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Galois representations over pseudorigid spaces

par Rebecca BELLOVIN

Résumé. Nous étudions la théorie de Hodge p-adique pour les familles de
représentations galoisiennes sur les espaces pseudo-rigides. De tels espaces sont
des espaces analytiques non-archimédiens, qui peuvent être de caractéristique
mixte, et qui apparaîssent dans l’étude des variétés de Hecke au bord de
l’espace des poids. Nous introduisons des anneaux de périodes surconvergents,
parfaits et imparfaits, et utilisons la methode de Tate–Sen pour construire les
(φ,Γ)-modules surconvergents associés aux représentations galoisiennes sur
les espaces pseudo-rigides.

Abstract. We study p-adic Hodge theory for families of Galois represen-
tations over pseudorigid spaces. Such spaces are non-archimedean analytic
spaces which may be of mixed characteristic, and which arise naturally in
the study of eigenvarieties at the boundary of weight space. We introduce
perfect and imperfect overconvergent period rings, and we use the Tate–Sen
method to construct overconvergent (φ,Γ)-modules for Galois representations
over pseudorigid spaces.

1. Introduction

In this article, we study p-adic Hodge theory for families of representa-
tions of GalK , where K/Qp is a finite extension, and the families vary over
certain analytic spaces, in the sense of Huber [9]. Such families have been
considered by a number of authors in the classical rigid analytic setting,
where p is invertible in R, but working in Huber’s setting permits us to
study Galois representations with coefficients which are characteristic p or
mixed characteristic.

Roughly speaking, p-adic Hodge theory is the study of representations
of Galois groups, where both the Galois group and the coefficients are
p-adic or characteristic p. One of the most powerful tools for studying p-
adic Galois representations is the theory of (φ,Γ)-modules, which provide
an equivalence between Galois representations and a certain category of
modules equipped with an operator φ and the action of a 1-dimensional
p-adic Lie group, called étale (φ,Γ)-modules.

The category of étale (φ,Γ)-modules is a full subcategory of the category
of all (φ,Γ)-modules, and it often happens that the (φ,Γ)-module attached
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to an irreducible Galois representation becomes reducible in this larger
category. Moreover, this reducibility is closely related to subtle p-adic Hodge
theoretic invariants of the representation. If the (φ,Γ)-module attached to a
Galois representations is the successive extension of rank-1 (φ,Γ)-modules,
the representation is said to be trianguline.

One key feature of (φ,Γ)-modules is that they behave well in rigid an-
alytic families. Given a Galois representation with coefficients in a Qp-
affinoid algebra, the work of Berger and Colmez [4] constructs a family of
(φ,Γ)-modules. Their construction is functorial, and so globalizes to sheaves
of Galois representations over general rigid analytic spaces.

However, in recent years, interest has developed in families of Galois
representations parametrized by analytic spaces which are not defined over
a field. For example, Andreatta–Iovita–Pilloni constructed the eigencurve
in mixed characteristic [1], and their construction was extended to more
general eigenvarieties by Gulotta [8] and Johansson–Newton [11].

In this note, we study Galois representations with coefficients in similar
rings. More precisely, we consider projective modules M over pseudoaffinoid
algebras R equipped with a continuous R-linear action of GalK (pseudoaffi-
noid algebras, and their associated pseudorigid adic spaces, are a class of
analytic adic spaces studied in [11] and [16]).

Before we can construct and study families of (φ,Γ)-modules, we need
to define the appropriate overconvergent period rings. In the rigid analytic
setting, it was enough to take completed tensor products of Qp-Banach
algebras and the overconvergent period rings B†,s

rig,K defined in e.g. [3]. This
is not possible in our setting because neither R nor B†,s

rig,K has the p-adic
topology. However, both are affinoid Tate rings, and in this setting it is
possible to define fiber products of the associated adic spaces. We provide
a construction in Appendix A for the convenience of the reader.

We then define both perfect and imperfect overconvergent rings, which
we denote by Λ̃R,[a,b] and ΛR,[a,b],K . Let χ : GalK → Z×

p denote the cyclo-
tomic character and let HK := kerχ; there is an action of HK on Λ̃R,[a,b].
We study this Galois action on the perfect rings, and show that we have
appropriate normalized trace maps RK,n : Λ̃HK

R,[0,b] → φ−nΛR,[0,p−nb],K .
This lets us prove our main theorem, on the construction of (φ,Γ)-

modules attached to Galois representations:
Theorem 1.1. Let R be a pseudoaffinoid algebra, and let M be a finite
projective R-module of rank d equipped with a continuous action of GalK ,
for a finite extension K/Qp. Then there is a functorially associated pro-
jective (φ,ΓK)-module D(0,b],K(M). This (φ,Γ)-module is equipped with a
GalK- and φ-equivariant isomorphism

Λ̃R,(0,b] ⊗ΛR,(0,b],K D(0,b],K(M) ∼−→ Λ̃R,(0,b] ⊗RM
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We conclude by showing how to compute the Galois cohomology of M
in terms of D(0,b],K(M), using the Fontaine–Herr–Liu complex.

In subsequent work [2], we study the cohomology of (φ,Γ)-modules over
pseudorigid spaces, and give applications to eigenvarieties at the boundary
of weight space.

2. Classical rings of p-adic Hodge theory

Let C♭
p := lim←−x→xp Cp, and let O♭

Cp
be the subset of x ∈ C♭

p such that
x(0) ∈ OCp . Then C♭

p is an algebraically closed field of characteristic p with
ring of integers O♭

Cp
; Colmez calls these rings Ẽ and Ẽ+, respectively. There

is a valuation v defined by v((x(i))) = vp(x(0)), and C♭
p is complete with

respect to this valuation. There is also a Frobenius (given by raising to the
pth power).

Let F be a finite unramified extension of Qp with ring of integers OF and
residue field kF (so that OF = W (kF )). Let ε := (ε(0), ε(1), ε(2) . . . ) ∈ O♭

Cp

be a choice of compatible pth power roots of unity with ε(0) = 1 and
ε(1) ̸= 1. There is a natural map kF ((π))→ C♭

p given by sending π to ε− 1;
we denote its image by EF , we denote by E the separable closure of EF

inside C♭
p, and we denote by E+ the valuation ring of E.

Let Ainf := W (O♭
Cp

) and Ã := W (C♭
p). There are two possible topologies

on Ainf and Ã, the p-adic topology or the weak topology; they are complete
for both.

The p-adic topology is defined by putting the discrete topology on each
quotient W (C♭

p)/pnW (C♭
p), and taking the projective limit topology on Ã;

Ainf is given the subspace topology. The weak topology is defined by putting
the valuation topology on C♭

p and giving Ã the product topology; Ainf is
again given the subspace topology.

Alternatively, the weak topology on Ã is given by taking the sets
Uk,n := pkÃ + [p̃]nAinf for k, n ≥ 0

to be a basis of neighborhoods around 0, where p̃ ∈ O♭
Cp

is any fixed element
with p̃(0) = p (i.e., p̃ is a system of compatible p-power roots of p). The
weak topology on Ainf is similarly generated by the sets

Uk,n ∩Ainf = pkAinf + [p̃]nAinf

The weak topology on Ainf is equivalent to the (p, [ϖ])-adic topology, for
any pseudo-uniformizer ϖ ∈ C♭

p.
Both rings carry continuous bijective actions of Frobenius (for either

topology). However, the Galois action is continuous for the weak topology,
but it is not continuous for the p-adic topology because the Galois actions
on O♭

Cp
and C♭

p are not discrete.
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Explicitly, Frobenius acts by

φ

( ∞∑
k=0

pk[xk]
)

=
∞∑
k=0

pk[xpk]

and the Galois group GalK acts by

σ

( ∞∑
k=0

pk[xk]
)

=
∞∑
k=0

pk[σ(xk)]

Now consider the pre-adic space Spa Ainf and its analytic adic subspace
Y (i.e., Y is Spa Ainf minus the point corresponding to the maximal ideal).
If ϖ is a pseudo-uniformizer of C♭

p, there is a surjective continuous map
κ : Y → [0,∞] given by

κ(x) := log|[ϖ](x̃)|
log|p(x̃)|

where x̃ is the rank-1 generization of x. If I ⊂ [0,∞] is an interval, we
let YI := κ−1(I). The Frobenius on Ainf induces isomorphisms YI → YpI
(since κ ◦ φ = pκ). Note that log|[ϖ](x̃)|, log|p(x̃)| ∈ [−∞, 0), since p and
[ϖ] are both topologically nilpotent, and therefore |[ϖ](x̃)|, |p(x̃)| < 1.

Following Scholze, we choose ϖ = p̃, that is, a compatible sequence of
p-power roots of p. Suppose a, b ∈ [0,∞] are rational numbers and a ≤ b.
Then Y[a,b] is an affinoid subspace of Y, and we write

Y[a,b] = Spa(Λ̃[a,b], Λ̃◦
[a,b])

The inequalities

a ≤ log|[ϖ](x̃)|
log|p(x̃)| ≤ b

translate to the conditions
a log|p(x̃)| ≥ log|[ϖ](x̃)| ≥ b log|p(x̃)|

or equivalently, |p(x̃)|a ≥ |[ϖ](x̃)| ≥ |p(x̃)|b. Thus,

(Λ̃[a,b], Λ̃◦
[a,b])

=
(

Ainf

〈
p

[ϖ]1/b
,
[ϖ]1/a

p

〉[ 1
[ϖ]

]
,Ainf

〈
p

[ϖ]1/b
,
[ϖ]1/a

p

〉[ 1
[ϖ]

]◦
)

=
(

Ainf

〈
p

[ϖ]1/b
,
[ϖ]1/a

p

〉[ 1
[ϖ]

]
,Ainf

〈
p

[ϖ]1/b
,
[ϖ]1/a

p

〉)
Here we take p/[ϖ]∞ := 1/[ϖ] and we take [ϖ]∞/p := 0. If p−1

pa ,
p−1
pb ∈

Z≥0[1/p]∪{∞}, this is the pair of rings denoted
(
Ã[s(b),s(a)]

[ 1
[ϖ]
]
, Ã[s(b),s(a)]

)
in [3] (since v(p̃) = 1 and v(π) = p/p− 1).
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In the special case I = [a, b] = [0, b], (Λ̃[0,b], Λ̃◦
[0,b]) is the pair of rings

denoted (Ã(0,b], Ã†,s(b)), where s(b) = (p− 1)/pb. We can write these rings
more explicitly as subrings of Ã:

Λ̃◦
[0,b] = Ã†,s(b) =

{
x =

∞∑
k=0

pk[xk] ∈ Ã
∣∣∣∣∣xk ∈ O♭

Cp
, xkϖ

k/b → 0
}

and

Λ̃[0,b] = Ã(0,b] =
{
x =

∞∑
k=0

pk[xk] ∈ Ã
∣∣∣∣∣xkϖk/b → 0

}
If [a, b] ̸= [0,∞], then the pair (Λ̃[a,b], Λ̃◦

[a,b]) is a Tate algebra; if a ̸= 0,
then p is a pseudo-uniformizer, and if b ̸=∞, then [ϖ] (and [π]) is a pseudo-
uniformizer.

We can equip Λ̃[0,b] with a valuation

val[0,b](x) := inf
k≥0

(vC♭
p
(xk) + k/b)

It is separated and complete with respect to this valuation, and Λ̃◦
[0,b] is the

ring of integers.
Since C♭

p is algebraically closed, we can extract arbitrary roots of ϖ; we
may therefore define another valuation vb on Λ̃[0,b] by setting

vb(x) := sup
r∈Q:[ϖ]rx∈Λ̃◦

[0,b]

−r

We observe that vb([ϖ]x) = 1 + vb(x) for any x ∈ Λ̃[0,b].

Lemma 2.1. For x ∈ Λ̃[0,b], val(0,b](x) = vb(x).

Proof. We observe that [ϖ]rx ∈ Λ̃◦
[0,b] if and only if val[0,b]([ϖ]rx) = r +

val[0,b](x) ≥ 0, which holds if and only if val[0,b](x) ≥ −r. Since we may
approximate val[0,b)(x) from below by rational numbers, it follows that
val(0,b](x) = vb(x). □

There are versions of all of these rings with no tilde; they are imperfect
versions of the rings with tildes.

Let π ∈ Ãinf denote [ε] − 1, where [ε] denotes the Teichmüller lift of
ε. Then there is a well-defined injective map OF [[X]][X−1] → Ã given by
sending X to π; we let AF denote the p-adic completion of the image. This
is a Cohen ring for EF . We define A to be the completion of the integral
closure of the image of Zp[[X]][X−1] in Λ̃[0,0], and we let A+ := A ∩Ainf .

Because extensions of EF correspond to unramified extensions of
AF [1/p], we get a natural Galois action on A and A+. If K/Qp is an
arbitrary finite extension, we may therefore define AK := AHK and A+

K =
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(A+)HK . When K is unramified over Qp, this agrees with our original def-
inition of these rings.

We define the overconvergent subrings of AK : For b∈ [0,∞], let Λ[0,b],K :=
AK∩Λ̃[0,b] and let Λ◦

[0,b],K := AK∩Λ̃◦
[0,b]. These rings are given the topology

induced as closed subspaces of Λ̃[0,b]. Thus, A+
K = Λ[0,∞],K and AK =

Λ[0,0],K .
Since we have isomorphisms φ : Λ̃HK

[a,b]
∼−→ Λ̃HK

[a/p,b/p], we have induced
Frobenius maps φ : Λ[0,b],K → Λ[0,b/p],K . However, as EK is imperfect, these
maps are no longer isomorphisms. Indeed, Λ[0,0],K is free over φ(Λ[0,0],K) of
rank p, with a basis given by {1, [ε], . . . , [εp−1}. We may therefore define a
left inverse ψ : Λ[0,0],K → Λ[0,0],K to φ via

ψ := 1
p
φ−1 ◦ TrΛ[0,0],K/φ(Λ[0,0],K)

Proposition 2.2. If b ∈ (0,∞), then Λ[0,b],K is a Tate ring with ring of
definition Λ◦

[0,b],K and pseudo-uniformizer π. If b =∞, then Λ[0,∞],K = A+
K

is an adic ring topologized by the ideal (p, π).

Proof. We first observe that the cokernel of the inclusion AK ↪→ ÃHK

has no p- or π-torsion, so the same holds for the cokernel of the inclu-
sions Λ◦

[0,b],K ↪→ (Λ̃◦
[0,b])

HK for b > 0. Thus, the natural map Λ[0,∞],K/p →
AHK

inf /p = Ô♭
K∞ remains injective; since Λ[0,∞],K has the closed subspace

topology from AHK
inf and the topology on Ô♭

K∞ is π-adic, the topology on
Λ[0,∞],K is (p, π)-adic. Similarly, for b∈ (0,∞), the natural map Λ◦

[0,b],K/π →
(Λ̃◦

[0,b])
HK/π remains injective. Since π ∈ (Λ̃◦

[0,b])
HK and π is a topologically

nilpotent unit of Λ̃HK

[0,b], the ideal (π) ⊂ (Λ̃◦
[0,b])

HK is an ideal of definition
and (Λ̃◦

[0,b])
HK/π is discrete. It follows that (π) ⊂ Λ◦

[0,b],K is also an ideal of
definition. □

We can be more explicit about the structure of Λ[0,b],K when b is small.
Recall that π := ε − 1 ∈ O♭

Cp
, so that it is a uniformizer of EF . Then for

any ramified extension K/F , we may choose a uniformizer πK of EK , and
we may lift πK to πK ∈ A. We fix a choice of πK for every K and work
with it throughout (when F/Qp is unramified, we set πF = π). Let F ′ be
the maximal unramified extension of F in K∞ and let

A
(0,b]
F ′ :=

{∑
m∈Z

amX
m

∣∣∣∣∣ am ∈ OF ′ , vp(am) +mb→∞
}

be the ring of integers of the ring of bounded analytic functions on the
half-open annulus 0 < vp(X) ≤ b over F ′. Then [7, Proposition 7.5] states
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that for b < rK (where rK is a constant depending on the ramification of
EK/EF ), the assignment f 7→ f(πK) is an isomorphism of topological rings
from A

(0,bvC♭
p (πK)]

F ′ to Λ[0,b],K . Furthermore, if we define a valuation v(0,b]

on A
(0,b]
F ′ by v(0,b](

∑
m∈Z amX

m) := infm∈Z(vp(am) +mb), then

val(0,b](f(πK)) = 1
b
v(0,b](f)

It follows that after inverting p, we have an isomorphism from the ring
of bounded analytic functions on the half-open annulus to Λ[0,b],K [1/p],
equipped with the valuation val(0,b]. Note that when K/Qp is ramified, this
isomorphism depends on a choice of uniformizer of EK .

3. Rings with coefficients

Now we wish to introduce coefficients. We wish to consider Galois rep-
resentations with coefficients in pseudoaffinoid algebras, in the sense of [16]
and [11] (or more generally, Galois representations on vector bundles over
pseudorigid spaces).
Definition 3.1. Let E be a discretely-valued non-archimedean field and let
OE be its ring of integers. A pseudoaffinoid OE-algebra is a complete Tate
OE-algebra R which has a ring of definition R0 that is formally of finite
type over OE . A pseudorigid space over OE is an adic space X over Spa(OE)
which is locally of the form Spa(R,R◦) for a pseudoaffinoid OE-algebra R.

When R is a pseudoaffinoid algebra, we will write SpaR for Spa(R,R◦).
Let R be a pseudoaffinoid algebra over Zp, and let u ∈ R be a pseudo-

uniformizer. Throughout this section, we assume that p /∈ R×, since if
R has the p-adic topology, we are in the classical setting treated in [4].
Borrowing the notation of [16], for any positive rational number λ = m′

m
with (m,m′) = 1 and m,m′ > 0, we let (Dλ, D

◦
λ) denote the pair(

Zp[[u]]
〈
pm

um′

〉[1
u

]
,Zp[[u]]

〈
pm

um′

〉)
Then by [16, Lemma 4.8], there is some sufficiently small λ such that R is
topologically of finite type over Dλ. In particular, there is a ring of definition
R0 ⊂ R which is itself strictly topologically of finite type over D◦

λ.
Every element of Dλ can be written uniquely as a power series

∑
i∈Z aiu

i

with ai ∈ Zp, and we define a valuation vDλ
on Dλ via

vDλ

(∑
i∈Z

aiu
i

)
:= inf

i

{
vp(ai) + i

λ

}
If R is a topologically of finite type over Dλ, each presentation of R over Dλ

will induce a valuation on R. Different presentations will induce different
(but equivalent) valuations, however, just as in the classical setting.
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If λ < λ′ with λ = m′

m and λ′ = n′

n , there is a natural map Dλ → Dλ′ .

Indeed,
(
pm

um′

)n′

= pmn
′−m′n

(
pn

un′

)m′

; since mn′−m′n > 0, we see that pm

um′

is power-bounded in Dλ′ . Thus, we have a totally ordered inverse system
of adic space {Dλ}; since they are uniform, the inverse limit exists, and it
is straightforward to check that it is equal to Spa(Fp((u))).

We define a descending sequence of ideals Ij ⊂ R0 via Ij := pjR ∩ R0.
Then for all j ≥ 1, R0/Ij is a u-torsion-free (Z/pj)[[u]]-algebra. Since R0 is
noetherian, the Ij are finitely generated, and Ij/Ij+1 is a finite u-torsion-
free R0/I1-module.

In this section, we will construct and study perfect and imperfect over-
convergent period rings “with coefficients in R”. The rings we construct will
depend on our choices of both R0 and u, but for compactness of notation,
we suppress u from the notation.

3.1. Perfect overconvergent rings. We fix a pseudoaffinoid OE-algebra
R, for some finite extension E/Qp, and we fix a ring of definition R0 ⊂ R
and pseudouniformizer u ∈ R0 such that R0 is strictly topologically of finite
type over D◦

λ for some sufficiently small λ ∈ Q>0.
The adic space Y is covered by the two open subspaces Y(0,∞] and Y[0,∞),

which are the subspaces where p ̸= 0 and [ϖ] ̸= 0, respectively. Thus, to
study the fiber products YR0 := SpaR0×Y and YR := SpaR×Y, it suffices
to study the fiber products of SpaR0 or SpaR with each of these subspaces.
We are primarily interested in SpaR0×ZpY[0,∞) and SpaR×ZpY[0,∞) (since
if p is invertible, the theory reduces to the case of classical rigid analytic
spaces).

We define perfect overconvergent rings with coefficients in R:

Definition 3.2. Fix a ∈ Q≥0 and b ∈ Q>0 ∪ {∞} such that a ≤ b. Then
we define Λ̃R0,[a,b] to be the evaluation of OYR0

on the affinoid subspace
defined by the conditions u ≤ [ϖ]1/b ̸= 0 and [ϖ]1/a ≤ u ̸= 0. We let
Λ̃R0,[a,b],0 ⊂ Λ̃R0,[a,b] be the ring of definition (R0 ⊗̂ Ainf)

〈
u

[ϖ]1/b ,
[ϖ]1/a

u

〉
,

and we let Λ̃R,[a,b] := Λ̃R0,[a,b]
[ 1
u

]
and Λ̃R,[a,b],0 := Λ̃R0,[a,b],0

[ 1
u

]
. Here we fix

the conventions u
[ϖ]1/∞ := u and [ϖ]1/0

u := 0, so that ΛR0,[0,∞] = R0 ⊗̂Ainf .
We also make auxiliary definitions

Λ̃R0,[0,0] := (R0 ⊗̂Ainf)
[ 1

[ϖ]

]∧
and Λ̃R,[0,0] := Λ̃R0,[0,0]

[1
u

]
where the completion is u-adic. We give Λ̃R,[0,0] the weak topology generated
by the basis {

uk(R0 ⊗̂Ainf)
〈 1

[ϖ]

〉
+ [ϖ]n(R0 ⊗̂Ainf)

}
k,n
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Note that Λ̃R0,[a,b] and Λ̃R,[a,b] only differ when a = 0 (since otherwise
both rings contain 1

u).
The motivation for this definition is to describe natural affinoid sub-

spaces of
YR0 =

⋃
r>0

SpaR0 ×Zp Spa(Λ̃[0,r], Λ̃◦
[0,r])

and
YR =

⋃
r>0

SpaR×Zp Spa(Λ̃[0,r], Λ̃◦
[0,r])

These will be pre-adic spaces (and in general not affinoid or quasi-compact),
and they will be exhausted by pre-adic spaces of the form

Spaind
(

(R0 ⊗̂Zp Λ̃◦
[0,r])

〈
u

[ϖ]1/b

〉[ 1
[ϖ]

]
,

(
(R0 ⊗Zp Λ̃◦

[0,r])
[

u

[ϖ]1/b

]Int
)∧)

or

Spaind

(R0⊗̂Zp Λ̃◦
[0,r])

〈
u

[ϖ]1/b
,
[ϖ]b

u

〉[ 1
[ϖ] ,

1
u

]
,

(R+⊗Zp Λ̃◦
[0,r])

[
u

[ϖ]1/b
,
[ϖ]b

u

]Int
∧

respectively, where Spaind is as in Definition A.1 (which is taken from [19]).
Here b is a positive rational number, (R0⊗Zp Λ̃◦

[0,r])
[

u
[ϖ]1/b

]Int
denotes the in-

tegral closure of (R0⊗Zp Λ̃[0,r])
[

u
[ϖ]1/b

]
in (R0 ⊗̂Zp Λ̃◦

[0,r])
〈

u
[ϖ]1/b ,

[ϖ]b
u

〉 [
1

[ϖ]

]
,

and (R◦ ⊗Zp Λ̃◦
[0,r])

[
u

[ϖ]1/b ,
[ϖ]b
u

]Int
denotes the integral closure of (R◦ ⊗Zp

Λ̃◦
[0,r])

[
u

[ϖ]1/b ,
[ϖ]b
u

]
in (R0 ⊗Zp Λ̃◦

[0,r])
[

u
[ϖ]1/b ,

[ϖ]b
u

] [
1

[ϖ] ,
1
u

]
.

Proposition 3.3. Suppose that R is a Dλ-algebra and r ∈ Q>0 ∪ {∞}
satisfies r ≥ b

λ . Then there is a continuous homomorphism

(R0 ⊗̂Zp Λ̃◦
[0, b

λ
])
〈

u

[ϖ]1/b

〉[ 1
[ϖ]

]
→ (R0 ⊗̂Zp Λ̃◦

[0,r])
〈

u

[ϖ]1/b

〉[ 1
[ϖ]

]
and the image of (R0 ⊗̂ Λ̃◦

[0, b
λ

])
〈

u
[ϖ]1/b

〉
in (R0 ⊗̂Zp Λ̃◦

[0,r])
〈

u
[ϖ]1/b

〉 [
1

[ϖ]

]
is

a ring of definition. In particular, the image of (R0 ⊗̂ Λ̃◦
[0, b

λ
])
〈

u
[ϖ]1/b

〉
in

ΛR0,[0,∞]
〈

u
[ϖ]1/b

〉 [
1

[ϖ]

]
is a ring of definition.

Remark 3.4. We write Λ̃R0,[a,b],0,λ to denote the image of the ring of
definition

(R0 ⊗̂ Λ̃[0, b
λ

])
〈

u

[ϖ]1/b
,
[ϖ]1/a

u

〉
⊂ (R0 ⊗̂Zp Λ̃◦

[0, b
λ

])
〈

u

[ϖ]1/b

〉[ 1
[ϖ]

]
inside Λ̃R0,[a,b].
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Proof. Since R0 is a D◦
λ-algebra, we may compute that(

pm

um′

)
·
(

u

[ϖ]1/b

)m′

= pm

[ϖ]m′/b
=
(

p

[ϖ]λ/b

)m
in (R0 ⊗̂ Ãinf)

〈
u

[ϖ]1/b

〉 [
1

[ϖ]

]
. It follows that p

[ϖ]λ/b is power-bounded in

(R0⊗̂Ainf)
〈

u
[ϖ]1/b

〉 [
1

[ϖ]

]
, hence in (R0⊗̂Λ̃[0,r])

〈
u

[ϖ]1/b

〉 [
1

[ϖ]

]
, and we obtain

the desired continuous maps

(R0 ⊗̂Zp Λ̃◦
[0, b

λ
])
〈

u

[ϖ]1/b

〉[ 1
[ϖ]

]
→ (R0 ⊗̂Zp Λ̃◦

[0,r])
〈

u

[ϖ]1/b

〉[ 1
[ϖ]

]
On the other hand, if r ≥ b

λ , then (R0 ⊗̂Zp Λ̃◦
[0, b

λ
])
〈

u
[ϖ]1/b

〉 [
1

[ϖ]

]
is an

R0 ⊗̂Zp Λ̃◦
[0,r]-algebra in which [ϖ] is invertible and u

[ϖ]1/b is power-bounded.
Therefore, there is a canonical continuous map

(R0 ⊗̂Zp Λ̃◦
[0,r])

〈
u

[ϖ]1/b

〉[ 1
[ϖ]

]
→ (R0 ⊗̂ Λ̃◦

[0, b
λ

])
〈

u

[ϖ]1/b

〉[ 1
[ϖ]

]
These maps are clearly inverse to one another, and since they are continu-
ous, the images of (R0 ⊗̂Zp Λ̃◦

[0, b
λ

])
〈

u
[ϖ]1/b

〉
and (R0 ⊗̂Zp Λ̃◦

[0,r])
〈

u
[ϖ]1/b

〉
are

both rings of definition. □

In other words, for any r ∈ Q≥0 and any choice of b ≤ rλ, the pre-adic
space

Spa
(

(R0 ⊗̂Zp Λ̃◦
[0,r])

〈
u

[ϖ]1/b

〉[ 1
[ϖ]

]
, (R0 ⊗̂Zp Λ̃◦

[0,r])
〈

u

[ϖ]1/b

〉Int
)

is isomorphic to the rational localization Spa ΛR0,[0,∞]
〈

u
[ϖ]1/b

〉
.

Corollary 3.5. The pre-adic space SpaR0 ×Spa(Zp) Y[0,∞) is exhausted by
open subspaces of the form Spa ΛR0,[0,∞]

〈
u

[ϖ]1/b

〉
for positive rational num-

bers b ∈ Q>0.

Similarly, we prove

Corollary 3.6. The pre-adic space SpaR ×Spa(Zp) Y[0,∞) is exhausted by
open subspaces of the form Spa ΛR0,[0,∞]

〈
u

[ϖ]1/b ,
[ϖ]1/a

u

〉
, for positive rational

numbers a, b ∈ Q>0 with a ≤ b.

Remark 3.7. If R is a ring such that p = 0, the natural maps

(R0 ⊗̂ Λ̃◦
[0, b

λ
])
〈

u

[ϖ]1/b

〉
→ ΛR0,[0,∞]

〈
u

[ϖ]1/b

〉[ 1
[ϖ]

]
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are not injective, because Λ̃◦
[0, b

λ
]/p has [ϖ]-torsion. However, the images still

yield rings of definition. In fact, Λ̃R0,[a,b],0,λ = Λ̃R0,[a,b],0.

If b ∈ (0,∞), Λ̃R0,[a,b] is a Tate ring with pseudo-uniformizer [ϖ]. We
may define valuations vR,[a,b] and vR,[a,b],λ on it via

vR,[a,b](x) := sup
α∈C♭

p:[α]x∈Λ̃R0,[a,b],0

−vC♭
p
(α)

and
vR,[a,b],λ(x) := sup

α∈C♭
p:[α]x∈Λ̃R0,[a,b],0,λ

−vC♭
p
(α)

When a = 0, we also denote these valuations by vR,b and vR,b,λ, respectively.
If [a, b] ⊂ (0,∞), then ideals of definition of Λ̃R0,[a,b],0 are principal, and u

and [ϖ] both generate ideals of definition. In particular, Λ̃R0,[a,b] = Λ̃R,[a,b]
is Tate with pseudo-uniformizers u and [ϖ].

If (R,R◦) = (Qp,Zp) with u = p, this definition recovers Λ̃[a,b].
We have seen that if pmu−m′ is power-bounded in R, then there is a

natural map (R0 ⊗̂ Λ̃◦
[0, b

λ
])
〈

u
[ϖ]1/b

〉
→ Λ̃R0,[0,b], whose image is a ring of

definition. In particular, the image of Λ̃◦
[0, b

λ
] is bounded. The next proposi-

tion shows that Λ̃R0,[a,b],0,λ behaves better than Λ̃R0,[a,b],0 for making some
comparisons with the classical story:

Proposition 3.8. If x ∈ Λ̃[0, b
λ

], then vR,b(x) ≥ vb/λ(x) − (m−1)λ
b . If R0 =

D◦
λ for some λ = m′

m , then vb/λ(x) ≥ vR,b(x), as well. Similarly, vR,b,λ(x) ≥
vb/λ(x), and if R0 = D◦

λ, we have equality.

Proof. It suffices to consider the image of pk

[ϖ]kλ/b for all k ≥ 0. Since the

image of pk

[ϖ]kλ/b is in Λ̃R0,[0,b],0,λ, we see that vR,b,λ(x) ≥ vb(x). Additionally,

since
(

p
[ϖ]λ/b

)m
∈ Λ̃R0,[0,b],0, we may assume 0 ≤ k < m. But then we may

multiply by [ϖ]kλ/b to get an element of Λ̃R0,[0,b],0, so

vR,b

(
pk

[ϖ]kλ/b

)
≥ −kλ

b
≥ −(m− 1)λ

b

When R0 = D◦
λ, we observe that

(
p

[ϖ]λ/b

)m
=
(
pm

um′

)
·
(

u
[ϖ]1/b

)m′

, and we
claim that

vR,b

((
pm

um′

)
·
(

u

[ϖ]1/b

)m′)
= 0
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and

vR,b,λ

((
pm

um′

)
·
(

u

[ϖ]1/b

)m′)
= 0

Then

0 ≥ m · vR,b
(

p

[ϖ]λ/b

)
,m · vR,b,λ

(
p

[ϖ]λ/b

)
so

0 ≥ vR,b
(

p

[ϖ]λ/b

)
, vR,b,λ

(
p

[ϖ]λ/b

)
On the other hand, vb/λ

(
p

[ϖ]λ/b

)
= 0 and the result follows.

To prove the claims, we write

Λ̃D◦
λ
,[0,b],0 ∼=

((
Zp[[u]] ⟨X⟩ /(um′

X − pm)
)
⊗̂Ainf

)
⟨Y ⟩ /([ϖ]1/bY − u)

and Λ̃D◦
λ
,[0,b],0,λ as the quotient of((

Zp[[u]] ⟨X⟩ /(um′
X − pm)

)
⊗̂
(
Ainf ⟨X ′⟩ /([ϖ]λ/bX ′ − p)

))
⟨Y ⟩ /([ϖ]1/bY − u)

by [ϖ]-torsion (in particular, XY m′ = X ′m). Then the claim is that if
we reduce modulo the ideal [mO♭

Cp
], the image of X · Y m′ is non-zero. We

actually compute in

Λ̃D◦
λ
,[0,b],0/(p, [mO♭

Cp
]) ∼= Fp[X,Y ]

and

Λ̃D◦
λ
,[0,b],0,λ/[mO♭

Cp
] ∼= Fp[X,X ′, Y ]/(XY m′ −X ′m)

which are visibly domains, so we are done. □

In the special case p ∈ uR0 (in particular, if p = 0 in R), this implies that
there is a map Λ̃[0,b] → Λ̃R,[0,b] such that vR,b(x) ≥ vb(x) for all x ∈ Λ̃[0,b].

Remark 3.9. The rings Λ̃R0,[a,b], Λ̃R0,[a,b],0, and Λ̃R0,[a.b],0,λ depend on the
choice of ring of definition R0 ⊂ R, but Λ̃R,[a,b] and Λ̃R,[a,b],0 do not. How-
ever, both depend on our choice of u ∈ R.

Proposition 3.10. Let f : R→ R′ be a homomorphism of pseudoaffinoid
rings, and let R′

0 := f(R0) and u′ := f(u). Then R′
0 ⊗̂R0 Λ̃R0,[a,b] = Λ̃R′

0,[a,b].
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Proof. By [11, Lemma 2.2.5], f is topologically of finite type, so R′
0 is a

ring of definition of R′ formally of finite type over Zp. Then

R′
0 ⊗̂R0 Λ̃R0,[a,b]

= R′
0 ⊗̂R0 ΛR0,[0,∞]⟨X,Y ⟩/([ϖ]1/bX−u, uY − [ϖ]1/a, XY − [ϖ]1/a−1/b)

= ΛR′
0,[0,∞] ⟨X,Y ⟩ /([ϖ]1/bX − u′, u′Y − [ϖ]1/a, XY − [ϖ]1/a−1/b)

= Λ̃R′
0,[a,b] □

We do not know whether YR0 and YR are adic spaces (even though
SpaR0, SpaR, and Y are). However, we have the following partial result:

Proposition 3.11. Suppose {SpaRi}i is an affinoid cover of SpaR, and
let SpaRij := SpaRi∩SpaRj. Then if [a, b] ⊂ [0,∞) we have a strict exact
sequence

0→ Λ̃R,[a,b] →
∏
i

Λ̃Ri,[a,b] →
∏
i,j

Λ̃Rij ,[a,b]

Proof. We may assume that {SpaRi}i is a finite cover by rational subspaces
of SpaR, where (Ri, R◦

i ) = (R,R◦)
〈
f0,...,fn

fi

〉
for some finite set f0, . . . , fn ∈

R which generate the unit ideal. We may further assume that fi ∈ R0
for all i. The ring of definition R0 is admissible in the sense of [5], so
we may consider the scheme-theoretic blowing up X → SpecR0 and the
admissible formal blowing up X → Spf(R0) along the ideal (f0, . . . , fn).
Then OX⊗R0 Λ̃R0,[a,b],0 is a quasi-coherent OX -module, so we have an exact
sequence

0→ Γ(X,OX)⊗R0 Λ̃R0,[a,b],0 →
∏
i

R0

[
f0
fi
, . . . ,

fn
fi

]
⊗R0 Λ̃R0,[a,b],0

→
∏
i,j

R0

[
f0
fifj

, . . . ,
fn
fifj

]
⊗R0 Λ̃R0,[a,b],0

The [ϖ]-adic completion

0→ Γ(X ,OX ) ⊗̂R0 Λ̃R0,[a,b],0 →
∏
i

R0

〈
f0
fi
, . . . ,

fn
fi

〉
⊗̂R0 Λ̃R0,[a,b],0

→
∏
i,j

R0

〈
f0
fi
, . . . ,

fn
fi

〉
⊗̂R0 Λ̃R0,[a,b],0

is exact, as well, and since Γ(X ,OX ) is R0-finite and satisfies

Γ(X ,OX )
[1
u

]
= R

the result now follows from inverting u. □
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We have a similar sheaf property with respect to rational localization on
Y. Since R0 ⊗̂Zp Ainf has no u- or [ϖ]-torsion, if [a, b] ⊃ [a′, b′], there is an
injective map

ΛR0,[0,∞]

[
u

[ϖ]1/b
,
[ϖ]1/a

u

]
→ ΛR0,[0,∞]

[
u

[ϖ]1/b′ ,
[ϖ]1/a′

u

]

(since both rings are subrings of ΛR0,[0,∞]
[ 1

[ϖ] ,
1
u

]
).

Proposition 3.12. The above map extends to an injection

ΛR0,[0,∞]

〈
u

[ϖ]1/b
,
[ϖ]1/a

u

〉
→ ΛR0,[0,∞]

〈
u

[ϖ]1/b′ ,
[ϖ]1/a′

u

〉

and therefore an injection Λ̃R,[a,b] → Λ̃R,[a′,b′]

Proof. As in the proof of [3, Lemme 2.5], the map Λ̃R0,[a,b],0 → Λ̃R0,[a′,b′],0
factors as Λ̃R0,[a,b],0 → Λ̃R0,[a,b′],0 → Λ̃R0,[a′,b′],0, and we may assume that
either a = a′ or b = b′. We treat the case a = a′ = 0 here; the other cases
follow as in [3].

We need to show that the natural map

ΛR0,[0,∞] ⟨X⟩ /([ϖ]1/bX − u)→ ΛR0,[0,∞] [X]∧u /([ϖ]X − 1)

is injective. This map carries f(X) ∈ ΛR0,[0,∞] ⟨X⟩ to f(u[ϖ]1−1/bX); to
show it is injective, we need to check that if f(u[ϖ]1−1/bX) is a multiple
of [ϖ]X − 1 in ΛR0,[0,∞] [X]∧u , then f(uX) is a multiple of u[ϖ]X − u in
ΛR0,[0,∞]

〈
u[ϖ]1−1/bX

〉
.

Writing f(uX) = ([ϖ]X−1)g(X), where g(X) =
∑∞
j=0 cjX

j and cj → 0
u-adically, we need to show that cj ∈ uj+1[ϖ]j(1−1/b)ΛR0,[0,∞] for all j ≥
0. We may also write f(uX) =

∑∞
j=0 dj(u[ϖ]1−1/bX)j , where dj → 0 u-

adically. Then for j ≥ 1, we have djuj [ϖ]j(1−1/b) = [ϖ]cj−1 − cj .
Since the cj tend to 0 u-adically, for each j there is some Nj ≫ j such

that cNj is a multiple of uj . This implies that [ϖ]cNj−1 is also a multiple of
uj , and since (R0/u

j) ⊗̂Ainf has no [ϖ]-torsion, cNj−1 itself is a multiple
of uj . Repeating this argument, we see that cj−1 is a multiple of uj .

We may write cj = uj+1c′
j . Since ΛR0,[0,∞] has no u-torsion, we have

dj [ϖ]j(1−1/b) = [ϖ]c′
j−1 − uc′

j for all j ≥ 1, which implies that uc′
1 is a

multiple of [ϖ]1−1/b. But R0 ⊗̂ (Ainf/[ϖ]1−1/b) has no u-torsion, so c′
1 itself

is a multiple of [ϖ]1−1/b. We now proceed by induction on j; if c′
j−1 is

a multiple of [ϖ](j−1)(1−1/b), then uc′
j is a multiple of [ϖ]j(1−1/b), which

implies that c′
j itself is a multiple of [ϖ]j(1−1/b). □
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Proposition 3.13. Suppose [a, b] ̸= [0,∞]. Then there is an exact sequence
(of R0-modules)

0→ ΛR0,[0,∞] → ΛR0,[0,∞]

〈
u

[ϖ]1/b

〉
⊕ ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉

→ ΛR0,[0,∞]

〈
u

[ϖ]1/b
,
[ϖ]1/a

u

〉
→ 0

Proof. This is an adaptation of the proof of [3, Lemme 2.15]. We first treat
the case where a = b.

The natural map

ΛR0,[0,∞]

〈
u

[ϖ]1/a

〉
⊕ ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉
→ ΛR0,[0,∞]

〈
u

[ϖ]1/a
,
[ϖ]1/a

u

〉
is clearly surjective, so it only remains to check that the kernel is exactly
R0 ⊗̂Zp Ainf .

We first verify this modulo u.(
ΛR0,[0,∞]

〈
u

[ϖ]1/a

〉)
/(u) ∼= ΛR0,[0,∞] [Y ] /([ϖ]1/aY, u)(

ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉)
/(u) ∼= (R0/u)⊗Zp Ainf [X] /([ϖ]1/a)(

ΛR0,[0,∞]

〈
u

[ϖ]1/a
,
[ϖ]1/a

u

〉)
/(u) ∼= (R0/u)⊗Zp Ainf

[
X,X−1

]
/([ϖ]1/a)

Moreover, the map(
ΛR0,[0,∞]

〈
u

[ϖ]1/a

〉)
/(u)→

(
ΛR0,[0,∞]

〈
u

[ϖ]1/a
,
[ϖ]1/a

u

〉)
/(u)

is given by Y 7→ X−1, and it factors through(
ΛR0,[0,∞]

〈
u

[ϖ]1/a

〉)
/(u, [ϖ]1/a) = (R0/u)⊗Zp Ainf [Y ]/([ϖ]1/a)

But the intersection(
(R0/u)⊗Ainf/([ϖ]1/a)

)
[X] ∩

(
(R0/u)⊗Ainf/([ϖ]1/a)

)
[X−1]

inside
(
(R0/u) ⊗Ainf/([ϖ]1/a)

)
[X,X−1] is just (R0/u) ⊗Ainf/([ϖ]1/a). It

follows that the image of

ΛR0,[0,∞]

〈
u

[ϖ]1/a

〉
∩ ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉
is contained in the image of ΛR0,[0,∞].
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Thus, given x ∈ ΛR0,[0,∞]
〈

u
[ϖ]1/a

〉
∩ ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉
, there is some ele-

ment y ∈ ΛR0,[0,∞] such that x − y ∈ (u)ΛR0,[0,∞]
〈

u
[ϖ]1/a ,

[ϖ]1/a

u

〉
. By con-

sidering the reductions of all of these rings modulo u, this implies that

x− y ∈ uΛR0,[0,∞]

〈
[ϖ]1/a

u

〉
and

x− y ∈ uΛR0,[0,∞]

〈
u

[ϖ]1/a

〉
+ [ϖ]1/aΛR0,[0,∞]

There is therefore some z ∈ [ϖ]1/aΛR0,[0,∞] such that

x− y − z ∈ uΛR0,[0,∞]

〈
u

[ϖ]1/a

〉
Since [ϖ]1/a

u ∈ ΛR0,[0,∞]
〈

[ϖ]1/a

u

〉
and the intersection

ΛR0,[0,∞]

〈
u

[ϖ]1/a

〉
∩ ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉

inside ΛR0,[0,∞]
〈

u
[ϖ]1/a ,

[ϖ]1/a

u

〉
has no u-torsion, we have

x− y − z ∈ u
(

ΛR0,[0,∞]

〈
u

[ϖ]1/a

〉
∩ ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉)
Since ΛR0,[0,∞] is (u, [ϖ]1/a)-adically separated and complete, we can iterate
this argument, and the conclusion follows.

To handle the general case, we consider the diagram

0 ΛR0,[0,∞] ΛR0,[0,∞]
〈

u
[ϖ]1/b

〉
⊕ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉
ΛR0,[0,∞]

〈
u

[ϖ]1/b ,
[ϖ]1/a

u

〉
0

0 ΛR0,[0,∞] ΛR0,[0,∞]
〈

u
[ϖ]1/a

〉
⊕ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉
ΛR0,[0,∞]

〈
u

[ϖ]1/a ,
[ϖ]1/a

u

〉
0

Since the bottom row is exact, and the top row is exact except possibly in
the middle, and the vertical arrows are injections, a diagram chase shows
that the top row is exact. □

Corollary 3.14. Suppose I1 = [a1, b1] and I2 = [a2, b2] are intervals such
that I1∩I2 ̸= ∅. Then Λ̃R0,I1,0∩Λ̃R0,I2,0 = Λ̃R0,I1∪I2,0 (where the intersection
is taken inside Λ̃R0,I1∩I2,0).

Proof. We may assume that a1 ≤ a2 ≤ b1 ≤ b2, so that I1 ∩ I2 = [a2, b1]
and I1 ∪ I2 = [a1, b2]. If f ∈ Λ̃R0,I1,0 ∩ Λ̃R0,I2,0, we may write

f = g1 + h1 = g2 + h2
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with

g1 ∈ Λ̃R0,[a1,∞],0 and h1 ∈ Λ̃R0,[0,b1],0

g2 ∈ Λ̃R0,[a2,∞],0 and h2 ∈ Λ̃R0,[0,b2],0

Then (g1 − g2) + (h1 − h2) = 0, with

g1 − g2 ∈ Λ̃R0,[a2,∞],0 and h1 − h2 ∈ Λ̃R0,[0,b1],0

It follows from the previous proposition that

g1 − g2 = h2 − h1 = f ′ ∈ ΛR0,[0,∞]

Then f = (g1 − f ′) + (h1 + f ′) = (g1 − f ′) + h2; since g1 − f ′ ∈ Λ̃R0,[a1,∞],0
and h2 ∈ Λ̃R0,[0,b2],0, we are done. □

3.2. The action of HK on Λ̃R,[a,b]. Since vC♭
p
([ϖ]) = p−1

p vC♭
p
([π]), we

define s : (0,∞) → (0,∞) via s(a) = p−1
pa . From now on, we assume that

s(a), s(b) ∈ pZ. Then we can rewrite Λ̃R0,[a,b],0 as the rational localization
ΛR0,[0,∞]

〈
u

[π]s(b) ,
[π]s(a)

u

〉
. Since HK acts trivially on u and [π], this implies

that the action of HK on Ainf induces an action on Λ̃R,[a,b].
If (R,R◦) = (Qp,Zp) and u = p, it is easy to read off from the Witt

vector description of (Λ̃[0,r], Λ̃◦
[0,r]) that(

Λ̃[0,r], Λ̃◦
[0,r]

)HK =
(

AHK
inf

〈
p

[π]s(r)

〉[ 1
[π]

]
,AHK

inf

〈
p

[π]s(r)

〉)
Moreover, it follows from [3, Lemme 2.29] that(
Λ̃[p−n,∞], Λ̃◦

[p−n,∞]

)HK =
(

AHK
inf

〈
[π](p−1)pn−1

p

〉[
1

[π]

]
,AHK

inf

〈
[π](p−1)pn−1

p

〉)
The same argument as in the proof of Proposition 3.13 shows the follow-

ing:

Proposition 3.15. There is an exact sequence (of R0-modules)

0→ ΛHK

R0,[0,∞] → ΛHK

R0,[0,∞]

〈
u

[π]s(b)

〉
⊕ ΛHK

R0,[0,∞]

〈
[π]s(a)

u

〉

→ ΛHK

R0,[0,∞]

〈
u

[π]s(b)
,
[π]s(a)

u

〉
→ 0

Lemma 3.16. There is a connecting homomorphism

Λ̃HK

R0,[a,b],0 → H1(HK ,ΛR0,[0,∞])
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Proof. We need to construct a continuous set-theoretic section

Λ̃R0,[a,b],0 → Λ̃R0,[0,b],0 ⊕ Λ̃R0,[a,∞],0

If [a, b] = [0, b], we choose the map (id, 0). If a ̸= 0 but b = ∞, we choose
the map (0, id).

Otherwise, [a, b] ⊂ (0,∞) and we have an exact sequence

0→ ΛR0,[0,∞] → ΛR0,[0,∞]

〈
u

[ϖ]1/b

〉
⊕ ΛR0,[0,∞]

〈
[ϖ]1/a

u

〉

→ ΛR0,[0,∞]

〈
u

[ϖ]1/b
,
[ϖ]1/a

u

〉
→ 0

and we need to produce a continuous set-theoretic section

s : Λ̃R,[a,b],0 → Λ̃R,[0,b],0 ⊕ Λ̃R,[a,∞],0

We first construct a continuous set-theoretic map

s1 : Λ̃R0,[a,b],0 → Λ̃R0,[a,∞],0

Both rings are u-adically separated and complete, so it suffices to construct
a set-theoretic map s1 : Λ̃R0,[a,b],0/u→ Λ̃R0,[a,∞],0/u. We may write

Λ̃R0,[a,b],0/u = (R0 ⊗Ainf)[X,Y ]/(u, [ϖ]1/a, [ϖ]1/bX,XY − [ϖ]1/a−1/b)

and given x ∈ Λ̃R0,[a,b],0/u, we may choose a lift to (R0⊗Ainf) [X,Y ] /(u) of
the form

∑
i≥1 αiX

i +
∑
j≥0 βjY

j , then project
∑
j≥0 βjY

j to Λ̃R0,[a,∞],0/u.
The resulting map s1 is not necessarily a section, but it has the property

that for x ∈ Λ̃R0,[a,b],0, x− im(s1(x)) ∈ im(Λ̃R0,[0,b],0). Since the restriction
map Λ̃R,[0,b] → Λ̃R,[a,b] is injective, the map x 7→ x − im(s1(x)) defines
another map s2 : Λ̃R,[a,b] → Λ̃R,[0,b]. Then

s := −s1 ⊕ s2 : Λ̃R0,[a,b],0 → Λ̃R0,[a,∞],0 ⊕ Λ̃R,[0,b]
is the desired section. □

Lemma 3.17. There is an exact sequence

0→ ΛHK

R0,[0,∞]

[1
u

]
→ Λ̃HK

R0,[0,b],0

[1
u

]
⊕ Λ̃HK

R,[a,∞] → Λ̃HK

R,[a,b] → 0

Proof. This follows as in Berger’s Lemme 2.27. If a = 0 or b =∞, the result
is trivial. If not, we have an exact sequence

0→ ΛHK

R0,[0,∞]

[1
u

]
→ Λ̃HK

R0,[0,b],0

[1
u

]
⊕ Λ̃HK

R,[a,∞]

→ Λ̃HK

R,[a,b] → H1
(
HK ,ΛR0,[0,∞]

[1
u

])
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and we need to show that the map δ : Λ̃HK

R,[a,b] → H1(HK ,ΛR0,[0,∞]
[ 1
u

]
is

the zero map.
If x ∈ Λ̃HK

R0,[a,b],0, then x·
(

u
[π]s(b)

)
∈ Λ̃HK

R0,[a,b],0 as well, and after multiplying

by a suitable power of u, we may assume that δ(x) and δ
(
x ·
(

u
[π]s(b)

))
are

both elements of H1(HK ,ΛR0,[0,∞]). But then

u · δ(x) = δ(ux) = δ

(
x ·
(

u

[π]s(b)

)
· [π]s(b)

)
= [π]s(b)δ

(
x ·
(

u

[π]s(b)

))
Then the result follows from the next lemma. □

Lemma 3.18. If α ∈ O♭
Cp

is in the maximal ideal, then the homomorphism

H1(HK ,ΛR0,[0,∞])
×[α]−−−→ H1(HK ,ΛR0,[0,∞]) induced by multiplication by [α]

is the zero map.

Proof. If cτ ∈ H1(HK ,ΛR0,[0,∞]) is in the image of this map, we may con-
sider its image in H1(HK , (R0/u) ⊗̂Ainf). Then a standard Tate–Sen argu-
ment shows that this image is the trivial cocycle. Working modulo succes-
sive powers of u, it follows that cτ is itself trivial. □

Thus, to study the HK-invariants of Λ̃R,[a,b]
[ 1
u

]
, it suffices to study the

HK-invariants of Λ̃R0,[0,b],0
[ 1
u

]
and Λ̃R0,[a,∞]

[ 1
u

]
.

We first study the ring Λ̃HK

R0,[0,∞] = (R0 ⊗̂Ainf)HK .

Lemma 3.19.
(1) If N is a finite module over a noetherian discrete Z/pn-algebra R0,

then (
N ⊗̂Ainf

)HK = N ⊗̂AHK
inf

(2) If R0 is a Huber ring with principal ideal of definition, then(
R0 ⊗̂Ainf

)HK = R0 ⊗̂AHK
inf

(3) If N is a finite module over a noetherian discrete Z/pn-algebra and
[mC♭

p
] ⊂ Ainf denotes the ideal generated by {[α]}α∈mC♭

p

, then(
N ⊗ [mC♭

p
]/[π]s(a)[mC♭

p
]
)HK = N ⊗ [m

K̂♭
∞

]/[π]s(a)[m
K̂♭

∞
]

Proof. In order to compute the HK-invariants of N ⊗̂Ainf , we proceed by
induction on n. If n = 1, then N is a Fp-vector space and we may choose
an Fp-basis {ej}j∈J . Then N ⊗̂Ainf = {

∑
j bjej | bj ∈ O♭

Cp
, bj → 0}, where

the coefficients bj tend to 0 with respect to the cofinite filter. It follows that

(
N ⊗̂Ainf

)HK =
{∑

j

bjej

∣∣∣∣∣ bj ∈ Ô♭
K∞ , bj → 0

}
= N ⊗̂AHK

inf
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Now assume the result holds for n− 1. We have an exact sequence

0→ pn−1(N ⊗̂Ainf)→ N ⊗̂Ainf → (N ⊗̂Ainf)/(pn−1)→ 0

Since pn−1N is a finite module over the discrete Fp-algebra R0/p, the in-
ductive hypothesis implies that we have an exact sequence

0→ pn−1N ⊗̂AHK
inf →

(
N ⊗̂Ainf

)HK → (N ⊗̂AHK
inf )/(pn−1)

There is furthermore a natural map N ⊗̂ AHK
inf →

(
N ⊗̂Ainf

)HK and a
commutative diagram

0 (pn−1N ⊗̂Ainf)HK (N ⊗̂Ainf)HK ((N/pn−1) ⊗̂Ainf)HK

0 pn−1N ⊗̂AHK
inf N ⊗̂AHK

inf (N/pn−1) ⊗̂AHK
inf 0

A diagram chase shows that the map N ⊗̂ AHK
inf → (N ⊗̂ Ainf)HK is an

isomorphism.
For the second part, let u ∈ R0 generate the ideal of definition. Since p is

topologically nilpotent in R0, each quotient ring R0/u
k is p-power torsion.

We observe that R0 ⊗̂Ainf = lim←−k lim←−k′(R0/u
k)⊗ (Ainf/[π]k′), and so

(
R0 ⊗̂Ainf

)HK = lim←−
k

(
lim←−
k′

(R0/u
k)⊗ (Ainf/[π]k′)

)HK

= lim←−
k

(
(R0/u

k) ⊗̂Ainf
)HK

= lim←−
k

(R0/u
k) ⊗̂AHK

inf = R0 ⊗̂AHK
inf

The last part follows similarly, using the fact that
(
mC♭

p
/πs(a)mC♭

p

)HK =
m
K̂♭

∞
/πs(a)m

K̂♭
∞

. □

To study the rings Λ̃HK

R0,[a,b] when [a, b] ̸= [0,∞], we require a number of
preparatory results. We will proceed by making a careful study of (R0 ⊗̂
Ainf)/(u− [π]s(a)) and bootstrapping from characteristic p to characteristic
0. However, our techniques specifically exclude the classical case, where p
is a pseudo-uniformizer of R; we use the ideals Ij ⊂ R0 defined at the
beginning of Section 3, which only differ from R0 itself when p /∈ R×.

We first record two purely algebraic lemmas.

Lemma 3.20. Let R be a ring and M an R-module, and suppose that R and
M are I-adically separated and complete, for some ideal I ⊂ R generated
by an M -regular sequence r1, . . . , rn. If M/I is free over R/I, then M is
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topologically free over R, i.e., there is a subset {ei}i∈I ⊂ M such that the
natural map {∑

i∈I
aiei

∣∣∣∣∣ ai ∈ R, ai → 0
}
→M

given by ei 7→ ei is an isomorphism.

Proof. We proceed by induction on the number of generators of I. If n = 0,
there is nothing to prove.

Assume the result for I generated by n − 1 elements. Then M/r1 is
topologically free over R/r1, and we may lift a topological basis of M/r1
to a subset {ei}i∈I ⊂M . Then we have a homomorphism of R-modules{∑

i∈I
aiei

∣∣∣∣∣ ai ∈ R, ai → 0
}
→M

which is an isomorphism modulo r1. By [20, Tag 07RC(12)], it is surjective
modulo all powers of r1. Moreover, if K denotes the kernel, the assumption
that r1 is M -regular implies that the kernel Km of the reduction modulo rm1
is simply K/rm1 . Thus, R lim1Km = 0 and our map is an isomorphism. □

Lemma 3.21. For any ring R and any ideals I1, I2 ⊂ R, there is an exact
sequence

0→ R/(I1 ∩ I2)→ R/I1 ⊕R/I2 → R/(I1 + I2)→ 0

where the map R/I1 ⊕R/I2 → R/I1 + I2 is given by (f1, f2) 7→ f1 − f2.

Proof. The map R/I1 ⊕ R/I2 → R/(I1 + I2) is clearly surjective, and the
map R/I1 ∩ I2 → R/I1 ⊕ R/I2 is clearly injective. It remains to check
exactness in the middle. So suppose we have a pair (f1, f2) ∈ R/I1 ⊕R/I2
such that f1 − f2 = 0 in R/(I1 + I2). Since the map R/(I1 ∩ I2)→ R/I2 is
surjective, we may assume that f2 = 0, and therefore that f1 ∈ (I1 +I2)/I1.
But (I1 + I2)/I1 ∼= I2/(I1 ∩ I2) as R-modules; given a representation f1 =
g1 + g2 with gi ∈ Ii, this isomorphism sends f1 to the image of g2 modulo
I1 ∩ I2. Then the natural map R/(I1 ∩ I2) → R/I1 ⊕ R/I2 carries g2 to
(f1, 0), as desired. □

We now return to the setting of interest.

Corollary 3.22. For any α ∈ m♭
K∞, the ring homomorphisms Zp[[[α]]] →

Ainf and Zp[[[α]]]→ AHK
inf are flat.

Proof. This follows from Lemma 3.20 and [20, Tag 06LE]. □

Corollary 3.23. For any α ∈ mK♭
∞

, AHK
inf and Ainf are topologically free

over Zp[[[α]]].
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Corollary 3.24. For any a ∈ Q>0, the rings ΛHK

R0,[0,∞]/(u − [π]s(a)) and
ΛR0,[0,∞]/(u− [π]s(a)) are topologically free (R0 ⊗̂Zp[[[π]s(a)]])/(u− [π]s(a))-
modules.

Lemma 3.25. Let R be a pseudoaffinoid algebra over Zp, with R0 ⊂ R
a noetherian ring of definition formally of finite type over Zp u ∈ R0 a
pseudo-uniformizer u. Suppose that N is a finite flat R0-module. Then (N ⊗̂
Ainf)/(u− [π]s(a)) and (N ⊗̂AHK

inf )/(u− [π]s(a)) are flat over R0.

In particular, ΛR0,[0,∞]/(u − [π]s(a)) and ΛHK

R0,[0,∞]/(u − [π]s(a)) are flat
over R0.

Proof. We first observe that

(N ⊗̂Ainf)/(u− [π]s(a)) ∼=
(
(N ⊗̂ Zp[[[π]s(a)]])/(u− [π]s(a))

)
⊗̂Zp[[[π]s(a)]] Ainf

and
(N ⊗̂AHK

inf )/(u−[π]s(a)) ∼=
(
(N ⊗̂ Zp[[[π]s(a)]])/(u− [π]s(a))

)
⊗̂Zp[[[π]s(a)]]A

HK
inf

By Corollary 3.24, it suffices to show that (N ⊗̂Zp[[[π]s(a)]])/(u− [π]s(a)) is
flat over R0.

Since R0, Zp[[[π]s(a)]], and R0 ⊗̂ Zp[[[π]s(a)]] are all noetherian, to prove
this we may apply [17, Theorem 22.6] with A = R0 (resp. Zp[[[π]s(a)]]),
B = R0 ⊗̂ Zp[[[π]s(a)]], M = N ⊗̂ Zp[[[π]s(a)]], and b = u− [π]s(a). Since B is
flat over A and m∩A is a maximal ideal n ⊂ R0 (resp. m∩A = ([π]s(a))) for
every maximal ideal m ⊂ B, it is enough to check that the image of u−[π]s(a)

is not a zero-divisor in M/n (resp. M/[π]s(a)). But M/m ∼= N/n⊗̂Zp[[[π]s(a)]]
(resp. M/[π]s(a) ∼= N), the image of u− [π]s(a) is the image of [π]s(a) since
every maximal ideal of R0 contains u (resp. the image of u − [π]s(a) is u),
and (N/n) ⊗̂ Zp[[[π]s(a)]] is [π]s(a)-torsion-free (resp. N is u-torsion-free).

Thus, we conclude that (N ⊗̂Zp[[[π]s(a)]])/(u− [π]s(a)) is flat over R0 and
Zp[[[π]s(a)]], as desired. □

When R has positive characteristic, we may relax the hypothesis on N
and apply the same argument:

Corollary 3.26. If R is topologically finite type over Fp((u)), R0 ⊂ R is a
ring of definition strictly topologically of finite type over Fp[[u]], and N is
a finite u-torsion-free R0-module, then (N ⊗̂Ainf)/(u− πs(a)) has no u- or
π-torsion. In particular, ΛR0,[0,∞]/(u− πs(a)) has no u- or π-torsion.

Proof. We again prove that (N ⊗̂Fp[[πs(a)]])/(u−πs(a)) is flat over Fp[[πs(a)]]
by applying [17, Theorem 22.6] with A = Fp[[πs(a)]], B = R0 ⊗̂ Fp[[πs(a)]],
M = N ⊗̂ Fp[[πs(a)]], and b = u − πs(a). This implies that the module
(N ⊗̂ Fp[[πs(a)]])/(u− πs(a)) has no π-torsion, and hence no u-torsion. □
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Lemma 3.27. If R is topologically of finite type over Fp((u)), R0 ⊂ R is a
ring of definition strictly topologically of finite type over Fp[[u]], and N is a
finite u-torsion-free R0-module, then the natural map

N ⊗̂AHK
inf →

(
(N ⊗̂Ainf)/(u− [π]s(a))

)HK

is surjective.

Proof. We have an isomorphism

(N ⊗̂Ainf)/(u− [π]s(a)) ∼=
(
(N ⊗̂ Fp[[πs(a)]])/(u− πs(a))

)
⊗̂Fp[[πs(a)]] O♭

Cp

Since N is u-torsion-free, Lemma 3.26 implies (N ⊗̂ Fp[[πs(a)]])/(u− πs(a))
is π-torsion-free. Then Lemma 3.20 implies it is topologically free over
Fp[[πs(a)]], and the result follows.

It follows that(
(N ⊗̂Ainf)/(u− [π]s(a))

)HK = (N ⊗̂AHK
inf )/(u− [π]s(a))

as desired. □

Now we can begin to bootstrap to the case where R is Zp-flat.
Recall that when p /∈ R×, we defined a sequence of ideals Ij := pjR∩R0.

Each ideal Ij is finitely generated (since R0 is noetherian), so there is a
sequence of integers kj ≥ 1 such that ukjIj ⊂ pjR0.

Lemma 3.28. With notation as above, kj ≤ jk1.

Proof. We proceed by induction on j. The case j = 1 is trivial, so assume
the result holds for j − 1. If x ∈ Ij , then ukjx = ukj−k1uk1x ∈ pjR0. But
since Ij ⊂ I1, it follows that uk1x = px′, and since p is not a zero-divisor,
ukj−k1x′ ∈ pj−1R0. By the inductive hypothesis, kj − k1 ≤ (j − 1)k1, and
the result follows. □

Lemma 3.29. With notation as above,
(1)

⋂
j Ij = {0},

(2)
⋂
j Ij

(
(R0 ⊗̂ Zp[[[π]s(a)]])/(u− [π]s(a))

)
= {0}.

Proof. If x ∈
⋂
j Ij , then for all j ≥ 1, ujk1x = pjxj for some xj ∈ R0.

This implies that x ∈
( p
uk1

)j
R for all j. Since p /∈ R×,

( p
uk1

)
R is a proper

ideal, and Krull’s intersection theorem implies that
⋂
j

( p
uk1

)j
R = {0}. Since(

(R0 ⊗̂ Zp[[[π]s(a)]])/(u− [π]s(a))
)

is noetherian, the same argument applies
to
⋂
j Ij
(
(R0 ⊗̂ Zp[[[π]s(a)]])/(u− [π]s(a))

)
. □

We first treat the case where R is a Z/pn-algebra (and In = (0)).
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Corollary 3.30. If R is topologically of finite type over (Z/pn)((u)) and
R0 ⊂ R is a ring of definition strictly topologically of finite type over
(Z/pn)[[u]], then the natural map

ΛHK

R0,[0,∞] →
(
ΛR0,[0,∞]/(u− [π]s(a))

)HK

is surjective.

Proof. We have seen that(
((R0/I1) ⊗̂Ainf)/(u− [π]s(a))

)HK ∼= ((R0/I) ⊗̂AHK
inf )/(u− [π]s(a))

and we will proceed by induction on j. We have a commutative diagram
0 (Ij/Ij+1) ⊗̂AHK

inf (R0/Ij+1) ⊗̂AHK
inf (R0/Ij) ⊗̂AHK

inf 0

0
(
(Ij/Ij+1)⊗̂Ainf/(u−[π]s(a)

)HK
(
(R0/Ij+1)⊗̂Ainf/(u−[π]s(a))

)HK
(
(R0/Ij)⊗̂Ainf/(u−[π]s(a))

)HK

Then the snake lemma implies that the middle arrow is surjective, as well.
□

Now we return to the case of a general pseudoaffinoid algebra R (where
p is not a unit).

Lemma 3.31. The natural map

ΛHK

R0,[0,∞]/(u− [π]s(a))→ ΛR0,[0,∞]/(u− [π]s(a))

is injective.

Proof. We need to check that

(u− [π]s(a))ΛR0,[0,∞] ∩ ΛHK

R0,[0,∞] = (u− [π]s(a))ΛHK

R0,[0,∞]

and it suffices to check that ΛR0,[0,∞] has no u−[π]s(a)-torsion. But (R0/u)⊗̂
Ainf has no [π]s(a)-torsion, so if x ∈ ΛR0,[0,∞] is annihilated by u − [π]s(a),
it is a multiple of u. In addition, ΛR0,[0,∞] has no u-torsion, so if x = ux′

is killed by u − [π]s(a), so is x′. Replacing x with x′ and repeating the
argument, we see that x ∈ unΛR0,[0,∞] for all n, so x = 0. □

Lemma 3.32. If x ∈ ΛR0,[0,∞] and the image of x in ΛR0,[0,∞]/(u− [π]s(a))
is a multiple of u, then the image of x in ΛHK

R0,[0,∞]/(u− [π]s(a)) is a multiple
of u.

Proof. We may write x = ux′ + (u− [π]s(a))y for x′, y ∈ ΛR0,[0,∞]. Reducing
modulo u, we have x ≡ −[π]s(a)y; since (R0/u)⊗̂Ainf has no [π]s(a)-torsion,
we see that y ≡ y′ (mod u), where y′ ∈ ΛHK

R0,[0,∞]. In other words,

x = ux′ + (u− [π]s(a))(y′ + uz)
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for some z ∈ ΛR0,[0,∞]. But then

x− (u− [π]s(a))y′ ∈ ΛHK

R0,[0,∞] ∩ uΛR0,[0,∞]

Since ΛR0,[0,∞] has no u-torsion,

ΛHK

R0,[0,∞] ∩ uΛR0,[0,∞] = uΛHK

R0,[0,∞]

and we are done. □

Lemma 3.33. The natural map

(R0/(u, Ij))⊗ (AHK
inf /[π]s(a))→ (R0/(u, Ij))⊗ (Ainf/[π]s(a))

is injective for all j ≥ 1.

Proof. We first show that the natural map Ô♭K∞/[π]s(a) → O♭Cp
/[π]s(a) is

injective. But the cokernel of the injection Ô♭K∞ → O
♭
Cp

is an Ô♭K∞-module
with no [π]s(a)-torsion, so this follows.

We proceed by induction on j. If j = 1, then R0/(u, I1) is a discrete Fp-
vector space, and therefore the map Ô♭K∞/[π]s(a) → O♭Cp

/[π]s(a) remains
injective after tensoring with R0/(u, I1). So assume the result for j− 1. We
have a commutative diagram

0 (Ij−1/(u, Ij))⊗(AHK
inf /[π]s(a)) (R0/(u, Ij))⊗(AHK

inf /[π]s(a)) (R0/(u, Ij−1))⊗(AHK
inf /[π]s(a)) 0

0 (Ij−1/(u, Ij))⊗(Ainf/[π]s(a)) (R0/(u, Ij))⊗(Ainf/[π]s(a)) (R0/(u, Ij−1))⊗(Ainf/[π]s(a)) 0

Since Ij−1/(u, Ij) is annihilated by p, the left vertical arrow is injective.
The right vertical arrow is injective by the inductive hypothesis. A diagram
chase then implies that the middle vertical arrow is injective, as desired. □

Applying this to ΛHK

R0,[0,∞]/(u− [π]s(a)) and ΛR0,[0,∞]/(u− [π]s(a)) yields
the following:

Lemma 3.34. For each j ≥ 1, there are exact sequences

0→ ΛHK

R0,[0,∞]/(u− [π]s(a), uIj)

→ ΛHK

R0,[0,∞]/(u, [π]s(a))⊕ ΛHK

R0,[0,∞]/(u− [π]s(a), Ij)

→ ΛHK

R0,[0,∞]/(u, [π]s(a), Ij)→ 0

and

0→ ΛR0,[0,∞]/(u− [π]s(a), uIj)

→ ΛR0,[0,∞]/(u, [π]s(a))⊕ ΛR0,[0,∞]/(u− [π]s(a), Ij)

→ ΛR0,[0,∞]/(u, [π]s(a), Ij)→ 0
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Proof. By Lemma 3.21, we have exact sequences
0→ R0/((u) ∩ Ij)→ R0/(u)⊕R0/Ij → R0/((u) + Ij)→ 0

Certainly uIj ⊂ (u) ∩ Ij . On the other hand, if uf ∈ Ij for some f ∈ R0,
then ukuf ∈ pjR0 for some k ≫ 0, and so f ∈ Ij . Thus, the inclusion
uIj ⊂ (u) ∩ Ij is actually an equality, and we have exact sequences

0→ R0/uIj → R0/(u)⊕R0/Ij → R0/((u) + Ij)→ 0

By Lemma 3.25, ΛHK

R0,[0,∞]/(u− [π]s(a)) and ΛR0,[0,∞]/(u− [π]s(a)) are both
flat over R0. Thus, we may extend scalars from R0 to ΛHK

R0,[0,∞]/(u− [π]s(a))
to obtain the desired result. □

Proposition 3.35. If x ∈
(
ΛR0,[0,∞]/(u− [π]s(a))

)HK and α ∈ m
K̂♭

∞
, then

[α]x is in the image of ΛHK

R0,[0,∞].

Proof. We first consider the image of x modulo I1. Since it is fixed by HK ,
it defines an element of ((R0/I1) ⊗̂ AHK

inf )/(u − [π]s(a)), and therefore so
does [α]x.

Considering instead the image of x modulo u, we obtain an element of(
(R0/u)⊗ (Ainf/[π]s(a))

)HK . There is a sequence of HK-equivariant maps

Ainf/[π]s(a) ×[α]−−−→ [α]/[πs(a)α]→ [α]/[πs(a)mC♭
p
]→ [mC♭

p
]/[πs(a)mC♭

p
]

→ [mC♭
p
]/[π]s(a)Ainf → Ainf/[π]s(a)

Since
(
[mC♭

p
]/[πs(a)mC♭

p
]
)HK = [m

K̂♭
∞

]/[πs(a)m
K̂♭

∞
], [α]x defines an element

of (R0/u)⊗ (AHK
inf /[π]s(a)).

It follows from Lemma 3.34 and Lemma 3.33 that there is some
a0 ∈ ΛHK

R0,[0,∞]/(u− [π]s(a))

such that [α]x − a0 ∈ uI1ΛR0,[0,∞]/(u − [π]s(a)). We may therefore write
[α]x− a0 = ux1, where

x1 ∈ I1
(
ΛR0,[0,∞]/(u− [π]s(a))

)HK

Then we have
ux1 = [π]s(a)x1 = [π](p−1)2/p2a[π](p−1)/p2ax1

and we may apply the previous argument to [π](p−1)/p2ax1. We obtain some
a1 ∈ ΛHK

R0,[0,∞]/(u− [π]s(a)) such that

[π](p−1)/p2ax1 − a1 ∈ uI2ΛR0,[0,∞]/(u− [π]s(a))

and [π](p−1)/p2ax1 − a1 remains fixed by HK .
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Continuing in this fashion, we obtain a sequence {aj}j≥0 of elements of
ΛHK

R0,[0,∞]/(u− [π]s(a)), such that

[α]x−
n−1∑
j=0

[π](p−1)2j/p2aaj ∈ uInΛR0,[0,∞]/(u− [π]s(a))

Since the terms [π](p−1)2j/p2aaj tend to 0, the sum
∑
j≥0[π](p−1)2j/p2aaj

converges in ΛHK

R0,[0,∞]/(u− [π]s(a)), and

[α]x−
∑
j≥0

[π](p−1)2j/p2aaj ∈
⋂
j

IjΛR0,[0,∞]/(u− [π]s(a))

To finish, we need to show that
⋂
j IjΛR0,[0,∞]/(u − [π]s(a)) = {0}. But

this follows by combining Corollary 3.24 and Lemma 3.29. □

Corollary 3.36. The natural map

ΛHK

R0,[0,∞]/(u− [π]s(a))→
(
ΛR0,[0,∞]/(u− [π]s(a))

)HK

is an isomorphism.

Proof. This follows by combining Proposition 3.35 with Lemma 3.31 and
Lemma 3.32. □

We are finally in a position to compute Λ̃HK

R0,[a,b].

Corollary 3.37. Suppose [a, b] ⊂ (0,∞). If R is a pseudoaffinoid algebra
and R0 ⊂ R is a noetherian ring of definition formally of finite type over
Zp, then

Λ̃HK

R0,[a,b] = ΛHK

R0,[0,∞]

〈
u

[π]s(b)
,
[π]s(a)

u

〉[1
u

]
Proof. We consider Λ̃HK

R0,[a,∞] and Λ̃HK

R0,[0,b] separately.
There is a natural map

ΛR0,[0,∞]

〈
[π]s(a)

u

〉
→ ΛR0,[0,∞]/(u− πs(a))

with kernel
(
1− [π]s(a)

u

)
, extending the quotient map

ΛR0,[0,∞] ↠ ΛR0,[0,∞]/(u− [π]s(a))

Given x ∈ ΛR0,[0,∞]
〈

[π]s(a)

u

〉
, there is a non-decreasing sequence {αi}i≥1 of

integers with 0 ≤ αi ≤ i− 1 for all i and lim αi
i = 0 such that

x ∈ u−αiΛR0,[0,∞] +
(
u− [π]s(a)

u

)i
ΛR0,[0,∞]

〈
[π]s(a)

u

〉
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for all i (as in the proof of [3, Lemme 2.29]). If x is fixed by HK , Corol-
lary 3.36 implies that there is some a0 ∈ ΛHK

R0,[0,∞] such that x ≡ a0

(mod u− [π]s(a)). Moreover, a0 ∈ u−α1ΛHK

R0,[0,∞].
Suppose we have a sequence a0, . . . , an−1 of elements of ΛHK

R0,[0,∞] such
that

ai ∈ ui−αi+1ΛHK

R0,[0,∞]

and

x−

n−1∑
i=0

ai

(
u− [π]s(a)

u

)i ∈ (u− [π]s(a)

u

)n
ΛR0,[0,∞]

〈
[π]s(a)

u

〉

Then it follows from Corollary 3.36 that there is some a′
n ∈ ΛHK

R0,[0,∞] such
that

x−

n−1∑
i=0

ai

(
u− [π]s(a)

u

)i− a′
n

(
u− [π]s(a)

u

)n
belongs to the ideal(

u− [π]s(a)

u

)n+1

ΛR0,[0,∞]

〈
[π]s(a)

u

〉HK

Since the sequence {αi} is non-decreasing, the summand a′
n

(
u−[π]s(a)

u

)n
belongs to

u−αn+1ΛR0,[0,∞] +
(
u− [π]s(a)

u

)n+1

ΛR0,[0,∞]

〈
[π]s(a)

u

〉
and we may write

ua′
n(u− [π]s(a))n = un+1−αn+1bn + (u− [π]s(a))n+1cn

with bn ∈ ΛR0,[0,∞] and cn ∈ ΛR0,[0,∞]
〈

[π]s(a)

u

〉
. This implies that

un+1−αn+1bn ∈ (u− [π]s(a))nΛR0,[0,∞]

Since ΛR0,[0,∞]/(u− [π]s(a)) has no u-torsion, it follows that bn is a multiple
of (u− [π]s(a))n in ΛR0,[0,∞]. Thus,

a′
n = un−αn+1

(
bn

(u− [π]s(a))n

)
+
(
u− [π]s(a)

u

)
cn

If we consider the image of a′
n in

(
ΛR0,[0,∞]/(u − [π]s(a))

)HK , we see that
it is equal to the image of un−αn+1

(
bn

(u−[π]s(a))n

)
. Thus, there is some an ∈
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un−αn+1ΛHK

R0,[0,∞] such that an ≡ a′
n (mod u− [π]s(a)). It follows that ux−(∑n

i=0 ai
(
u−[π]s(a)

u

)i)
∈
(
u−[π]s(a)

u

)n+1
Λ̃HK

R0,[a0,∞].
By induction, we obtain a sequence {ai} of elements of ΛHK

R0,[0,∞] such
that the sum

∑∞
i=0 ai

(
u−[π]s(a)

u

)i
converges in Λ̃HK

R0,[a,∞] to x.

A similar argument applies to elements of Λ̃HK

R0,[0,b]. □

3.3. Imperfect overconvergent rings. We now define imperfect period
rings, which will be noetherian pseudoaffinoid algebras over R. As in the
case of perfect overconvergent rings, we would like to consider the fiber
products of SpaR0 and SpaR with analytic subspaces of Spa A+

K . How-
ever, because we only have an explicit description of ΛHK

[0,b] and Λ◦,HK

[0,b] for
sufficiently small b, we restrict our definitions to that setting.

Let K/Qp be a finite extension and let F ′ ⊂ K∞ be its maximal unram-
ified subextension. Recall that we defined

A
(0,b]
F ′ :=

{∑
m∈Z

amX
m

∣∣∣∣∣ am ∈ OF ′ , vp(am) +mb→∞ as m→ −∞
}

to be the ring of integers of the ring of bounded analytic functions on the
half-open annulus 0 < vp(X) ≤ b over F ′. Let

rK :=
{

(2vC♭
p
(dEK/EF

))−1 if EK/EF is ramified
1 otherwise

Then we have the following:

Proposition 3.38 ([7, Proposition 7.5]). For b < rK , the assignment f 7→
f(πK) is an isomorphism of topological rings from A

(0,bvC♭
p

(πK)]
F ′ to Λ[0,b],K .

Furthermore, if we define a valuation v(0,b] on A
(0,b]
F ′ by

v(0,b]
(∑
m∈Z

amX
m

)
:= inf

m∈Z
(vp(am) +mb)

then
val[0,b](f(πK)) = 1

b
v(0,b](f)

where val[0,b] is the restriction of the corresponding valuation on Λ̃[0,b].

In the special case b = 0, ΛHK

[0,0] = AK
∼= OF ′ [[πK ]]

[
1
πK

]∧
, where the

completion is p-adic.
When 0 < b < rK , we see in particular that πK is a pseudo-uniformizer

of Λ[0,b],K . Thus, the pre-adic space SpaR0 × Spa Λ[0,b],K is exhausted by
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affinoid pre-adic spaces of the form

Spa
(
R0 ⊗̂ Λ◦

[0,b],K

)〈 u

π
1/(b′·vC♭

p
(πK))

K

〉

for positive rational numbers b′ satisfying 1
b′·vC♭

p
(πK) ∈ N. Similarly, the

pre-adic space SpaR× Spa Λ[0,b],K is exhausted by affinoid pre-adic spaces
of the form

Spa
(
R0 ⊗̂ Λ◦

[0,b],K

)〈π1/(a·vC♭
p

(πK))
K

u
,

u

π
1/(b′·vC♭

p
(πK))

K

〉
for positive rational numbers a, b′ satisfying

0 < a ≤ b′ and 1
a · vC♭

p
(πK) ,

1
b′ · vC♭

p
(πK) ∈ N

With this in mind, we may reason as in the perfect case and show:

Proposition 3.39. Suppose b ∈ (0, rK), and suppose R is topologically of
finite type over Dλ for some λ ∈ Q>0. Then if b′ ≤ bλ, the affinoid pre-adic
space Spa

(
R0 ⊗̂ Λ◦

[0,b],K
)〈

u

π
1/(b′·v

C♭
p

(π̄K ))
K

〉
is isomorphic to the localization

Spa
(
R0 ⊗̂OF ′ [[πK ]]

)〈
u

π
1/(b′·v

C♭
p

(π̄K ))
K

〉
(and is therefore actually a pseudorigid

adic space).

This motivates the following definition.

Definition 3.40. Let R be a pseudoaffinoid Zp-algebra such that R is
topologically of finite type over Dλ, and let K/Qp be a finite extension.
Fix rational numbers a ∈ Q>0 and b ∈ Q≥0 with a ≤ b < rK · λ such that

1
a·vC♭

p
(πK)) ,

1
b·vC♭

p
(πK)) ∈ Z. Then we define the Zp-algebra ΛR0,[a,b],K to be

the evaluation of the sheaf of rings O(R0⊗OF ′ )[[πK ]] on the affinoid subspace
of Spa(R0 ⊗ OF ′)[[πK ]] defined by the conditions

u ≤ π1/(b·vC♭
p

(πK))
K and π

1/(a·vC♭
p

(πK))
K ≤ u

This is a pseudoaffinoid algebra with rings of definition

ΛR0,[a,b],0,K := (R0 ⊗ OF ′)[[πK ]]
〈

u

π
1/(b·vC♭

p
(πK))

K

,
π

1/(a·vC♭
p

(πK))
K

u

〉
and

ΛR0,[a,b],0,K,λ the image of
(
R0 ⊗̂ Λ◦,HK

[0, b
λ

]

)〈
u

π
1/(b·vC♭

p
(πK))

K

,
π

1/(a·vC♭
p

(πK))
K

u

〉
and pseudo-uniformizers u and πK .
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We make an auxiliary definition ΛR0,[0,0],K := (R0 ⊗̂ OF ′)[[πK ]]
[ 1
πK

]∧
u

,
where the completion is u-adic.

If I ⊂ (0,∞) is any interval (with either open or closed endpoints), we set

ΛR,I,K := lim←−
[a,b]⊂I

ΛR,[a,b],K

If p = 0 in R, then we may take λ arbitrarily large, and hence b arbitrarily
large. Thus, we additionally define ΛR0,[0,∞],K := (R0 ⊗ OF ′)[[πK ]] in this
case.

Remark 3.41. Since ΛR,[a,b],K has noetherian ring of definition, the as-
sociated space Spa ΛR,[a,b],K is an adic space, not merely a pre-adic space.
Thus, the sheaf property with respect to covers of SpaR or with respect to
change of intervals is automatic.

The rings ΛR0,I,K are equipped with actions of Frobenius and ΓK . We
have ring homomorphisms

φ : ΛR0,[a,b],K → ΛR0,[a/p,b/p],K

but they are not isomorphisms.

Lemma 3.42. The Frobenius operator φ makes ΛR0,[0,b/p],K into a free
φ(ΛR0,[0,b],K))-module, with basis {1, [ε], . . . , [ε]p−1}.

Proof. Let ϖF ′ be a uniformizer for OF ′ . Since ΛR0,[0,b],0,K is complete for
the (ϖF ′ , π

1/(b′·vC♭
p

(πK))
K )-adic topology, it suffices by [17, Theorem 8.4] to

prove the corresponding statement for

ΛR0,[0,b],0,K/(ϖF ′ , π
1/(b′·vC♭

p
(πK))

K ) ∼= (R/u)⊗ (OF ′/ϖF ′)[[πK ]][X]

But since φ acts trivially on R/u, this follows from the classical case. □

We define categories of (φ,Γ)-modules over SpaR:

Definition 3.43. A φ-module over ΛR,(0,b],K is a coherent sheaf D of mod-
ules over the pseudorigid space

⋃
a→0 Spa(ΛR,[a,b],K) equipped with an iso-

morphism
φD : φ∗D

∼−→ ΛR,(0,b/p],K ⊗ΛR,(0,b],K D

If a ∈ (0, b/p], a φ-module over ΛR,[a,b],K is a finite ΛR,[a,b],K-module D
equipped with an isomorphism

φD,[a,b/p] : ΛR,[a,b/p],K ⊗ΛR,[a/p,b/p],K φ∗D
∼−→ ΛR,[a,b/p],K ⊗ΛR,[a,b],K D

A (φ,ΓK)-module over ΛR,(0,b],K (resp. ΛR,[a,b],K) is a φ-module over
ΛR,(0,b],K (resp. ΛR,[a,b],K) equipped with a semi-linear action of ΓK which
commutes with φD (resp. φD,[a,b/p]).
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Let ΛR,rig,K := lim−→b→0 lim←−a→0 ΛR,[a,b],K . A (φ,ΓK)-module over R is a
module D over ΛR,rig,K which arises via base change from a (φ,ΓK)-module
over ΛR,(0,b],K for some b > 0.

If L/K is a Galois extension, Λ̃HL
R0,I

and ΛR0,I,L are also equipped with
actions of HL/K := HK/HL. Thus, it makes sense to introduce (φ,Γ)-
modules “equipped with a GalL/K-action” and ask about descent:

Definition 3.44. If L/K is a finite Galois extension and D is a (φ,ΓL)-
module, we say that D is equipped with an action of GalL/K if the Galois
group GalK acts on D and in addition

• the subgroup HL ⊂ GalK acts trivially on D, and
• the induced action of GalL /HL coincides with the action of ΓL.

We also say that D is a (φ,ΓL,GalL/K)-module.

In fact, if we restrict ourselves to projective (φ,Γ)-modules, we have not
enlarged our category.

Lemma 3.45. If L/K is a finite Galois extension, then

ΛR0,[0,b],K → ΛR0,[0,b],L

is a finite free extension of rings and ΛHK
R0,I,L

= ΛR0,I,K .

Proof. Let F ′ ⊂ K∞ := K(µp∞), F ′′ ⊂ L∞ := L(µp∞) be the maximal
unramified subfields. A basis for OF ′′ over OF ′ provides a basis for (R0 ⊗̂
OF ′′)[[πK ]] over (R0 ⊗̂ OF ′)[[πK ]], so we may assume that F ′ = F ′′. Then if
e := eL∞/K∞ = [L∞ : K∞], the set {1, πL, . . . , πe−1

L } is a basis for ΛR0,[0,0],L
over ΛR0,[0,0],K .

The trace map defines a perfect pairing

ΛR0,[0,0],L × ΛR0,[0,0],L → ΛR0,[0,0],K

(x, y) 7→ Tr(xy)

The dual basis {f∗
1 = 1, . . . , f∗

e } with respect to this pairing is the same as
that constructed in [7, Section 6.3]. Since (R0 ⊗̂ Λ[0,b/λ],L)

〈
u

π
1/(b·v

C♭
p

(π̄L))
K

〉
is a ring of definition of ΛR0,[0,b],L by Proposition 3.39, [7, Corollaire 6.10]
implies that f∗

i ∈ ΛR0,[0,b],L for all i. Then for any x ∈ ΛR0,[0,b],L, we may
uniquely write x =

∑
i Tr(xπiL)f∗

i , as desired. □

Corollary 3.46. If D is a projective (φ,ΓL.GalL/K)-module of rank d over
ΛR0,[0,b],K , for some Galois extension L/K and some b > 0, then DHK is
a projective (φ,ΓK)-module over ΛR0,[0,b],K .



Galois representations over pseudorigid spaces 315

Proof. By Lemma 3.45, the extension ΛR0,[0,b],K → ΛR0,[0,b],L is a finite
flat cover; descent of modules is effective and DHK is the descent of D to
ΛR0,[0,b],K , so the natural map

ΛR0,[0,b],L ⊗ΛR0,[0,b],K DHK → D

is an isomorphism. We can check flatness after an fppf base change, so
DHK is flat over ΛR0,[0,b],K . We can also check finiteness of a module after
an fppf base change, so DHK is a finite ΛR0,[0,b],K-module. Since ΛR0,[0,b],K
is noetherian, it is finitely presented, so projective.

It remains to define the ΓK-action and show that φ : φ∗DHK → DHK is
an isomorphism. But by assumption D is equipped with an action of GalK ,
so DHK acquires an action of GalK /HK

∼= ΓK (which is compatible with
the action of ΓL, by assumption). Finally, we can check that φ : φ∗DHK →
DHK is an isomorphism after a finite flat base change, so it follows from
the corresponding statement for D. □

Proposition 3.47. For 0 < a ≤ b < ∞, the ring ΛR0,[a,b],K is flat as an
R0-module.

Proof. The set{(
u

π
1/(b·vC♭

p
(πK))

K

)n}
n≥0

∪


(
π

1/(a·vC♭
p

(πK))
K

u

)n
n≥1

provides a topological basis for ΛR0,[a,b],0,K as anR0⊗OF ′-module. Then [20,
Tag 06LE] implies it is flat. □

There are evident maps ΛR0,[a,b],K → Λ̃HK

R0,[a,b], and ΛR0,[a,b],K inherits the
valuations vR,[a,b] and vR,[a.b],λ. We will compute vR,b explicitly in the case
where R = D1.

Every element of ΛR0,[0,b],K can be written uniquely in the form∑
i∈Z aiπ

i
K , where ai ∈ OF ′ ⊗ R0 and aiu

ibvC♭
p

(πK) → 0 as i → −∞. When
R = Dλ, this condition can be translated as vDλ

(ai) + ibvC♭
p

(πK)
λ → ∞ as

i→ −∞.

Proposition 3.48. If R=D1 and b< rK , then infi∈Z{vD1(ai)+ibvC♭
p
(πK)}

is a valuation on ΛR0,[0,b],K whose ring of integers is ΛR0,[0,b],0,K , and
vD1,b(

∑
i∈Z aiπ

i
K) = 1

b infi∈Z{vD1(ai) + ibvC♭
p
(πK)}.

Proof. It is straightforward to check that infi∈Z{vD1(ai)+ibvC♭
p
(πK)} ≥ 0 if

and only if
∑
i∈Z aiπ

i
K ∈ ΛR0,[0,b],0,K . Moreover, vD1,b(aiπiK) = ivC♭

p
(πK) +

vD1 (ai)
b , yielding the second claim. □

Before we turn to the Tate–Sen axioms, we make a remark about Frobe-
nius on imperfect rings. Since the Frobenius on Λ̃R,[0,0] acts via φ(π) =
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(1 + π)p − 1 and Γ acts via γ(π) = (1 + π)χ(γ) − 1, we see that ΛR0,[0,0],F
is stable under the actions of φ and Γ. Since AK is also stable under the
actions of φ and Γ, we see that φ and Γ act on ΛR0,[0,0],K , as well. Since we
have isomorphisms φ : Λ̃HK

R,[a,b] → Λ̃HK

R,[a/p,b/p], we have induced maps

φ : ΛR,[a,b],K → ΛR,[a/p,b/p],K

However, φ : ΛR0,[0,0],K → ΛR0,[0,0],K is no longer surjective. Indeed,
ΛR0,[0,0],K is free over φ(ΛR0,[0,0],K) of rank p, and a basis is given by
{1, [ε], . . . , [ε]p−1}. We may therefore define a left inverse ψ : ΛR0,[0,0],K →
ΛR0,[0,0],K of φ via ψ(φ(a0) + φ(a1)[ε] + · · · + φ(ap−1)[ε]p−1) = a0, where
ai ∈ ΛR0,[0,0],K . Note that as p may not be invertible in R, we cannot use
the definition ψ = 1

pφ
−1 ◦ TrΛR0,[0,0],K/φ(ΛR0,[0,0],K) from the classical case.

4. The Tate–Sen axioms for families

Given a Galois representation with coefficients in Zp, base extension
gives us a vector bundle over Y. The various (φ,Γ)-modules associated
to the representation are constructed by studying the HK-invariants of
restrictions of this vector bundle to various rational subdomains of Y.

Now supposeR is a pseudoaffinoid Zp-algebra andR0 ⊂ R is a noetherian
ring of definition. If we have a Galois representation with coefficients in R
which admits a Galois-stable R0-lattice, we may similarly pass by base
extension to a vector bundle over SpaR0 × Y. The Tate–Sen axioms will
let us descend that vector bundle (restricted to an affinoid subdomain) to
a vector bundle over an imperfect overconvergent ring.

The Tate–Sen axioms concern a profinite group G0, an open normal
subgroup H0 ⊂ G0 such that G0/H0 contains Zp as an open subgroup, a
valued ring Λ̃ with a continuous action of G0, and a collection of subrings
{ΛH,k}k≫0 of Λ̃H , where H is any open subgroup of H0. These axioms
permit us to descend continuous 1-cocycles of G0 from Λ̃ to some ΛH,k.

The axioms are as follows:
(TS1) There is a constant c1 ∈ R>0 such that for all open subgroups

H1 ⊂ H2 in H0 that are normal in G, there is some α ∈ Λ̃H1

satisfying vΛ > −c1 and
∑
τ∈H2/H1 τ(α) = 1.

(TS2) There is a constant c2 ∈ R>0 such that for all open subgroups H ⊂
H0 that are normal in G, there is a collection {ΛH,k, RH,k}k≥n(H),
where ΛH,k ⊂ Λ̃H is a closed subalgebra and RH,k : Λ̃H → ΛH,k is
a ΛH,k-linear map such that
(a) if HL1 ⊂ HL2 , and k ≥ max{n(HL1), n(HL2)}, then ΛH2,k ⊂

ΛH1,k and RH1,k|ΛH2,k
= RH2,k

(b) RH,k is a ΛH,k-linear section to the inclusion ΛH,k ↪→ Λ̃H
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(c) g(ΛH,k) = ΛH,k and g(RH,k(x)) = RH,k(gx) for all x ∈ Λ̃H and
g ∈ G0

(d) vΛ(RH,k(x)) ≥ vΛ(x)− c2 for all x ∈ Λ̃H

(e) limk→∞RH,k(x) = x for all x ∈ Λ̃H
(TS3) There is a constant c3 ∈ R>0 such that for every open normal

subgroup G ⊂ G0 (setting H := G∩H0) there is an integer n(G) ≥
max{n1(G), n(H)} such that
(a) γ − 1 is invertible on XH,k := ker(RH,k)
(b) vΛ(x) ≥ vΛ((γ − 1)(x))− c3 for all x ∈ XH,k

for all k ≥ n(G) and all γ ∈ G0/H with n(γ) ≤ k.
In other words, ΛH,k is a summand of Λ̃H (as a ΛH,k-module), and a topo-
logical generator of Γ acts invertibly (with continuous inverse) on its com-
plement.

Colmez showed that if we take G0 := GalQp , H0 := ker(χ), Λ̃ := Λ̃[0,1]
(with the valuation val(0,1]), and ΛHK ,k := φ−k(ΛHK

[0,1]
)
, then the Tate–Sen

axioms are satisfied for any choices c1 > 0, c2 > 0, and c3 > 1/(p − 1) [4,
Proposition 4.2.1]. Here K is a finite extension of Qp.

Suppose that R is topologically of finite type over Dλ. We will check that
the Tate–Sen axioms hold for Λ̃R0,[0,b] for b sufficiently small, using the ring
of definition Λ̃R0,[0,b],0,λ ⊂ Λ̃R0,[0,b] and the associated valuation vR,b,λ.

Proposition 4.1. The ring Λ̃R0,[0,b] satisfies the first Tate–Sen axiom for
any b > 0 and any c1 > 0.

Proof. Choose c1 > 0. Then for any appropriate subgroups HL1 ⊂ HL2 of
H, the proof of [7, Lemme 10.1] constructs β ∈ L̂♭∞ such that Tr

L̂♭
∞/K̂♭

∞
(β) =

1, with vC♭
p
(β) arbitrarily close to 0. This implies that Tr

L̂♭
∞/K̂♭

∞
([β]) =∑

i≥0 p
i[xi] is a unit of Λ̃◦,HK

[0, b
λ

] , and therefore that
(
Tr

L̂♭
∞/K̂♭

∞
([β])

)−1
[β] ∈

Λ̃◦,HK

[0, b
λ

] satisfies vR,b,λ
((

Tr
L̂♭

∞/K̂♭
∞

([β])
)−1

[β]
)
≥ vC♭

p
(β). Thus, we merely

need to choose β such that vC♭
p
(β) > −c1. □

Corollary 4.2. Suppose M is a finite free R0-module of rank d equipped
with a continuous R0-linear action of GalK . Then there is some finite
extension L/K such that D̃L(M) :=

(
Λ̃R0,[0,1],0,λ ⊗R0 M

)HL is free over
Λ̃HL

R0,[0,1],0,λ of rank d.

Proof. Choose a basis of M and let ρ : GalK → GLd(R0) denote the Ga-
lois representation corresponding to M . Let cτ ∈ H1(HK ,GLd(Λ̃R0,[0,1],0,λ))
be the corresponding cocycle. If we let L/K be the finite extension corre-
sponding to the kernel of the homomorphism ρ : GalK → GL(M/u), the
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proofs of [4, Lemme 3.2.1] and [4, Corollaire 3.2.2] applied to the image
of c in H1(HL,GLd(Λ̃R0,[0,1],0,λ)) carry over nearly verbatim (we need to
work modulo powers of u rather than p, since p might not be a pseudo-
uniformizer), and we conclude that the restriction of c is trivial. The result
follows. □

4.1. Normalized trace maps. The next step is to construct so-called
normalized trace maps. In the classsical setting, this has the following form:

Proposition 4.3 ([7, Corollaire 8.11]). Suppose 0 < b and p−nb < rK .
Then there is a constant cK(b) (depending on K and b) and a φ−n(ΛHK

[0,p−nb]
)
-

linear map RK,n : Λ̃HK

[0,b] → φ−n(ΛHK

[0,p−nb]
)

such that

(1) RK,n is a section to the inclusion φ−n(ΛHK

[0,p−nb]
)
→ Λ̃HK

[0,b]
(2) RK,n(x)→ x as n→∞ and vb(RK,n(x)) ≥ vb(x)− p−ncK(b).
(3) RK,n commutes with the action of ΓK .

The construction of RK,n uses the fact that {[ε]i | i ∈ Z[1
p ] ∩ [0, 1)} pro-

vides a topological basis for Λ̃HK

[0,0] over ΛHK

[0,0] (and in fact for Λ̃HF

[0,∞] over
ΛHF

[0,∞] when F/Qp is unramified). In other words, for x ∈ Λ̃HK

[0,0], one can
write x =

∑
i ai(x)[ε]i for unique ai(x) tending to 0 with respect to the

cofinite filter. Then one bounds ai(x) in terms of x and shows that ai(x)
has the correct analyticity properties when x ∈ Λ̃HK

[0,b] for b > 0, and defines
RK,n(x) :=

∑
vp(i)≥−n ai(x)[ε]i.

If R is a classical affinoid algebra and R0 is its ring of definition, one
can extend RK,n by linearity to define normalized trace maps R0 ⊗̂ Λ̃HK

[0,b] →
R0 ⊗̂ φ−nΛHK

[0,p−nb], as in [4, Proposition 3.1.4]. We wish to extend this to
the setting of pseudoaffinoid algebras where p /∈ R× and construct maps
RK,n : Λ̃HK

R,[0,b] → φ−n(ΛR,[0,p−nb],K
)

for sufficiently small b.
We first observe that if R is topologically of finite type over Dλ for

some λ ∈ Q>0, then Λ̃HK

R0,[a,b]
∼= R0 ⊗̂D◦

λ
Λ̃HK

D◦
λ
,[a,b] and ΛR0,[a,b],K

∼= R0 ⊗̂D◦
λ

ΛD◦
λ
,[a,b],K . Since there is always some choice of λ = m′

m such that R is
topologically of finite type over Dλ, we may construct normalized trace
maps when R = Dλ and extend by linearity.

Proposition 4.4. If b
λ < rK , then Λ̃HK

D◦
λ
,[0,b] is a topologically free ΛD◦

λ
,[0,b],K-

module, with basis {[ε]i}. If x ∈ Λ̃HK

D◦
λ
,[0,b] and ai(x) denotes the coeffi-

cient of [ε]i when we decompose x, then vDλ,b,λ(x) ≥ infi vDλ,b,λ(ai(x)) ≥
vDλ,b,λ(x)−cK(b, λ), where cK(b, λ) is a constant depending on the field K,
b, and λ.
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Proof. Since b
λ < rK , [7, Lemme 6.5] implies that πK

[πK ] is a unit of Λ̃◦,HK

[0, b
λ

] .

It follows that Spa
(
Λ̃HK

D◦
λ
,[0,b]

)
can also be constructed as the rational local-

ization Spa
(
D◦
λ ⊗̂ Λ̃◦,HK

[0, b
λ

]

)〈
u

π
1/(b·v

C♭
p

(π̄K ))
K

〉
.

Since Λ̃◦,HK

[0, b
λ

] is topologically free over Λ◦,HK

[0, b
λ

] with basis {[ε]i}, the same is

true for
(
D◦
λ ⊗̂ Λ̃◦,HK

[0, b
λ

]

)〈
u

π
1/(b·v

C♭
p

(π̄K ))
K

〉
as a

(
D◦
λ ⊗̂Λ◦,HK

[0, b
λ

]

)〈
u

π
1/(b·v

C♭
p

(π̄K ))
K

〉
-

module. Inverting πK gives the desired result.
The claim about valuations follows directly from [7, Proposition 8.10];

cK(b, λ) is the constant Colmez denotes cK
(
b
λ

)
. □

As in the classical setting, we now define

RK,n : Λ̃HK

R0,[0,b] → φ−n
(
ΛR0,[0,p−nb],K

)
when 0 < b

λ < rK and p−n b
λ < rK , by setting

RK,n(x) =
∑

vp(i)≥−n
ai(x)[ε]i

We see from the construction that RK,n is a continuous φ−n(ΛR0,[0,p−nb],K
)
-

linear section to the inclusion φ−n(ΛR0,[0,p−nb],K
)
→ ΛHF

R0,[0,b]. In addition,
the construction of ai makes clear that aχ(γ)(γ(x)) = γ(ai(x)) for γ ∈ ΓK
and x ∈ Λ̃HK

R0,[0,b], so RK,n commutes with the action of ΓK .
Moreover, RK,n = φ−n ◦RK,0 ◦ φn, so

vR,b,λ(RK,n(x)) ≥ p−nvR,pnb,λ(a0(φn(x))
≥ p−n(vR,pnb,λ(φn(x))− cK(b, λ)
≥ vR,b,λ(x)− p−ncK(b, λ)

In summary, we have shown the following:

Proposition 4.5. Suppose 0 < b
λ < rK and p−n b

λ < rK . Then there are
constants cK(b, λ) and a continuous φ−n(ΛR0,[0,p−nb],K

)
-linear map RK,n :

Λ̃HK

R0,[0,b] → φ−n(ΛR0,[0,p−nb],K
)

such that

(1) RK,n is a section to the inclusion φ−n(ΛR0,[0,p−nb],K
)
→ Λ̃HK

R0,[0,b]
(2) RK,n(x)→x as n→∞ and vR,b,λ(RK,n(x))≥vR,b,λ(x)−p−ncK(b, λ)
(3) RK,n commutes with the action of ΓK .

Corollary 4.6. Suppose 0 < b
λ < rK . Then for any c2 > 0, the collection

{φ−n(ΛD◦
λ
,[0,b],K), RK,n} satisfies the second Tate–Sen axiom for sufficiently

large n (depending on the choice of c2).
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4.2. The action of Γ. For any finite extension K/F , the cyclotomic char-
acter defines a homomorphism χ : ΓK → Z×

p . For any γ ∈ ΓK of infinite
order, we let n(γ) := vp(χ(γ)− 1) ∈ Z≥0 ∪ {∞}.

Lemma 4.7. Let R0 ⊂ R be a noetherian ring of definition, formally of
finite type over Zp. If γ ∈ ΓK has infinite order, then

Λγ=1
R0,[0,0],K = Λ̃HK ,γ=1

R0,[0,0] = R0 ⊗ Oγ=1
F ′

Proof. We first consider the case where p = 0 in R, and we compute the
subspaces of (R0/u) ⊗̂ kF ′((πK)) and (R0/u) ⊗̂ K̂♭

∞ fixed by γ. Since R0/u
is an Fp-vector space, we may choose a basis {ei}i∈I and write

(R0/u) ⊗̂ kF ′((πK)) ∼=
{∑
i∈I

aiei

∣∣∣∣∣ ai ∈ kF ′((πK)), ai → 0
}

and

(R0/u) ⊗̂ K̂♭
∞
∼=
{∑
i∈I

aiei

∣∣∣∣∣ ai ∈ K̂♭
∞, ai → 0

}
The action of ΓK on R0/u is trivial, so [7, Proposition 9.1] implies that(

ΛR0,[0,0],K/u
)γ=1

=
(
Λ̃HK

R0,[0,0]/u
)γ=1

= (R0/u)⊗ kγ=1
F ′

Then we approximate elements of (ΛR0,[0,0],K)γ=1 and (Λ̃R0,[0,0])HK ,γ=1 u-
adically to obtain the desired result.

To bootstrap to the case where R0 is Zp-flat, we may assume that p /∈ R×

(as the classical case is handled by [4]) and again filter R0 by the ideals {Ij}
where Ij := pjR∩R0. Then Ij/Ij+1 is a finite u-torsion-free R0/I1-module
(and therefore an Fp-vector space), so we may apply the previous argument
to calculate the γ-invariants of (Ij/Ij+1) ⊗̂ kF ′((πK)) and (Ij/Ij+1) ⊗̂ K̂♭

∞.
Since

⋂
j Ij = (0), the result follows. □

Proposition 4.8. If D is a finite ΛR0,[0,b],K-module equipped with com-
muting semi-linear actions of φ and ΓK (such that the action of ΓK is
continuous), there is some n ≥ 1 such that γ − 1 acts on(

ΛR0,[0,bp−n],K ⊗ΛR0,[0,b],K D
)ψ=0

with continuous inverse for any γ ∈ ΓK .

Proof. Let D[0,b/pn] := ΛR0,[0,bp−n],K⊗ΛR0,[0,b],K D. We have a decomposition
(D[0,b/pn])ψ=0 =

⊕
j∈(Z/pn)× [ε]̃jφn(D), so it suffices to show that γ − 1 has

a continuous inverse on [ε]φn(D) for some sufficiently large n. Moreover,
since γn−1 = (γ−1)(γn−1 + · · ·+1), we may replace ΓK with a finite-index
subgroup.
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Thus, it suffices to consider γn ∈ ΓK such that χ(γn) = 1 + pn. In that
case, for x ∈ D,

γn ([ε]φn(x))− [ε]φn(x) = [ε][ε]pn
φn(γn(x))− [ε]φn(x)

= [ε]φn([ε]γn(x)− x)
= [ε]φn(Gγn(x))

where Gγn(x) := [ε]γn(x)− x = ([ε]− 1) ·
(
1 + [ε]

[ε]−1(γn − 1)
)

(x). If we can

find n such that
∑∞
k=0

(
− [ε]

[ε]−1(γn − 1)
)k

converges on D, we will therefore
be done. But the existence of such an n follows from continuity of the action
of ΓK on D. □

In the special case D = ΛR0,[0,b],K , we can deduce constructive bounds
for n and the operator norm of (γ − 1)−1.

Lemma 4.9. If R is a Dλ-algebra for λ = 1
m , γ ∈ ΓK satisfies n(γ) ≥

n0(K) and pn(γ) > 2p
p−1 (where n0(K) is a constant defined in [7] depending

on the conductor of K), and b
λ < rK , then γ − 1 is continuously invertible

on Λψ=0
R0,[0,p−n(γ)b],K , and

vR,p−n(γ)b

(
(γ − 1)−1(x)

)
≥ vR,p−n(γ)b(x) + pn(γ)vC♭

p
(π)

Remark 4.10. We may always assume that R is a Dλ-algebra with λ = 1
m ,

since we are free to shrink λ.

Proof. If R is a Dλ-algebra, then ΛR0,[0,b],K
∼= R0 ⊗̂D◦

λ
ΛD◦

λ
,[0,b],K , and it

suffices to prove that γ − 1 is continuously invertible on Λψ=0
D◦

λ
,[0,b],K . Fur-

thermore, ΛD◦
Λ,[0,b],K → ΛD◦

1 ,[0,
b
λ

],K via u 7→ um makes ΛD◦
1 ,[0,

b
λ

],K a finite
free ΛD◦

Λ,[0,b],K-module, and it suffices to check that γ − 1 is continuously
invertible on Λψ=0

D◦
1 ,[0,

b
λ

],K .
We therefore bound the operator γ − 1 on ΛD◦

1 ,[0,
b
λ

],K . As in the proof
of [7, Corollaire 9.5], given f(πK) =

∑
i∈Z aiπ

i
K ∈ ΛD◦

1 ,[0,
b
λ

],K , we write the
Taylor expansion of f(γ(πK))− f(πK) around γ = 1:

f(γ(πK))− f(πK) =
∑
k≥1

f (k)(πK)
k! (γ(πK)− πK)k

=
∑
k≥1

f (k)(πK) · πkK
k!

(
γ(πK)
πK

− 1
)k
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Since f (k)(πK)·πk
K

k! =
∑
i∈Z

( i
k

)
aiπ

i
K and

( i
k

)
∈ Z, we see that

vD1,b/λ

(
f (k)(πK) · πkK

k!

)
≥ vD1,b/λ(f(πK)

(using Proposition 3.48). We conclude that

vD1,b/λ(γ(f(πK))− f(πK)) ≥ vD1,b/λ(f(πK)) + vD1,b/λ

(
γ(πK)
πK

− 1
)

≥ vD1,b/λ(f(πK)) + pn(γ)vC♭
p
(π)− cK − vC♭

p
(π)

by [7, Lemme 9.4], where cK is a constant satisfying cK ≤ 1
p−1p

n0(K) +
vC♭

p
(π) ([7, Proposition 4.12]). Since b

λ < rK and n(γ) ≥ n0(K), we have

vD1,b/λ

(
− [ε]

[ε]− 1(γ − 1)(f(πK))
)
≥ vD1,b/λ(f(πK))+(pn(γ)−1)vC♭

p
(π)−cK

so the desired inverse exists on Λψ=0
D1,[0,p−n(γ)b/λ],K so long as pn(γ)+1−pn0(K)−

2p > 0. The assumption that pn(γ) > 2p
p−1 is sufficient to ensure this. □

Proposition 4.11. Suppose R is a Dλ-algebra for λ = 1
m , suppose n sat-

isfies n ≥ n0(K) and pn > 2p
p−1 , and b

λ < rK . If γ ∈ ΓK satisfies n(γ) ≤ n,
then γ − 1 is invertible on Xn

R0,[0,b],K := ker(RK,n), and its inverse is con-
tinuous.

Proof. We may again begin by replacing R with D1 and ΛR0,[0,b] with
ΛD◦

1 ,[0,
b
λ

], so that vD1,b/λ = vD1,b/λ,1.
As in the proof of [7, Proposition 9.9], we first observe that γ − 1 is

injective on Xn
D◦

1 ,[0,
b
λ

],K , since Λ̃γ=1
D◦

1 ,[0,0],K = Λγ=1
D◦

1 ,[0,0],K .
If x ∈ Xn

D◦
1 ,[0,

b
λ

],K , we can write

x =
∞∑

j=n+1
(RK,j(x)−RK,j−1(x)) =

∑
i∈Z[1/p]∩[0,1)
vp(i)=−j

ai(x)[ε]i

and we have vD1,b/λ (RK,j(x)−RK,j−1(x)) ≥ vD1,b/λ(x) − p1−jcK(b, λ). If
vp(i) = −j, then φj(ai(x)[ε]i) ∈

⊕ p−1
ĩ=1

[ε]̃iΛD◦
1 ,[0,p−jb/λ],K = Λψ=0

D◦
1 ,[0,p−jb/λ],K ;

it follows by Lemma 4.9 that if j ≥ n+ 1, there is some yj ∈ Λψ=0
D◦

1 ,[0,p−jb/λ]
with

φj (RK,j(x)−RK,j−1(x)) = (γ − 1)(yj)
and

vD1,p−jb/λ(yj) ≥ pjvD1,b/λ (RK,j(x)−RK,j−1(x))− pjvC♭
p
(π)
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Therefore,

vD1,b/λ(φ−j(yj)) ≥ vD1,b/λ (RK,j(x)−RK,j−1(x))− vC♭
p
(π)

Since the terms RK,j(x) − RK,j−1(x) tend to 0 in Λ̃HK

D1,[0, b
λ

] as j → ∞, the
same is true for φ−j(yj). Thus,

∑
j≥n+1 φ

−j(yj) converges to an element
y ∈ Λ̃HK

D1,[0,b] such that (γ − 1)(y) = x and

vD1,b/λ(y) ≥ inf
j≥n+1

vD1,b/λ(φ−j(yj))

≥ vD1,b/λ(x)− sup
j≥n+1

{p1−jcK(b, λ) + vC♭
p
(π)}

This supremum exists, so (γ − 1)−1 is continuous. □

Corollary 4.12. Suppose R is a Dλ-algebra, where λ = 1
m , and 0 < b

λ <
rK . Then for any c3 >

p
p−1 , the third Tate–Sen axiom holds for the ring

Λ̃HK

R,[0,b], the maps {RH,n}n≫1, and the natural action of ΓK .

4.3. The construction of (φ, Γ)-modules. Now we may apply the ar-
guments of [4] (working u-adically rather than p-adically) to construct
(φ,Γ)-modules over rings ΛR,[0,b],K . Let R be a pseudoaffinoid Tate ring over
Dλ, where λ = 1

m with p ∤ m, with ring of definition R0 ⊂ R and pseudo-
uniformizer u ∈ R0, and let M be a free R-module of rank d equipped with
a continuous R-linear action of GalK .

Following [6, Lemme 3.18], we first find a Galois-stable lattice in M .

Lemma 4.13. Let R be as above, and let M be a free R-module of rank d
equipped with a continuous R-linear action of a compact topological group
G. Then there is a formal scheme Y → Spf(R0) and a finite projective OY-
module M equipped with a continuous OY-linear action of G such that the
natural map SpaR→ SpaR0 factors through a morphism f : SpaR→ Yad

and M ∼= f∗M .

Proof. We first observe that there is a finitely generated R0-module M0 ⊂
M such that R ⊗R0 M0 = M0[1/u] = M . Indeed, we may simply consider
a basis of M and let M0 be the R0-module it generates inside M .

Since R0 is noetherian and u-adically complete, Spf R0 is an admissible
formal scheme, and the argument of [6, Lemme 3.18] goes through verbatim
to produce an admissible formal blow-up Y → Spf R0 and a locally free OY -
module M equipped with a continuous OY -linear action of G, such that
M = Γ(Y,M )

[ 1
u

]
.

It remains to see that SpaR → SpaR0 factors through a morphism
f : SpaR → Y. If Y is the blow-up of Spf R0 along I = (f1, . . . , fr) ⊂ R0,
then Y has a cover of the form

{
Spf R0

〈
f1,...,fr

fi

〉}
i
. The ring R0

〈
f1,...,fr

fi

〉
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is a noetherian ring of definition for the rational localization

Ui := SpaR
〈
f1, . . . , fr

fi

〉
⊂ SpaR

so the natural morphism SpaR|Ui → SpaR0 factors through Yad for each i.
Since these morphisms agree on overlaps by construction, we are done. □

Now we can construct (φ,Γ)-modules, exactly as in [4].
Theorem 4.14. Let R and M be as above, and choose b > 0 such that
b
λ < rK and constants c1, c2, c3 as in the statement of the Tate–Sen axioms.
Then there is some finite Galois extension L/K and some integer n ≥ 0
such that Λ̃R,[0,b]⊗RM contains a unique projective sub-φ−n(ΛR,[0,p−nb],L

)
-

module Db,L,n(M) such that
• Db,L,n(M) is stable by GalL and fixed by HL,
• The natural map Λ̃R,[0,b]⊗φ−n

(
ΛR,[0,p−nb],L

)Db,L,n(M)→ Λ̃R,[0,b]⊗R
M is an isomorphism
• Locally on SpaR, Db,L,n(M) admits a basis which is c3-fixed by ΓK ,

that is, if γ ∈ ΓK , the matrix G with respect to this basis satisfies
vΛ(G− Id) > c3.

Proof. After making an admissible formal blow-up on Spf R0 and localizing
on SpaR, we may assume that M has a Galois-stable R0-lattice M0 ⊂M .
Let k be an integer such that vR,b(uk) > c1 + 2c2 + 2c3, and let L/K be
a finite Galois extension such that GalL acts trivially on M0/u

kM0. Then
by Corollary 4.2, (Λ̃R0,[0,1] ⊗R0 M0)HL is a free Λ̃HL

R0,[0,1]-module of rank d.
We choose a basis and let σ 7→ Uσ denote the corresponding cocycle. The
proof of [4, Proposition 3.2.6] carries over nearly verbatim (working modulo
powers of u rather than p), and yields B ∈ 1 + uk Matd(Λ̃R0,[0,b]) such that
vR,b(B − 1) > c2 + c3 and σ 7→ B−1Uσσ(B) is trivial on HL and valued
in Mat(φ−n(G)(ΛR0,[0,p−n(G)b],L)). This shows the existence of Db,L,n(M); it
remains to check t hat it is unique.

Suppose there are two such submodules. We may choose bases for each,
and we obtain corresponding cocycles σ 7→ Wσ and σ 7→ W ′

σ valued in
Mat(φ−n(G)(ΛR0,[0,p−n(G)b],L)). Since these submodules generate the same
Λ̃R0,[0,b]-module, there is some matrix C ∈ Mat Λ̃R0,[0,b] such that W ′

σ =
C−1Wσ(C). But [4, Proposition 3.2.5] also carries over nearly verbatim,
and shows that C actually has coefficients in φ−n(G)(ΛR0,[0,p−nb],L)). □

Definition 4.15. Let M be a rank-d representation of GalK with coeffi-
cients in R, and choose b > 0 with b

λ < rK , where R is a Dλ-algebra and
λ = 1

m with p ∤ m. Then we define
(1) Db,K(M) :=

(
φn(L)(Dpn(L)b,L,n

))HK
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(2) If I ⊂ [0, b] is an interval (which may have open endpoints), we
define DI,K(M) := ΛR,I,K ⊗ΛR,[0,b],K Db,K(M)

(3) Drig,K(M) := lim−→b→0D(0,b],K(M)
If K is clear from context, we often drop it from the notation.

After localizing on SpaR, we may assume that M has a Galois-stable
R0-lattice. Then it follows from Corollary 3.46 that Db,K(M), and hence
DI,K(M) and Drig,K(M), is a projective (φ,ΓK)-module.

Remark 4.16. The uniqueness of Db,L,n(M) ensures that the construction
is functorial.

5. Galois cohomology

We conclude by giving a definition of general (φ,Γ)-moduels over a pseu-
doaffinoid algebra R, and explaining how to compute the Galois cohomology
of a Galois representation M in terms of its (φ,Γ)-module Drig(M).

Definition 5.1. A φ-module over ΛR,(0,b],K is a coherent sheaf D of mod-
ules over the pseudorigid space

⋃
a→0 Spa(ΛR,[a,b],K) equipped with an iso-

morphism
φD : φ∗D

∼−→ ΛR,(0,b/p],K ⊗ΛR,(0,b],K D

If a ∈ (0, b/p], a φ-module over ΛR,[a,b],K is a finite ΛR,[a,b],K-module D
equipped with an isomorphism

φD,[a,b/p] : ΛR,[a,b/p],K ⊗ΛR,[a/p,b/p],K φ∗D
∼−→ ΛR,[a,b/p],K ⊗ΛR,[a,b],K D

A (φ,ΓK)-module over ΛR,(0,b],K (resp. ΛR,[a,b],K) is a φ-module over
ΛR,(0,b],K (resp. ΛR,[a,b],K) equipped with a semi-linear action of ΓK which
commutes with φD (resp. φD,[a,b/p]).

A (φ,ΓK)-module over R is a module D over ΛR,rig,K which arises via
base change from a (φ,ΓK)-module over ΛR,(0,b],K for some b > 0.

For any finite extension K/Qp, we may write ΓK ∼= Γp-tors
K ×Γcyc

K , where
Γp-tors
K denotes the p-torsion subgroup of ΓK and Γcyc

K is its procyclic quo-
tient; Γp-tors

K is trivial unless p = 2, in which case it could be (Z/4)×. Then
for any topological generator γ of Γcyc

K , we define the Fontaine–Herr–Liu
complex

C•
φ,Γ : D φD−1,γ−1−−−−−−−→ D ⊕D (γ−1)⊕(1−φD)−−−−−−−−−→ D

(concentrated in degrees 0, 1, and 2). We let H i
φ,ΓK

(D) denote its cohomol-
ogy in degree i. We remark that, as in [14, Section 2.3], the complex C•

φ,Γ is
independent of the choice of γ up to canonical R-linear quasi-isomorphism.

If M is a Qp-linear representation of GalK and Drig,K(M) is the asso-
ciated Galois representation over lim−→b→0 Λ(0,b],K , then we have a canonical
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quasi-isomorphism RΓ(GalK ,M) ∼−→ C•
φ,Γ between (continuous) Galois co-

homology and Fontaine–Herr–Liu cohomology [15, Theorem 2.3]. The same
result holds for families of projective Galois representations with coefficients
in classical Qp-affinoid algebras [18, Theorem 2.8]; we will prove the corre-
sponding result in the pseudorigid setting.

Theorem 5.2. Let R be a pseudoaffinoid algebra, and let M be a finite pro-
jective R-module equipped with a continuous R-linear action of GalK . Then
the Galois cohomology RΓ(GalK ,M) and the Fontaine–Herr–Liu cohomol-
ogy RΓ

(
Γp-tors
K , C•

φ,Γcyc
K

(DK,[0,b](M))
)

of the associated (φ,ΓK)-module are
canonically isomorphic.

We also deduce the analogous result for Drig(M):

Corollary 5.3. Let R be a pseudoaffinoid algebra, and let M be a finite pro-
jective R-module equipped with a continuous R-linear action of GalK . Then
the Galois cohomology H•(GalK ,M) and the cohomology of the Fontaine–
Herr–Liu complex RΓ

(
Γp-tors
K , C•

φ,Γ(Drig,K(M))
)

of the associated (φ,ΓK)-
module are canonically isomorphic.

Proof. Replacing K with the extension corresponding to the quotient ΓK ↠
Γp-tors
K , the Hochschild–Serre spectral sequence implies that we may assume

that Γp-tors
K is trivial. After making an admissible formal blowup on Spf R0

and localizing on SpaR, we may again assume that M is a free R-module
containing a free GalK-stable R0-lattice, and there is some finite Galois ex-
tension L/K and some b > 0 such that D′

b := ΛR0,[0,b],L⊗ΛR0,[0,b],K Db,K(M)
is free, by Lemma 3.45 and the proof of Corollary 3.46. Copying the proof
of [13, Proposition 1.2.6] verbatim, we see that the natural morphism[

lim−→
b→0

D′
b
φ−1−−→ lim−→

b→0
D′
b/p

]
→
[
ΛR,rig,K ⊗Db

φ−1−−→ ΛR,rig,KD′
b/p

]
is a quasi-isomorphism. Since Db,K(M) is a direct summand of D′

b as a
φ-module, the same holds for the natural morphism[

lim−→
b→0

Db,K(M) φ−1−−→ lim−→
b→0

Db/p,K(M)
]
→
[
Drig,K(M) φ−1−−→ Drig,K(M)

]
The Fontaine–Herr–Liu complex is the total complex of the double com-

plex

Drig,L(M) Drig,L(M)

Drig,L(M) Drig,L(M)

φ−1

φ−1
γ−1 γ−1
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and colimits commute with taking cohomology; we therefore get a quasi-
isomorphism

lim−→
b→0

C•
φ,Γcyc

L
(Db,L(M)) ∼−→ Drig,L(M)

as desired. □

Remark 5.4. If p ̸= 2, then we see that Galois cohomology is computed
by the Fontaine–Herr–Liu complex.

The key is an Artin–Schreier calculation:

Proposition 5.5. Let R be a pseudoaffinoid Dλ-algebra and let R0 ⊂ R
be a ring of definition strictly topologically of finite type over D◦

λ. Then for
any b > 0, there is an exact sequence of R0-modules

0→ R0 → Λ̃R0,[0,b],0
φ−1−−→ Λ̃R0,[0,b/p],0 → 0

We first compute modulo u:

Lemma 5.6. If R is a pseudoaffinoid Dλ-algebra and R0 ⊂ R is a ring of
definition strictly topologically of finite type over D◦

λ, then for any b ∈ (0,∞]
we have an exact sequence

0→ R0/u→ Λ̃R0,[0,b],0/u
φ−1−−→ Λ̃R0,[0,b/p],0/u→ 0

Proof. We may write
Λ̃R0,[0,b],0/u

∼= ΛR0,[0,∞][Y ]/([ϖ]1/bY, u)
and

Λ̃R0,[0,b/p],0/u ∼= ΛR0,[0,∞][Y ′]/([ϖ]p/bY ′, u)
so that the map φ : Λ̃R0,[0,b],0/u → Λ̃R0,[0,b/p],0/u carries Y to Y ′ and the
identity map carries Y to [ϖ](p−1)/bY ′. We may filter R0/u by powers of p;
if we reduce modulo p, R0/(u, p) is an Fp-vector space, and it suffices to
prove that the sequence

0→ Fp → O♭
Cp

[Y ]/(ϖ1/bY ) φ−1−−→ O♭
Cp

[Y ′]/(ϖp/bY ′)→ 0
is exact.

Given a polynomial f(Y ) :=
∑
i aiY

i ∈ O♭
Cp

[Y ],

(φ− 1)(f(Y )) =
∑
i

(φ(ai)−ϖi(p−1)/bai)Y ′i

To compute the kernel of φ − 1, we may assume that vC♭
p
(ai) < 1

b for
all i with ai ̸= 0, and that vC♭

p
(φ(ai) − ϖi(p−1)/bai) ≥ p

b for i ≥ 1.
We have vC♭

p
(φ(ai) −ϖi(p−1)/bai) ≥ min{pvC♭

p
(ai), i(p−1)

b + vC♭
p
(ai)}, with

equality unless vC♭
p
(ai) = i

b . If i ≥ 1, this contradicts the assumption
that vC♭

p
(ai) < 1

b , so in that case vC♭
p
(φ(ai) − ϖi(p−1)/bai) ≥ p

b implies
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min{pvC♭
p
(ai), i(p−1)

b + vC♭
p
(ai)} ≥ p

b . But pvC♭
p
(ai) < p

b by assumption, so
this is impossible. Thus, if f(Y ) represents an element of the kernel of φ−1,
its coefficients in positive degree have valuation at least 1

b , and therefore
vanish in O♭

Cp
[Y ]/(ϖ1/bY ). Thus, we may assume that f(Y ) ∈ O♭

Cp
, and

therefore that it is an element of Fp.
To see that φ − 1 : O♭

Cp
[Y ]/(ϖ1/bY ) → O♭

Cp
[Y ′]/(ϖp/bY ′) is surjec-

tive, we may lift an element of O♭
Cp

[Y ′]/(ϖp/bY ′) to a polynomial g(Y ′) :=∑
i biY

′i ∈ O♭
Cp

[Y ′], and choose ai such that api −ϖi(p−1)/bai = bi. Then if
f(Y ) :=

∑
i aiY

i, we have (φ− 1)(f(Y )) = g(Y ), as desired.
Now suppose that we have an exact sequence

0→ R0/(u, pk)→ Λ̃R0,[0,b],0/(u, p
k) φ−1−−→ Λ̃R0,[0,b/p],0/(u, pk)→ 0

and consider the diagram

0 0 0

0 pkR0/(u, pk+1) pkΛ̃R0,[0,b],0/(u, pk+1) pkΛ̃R0,[0,b/p],0/(u, pk+1) 0

0 R0/(u, pk+1) Λ̃R0,[0,b],0/(u, pk+1) Λ̃R0,[0,b/p],0/(u, pk+1) 0

0 R0/(u, pk) Λ̃R0,[0,b],0/(u, pk) Λ̃R0,[0,b/p],0/(u, pk) 0

0 0 0

φ−1

φ−1

φ−1

The bottom row is exact by assumption, and the columns are exact by
construction. Moreover,

pkΛ̃R0,[0,b],0/(u, p
k+1) ∼= pkR0/(u, pk+1) ⊗̂ O♭

Cp
[Y ]/(ϖ1/bY )

and

pkΛ̃R0,[0,b/p],0/(u, pk+1) ∼= pkR0/(u, pk+1) ⊗̂ O♭
Cp

[Y ′]/(ϖp/bY ′)

Since pkR0/(u, pk+1) is an Fp-vector space, the preceding calculation shows
that the top row is exact, as well. A diagram chase then shows that the
middle row is exact, as desired. □

Proof of Proposition 5.5. We work modulo successive powers of u; we claim
that for any k ≥ 1, the sequence

0→ R0/u
k → Λ̃R0,[0,b],0/u

k φ−1−−→ Λ̃R0,[0,b/p],0/u
k → 0
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is exact. We have proved the result for k = 1, so we proceed by induction
on k. Assume the result for k and consider the diagram

0 0 0

0 ukR0/u
k+1 ukΛ̃R0,[0,b],0/u

k+1 ukΛ̃R0,[0,b/p],0/u
k+1 0

0 R0/u
k+1 Λ̃R0,[0,b],0/u

k+1 Λ̃R0,[0,b/p],0/u
k+1 0

0 R0/u
k Λ̃R0,[0,b],0/u

k Λ̃R0,[0,b/p],0/u
k 0

0 0 0

φ−1

φ−1

φ−1

The bottom row is exact by assumption and the columns are exact by
construction. Since R0 has no u-torsion, multiplication by uk defines an
isomorphism R0/u

×uk

−−→ ukR0/u
k+1, and the top row is isomorphic to

0→ R0/u→ Λ̃R0,[0,b],0/u
φ−1−−→ Λ̃R0,[0,b/p],0/u→ 0

which is exact. Then a diagram chase shows that the middle row is exact,
as well.

Now we consider the inverse limit as k → ∞; Λ̃R0,[0,b],0 and Λ̃R0,[0,b/p],0
are u-adically separated and complete (since u ∈ ϖ1/b), so we have an exact
sequence

0→ R0 → Λ̃R0,[0,b],0
φ−1−−→ Λ̃R0,[0,b/p],0

Moreover, the transition maps R0/u
k+1 → R0/u

k are surjective, so the
Mittag-Leffler condition ensures that φ − 1 : Λ̃R0,[0,b],0 → Λ̃R0,[0,b/p],0 is
surjective, so we are done. □

Lemma 5.7. For any finite extension K/Qp and all sufficiently small b >
0, there is a quasi-isomorphism

[Λ̃HK

R0,[0,b]]
∼−→ C•

cont

(
HK , Λ̃R0,[0,b]

)
where C•

cont(HK , Λ̃R0,[0,b]) is the continuous Galois cohomology.

Proof. We need to prove that H i
cont(HK , Λ̃R0,[0,b]) = 0 for i ≥ 1. But this

follows from the first Tate–Sen axiom. □

Now we can prove the main comparison.
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Proof of Theorem 5.2. Let K ′/K denote the extension corresponding to
the quotient ΓK ↠ Γp-tors

K . The Hochschild–Serre theorem implies that
the natural map RΓ

(
Γp-tors
K , RΓ(GalK′ ,M)

)
→ RΓ(GalK ,M) is a quasi-

isomorphism, so we may replace K with K ′ and prove that RΓ(GalK ,M)
is computed by Cφ,ΓK

(Db,K(M)) when Γp-tors
K is trivial.

After making an admissible formal blow-up on Spf R0 and localizing on
SpaR, we may assume that M is a free R-module and contains a free GalK-
stable R0-lattice M0. There is an associated finite projective (φ,ΓL)-module
Db,K(M0) for some b, and the natural comparison map

Λ̃R0,[0,b] ⊗ΛR0,[0,b],K Db,K(M0)→ Λ̃R0,[0,b] ⊗R0 M0

is an isomorphism, equivariantly for the actions of GalK , φ, and ΓK . We
deduce that there is a natural exact sequence

0→M0 → Λ̃R0,[0,b] ⊗ΛR0,[0,b],K Db,K(M0)
φ−1−−→ Λ̃R0,[0,b/p] ⊗ΛR0,[0,b/p],K Db/p,K(M0)→ 0

Applying continuous HK-cohomology, Lemma 5.7 implies that we have a
quasi-isomorphism
C•

cont(HK ,M0)
∼−→
[
Λ̃HK

R0,[0,b]⊗ΛR0,[0,b],K Db,K(M0) φ−1−−→ Λ̃HK

R0,[0,b/p]⊗ΛR0,[0,b/p],K Db/p,K(M0)
]

A Hochschild–Serre argument shows that we have a quasi-isomorphism

C•
cont(GalK ,M0) ∼−→ C•

φ,ΓK
(Λ̃HK

R0,[0,b] ⊗ΛR0,[0,b],K Db,K(M0))

so we need to show that the natural map

C•
φ,ΓK

(Db,K(M))→ C•
φ,ΓK

(Λ̃HK

R0,[0,b] ⊗ΛR0,[0,b],K Db,K(M))

is a quasi-isomorphism. It suffices to show that the cohomology of ΓK acting
on Xn

R0,[0,b],K ⊗φ−n(ΛR0,[0,p−nb],K,0)Db,K,n(M0) is trivial for sufficiently small
b > 0, or more concretely, if γ is a topological generator of the procyclic
part of ΓK , that the action of γ− 1 is continuously invertible. But we have
computed an explicit topological basis for Xn

R0,[0,b],K , so an argument as in
Proposition 4.8 gives the desired result. □

Appendix A. Fiber products

In this appendix, we explain how to construct fiber products

Spa(R,R+)×Spa(S,S+) Spa(R′, R′+)

of Tate pre-adic spaces. Huber [10, Proposition 1.2.2] explains how to do
this for Huber rings under various sets of hypotheses: either (R,R+) is
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“locally of weakly finite type” over (S, S+) and (S, S+) → (R′, R′+) is an
adic morphism, or (R,R+) can be “locally of finite type” over (S, S+).
However, Zp[[u]]

[ p
u

]∧[ 1
u

]
is not locally of finite type over Zp, and neither are

rings like Ã(0,r] and A(0,p−nr]
K ; moreover, none of these rings have rings of

definition which are adic Zp-algebras.
Let (R,R+) and (R′, R′+) be complete admissible Huber pairs over

(S, S+). That is, R, R′, and S are finitely generated over rings of defi-
nition R0 ⊂ R+, R′

0 ⊂ R′+, and S0 ⊂ S+, respectively; let I ⊂ R0 and
I ′ ⊂ R′

0 be ideals of definition. It is asserted in [19] that the fiber product
X := Spa(R,R+) ×Spa(S,S+) Spa(R′, R′+) can be constructed in the cate-
gory of pre-adic spaces; we provide a construction here for the convenience
of the reader.

Recall the definition of a pre-adic space from [19]:

Definition A.1. Let (V )ind be the category of triples (X,OX , (|·(x)|)x∈X),
where X is a topological space, OX is a sheaf of ind-topological rings, and
for each x ∈ X, |·(x)| is an equivalence class of continuous valuations on
OX,x. For a Huber pair (A,A+), we define Spaind(A,A+) ∈ (V )ind to be
(X,O ind

X , (|·(x)|)x∈X), where X = Spa(A,A+), O ind
X is the sheafification of

the presheaf OX in the category of ind-topological rings, and the valuations
stay the same.

A pre-adic space is an object of (V )ind which is locally isomorphic to
Spaind(A,A+) for some complete Huber pair (A,A+).

By [19, Proposition 3.4.2],
Hom(V )ind(Spaind(A,A+), Spaind(B,B+)) = HomCAff((B,B+), (A,A+))

for all complete Huber pairs (A,A+), (B,B+) (where CAff denotes the
category of complete Huber pairs). This permits us to study pre-adic spaces
via a functor of points approach.

We wish to construct the fiber product X := Spaind(R,R+)×Spaind(S,S+)
Spaind(R′, R′+). This fiber product must be final among spaces Y equipped
with maps Y → Spa(R,R+) and Y → Spa(R′, R′+) such that the composi-
tions Y → Spa(R,R+)→ Spa(S, S+) and Y → Spa(R′, R′+)→ Spa(S, S+)
agree.

Proposition A.2. Let notation be as above. The fiber product
Spaind(R,R+)×Spaind(S,S+) Spaind(R′, R′+)

is representable in the category of pre-adic spaces.

Proof. If R = R+ = R0, R′ = R′+ = R′
0, and S = S+ = S0, then R+, R′+,

and S+ are rings of definitions, and we may simply take R0 ⊗S0 R
′
0 and

complete (I ⊗R′
0 +R0 ⊗ I ′)-adically.
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To handle the general case, we write R = R0[X]/J and R′ = R′
0[X ′]/J ′,

where X and X ′ are finite collections of elements generating R and R′, and
J ⊂ R0[X] and J ′ ⊂ R′

0[X ′] are ideals; let r, r′ be the images of X,X ′ in
R,R′, respectively. Let g : (S, S+)→ (R,R+) and g′ : (S, S+)→ (R′, R′+)
be the structure maps. If necessary, we replace S0 with S′

0 := S0∩g−1(R0)∩
g′−1(R′

0); S′
0 is an open and bounded subring of S, hence a ring of definition,

and it satisfies g(S′
0) ⊂ R0 and g′(S′

0) ⊂ R′
0.

Let (T, T+) be a complete affinoid Huber pair over (S, S+), and suppose
that there are homomorphisms f : (R,R+)→ (T, T+) and f ′ : (R′, R′+)→
(T, T+) over (S, S+). Therefore, there are homomorphisms R+⊗S+ R′+ →
T+ and R ⊗S R′ → T . For r ∈ R, consider f(r) ∈ T . Since T+ ⊂ T is
an open subring, there is some open neighborhood V ⊂ T+ of 0 such that
f(r) ·V ⊂ T+. Since f ′(I ′) must consist of topologically nilpotent elements,
there is some n≫ 0 such that f ′(I ′n) ⊂ V , and therefore f(r)·f ′(I ′n) ⊂ T+

consists of integral elements. Similarly, for each r′ ∈ R′, there is some n′ ≫ 0
such that f ′(r′) · f(In′) consists of integral elements. Since R and R′ are
finitely generated over R0 and R′

0, respectively, we may choose n, n′ ≫ 0
such that f(r) · f ′(I ′n), f ′(r′) · f(In′) ⊂ T+.

We topologize R⊗S R′ so that
(R0 ⊗S0 R

′
0)
[
(r ⊗ 1)(R0 ⊗ I ′)n, (1⊗ r′)(I ⊗R′

0)n
]

is a ring of definition: We let (R0 ⊗S0 R
′
0)[X,X ′](n) be the polynomial ring

(R0⊗S0 R
′
0)[X,X ′] and we equip it with the R0⊗I ′ +I⊗R′

0-adic topology.
That is,

Um :=

∑
ν,ν′

aν,ν′XνX ′ν′

∣∣∣∣∣∣ aν,ν′ ∈ (R0 ⊗ I ′ + I ⊗R′
0)n(ν+ν′)+m for all ν, ν ′


is a basis of neighborhoods of 0. We set

(R⊗S R′)(n) := (R0 ⊗S0 R
′
0)[X,X ′](n)/(J ⊗R′

0, R0 ⊗ J ′)

so that (R ⊗S R′)(n),0 := U0/(J ⊗ R′
0, R0 ⊗ J ′) is a ring of definition, and

we let (R⊗S R′)+
(n) be the integral closure of the image of

(R+ ⊗S+ R′+)
[
(r ⊗ 1)(R0 ⊗ I ′)n, (1⊗ r′)(I ⊗R′

0)n
]

in (R⊗S R′)(n).
Now we define ((R ⊗̂S R′)(n), (R ⊗̂S R′)+

(n)) to be the completion of the
pair (R⊗S R′)(n), (R⊗S R′)+

(n)), and we set

X(n) := Spaind((R ⊗̂S R′)(n), (R ⊗̂S R′)+
(n))

The homomorphisms g : (R,R+) → (T, T+) and g′ : (R′, R′+) → (T, T+)
induce a unique morphism Spaind(T, T+)→ X(n), by construction.
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Furthermore, there are natural maps (R ⊗̂SR′)(n+1) → (R ⊗̂SR′)(n), and
they are compatible with the natural maps from R, R′, and S. The induced
maps X(n) → X(n+1) make X(n) into a rational subset of X(n+1) for all n,
so we may define a pre-adic space X :=

⋃
nX(n). Then X is the pre-adic

space representing Spaind(R,R+)×Spaind(S,S+) Spaind(R′, R′+). □

Example A.3. Let R = R+ = Zp[[u]], R′ = Qp, R′+ = Zp, and S = S+ =
Zp, so that we may take R0 = Zp[[u]], R′

0 = R′+ = Zp, and S0 = S+ = Zp.
Then we need un ·

(1
p

)
to be bounded for varying n, so we need to consider

quotients of

R⟨X⟩(p,u)n =

∑
ν≥0

aνX
ν

∣∣∣∣∣∣
aν ∈ Zp[[u]] and for all m,
aν ∈ (p, u)nν+m for almost all ν


and its subring∑

ν≥0
aνX

ν

∣∣∣∣∣∣ aν ∈ Zp[[u]], aν ∈ (p, u)nν for all ν


After we quotient by the ideal (pX−1), the latter ring becomes Zp[[u]]

[
un

p

]∧
and the former becomes Zp[[u]]

[
un

p

]∧[1
p

]
. Thus, we get the standard con-

struction for the generic fiber of Spf Zp[[u]] (cf. [12, Section 7].

Proposition A.4. Suppose (R,R+) and (R′, R′+) are Tate, with pseudo-
uniformizers u ∈ R+ and u′ ∈ R′+, respectively, and suppose S = S+.
Then (R⊗̂SR′)(n) is also Tate, and the images of u and u′ are pseudo-
uniformizers.

Proof. There are natural continuous maps R0 ⊗̂S0 R
′
0 → (R ⊗̂S R′)(n),0

and R ⊗S R′ → (R ⊗̂S R′)(n) for all n ≥ 0. Since u ⊗ 1 and 1 ⊗ u′ are
topologically nilpotent in R0 ⊗̂ R′

0 and invertible in R ⊗S R′, they are
topologically nilpotent units in (R ⊗̂S R′)(n). □

Remark A.5. We do not know whether this fiber product preserves prop-
erties such as being noetherian or being sheafy. In particular, we do not
know whether the fiber product of two adic spaces is again an adic space
(or merely a pre-adic space).
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