) 7 Mrofo.oo <[ﬂ-]s(b)> ® ARol0.0c) < "

75(a)
— AHx <u 7] >—>0

Ro,[0,00]
Lemma 3.16. There is a connecting homomorphism

AH
AR;(,[a,b],O - Hl (HKv ARO,[O,OO])
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Proof. We need to construct a continuous set-theoretic section

KRO,[a,b],o — KRO,[O,b],O @ IN\RO,[a,oo],o

If [a,b] = [0,0], we choose the map (id,0). If a # 0 but b = oo, we choose
the map (0, id).
Otherwise, [a,b] C (0,00) and we have an exact sequence

u

[w}l/a
0 = ARy 0,00) = ARy, [0,00] <[w]1 /b> @ Apo,jo.00] { —,

u [w]l/a
— ARy 0,00] <[w]1/b’ u> — 0

and we need to produce a continuous set-theoretic section

5 1~\R,[a,b},o — 1~\R,{o,b],o 2 KR,[a,oo],O

We first construct a continuous set-theoretic map

1t ARy ja,0),0 = ARy a,00),0
Both rings are u-adically separated and complete, so it suffices to construct
a set-theoretic map 31 : Ay (4.41,0/% — AR, [a,00),0/u- We may write
Ay aslo/t = (Ro @ Aunt)[X, Y]/ (u, [@]"/, [@]/*X, XY = [w]"/*~ /")

and given T € KRO,[a,b},O/u7 we may choose a lift to (Ro® Ainf) [X, Y] /(u) of
the form Y5 ;X' + 350 8;Y7, then project Y ;50 ;Y7 to Agy (a.00],0/U-

The resulting map s is not necessarily a section, but it has the property
that for z € Agy (44,0, T — im(s1(2)) € im(Ag, [o),0)- Since the restriction
map Ag oy — Arjap is injective, the map = — x — im(s1(x)) defines
another map so : IKR’[QVH — /~XR7[07b]. Then

§:= =51 ® 82 Ay a0 = MRofa,c0],0 D AR,0)
is the desired section. O

Lemma 3.17. There is an exact sequence

H 1 ~H e TH
0= ARy 0.00] LJ = Apoii0.61,0 [u} S ARlaoe] = Aoy — 0

Proof. This follows as in Berger’s Lemme 2.27. If a = 0 or b = 0o, the result
is trivial. If not, we have an exact sequence

H 1 ~H 11 <m
0= Aggo.00] {u = Apoil0.61,0 s ARlao0)

~ 1
— Ag,}[(a,b] — H1 (HK7AR0,[0,00] |: :|)

u
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and we need to show that the map ¢ : AR[ b H'(Hg, ARy 0,00 (L] is
the zero map
Ifx € A Rosfa.b],0° then z- ([ﬂ%) € AII_%I;(,[a,b],O as well, and after multiplying

by a suitable power of u, we may assume that §(z) and 5(3: . ([ﬂ%» are
both elements of H' (Hg, A, [0,00])- But then

Then the result follows from the next lemma. O

Lemma 3.18. Ifa € ﬁbcp 1s in the mazimal ideal, then the homomorphism

H'(Hg, ARy [0,00]) Lo,

is the zero map.

H'(Hg, ARy j0,00]) induced by multiplication by [

Proof. If ¢, € H! (Hi, ARy [0,0]) 18 in the image of this map, we may con-
sider its image in H'(Hg, (Ro/u) ® Ajin). Then a standard Tate-Sen argu-
ment shows that this image is the trivial cocycle. Working modulo succes-
sive powers of u, it follows that ¢, is itself trivial. O

Thus, to study the Hg-invariants of IN\R,[a,b] (1], it suffices to study the
H-invariants of ARO [0,6],0 [7] and Agy a,00] [1].

’Lt

We first study the ring A Ref0,00] = = (Ro ® Ajp) T

Lemma 3.19.
(1) If N is a finite module over a noetherian discrete Z/p™-algebra Ry,
then
(N @ Ainf) =N ® Alnf

(2) If Ry is a Huber ring with principal ideal of definition, then
(Ro ® Apmg)™ = Ry ® Allx

inf

(3) If N is a finite module over a noetherian discrete Z/p™-algebra and
[mcg] C Aiur denotes the ideal generated by {[oz]}aéemcb , then

(N ® [mes ) /171" @mes)) " = N @ [mp, 1/[71"@fmp, |

Proof. In order to compute the Hg-invariants of N ® Ajns, we proceed by
induction on n. If n = 1, then N is a Fp-vector space and we may choose
an F-basis {e;}je;. Then N ® Ajyr = {Zj bje; | bj € 7 p,bj — 0}, where
the coefficients b; tend to 0 with respect to the cofinite filter. It follows that

(N ® A" = {ijej

J

bj € O _,b; HO} N& AlTx
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Now assume the result holds for n — 1. We have an exact sequence
0— pn_l(N ® Ainf) — N @ A — (N @ Ainf)/(pn_l) — 0

Since p"~1N is a finite module over the discrete Fp-algebra Ry/p, the in-
ductive hypothesis implies that we have an exact sequence

0 —>pn 1N®Amf (N®Ainf) (N®A1nf )/( " 1)

There is furthermore a natural map N ® Aﬁf — (N @)Ainf) X and a
commutative diagram

0 — (P" N & Apnp) 75 — (N @ App) 18 — (N/p* 1) @ Ajpp)FIx

H I H

00— p" INRAIE — s NOAHKx — 5 (N/pm Y@ AllK —— 0

inf inf inf

A diagram chase shows that the map N & Aﬁf — (N ® App)P% is an
isomorphism.

For the second part, let u € Ry generate the ideal of definition. Since p is
topologically nilpotent in Ry, each quotient ring Ry/u” is p-power torsion.
We observe that Ry ® Ay = lim, @k,(Ro/uk) @ (Aint/[7]*), and so

Hg
(Ro @ Agnp)"™ = lim (@(RO/ u*) ® (Aint/ [W]k/)>
k K’

Hg

= lim ((Ro/u*) & A )
k

lim(Ro/u") & A{IE = Ro ® A

inf

B

The last part follows similarly, using the fact that (mcb /75 mcb )HK

~ s(@)m ~
Mz, /T mg, - n

To study the rings A Ro,Ja,p) When [a, b] # [0, 00], we require a number of

preparatory results. We W111 proceed by making a careful study of (Ry ®
Ainp)/(u—[7]*@) and bootstrapping from characteristic p to characteristic
0. However, our techniques specifically exclude the classical case, where p
is a pseudo-uniformizer of R; we use the ideals I; C Ry defined at the
beginning of Section 3, which only differ from Ry itself when p ¢ R*.

We first record two purely algebraic lemmas.

Lemma 3.20. Let R be a ring and M an R-module, and suppose that R and
M are I-adically separated and complete, for some ideal I C R generated
by an M -regular sequence r1,...,ry. If M/I is free over R/I, then M is
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topologically free over R, i.e., there is a subset {e;}ic; C M such that the
natural map

(S

i€l

aieR,ai—>0}—>M

given by e; — e; is an isomorphism.

Proof. We proceed by induction on the number of generators of I. If n = 0,
there is nothing to prove.

Assume the result for I generated by n — 1 elements. Then M/r; is
topologically free over R/ri, and we may lift a topological basis of M /r
to a subset {e;};c; C M. Then we have a homomorphism of R-modules

{Z

il

aieR,ai—N)}%M

which is an isomorphism modulo 7. By [20, Tag 07TRC(12)], it is surjective
modulo all powers of 1. Moreover, if K denotes the kernel, the assumption
that r; is M-regular implies that the kernel K, of the reduction modulo 1"
is simply K /r{". Thus, Rlim! K,, = 0 and our map is an isomorphism. [

Lemma 3.21. For any ring R and any ideals I, 1o C R, there is an exact
sequence

0—R/(I1nly) — R/ ®R/Is — R/(I; + 1) — 0
where the map R/11 ® R/Io — R/I1 + I3 is given by (f1, f2) — f1 — fa.

Proof. The map R/I1 & R/I» — R/(I1 + I2) is clearly surjective, and the
map R/I; NIy — R/I; & R/I, is clearly injective. It remains to check
exactness in the middle. So suppose we have a pair (f1, f2) € R/I) @ R/I>
such that fi — fo = 0in R/(I; + I2). Since the map R/(I1 NI2) — R/I> is
surjective, we may assume that fo = 0, and therefore that f; € (I3 +12)/1;.
But (I1 + I2)/11 = I5/(I; N I2) as R-modules; given a representation f; =
g1 + g2 with g; € I;, this isomorphism sends f; to the image of g2 modulo
I) N I. Then the natural map R/(Iy N Iy) — R/I} @ R/Iy carries gy to
(f1,0), as desired. O

We now return to the setting of interest.

Corollary 3.22. For any a € m%m, the ring homomorphisms Z,[[c]] —
Ainr and Z,[[o]] — Aﬁf are flat.
Proof. This follows from Lemma 3.20 and [20, Tag 06LE]. O

Corollary 3.23. For any o € W A.Hf{ and Ay are topologically free

over Zp[[[a]]. "
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Corollary 3.24. For any a € Qxq, the rings A 000]/( [7]*@) and
Ap,, opo]/(u —[7 }S(a)) are topologically free (Ry ® Z Mk ]S(a D/ (u— [TT]S(“))-
modules.

Lemma 3.25. Let R be a pseudoaffinoid algebra over Z,, with Ry C R
a noetherian ring of definition formally of finite type over Z, u € Ry a

pseudo-uniformizer u. Suppose that N is a finite flat Ro-module. Then (N ®
Aine)/(u — [7]°@) and (N & Amf )/(u — [7]*@) are flat over Ry.

In particular, Agg 0,00]/(u — [7]°(@) and A OOO]/(U — [7]°@) are flat
over Ry.

Proof. We first observe that

(N & Aunr)/(u— [7]"@) = (N & Z[[F ]/ (w = [7*)) B, ir1ecor) Aine
and

(NOALE)/ (u—[7]"@) = (N & Z[[F]*])/ (u = [7]*)) B, frpocary A

By Corollary 3.24, it suffices to show that (N ® Z,[[7]*])/(u — [7]*(®) is
flat over Ry.

Since Ry, Z,[[7]°®], and Ry ® Z,[[7]*(?)] are all noetherian, to prove
this we may apply [17, Theorem 22.6] with A = Rqy (resp. Z,[[7]*]),
B = Ry ® Z,[[7]*Y], M = N & Z,[[7]*9], and b = u — [7]*(). Since B is
flat over A and mN A is a maximal ideal n C Ry (resp. mNA = ([7]°(®)) for
every maximal ideal m C B, it is enough to check that the image of u— [7]*(®)
is not a zero—divisor in M/n (resp. M/[7]*@). But M/m = N/n@Z,[[7]*¥]
(resp. M/[7]*® = N), the image of u — [7]*(® is the image of [7]*(*) since
every maximal ideal of Ry contains u (resp. the image of u — [7]5(®) is w),
and (N/n) ® Z,[[7]°@] is [7]5(®)-torsion-free (resp. N is u-torsion-free).

Thus we conclude that (N & Z,[[7]*@])/(u— [7]*(®) is flat over Ry and
Z,[[7]*@], as desired. O

When R has positive characteristic, we may relax the hypothesis on N
and apply the same argument:

Corollary 3.26. If R is topologically finite type over Fp((u)), Ry C R is a
ring of definition strictly topologically of finite type over F,[u], and N is
a finite u-torsion-free Ro-module, then (N & Aiyg)/(u — 7)) has no u- or
w-torsion. In particular, Ag, (0,00)/(u — 7)) has no u- or T-torsion.

Proof. We again prove that (N @F,[75@])/(u—7°) is flat over F [[775(“ |
by applylng [17, Theorem 22.6] with A = F,[7°@], B = Ry ® F,[75],
M = N @ F,[7*@], and b = u — 7%(9). This implies that the module
(N® Fp[[ﬁs(“)]])/(u — 7%(@) has no 7-torsion, and hence no u-torsion. [J
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Lemma 3.27. If R is topologically of finite type over F,(u)), Ro C R is a

ring of definition strictly topologically of finite type over FpJu], and N is a
finite u-torsion-free Ro-module, then the natural map
—~ H

N &AL = (N & Awr)/(u — [72@)) "

inf

18 surjective.

Proof. We have an isomorphism
(N & Aine)/(u = [77) = (N @ F[7])/(u = 7)) B, freco O,

Since N is u-torsion-free, Lemma 3.26 implies (N & F,[75®])/(u — 75(®)
is w-torsion-free. Then Lemma 3.20 implies it is topologlcally free over
F,[7*(®], and the result follows.

It follows that

(N & )/ — [7179)) ™ = (N & ALY — [7)

as desired. O

Now we can begin to bootstrap to the case where R is Z,-flat.

Recall that when p ¢ R*, we defined a sequence of ideals I; := P RN Ry.
Each ideal I; is finitely generated (since Ry is noetherian), so there is a
sequence of integers k; > 1 such that uki I j C P Ry.

Lemma 3.28. With notation as above, k; < jk;.

Proof. We proceed by induction on j. The case j = 1 is trivial, so assume
the result holds for j — 1. If = € I;, then uFiz = uPiFykiy € p Ry, But
since I; C Iy, it follows that uF 2z = pa’, and since p is not a zero-divisor,
uki=k1z! € pI=1Ry. By the inductive hypothesis, k; — k; < (§ — 1)k, and
the result follows. O

Lemma 3.29. With notation as above,
(1) N; 15 = {0},
(2) N I ((Ro & Z,[[7* @)/ (u — [71°(®))) = {0}.

Proof. If x € (; I}, then for all j > 1, whkig = p’z; for some z; € Ry.
This implies that = € (- ) 'R for all j. Since p ¢ R*, (%)R is a proper

ideal, and Krull’s intersection theorem implies that (; (% -)’ R = {0}. Since
((Ro ® Zyp[[7 ]S(G)]])/(u — [7]*(@)) is noetherian, the same argument applies
to () 1 (Ro & Zp[[*“])/ (u — [7]**)). =

We first treat the case where R is a Z/p"-algebra (and I,, = (0)).
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Corollary 3.30. If R is topologically of finite type over (Z/p™)(w)) and
Ry C R is a ring of definition strictly topologically of finite type over
(Z/p™)[u], then the natural map

H sla HK
ARgi0,00] (AR07[0 oc)/ (u = [7] ( )))
18 surjective.

Proof. We have seen that

(((Ro/Tr) ® Asme)/(u— [7°@)) " = ((Ro/T) & ALF)/(u — [7)°(®)

and we will proceed by induction on j. We have a commutative diagram

Hg

00— (/) @Al — 5 (Ry/1;11) & AllE (Ro/I)®Alx — 0

l ! l

0= ((5/7;1) Asne/ (= [717) " (R T341) A/ (= [717)) " ((Ro /1) st/ u—[10))

Then the snake lemma implies that the middle arrow is surjective, as well.
O

Now we return to the case of a general pseudoaffinoid algebra R (where
p is not a unit).

Lemma 3.31. The natural map
A = (@) = Ay o/ (u — [7)5C)
18 injective.
Proof. We need to check that
(u— [7)* ))ARO,[O oo] N ARO,[O o] = = (u—[7*“ ))ARS[O od]

and it suffices to check that A g |9 o) has no u— [7]*(@-torsion. But (Ro/u)&®
Ajy¢ has no [7]*(@-torsion, so if z € A Ro,[0,00] 15 annihilated by u — [7]5(@),
it is a multiple of w. In addition, Agj 0,o0) has no u-torsion, so if z = ux’
is killed by u — [7]*®), so is 2. Replacing = with 2’ and repeating the
argument, we see that = € u"Ap 9o for all n, so z = 0. O

Lemma 3.32. If v € Ag, [0,o] and the image of x in AR [0,/ (v — [7]5(@)
is a multiple of u, then the image of x in A 0 OO]/( — [7)*@) is a multiple
of u.

Proof. We may write © = uz’ + (u — [7]*®)y for 2/, y € ARy 0,00 Reducing

modulo u, we have = = —[7]*(@y; since (Ry/u) ® Ainr has no [7]*@-torsion,
we see that y = ¢’ (mod u), where ¢’ € Agf[o o] In other words,

z = ux' + (u—[7* (Y + uz)
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for some 2 € AR, [0,o0)- But then
z— (u—[@* W)y e Aggfm’m] NuA Ry [0,00]
Since AR, [0,00] has no u-torsion,

H H
ARS(,[O,OO] N UAR07[O,OO] = uARéf[O,oo]

and we are done. O

Lemma 3.33. The natural map

(Ro/(u, 1)) ® (AL /(7)) = (Ro/ (u, I;)) @ (Aung/[7]*)

inf

is injective for all 7 > 1.

Proof. We first show that the natural map @3(00/ [77}5(”) — (’)bcp / [77]5(“) is
injective. But the cokernel of the injection @3(00 — (’)bcp is an @%m—module

with no [7]*(®-torsion, so this follows.

We proceed by induction on j. If j = 1, then Ry/(u, I1) is a discrete F-
vector space, and therefore the map @3(00/ [7]°@ — O%p /[7]°@ remains
injective after tensoring with Ro/(u, I1). So assume the result for j —1. We
have a commutative diagram

0 = (Lo /(u, 1) @ (AL /[75@) = (Ro/ (u, Ij)) @ (ALK /[7]5@) — (Ro/(u, Ij—1)) @ (ALK /[7]*@) = 0

| |

0 — (Li1/(u, 1)) @ (At /[T]*V) — (Ro/ (u, 1)) @ (Aint / [7]*) — (Ro/(u, Ij-1)) @ (Aiut/[7]) — 0

PR

Since I;_1/(u, I;) is annihilated by p, the left vertical arrow is injective.
The right vertical arrow is injective by the inductive hypothesis. A diagram
chase then implies that the middle vertical arrow is injective, as desired. [

Applying this to Aggfmml /(u—[F*@) and Ag, (0.00)/(u — [7]*@) yields

the following:

Lemma 3.34. For each j > 1, there are exact sequences
H _
0 = AR oo/ (w = [, uly)

= Ao/ (s [T @) @ Al /(= [7)°), 1))
- Agjf[o,oo}/(u, [f]s(a)v I;) =0
and

0— ARO,[O,OO]/(U - [f]s(a)7 UIj)

= Ay o)/ (1 7)) & Ay o)/ (0 = (7)), 1)
— Mg 0,00/ (u, [7°@, 1) = 0
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Proof. By Lemma 3.21, we have exact sequences
0— Ro/((u) N1j) = Ro/(u) ® Ro/I; = Ro/((u) +1;) =0

Certainly wl; C (u) N I;. On the other hand, if uf € I; for some f € Ry,
then ufuf € p'Ry for some k > 0, and so f € I;. Thus, the inclusion
ul; C (u) NI is actually an equality, and we have exact sequences

0— Ro/qu — RQ/(U) @Rg/[j — Ro/((’u) +Ij) —0

By Lemma 3.25, AgK[O C>o]/( — [7]*@) and ARy o, OO]/(u — [7]*@) are both
flat over Ry. Thus, we may extend scalars from Rg to AZX Ro,[0,00] /(u—[7]*@)
to obtain the desired result. O

Proposition 3.35. If x € (Ag, [0,00)/(u — [TT]S(")))HK and o € mz, , then

Kb’

[a]x is in the image of Agg[o,oo]'

Proof. We first consider the image of x modulo I;. Since it is fixed by Hg,
it defines an element of ((Ro/I1) ® Agf{) /(u — [7]*@), and therefore so
does [a]z.

Considering instead the image of x modulo u, we obtain an element of

((Ro/u) @ (Aing/ [TT]S(")))HK . There is a sequence of Hg-equivariant maps

mf/[ ]

x[a] [a]/[ﬁs(a)a] N [a]/[WS(a)mCz

—+ [y )/ Aat > Agur/ 77

| = gy )/[7* g,

Since ([mcb]/[*s(“)mcz])HK = [ml?go]/[ﬁs(“)mf(go], [a]z defines an element
of (Ro/u) ® (Apf /[7]*).

f
It follows fro;rrll Lemma 3.34 and Lemma 3.33 that there is some

ap € ARO [0, }/(u - [ﬁ]S(a))

such that [a]z — ag € ul1AR, 000/ (U — [7]*(®)). We may therefore write
[a]x — ap = uxy, where

H
21 € Iy (Mgy jo.oq)/(u = [77))
Then we have
uzr] = [f]S(a)ml — H( 1)?/p? 7 ](p 1)/p? @

and we may apply the previous argument to [7] (P=1)/P*ag, We obtain some
a) € AR0 o, oo}/(u — [7]*®) such that

[7)P=D/P ey — ay € ulyAg, 0,00/ (1 — [7]5@)

and [7]®~1/P*agz) — ) remains fixed by H.
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Continuing in this fashion, we obtain a sequence {a;};>o of elements of

]/(u — [7]*(®), such that
n—1
[z = Y [FPV I ) € uly Mgy o)/ (u — [7]%)
=0

Since the terms [%](pfl)%/p%aj tend to 0, the sum ijo[fr](p*l)zj/pz“aj

converges in Ag;{[o oo /(u— [ﬁ]s(a)% and

o]z — SRV g, € (VI AR 000/ (u — [7]7@)

320 J
To finish, we need to show that ; I;Ag, 0,00)/(u — [7]*(@) = {0}. But
this follows by combining Corollary 3.24 and Lemma 3.29. U

Corollary 3.36. The natural map

Ait 0o/ (= 1) = (Ary o/ (1 = (7))

is an isomorphism.

Hp

Proof. This follows by combining Proposition 3.35 with Lemma 3.31 and
Lemma 3.32. O

We are finally in a position to compute Kg{f[%b}.

Corollary 3.37. Suppose [a,b] C (0,00). If R is a pseudoaffinoid algebra
and Ry C R is a noetherian ring of definition formally of finite type over

Z,, then
TH H U GERANE
AReat) = Mro.fo.00] <W(b> v

Proof. We consider Ax Ro.Ja,50] and Kgf[o b] separately.
There is a natural map

T s(a) ola
ARy [0,0] <Hu — Apy 0,00/ (u — 75@)

—1s(a)
with kernel (1 — %), extending the quotient map

Apy [0.00] = ARo 0,00/ (u — [7]*@)
7@

Given x € ARy (0,00] <
integers with 0 < ; < ¢ —1 for all ¢ and lim % = 0 such that

. u— [ @Y’ [7):@
TrEeEu ZARQ,[(LOO] + <u> ARQ,[O,OO] < »

>, there is a non-decreasing sequence {a;};>1 of
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for all 7 (as in the proof of [3, Lemme 2.29]). If z is fixed by Hy, Corol-

lary 3.36 implies that there is some ag € AR [0,0] such that x = ag
(mod u — [7]*®). Moreover, ag € u~ Agf[o o]
Suppose we have a sequence ag,...,a,—1 of elements of Alx Ro.[0,00] such
that
11— Q41 HK
a; €u A Ro,[0,50]
and

u — [7]5@ u— (7@ \" 7]5(@)
o (B () ) () o ()

Then it follows from Corollary 3.36 that there is some a, € A

that
(Z al( u—[7 ]s(a>> ) o (u— [W]S(a)>”

belongs to the ideal

u— [a@\"" [m@\
- ARO,[O,oo} -
u u

1 . . __[=1s(a)
Since the sequence {a;} is non-decreasing, the summand a%(%)

Ro,[0,09] such

belongs to

~ u— [F)s@\ " =]5(a)
U O‘"+1AR0,[0700] + <[u] ARoy[O,oo} [ ]u

and we may write

ua’ (u _ [ ]s(a)> _ un+1—an+1b + (u _ [ﬁ]s(a))n—klcn

[

with by, € ARy [0,00) and ¢ € AR 0, OO]< > This implies that

un+1—an+1bn c (u — [ﬁ]S(a))nARo,[O,oo]

Since A gy (0,00)/ (4 — [7]°(®) has no u-torsion, it follows that b, is a multiple
of (u — [7]*(®)" in ARy [0,00]- Thus,

o= () + () e

If we consider the image of aj, in (Ag, 0,00/ (v — [ﬁ]s(“)))HK, we see that

it is equal to the image of u”_o‘"“( ) Thus, there is some a, €

bn
CEGEOE
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u”*a"“Aggf[o o] Such that a, = a!, (mod u — [7]*(@). Tt follows that ux —

(Shan (SE0)) € (=) R

By induction, we Obtaljl (a) S?quence {a;} o~f elements of A Rf’[om] such
that the sum ) 72, ai(%) converges in Aggf[am] to x.
A similar argument applies to elements of Ag;f[o,b]' O

3.3. Imperfect overconvergent rings. We now define imperfect period
rings, which will be noetherian pseudoaffinoid algebras over R. As in the
case of perfect overconvergent rings, we would like to consider the fiber
products of Spa Ry and Spa R with analytic subspaces of Spa A}. How-
ever, because we only have an explicit description of Afgfg] and Afde]K for
sufficiently small b, we restrict our definitions to that setting.

Let K/Qj be a finite extension and let F' C K be its maximal unram-
ified subextension. Recall that we defined

%}9@ = {Z ap X™

meZ

am € Opr,vp(ap) +mb — 0o as m — —oo}

to be the ring of integers of the ring of bounded analytic functions on the
half-open annulus 0 < v,(X) < b over F’. Let

— (QUC%(DEK/EF))_I if Ex/EF is ramified
K- 1 otherwise

Then we have the following:

Proposition 3.38 ([7, Proposition 7.5]). For b < rg, the assignment f —
f(mK) is an isomorphism of topological rings from d}?”’”cz )l 4o Ao,k -

Furthermore, if we define a valuation v® on dé?’b] by

meZ
then
1
val (£ (mx0)) = 20 00(f)
where vall®? s the restriction of the corresponding valuation on K[O,b}-

A
In the special case b = 0, Afg’é] = Ax = Op|rk] {%} , where the
completion is p-adic.
When 0 < b < rg, we see in particular that mx is a pseudo-uniformizer

of Afgp), k- Thus, the pre-adic space Spa Ry x Spa Ay i is exhausted by
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affinoid pre-adic spaces of the form

Spa (Ro & A[o,b},K) <W>

for positive rational numbers 0" satisfying 5— € N. Similarly, the

(WK)
pre-adic space Spa R x Spa Ajgy i is exhausted by affinoid pre-adic spaces
of the form

1/(a-ve (TK))
~ ° 7TK p u
Spa (RO ® A[Ovb]’K) < U ’ ﬂ.l/(bl'vcb (7K)) >
K P
for positive rational numbers a, b’ satisfying
1 1
0O<a<l¥ and eN

a- Uc;(ﬁK) Y- vcz(ﬁ'[()
With this in mind, we may reason as in the perfect case and show:

Proposition 3.39. Suppose b € (0,7x), and suppose R is topologically of
finite type over D)y for some A € Qsq. Then if b’ < b\, the affinoid pre-adic

space Spa(Ry ® Afo ] K)<W> is isomorphic to the localization
b b ,n—K Cp

Spa(Ro® O [[WKH)<W> (and is therefore actually a pseudorigid

Tk Cp

adic space).
This motivates the following definition.

Definition 3.40. Let R be a pseudoaffinoid Z,-algebra such that R is
topologically of finite type over D), and let K/Q, be a finite extension.
Fix rational numbers a € Qs and b € Q>p with a < b < rgx - X such that

L 3> b b(WK)) € Z. Then we define the Zy-algebra Ap 44,k to be

a-v b(ﬂ' K)
the evaluatlon of the sheaf of rings 0 Ro®0m)[rx] OR the affinoid subspace
of Spa(Ry ® Op)[rk] defined by the conditions

L (b (7ic)

/(@G (Fi))

u<m and T <u

This is a pseudoaffinoid algebra with rings of definition

1/(avg (TK))
U ™ c
A = (R, Opi = = -
Ro,[a,b],0,K (Ro ® Opr)[mK] <ﬂ_}{/(b.vcz(7r1())’ U >
and
1/(avg (TK))
. S r0,H u T °©
ARo,[mbLO,K,/\ the image of (RO ® A[O,il}() <7T1/(b~vcb (7K))’ 5 up >
K p

and pseudo-uniformizers u and 7.
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We make an auxiliary definition Agj 00,5 = (Ro ® Op)[rK] [é];\,
where the completion is u-adic.

If I C (0,00) is any interval (with either open or closed endpoints), we set

Arrri= Jm Ap oy K
[a,b]CT
If p = 0in R, then we may take A arbitrarily large, and hence b arbitrarily
large. Thus, we additionally define Ag (o o0,k = (o ® OF)[nk] in this
case.

Remark 3.41. Since Ag [, x has noetherian ring of definition, the as-
sociated space Spa Apg (44, i 1S an adic space, not merely a pre-adic space.
Thus, the sheaf property with respect to covers of Spa R or with respect to
change of intervals is automatic.

The rings Ag, 1,k are equipped with actions of Frobenius and I'x. We
have ring homomorphisms

© 2 ARy a6, = MRy a/pb/p], K

but they are not isomorphisms.

Lemma 3.42. The Frobenius operator @ makes Ag, 0/, nto a free
(AR j0,5),K))-module, with basis {1,[¢], ..., [e]P~1}.

Proof. Let wps be a uniformizer for Op:. Since Ag [04]0,x is complete for

the (wF/,w}(/(bl’”cg(fK)))-adic topology, it suffices by [17, Theorem 8.4] to
prove the corresponding statement for

Ago oi.0.5/ (@, 7l 00 TDY 2 (R ju) @ (Op: foop) [7K][X]

But since ¢ acts trivially on R/u, this follows from the classical case. [
We define categories of (¢, I')-modules over Spa R:

Definition 3.43. A yp-module over Ag g3, x is a coherent sheaf D of mod-
ules over the pseudorigid space ,_,o Spa(Ag, a4, k) equipped with an iso-
morphism

¢p ¢ D = AR,(Ovb/p],K OAp 0,5, D

If a € (0,b/p], a p-module over Ag (44 i is a finite Ag (44 x-module D
equipped with an isomorphism

(pDz[avb/p} : ARv[avb/p]vK ®AR,[a/p,b/p],I( QO*D - AR,[avb/p]vK ®AR,[a,b],K D

A (¢, T'k)-module over Ag 4 x (resp. Ag|qp),x) i @ ¢-module over
AR 04,k (resp. Ag jq4),x) equipped with a semi-linear action of I'x which
commutes with ¢p (resp. ©p (a,/p])-
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Let Apyigx = liﬂbHO T&laﬁo AR o,k A (¢, Tx)-module over R is a
module D over Ag g x Which arises via base change from a (¢, T'k)-module
over Ag (04),x for some b > 0.

If L/K is a Galois extension, /KgOL ; and Ap, 1,1 are also equipped with
actions of Hy i := Hy/Hy. Thus, it makes sense to introduce (¢, T')-
modules “equipped with a Galy,/g-action” and ask about descent:

Definition 3.44. If L/K is a finite Galois extension and D is a (¢,I')-
module, we say that D is equipped with an action of Galy if the Galois
group Galg acts on D and in addition

e the subgroup Hy C Galg acts trivially on D, and
e the induced action of Galy, /H|, coincides with the action of I'f.

We also say that D is a (o,[', Galy,/k)-module.

In fact, if we restrict ourselves to projective (¢, T')-modules, we have not
enlarged our category.

Lemma 3.45. If L/K is a finite Galois extension, then
ARg o, = Ao fo].L
s a finite free extension of rings and Agé(l . = ARy 1 K-

Proof. Let F! C Koo = K(pip=), F" C Log := L(pp=) be the maximal
unramified subfields. A basis for &p» over O provides a basis for (Ry ®
Opn)[rK] over (Ry ® Op)[rk], so we may assume that F’ = F”. Then if
e:=er /Ko = [Loo : Keol, theset {1,7p, ..., Wz_l} is a basis for Ag, (0,0},z

over Agy 10,0,k
The trace map defines a perfect pairing

ARy 0,0, X ARy 0,0, = ARy, 0,0,k
(z,y) — Tr(xy)

The dual basis {f; = 1,..., f¥} with respect to this pairing is the same as
that constructed in [7, Section 6.3]. Since (Rg & Ajop/x,L) <7MM>

p

is a ring of definition of Ag 194 1 by Proposition 3.39, [7, Corollaire 6.10]
implies that f € Ap, o),z for all i. Then for any = € AR [04),z, We may
uniquely write x = 3, Tr(xrt ) 7, as desired. O

Corollary 3.46. If D is a projective (o, ', Galy, /) -module of rank d over
ARy 05,5 for some Galois extension L/K and some b > 0, then DHx s
a projective (p, 'k )-module over Ag, 104 K -
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Proof. By Lemma 3.45, the extension Ag, 04,k — AR, 04, 15 a finite
flat cover; descent of modules is effective and DY« is the descent of D to
ARy, 0,4,k SO the natural map

ARO,[O b,.L ®AR0 0,5, DHK — D

is an isomorphism. We can check ﬂatness after an fppf base change, so
DU« is flat over A Ro,[0,5],F- We can also check finiteness of a module after
an fppf base change, so DX is a finite ARy 0,0, x-module. Since Ag 104 K
is noetherian, it is finitely presented, so projective.

It remains to define the I'g-action and show that ¢ : ¢*Dfx — DHx is
an isomorphism. But by assumption D is equipped with an action of Galg,
so DHx acquires an action of Galg /Hx = T'x (which is compatible with
the action of 'z, by assumption). Finally, we can check that ¢ : p* DK —
DHx is an isomorphism after a finite flat base change, so it follows from
the corresponding statement for D. O

Proposition 3.47. For 0 < a < b < oo, the ring Ag, (a4, x s flat as an
Ry-module.

Proof. The set

7T}(/(b'vc;) (7TK)) o0 U .

>1
provides a topological basis for A, [4.4],0,x as an Ry®Op-module. Then [20,
Tag 06LE] implies it is flat. O

There are evident maps Ag (44,5 — Kgg( [a.b]’ and AR (4,0, x inherits the
valuations vp 44 and vpg a4, - We will compute vg explicitly in the case
where R = D;.

Every element of Agj0s,x can be written uniquely in the form
Y icz am}(, where a; € O ® Ry and aiuibvc; (Tx) — 0 as i — —oo. When

R = D, this condition can be translated as vp, (a;) + @Gwil() — 00 as

1 — —00.
Proposition 3.48. If R=D; andb<rg, then inf,cz{vp, (al)—i—zbvcb (Tr)}
s a valuation on ARO 0,k whose ring of integers is Agy0p)0,x, and

Dy (Xiez aile) = g inficz{vp, (a;) + ibvy (T}

Proof. Tt is straightforward to check that inf;cz{vp, ( az)—i-zbvcb (Tr)} > 0if
and only if Y3;c7 aimy € Agy 0,50, - Moreover, vp, y(aimy) = iv o, (TK) +

UDl (al)

, yielding the second claim. O

Before we turn to the Tate-Sen axioms, we make a remark about Frobe-
nius on imperfect rings. Since the Frobenius on Apg g acts via ¢(m) =
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(14 7)? —1 and I acts via y(7) = (1 4+ 7)X(") — 1, we see that ARy j0,0,F
is stable under the actions of ¢ and I'. Since A is also stable under the
actions of ¢ and I', we see that ¢ and T" act on Ap j9,0],k as well. Since we

have isomorphisms ¢ : Kg}[{a 0 [N\g"[‘a b/l Ve have induced maps

2 AR,[a,b],K — AR,[a/p,b/p},K

However, ¢ : Apj 00,k — AR 0,0,k 18 no longer surjective. Indeed,
ARy 00,5 18 free over ¢(Ag (00,x) of rank p, and a basis is given by
{1,[e],..., [e]~'}. We may therefore define a left inverse ¢ : Agy 0.0, x —
ARy 00,5 of ¢ via 1(p(ao) + ¢(ar)le] + -~ + p(ap-1)[e]’~!) = ao, where
a; € ARy 0,0,k Note that as p may not be invertible in R, we cannot use

the definition ¢ = %@,1 oTry, from the classical case.

0,[0,0],K/90(AR0,[0,0],K)

4. The Tate—Sen axioms for families

Given a Galois representation with coefficients in Z,, base extension
gives us a vector bundle over ). The various (¢, I')-modules associated
to the representation are constructed by studying the Hpg-invariants of
restrictions of this vector bundle to various rational subdomains of ).

Now suppose R is a pseudoaffinoid Zy-algebra and Ry C R is a noetherian
ring of definition. If we have a Galois representation with coefficients in R
which admits a Galois-stable Ry-lattice, we may similarly pass by base
extension to a vector bundle over Spa Ry x ). The Tate-Sen axioms will
let us descend that vector bundle (restricted to an affinoid subdomain) to
a vector bundle over an imperfect overconvergent ring.

The Tate—Sen axioms concern a profinite group Gg, an open normal
subgroup Hy C Gy such that Go/Hy contains Z, as an open subgroup, a
valued ring A with a continuous action of Gp, and a collection of subrings
{Apk}iso of AH, where H is any open subgroup of Hy. These axioms
permit us to descend continuous 1-cocycles of Gy from A to some A H. k-

The axioms are as follows:

(TS1) There is a constant ¢; € R~ such that for all open subgroups
H, C H, in Hy that are normal in G, there is some a € Af
satisfying vy > —c1 and 3- cp, /g, T(@) = 1.

(TS2) There is a constant co € R~ such that for all open subgroups H C
Hy that are normal in G, there is a collection {Apy k, Ry k fr>n(H)
where Ap i C A is a closed subalgebra and Ry, : CAH A H s
a Ap p-linear map such that
(a) if Hy,, C Hp,, and k > max{n(Hp,),n(Hr,)}, then Ay, C

Ap, e and R, klay, , = Rk

(b) Rp is a Ap p-linear section to the inclusion Ay ) — AH
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(c) g(Auk) = Am i and g(Rpk(z)) = Rpk(gx) forall z € AH and
g€ Go N
(d) vA(Rux(z)) > va(z) — ¢ for all z € A
(€) limpoo R g(z) = for all x € A
(TS3) There is a constant c3 € Ry such that for every open normal
subgroup G C Gy (setting H := G'N Hy) there is an integer n(G) >
max{ni(G),n(H)} such that
(a) v —11is invertible on Xp j := ker(Rp 1)
(b) va(x) > va((y —1)(x)) —c3 for all z € Xp g,
for all k > n(G) and all v € Go/H with n(y) < k.
In other words, Ay is a summand of AH (as a Ay p-module), and a topo-
logical generator of I" acts invertibly (with continuous inverse) on its com-
plement.

Colmez showed that if we take Gy := Galq,, Hp := ker(x), A= 7\[0,1}
(with the valuation val®) and Ag, ; = _k(A[Ig’{]) then the Tate-Sen
axioms are satisfied for any choices ¢; > 0, ¢ > 0, and ¢3 > 1/(p — 1) [4,
Proposition 4.2.1]. Here K is a finite extension of Q,,.

Suppose that R is topologically of finite type over Dy. We will check that
the Tate-Sen axioms hold for Ag oy for b sufficiently small, using the ring

of definition A Ro,[0,5],0, C A Ro,0,5] and the associated valuation vgp -

Proposition 4.1. The ring ARo,[O,b} satisfies the first Tate—Sen axiom for
any b > 0 and any c; > 0.

Proof. Choose ¢ > 0. Then for any appropriate subgroups Hy, C Hp, of
H, the proof of [7, Lemme 10.1] constructs 8 € L% such that TrA/Eb\ (B) =

1, with vey (B) arbitrarily close to 0. This implies that Tr -~ ;oKb ?0[6]) =

. —1
> i P[] is a unit of A%HK and therefore that (Tr/\ /\([ﬁ])) 8] €

2] b /KD
AT satisfi T[ ! ) = /Th 1
o,] satisfies vR,b’A« rﬁ/}?([ﬁ])) [,8]) > vcg(ﬁ). us, we merely
need to choose ( such that ve, (B) > —c1. O

Corollary 4.2. Suppose M is a finite free Ro-module of rank d equipped
with a continuous Ro-linear action of Galg. Then there is some finite

extension L/K such that Dy(M) = (XRO,[O,I],O,A @R, M)HL is free over
NHL
ARO,[0 11,0\ of rank d.

Proof. Choose a basis of M and let p : Galgy — GLg(Rp) denote the Ga-
lois representation corresponding to M. Let ¢, € H!(Hg, GLd(]\Ro,[o,l},o,A))
be the corresponding cocycle. If we let L/K be the finite extension corre-
sponding to the kernel of the homomorphism p : Galg — GL(M/u), the
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proofs of [4, Lemme 3.2.1] and [4, Corollaire 3.2.2] applied to the image
of ¢ in H'(Hp, GL4(ARy,0,1],0,0)) carry over nearly verbatim (we need to
work modulo powers of u rather than p, since p might not be a pseudo-

uniformizer), and we conclude that the restriction of ¢ is trivial. The result
follows. O

4.1. Normalized trace maps. The next step is to construct so-called
normalized trace maps. In the classsical setting, this has the following form:

Proposition 4.3 ([7, Corollaire 8.11]). Suppose 0 < b and p™"b < rk.

Then there is a constant cx (b) (depending on K andb) and a o™ (A[ISI; nb})

linear map Ry, A[0 e (Agf;,nb]) such that

(1) Ry is a section to the inclusion o~ (Afgp nb]) Agfg}

(2) Rgn(z) =z as n — oo and vp(Ri n(z)) > vp(z) — p~"cr (b).
(3) Rk,n commutes with the action of I'k.

The construction of Ry, uses the fact that {[e]*|i € Z[I%] N[0,1)} pro-

vides a topological basis for ng}é] over Afg}é} (and in fact for Kgio | over

A[IgF | when F/Qp is unramified). In other words, for z € ngf)], one can

write z = Y, a;(w)[g]* for unique a;(z) tending to 0 with respect to the
cofinite filter. Then one bounds a;(x) in terms of x and shows that a;(x)
has the correct analyticity properties when = € A[Igfg] for b > 0, and defines
Rin(x) =3, p(i)>— n ai(z)[e]".

If R is a classical affinoid algebra and Ry is its ring of definition, one

can extend Ry , by linearity to define normalized trace maps Rg & AHE

[0,0]
Ry ® ¢~ A[0 oy S in [4, Proposition 3.1.4]. We wish to extend this to
the settlng of pseudoaffinoid algebras where p ¢ R* and construct maps
Rgp: A R oy — "(Ag,jo,p-np), i) for sufficiently small b.

We first observe that if R is topologlcally of finite type over D>\ for
some A € Q-q, then AR b = = Ry ®Do ADO [a.0] and Ag a0,x = Ro ®Do

AD;[a,b},K. Since there is always some choice of A = %, such that R is
topologically of finite type over D), we may construct normalized trace
maps when R = D) and extend by linearity.

Proposition 4.4. If% <rg, then 1~\ID{§ [0,0] is a topologically free ADK,[O,b],K'

module, with basis {[e]'}. If x € ADo [0 9nd a;(x) denotes the coeffi-

cient of [e]" when we decompose , then vp, pa(x) > infiup, pa(ai(z)) >
vp, b (z) —ck (b, X), where ci (b, \) is a constant depending on the field K,
b, and A.
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OHK
0,%]"

It follows that Spa (A D30, b]) can also be constructed as the rational local-

. . H
ization Spa(Di ® AFO K) <1/(MZMK))>

3]

Proof. Since ¥ < rg, [7, Lemme 6.5] implies that [IK  is a unit of A

Since A[ T topologically free over A[ H]
’,\

O,HK u o HK u
true for ( 2@ A[O,g] ) <ﬂ_}(/(b-vct;)(7rK))> as a (D,\ ®A[ 0,2] ) <W}(/(b-vcz(7\'{())>_

module. Inverting wx gives the desired result.

The claim about valuations follows directly from [7, Proposition 8.10];

ci (b, ) is the constant Colmez denotes cx (2). O

with basis {[¢]'}, the same is

As in the classical setting, we now define
~ i B
R ARSK,[O,b] — " (ARoJO,p—”bLK)
when 0 < g < rg and p*"§ < rg, by setting

Rin(z)= ) ai(z)[e]
vp(i)=—n
We see from the construction that R, is a continuous ¢ =" (A g, 10,p—ns), Kk )-
linear section to the inclusion ¢ ™" (Ag, 0p-—nt), k) — Ag(i[o,b}' In addition,
the construction of a; makes clear that a,(v(z)) = v(ai(z)) for v € T'x
and z € Kgf[mb]? so Rk, commutes with the action of I'.
Moreover, Ry, = ¢~ " o Rk oo ¢", so

VR MR n(T)) = p "R prp A (a0 (@™ (2))
2 p "(Urproa (" (7)) — ek (D, A)
= vrpa () —p "k (b, A)
In summary, we have shown the following:

n

Proposition 4.5. Suppose 0 < % < rg and p~ g < rg. Then there are
constants cx (b, \) and a continuous =" (AR(),[O’pfnb],K)—linear map Ry p :
5 o

Apson = ¢ "(AR,j0p-np),i) such that

(1) Rin is a section to the inclusion ¢~ (Agy 0 p—rp),x) = ARO 0,4]
(2) Rign(x)—=x asn—o00 and vgpr(Rrn(x)) >vrpr(2)—p ek (b, N)
(3) Rin commutes with the action of T'k.

Corollary 4.6. Suppose 0 < % < rg. Then for any co > 0, the collection
{w_n(ADg,[o,b},K)a Rk n} satisfies the second Tate-Sen aziom for sufficiently
large n (depending on the choice of c3).
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4.2. The action of I'. For any finite extension K/F, the cyclotomic char-
acter defines a homomorphism x : I'x — Z;. For any v € ' of infinite
order, we let n(7y) :=vp(x(v) — 1) € Z>o U {o0}.

Lemma 4.7. Let Ry C R be a noetherian ring of definition, formally of
finite type over Z,. If v € ' has infinite order, then

_ Hem=l N
A’Iy%o,[o 0,K — ARJT[JO] =Ry® ﬁ},

Proof. We first consider the case where p = 0 in R, and we compute the
subspaces of (Rg/u) ® kg ((mx)) and (Ro/u) ® K, fixed by 7. Since Ro/u
is an F,-vector space, we may choose a basis {e;}ic; and write

(Ro/u) ® ]i?p/ 7TK {Z a;e;|a; € k:F/((ﬂK)),ai — 0}

el
and

(Ro/u) ® {Z a;e; |a; € f(\boo,ai — O}

el
The action of I'x on Ry /u is trivial, so [7, Proposition 9.1] implies that

(ARO7[0,0]7K/U>’Y ' (Ago,[o 0]/u>’7:1 = (Ro/u) ® k}/lzl

Then we approximate elements of (Ag, 10.0,,x)"~" and (ARm[O,O])HK”:l u-
adically to obtain the desired result.

To bootstrap to the case where Ry is Z,-flat, we may assume that p ¢ R*
(as the classical case is handled by [4]) and again filter Ry by the ideals {I;}
where I; := p/ RN Ry. Then I;/I;11 is a finite u-torsion-free Ry/I1-module
(and therefore an F,-vector space), so we may apply the previous argument
to calculate the y-invariants of (I;/1;4+1) ® kp/(mx)) and (I;/I;11) @ K
Since (; I; = (0), the result follows. O

Proposition 4.8. If D is a finite Ag, [0, x-module equipped with com-
muting semi-linear actions of ¢ and 'y (such that the action of T'k is
continuous), there is some n > 1 such that v — 1 acts on

$=0
(ARO,[O,bp_"LK A g 0.6, K D)
with continuous inverse for any v € I'k.

Proof. Let Do p/pn) := ARy, o, ! K©OAp, « D- We have a decomposition

[0,8],
(Dyop/pm)) V=0 = Dje(z/pm)xle ] "(D), so it suffices to show that v — 1 has
a continuous inverse on []¢"(D) for some sufficiently large n. Moreover,
since 7" —1 = (y—1)(y" 1+ --+1), we may replace I'x with a finite-index
subgroup.
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Thus, it suffices to consider 7, € 'k such that x(v,) = 1+ p". In that
case, for x € D,

= [E] ¢" ([l (@) — )
= [ele™(Gy, (2))
where G, (z) := [e]y(z) —z = ( [e] 1)) (). If we can
find n such that > 72, ( [EE ]1 (’7n — 1)) converges on D, we will therefore
be done. But the existence of such an n follows from continuity of the action
of ' on D. |

In the special case D = Ag 104, x, we can deduce constructive bounds
for n and the operator norm of (y — 1)~!

Lemma 4.9. If R is a Dy-algebra for \ = %, v € 'k satisfies n(y) >
no(K) and p™) > 172%’1 (where no(K) is a constant defined in [7] depending

on the conductor of K ), and % < rg, then v —1 is continuously invertible

»=0
on ARO,[Op OB K and

VR p-n(1b ((7 - 1)_1(50)) > Vg p-n(np(T) +pn(7)vcg(77)

Remark 4.10. We may always assume that R is a Dy-algebra with A = %,
since we are free to shrink .

Proof. If R is a Dy-algebra, then Ag,j04,x = Ro ®D° ADo [0 b} K, and it

[0 b,k Fur-
thermore, ADK,[O,b],K — ADi’,[O,%],K via u — u" makes ADN 0,5],K & finite

suffices to prove that v — 1 is continuously invertible on A

free A DS,[0,b],K" module, and it suffices to check that v — 1 is continuously
invertible on A%O(E 0.8).K°
We therefore bound the operator v — 1 on A D20, 2],k As in the proof
i 2 7>\ ’
of [7, Corollaire 9.5], given f(mx) = > ez aiTy € ADi’ 0,2],5> We write the
I’ 7>\ 2

Taylor expansion of f(y(7x)) — f(7k) around v = 1:

) (r
FOmR)) — Flmx) = Y fk(!K)w(m — )

k>1

_ Z o (v(wm B 1)’“

TK
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(k) .k . . .
Since % =Y icz (1)aimy and (;) € Z, we see that

(k) .k
VD, b/ (W) > vp, p/a(f(TK)

(using Proposition 3.48). We conclude that

v oAV (Tx)) = f(7x)) 2 vpy oa (F(TK)) + 0Dy b/ (75::) - 1>

> vp, pa(f(TK)) +Pn(7)vc; (7) — ek — Uc;(ﬁ)
by [7, Lemme 9.4], where ck is a constant satisfying cx < p%lp”O(K) +
Ucb( 7) ([7, Proposition 4.12]). Smce < rg and n(vy) > no(K), we have

uas (= (0= VUKD ) 2 v aya F(m) + 6" 1)y (7) e

so the desired inverse exists on AV~ no(K)

D1,[0 p— n(W)b/A] K SO long as pn(’y)+1 —p

2p > 0. The assumption that p™(?") > p71 is sufficient to ensure this. U

Proposition 4.11. Suppose R is a Dy-algebra for A = %, suppose n sat-
isfies n > ng(K) and p™ > %, and g < rg. Ifv € Tk satisfies n(y) < n,
then v — 1 is invertible on XRO,[O,b],K = ker(Rg ), and its inverse is con-
tinuous.

Proof. We may again begin by replacing R with Dy and Apg g with
A Dg,[0,4]> SO that vp, ,/x = vp, p/a1-
As in the proof of [7, Proposition 9.9], we first observe that v — 1 is

injective on X7/ D2.[0, 2], K since AD°1[0 oK = = A —1[0 oL
Y
Ifz e XDp[ 0,21,k we can write
r= Y (Rkj(®)—Ri;-1(2)= >  a@)
J=n+1 i€Z[1/p]N[0,1)
vp(i)=—J

and we have vp, /) (Rr j(7) — Rij-1(7)) = vp, p/a(T) — p' ek (b, N). If
. . j i —1r_1i =0

Up( ) = —J, then @J(ai( )[ ] ) € @p 1[ ] ADl,[Op Ib/A,K — A%O [ p Jb/}\LK;

it follows by Lemma 4.9 that if j > n + 1, there is some y; € AYS

with

D? [0 p=ib/A]

¢ (R j(z) — R j-1(z)) = (v — 1)(y;)
and

VD, pib/A(Y5) = pijl,b/)\ (R j(r) — Rk j-1()) — pjvcg, ()
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Therefore,

vpLaa (@7 (U7) = vpy o (Ricj(@) = Ricj-1(2)) = vey (7)
Since the terms Ry j(x) — Rk j—1(x) tend to 0 in ADK[0 by 2 Jj — oo, the
same is true for ¢~/ (y;). Thus, disnt1 P J(y;) converges to an element
y € AD17[07b] such that (y —1)(y) = = and

vp,pa(y) > inf vp pa(e” (yg))

jzn+1
> vp, pa(x) — sup {p" ek (b, A) + vy (7))
j>n+1
This supremum exists, so (y — 1)~} is continuous. O

Corollary 4.12. Suppose R is a Dy-algebra, where A = %, and 0 < % <
ri. Then for any cz > the third Tate-Sen azxiom holds for the ring

YHyg
AR [0,8]

p— 1’
the maps {Rpn}n>1, and the natural action of 'k .

4.3. The construction of (¢,I')-modules. Now we may apply the ar-
guments of [4] (working wu-adically rather than p-adically) to construct
(¢, I')-modules over rings Ap (.4, k- Let R be a pseudoaffinoid Tate ring over
Dy, where \ = % with p ¥ m, with ring of definition Ry C R and pseudo-
uniformizer u € Ry, and let M be a free R-module of rank d equipped with
a continuous R-linear action of Galg.

Following [6, Lemme 3.18], we first find a Galois-stable lattice in M.

Lemma 4.13. Let R be as above, and let M be a free R-module of rank d
equipped with a continuous R-linear action of a compact topological group
G. Then there is a formal scheme Y — Spf(Ry) and a finite projective Oy -
module A equipped with a continuous Oy-linear action of G such that the

natural map Spa R — Spa Ry factors through a morphism f : Spa R — Y24
and M = f* A .

Proof. We first observe that there is a finitely generated Ryp-module My C
M such that R ®p, Mo = My[1/u] = M. Indeed, we may simply consider
a basis of M and let My be the Ry-module it generates inside M.

Since Ry is noetherian and wu-adically complete, Spf Ry is an admissible
formal scheme, and the argument of [6, Lemme 3.18] goes through verbatim
to produce an admissible formal blow-up J — Spf Ry and a locally free &’y-
module .# equipped with a continuous Oy-linear action of G, such that
M =T, .#)[%].

It remains to see that Spa R — Spa Ry factors through a morphism
f:SpaR — Y. If Y is the blow-up of Spf Ry along I = (f1,..., fr) C R,
then ) has a cover of the form {Spf Ry <f1’ ’fr>}i. The ring Ry <%>
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is a noetherian ring of definition for the rational localization

U; == Spa R <fl”fT> C SpaR
fi
so the natural morphism Spa R|y, — Spa Ry factors through Y24 for each i.
Since these morphisms agree on overlaps by construction, we are done. [

Now we can construct (¢, I')-modules, exactly as in [4].

Theorem 4.14. Let R and M be as above, and choose b > 0 such that
3 < rg and constants c1, co, c3 as in the statement of the Tate—Sen axioms.
Then there is some finite Galois extension L/K and some integer n > 0
such that [N\R,[O,b] ®r M contains a unique projective sub—g&‘”(AR’[O,pwaL)—
module Dy 1, (M) such that

® Dy 1n(M) is stable by Galy, and fized by Hr,

e The natural map Ag oy ®§D ) Dy (M) — [~\R7[07b} Or

(Ao pnoz
M is an isomorphism

e Locally on Spa R, Dy 1, ,(M) admits a basis which is c3-fized by I'g,
that is, if v € 'k, the matrix G with respect to this basis satisfies
’l)A(G — Id) > c3.
Proof. After making an admissible formal blow-up on Spf Ry and localizing
on Spa R, we may assume that M has a Galois-stable Ry-lattice My C M.
Let k be an integer such that vg,(u*) > ¢1 + 2co + 2c3, and let L/K be
a finite Galois extension such that Galy, acts trivially on Mg /u*My. Then
by Corollary 4.2, (/N\R07[071] ®p, Mo)HE is a free Kg(i[oyl]—module of rank d.
We choose a basis and let ¢ — U, denote the corresponding cocycle. The
proof of [4, Proposition 3.2.6] carries over nearly verbatim (working modulo
powers of u rather than p), and yields B € 1 + u* Matd(JNXRO,[O,b]) such that
vrp(B —1) > ¢a + c3 and o — B71U,0(B) is trivial on Hy, and valued
in Mat(p~"™(¢) (Agy j0p-n@y,))- This shows the existence of Dy, (M); it
remains to check t hat it is unique.

Suppose there are two such submodules. We may choose bases for each,
and we obtain corresponding cocycles o — W, and o — W/ valued in
Mat (™) (AR, 0,p-n(@p),))- Since these submodules generate the same
/N\RO’[O7b]—module, there is some matrix C € Mat /N\Ro,[o,b] such that W, =
C~'W,(C). But [4, Proposition 3.2.5] also carries over nearly verbatim,
and shows that C' actually has coefficients in ¢ ~"(¢) (AR, j0,p—m8],L))- O
Definition 4.15. Let M be a rank-d representation of Galx with coefhi-
cients in R, and choose b > 0 with % < rg, where R is a Dy-algebra and
A =L with p{m. Then we define

(1) Dy (M) := (" EN(D iy, ) "
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(2) If I C [0,b] is an interval (which may have open endpoints), we
define D[,K(M) = AR,I,K ®AR,[0,b],K Db’K(M)

(3) Drig,ic (M) := hﬂb_)() Do), (M)
If K is clear from context, we often drop it from the notation.

After localizing on Spa R, we may assume that M has a Galois-stable
Ry-lattice. Then it follows from Corollary 3.46 that Dy (M), and hence
Di (M) and Dyig (M), is a projective (¢, 'k )-module.

Remark 4.16. The uniqueness of Dy, 1, , (M) ensures that the construction
is functorial.

5. Galois cohomology

We conclude by giving a definition of general (¢, I')-moduels over a pseu-
doaffinoid algebra R, and explaining how to compute the Galois cohomology
of a Galois representation M in terms of its (¢, I')-module Dz (M).

Definition 5.1. A p-module over Ag (o4 i is a coherent sheaf D of mod-
ules over the pseudorigid space U, o Spa(Ag,[q,5),x) equipped with an iso-
morphism

¢p 9" D = AR (0b/p), K ®hg 0. D

If a € (0,b/p], a p-module over Ag o4 k is a finite Ag (44 k-module D
equipped with an isomorphism

@D,[(Lb/p} : AR,[a,b/p],K ®AR,[a/p,b/P],K SO*D — AR,[a,b/pLK ®AR,[a,b],K D

A (¢, I'k)-module over Ag op x (resp. Agjap),x) IS @ p-module over
AR 0,5,k (resp. AR (a4, k) equipped with a semi-linear action of I'jc which
commutes with ¢p (resp. ¥ p (a.b/p])-

A (¢,T'k)-module over R is a module D over Apg iz x which arises via
base change from a (p, 'k )-module over Ag o) x for some b > 0.

For any finite extension K/Q,, we may write T'gx = T%"°" x T, where
F]}';tors denotes the p-torsion subgroup of 'k and F%C is its procyclic quo-
tient; T%'°" is trivial unless p = 2, in which case it could be (Z/4)*. Then
for any topological generator v of ', we define the Fontaine-Herr—Liu
complex

;,F . D ¢p—1y-1 DaD (y—1)®(1—¢p) D
(concentrated in degrees 0, 1, and 2). We let H, <ip,FK (D) denote its cohomol-
ogy in degree i. We remark that, as in [14, Section 2.3], the complex C;,F is
independent of the choice of v up to canonical R-linear quasi-isomorphism.

If M is a Qp-linear representation of Galx and Dyig k(M) is the asso-

ciated Galois representation over hﬂb—m Ao,k then we have a canonical
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quasi-isomorphism RI'(Galg, M) = C¢ r between (continuous) Galois co-
homology and Fontaine-Herr—Liu cohomology [15, Theorem 2.3]. The same
result holds for families of projective Galois representations with coefficients
in classical Q-affinoid algebras [18, Theorem 2.8|; we will prove the corre-
sponding result in the pseudorigid setting.

Theorem 5.2. Let R be a pseudoaffinoid algebra, and let M be a finite pro-
jective R-module equipped with a continuous R-linear action of Galg. Then
the Galois cohomology RT'(Galg, M) and the Fontaine—Herr—Liu cohomol-
0gy RF(F@;MS,C;Icyc(DK,[o’b] (M))) of the associated (¢,T k)-module are
canonically isomorp%ic.

We also deduce the analogous result for Dyie(M):

Corollary 5.3. Let R be a pseudoaffinoid algebra, and let M be a finite pro-
jective R-module equipped with a continuous R-linear action of Galx. Then
the Galois cohomology H®(Galg, M) and the cohomology of the Fontaine—
Herr-Liu complex RT(Th*" 0 (Drig,x (M))) of the associated (,Tk)-
module are canonically isomorphic.

Proof. Replacing K with the extension corresponding to the quotient 'y —
F’I’;tors, the Hochschild—Serre spectral sequence implies that we may assume
that T%'°" is trivial. After making an admissible formal blowup on Spf Ry
and localizing on Spa R, we may again assume that M is a free R-module
containing a free Galg-stable Rg-lattice, and there is some finite Galois ex-
tension L/K and some b > 0 such that Dy := Ag, 04,1 Ay 0,61, Dy, k(M)
is free, by Lemma 3.45 and the proof of Corollary 3.46. Copying the proof
of [13, Proposition 1.2.6] verbatim, we see that the natural morphism

. -1 .. -1
[hﬂ Dy £ lim Dé/ﬁ] — | ARsig ® Dy “— ARig Dl/)/p}
b—0 b—0

is a quasi-isomorphism. Since Dy (M) is a direct summand of D} as a
w-module, the same holds for the natural morphism

[lig Dy (M) £ 1im Dy, K(M)] = [Drig, (M) 2= Dy, K(M)}
b—0 b—0

The Fontaine—-Herr—Liu complex is the total complex of the double com-
plex

—1
Dyig,1,(M) ~“— Dyig 1.(M)

] ]

—1
Drig,,(M) = Dyig (M)
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and colimits commute with taking cohomology; we therefore get a quasi-
isomorphism

lim CF peve (D, (M) — Drig,.(M)

b—0
as desired. O

Remark 5.4. If p # 2, then we see that Galois cohomology is computed
by the Fontaine—Herr—Liu complex.

The key is an Artin—Schreier calculation:

Proposition 5.5. Let R be a pseudoaffinoid Dy-algebra and let Ry C R
be a ring of definition strictly topologically of finite type over DS. Then for
any b > 0, there is an exact sequence of Ro-modules

~ -1 ~
0= Ro — Mgy 0.47,0 — Mro j0.5/5,0 = O
We first compute modulo w:

Lemma 5.6. If R is a pseudoaffinoid Dy-algebra and Ry C R is a ring of
definition strictly topologically of finite type over DS, then for any b € (0, o]
we have an exact sequence

~ -1 ~
0— Ro/u — ARO,[O,b],O/u L> ARO,[O,b/p],O/u —0

Proof. We may write
Ry 0.0/ % Mgy 0,00 [V ]/ ()Y, )

and _
Ao j0./p.0/% = Ay 0,00 Y]/ ([@]PPY 1)
so that the map ¢ : /KRO,[O,b],O/U — /~\R07[Ovb/p]70/u carries Y to Y’ and the

identity map carries Y to [ew]®P~1/Y’. We may filter Ry/u by powers of p;
if we reduce modulo p, Ry/(u,p) is an Fp-vector space, and it suffices to
prove that the sequence

0 F, = 08, [Y]/(@"/'Y) £ 64 [V)/(=P"Y') > 0

is exact. '
Given a polynomial f(Y):=3,a;Y" € ﬁép Y],
(o = D)) = 3o (elai) — =D ay)y”
i
To compute the kernel of ¢ — 1, we may assume that e ( i) < % for
all i with a; # 0, and that Ve (p(a;) — P D/bg;) > 2 for i > 1.
We have vcz(go(ai) - wi(p_l)/b i) > mln{pvcb (a;), l(p D ’Ucb (ai)}, with
equality unless ch(ai) = : If ¢ > 1, this contradlcts the assumptlon
that ”C]';,(ai) < 3, so in that case vcz(cp(al) — @' D/bg,) > 7 implies
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mln{pvcb (a;), - (p Uy v (ai)} > L. But pucs (a;) < £ by assumption, so
this is 1mp0581ble Thus, if fY) represents an element of the kernel of p—1,
its coefficients in positive degree have valuation at least + +» and therefore

vanish in @’bcp [V]/(w'/?Y). Thus, we may assume that f( ) € ﬁbp, and
therefore that it is an element of F,.

To see that ¢ — 1 : ﬁ%p[Y]/(wl/bY) — ﬁ%p[Y’]/(wp/bY’) is surjec-
tive, we may lift an element of ﬁ%p [Y']/(w?/?Y") to a polynomial g(Y') :=
S bhiY'" e ﬁ(bjp [Y’], and choose a; such that af — @' P~1/bq; = b;. Then if
fY):=3a;Y" we have (¢ — 1)(f(Y)) = g(Y), as desired.

Now suppose that we have an exact sequence

0 — Ro/(u,p") = Apy .10/ (. 2") T—= Mgy 0.6/p0/ (w, 2") = 0
and consider the diagram
0 0 0
0 — p*Ro/(u,p**") — pkKRo,[O,b],O/(u kH) e pkARo [0,b/p], o/ (u,p"1) — 0

! !

~ 71 ~
0 — Ro/(u,p"™) —— ARO,[O,b],o/(prkH) = AR 0,6/, /(u, p**t) — 0

| |

~ 1~
0 — Ro/(u,p*) —— ARO,[O,b],O/(uapk) —— ARO,[O,b/p],O/(uapk) —0
0 0 0

The bottom row is exact by assumption, and the columns are exact by
construction. Moreover,

ka\RO,[O,b],O/(uakarl) =~ p"Ro/(u,p"1) @ ﬁbcp Y]/ (w!/Y)
and
"Ry 07,0/ (0 DY) 2 PRy / (u, p" 1Y) & 608, [Y')/ (w?PY")

Since p* Ry /(u, p**1) is an F,-vector space, the preceding calculation shows

that the top row is exact, as well. A diagram chase then shows that the
middle row is exact, as desired. O

Proof of Proposition 5.5. We work modulo successive powers of u; we claim
that for any k£ > 1, the sequence

~ -1 ~
0— R()/uk — ARO,[O,b},O/Uk L> ARQ,[O,b/p},O/uk — 0
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is exact. We have proved the result for £k = 1, so we proceed by induction
on k. Assume the result for k£ and consider the diagram

0 0 0
0— ukRO/Uk+l — Uk/KR()’[O,bLo/Uk—’_l S:% UkKR07[07b/p]70/uk+1 — 0
0 — Ro/u"*' —— Ap, o410/ == A osym0/ut — 0

k

~ —1 ~
0—— R()/u _— ARO,[O,b},O/uk <p—> ARO,[O,b/p],O/uk — 0

0 0 0

The bottom row is exact by assumption and the columns are exact by
construction. Since Ry has no wu-torsion, multiplication by u* defines an

k+1

k
isomorphism Ry/u 24wk Ry Ju"**, and the top row is isomorphic to

- 1 ~
0— RO/U — ARO,[O,bLO/u L) ARoy[ij/pLo/u —0

which is exact. Then a diagram chase shows that the middle row is exact,
as well. B ~
Now we consider the inverse limit as k — oo; Ag, 04,0 and Agg (0,/p],0

are u-adically separated and complete (since u € wt/ b), so we have an exact
sequence

~ _1 ~
0 = Ro — ARy, 04,0 = ARq.0.5/p1,0

Moreover, the transition maps Ry /uk“‘1 — Rg/uk are surjective, so the
Mittag-Leffler condition ensures that ¢ — 1 : Apyj0p,0 = ARy,0,6/p,0 18
surjective, so we are done.

Lemma 5.7. For any finite extension K/Q, and all sufficiently small b >
0, there is a quasi-isomorphism

~H o . -
[AR§[07b]] — Ccont (HKa ARQ,[O,b])

where C¢,

ont(HK7KR0,[O,b]) is the continuous Galois cohomology.

Proof. We need to prove that Hgom(HK,KRO’[O,b}) = 0 for ¢« > 1. But this
follows from the first Tate—Sen axiom. O

Now we can prove the main comparison.
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Proof of Theorem 5.2. Let K'/K denote the extension corresponding to
the quotient 'y —» I‘%tors. The Hochschild—Serre theorem implies that
the natural map R (T RT(Galgs, M)) — RI(Galg, M) is a quasi-
isomorphism, so we may replace K with K’ and prove that R['(Galg, M)
is computed by C, 1, (Dp rc(M)) when T%*" is trivial.

After making an admissible formal blow-up on Spf Ry and localizing on
Spa R, we may assume that M is a free R-module and contains a free Gal k-
stable Ry-lattice Mj. There is an associated finite projective (p, "1 )-module
Dy, i (Mp) for some b, and the natural comparison map

AR07[0 b] ®AR0 [0,8], Db K(MU) - ARO 0,6] ©® R My
is an isomorphism, equivariantly for the actions of Galg, ¢, and I'x. We
deduce that there is a natural exact sequence

0 — Mo = Mg f0.6] @Apg 00, Dy, i (M)

-1 7
3 ARO,[075/P] ®AR0,[o,b/p],K Db/P,K(MO) —0

Applying continuous H g-cohomology, Lemma 5.7 implies that we have a
quasi-isomorphism

cont (HK7 MO)
- AR 10,5 @R, (0.8, « Do K(MO) ’ARO 0,5/5] @ AR, (0.6/0). K Disp,x (Mo)
A Hochschild-Serre argument shows that we have a quasi-isomorphism
XH
Ccont(GalKﬂ MO) = Ccp Ik (AR;:[()J;] ®ARO,[0,b],K Db,K<M0))
so we need to show that the natural map

Corg (Do (M)) = Cop . (Agéf[(),b] @Ay 0. Do (M)

is a quasi-isomorphism. It suffices to show that the cohomology of ' acting
on Xlgo,[Qb],K ®¢7H(ARO,[O,p*"b],K,O) Dy, (M) is trivial for sufficiently small
b > 0, or more concretely, if v is a topological generator of the procyclic
part of I'r, that the action of v — 1 is continuously invertible. But we have
computed an explicit topological basis for X?%o,[O,bL K> SO an argument as in
Proposition 4.8 gives the desired result. O

Appendix A. Fiber products
In this appendix, we explain how to construct fiber products
Spa(R, RY) Xgpa(s,s+) Spa(R, R'™)

of Tate pre-adic spaces. Huber [10, Proposition 1.2.2] explains how to do
this for Huber rings under various sets of hypotheses: either (R, RT) is
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“locally of weakly finite type” over (S,S%) and (S,St) — (R, R'") is an
adic morphism, or (R, RT) can be “locally of finite type” over (S,S™).
However, Zp[u] [£] " (1] is not locally of finite type over Z,, and neither are

rings like AO] and Agg’p 7%]; moreover, none of these rings have rings of
definition which are adic Z,-algebras.

Let (R,RT) and (R',R'") be complete admissible Huber pairs over
(S,81). That is, R, R/, and S are finitely generated over rings of defi-
nition Ry € Rt, Ry ¢ R'", and Sy C S, respectively; let I C Ry and
I' C Ry, be ideals of definition. It is asserted in [19] that the fiber product
X := Spa(R, R") Xgpa(s,s+) Spa(R’, R'") can be constructed in the cate-
gory of pre-adic spaces; we provide a construction here for the convenience
of the reader.

Recall the definition of a pre-adic space from [19]:

Definition A.1. Let (V)™ be the category of triples (X, Ox, (|-(2)])zex),
where X is a topological space, Ox is a sheaf of ind-topological rings, and
for each x € X, |-(x)| is an equivalence class of continuous valuations on
Ox . For a Huber pair (A, AT), we define Spal™d(4, A*) € (V)™ to be
(X, 0% (|-(2)|)zex), where X = Spa(A, At), 634 is the sheafification of
the presheaf @x in the category of ind-topological rings, and the valuations
stay the same.

A pre-adic space is an object of (V)ind which is locally isomorphic to
Spal"d (A4, A1) for some complete Huber pair (A, AT).

By [19, Proposition 3.4.2],
Hom (y/yina (Spal™d (A, AT),Spal"d(B, BY)) = Homcag((B, BY), (4, AT))

for all complete Huber pairs (A, AT), (B, BT) (where CAff denotes the
category of complete Huber pairs). This permits us to study pre-adic spaces
via a functor of points approach. '

We wish to construct the fiber product X := Spa™(R, RT) X gpaind (5,5+)

Spa"d(R’, R'"). This fiber product must be final among spaces Y equipped
with maps Y — Spa(R, Rt) and Y — Spa(R’, R'") such that the composi-
tions Y — Spa(R, RT) — Spa($,St) and Y — Spa(R’, R'") — Spa(S, ST)
agree.

Proposition A.2. Let notation be as above. The fiber product
Spa"d(R, R*) x Spaind(5,5+) Spa™ (R, R'™)
is representable in the category of pre-adic spaces.

Proof. f R=Rt = Ry, R = R = R), and S = ST = Sy, then R*, R'",
and ST are rings of definitions, and we may simply take Ry ®g, R{, and
complete (I ® Ry + Ry ® I')-adically.
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To handle the general case, we write R = Ro[X]/J and R’ = R{[X']/.J,
where X and X' are finite collections of elements generating R and R’, and
J C Ro[X] and J' C R)[X'] are ideals; let r,7’ be the images of X, X’ in
R, R, respectively. Let g : (S,87) — (R,RT) and ¢ : (S,57) — (R, R'")
be the structure maps. If necessary, we replace Sy with Sj) := SoNg~1(Ro)N
g ! (Ry); Sp is an open and bounded subring of S, hence a ring of definition,
and it satisfies g(S()) C Ry and ¢'(S{)) C Ry.

Let (T,T%) be a complete affinoid Huber pair over (S, S™), and suppose
that there are homomorphisms f : (R, R*) — (T,7F) and f': (R,R'") —
(T, T+) over (S, S*). Therefore, there are homomorphisms Rt ®g+ R'T —
Tt and R®g R — T. For r € R, consider f(r) € T. Since Tt C T is
an open subring, there is some open neighborhood V' C T+ of 0 such that
f(r)-V C TT. Since f/(I') must consist of topologically nilpotent elements,
there is some n > 0 such that f'(I"") C V, and therefore f(r)-f'(I"") C T*
consists of integral elements. Similarly, for each r’ € R’, there is some n/ > 0
such that f'(r') - f(I") consists of integral elements. Since R and R’ are
finitely generated over Ry and R, respectively, we may choose n,n’ > 0
such that f(r) - f/(I'""), f'(«') - F(I") C T*.

We topologize R ®g R’ so that

(Ro ®s, Rp) [(r®@ 1)(Ro® I')", (1@ r')(I ® Ry)"]

is a ring of definition: We let (Ro ®s, Ry)[X, X', be the polynomial ring
(Ro®sg, R))[X, X'] and we equip it with the Ry ® I’ + I ® R{-adic topology.
That is,

Um = {Z a‘l/,I//XVX”/

v,V

ayy € (Ro@I' +1® R{))”(""'”/)"'m for all v, V'}

is a basis of neighborhoods of 0. We set
(R®s R) () := (Ro ®s, Ro)[X, X'y /(J @ Rpy, Ro @ J')
so that (R ®s R')(n)0 := Uo/(J ® Ry, Ro @ J') is a ring of definition, and
we let (R®g R’ )E;) be the integral closure of the image of
(R* @5+ R7) [z@)(Ro@ I')", (1@ 1) (I Rp)"]

in (R Rg R/)(n)

Now we define (R ®g R')(n), (R ®s R’)z;)) to be the completion of the
pair (R®gs R')(n), (R ®s RI)?;%))’ and we set

X(ny = Spa™ (R @5 R)(ny, (R s R){,,)

The homomorphisms g : (R, R") — (T,T%) and ¢’ : (R,RY) = (T, TF)
induce a unique morphism Spamd(T T — X (n), Dy construction.
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Furthermore, there are natural maps (R®g R') (1) = (R®s R')(n), and
they are compatible with the natural maps from R, R, and S. The induced
maps X(,) = X(,41) make X,y into a rational subset of X(, 1) for all n,
so we may define a pre-adic space X := {J,, X(,). Then X is the pre-adic

space representing Spa™d(R, RT) X §paind (5,5+) Spal™d(R', R'"). O

Example A.3. Let R= R" = Z,[u], R = Qp, R =Z,,and S = ST =
Z,, so that we may take Ry = Z,[u], Ry = R'" = Z,, and Sy = ST = Z,,.
Then we need u™ - (%) to be bounded for varying n, so we need to consider
quotients of

= ay € (p,w)™ ™ for almost all v

ay € Zy[u] and for all m,
R(X) (puyn = {Z a, X" }

and its subring

{Z a, X"

v>0

ay € Zy[u],a, € (p,u)"™ for all V}

After we quotient by the ideal (pX —1), the latter ring becomes Zj,[u] [%] "

and the former becomes Z,[u] [%]A[%] Thus, we get the standard con-
struction for the generic fiber of Spf Z,[u] (cf. [12, Section 7].

Proposition A.4. Suppose (R,R*) and (R',R'") are Tate, with pseudo-
uniformizers u € RT and W' € R'Y, respectively, and suppose S = ST.
Then (R@SR’)(H) is also Tate, and the images of u and u' are pseudo-
uniformizers.

Proof. There are natural continuous maps Ry ®s, Ry — (R ®g R’ )(n),0
and R ®g R — (R ®g R’)(n) for all n > 0. Since * ® 1 and 1 ® v’ are
topologically nilpotent in Ry ® R’y and invertible in R ®g R’, they are
topologically nilpotent units in (R ®g R) (- O

Remark A.5. We do not know whether this fiber product preserves prop-
erties such as being noetherian or being sheafy. In particular, we do not
know whether the fiber product of two adic spaces is again an adic space
(or merely a pre-adic space).
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