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We study the cohomology of families of (ϕ, �)-modules with coefficients in pseudoaffi-

noid algebras. We prove that they have finite cohomology, and we deduce an Euler

characteristic formula and Tate local duality. We classify rank-1 (ϕ, �)-modules and

deduce that triangulations of pseudorigid families of (ϕ, �)-modules can be interpolated,

extending a result of [29]. We then apply this to study extended eigenvarieties at the

boundary of weight space, proving in particular that the eigencurve is proper at the

boundary and that Galois representations attached to certain characteristic p points

are trianguline.

1 Introduction

In our earlier paper [3], we began studying families of Galois representations varying

over pseudorigid spaces, that is, families of Galois representations where the coefficients

have a non-archimedean topology but which (in contrast to the rigid analytic spaces of

Tate) are not required to contain a field. Such coefficients arise naturally in the study of

eigenvarieties at the boundary of weight space.

The theory of (ϕ, �)-modules is a crucial tool in the study of p-adic Galois

representations. At the expense of making the coefficients more complicated, it lets us

turn the data of a Galois representation into the data of a Frobenius operator ϕ and a 1-

dimensional p-adic Lie group �. Moreover, Galois representations that are irreducible

often become reducible on the level of their associated (ϕ, �)-modules. Such (ϕ, �)-

modules have played an important role in the p-adic Langlands program.
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3000 R. Bellovin

In our previous paper [3], we constructed (ϕ, �)-modules associated to Galois

representations varying over pseudorigid spaces. In the present paper, we turn to

the study of the cohomology of (ϕ, �)-modules over pseudorigid spaces have finite

cohomology, whether or not they come from Galois representations. Given a (ϕ, �)-

module D, the Fontaine–Herr–Liu complex C•
ϕ,�(D) is an explicit three-term complex,

which, when D arises from a Galois representation, computes the Galois cohomology. We

begin by proving that such families of (ϕ, �)-modules have finite cohomology, extending

the main result of [29]:

Theorem 1.1. Suppose D is a projective (ϕ, �)-module over a pseudoaffinoid algebra R.

Then C•
ϕ,�(D) ∈ D[0,2]

perf(R).

As a corollary, we deduce the Euler characteristic formula:

Corollary 1.2. If D is a projective (ϕ, �K)-module with coefficients in a pseudoaffinoid

algebra R, then χ(D) = −(rkD)[K : Qp].

This extends the result [30, Theorem 4.3]. However, the method of proof is

different: Liu proved finiteness of cohomology and the Euler characteristic formula at

the same time, making a close study of t-torsion (ϕ, �)-modules to shift weights. There

is no element t in our setting, because p is not necessarily invertible. However, because

we proved finiteness of cohomology for pseudorigid families of (ϕ, �)-modules first, we

can deduce the Euler characteristic formula by deformation, without studying torsion

objects.

We then turn to (ϕ, �)-modules with coefficients in finite extensions of Fp((u)),

and we prove Tate local duality:

Theorem 1.3. Tate local duality holds for every projective (ϕ, �)-module D over �R,rig,K .

Here �R,rig,K is a mixed- or positive-characteristic analogue of the usual Robba

ring, which we will define in section 2.1. Our proof closely follows that of [30, Theorem

4.7]; we compute the cohomology of many rank-1 (ϕ, �)-modules and then proceed by

induction on the degree, using the Euler characteristic formula to produce non-split

extensions. We are then able to finish the computation of the cohomology of (ϕ, �)-

modules of character type.

With this in hand, we are able to show that all rank-1 (ϕ, �)-modules over pseu-

dorigid spaces are of character type, following [29], and we deduce that triangulations

can be interpolated from a dense set of maximal points (in the sense of [26, Definition

2.2.7]):
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Cohomology of (ϕ, �)-Modules 3001

Theorem 1.4. Let X be a reduced pseudorigid space, let D be a projective (ϕ, �K)-

module over X of rank d, and let δ1, . . . , δd : K× → �(X, O×
X ) be a set of continuous

characters. Suppose there is a very Zariski-dense set Xcl ⊂ X of maximal points such

that for every x ∈ Xcl, Dx is trianguline with parameters δ1,x, . . . , δd,x. Then there exists

a proper birational morphism f : X ′ → X of reduced pseudorigid spaces and an open

subspace U ⊂ X ′ containing {p = 0} such that f ∗D|U is trianguline with parameters

f ∗δ1, . . . , f ∗δd.

Unlike the situation in characteristic 0, the triangulation extends over every

point of characteristic p, and there are no critical points. This is again because there

is no analogue of Fontaine’s element t in our positive characteristic analogue of the

Robba ring.

Finally, we turn to applications to the extended eigenvarieties constructed

in [25]. Adapting the Galois-theoretic argument of [17], we prove unconditionally that

each irreducible component of the extended eigencurve is proper at the boundary of

weight space, and that the Galois representations over characteristic p points of the

extended eigencurve are trianguline at p. The latter answers a question of [1].

We actually prove these results under somewhat abstracted hypotheses, in order

to facilitate deducing analogous results for other extended eigenvarieties. In particular,

our results apply to certain unitary and Hilbert eigenvarieties. However, for most

groups, the necessary results have not been proven even for Galois representations

attached to classical forms, nor have the required families of Galois representations

been constructed.

In the appendices, we have collected several results on the geometry of pseu-

dorigid spaces and Galois determinants over pseudorigid spaces necessary for our

applications.

Remark 1.5. We assume throughout that p �= 2. It should be possible to remove this

hypothesis without any real difficulty, but we would have had to work systematically

with R�
(
�

p-tors
K , C•

ϕ,�(D)
)
, rather than the usual Fontaine–Herr–Liu complex.

2 Background

2.1 Rings of p-adic Hodge theory

Let R be a pseudoaffinoid OE-algebra, for some finite extension E/Qp (we provide a

precise definition of pseudoaffinoid algebrais in A) with uniformizer �E , with ring of
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3002 R. Bellovin

definition R0 ⊂ R◦ and pseudouniformizer u ∈ R0, and assume that p �∈ R×. Let K/Qp be

a finite extension, let χcyc : GalK → Z×
p be the cyclotomic character, let HK := ker χcyc,

and let �K := GalK/HK . Given an interval I ⊂ [0, ∞], we defined rings (�̃R0,I,K , �̃+
R0,I,K) and

(�R0,I,K , �+
R0,I,K) in [3, Definition 3.2] and [3, Definition 3.40], respectively, which (when

I = [0, b]) are analogues of the characteristic 0 rings (Ã
(0,b]
K , Ã

†,s(b)

K ) and (A(0,r]
K , A†,s(r)

K )

defined in [14]. Here s : (0, ∞) → (0, ∞) is defined via s(r) := p−1
pr . We briefly recall their

definitions here and state some of their properties.

Let Ainf := W(O�
CK

), where O�
CK

:= lim←−x �→xp OCK
is the tilt of OCK

. Let ε :=
(ε(0), ε(1), . . .) ∈ O�

CK
be a choice of a compatible sequence of p-power roots of unity, with

ε(0) = 1 and ε(1) �= 1, and let π := ε −1 and π := [ε]−1 ∈ Ainf. Then if I = [a, b] for rational

numbers a, b with 0 ≤ a ≤ b ≤ ∞, we define (�̃R0,I , �̃
+
R0,I) such that

Spa(�̃R0,I , �̃
+
R0,I) = (Spa(R0 ⊗̂ Ainf, R0⊗̂Ainf)

) 〈 [π ]s(a)

u
,

u

[π ]s(b)

〉

If a = 0, we take [π ]∞
u = 0, and if b = 0, we take u

[π ]∞ = 1
[π ] .

The ring �̃R0,I has ring of definition
(
R0 ⊗̂ Ainf

) 〈 [π ]s(a)

u , u
[π ]s(b)

〉
; when b �= ∞, this

permits us to define a valuation

vR,[a,b](x) := sup
α∈C�

p:[α]x∈�̃R0,[a,b],0

−vC�
p
(α)

on it. When a = 0, we abbreviate vR,[0,b] as vR,b. When b = ∞, we let vR,[a,∞] be the u-adic

valuation.

The group HK acts on (�̃R0,I , �̃
+
R0,I), because GalK acts on Ainf and HK fixes [π ].

Then by [3, Corollary 3.36],

Spa(�̃
HK
R0,I , �̃

+,HK
R0,I ) =

(
Spa(R0 ⊗̂ Ainf

HK , R0 ⊗̂ Ainf
HK )
) 〈 [π ]s(a)

u
,

u

[π ]s(b)

〉
.

If I ⊂ I ′, we have injective maps �̃R0,I ′ → �̃R0,I and �̃
HK
R0,I ′ → �̃

HK
R0,I . Thus, if I ′ is an interval

with an open endpoint, we may define

(�̃R0,I ′ , �̃+
R0,I ′) := ∩ I⊂I ′

closed
(�̃R0,I , �̃

+
R0,I)

and

(�̃
HK
R0,I ′ , �̃

+,HK
R0,I ′ ) := ∩ I⊂I ′

closed
(�̃

HK
R0,I , �̃

+,HK
R0,I ).
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Cohomology of (ϕ, �)-Modules 3003

The rings (�R0,I,K , �+
R0,I,K) are imperfect versions of these, defined when I ⊂ [0, b]

with b sufficiently small. Given λ = m′
m ∈ Q>0 with gcd(m, m′) = 1, let (Dλ, D◦

λ) denote the

pair of rings corresponding to the localization (OE [[u]], OE [[u]])
〈
�m

E

um′
〉
. By [32, Lemma 4.8],

there is some sufficiently small λ such that R is topologically of finite type over Dλ,

so we may assume that R0 is topologically of finite type over D◦
λ, that is, there is a

continuous, open, and surjective homomorphism Dλ

〈
T1, . . . , Tn

〉
� R (This is defined as

“strictly topologically of finite type” in [38]; the definition of “topologically of finite type”

given there is slightly more general, following [23, §3]. But in the case of Tate rings, the

two definitions coincide by [23, Lemma 3.5].).

For any unramified extension F/Qp, the choice of ε gives us a natural map

kF((π)) → C�
K ; let EF denote its image, and let E ⊂ C�

K be its separable closure.

Then Gal(E/EF) ∼= HF (by the theory of the field of norms), and for any extension

K/F, we set EK := EHK . Then EK is a discretely valued field, and we may choose a

uniformizer πK ; if we lift its minimal polynomial to characteristic 0, Hensel’s lemma

implies that we have a lift πK ∈ W(C�
K), which is integral over OF [[π ]][ 1

π
]∧. We fix a choice

πK for each K, and work with it throughout (when F/Qp is unramified, we take πF to

be π ).

Assume that 0 ≤ a ≤ b < rK · λ, where rK is a constant defined in [14], and that
1

a·v
C�

K
(πK))

, 1
b·v

C�
K

(πK))
∈ Z. Let F ′ ⊂ K∞ := K(μp∞) be the maximal unramified subfield.

Then we define �R0,[a,b],K to be the evaluation of O(R0⊗OF′ )[[πK ]] on the affinoid subspace of

Spa(R0 ⊗ OF ′)[[πK ]] defined by the conditions u ≤ π
1/(b·v

C�
K

(πK))

K and π
1/(a·v

C�
K

(πK))

K ≤ u (and

similarly for �+
R0,[a,b],K ). We further set �R,[a,b],K := �R0,[a,b],K

[ 1
u

]
.

If p = 0 in R, then we may take λ arbitrarily large, and hence b arbitrarily large.

Thus, in this case, we additionally define �R0,[a,∞],K := (R0 ⊗Zp
OF ′)[[πK ]].

We further define �R,(0,b],K := lim←−a→0
�R,[a,b],K , and �R,rig,K := lim−→b→0

�R,(0,b],K .

The rings �̃
HK
R0,I and �R0,I,K are equipped with actions of Frobenius and �K . More

precisely, we have isomorphisms

ϕ : �̃R0,I
∼−→ �̃R0, 1

p I , ϕ : �̃
HK
R0,I

∼−→ �̃
HK

R0, 1
p I

and ring homomorphisms

ϕ : �R0,[a,b],K → �R0,[a/p,b/p],K .

However, the latter are not isomorphisms; ϕ makes �R0,[0,b/p],K into a free ϕ(�R0,[0,b],K)-

module, with basis {1, [ε], . . . , [ε]p−1}. We may define a left inverse ψ : �R0,[0,b/p],K →
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3004 R. Bellovin

�R0,[0,b],K by defining

ψ
(
ϕ(a0) + ϕ(a1)[ε] + · · · + ϕ(ap−1)[ε]p−1

)
= a0.

If p is a non-zero-divisor in R0, we may instead write ψ = p−1ϕ−1 ◦Tr�R0,[0,b/p],K/ϕ(�R0,[0,b],K).

There is a natural map �R0,[a,b],K → �̃R0,[a,b],K , and so �R0,[a,b],K inherits the

valuation vR,[a,b]. We can compute vR,b explicitly when R is a finite extension of Fp((u)):

Lemma 2.1. If R is a finite extension of Fp((u)), equipped with the u-adic valuation vR

(with vR(u) = 1), then

vR,b

(∑
i∈Z

aiπ
i
K

)
= 1

b
inf
i∈Z

{
vR(ai) + ibvC�

p
(πK)

}
.

Proof. It is straightforward to check that vR,b(aiπ
i
K) = ivC�

p
(πK) + vR(ai)

b , which yields

the claim. �

We can also estimate the u-adic valuation vR,[a,∞]:

Lemma 2.2. If R is a a finite extension of Fp((u)), equipped with the u-adic valuation vR

(with vR(u) = 1), then

inf
i≥0

{
vR(ai) + iavC�

p
(πK)

}
is a valuation on �R,[a,∞],K whose ring of integers is �R,[a,∞],K,0.

Proof. We again compute the valuation of monomials: vR,[a,∞](aiπ
i
K) = vR(ai) +

�iavC�
p
(πK)�. �

Thus, we may define an auxiliary valuation v′
R,a on �R,[a,∞],K via

v′
R,a

⎛⎝∑
i≥0

aiπ
i
K

⎞⎠ := inf
i≥0

{
vR(ai) + iavC�

p
(πK)

}
.

By [3, Proposition 3.10], the formation of �̃R,I behaves well with respect to

rational localization on SpaR, and �R0,I,K does, as well, since it is sheafy. Thus, if X

is a (not necessarily affinoid) pseudorigid space, we may let �̃
HK
X,I and �X,I,K denote the

corresponding sheaves of algebras on X.
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2.2 (ϕ, �)-modules and cohomology

We briefly recall the theory of (ϕ, �)-modules over pseudorigid spaces.

Definition 2.3. A ϕ-module over �R,(0,b],K is a coherent sheaf D of modules over the

pseudorigid space
⋃

a→0 Spa(�R,[a,b],K) equipped with an isomorphism

ϕD : ϕ∗D
∼−→ �R,(0,b/p],K ⊗�R,(0,b],K

D.

If a ∈ (0, b/p], a ϕ-module over �R,[a,b],K is a finite �R,[a,b],K-module D equipped with an

isomorphism

ϕD,[a,b/p] : �R,[a,b/p],K ⊗�R,[a/p,b/p],K
ϕ∗D

∼−→ �R,[a,b/p],K ⊗�R,[a,b],K
D.

A (ϕ, �K)-module over �R,(0,b],K (resp. �R,[a,b],K ) is a ϕ-module over �R,(0,b],K (resp.

�R,[a,b],K ) equipped with a semi-linear action of �K , which commutes with ϕD (resp.

ϕD,[a,b/p]).

A (ϕ, �K)-module over R is a module D over �R,rig,K , which arises via base change

from a (ϕ, �K)-module over �R,(0,b],K for some b > 0.

If D is a (ϕ, �)-module over �R,(0,b],K , and I ⊂ (0, b] is a sub-interval, we will write

DI := �R,I,K ⊗�R,(0,b],K
D to denote its restriction to the annulus I.

Let K/L be a finite extension, and let D be a (ϕ, �L)-module over �R,(0,b],K (resp. R).

As in [30, §2.2], we may define the induced (ϕ, �K)-module IndK
L (D). The underlying sheaf

(resp. module) of IndK
L (D) is just D itself, but viewed now as a sheaf on

⋃
a→0 Spa(�R,[a,b],K)

(resp. a module over �R,rig,K ). If D is projective, then [3, Lemma 3.45] implies that IndK
L (D)

is projective as well.

Let �K ⊂ �K be a torsion subgroup. Since we assume p �= 2, the quotient �K/�K

is procyclic, so we may fix γ ∈ �K whose image in �/�K is a topological generator. Then

for a (ϕ, �K)-module D, we define the Fontaine–Herr–Liu complex via

C•
ϕ,� : D

(ϕD−1,γ−1)−−−−−−−→ D ⊕ D
(γ−1)⊕(1−ϕD)−−−−−−−−−→ D

(concentrated in degrees 0, 1, and 2). We let Hi
ϕ,�K

(D) denote its cohomology in degree i.

Then as in [30, §2.1], the projection p� : D → D�K induces a quasi-isomorphism

C•
ϕ,�(D)

∼−→ C•
ϕ,�(D�K ) (where we view D�K as a (ϕ, �K/�K)-module over

(
�R,(0,b],K

)�K ). In

particular, it is independent of the choice of �K .
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3006 R. Bellovin

The main result of [3] says that if M is a R-linear representation of GalK , there

is an associated projective (ϕ, �K)-module Drig,K(M). Moreover, we have a canonical

quasi-isomorphism R�(GalK , M)
∼−→ C•

ϕ,� between (continuous) Galois cohomology and

Fontaine–Herr–Liu cohomology. This extends similar results on families of projective

Galois representations with coefficients in classical Qp-affinoid algebras [33, Theorem

2.8] and earlier work in the setting of Qp-linear Galois representations [30, Theorem 2.3].

We will define a closely related complex

C•
ψ ,� : D

(ψD−1,γ−1)−−−−−−−→ D ⊕ D
(γ−1)⊕(1−ψD)−−−−−−−−−→ D,

which is also concentrated in degrees 0, 1, and 2.

We first extend the ψ operator to (ϕ, �)-modules. The isomorphism ϕ∗D(0,b]
∼−→

D(0,b/p] induces an isomorphism

�R,(0,b/p],K ⊗ϕ(�R,(0,b],K) ϕ(D(0,b])
∼−→ D(0,b/p].

We therefore have a surjective homomorphism ψD : D(0,b/p] → D(0,b] defined by setting

ψD(a ⊗ ϕ(d)) = ψD(a)d, where a ∈ �R,(0,b/p],K and d ∈ D(0,b].

There is a morphism of complexes �D : C•
ϕ,� → C•

ψ ,� given by

The following result is standard (see e.g., [29, Proposition 2.3.6]), and the same

proof holds here:

Lemma 2.4. The morphism ψD is a quasi-isomorphism.

When there is no danger of confusion, we will generally drop the subscripts on

ϕD and ψD.

2.3 (ϕ, �)-modules of character type

Let K/Qp be a finite extension with ramification degree eK and inertia degree fK , and

let OK be its ring of integers, kK be its residue field, and �K be a uniformizer. Let K0 ⊂ K

be its maximal unramified subfield. Let R be a pseudoaffinoid algebra over Zp with ring

of definition R0 ⊂ R and pseudouniformizer u ∈ R0.
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We begin by recalling the construction of (ϕ, �K)-modules of character type

from [29].

Lemma 2.5. Let α ∈ R×. Up to isomorphism, there is a unique rank-1 R ⊗Zp
OK0

-module

DfK ,α equipped with a 1 ⊗ ϕ-semilinear operator ϕα such that ϕ
fK
α = α ⊗ 1.

Proof. This follows exactly as in [29, Lemma 6.2.3]. �

Definition 2.6. Let δ : K× → R×, and write δ = δ1δ2, where δ1, δ2 : K× ⇒ R× are

continuous characters such that δ1 is trivial on O×
K and δ2 is trivial on

〈
�K

〉
. By local

class field theory, δ2 corresponds to a continuous character δ′
2 : GalK → R×. We let

�R,rig,K(δ1) := DfK ,δ1(�K) ⊗R⊗OK0
�R,rig,K and �R,rig,K(δ2) := Drig,K(δ′

2), and we define

�R,rig,K(δ) := �R,rig,K(δ1) ⊗ �R,rig,K(δ2).

If D is a (ϕ, �K)-module and δ : K× → R× is a continuous character, we will let

D(δ) denote D ⊗�R,rig,K(δ). This is, in particular, a projective (ϕ, �K-module of rank 1. We

will let C•
ϕ,�K

(δ) and Hi
ϕ,�K

(δ) denote the Fontaine–Herr–Liu complex and the cohomology

groups of �R,rig,K(δ), respectively.

Lemma 2.7. Suppose L/K is a finite extension, and �L is a uniformizer of L with

NmL/K(�L) = �K . If δ : K× → R× is a continuous character, then ResL
K�R,rig,K(δ) is of

character type, with associated character δ ◦ NmL/K.

Proof. We may consider separately the cases where δ is trivial on O×
K and

〈
�K

〉
. If δ is

trivial on O×
K , then

ResL
K�R,rig,K(δ) = DfK ,δ(�K) ⊗R⊗OK0

�R,rig,L

=
(
DfK ,δ(�K) ⊗R⊗OK0

(R ⊗ OL0
)
)

⊗R⊗OL0
�R,rig,L.

But DfK ,δ(�K) ⊗R⊗OK
(R ⊗ OL) is a rank-1 R ⊗ OL0

-module equipped with a 1 ⊗ ϕ-

semilinear operator ϕδ(�K) such that ϕ
fL
δ(�K) = δ(�K) ⊗ 1, so it is isomorphic to DfL,δ(�K).

By definition, DfL,δ(�K) ⊗R⊗OL0
�R,rig,L is equal to �R,rig,L(δ ◦ NmL/K). On the other hand,

if δ is trivial on
〈
�K

〉
, the statement follows from functoriality for local class field

theory. �

Continuous characters vary in analytic families, and hence (ϕ, �)-modules do, as

well. More precisely, if G is a compact commutative p-adic Lie group, then the functor
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3008 R. Bellovin

on complete sheafy affinoid (Zp, Zp)-algebras

(A, A+) �→ Homcts(G, A×)

is representable by the affinoid ring (Zp[[G]], Zp[[G]]). Indeed, G is non-canonically isomor-

phic to G0×Z⊕r
p ; if κ : G → A× is a continuous character, then κ must carry G0 to the roots

of unity of A× and must carry topological generators of Z⊕r
p to 1 + A◦◦ (where A◦◦ ⊂ A

denotes the topologically nilpotent elements).

On the other hand, if G is a free abelian group, then the affinoid adic space

Spa(Z[G], Z) represents the functor on adic spaces

X �→ Hom(G, O(X)).

Since G is non-canonically isomorphic to Z⊕r, this space is isomorphic to Gad,r
m , where

Gad
m := Spa(Z[T±1], Z) (note that Spa(Z[T±1], Z[T±1]) is the “unit circle” representing the

functor X �→ O+(X)×).

Proposition 2.8. If X is an pseudorigid space, then the fiber product X ×(Z,Z) Gr
m is

representable by an analytic adic space Gr
m,X . If X is pseudorigid, then so is Gr

m,X .

Proof. We may assume that r = 1. To see that Gm,X is representable, we first assume

that X = SpaR is affinoid, where R is pseudoaffinoid with ring of definition R0 and

pseudouniformizer u ∈ R0. Then, for any h ∈ Z≥0, we let CX,h := SpaR
〈
uhT, uhT−1

〉
denote

the relative annulus; CX,h is again Tate, there are natural open immersions CX,h ⊂ CX,h+1,

and we claim that ∪hCX,h represents Gm,X in the category of adic spaces over X. Indeed,

if SpaA is an affinoid adic space over X, it is also Tate, and this claim amounts to the

assertion that for a unit f ∈ A×, the set {f , f −1} ⊂ A is bounded. But this follows from

the definition of a pseudouniformizer. Moreover, the union ∪hCX,h is independent of the

choice of u, even though the individual annuli do depend on u. Then gluing shows that

Gm,X is representable for general X. �

Definition 2.9. Suppose that G is a commutative p-adic Lie group, and G′ ⊂ G is a

compact open subgroup such that G/G′ is free and finitely generated. Then, we define

the pseudorigid character variety Ĝan := Spa(Zp[[G′]], Zp[[G′]])an ×(Z,Z) Spa(Z[G/G′], Z);

if X is an arbitrary pseudorigid space, we also define ĜX := Spa(Zp[[G′]], Zp[[G′]]) ×(Zp,Zp)

Spa(Z[G/G′], Z)X (which is also pseudorigid).

In order to make sense of the last definition, we observe that if R is a

pseudoaffinoid algebra with noetherian ring of definition R0 ⊂ R and pseudouni-
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Cohomology of (ϕ, �)-Modules 3009

formizer u ∈ R0, then Ĝ′ ×(Zp,Zp) SpaR is the (non-quasi-compact) open subspace

{u �= 0} ⊂ Spa R0 ⊗̂ Zp[[G′]].
In particular, if K is a finite extension of Qp, we have the pseudorigid moduli

space K̂× of continuous characters of K×. If K = Qp and G = Q×
p

∼= μp−1 × Z × Zp,

then Ĝan has connected components indexed by the elements of μp−1, each of which is

isomorphic to
(
Spa Zp[[Zp]]

)an × Gad
m .

Remark 2.10. In the pseudorigid setting (unlike the classical rigid analytic setting), it

is not true that ̂G1 × G2
an ∼= Ĝ1

an × Ĝ2
an

. Indeed, Spa(Zp[[T1, T2]], Zp[[T1, T2]])an consists of

all valuations that do not vanish on all three of p, T1, T2. But

Spa(Zp[[T1]], Zp[[T1]])an ×(Zp,Zp) Spa(Zp[[T2]], Zp[[T2]])an

also excludes valuations vanishing at both p and T1 (or both p and T2).

3 Finiteness of Cohomology

We wish to show that the cohomology of C•
ϕ,� is R-finite. To do this, we will apply [28,

Lemma 1.10] to the morphisms of complexes

induced by the natural homomorphisms �R,[a,b],K′ → �R,[a′,b′],K′ (where [a′, b′] ⊂ (a, b)).

More precisely, Kedlaya–Liu show that if the morphisms D[a,b] → D[a′,b′] are completely

continuous and induce isomorphisms on cohomology groups, then both complexes have

R-finite cohomology. Since C•
ϕ,� is the direct limit (as b → 0) of the inverse limit of these

complexes (as a → 0), with transition maps that are quasi-isomorphisms, this will imply

that C•
ϕ,� has R-finite cohomology.

Definition 3.1. Let A be a ring. A function |·| : A → R≥0 is called a semi-norm if

1. |0| = 0 and |1| = 1

2. |a + b| ≤ max{|a|, |b|} for all a, b ∈ R

3. |ab| ≤ |a| · |b| for all a, b ∈ R

If, in addition, |a| = 0 if and only if a = 0, we say that |·| is a norm.
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3010 R. Bellovin

We say that A is a Banach algebra if A is equipped with a norm, and it is complete

with respect to the metric induced by that norm.

If A is a complete Tate ring with ring of definition A0 and pseudouniformizer

u ∈ A0, we may define a norm on A as follows: let α ∈ R>1, and define

|a| = inf{α−n | a ∈ unA0}

We recall [28, Definition 1.3]:

Definition 3.2. Let A be a Banach algebra, and let f : M → N be a morphism of

Banach A-modules (equipped with norms |·|M and |·|N , respectively). We say that f is

completely continuous if there exists a sequence of finite A-submodules Ni of N such

that the operator norms of the compositions M → N → N/Ni tend to 0 (where N/Ni is

equipped with the quotient semi-norm)

Note that this is slightly different than the standard definition (cf. the discussion

of [28, Remark 1.12]).

We also recall [28, Definition 5.1]:

Definition 3.3. Let f : (A, A+) → (A′, A′+) be a localization of complete Tate rings over

a complete Tate ring (B, B+). We say that f is inner if there is a strict B-linear surjection

B
〈
X
〉
� A such that each element of X maps to a topologically nilpotent element of A′.

Here X is a (possibly infinite) collection of formal variables.

If B is a nonarchimedean field of mixed characteristic and A and A′ are topo-

logically of finite type over B, Kiehl proved that inner homomorphisms are completely

continuous. We prove the analogous result, using Definition 3.2 as the definition of

complete continuity (which is slightly different than Kiehl’s definition).

Proposition 3.4. If [a′, b′] ⊂ (a, b) and [a, b] ⊂ (0, ∞), then the map �R,[a,b],K → �R,[a′,b′],K
induced by restriction is completely continuous.

Proof. The pairs (�R,[a,b],K , �+
R,[a,b],K) and (�R,[a′,b′],K , �+

R,[a′,b′],K) are localizations of (R0⊗
OF ′ [[πK ]], R0 ⊗ OF ′ [[πK ]]); since [a′, b′], [a, b] ⊂ (0, ∞), they are adic affinoid algebras over

(R, R+). Since [a′, b′] ⊂ (a, b), the natural restriction map is inner. Then [28, Lemma 5.7]

implies that it is completely continuous. �
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Lemma 3.5. Suppose a ∈ (0, b/p]. Then the functor D � �R,[a,b],K ⊗�R,(0,b],K
D =: D[a,b]

induces an equivalence of categories between ϕ-modules over �R,(0,b],K and ϕ-modules

over �R,[a,b],K .

Proof. Suppose we have a ϕ-module D[a,b] over �R,[a,b],K . Then the Frobenius pull-

back ϕ∗D[a,b] is a finite module over �R,[a/p,b/p],K , and the isomorphism ϕD,[a,b/p] :

�R,[a,b/p],K ⊗�R,[a/p,b/p],K
ϕ∗D[a,b]

∼−→ �R,[a,b/p],K ⊗�R,[a,b],K
D[a,b] (and the assumption that

a ≤ b/p) provides a descent datum. Thus, we may construct a finite module D[a/p,b] over

�R,[a/p,b],K , which restricts to D[a,b].

To show that D[a/p,b] is a ϕ-module over �R,[a/p,b],K , we need to construct an

isomorphism

ϕD,[a/p,b/p] : �R,[a/p,b/p],K ⊗�R,[a/p2,b/p],K
ϕ∗D[a/p,b]

∼−→ �R,[a/p,b/p],K ⊗�R,[a/p,b],K
D[a/p,b].

By construction, we have an isomorphism

ϕD,[a,b/p] : ϕ∗D[a,b]
∼−→ �R,[a/p,b/p],K ⊗�R,[a/p,b],K

D[a/p,b]

and if we pull ϕD,[a,b/p] back by Frobenius, we obtain an isomorphism

ϕD,[a/p,b/p2] : �R,[a/p,b/p2],K ⊗�R,[a/p2,b/p2],K
ϕ∗D[a/p,b/p]

∼−→ �R,[a/p,b/p2],K ⊗�R,[a/p,b/p],K
D[a/p,b/p].

On the overlap, they induce the same isomorphism ϕ∗D[a,b/p] → �R,[a/p,b/p2],K ⊗�R,[a/p,b/p],K

D[a/p,b/p] (by construction), so we obtain the desired isomorphism ϕD,[a/p,b/p].

Iterating this construction, lets us construct a ϕ-module over �R,(0,b],K .

This proves essential surjectivity; full faithfulness follows because the natural

maps �R,(0,b],K → �R,[a,b],K have dense image. �

Corollary 3.6. If D is a ϕ-module over �R,(0,b],K , the morphism of complexes

[D(0,b]
ϕ−1−−→ D(0,b/p]] → [D[a,b]

ϕ−1−−→ D[a,b/p]]

is a quasi-isomorphism for any a ∈ (0, b/p].

Proof. This follows from the previous lemma because we may interpret the cohomology

groups as Yoneda Ext groups. �
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3012 R. Bellovin

In order to prove that the restriction map D(0,b] → D(0,b/p] induces an isomor-

phism on cohomology, we will need to use the ψ operator:

Lemma 3.7. Let D be a (ϕ, �)-module over �R,(0,b],K for some b > 0. Then there is some

0 < b′ ≤ b such that the action of γ − 1 on (D(0,b′])
ψ=0 admits a continuous inverse.

Proof. We may replace D with Ind
Qp
K (D). Since (D(0,b/pn])

ψ=0 = ⊕j∈(Z/pn)× [ε]j̃ϕn(D), it

suffices to show that γ − 1 has a continuous inverse on [ε]jϕn(D) for j prime to p and

sufficiently large n. Moreover, since γ n − 1 = (γ − 1)(γ n−1 + · · · + 1), we may replace �Qp

with a finite-index subgroup.

If γn ∈ �Qp
is such that χ(γn) = 1 + pn, then

γn

(
[ε]jϕn(x)

)
− [ε]jϕn(x) = [ε]j[ε]p

njϕn(γn(x)) − [ε]jϕn(x)

= [ε]jϕn([ε]jγn(x) − x)

= [ε]jϕn(Gγn
(x)),

where Gγn
(x) := [ε]jγn(x) − x = ([ε]j − 1) ·

(
1 + [ε]j

[ε]j−1
(γn − 1)

)
(x). Thus, if we can choose n

such that
∑∞

k=0

(
− [ε]j

[ε]j−1
(γn − 1)

)k
converges on D(0,b], we will be done.

The action of �Qp
on D[b/p,b] is continuous, so we may choose n0 such that for

n ≥ n0, the sum above converges in End(D[b/p,b]). But D[b/pk+1,b/pk]
∼= ϕ∗D[b/pk,b/pk−1] for

all k ≥ 0 and the action of � commutes with the action of ϕ, so the sum converges in

End(D[b/pk+1,b/pk]) for all k ≥ 0 and γ − 1 acts invertibly on Dψ=0
(0,b/pn] for n ≥ n0. �

Proposition 3.8. If D is a (ϕ, �)-module over R, then the cohomology of D is computed

by

D[a,b]
(ϕ−1,γ−1)−−−−−−→ D[a,b/p] ⊕ D[a,b]

(γ−1)⊕(1−ϕ)−−−−−−−−→ D[a,b/p]

for some sufficiently small b and any a ∈ (0, b/p].

Proof. We may assume that D is a (ϕ, �)-module over �R,(0,b],K for some b > 0. Since

[D(0,b]
ϕ−1−−→ D(0,b/p]] → [D[a,b]

ϕ−1−−→ D[a,b/p]] induces an isomorphism on cohomology, we

see that the cohomology of D(0,b] is computed by the above complex.

Since the cohomology of C•
ϕ,�(D) is computed by the direct limit of the cohomology

groups of C•
ϕ,�(D(0,b/pn]) as n → ∞, it suffices to show that the natural morphism
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induces an isomorphism on cohomology groups for sufficiently small b.

We first show that the morphisms 1, ϕ : C•
(0,b] ⇒ C•

(0,b/p] are homotopic. This

follows by considering the diagram

Thus, it suffices to show that the morphism ϕ : C•
(0,b] → C•

(0,b/p] is a quasi-isomorphism.

But the cokernel (in the category of complexes) is the complex

Dψ=0
(0,b/p]

(−1,γ−1)−−−−−−→ Dψ=0
(0,b/p] ⊕ Dψ=0

(0,b/p]
(γ−1)⊕1−−−−−→ Dψ=0

(0,b/p].

Since γ − 1 acts invertibly on Dψ=0
(0,b/p], the cohomology of this complex vanishes and the

result follows. �

Corollary 3.9. If D is a (ϕ, �)-module over �R,(0,b],K and [a′, b′] ⊂ [a, b] and b is sufficiently

small, the restriction map

induces an isomorphism on cohomology.

Proof. We may assume that b′ ∈ [b/p, b], so that we have induced homomorphisms

Hi
ϕ,�(D(0,b]) → Hi

ϕ,�(D(0,b′]) → Hi
ϕ,�(D(0,b/p]) → Hi

ϕ,�(D(0,b′/p]).

Since the compositions Hi
ϕ,�(D(0,b]) → Hi

ϕ,�(D(0,b/p]) and Hi
ϕ,�(D(0,b′]) → Hi

ϕ,�(D(0,b′/p]) are

isomorphisms, the homomorphism Hi
ϕ,�(D(0,b′]) → Hi

ϕ,�(D(0,b/p]) is also an isomorphism,

and we are done. �
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3014 R. Bellovin

Now we can finally prove that (ϕ, �)-modules have finite cohomology.

Theorem 3.10. If D is a (ϕ, �)-module over �R,(0,b],K , its cohomology is R-finite when b

is sufficiently small.

Proof. If [a′, b′] ⊂ (a, b), the restriction map induces a quasi-isomorphism

which is completely continuous. Then the result follows, by [28, Lemma 1.10]. �

Corollary 3.11. If D is a projective (ϕ, �)-module over R, then C•
ϕ,�K

(D) ∈ D[0,2]
perf(R).

Proof. Finiteness of the cohomology of C•
ϕ,�K

(D) implies that C•
ϕ,�K

(D) ∈ D−
perf(R), and

by [3, Proposition 3.47], the complex C•
ϕ,�K

(D) consists of flat A-modules. Then as in the

proof of [29, Theorem 4.4.5(1)], it follows that C•
ϕ,�K

(D) ∈ D[0,2]
perf(R). �

Corollary 3.12. If D is a projective (ϕ, �)-module over R, then the cohomology groups

Hi
ϕ,�(D) are coherent sheaves on Spa R.

Proof. Since C•
ϕ,�(D) ∈ Db

coh(R), we have a quasi-isomorphism R′⊗L
RC•

ϕ,�(D)
∼−→ C•

ϕ,�(R′⊗R

D) for any homomorphism R → R′ of pseudoaffinoid algebras. If R → R′ defines an

affinoid subspace of SpaR, the morphism is flat and the derived tensor product is an

ordinary tensor product. On the other hand, we have a natural homomorphism C•
ϕ,�(R′⊗R

D) → C•
ϕ,�(R′ ⊗̂R D), and it is a quasi-isomorphism after every specialization R′ � S to

a finite-length algebra (since D is flat over R). Then the result follows from [29, Lemma

4.1.5]. �

As a corollary, if R → R′ is a homomorphism of pseudoaffinoid algebras, there is

a natural quasi-isomorphism

R′ ⊗L C•
ϕ,�(D)

∼−→ C•
ϕ,�(R′ ⊗R D)

and there is a corresponding second-quadrant base-change spectral sequence. We record

the low-degree exact sequences of the base-change spectral sequence here:
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Corollary 3.13. Let R → R′ be a morphism of pseudoaffinoid algebras and let D be a

(ϕ, �K)-module over �R,rig,K . Then

1. The natural morphism R′ ⊗R H2
ϕ,�K

(D) → H2
ϕ,�K

(R′ ⊗R D) is an isomorphism.

2. The natural morphism R′ ⊗R H1
ϕ,�K

(D) → H1
ϕ,�K

(R′ ⊗R D) fits into an exact

sequence

0 → TorR
2 (H2

ϕ,�K
(D), R′) → R′ ⊗R H1

ϕ,�K
(D) → H1

ϕ,�K
(R′ ⊗R D) → TorR

1 (H2
ϕ,�K

(D), R′) → 0

3. If H1
ϕ,�K

(D) and H2
ϕ,�K

(D) have Tor-dimension at most 1, then we have an exact

sequence

0 → R′ ⊗R H0
ϕ,�(D) → H0

ϕ,�(R ⊗R′ D) → TorR
1 (H1

ϕ,�K
(D), R′) → 0.

Proof. This follows from the convergence of the base-change spectral sequence. �

Since we have shown that C•
ϕ,�K

(D) ∈ D[0,2]
perf(R) is a perfect complex, we may define

its Euler characteristic. If P• ∈ D[a,b]
perf(R) is a complex of finite projective R-modules, we

define the Euler characteristic

χ(P•) :=
b∑

i=a

(−1)irk Pi.

This is invariant under quasi-isomorphism and additive under distinguished triangles.

If D is a (ϕ, �K)-module, we simply write χ(D) for χ(P•), where P• is any complex in

D[0,2]
perf(R) quasi-isomorphic to C•

ϕ,�K
(D). Then we have the following:

Corollary 3.14 (Euler characteristic formula). If D is a projective (ϕ, �K)-module with

coefficients in a pseudoaffinoid algebra R, then χ(D) = −(rkD)[K : Qp].

We will use the slope filtration theorem of [27, Theorem 1.7.1], which holds if the

coefficients are a finite extension of either Qp or Fp((u)). We first note the following:

Lemma 3.15. If D is a (ϕ, �K)-module with coefficients in a field R, which is pure of

slope 0, then D arises from a Galois representation.

Proof. By [27, Theorem 1.7.1], the hypothesis implies that D is étale, and hence (by [27,

Proposition 1.5.5]) arises from a (ϕ, �K)-module over �R0,[0,b],Qp
for some b > 0, and hence

from a (ϕ, �K)-module over �R0,[0,b],Qp,0. �
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Proof of Corollary 3.14. Euler characteristics are locally constant, so it suffices to

compute χ(Dx) for a single maximal point x on each connected component of SpaR. Thus,

we may assume that R is a finite extension of either Qp or Fp((u)).

Since Euler characteristics are additive in exact sequences, we may assume

that D is pure of slope s; if necessary, replace R by an étale extension so that the

slope of D is in the value group of R. The moduli space X := ̂〈�K

〉
R

∼= Gan
m,R of

continuous characters of
〈
�K

〉
has a universal character δuniv :

〈
�K

〉 → O(X)×, so

we may consider the Fontaine–Herr–Liu complex C•
ϕ,� of the (ϕ, �K)-module D(δuniv)

over X.

Since C•
ϕ,�(D(δ)) ∈ D[0,2]

perf(R
′) for every affinoid subdomain Spa(R′) ⊂ X, its

Euler characteristic is constant on connected components of X, and it suffices to

verify the statement at one point on each component. But each connected compo-

nent contains a point x such that the slope of D(δ) at x is 0; then (D(δ))(x) is étale

and by Lemma 3.15 we may appeal to the Euler characteristic formula for Galois

cohomology. �

In section 4.2, we will prove Tate local duality for projective (ϕ, �)-modules when

R is a finite extension of Fp((u)). We deduce the corresponding result for families of (ϕ, �)-

modules over general pseudoaffinoid algebras here, and the reader may check that there

is no circular dependence.

Theorem 3.16 (Tate local duality). Let R be a pseudoaffinoid algebra and let D be a

family of projective (ϕ, �K)-modules over R. Then the natural morphism

C•
ϕ,�K

(D) → R HomR(C•
ϕ,�K

(D∨(χcyc)), R)[−2]

is a quasi-isomorphism.

Proof. For every maximal point x ∈ SpaR, we have a quasi-isomorphism C•
ϕ,�K

(R/mx ⊗R

D)
∼−→ R HomR(C•

ϕ,�K
(R/mx ⊗R D∨(χcyc)), R/mx), by [30, Theorem 4.7] (when R/mx has

characteristic 0) and Theorem 4.9 (when R/mx has positive characteristic). Then by [29,

Lemma 4.1.5], the result follows. �

We conclude this section by recording the following result for later use; it is a

corollary of the method of the proof of finiteness of cohomology, rather than finiteness

itself.
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Corollary 3.17. If D is a projective (ϕ, �K)-module over R, f is the inertial degree of K,

and α ∈ R, then for b sufficiently small and any a < b/pf +1, the complex

D[a,b]
ϕf −α,γ−1−−−−−−→ D[a,b/pf ] ⊕ D[a,b]

(γ−1)⊕(α−ϕf )−−−−−−−−−→ D[a,b/pf ]

is in D[0,2]
perf(R), and its cohomology groups form coherent sheaves on SpaR.

Proof. Choose some a′ ∈ (a, b/pf +1). As in the proof of Proposition 3.8, we consider the

complex

This shows that “restrict and multiply by α” is homotopic to ϕf , which is a quasi-

isomorphism. Applying [28, Lemma 1.10] again, we see that the cohomology groups

of our complex are R-finite. We conclude as in the proofs of Corollary 3.11 and

Corollary 3.12. �

4 Positive Characteristic Function Fields

In this section, we closely study overconvergent (ϕ, �)-modules where the coefficients

are finite extensions of Fp((u)); throughout this section, R will denote such an

extension. This is similar to the situation studied by Hartl–Pink [21], but because we

are interested in (ϕ, �)-modules related to representations of characteristic-0 Galois

groups, we may work with imperfect coefficients. For this reason, we rely on the

slope filtration theorem from [27], rather than the Dieudonné–Manin classification

theorem from [21]. We first calculate the cohomology of certain rank-1 (ϕ, �Qp
)-

modules (using techniques similar to [13]), and then use those calculations to deduce

the Tate local duality theorem for all (ϕ, �K)-modules (following the strategy of

[30]).

4.1 Cohomology of rank-1(ϕ, �)-modules

We begin by computing the cohomology of certain distinguished (ϕ, �K)-modules of

character type. When K = Qp, we let �Qp
:= μp−1 be the maximal torsion subgroup

of �Qp
.
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3018 R. Bellovin

Lemma 4.1. Let δ : K× → R× be a continuous character. Then H0
ϕ,�K

(δ) = 0 unless δ is

trivial, in which case it is a free R-module of rank 1.

Proof. Write δ = δ1δ2, where δ1 is trivial on O×
K and δ2 is trivial on

〈
�K

〉
. We first show

that the kernel of ϕ − 1 on �R,rig,K(δ1) is trivial unless δ1(�K) = 1, in which case it is R,

and then compute the elements of ker(ϕ − 1) fixed by �K .

If f (πK) ∈ �R,rig,K(δ1), we may write f (πK) uniquely as f (πK) =∑i∈Z aiπ
i
K , where

ai ∈ R ⊗ k′ (for some finite extension k′/kK ). There is some integer f ≥ 1 such that that

ϕfKf fixes k′. Using the fact that ϕfKf (πK) = π
fKfp
K , a straightforward calculation shows

that the kernel of ϕfKf − 1 is trivial unless δ(�K)f = 1, in which case it is R ⊗ k′. We now

need to compute the kernel of ϕfK −1 on DfK ,δ(�K) ⊗kK
k′. But there is a basis {e0, . . . , ef −1}

of k′/kK such that ϕfK acts via ϕfK (ei) = ei−1, where the indices are taken modulo f , so the

kernel of ϕ
fK
D − 1 is trivial unless δ(�K) = 1, in which case it is DfK ,α. We have reduced to

computing the kernel of ϕ − 1 on DfK ,1, but the construction makes clear that this kernel

is precisely R.

Now suppose δ1 is trivial, so that H0
ϕ,�K

(�R,rig,K(δ)) is R�K=1. If γ ∈ �K is a

topological generator of �K , it acts on R via multiplication by β for some β ∈ �R,(0,b],K .

This clearly fixes no elements unless β = 1, in which case it fixes all of R. �

Corollary 4.2. If D is a rank-1 (ϕ, �)-module over �R,rig,K of character type, then D has

no proper non-trivial sub-(ϕ, �)-module or quotient (ϕ, �)-module.

Lemma 4.3. Suppose α ∈ R× satisfies vR(α) < 0. Then if f ∈ �R,[0,b],Qp
is in the image of

ϕ, f is also in the image of αϕ − 1 : �R,[0,b],Qp
→ �R,[0,b/p],Qp

.

Proof. We are looking for a solution to the equation (αϕ − 1)(g) = ϕ(f ′); applying ψ to

both sides, it suffices to show that the sum
∑

k≥0(α−1ψ)k converges on �R,[0,b],K . Since

�R,[0,b],K = �R0,[0,b],K

[ 1
u

]
and ψ is R-linear, we may assume that f ′ ∈ �R0,[0,b],Qp

. If f ′ =∑
i∈Z αiπ

i, we may write

∑
i∈Z

αiπ
i =

p−1∑
j=0

(∑
i∈Z

αpi+jπ
pi

)
π j =

p−1∑
j=0

(∑
i∈Z

αpi+jπ
pi

)⎛⎝ j∑
k=0

(
j

k

)
(−1)kεj−k

⎞⎠ .

Since
∑

i∈Z αpi+jπ
pi is in the image of ϕ, we see that

ψ

(∑
i∈Z

αiπ
i

)
=
∑
i∈Z

⎛⎝p−1∑
j=0

(−1)jαpi+j

⎞⎠π i.
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We may write f ′ = f− + f+, where

f− =
∑
i<0

αiπ
i and f+ :=

∑
i≥0

αiπ
i.

By definition f+ ∈ �R0,[0,∞],Qp
⊂ �R0,[0,b],Qp,0, and we see that ψ(f+) is another element of

�R0,[0,∞],Qp
. Thus,

∑
k≥0(α−1ψ)k applied to f+ converges.

It remains to show that
∑

k≥0(α−1ψ)k converges when applied to f−. But we may

compute

vR,b

(
ψ

(∑
i<0

αiπ
i

))
= 1

b
inf
i<0

⎧⎨⎩vR

⎛⎝p−1∑
j=0

(−1)jαpi+j

⎞⎠+ pbi

p − 1

⎫⎬⎭
≥ 1

b
inf
i<0

{
vR(αi) + pb

p − 1

⌊
i

p

⌋}
≥ 1

b
inf
i<0

{
vR(αk) + pbi

p − 1

}

= vR,b

(∑
i<0

αiπ
i

)
,

where the second inequality follows because
⌊

i
p

⌋
≥ i for i < 0. It follows that∑

k≥0(α−1ψ)k converges on all of �R,[0,b],Qp
. �

Lemma 4.4. Suppose α ∈ R×. Then αϕ − 1 : πK�R,(0,∞],K → πK�R,(0,∞],K is surjective.

If α �= 1, then αϕ − 1 : �R,(0,∞],K → �R,(0,∞],K is surjective.

Proof. It suffices to show that
∑

k≥0(αϕ)k converges on πK�R,[a,∞],K for all a > 0. For

any f =∑i≥1 αiπ
i
K , we have

v′
R,a((αϕ)k(f )) = k · vR(α) + inf

i

{
vR(αi) + pk+1ai

p − 1

}

≥ k · vR(α) + a(pk + · · · + p) + inf
i

{
vR(αi) + pai

p − 1

}
= v′

R,a(f ) + k · vR(α) + a(pk + · · · + p).

Thus, for any α ∈ R× and any a > 0, the sum
∑

k≥0(αϕ)k(f ) converges to an element of

πK�R,[a,∞],K , as desired.

If α �= 1, then (αϕ − 1)
(

1
α−1

)
= 1, so R is also in the image of αϕ − 1. �
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3020 R. Bellovin

Corollary 4.5. Suppose α ∈ R× satisfies vR(α) < 0. If f ∈ �R,(0,b],Qp
, then there is some

g ∈ �R,(0,b],Qp
such that f − (αϕ − 1)g ∈ �

ψ=0
R,[0,b],Qp

.

Proof. We have exact sequences

0 → R0[[π ]]
[

1

u

]
→ �R,(0,∞],Qp

⊕ �R,[0,b],Qp
→ �R,(0,b],Qp

→ 0

for every b > 0, so we may write f = f+ + f−, where f+ ∈ π�R,(0,∞],Qp
and f− ∈ �R,[0,b],Qp

.

Then we can find g+ ∈ π�R,(0,∞],Qp
and g− ∈ �R,[0,b],Qp

such that f+ = (αϕ − 1)(g+) (by

Lemma 4.4) and f− − (αϕ − 1)(g−) ∈ �
ψ=0
R,[0,b],Qp

(by Lemma 4.3 applied to ϕψ(f−)), so f −
(αϕ − 1)(g+ + g−) ∈ �

ψ=0
R,[0,b],Qp

, as desired. �

Corollary 4.6. If δ : Q×
p → R× is a continuous character trivial on 1 + pZp ⊂ Z×

p , such

that vR(δ(p)) < 0, then H2
ϕ,�Qp

(δ) = 0.

Proof. Corollary 4.5 implies that after subtracting an element of the form (αϕ − 1)(g),

any cohomology class of H2
ϕ,�Qp

(δ) has a representative f ∈ �
ψ=0
R,[0,b],Qp

, for sufficiently

small b. But if γ is a topological generator of �Qp
/�Qp

, by [3, Proposition 4.8] γ − 1 acts

invertibly on �
ψ=0
R,[0,b],Qp

, for sufficiently small b, and the result follows. �

Now we can compute H1
ϕ,�Qp

(δ) when vR(δ(p)) < 0 and δ is trivial on 1 + pZp:

Lemma 4.7. If δ : Q×
p → R× is a character with vR(δ(p)) < 0 and δ|1+pZp

= 1, then

H1
ϕ,�Qp

(δ) is 1-dimensional.

Proof. This follows from Corollary 3.14, Lemma 4.1, and Corollary 4.6. �

4.2 Tate local duality

We now begin proving Tate’s local duality theorem (which we stated in general in

Theorem 3.16).

Lemma 4.8. If δ : Q×
p → R× is a continuous character such that vR(δ(p)) < 0 and δ|1+pZp

is trivial, then Tate duality (as stated in 3.16) holds for �R,rig,Qp
(δ) and �R,rig,Qp

(δ−1χcyc).

Proof. Corollary 3.14 implies that dimR H1
ϕ,�Qp

(δ−2χcyc) ≥ 1, and so there is a non-split

extension of (ϕ, �Qp
)-modules

0 → �R,rig,Qp
(δ−1χcyc) → D → �R,rig,Qp

(δ) → 0 (4.2.1)
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We claim that D is semistable of slope 0 (in the sense of [27, §1.4]). Indeed, if D′ ⊂ D

is a rank-1 submodule, the corresponding homomorphism D′ → �R,rig,Qp
(δ) is either an

isomorphism or 0. The former would contradict the assumption that 4.2.1 is a non-split

extension. But then we must have D′ = �R,rig,Qp
(δ−1χcyc), and v(δ−1(p)χcyc(p)) > 0.

By [27, Theorem 1.7.1], this implies that D is étale, and hence (by [27, Proposition

1.5.5]) arises from a (ϕ, �)-module over �R,[0,b],Qp
for some b > 0. Thus, D comes from a

Galois representation, so Tate local duality holds for its cohomology.

We have a long exact sequence in cohomology associated to 4.2.1:

First, we observe that δ−1χcyc and δ are non-trivial, so by Lemma 4.1 H0
ϕ,�Qp

(δ−1χcyc) =
H0

ϕ,�Qp
(δ) = 0. Hence, we also have H0

ϕ,�Qp
(D) = 0, so duality implies that

H2
ϕ,�Qp

(D∨(χcyc)) = 0.

Since vR(δ(p)) < 0, we additionally have H2
ϕ,�Qp

(δ) = 0, by Corollary 4.6. Again

using the vanishing of H0
ϕ,�Qp

(δ), Corollary 3.14 implies that H1
ϕ,�Qp

(δ) is 1-dimensional.

If we dualize 3.14 and tensor with χcyc, we get a second exact sequence

0 → �R,rig,Qp
(δ−1χcyc) → D∨(χcyc) → �R,rig,Qp

(δ) → 0

and its associated long exact sequence in cohomology. Then the cup product (as con-

structed in [29, Definition 2.3.10]) gives us a commutative diagram

Since H1
ϕ,�Qp

(D∨(χcyc)) → H1
ϕ,�Qp

(D)∨ is an isomorphism (by the classical theo-

rem), a diagram chase shows that H1
ϕ,�Qp

(δ−1χcyc) → H1
ϕ,�Qp

(δ)∨ is injective, so

dimR H1
ϕ,�Qp

(δ−1χcyc) ≤ dimR H1
ϕ,�Qp

(δ) = 1. But Theorem 3.14 implies that

dimR H1
ϕ,�Qp

(δ−1χcyc) ≥ 1, so dimR H1
ϕ,�Qp

(δ−1χcyc) = 1 and the map H1
ϕ,�Qp

(δ−1χcyc) →
H1

ϕ,�Qp
(δ)∨ is an isomorphism. �
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3022 R. Bellovin

Theorem 4.9. Tate local duality holds for every projective (ϕ, �)-module D over �R,rig,K .

Proof. We may replace D by Ind
Qp
K D and treat the case of (ϕ, �)-modules over �R,rig,Qp

.

We may also assume that D is pure of slope s, and by replacing it with D∨(χcyc) if

necessary, that s ≥ 0.

If s = 0, D is étale and the result follows from the comparison with Galois

cohomology. Otherwise, we proceed by induction on the degree of D, that is, deg(D) :=
(rkD)s. Let δ : Q×

p → R× be a continuous character with vR(δ(p)) = −1 and δ|1+pZp
trivial.

Since dimR H1
ϕ,�Qp

(D(δ−1)) ≥ rkD ≥ 1 by Theorem 3.14, there is a non-split extension

0 → D → D′ → �R,rig,Qp
(δ) → 0.

We will prove that Tate local duality holds for D′; since it also holds for �R,rig,Qp
(δ), we

may deduce it for D.

If D′ is pure, the result follows, since D′ has degree deg D−1 and slope (deg D−1)/

(rkD + 1) < s. Otherwise, D′ has a unique slope filtration 0 = D0 ⊂ D1 ⊂ · · · ⊂ Dk = D′

by saturated (ϕ, �)-submodules, such that the successive quotients are pure and

μ(D1/D0) < μ(D2/D1) < · · · < μ(Dk/Dk−1). Then μ(D1) ≤ μ(D′) < μ(D).

We have an exact sequence

0 → D1 ∩ D → D1 → D1/(D1 ∩ D) → 0

Since D is pure of positive slope, D1 ∩ D also has positive slope. Since D1/(D1 ∩ D) is the

image of D1 in the quotient D′ → �R,rig,Qp
(δ), it has slope (and hence degree) either 0

or −1. Therefore, μ(D1) > 0, as well.

It follows that μ(Di/Di−1) > 0 for all i. Moreover, deg D′ = ∑
i deg(Di/Di−1) =∑

i μ(Di/Di−1) · rk(Di/Di−1), so deg(Di/Di−1) < deg D for all i. Then the inductive

hypothesis implies that Tate local duality holds for each Di/Di−1, so it holds for D′, and

we are done. �

Now we can complete the computation of the cohomology of (ϕ, �K)-modules of

character type when the coefficients are a finite extension of Fp((u)).

Corollary 4.10. Let δ : K× → R× be a continuous character. Then

1. H0
ϕ,�K

(δ) = 0 unless δ is the trivial character, in which case H0
ϕ,�K

(δ) is a

1-dimensional R-vector space.

2. H2
ϕ,�K

(δ) = 0 unless δ = χcyc ◦ NmK/Qp
, in which case H2

ϕ,�K
(δ) is a

1-dimensional R-vector space.
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3. H1
ϕ,�K

(δ) is an R-vector space of dimension [K : Qp] unless either H0
ϕ,�K

(δ) �= 0

or H2
ϕ,�K

(δ) �= 0, in which case it is an R-vector space of dimension [K : Qp]+1.

In order to handle the case where K �= Qp, we use induction and Lemma 2.7 to

reduce to the settled case over Qp.

5 Triangulations

5.1 Classification of rank-1(ϕ, �)-modules

In this section, we show that projective rank-1 (ϕ, �)-modules over a pseudorigid space

X are free locally on X, and up to twisting by a line bundle on X, are of character type.

Throughout this section, we will assume that all of our (ϕ, �)-modules are projective. The

proof is largely the same as in [29, §6.2]. We first treat the case where the coefficients are

a field, where we can exploit the fact that �R,(0,b],K is Bézout, and then deduce the case

where the coefficients are artinian by a deformation argument.

Proposition 5.1. Suppose R is an artin local pseudoaffinoid algebra. If D is a rank-1

(ϕ, �)-module over �R0,(0,b],K , then there is a unique continuous character δ : K× → R×

such that L := H0
ϕ,�K

(D(δ−1)) is free of rank 1 over R and the natural map �R,rig,K(δ) ⊗R

L → D is an isomorphism. Moreover,

1. H1
ϕ,�K

(D(δ−1)) is free over R of rank 1 + [K : Qp].

2. H2
ϕ,�K

(D(δ−1)) = 0.

Proof. This proof is nearly identical to the proof of [29, Lemma 6.2.13], so we only give

a sketch.

When R is a field and D has slope s, we may choose α ∈ R with vR(α) = s. If

δ : Q×
p → R× be the character with δ(p) = α and δ|Z×

p
= 1, then δ ◦ NmK/Qp

is a character

K× → R× trivial on O×
K and sending a uniformizer of K to αf , and by construction, the

associated (ϕ, �)-module D(δ ◦ NmK/Qp
) has slope s. Twisting D by its inverse, we reduce

to the étale case. But when D is étale, M :=
(
�̃R,rig ⊗ D

)ϕ=1
is a Galois representation

with D = Drig(M). Then local class field theory and the construction of (ϕ, �)-modules of

character type imply that there is a unique character δ : K×R× with D = �R,rig,K(δ). The

calculation of cohomology follows from Corollary 4.10.

In order to bootstrap to the case where R is an artin local ring, we factor the

extension R � R/mR as a sequence of small extensions, that is, extensions of the form

0 → I → R → R′ → 0.
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3024 R. Bellovin

Here mR ⊂ R is the maximal ideal of R and I ⊂ R is a principal ideal with ImR = 0. Then

R → R′ is a square-zero thickening, and deformation theory (of characters and of (ϕ, �)-

modules) implies that if D is a (ϕ, �)-module over R of rank 1 with R′ ⊗R D of character

type, then D is of character type.

If D = �R,rig,K(δ), then H0
ϕ,�K

(D(δ−1)) contains R, and considerations on lengths

of R-modules imply that if H0
ϕ,�K

(R′ ⊗R D(δ−1)) = R′, then H0
ϕ,�K

(D(δ−1)) = R. Moreover,

R/mR ⊗R H2
ϕ,�K

(D(δ−1)) = H2
ϕ,�K

(DR/mR
(δ−1)) = 0

so H2
ϕ,�K

(D(δ−1)) = 0. Then the base change spectral sequence implies that the formation

of H1
ϕ,�K

(D(δ−1)) commutes with base change on R, and the Euler characteristic formula

implies that dimR/mR
H1

ϕ,�K
(DR/mR

(δ−1)) = 1 + [K : Qp]. Then by Nakayama’s lemma,

H1
ϕ,�K

(D(δ−1)) is free of the same rank, and we are done. �

In order to give a classification over a general base, we again follow the strategy

of the proof of [29, Theorem 6.2.14] and twist our rank-1 (ϕ, �)-module by the universal

family of characters. Then we can use the settled case over artin local rings and

cohomology and base change to cut out the appropriate character. The difficulty is in

verifying that the slopes and weights of a family of (ϕ, �)-modules over a pseudoaffinoid

algebra are bounded; boundedness of the slopes is the essential content of the following

proposition, whose proof we do not duplicate in detail.

Proposition 5.2. Let R be a pseudoaffinoid algebra with pseudouniformizer u, and let

D be a (ϕ, �Qp
)-module over �R,rig,Qp

. Then

1. The quotient D/(ψ − 1) is a finitely generated R-module.

2. If n ∈ Z, let δn : Q×
p → R× be the character trivial on Z×

p , which sends p to un.

Then for all n � 0, the map ψ − 1 : D(δ−n) → D(δ−n) is surjective.

Sketch of proof. The proof of [29, Proposition 3.3.2] carries over verbatim. We take a

model of D as a finite projective module over �R,(0,b],Qp
, consider it as a summand of a

finite free module D′ with basis {ei}, and carefully analyze the actions of ϕ and ψ . We

choose an interval [a, b] ⊂ R (depending on ϕ and ψ on D) and consider the image D′′ of

⊕i ⊕j∈[a,b]∩Z R in D. Then D′′ is a finite R-module, and it is possible to show that every

element of D differs from an element of D′′ by something in the image of ψ − 1. �

We can use this to deduce that the weights are bounded:
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Corollary 5.3. Let R be a pseudoaffinoid algebra with ring of definition R0 ⊂ R and

pseudouniformizer u ∈ R0, and let D be a (ϕ, �Qp
)-module over �R,rig,Qp

. Let δuniv :

Z×
p → R× be the universal character on Ẑ×

p R
. Then the support of the cokernel of

γ − 1 : D(δuniv)/(ψ − 1) → D(δuniv)/(ψ − 1) is contained in a quasi-compact subspace

of {u �= 0} ⊂ Spa(R0 ⊗̂ Zp[[�Qp
]])an.

Proof. We consider the action of γ − 1 on D(δuniv/(ψ − 1). Choose a presentation R⊕d �
D/(ψ−1), and lift the action of γ on D/(ψ−1) to a matrix 1+G ∈ GLd(R); replacing γ with

a power if necessary, we may assume that G =
(
gij

)
∈ uMatd(R). Then if r := δ−1

univ(γ )−1,

the map γ − 1 : D(δuniv/(ψ − 1) → D(δuniv/(ψ − 1) lifts to the matrix r + G + rG; if this

matrix is invertible, then γ − 1 is surjective.

But this matrix fails to be invertible only at points where det
(

r
1+r + G

)
vanishes.

There is a finite extension R → R′ such that the characteristic polynomial of G splits

over R′ as (X − λ1) · · · (X − λd), and we see that if | r
1+r | > |λi| for all i, then γ − 1 is

invertible. Since G is topologically nilpotent, the λi are also topologically nilpotent, so we

see that there is some N � 0 such that the vanishing locus of det
(

r
1+r + G

)
is contained

in {|
(

r
1+r

)N | ≤ |u| �= 0} ⊂ Spa(R′
0 ⊗̂ Zp[[�Qp

]]) (where R′
0 is a ring of definition of R′).

Thus, we see that the open affinoid subspace {|rN |≤|u| �=0} ⊂ Spa(R0 ⊗̂ Zp[[�Qp
]])an

is the quasi-compact subspace we were looking for. �

Now we give the desired general classification. The primary difference from the

argument of [29, Theorem 6.2.14] is in using Corollary 5.3 to bound the weight, rather

than arguments using Sen weights.

Theorem 5.4. Let X be a pseudoaffinoid algebra with pseudouniformizer u, and let D

be a rank-1 (ϕ, �)-module over �X,rig,K . Then there exists a unique continuous character

δ : K× → �(OX , X)× and a unique invertible sheaf L on X such that D ∼= �X,rig,K(δ)⊗OX
L .

Remark 5.5. If such a δ and L exist, then L (U) = H0
ϕ,�K

(D(δ−1)|U) for every open

subspace U ⊂ X.

Proof. We may assume X = SpaR is affinoid. We first treat uniqueness. Since the

formation of H0
ϕ,�K

(D(δ−1)) commutes with flat base change on R, it suffices to show that

if H0
ϕ,�K

(�R,rig,K(δ)) is locally free of rank 1 over R, then δ is trivial. There is a Zariski-open

dense subspace U ⊂ SpaR such that Hi
ϕ,�K

(�R,rig,K(δ)|U) is flat for all i; if x ∈ U and mx ⊂ R

is the corresponding maximal ideal, then the base change spectral sequence implies

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/4/2999/7165315 by guest on 26 February 2024



3026 R. Bellovin

that Hi
ϕ,�K

(R/mk
x ⊗R �R,rig,K(δ)) ∼= R/mk

x ⊗R Hi
ϕ,�K

(δ) for all i and all k ≥ 1. In particular,

H0
ϕ,�K

(�R/mk
x ,rig,K(δ)) is free of rank 1 over R/mk

x, which implies that δ : K× → (R/mk
x)×

is trivial for all k ≥ 1. It follows that δ : K× → (RU ′)× is trivial for all affinoid U ′ ⊂ U.

But the condition δ = 1 defines a Zariski-closed subspace of SpaR; since it contains a

Zariski-open dense subspace, it is all of Spa R.

To show existence, we follow [29] and consider the twist of D by the inverse of the

universal family of characters δuniv over K̂×
R; recall that K̂×

R := Gad
m ×Z Spa Zp[[O×

K ]] ×Zp

SpaR is the moduli spaces of continuous characters of K× valued in pseudoaffinoid R-

algebras.

This twist D(δ−1
univ) is a (ϕ, �K)-module over K̂×

R, and we use Tate local duality

to cut out a subspace corresponding to the desired character. More precisely, we let �′
D

and �′′
D be the support of H2

ϕ,�K
(D∨(δunivχcyc)) and H2

ϕ,�K
(D(δ−1

univχcyc)) in the pseudorigid

space

K̂×
R ⊂ Gad

m ×Z

(
Spa(R0 ⊗̂ Zp[[O×

K ]]
)an

respectively, and let �D := �′
D ×K̂×

R
�′′

D. Since the formation of H2
ϕ,�K

commutes with

arbitrary base change on SpaR, the formation of �′
D and �′′

D, and hence �D, commutes

with arbitrary base change on Spa R.

There is a natural projection map �D → SpaR; a section induces a morphism

Spa R → K̂×
R, or equivalently, a continuous character δ : K× → R×. We will show that

�D → SpaR is actually an isomorphism.

Granting this, we may replace D with D(δ−1
D ), where δD : K× → R× is the

continuous character corresponding to SpaR = �D → K̂×
R, so that �D corresponds to

the trivial character. Then we need to show that H0
ϕ,�K

(D) is a line bundle over Spa R, and

D ∼= �R,rig,K ⊗R H0
ϕ,�K

(D) as a (ϕ, �K)-module. If R′ is a pseudoaffinoid artin local ring and

R → R′ is a homomorphism, there is a unique continuous character δ′ : K× → R′×

such that H0
ϕ,�K

(DR′(δ′−1
)) is free of rank 1 over R′ and the natural map �R′,rig,K ⊗R′

H0
ϕ,�K

(DR′(δ′−1
)) → DR′(δ′−1

) is an isomorphism, and in addition, H1
ϕ,�K

(DR′(δ′−1
)) is free

of rank 1 + [K : Qp] and H2
ϕ,�K

(DR′(δ′−1
)) = 0.

Thus, the formation of H0
ϕ,�K

(DR′(δ′−1
)) commutes with arbitrary base change

on R′; in particular, H0
ϕ,�K

(DR′/mR′ (δ
′−1

)) is non-zero. Since H2
ϕ,�K

(D∨
R′/mR′ (δ

′χcyc)) and

H2
ϕ,�K

(DR′/mR′ (δ
′−1

χcyc)) are dual to H0
ϕ,�K

(DR′/mR′ (δ
′−1

)) and H0
ϕ,�K

(D∨
R′/mR′ (δ

′)), respec-

tively, and the formation of H2
ϕ,�K

commutes with arbitrary base change on R, we see

that H2
ϕ,�K

(D∨
R′(δ′χcyc)) and H2

ϕ,�K
(DR′(δ′−1

χcyc)) are both non-zero. Thus, the graph of the

morphism SpaR′ → K̂×
R induced by δ′ is contained in �D; since �D corresponds to the

trivial character, δ′ is trivial.
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In other words, for any homomorphism R → R′ with R′ a pseudoaffinoid artin

local ring, H0
ϕ,�K

(DR′) is free of rank 1 over R′, H1
ϕ,�K

(DR′) is free of rank 1 + [K : Qp], and

H2
ϕ,�K

(DR′) = 0; on residue fields, this implies that H2
ϕ,�K

(DR′/mR′ ) = 0, so by Nakayama’s

lemma, H2
ϕ,�K

(DR′) = 0, as well. This implies that H2
ϕ,�K

(D) is locally free of rank 0, so by

the base change spectral sequence, the formation of H1
ϕ,�K

(D) commutes with arbitrary

base change on R. It follows that H1
ϕ,�K

(D) is locally free of rank 1 + [K : Qp], so the base

change spectral sequence again implies that the formation of H0
ϕ,�K

(D) commutes with

arbitrary base change on R, and we conclude that H0
ϕ,�K

(D) is locally free of rank 1, as

desired.

We now prove that �D → SpaR is an isomorphism. In fact, it suffices to

prove that �D is affinoid: by Theorem A.15, an isomorphism of pseudoaffinoid algebras

can be detected on the level of completed local rings, and by Proposition 5.1, �D →
Spa R induces an isomorphism on the completed local ring at every maximal point of

Spa R.

Since �D is a Zariski-closed subspace of the quasi-Stein space K̂×
R, it is enough

to show that that it is contained in an affinoid subspace. We replace D with Ind
Qp
K D.

As in [29, Lemma 6.2.18], we first check that the image of �D in Gm,R is bounded.

By Proposition 5.2, there is some N ≥ 0 such that for all n ≥ N,

ψ − 1 : D∨(δ−nχcyc) → D∨(δ−nχcyc)

and

ψ − 1 : D(δ−nχcyc) → D(δ−nχcyc)

are surjective. Surjectivity is preserved under arbitrary base change R → R′, and the

isomorphism H•
ϕ,�K

→ H•
ψ ,�K

from Lemma 2.4 implies that

H2(D∨(δ−nδ′χcyc)) = H2
ϕ,�K

(D(δ−nδ′χcyc)) = 0

for all continuous characters δ′ : O×
K → R′×. Thus, if T denotes the coordinate on Gm,

the image of �′
D is contained in the subspace

{|T| ≤ |uN |} ⊂ Gm,R and the image of �′′
D is

contained in the subspace
{|T−1| ≤ |uN |} ⊂ Gm,R.

We let CR,N := {|u−N | ≤ |T| ≤ |uN |} denote the annulus above, and we replace

SpaR and D with CR,N and the universal twist of D. Then by Corollary 5.3, �D is

contained in a pseudoaffinoid subspace {|([γ ] − 1)N′ | ≤ |u| �= 0} for some N′ � 0, so we

are done. �
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5.2 Interpolating triangulations

Trianguline (ϕ, �)-modules are those that are extensions of (ϕ, �)-modules of character

type. More precisely,

Definition 5.6. Let X be a pseudorigid space over OE for some finite extension E/Qp, let

K/Qp be a finite extension, and let δ = (δ1, . . . , δd) : (K×)d → �(X, O×
X ) be a d-tuple of

continuous characters. A (ϕ, �K)-module D is trianguline with parameter δ if (possibly

after enlarging E) there is an increasing filtration Fil•D by (ϕ, �K)-modules and a set of

line bundles L1, . . . , Ld such that griD ∼= �X,rig,K(δi) ⊗ Li for all i.

If X = Spa R where R is a field, we say that D is strictly trianguline with

parameter δ if for each i, Fili+1D is the unique sub-(ϕ, �K)-module of D containing FiliD

such that gri+1D ∼= �R,rig,K(δi+1). Equivalently, D is trianguline with parameter δ and

H0
ϕ,�

(
(FiliD)∨(δi)

)
is 1-dimensional.

We wish to interpolate triangulations at dense sets of points of pseudorigid

spaces.

Definition 5.7. Let X be a pseudorigid space, and let � ⊂ X be a set of maximal points.

We say that � is Zariski-dense if any Zariski-closed subspace Z ⊂ X containing � also

contains the underlying reduced space Xred. We say that a Zariski-dense set � ⊂ X is

very Zariski dense if for every x ∈ X and every irreducible affinoid neighborhood U ⊂ X

containing x, � ∩ U is Zariski-dense in U, that is, any function in OX(U) vanishing on all

of � ∩ U is nilpotent.

Lemma 5.8. Let X = Spa R be a reduced pseudorigid space over Zp with p /∈ R×, let D

be a (ϕ, �)-module over �R,rig,K , and let δ : K× → R× be a continuous character such that

H0
ϕ,�K

(D∨(δ)) is free of rank 1 over R and Hi
ϕ,�K

(D∨(δ)) has Tor-dimension at most 1 for

i = 1, 2. Then the morphism D → �R,rig,K(δ) corresponding to a basis of H0
ϕ,�K

(D∨(δ)) is

surjective over an open subspace U ⊂ X containing {p = 0} ⊂ X.

Proof. Choose a basis element of H0
ϕ,�K

(D∨(δ)); there is some b > 0 such that the

corresponding homomorphism D → �R,rig,K(δ) is defined over �R,(0,b],K , and we may

view it as a morphism of coherent sheaves over the corresponding quasi-Stein space.

Moreover, ϕ-equivariance means that to check surjectivity, it suffices to check that

�R,[b/p,b],K ⊗�R,(0,b],K
D → �R,[b/p,b],K ⊗�R,(0,b],K

�R,(0,b],K(δ) is surjective.
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The morphism �R,[b/p,b],K ⊗�R,(0,b],K
D → �R,[b/p,b],K ⊗�R,(0,b],K

�R,(0,b],K(δ) fails to

be surjective on a Zariski-closed subspace Z ⊂ Spa �R,[b/p,b],K . Since Spa�R,[b/p,b],K is

affinoid, so is Z.

Consider specializations at the characteristic p maximal points x ∈ Spa R. If

H0
ϕ,�K

(D∨(δ)) is flat of rank 1 over R, then kx ⊗R H0
ϕ,�K

(D∨(δ)) is a 1-dimensional kx-vector

space. If Hi
ϕ,�K

(D∨(δ)) has Tor-dimension at most 1 for i = 1, 2, then the specialization

maps R → kx give us exact sequences

0 → kx ⊗R H0
ϕ,�K

(D∨(δ)) → H0
ϕ,�K

(kx ⊗R D∨(δ)) → TorR
1 (H1

ϕ,�K
(D∨(δ)), kx) → 0

by Corollary 3.13. Thus, the induced maps kx ⊗R D → kx ⊗R �R,rig,K(δ) are non-zero, and

if kx has positive characteristic, this implies that the corresponding map is surjective.

Thus, p is a nowhere-vanishing function on Z, and since Z is affinoid, the

maximum modulus principle discussed in Appendix A.1 implies that p|Z is bounded away

from 0. That is, there is some λ such that {|p| ≤ λ} ∩ Z is empty. Setting U := {|p| ≤ λ} ⊂ X

yields the desired subspace. �

Theorem 5.9. Let X be a reduced pseudorigid space over Zp, let D be a (ϕ, �K)-module

over X of rank d, and let δ : K× → �(X, O×
X ) be a continuous character. Suppose there is

a Zariski-dense set Xcl ⊂ X of maximal points such that for every x ∈ Xcl, H0
ϕ,�K

(D∨
x (δx))

is 1-dimensional and the image of �kx ,rig,K under any basis of this space is saturated in

D∨
x (δx). Then there exists a proper birational morphism f : X ′ → X of reduced pseudorigid

spaces, a line bundle L on X ′, a homomorphism λ : f ∗D → �X ′,rig,K(δ) ⊗X ′ L of (ϕ, �K)-

modules, and an open subspace U ⊂ X ′ containing {p = 0} such that

1. λ|U : f ∗D|U → �U,rig,K(δ|U) ⊗U L |U is surjective

2. the kernel of λ|U is a (ϕ, �K)-module of rank d − 1

Proof. We may replace X with its normalization (using the theory of normalizations of

pseudorigid spaces developed in [26]), and we may consider the connected components

of X separately.

Using perfectness of C•
ϕ,�K

(D∨(δ)), we may use [29, Corollary 6.3.6(2)] to construct

a proper birational morphism f0 : X ′ → X such that D′ := f ∗
0 (D∨(δ)) has H0

ϕ,�K
(D′) flat and

Hi
ϕ,�K

(D′) with Tor-dimension at most 1 for i = 1, 2. Then for any maximal point x ∈ X ′,
the base change spectral sequence gives us a short exact sequence

0 → kx ⊗R H0
ϕ,�K

(D′) → H0
ϕ,�K

(kx ⊗R D′) → TorR
1 (H1

ϕ,�K
(D′), kx) → 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/4/2999/7165315 by guest on 26 February 2024



3030 R. Bellovin

By [29, Lemma 6.3.7], the set of points x ∈ X ′ such that the last term is non-zero is a

Zariski-closed subspace Z′
0 ⊂ X ′ whose complement is open and dense. Thus, H0

ϕ,�K
(D′)

is flat of rank 1. Letting L := H0
ϕ,�K

(D′)∨, we obtain a homomorphism λ0 : f ∗D →
�X ′,rig,K(δ) ⊗X ′ L .

The formation of H0
ϕ,�K

(D′) commutes with flat base change on X; we may find

a collection {X ′
i} of open pseudoaffinoid subspaces of X ′ such that H0

ϕ,�K
(D′)|X ′

i
is free,

{p = 0} ⊂ ∪iX
′
i, and p is not invertible on X ′

i. Then we may apply Lemma 5.8 to conclude

that λ0|X ′
i

is surjective (possibly after shrinking X ′
i). Setting U := ∪X ′

i, we see that X ′,
U ⊂ X ′, and λ0 satisfy the first of our desired properties.

To check the second claim, observe that for some b > 0 we have an exact sequence

over U

0 → P → �U,(0,b],K ⊗ D′|U → �U,(0,b],K(δ) ⊗U L |U → 0.

Since �U,(0,b],K(δ) ⊗X ′ L is R′-flat, this sequence remains exact after specializing at any

point x ∈ U, so kx ⊗ P is a (ϕ, �K)-module of rank d − 1. It follows by [29, Lemma 2.1.8(1)]

that P is a vector bundle of rank d − 1 over the quasi-Stein space associated to �U,(0,b],K ,

and hence is a (ϕ, �K)-module of the correct rank. �

Remark 5.10. The morphism f : X ′ → X is, in general, not compatible with the

analogous morphism constructed in [29, Theorem 6.3.9]; in that argument, the authors

make an additional blow-up, in order to control the cohomology groups of f ∗M/t, which

is what permits them to deduce that Xcl ⊂ f −1(U). But Fontaine’s element t does not

make sense in our mixed- or positive-characteristic overconvergent period rings, so we

cannot deduce that Xcl ⊂ f −1(U).

As in [29, Corollary 6.3.10], we may deduce the following:

Corollary 5.11. Let X be a reduced pseudorigid space over Zp, all of whose connected

components are irreducible. Let M be a (ϕ, �K)-module over X of rank d and let δ :=
(δ1, . . . , δd) : (K×)d → �(X, O×

X ) be a parameter such that D|x is strictly trianguline with

parameter δ at a Zariski dense set Xcl ⊂ X of maximal points x ∈ X. Then there exists

a proper birational morphism f : X ′ → X of reduced pseudorigid spaces, an increasing

filtration Fil•(f ∗D), and an open subspace U ⊂ X ′ containing {p = 0} such that

1.
(
Fil•(f ∗D)

) |x is a strictly trianguline filtration on (f ∗D)|x for all x ∈ U,

2. there are line bundles Li on U and isomorphisms of (ϕ, �K)-modules

gri(f ∗D|U) → �U,rig,K(δi) ⊗U Li
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Proof. We may assume that X is affinoid. Then for any λ ∈ R+, setting Uλ := {|p|x ≤ λ}
and Vλ := {|p|x ≥ λ} yields a cover of X. Then at least one of the following holds: Xcl ∩ Uλ

is Zariski-dense in Uλ, or Xcl ∩ Vλ is Zariski-dense in Vλ. Moreover, if λ′ < λ and Xcl ∩ Vλ

is Zariski-dense in Vλ, then Xcl ∩ Vλ′ is dense in Vλ′ .

Thus, we see that if Xcl doesn’t accumulate at {p = 0} (in the sense of being

Zariski-dense in each Uλ), it provides a Zariski-dense subset of X � {p = 0}. In the

latter case, we may apply [29, Corollary 6.3.10] to see that over a Zariski-open and dense

subspace W of X � {p = 0}, M|W is trianguline with parameter δ. Since Uλ ∩ W is Zariski-

open and dense in Uλ, we see that each Uλ contains a Zariski-dense set of points at which

M is trianguline with parameter δ.

Now we may apply Theorem 5.9 inductively to construct f : X ′ → X, U ⊂ X ′, and

{Li} satisfying the given properties. �

6 Applications to Eigenvarieties

6.1 Set-up

Extended eigenvarieties have been constructed by [1], [25], and [19] for various groups;

these extended eigenvarieties are expected to (and in some cases known to) carry families

of Galois representations such that local Galois-theoretic data matches certain Hecke-

theoretic data. At places away from p and the level, this compatibility specifies that

the local Galois representation is unramified and gives a characteristic polynomial

for Frobenius. At places dividing p, this compatibility specifies that the local Galois

representation is trianguline and gives the parameters of the triangulation.

In this subsection, we use our results on trianguline (ϕ, �)-modules to study

extended eigenvarieties at the boundary of weight space, in order to address two

questions:

1. Are irreducible components proper at the boundary of weight space?

2. Are Galois representations at characteristic p points trianguline at p?

We will give partial affirmative answers to both questions.

Before stating our assumptions more precisely, we recall the construction of [25].

Let F be a number field, let H be a reductive group over F split at all places above p, and

set G := ResF/QH. Fix a tame level by choosing a compact open subgroup K� ⊂ G(Q�)

for each prime � �= p, such that K� is hyperspecial for all but finitely many �, and let

I ⊂ G(Qp) be an Iwahori subgroup. Let S′ denote the set of places w of Q such that either

w = ∞, or Kw is not hyperspecial, and let S denote the set of places of F lying above the

places in S′. Then [25] proved the following:
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Theorem 6.1. [25, Theorems A and B] The eigenvarieties for G constructed in [20]

naturally extend to pseudorigid spaces XG equipped with a weight map wt : XG → W
to extended weight space W :=

(
Spa Zp[[T ′

0]]
)an

, where T ′
0 is a certain quotient of the Zp-

points of a (split) maximal torus of a model of G over Zp. Moreover, if F is totally real or

CM and H = GLd, there is a continuous d-dimensional determinant D : O(XG)[GalF,S] →
O+(X red

G ) such that D(1 − X · Frobv) = Pv(X) for all v �∈ S, where Pv(X) is the Hecke

polynomial.

When F is totally real with p completely split, and H = GL2, the characteristic

0 eigenvariety X
rig

G contains a very Zariski dense set of “essentially classical” points (in

the sense of [11], using [9, Lemme 6.2.10], [9, Lemme 6.2.8], and a “small slope implies

classical” criterion). Furthermore, local–global compatibility at places dividing p is

known for classical Hilbert modular forms of motivic weight by [35], [31], [34], [8], and so

in this case X
rig

G contains a very Zariski dense set of points at which D corresponds to

a trianguline Galois representation.

When H is a totally definite quaternion algebra over a totally real field, split at p,

a similar argument shows that X
rig

G contains a very Zariski dense set of essentially

classical points. Moreover, the p-adic Jacquet–Langlands correspondence of [10], [5] can

be extended to the pseudorigid setting. This identifies each irreducible component of a

quaternionic eigenvariety with an irreducible component of an eigenvariety for Hilbert

modular forms; it follows that a Galois determinant can be pulled back to XG, and

it corresponds to a trianguline representation at a very Zariski dense set of points

of X
rig

G .

There is a similar story when G is a definite unitary group over Q split at p.

Characteristic 0 eigenvarieties have been constructed [9], [2], which interpolate classical

automorphic forms and carry a family of Galois determinants:

Theorem 6.2. [2, Chapter 7] Let F/Q be an imaginary quadratic field and let G be

a definite unitary group associated to F, split at p. Then the characteristic 0 eigen-

variety X
rig

G contains a very Zariski dense set of classical points (corresponding to

p-refined automorphic representations), and there is a continuous determinant D :

O+(X
rig

G )[GalF,S] → O+(X
rig

G ) such that D(1 − X · Frobv) = Pv(X) for all v �∈ S, where

Pv(X) is the Hecke polynomial.

Moreover, the corresponding Galois representation is known to be trianguline at

classical points ; thus, there is a continuous Galois determinant D : O+(X
rig

G )[GalF,S] →
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O+(X
rig

G ) defined on the closure of X
rig

G in XG, and it corresponds to a trianguline Galois

representation at a very Zariski dense set of points.

We will make more precise what kind of trianguline conditions we have (or hope

for) at places dividing p. If T is a split maximal torus of a model of G over Zp, consider

a splitting of the inclusion T(Zp) ↪→ T(Qp), and let � denote the kernel. There are two

submonoids �cpt ⊂ �+ ⊂ �; we refer the reader to [25, §3.3] for precise definitions, but

we note that when G(Zp) ∼=∏v|p GLd(OFv
), we may take T to be the standard torus and

� =
∏
v|p

{diag(�a1
v , . . . , �ad

v ) | ai ∈ Z}

�+ =
∏
v|p

{diag(�a1
v , . . . , �ad

v ) | ai+1 ≥ ai}

�cpt =
∏
v|p

{diag(�a1
v , . . . , �ad

v ) | ai+1 > ai}.

The construction of XG depends on a choice of t ∈ �cpt, which in the above case

we take to be
∏

v|p diag(1, . . . , �d−1
v ); the authors construct a spectral variety Z ⊂ Gm,W

using the Fredholm series of the corresponding controlling Hecke operator Ut := [ItI],

and then construct XG → Z finite, such that there is a homomorphism ψ : T(�p, Kp) →
O(XG). Here T(�p, Kp) is a Hecke algebra with no Hecke operators at places above p.

However, it is possible to make the same construction using other choices of

Hecke algebras, and we will need to do so (this is discussed in greater detail in [26,

§3.4]. In particular, let A +
p ⊂ Zp[G(Qp)//I] be the subring generated by the characteristic

functions 1[IsI] for s ∈ �+. Then there is an extended eigenvariety X
A +

p
G equipped with

a homomorphism T(�p, Kp) ⊗Zp
A +

p → O(X
A +

p
G ) and a finite morphism X

A +
p

G → XG.

There is a surjective finite map X
A +

p
G → XG, and we obtain a Galois determinant

O(X
A +

p ,red
G )[GalF,S] → O(X

A +
p ,red

G ) by pulling back the determinant on X red
G .

We have finite morphisms X
A +

p
G → XG → Gm,W . By [26, Lemma 3.4.1], the image

of [IsI] in O(X
A +

p
G ) is invertible for all s ∈ �+, and so for s ∈ �, we can write s = s′s′′−1

for s′, s′′ ∈ �+ and obtain ψ([Is′I])ψ([Is′′I]−1) ∈ O(X
A +

p
G )×. Thus, we have a morphism

X
A +

p
G → �̂W := Hom(�, Gm,W ) such that the diagram
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commutes and has finite horizontal maps. Here the right vertical map is induced by

evaluation at Ut. Any choice of a basis of � will give us parameters δi,v : F×
v → O(X

A +
p

G )×.

When F is a number field and G = ResF/QGLd with the standard maximal torus,

there is a natural ordered basis {si,v}i,v of �, namely si,v := diag(1, . . . , �v, . . . , 1), where

v|p and �v is placed in the d − i + 1 slot. Then (restricting to non-critical points for

simplicity), [20, Conjecture 1.2.2(iii)] predicts that if x ∈ X
A +

p
G is non-critical, the (ϕ, �)-

module corresponding to Dx|GalFv
is trianguline with parameter δv such that δi,v(�v) =

ψ(si,v) (and δi,v|O×
Fv

corresponds to the automorphic weight). Similarly, in the unitary case

sketched above, [2, Proposition 7.5.13] implies that at non-critical points x ∈ X
A +

p
G , the

(ϕ, �)-module corresponding to Dx|GalFv
is trianguline with parameter δv, where δi,v(p) =

ψ(diag(1, . . . , p, . . . , 1)).

In the Hilbert, quaternionic, and unitary cases sketched above, we can actually

say that at a very Zariski-dense set of classical points, the corresponding (ϕ, �)-module

is strictly trianguline.

6.2 Properness at the boundary

We follow the strategy of [17] to show extended eigenvarieties are proper at the boundary.

We assume we have a Galois representation, and sufficiently many classical points where

it is known to be trianguline at p, with parameters compatible with the Hecke algebra

at p:

Theorem 6.3. Suppose X
A +

p
G is an extended eigenvariety such that there is a continuous

determinant D : O(X
A +

p red
G )[GalF,S] → O(X

A +
p ,red

G ) for some number field F. Suppose we

have a commutative diagram

where R is a normal pseudoaffinoid Zp-algebra, and Z ⊂ SpaR is a Zariski-closed

subspace of SpaR with codimension at least 1. Here SpaR → W corresponds to a

weight κ : T(Zp) → R×. Suppose in addition that there is an ordered basis {si,v} of �

with
∏i

j=1 sj,v ∈ �+ such that for a Zariski-dense set of points Xcl ⊂ SpaR the Galois

representation attached to the pull-back of D is strictly trianguline at all places v | p,

with parameters {δv} induced by {si,v} and κ. Then the dashed arrow can be filled in.
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Remark 6.4. For the eigenvarieties discussed in the previous section, we will be able

to check that Xcl exists so long as SpaR has the same dimension as its image in weight

space, and classical weights are dense in κ(SpaR). We can view this as saying that the

limit of a family of overconvergent automorphic forms exists, so long as it tends to the

deleted subspace in a sufficiently regular manner. In particular, we may deduce that

every irreducible component of the extended eigencurve is proper at the boundary of

weight space.

We first treat the case of a finite morphism:

Lemma 6.5. Suppose X → Y is a finite morphism of pseudorigid spaces and we have

a commutative diagram

where R is a normal pseudoaffinoid Zp-algebra and Z ⊂ SpaR is a Zariski-closed

subspace of codimension at least 1. Then the dashed arrow can be filled in uniquely.

Proof. We use the Hebbarkeitssätze of [32]. Let u ∈ R be a pseudouniformizer, and

suppose Z is defined by the vanishing of the ideal I = (f1, . . . , fr) ⊂ R. By [24, 1.4.4], the

pre-image in X of any affinoid subspace of Y is itself affinoid, so we may assume that

X and Y are both affinoid. If X = SpaA and Y = SpaB, we choose a pseudouniformizer

of B; its image u ∈ R and its image in A are also pseudouniformizers.

The morphism SpaR�Z → X is induced by a compatible sequence of continuous

homomorphisms

A → R0

〈
uk

f1

〉 [
1

u

]
∩ . . . ∩ R0

〈
uk

fr

〉 [
1

u

]

for some noetherian ring of definition R0 ⊂ R and k ≥ 1. Since Z has codimension at least

1 in Spa R, [32, Theorem 5.1] implies that the power-bounded functions on Spa R � Z are

precisely R◦, and we have a continuous homomorphism A◦ → R◦. Since A◦ contains a

ring of definition of A, we obtain a continuous homomorphism A → R, as well. Since the

composition SpaR → X → Y agrees with the specified morphism Spa R → Y after

restricting to SpaR � Z and Y is separated, it agrees on all of Spa R. �
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Combined with the theory of determinants discussed in Appendix B, the assump-

tion that a determinant D : O(XG)[GalF,S] → O(XG) exists implies that there is a natural

map X red
G → Xp, where Xp is the adic space associated to the deformation rings of all of

the determinants attached to isomorphism classes of d-dimensional modular residual

representations of GalF,S.

Lemma 6.6. Let R be an integral normal pseudoaffinoid Zp-algebra, and let Z ⊂ Spa R be

a Zariski-closed subspace of codimension at least 1. Then any morphism Spa R�Z → Xp

extends uniquely to a morphism Spa R → Xp.

Proof. We again use the Hebbarkeitssätze of [32]. The pseudorigid space Spa R � Z is

connected, so its image in Xp has constant residual determinant D. Thus, the morphism

Spa R � Z → Xp is induced by a homomorphism

RD → O+
Spa R (Spa R � Z) ,

where RD is the pseudodeformation ring parametrizing lifts of D. Since Z has codimen-

sion at least 1 in Spa R, by [32, Theorem 5.1] we have O+
Spa R (Spa R � Z) = R◦, so we get

a continuous homomorphism RD → R◦ and a morphism Spa R → Spa RD. �

Lemma 6.7. For any s ∈ �+, ψ(s) ∈ O(X
A +

p ,red
G ) is power-bounded.

Proof. This follows from the construction of [25] and we use the notation of that

paper freely. By [25, Corollary 3.3.10], the action of s on Dr
κ is norm-decreasing, for

any weight κ : T0 → R× and any r � 1/p (depending on κ). It follows that the action

of s is power-bounded, hence power-bounded on C∗(K,Dr
κ), hence power-bounded on

K • := ker• Q∗(Ut), and hence power-bounded on H∗(K •). �

Now we are in a position to prove Theorem 6.3:

Proof of Theorem 6.3. Since X
A +

p ,red
G → �̂W is finite, Lemma 6.5 implies that it suffices

to lift κ to a morphism κ̃ : SpaR → �̂W (compatibly with the given map SpaR�Z → �̂W ).

In other words, we need to show that the image of ψ(si,v) in OSpaR (SpaR � Z) is an element

of R× for all i and all v | p.

By the construction of eigenvarieties, the image of ψ(si,v) is a unit of

OSpaR (Spa R � Z) for all i and v. Set Ui,v := ∏i
j=1 si,v ∈ �+; then ψ(Ui,v) is a unit of

OSpaR (Spa R � Z), and by Lemma 6.7, ψ(Ui,v) is power-bounded for all i and all v | p.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2024/4/2999/7165315 by guest on 26 February 2024



Cohomology of (ϕ, �)-Modules 3037

By [32, Theorem 5.1], the image of ψ(Ui,v) in OSpaR (Spa R � Z) lands in R◦ ⊂ R, so it

remains to see that ψ(Ui,v) does not vanish at any point of Spa R.

We use the family of Galois representations on X
A +

p ,red
G to prove this. By Lemma

6.6, the determinant D : O(X
A +

p ,red
G )[GalF,S] → O(X

A +
p ,red

G ) extends to a determinant

R[GalF,S] → R. By Lemma B.4 there is a morphism f : X ′ → Spa R and a family of rank-d

Galois representations M ′ over X ′ such that M ′ induces the pullback f ∗DR of DR to X ′, and

we may assume that X ′ → SpaR is the composition of a blow-up and a finite surjective

morphism. Let M ′
v denote the restriction of M ′ to the local Galois group at v | p.

For each i = 1, . . . , d, the exterior product ∧iM ′
v is a Galois representation. For

each x′ lying above a point of Xcl the associated (ϕ, �)-module kx ⊗ Drig(∧iM ′
v) is strictly

trianguline, and the first step in the filtration has character f # (
∏i

j=1 δj,v); note that

f # (
∏i

j=1 δj,v(�v)) = f # (ψ(Ui,v)). Moreover, by the construction of (ϕ, �)-modules, there

is a finite cover {V ′
j := Spa R′

j} of X ′ by affinoids and a finite extension Lv/Fv such that

DLv
rig(M ′

v|V ′
j
) is a free �V ′

j ,rig,LV
-module for each j.

Thus, we are in the following situation: we have a X ′-locally free (ϕ, �)-module

D over X ′, an element α ∈ R, which is non-vanishing away from Z, and a character δ :

L×
v → OX ′(X ′ � Z̃)× with δ(�) = α, such that at a Zariski-dense set of maximal points

x ∈ Xcl, kx ⊗ D is strictly trianguline with δ giving the first step in the triangulation.

After twisting by δ|−1
O×

Lv
(which is defined by κ and therefore makes sense on all of) X ′, we

may also assume that δ|O×
Lv

is trivial. We will show that this implies that α is everywhere

non-vanishing.

Consider the complex

Cα : D[a,b]
ϕfv−α,γ−1−−−−−−−→ D[a,b/pfv ] ⊕ D[a,b]

(γ−1)⊕(α−ϕfv)−−−−−−−−−→ D[a,b/pfv ]

for some sufficiently small a, b, where fv is the inertial degree of Lv/Qp. By Corollary 3.17,

C•
α is a perfect complex, so the function x �→ dimkx

Hi(C•
α,x) is upper semicontinuous. At a

Zariski-dense set of maximal points x ∈ X ′, H0(C•
α,x) has kx-dimension at least 1, so this

holds for all x ∈ X ′. But if α vanishes at a point x, this contradicts the injectivity of ϕ on

(ϕ, �)-modules. �

6.3 Trianguline points

In this section, we show that the Galois representations attached to certain character-

istic p points of XG in the closure of the characteristic 0 eigenvariety are trianguline,

partially answering a question of [1] and [25].
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Our setup is similar to the previous section:

Theorem 6.8. Suppose X
A +

p
G is an extended eigenvariety such that there is a continuous

determinant D : O(X
A +

p red
G )[GalF,S] → O(X

A +
p ,red

G ) for some number field F, and let

X ↪→ X
A +

p ,red
G be an irreducible Zariski-closed subspace. Suppose in addition there

is an ordered basis {si,v} of � with
∏i

j=1 sj,v ∈ �+ for all i such that for a very Zariski

dense set of points Xcl ⊂ X the Galois representation attached to D is trianguline at all

places v | p, with parameters {δv} induced by {si,v}. If x ∈ X is a maximal point whose

residue field has positive characteristic, then the Galois representation associated to

the restriction D|x is also trianguline at all places v | p, with parameters {δv} induced

by {si,v}.

Proof. Let U = Spa R ⊂ Xred
G be an irreducible affinoid pseudorigid subspace containing

x, with U � {p = 0} non-empty. By [37, Theorem 3.8], there is a topologically finite-

type cover f ′ : U ′ := SpaR′ → U and a Galois representation ρ′ : GalF,S → GLn(R′◦)
such that the determinant associated to ρ′ is equal to R′◦ ⊗R◦ D. By [3, Theorem 1.1],

for each place v | p of F, there is a projective (ϕ, �Fv
)-module Drig(ρ′

v) associated

to ρ′
v.

By assumption, there is a Zariski-dense set of points {xi} ⊂ U � {p = 0} and

continuous characters δv,j : F×
v → R× such that the (ϕ, �Fv

)-module attached to Dxi
is

trianguline with parameters {δv}. Thus, by Corollary 5.11, there is a further cover f ′′ :

U ′′ → U and there is an open subspace V ⊂ U ′′ containing {p = 0} ⊂ U ′′ such that f ′′∗ρ′|V
is trianguline with parameters {δv}.

In particular, f ′′∗ρ′|(f ′◦f ′′)−1(x) is trianguline. Since (f ′ ◦ f ′′)−1(x) → {x} is

faithfully flat, the triangulation descends to a triangulation on Drig(ρx) with the desired

parameters. �

This argument applies strictly to positive characteristic points lying in the

closure of points where the Galois representation is already known to be trianguline.

In particular, if there are irreducible components supported entirely in positive

characteristic, we can say nothing at all. However, [26, Lemma 4.2.2] implies that the

extended Coleman–Mazur eigencurve does not contain any strictly characteristic p

components, and so the Galois representations associated to its boundary points are

all trianguline at p.
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A Complements on Pseudorigid Spaces

Let E be a complete discretely valued field with ring of integers OE , uniformizer �E ,

and residue field kE . We briefly recall the definition of a pseudorigid space over OE ,

before discussing pseudorigid generalizations of the maximum modulus principle and

the generic fiber constructions of Bosch–Lütkebohmert [6] and Berthelot [15].

Pseudoaffinoid algebras (which are the building blocks for pseudorigid spaces)

were defined in [32, Definition 4.3]:

Definition A.1. Let R be a Tate ring. We say that R is a pseudoaffinoid OE-algebra if

it has a noetherian ring of definition R0 ⊂ R, which is formally of finite type over OE . If

X is an adic space over SpaOE , we say that X is pseudorigid if it is locally of the form

SpaR := Spa(R, R◦), where R is a pseudoaffinoid OE-algebra.

Example A.2. Let λ = n
m ∈ Q>0 be a positive rational number with (n, m) = 1, and set

D◦
λ := OE [[u]]

〈
�m

E
un

〉
and Dλ := D◦

λ

[ 1
u

]
. Then Dλ is a pseudoaffinoid algebra.

Every pseudoaffinoid algebra R is a topologically finite type Dλ-algebra for some

sufficiently small λ > 0, by [32, Lemma 4.8].

A.1 Maximum modulus principle

In classical rigid analytic geometry, the maximum modulus principle states roughly that

every function on an affinoid domain attains its supremum at some closed point. We

wish to give an analogous result for affinoid pseudorigid spaces. We note that we have

chosen to present it using the language of valuations, rather than norms, since there is no

longer a natural exponential base, so what we prove might better be called a “minimum

valuation principle”.

Let E and Dλ be as above, and let Dλ,r := Dλ

〈
X1, . . . , Xr

〉
, which is a pseudoaffinoid

algebra corresponding to a closed ball over Dλ. Let D◦◦
λ denote the ideal of topologically

nilpotent elements of D◦
λ.

We begin by defining valuations on Dλ and on Tate algebras over it. Each element

of Dλ may be written uniquely in the form
∑

i∈Z aiu
i with ai ∈ OE , which permits the

following definition:

Definition A.3. We define analogues of the Gauss norm on Dλ and Dλ,r, via

vDλ

(∑
i∈Z

aiu
i

)
:= inf

i

{
vE(ai) + i

λ

}
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and

vDλ,r

⎛⎝∑
j∈Z⊕r

ajX
j

⎞⎠ := inf
j

vDλ
(aj),

respectively.

For any Tate ring R with ring of definition R0 and pseudouniformizer u ∈ R0, we

also define the spectral semi-valuation

vR,sp(f ) := − inf
{(a,b)∈Z⊕N|

uaf b∈R0}

a

b

for f ∈ R.

Note that vR,sp depends on a choice of pseudouniformizer, but we suppress this

in the notation.

Then it is clear from the definition that f ∈ D◦
λ,r if and only if vDλ,r

(f ) ≥ 0, and f

is topologically nilpotent if and only if vDλ,r
(f ) > 0. Moreover, for all f ∈ Dλ,r, vDλ,r

(uf ) =
λ−1 + vDλ,r

(f ), and vDλ,r
(af ) = vE(a) + vDλ,r

(f ) for all a ∈ OE . Similarly, for a general

pseudoaffinoid algebra R and f ∈ R, vR,sp(uf ) = 1 + vR,sp(f ) and vR,sp(f k) = k · vR,sp(f )

for all integers k ≥ 0.

We also observe that vDλ
takes values in the discrete subgroup of R generated by

λ−1 and vE(�E).

We give an alternate interpretation of the spectral semi-valuation; I am grateful

to the referee for permitting me to include this argument:

Lemma A.4. If R is a Tate ring with ring of definition R0 and pseudouniformizer u ∈ R0,

then for any f ∈ R

vR,sp(f ) = inf
x∈Spa(R,R◦)Berk

{
log|f |x
log|u|x

}
,

where the Berkovich spectrum Spa(R, R◦)Berk denotes the rank-1 points of Spa(R, R◦).

Proof. Let v′ := infx∈Spa(R,R◦)Berk

{
log|f |x
log|u|x

}
. For any ε > 0, we can find a ∈ Z, b ∈ N such

that vR,sp(f ) − ε < −a
b and uaf b ∈ R0. Then for any x ∈ Spa(R, R◦), |uaf b|x = |u|ax |f |bx and

moreover, |uaf b|x ≤ 1 (since R0 ⊂ R◦). Hence log|uaf b|x = a log|u|x +b log|f |x ≤ 0 (for any

choice of logarithm base), so

log|f |x
log|u|x

≥ −a

b
> vR,sp(f ) − ε.

Since this inequality holds for any choice of ε > 0, we have v′ ≥ vR,sp(f ).
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On the other hand, for any ε > 0, we can find a ∈ Z and b ∈ N so that

v′ − ε < −a

b
< v′.

Then for any x ∈ Spa(R, R◦)Berk, we have log|f |x
log|u|x > −a

b , so b log|f |x < −a log|u|x, and

hence |uaf b|x < 1. If y ∈ Spa(R, R◦) has associated rank-1 point x, then |uaf b|x < 1

implies |uaf b|y < 1. Hence, in fact, |uaf b|x < 1 for all x ∈ Spa(R, R◦), and by [22, Lemma

3.3(i)], this implies that uaf b is power-bounded. This means there is some c ∈ Z such that

uc(uaf b)n ∈ R0 for all n ∈ N, so

vR,sp(f ) ≥ −a

b
− c

nb

for all n. Since this holds for all n ∈ N and all ε > 0, we see that vR,sp(f ) ≥ v′,
as desired. �

Lemma A.5. If f ∈ R and vR,sp(f ) > 0, then f is topologically nilpotent.

Proof. By assumption, there is some a ∈ Z<0 and some b ∈ N such that uaf b ∈ R0, so

f b ∈ u−aR0 and f is topologically nilpotent. �

Corollary A.6. If f ∈ Dλ,r and vDλ,r
(f ) = 0, then vDλ,r ,sp(f ) = 0, as well, where vDλ,r ,sp is

computed with respect to the pseudouniformizer u ∈ Dλ.

Proof. The hypothesis implies that f ∈ D◦
λ,r � D◦◦

λ,r, so vDλ,r ,sp(f ) ≥ 0 by definition. If we

had vDλ,r ,sp(f ) > 0, then Lemma A.5 would imply that f is topologically nilpotent. Since

this is impossible, we must have vDλ,r ,sp(f ) = 0. �

Lemma A.7. If f ∈ Dλ,r, then vDλ,r ,sp(af ) = λvE(a)+vDλ,r ,sp(f ) for all a ∈ OE , where vDλ,r ,sp

is computed with respect to the pseudouniformizer u ∈ Dλ.

Proof. We may assume that f ∈ D◦
λ,r and a = �E . Then

vDλ,r ,sp(�Ef ) ≥ vDλ,r ,sp(�E) + vDλ,r ,sp(f ) ≥ n

m
+ vDλ,r ,sp(f ) = λ + vDλ,r ,sp(f )

since u−n�m
E ∈ D◦

λ,r.

On the other hand, we need to show that if ua(u−n�m
E f m)b ∈ D◦

λ,r, then uaf bm ∈
D◦

λ,r. Writing D◦
λ,r

∼= OE [[u]]
〈
X, X1, . . . , Xr

〉
/(unX − �m

E ), it suffices to show that if f ′ ∈ Dλ,r

satisfies Xf ′ ∈ D◦
λ,r, then f ′ ∈ D◦

λ,r. We may write f ′ = u−Nf ′′ for some f ′′ ∈ D◦
λ,r � uD◦

λ,r

and some integer N ≥ 0. Then we see that Xf ′′ = uN(Xf ′), which is an element of uND◦
λ,r;

in particular, if N ≥ 1 then Xf ′′ ≡ 0 in D◦
λ,r/u ∼= (OE/�m

E )[X, X1, . . . , Xr]. But X is not a
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zero-divisor in this ring, so f ′′ ∈ uD◦
λ,r, contradicting our assumption. Therefore, N = 0

and f ′ ∈ D◦
λ,r, as desired. �

Corollary A.8. For f ∈ Dλ,r, vDλ,r
(f ) = λ−1vDλ,r ,sp(f ), where vDλ,r ,sp is computed with

respect to the pseudouniformizer u ∈ Dλ.

Proof. There is some a ∈ E and some k ∈ Z such that vDλ,r
(aukf ) = 0; by Corollary A.6,

we also have vDλ,r ,sp(aukf ) = 0. Then

vDλ,r
(f ) = −vE(a) − k

λ

and

vDλr ,sp(f ) = −λvE(a) − k

by Lemma A.7, and the result follows. �

Corollary A.9. If f ∈ Dλ,r, then f ∈ D◦
λ,r if and only if vDλ,r ,sp(f ) ≥ 0, where vDλ,r ,sp is

computed with respect to the pseudouniformizer u ∈ Dλ.

Proof. This follows from the same statement for vDλ,r
(f ) via Corollary A.8. �

The maximal points of SpaDλ consist of the points of a classical half-open

annulus (which is not quasi-compact), together with a positive characteristic “limit

point” Spa(Dλ/�E) = SpakE((u)). Similarly, the maximal points of SpaDλ,r consist of the

product of a closed r-dimensional unit ball with a classical half-open annulus and a

closed r-dimensional unit ball over Spa kE((u)).

The advantage of working with vR,sp for a pseudoaffinoid algebra R is that it

makes sense on the residue fields of maximal points, letting us compare vR,sp(f ) and

vR/mx ,sp(f (x)) for f ∈ R and x a maximal point of Spa R (here we use the image of u

in R to compute the spectral semi-valuation on residue fields). It was demonstrated

in the proof of [26, Lemma 2.2.5] that if m ⊂ R is a maximal ideal, then Spa(R/m)

is a singleton. Then for a maximal point x ∈ SpaR, the corresponding equivalence

class of valuations contains the composition of the specialization map R → R/mx with

vR/mx ,sp(f (x)).

Then we have the following analogue of [4, Lemma 3.8.2/1]:
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Lemma A.10. Let R be a pseudoaffinoid algebra over OE and let x ∈ MaxSpec R be a

maximal point, corresponding to a maximal ideal mx ⊂ R. Then for any f ∈ R,

vR/mx ,sp(f ) ≥ vR,sp(f ).

Proof. The quotient map R → R/mx carries R0 to the ring of definition of R/mx. Thus,

if uaf b ∈ R0 then uaf
b ∈ (R/mx)◦. �

Thus, the spectral semi-valuation is a lower bound for the residual spectral semi-

valuations. In fact, it is the minimum. Analogously to the classical setting, we first prove

this for R = Dλ,r before deducing the general result.

Lemma A.11. For any f ∈ Dλ,r, the function x �→ vDλ,r/mx ,sp(f ) on MaxSpec Dλr
attains

its infimum, and its minimum is equal to vDλ,r ,sp(f ).

Proof. Fix f ∈ Dλ,r. After scaling by an element of the form auk for a ∈ OE , we may

assume that vDλ,r
(f ) = vDλ,r ,sp(f ) = 0, so f ∈ D◦

λ,r and we need to find a maximal point

x ∈ SpaDλ,r such that vDλ,r ,sp(f (x)) = 0. Let f =∑j ajX
j denote the image of f in D◦

λ,r/D◦◦
λ,r

∼=
kE [X, X1, . . . , Xr]. Since f �= 0 by assumption, there is some closed point (x, x1, . . . , xr) ∈
k

r+1
E such that f (x, x1, . . . , xr) �= 0. Then for any maximal point x ∈ SpaDλ,r whose kernel

mx reduces to (x, x1, . . . , xr), vDλ,r ,sp(f (x)) = 0, as desired. �

In order to deduce the same result for more general pseudoaffinoid algebras, we

use the Noether normalization result of [32, Proposition 4.14]:

Proposition A.12. Let R be an OE-flat pseudoaffinoid algebra such that �E /∈ R× and let

f ∈ R. Then inf
x∈MaxSpecR

vR/m,sp(f ) = min
x∈MaxSpecR

vR/m,sp(f ) = vR,sp(f ).

Proof. If p1, . . . , ps are the minimal prime ideals of R, we claim that vR,sp(f ) =
minj vR/pj,sp(f ), so it suffices to prove the result for each R/pj. Indeed, one can

consider the natural homomorphism R → ∏
j R/pj, whose kernel is the nilradical

of R. Alternatively, we can write Spa(R, R◦)Berk = ∪jSpa
(
R/pj, (R/pj)

◦
)Berk

and apply

Lemma A.4.

Thus, we may assume that R is an integral domain. The algebra R/�E is a kE((u))-

affinoid algebra, so Noether normalization for affinoid algebras provides us with a finite

injective map kE((u))
〈
X1, . . . , Xr

〉 → R/�E for some r ≥ 0. Then [32, Proposition 4.14]

implies that it lifts to a finite injective map Dn,r → R
〈
�E
un

〉
for some sufficiently large
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integer n. Then we may argue as in the proof of [4, Proposition 3.8.1/7] to see that

inf
x∈MaxSpec R

〈
�E
un

〉 vR/m,sp(f ) = inf
y∈MaxSpec Dn,r

min
x∈MaxSpec R

〈
�E
un

〉
⊗Dn,r/my

vR/m,sp(f )

= inf
y∈MaxSpec Dn,r

min
j

1

d − j
vDn,r/my ,sp(bj(y))

= min
j

vDn,r ,sp(bj),

where Yd +bd−1Yd−1 + . . .+b0 is the minimal polynomial for f over Dn,r. Since vDn,r ,sp(bj)

attains its infimum on MaxSpec Dn,r by Lemma A.11 and the fibers of MaxSpec R
〈
�E
un

〉
over MaxSpec Dn,r are finite, vR/m,sp(f ) also attains its infimum.

Since vR,sp is “power-additive” for all R, [4, Proposition 3.1.2/1] implies in

addition that v
R
〈
�E
un

〉
,sp

(f ) ≥ minj
1

d−j vDn,r ,sp(bj). Since the right side is equal to

inf
x∈MaxSpec R

〈
�E
un

〉 vR/m,sp(f ), Lemma A.10 implies that min
x∈MaxSpec R

〈
�E
un

〉 vR/m,sp(f ) =
v

R
〈
�E
un

〉
,sp

(f ).

To conclude, we use the result for classical affinoid algebras on SpaR
〈

un

�E

〉
. Since

SpaR
〈
�E
un

〉 ∪ SpaR
〈

un

�E

〉
is a cover of SpaR, the result follows. �

A.2 Analytic loci of formal schemes

Recall that a point of a pre-adic space Spa(A, A+) is said to be analytic if the kernel of

the corresponding valuation is not open. We can describe the analytic locus in certain

OE-formal schemes as explicit pseudorigid spaces, following [15]. Let X = SpfA be a

noetherian affine formal scheme over OE , and let X = SpaA be to corresponding adic

space; let I ⊂ A be the ideal of topologically nilpotent elements, and assume in addition

that A/I is a finitely generated kE-algebra.

If I = (f1, . . . , fr), then Xan = ∪iX
〈

I
fi

〉
. In the special case when A = R0 is the ring

of definition of a OE-pseudoaffinoid algebra R, we have Xan = Spa R.

As in [15, Proposition 7.1.7], we can give a functor-of-points characterization

of Xan:

Proposition A.13. Let X and X be as above, and let Y := SpaR be an affinoid pseudorigid

space. Then

lim−→
R0⊂R

ring of definition

HomFS/OE
(Spf R0,X)

∼−→ Hom(Y, Xan) (A.1)

is an isomorphism.
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Proof. Given any two rings of definition of R, there is a third that contains both

of them. Moreover, suppose R0 ⊂ R is a ring of definition, and g : R → R′ is a

continuous homomorphism of pseudoaffinoid algebras. By [22, Proposition 1.10], g is

adic; it therefore carries R0 ⊂ R to a ring of definition of R′.
Thus, for a fixed X, we can view lim−→R0⊂R ring of definition

HomFS/OE
(Spf R0,X) as

a covariant functor evaluated on R, and equation A.1 as a natural transformation. We

will construct an inverse. Suppose we have a morphism Y → Xan; it is induced by a

continuous ring homomorphism g : A → R. Using the description of the analytic locus

of X, we see that the image of Y is contained in U := ∪iUi, where Ui := X
〈

I
fi

〉
, for some

finite set {fi} ⊂ I.

Let Vi ⊂ Y denote the rational subset Spa R
〈

g(I)
g(fi)

〉
(note that by [22, Proposition

3.8(iii)], g(I) ⊂ R′ is open, so rational localization makes sense), and let Ri denote its

coordinate ring. Each morphism Vi → Ui is induced by a continuous ring homomorphism

A
〈

I
fi

〉
→ R0,i, for some ring of definition R0,i ⊂ Ri.

Let R0 ⊂ R◦ be the equalizer of
∏

i R0,i ⇒
∏

i,j R◦
i,j; we claim that the map A →

�(U, OX) → R factors through R0, and R0 is a ring of definition of R. For the first claim,

we consider the diagram

It is commutative with exact rows, and a diagram chase shows that the dotted arrow

exists.

For the second claim, let u ∈ R be a pseudouniformizer; we check that R0[u−1] = R

and R0 is a bounded subring of R. Given r ∈ R, we may write
∏

i ri for its image in
∏

i Ri.

Since R0,i ⊂ Ri is a ring of definition, there is some n ∈ N such that un
(∏

i ri

) ∈ ∏i R0,i;

by construction, un
(∏

i ri

)
is in the kernel of

∏
i R0,i ⇒

∏
i,j R◦

i,j, so it defines the desired

element of R0.

To see that R0 ⊂ R is bounded, we let R′
0 ⊂ R be a ring of definition. It induces

rings of definition R′
0,i ⊂ Ri; since R0,i ⊂ Ri is bounded, there is some n′ ∈ N such that

un′ ∏
i R0,i ⊂∏i R′

0,i, and a diagram chase shows that un′
R0 ⊂ R′

0.

We have constructed a continuous homomorphism A → R0 inducing the mor-

phism Y → Xan, where R0 ⊂ R is a ring of definition. The corresponding morphism
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Spf R0 → SpfA is the desired element of the left side of equation A.1. It is straightforward

to verify that this defines a natural transformation. �

A.3 Local structure of pseudorigid spaces

We give a result on the local structure of pseudorigid spaces, using the theory of formal

models developed in [6] and [7]. Although the authors had in mind applications to

classical rigid analytic spaces, they worked in sufficient generality that their results

hold in the more general pseudorigid context. More precisely, they related rigid spaces

to admissible formal schemes over a base formal scheme S, where S could be the

formal spectrum of an arbitrary noetherian adic ring. Since a pseudoaffinoid algebra

is topologically of finite type over some Dλ and D◦
λ is noetherian and complete for the

u-adic topology, this is sufficient for our purposes.

We give the definition of admissible formal schemes, from [6, §1]:

Definition A.14. Let A be a ring with a finitely generated ideal J ⊂ A such that

A is J-adically complete and has no J-torsion. An A-algebra R is admissible if

R ∼= A
〈
X1, . . . , Xn

〉
/I for some finitely generated ideal I ⊂ A

〈
X1, . . . , Xn

〉
and R has no

J-torsion.

An affine formal A-scheme X := SpfR is admissible if R is an admissible A-

algebra. A quasi-compact formal A-scheme is said to be admissible if it has a cover by

admissible formal A-schemes.

There is an implicit assertion here that admissibility can be checked locally on

X, which follows from [6, Proposition 1.7]; we refer the reader there for more details.

Theorem A .15. Let f : R → R′ be a continuous homomorphism of pseudoaffinoid

algebras over OE , such that for every maximal ideal m ⊂ R, the induced maps R/mn →
R′/mn are isomorphisms. Then f is an isomorphism.

Proof. To begin with, we observe that f induces a bijection MaxSpec(R′) → MaxSpec(R).

Furthermore, by [36, Tag 0523], the maps Rm → R′
m on algebraic localizations are flat.

By [32, Lemma 4.8] there is some λ ∈ Q>0 such that R is topologically of finite type

over Dλ, so we may choose a ring of definition R0 ⊂ R, which is topologically of finite type

over D◦
λ. Similarly, since R′ is topologically of finite type over R by [25, Corollary A.14],

we may choose a ring of definition R′
0 ⊂ R′, which is topologically of finite type over R0.
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Setting X = SpfR0 and Y = SpfR′
0, we have a morphism Y → X of admissible formal

SpfD◦
λ-schemes, which corresponds to f after inverting u.

By [7, Theorem 5.2], there are admissible formal blow-ups X̃ → X and Ỹ → Y

and a flat morphism Ỹ → X̃. By [7, Corollary 5.3], we may also assume this morphism

is quasi-finite. We claim this morphism is surjective. Indeed, flat morphisms are open;

if it is not surjective, the complement Z ⊂ X̃ of its image is a closed formal subscheme,

whose associated pseudorigid generic fiber Z ⊂ SpaR contains maximal points that are

not in the image of SpaR′, which contradicts our assumptions.

Now we consider the morphism Ỹ0 → X̃0 between the mod u fibers. This is a

separated flat quasi-finite morphism between finite-type Fp-schemes, and we claim it

is actually an isomorphism. For this, it suffices to show that the fibral rank is constant

and equal to 1 (since this implies it is finite of rank 1, by [16, Lemma II.1.19]). Moreover,

the locus in X̃0 of points with fibral rank-d is constructible by [18, Lemma 9.8.8], and

constructible sets contain closed points, so it suffices to check that all closed points

have rank-1 fibers.

But if x0 ∈ X̃0 is a closed point, there is some local integral domain A of dimension

1 and a morphism SpfA → X̃ whose reduction modulo u is x0, by [6, Proposition 3.5]. The

base change Ỹx → SpfA is again flat and quasi-finite; since A is a local ring, the rank of

its fiber over A
[ 1

u

]
is equal to its fiber over the residue field. But by assumption, the fiber

over A
[ 1

u

]
has rank 1, so the fiber Ỹx0

has rank 1, as desired.

Now we have a morphism of sheaves of topological rings O
X̃

→ O
Ỹ

, which is

surjective modulo u. By [36, Tag 07RC(11)], it is surjective modulo all powers of u. Since

O
X̃

and O
Ỹ

are u-adically complete, it is surjective.

Suppose O
X̃

→ O
Ỹ

has kernel sheaf J . Since O
X̃0

→ O
Ỹ0

is an isomorphism and

Ỹ is X̃-flat, J /u = 0 and by [36, Tag 07RC(11)] J = 0.

Thus, Ỹ → X̃ is an isomorphism; inverting u, we see that R → R′ is an

isomorphism, as desired. �

B Pseudorigid Determinants

We need to extend some of the results of [12] on moduli spaces of Galois determinants

from the rigid analytic setting to the pseudorigid setting. Recall that for any topological

group G and d ∈ N, [12] defines functors Ẽd : FS/Zp → Set and Ẽd,z : FS/Zp → Set on

the category of formal schemes over Zp, where z is a d-dimensional determinant G → k

for some finite field k. More precisely,

Ẽd(X) := {continuous determinants O(X)[G] → O(X) of dimension d}
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and Ẽd,z(X) ⊂ Ẽd(X) is the subset of continuous determinants that are residually

constant and equal to z.

Suppose that G is a topological group satisfying the following property:

For any open subgroup H ⊂ G, there are only finitely many continuous group

homomorphisms H → Z/pZ.

Under this condition (which is satisfied by absolute Galois groups of character-

istic 0 local fields, and by groups GalF,S, where F is a number field and S is a finite set

of places of F), [12, Corollary 3.14] implies that Ẽd and Ẽd,z are representable. Moreover,

every continuous determinant is residually locally constant, and so Ẽd =∐z Ẽd,z.

We may define an analogous functor Ẽan
d on the category of pseudorigid spaces,

and we wish to prove the following:

Theorem B .1. The functor Ẽan
d is representable by a pseudorigid space Xd, and Xd is

canonically isomorphic to the analytic locus of Ẽd. The functor Ẽan
d,z is representable by

a pseudorigid space Xd,z, and Xd,z is canonically isomorphic to the analytic locus of Ẽd,z.

Moreover, Ẽan
d is the disjoint union of the Ẽan

d,z.

Remark B.2. This is a direct analogue of [12, Theorem 3.17], and the proof is virtually

identical. However, we sketch it here for the convenience of the reader.

If R is a pseudoaffinoid algebra, it contains a noetherian ring of definition R0 ⊂ R,

and we have R◦ = lim−→ R0, where R◦ ⊂ R is the subring of power-bounded elements of R

and the colimit is taken over all rings of definition of R. We have an injective map

ι : lim−→
R0⊂R

ring of definition

Ẽ(Spf R0) → Ẽan(R).

Exactly as in [12, Lemma 3.15], we have the following:

Lemma B.3. Let R be a pseudoaffinoid algebra, and let D ∈ Ẽan
d (R). Then

1. For all g ∈ G, the coefficients of D(1 + gt) ∈ R[t] lie in R◦.

2. The map ι : lim−→R0⊂R
Ẽ(SpfR0) → Ẽan(R) is bijective.

3. If R is reduced, then Ẽd(SpfR◦) = Ẽan
d (R).

In particular, if L is the residue field at a maximal point of SpaR and OL is its

ring of integers, Ẽd(SpfOL) = Ẽan
d (L). Every L-valued point of SpaR therefore defines
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a map

Ẽd(Spa R) → Ẽd(L) = Ẽd(Spf OL) → Ẽd(kL),

where kL is the residue field of OL.

Thus, we may talk about residual determinants of determinants R[G] → R, and

define Ẽan
d,z for any continuous determinant z valued in a finite field.

Now the proof of Theorem B.1 follows by combining Proposition A.13 and

Lemma B.3.

For the convenience of the reader, we record the following analogue of [2,

Lemma 7.8.11]; its proof carries over verbatim to the setting of pseudorigid families of

determinants.

Lemma B.4. Let D : G → O(X) be a continuous d-dimension determinant of a

topological group on a reduced pseudorigid space X. Let U ⊂ X be an open affinoid.

1. There is a normal affinoid Y, a finite surjective map g : Y → U, and a

finite-type torsion-free O(Y)-module M(Y) of generic rank d equipped with

a continuous representation ρY : G → GLO(Y), whose determinant at generic

points of Y agrees with g∗D.

2. Moreover, ρY is generically semisimple and the sum of absolutely irreducible

representations. For y in a dense Zariski-open subset Y ′ ⊂ Y, M(Y)y is free of

rank-d over Oy, and M(Y)y ⊗ k(y) is semisimple and isomorphic to ρg(y).

3. There is a blow-up g′ : Y → Y of a closed subset of Y �Y ′ such that the strict

transform MY of the coherent sheaf on Y associated to M(Y) is a locally free

OY -module of rank d. That sheaf MY is equipped with a continuous OY -

representation of G with determinant (g′g)� ◦ D, and for all y ∈ Y, (MY,y ⊗
k(y))ss is isomorphic to ρg′g(y).
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