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We study the cohomology of families of (¢, ')-modules with coefficients in pseudoaffi-
noid algebras. We prove that they have finite cohomology, and we deduce an Euler
characteristic formula and Tate local duality. We classify rank-1 (¢,I')-modules and
deduce that triangulations of pseudorigid families of (¢, I')-modules can be interpolated,
extending a result of [29]. We then apply this to study extended eigenvarieties at the
boundary of weight space, proving in particular that the eigencurve is proper at the
boundary and that Galois representations attached to certain characteristic p points

are trianguline.

1 Introduction

In our earlier paper [3], we began studying families of Galois representations varying
over pseudorigid spaces, that is, families of Galois representations where the coefficients
have a non-archimedean topology but which (in contrast to the rigid analytic spaces of
Tate) are not required to contain a field. Such coefficients arise naturally in the study of
eigenvarieties at the boundary of weight space.

The theory of (¢,I')-modules is a crucial tool in the study of p-adic Galois
representations. At the expense of making the coefficients more complicated, it lets us
turn the data of a Galois representation into the data of a Frobenius operator ¢ and a 1-
dimensional p-adic Lie group I'. Moreover, Galois representations that are irreducible
often become reducible on the level of their associated (¢,I')-modules. Such (¢, I')-

modules have played an important role in the p-adic Langlands program.
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3000 R. Bellovin

In our previous paper [3], we constructed (¢, ')-modules associated to Galois
representations varying over pseudorigid spaces. In the present paper, we turn to
the study of the cohomology of (¢,I')-modules over pseudorigid spaces have finite
cohomology, whether or not they come from Galois representations. Given a (¢,I')-
module D, the Fontaine-Herr-Liu complex C7 (D) is an explicit three-term complex,
which, when D arises from a Galois representation, computes the Galois cohomology. We
begin by proving that such families of (¢, I')-modules have finite cohomology, extending

the main result of [29]:

Theorem 1.1. Suppose D is a projective (¢, I')-module over a pseudoaffinoid algebra R.
Then C;, (D) € Dg“] (R).

erf

As a corollary, we deduce the Euler characteristic formula:

Corollary 1.2. If D is a projective (¢, I'y)-module with coefficients in a pseudoaffinoid
algebra R, then x (D) = —(rkD)[K : Qp].

This extends the result [30, Theorem 4.3]. However, the method of proof is
different: Liu proved finiteness of cohomology and the Euler characteristic formula at
the same time, making a close study of ¢-torsion (¢, ')-modules to shift weights. There
is no element ¢ in our setting, because p is not necessarily invertible. However, because
we proved finiteness of cohomology for pseudorigid families of (¢, I')-modules first, we
can deduce the Euler characteristic formula by deformation, without studying torsion
objects.

We then turn to (¢, I')-modules with coefficients in finite extensions of Fp((u)),

and we prove Tate local duality:
Theorem 1.3. Tate local duality holds for every projective (¢, I')-module D over AR rig,x-

Here Ag rjg x is @ mixed- or positive-characteristic analogue of the usual Robba
ring, which we will define in section 2.1. Our proof closely follows that of [30, Theorem
4.7]; we compute the cohomology of many rank-1 (¢, I')-modules and then proceed by
induction on the degree, using the Euler characteristic formula to produce non-split
extensions. We are then able to finish the computation of the cohomology of (¢,I')-
modules of character type.

With this in hand, we are able to show that all rank-1 (¢, I')-modules over pseu-
dorigid spaces are of character type, following [29], and we deduce that triangulations
can be interpolated from a dense set of maximal points (in the sense of [26, Definition
2.2.7]):
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Cohomology of (¢, I')-Modules 3001

Theorem 1.4. Let X be a reduced pseudorigid space, let D be a projective (¢, 'g)-
module over X of rank d, and let §;,...,8; : K* — I'(X, ﬁ;) be a set of continuous
characters. Suppose there is a very Zariski-dense set X¢' ¢ X of maximal points such
that for every x € X, D, is trianguline with parameters 81 xr-++184x- Then there exists
a proper birational morphism f : X’ — X of reduced pseudorigid spaces and an open

subspace U C X’ containing {p = 0} such that f*D|; is trianguline with parameters

FE8y, . f*oy.

Unlike the situation in characteristic 0, the triangulation extends over every
point of characteristic p, and there are no critical points. This is again because there
is no analogue of Fontaine's element ¢ in our positive characteristic analogue of the
Robba ring.

Finally, we turn to applications to the extended eigenvarieties constructed
in [25]. Adapting the Galois-theoretic argument of [17], we prove unconditionally that
each irreducible component of the extended eigencurve is proper at the boundary of
weight space, and that the Galois representations over characteristic p points of the
extended eigencurve are trianguline at p. The latter answers a question of [1].

We actually prove these results under somewhat abstracted hypotheses, in order
to facilitate deducing analogous results for other extended eigenvarieties. In particular,
our results apply to certain unitary and Hilbert eigenvarieties. However, for most
groups, the necessary results have not been proven even for Galois representations
attached to classical forms, nor have the required families of Galois representations
been constructed.

In the appendices, we have collected several results on the geometry of pseu-
dorigid spaces and Galois determinants over pseudorigid spaces necessary for our

applications.

Remark 1.5. We assume throughout that p # 2. It should be possible to remove this
hypothesis without any real difficulty, but we would have had to work systematically
with RT (Fﬁ’tors, C;,F(D)), rather than the usual Fontaine-Herr-Liu complex.

2 Background
2.1 Rings of p-adic Hodge theory

Let R be a pseudoaffinoid Og-algebra, for some finite extension E/Q, (we provide a

precise definition of pseudoaffinoid algebrais in A) with uniformizer @y, with ring of
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3002 R. Bellovin

definition Ry C R° and pseudouniformizer u € R, and assume that p ¢ R*. Let K/Q,, be
a finite extension, let x., : Galy — Z, be the cyclotomic character, let Hy := ker x.,
and let 'y := Galg/Hg. Given an interval I C [0, oo], we defined rings (f\RO,I'K, [\;O,LK) and
(ARy K7 A;O,I,K) in [3, Definition 3.2] and [3, Definition 3.40], respectively, which (when
I = [0,b]) are analogues of the characteristic 0 rings (A;?'b],[x;{’s(b)) and (A}?'r],A;{’S(r))
defined in [14]. Here s : (0, 00) — (0, 0) is defined via s(r) := 1%1_ We briefly recall their
definitions here and state some of their properties.

Let A r = W(ﬁEK), where ﬁEK = l(iLnX'_)Xp Oc, 1s the tilt of O¢, . Let ¢ =
9,eM, e ﬁ(b:K be a choice of a compatible sequence of p-power roots of unity, with
£® =1ande® #1,andlet7 :=e¢—1and 7 :=[e] -1 € A; ;. Then if I = [a, b] for rational

numbers a, b with 0 < a < b < o0, we define (KRO'I, 7\;50,1) such that
~ 4 ~ ~ [7]5@ u
Spa(Agy,r Agq,r) = (SPa(Ro ® Aing, Ro®Aing) | —— F®

_ > _ ; _ u__ 1
If a = 0, we take *.— =0, and if b = 0, we take FE = o

The ring 1~\R0J has ring of definition (Ry ® Ajyy) <[ﬁ]§t<a>’ [ﬁ]lj(b) >; when b # oo, this
permits us to define a valuation
VR'[ayb](X) = sup —VC; ()

) =
a€Cp:lalxeAR ) (a,b1,0

on it. When a = 0, we abbreviate vy o ;) @s Vg ,- When b = oo, we let vy [, ) be the u-adic
valuation.

The group Hy acts on (KROJ, K?%_o,l)' because Galg acts on A; ; and Hy fixes [7].
Then by [3, Corollary 3.36],

AHx F+Hk = Hg > Hg [E]S(a) u
Spa(Ag, 1 Apyr ) = (SPa(Ro ®Ajns ©/Ro @ Ajyy )) .

u | [Es®

If I C I', we have injective maps 1~\R0 = KROJ and Kggl, — Kggl. Thus, if I is an interval

with an open endpoint, we may define

N A+ . N A+
(ARg 1+ Mgy ) =N 1er (AR Mgy 1)
closed

and

A“Hxg N+Hry . A“Hx F+Hk
(AR(),I/' ARQ,I/) =N IICI/d(AR(),I'ARo,I )
close
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Cohomology of (¢, I')-Modules 3003

The rings (Ag, 1 k- ARFOJVK) are imperfect versions of these, defined when I C [0, b]
with b sufficiently small. Given A = % € Q_, with gcd(m, m’) =1, let (D,, D) denote the
pair of rings corresponding to the localization (J5lul, Ozlul) <:—£rf> By [32, Lemma 4.8],
there is some sufficiently small A such that R is topologically of finite type over D,,
so we may assume that R, is topologically of finite type over DS, that is, there is a
continuous, open, and surjective homomorphism D, (Ty,..., T,) - R (This is defined as
“strictly topologically of finite type” in [38]; the definition of “topologically of finite type”
given there is slightly more general, following [23, §3]. But in the case of Tate rings, the
two definitions coincide by [23, Lemma 3.5].).

For any unramified extension F/Q,, the choice of ¢ gives us a natural map
kp(@) — C;; let E; denote its image, and let E C C?{ be its separable closure.
Then Gal(E/Ep) = Hy (by the theory of the field of norms), and for any extension
K/F, we set Ex := EFK. Then Eg is a discretely valued field, and we may choose a
uniformizer 7g; if we lift its minimal polynomial to characteristic 0, Hensel's lemma
implies that we have a lift 7z € W(C;{), which is integral over ﬁFI[n]][%]A. We fix a choice
g for each K, and work with it throughout (when F/Op is unramified, we take 7z to
be 7).

Assume that 0 < a < b < r¢ - A, where rx is a constant defined in [14], and that
€ Z.Let FF C K, := K(pp~) be the maximal unramified subfield.

1
av b (k)" bv b (7TK))

Then we deﬁne ARy abl,x to be the evaluation of O ¢ s.,)1x, O the affinoid subspace of

1/(b-v ) (Tk) 1/(@vy (k)
Spa(Ry ® Op)lngl defined by the conditions u < 7, % and 7, °x < u (and

similarly for A}, ). We further set Ag 1, 1 x = Agy bk [5]-

Ro,la,bl,K
If p = 0 in R, then we may take A arbitrarily large, and hence b arbitrarily large.
Thus, in this case, we additionally define A (4 o) x = (R ®z, Op)lrgl.
We further define AR ,(0,b], K = l(inaqo AR la,blKr and AR rig K = 11mb_)0 AR (0,bl,K*
The rings A 0. and A ;. are equipped with actions of Frobenius and I'y. More

precisely, we have isomorphisms

~“Hx ~ 7FHg
Q: AROI—>A Ro L1

@ ARO’I — ARO
'p

I’

e

and ring homomorphisms
¢ Ao lablk = DRola/pb/plK-

However, the latter are not isomorphisms; ¢ makes Ag 10,5/p)x Into a free p(Agg 10 p1,x)-

module, with basis {1,l¢],...,[¢]P~'}. We may define a left inverse v : ARO,[O,b/p],K —
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3004 R. Bellovin

ARg,[0,b1,K by defining

¥ (9(@o) +p(@lel + -+ p(a, DIEP) = ag.

. . . . . . _ 71 71
If p is anon-zero-divisor in R;, we may instead write ¢y =p~ "¢ °TrARO,[o,b/p1,1</<p(ARo,[o,b1,K)‘
There is a natural map Ag, upxk —> ARgab,x: @0d SO Ag (55 ¢ inherits the

valuation v . We can compute vy ; explicitly when R is a finite extension of F,_(w)):
Rla,bl] p R,b €XP »

Lemma 2.1. If R is a finite extension of Fy(w), equipped with the u-adic valuation vy
(with vg(u) = 1), then

) 1, , _
VR b (Z ain}<) =3 1161%" {VR(ai) + leC; (JTK)} .
ieZ

Proof. It is straightforward to check that vy, (a;7k) = we (Tg) + %, which yields
! P

the claim. u
We can also estimate the u-adic valuation vy,

Lemma 2.2. If Ris a a finite extension of Fp((u)), equipped with the u-adic valuation vy
(with vz (u) = 1), then

inf{v a;) +iav (T }
>0 R( 1) Cp( K)
is a valuation on Ag , . x Whose ring of integers is Ag (4~ .0

Proof. We again compute the valuation of monomials: VR,[a,oo](ainIi{) = vg(a) +

Liavcz (Tl |

- . / .
Thus, we may define an auxiliary valuation vy , on Ag 4 o0 x Viad

/ 1 . . —
VRa Z ang | = gl(t)“ {VR(ai) + 1ave, (nK)} .
i>0 -

By [3, Proposition 3.10], the formation of KRJ behaves well with respect to
rational localization on SpaR, and ARy1K does, as well, since it is sheafy. Thus, if X
is a (not necessarily affinoid) pseudorigid space, we may let 1~\§I§ and Ay ;r denote the

corresponding sheaves of algebras on X.
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Cohomology of (¢, I')-Modules 3005
2.2 (¢,I')-modules and cohomology

We briefly recall the theory of (¢, I')-modules over pseudorigid spaces.

Definition 2.3. A ¢-module over Ag o x is @ coherent sheaf D of modules over the

pseudorigid space J,_.o Spa(Ag 4 5 x) €quipped with an isomorphism

¢p - ¢*D — AR,(O,b/p],K ®AR,(O,b],K D.

If a € (0,b/pl, a p-module over Ag , ) x is a finite Ag [, ) x-module D equipped with an

isomorphism

. 1
¢D,lab/p] - DR lab/plK ®AR,[a/p,b/p],K ¢"D — ARjab/plx AR 0k D

A (¢, Tg)-module over Ag ) x (r€SP. Ag q,5x) 1S @ p-module over Ag 5 x (resp.
AR ap x) €quipped with a semi-linear action of 'y, which commutes with ¢, (resp.
D la,b/p))-

A (¢, Tg)-module over R is a module D over Ag, ;, x, which arises via base change

from a (¢, I'y)-module over Ag 5 x for some b > 0.

If Dis a (¢, I')-module over AR 0p1K and I C (0, b] is a sub-interval, we will write
Dr:= ARk Ongonx P O denote its restriction to the annulus I.

Let K/L be a finite extension, and let D be a (¢, I';)-module over Ag 5 x (resp. R).
As in [30, §2.2], we may define the induced (¢, I'y)-module Indi< (D). The underlying sheaf
(resp. module) of IndX (D) is just D itself, but viewed now as a sheafon | J, Spa(ARg [4,b1,5)
(resp. a module over Ag ., x). If D is projective, then [3, Lemma 3.45] implies that mmd¥ (D)
is projective as well.

Let Ax C I'r be a torsion subgroup. Since we assume p # 2, the quotient I'y/Ax
is procyclic, so we may fix y € I'y whose image in I'/Ay is a topological generator. Then
for a (¢, 'g)-module D, we define the Fontaine-Herr-Liu complex via

—1,y-1 —1e1-—
(¢p—1,y )DGBD(V )B( wp)D

Cor:D

(concentrated in degrees 0, 1, and 2). We let H;:FK (D) denote its cohomology in degree i.
Then as in [30, §2.1], the projection p, : D — D”K induces a quasi-isomorphism
Cy (D) = Cs (D) (where we view D*X as a (¢, ['y/Ag)-module over (AR'(O’b]'K)AK). In

particular, it is independent of the choice of A.
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3006 R. Bellovin

The main result of [3] says that if M is a R-linear representation of Galg, there
is an associated projective (¢, 'y)-module D, x(M). Moreover, we have a canonical
quasi-isomorphism RTI'(Galg, M) — Cor between (continuous) Galois cohomology and
Fontaine-Herr-Liu cohomology. This extends similar results on families of projective
Galois representations with coefficients in classical Q,-affinoid algebras [33, Theorem
2.8] and earlier work in the setting of Q,-linear Galois representations [30, Theorem 2.3].

We will define a closely related complex

—1,y-1 -1 1-
C;/,F:D Yp—-1,y—-1) D&D (y—1D®(1—-yp) D,

which is also concentrated in degrees 0, 1, and 2.
We first extend the ¢ operator to (¢, I')-modules. The isomorphism ¢*D g 5

D g,p/p) induces an isomorphism

AR, 0,b/p1LK Bp(An0mx) P Pi0,p) = Diob/pr-

We therefore have a surjective homomorphism ¥, : Dgp/p) = D(gp) defined by setting
¥p(a® ¢(d)) = yp(a)d, where a € Ag g p/px @nd d € Dg .-
There is a morphism of complexes ¥, : Cor = Cyr given by

Cor: D——D®D——D
lq;D Jid l—w@id l’w
Cor: D——D&D——D

The following result is standard (see e.g., [29, Proposition 2.3.6]), and the same

proof holds here:
Lemma 2.4. The morphism v, is a quasi-isomorphism.

When there is no danger of confusion, we will generally drop the subscripts on

op and ¥p.

2.3 (¢, I')-modules of character type

Let K/Q,, be a finite extension with ramification degree ex and inertia degree fx, and
let O be its ring of integers, ki be its residue field, and @y be a uniformizer. Let K; C K
be its maximal unramified subfield. Let R be a pseudoaffinoid algebra over Z,, with ring

of definition Ry C R and pseudouniformizer u € R.
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Cohomology of (¢, I')-Modules 3007

We begin by recalling the construction of (¢,['x)-modules of character type
from [29].

Lemma 2.5. Let« € R*.Up to isomorphism, there is a unique rank-1 R ®z, Ok,-module

Dgy o equipped with a 1 ® ¢-semilinear operator ¢, such that ng =a®l.

Proof. This follows exactly as in [29, Lemma 6.2.3]. [ |

Definition 2.6. Let § : K* — R*, and write § = §,8,, where §;,8, : K* =2 R* are
continuous characters such that 8, is trivial on &3 and §, is trivial on (wy). By local
class field theory, 8, corresponds to a continuous character 8, : Galy — R*. We let
Aerig'K(Sl) = Dp s, () ®R®ﬁKO AR rig and AR,rig,K(32) = Drig,K(alz)l and we define
AR rigk(8) i= AR rig k(1) ® AR rig x(82).

If D is a (¢, 'gy)-module and § : K* — R* is a continuous character, we will let
D(8) denote D ® Ap g x(9). This is, in particular, a projective (¢, I'y-module of rank 1. We
will let C(;,FK (8) and H;,FK (8) denote the Fontaine-Herr-Liu complex and the cohomology

groups of Ag 1, x(8), Tespectively.

Lemma 2.7. Suppose L/K is a finite extension, and w; is a uniformizer of L with
Nmy (@) = @wg. If § : K* — R* is a continuous character, then Res]I}AR,riglK(S) is of

character type, with associated character § c Nm; /K.

Proof. We may consider separately the cases where § is trivial on & and (wK) If § is

trivial on 0%, then

I
Resg AR rigk(8) = D () ®re0k, MRriglL
= (DfK,a(wK) ®rgog, (R ® ﬁLo)) ®reoy, MRrig,L-

But Dp 5(my) ®ree (R ® Op) is a rank-1 R ® Oy -module equipped with a 1 ® ¢-
semilinear operator ¢; ., such that “{%wK) = §(wg) ® 1, so it is isomorphic to D, 5y
By definition, D, s ®Rreoy, MRrigl is equal to Ag g7 (8 0o Nmy g). On the other hand,
if § is trivial on (wK), the statement follows from functoriality for local class field
theory. |

Continuous characters vary in analytic families, and hence (¢, I')-modules do, as

well. More precisely, if G is a compact commutative p-adic Lie group, then the functor
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3008 R. Bellovin
on complete sheafy affinoid (Z,, Z,)-algebras
(A,AT) — Hom_ (G, A™)

is representable by the affinoid ring (Z,[Gl, Z,[G]). Indeed, G is non-canonically isomor-
phic to G x Zi?r; ifk : G — A* is a continuous character, then x must carry G, to the roots
of unity of A* and must carry topological generators of Z;‘fr to 1 + A°° (where A*° C A
denotes the topologically nilpotent elements).

On the other hand, if G is a free abelian group, then the affinoid adic space

Spa(ZIGl, Z) represents the functor on adic spaces

X — Hom(G, 0(X)).

Since G is non-canonically isomorphic to Z®", this space is isomorphic to Gf‘nd’r, where

G2 := Spa(Z[T*'],Z) (note that Spa(Z[T*!], Z[T*')) is the “unit circle” representing the
functor X — 01 (X)>).

Proposition 2.8. If X is an pseudorigid space, then the fiber product X xzz G, is

representable by an analytic adic space Gy, . If X is pseudorigid, then so is G}, .

Proof. We may assume that r = 1. To see that G,, x is representable, we first assume
that X = SpaR is affinoid, where R is pseudoaffinoid with ring of definition R, and
pseudouniformizer u € Ry. Then, for any h € Z_,, we let Cy j, := SpaR (uhT, uhT‘l) denote
the relative annulus; Cy j is again Tate, there are natural open immersions Cx j, C Cx j,.1,
and we claim that U, Cy ;, represents G,, x in the category of adic spaces over X. Indeed,
if SpaA is an affinoid adic space over X, it is also Tate, and this claim amounts to the
assertion that for a unit f € A%, the set {f,f~!} C A is bounded. But this follows from
the definition of a pseudouniformizer. Moreover, the union U, Cy j, is independent of the
choice of u, even though the individual annuli do depend on u. Then gluing shows that

G,, x is representable for general X. |

Definition 2.9. Suppose that G is a commutative p-adic Lie group, and G’ C G is a
compact open subgroup such that G/G’ is free and finitely generated. Then, we define
the pseudorigid character variety G*® := Spa(Z,IG'1, Z, IG' D™ x 77 Spa(ZIG/G'], Z);
if X is an arbitrary pseudorigid space, we also define Gy := Spa(Zpl[G’ll, Zpl[G’]I) X (Zp.2p)
Spa(Z[G/G']l, Z)x (which is also pseudorigid).

In order to make sense of the last definition, we observe that if R is a

pseudoaffinoid algebra with noetherian ring of definition R, C R and pseudouni-
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Cohomology of (¢, I')-Modules 3009

formizer u € R;, then G X (Zp,Zp) SpaR is the (non-quasi-compact) open subspace
{u # 0} C Spa Ry ®Z,IG'1.

In particular, if K is a finite extension of Qp, we have the pseudorigid moduli
space K* of continuous characters of K*. If K = Q, and G = Q) = pp_y X Z X Zy,

then G2 has connected components indexed by the elements of Kp_1, €ach of which is

. . an
isomorphic to (Spa Zpl[Zp]I) X G?,?.
Remark 2.10. In the pseudorigid setting (unlike the classical rigid analytic setting), it

is not true that Gl/x\Gzan ~ G, x G,"". Indeed, Spa(Z,lT,, T,1, Z,IT,, T,1)*" consists of

all valuations that do not vanish on all three of p, T}, T,. But
Spa(Z,IT,1, Z,IT\ D™ ¥z, z,) SPA(Z,IT,l, Z 1T, D™
also excludes valuations vanishing at both p and T; (or both p and T),).

3 Finiteness of Cohomology

We wish to show that the cohomology of Cor is R-finite. To do this, we will apply [28,

Lemma 1.10] to the morphisms of complexes

D[u,,b] — D[(l,,l)/])] S D[a,,b] D[a,,b/p]

| | |

Diar ) — Doy /p) © Diar,py) — Diar b /)

induced by the natural homomorphisms Ag , ,1 7 = AR ey x (Where [a’,D'] C (a,b)).
More precisely, Kedlaya-Liu show that if the morphisms D, ;; — Dy, , are completely
continuous and induce isomorphisms on cohomology groups, then both complexes have
R-finite cohomology. Since C; |- is the direct limit (as b — 0) of the inverse limit of these
complexes (as a — 0), with transition maps that are quasi-isomorphisms, this will imply

that C |- has R-finite cohomology.

Definition 3.1. Let A be a ring. A function |-| : A — R, is called a semi-norm if
1. [0]=0and|l] =1
2. |a + b| < max{|al, |b|} forall a,b € R
3. |ab| < |a|-|b|foralla,be R

If, in addition, |a| = 0 if and only if @ = 0, we say that |-| is a norm.
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We say that A is a Banach algebra if A is equipped with a norm, and it is complete

with respect to the metric induced by that norm.

If A is a complete Tate ring with ring of definition A, and pseudouniformizer

u € Ay, we may define a norm on A as follows: let « € R_;, and define
la| = inf{a™ | a € u"Ag}
We recall [28, Definition 1.3]:

Definition 3.2. Let A be a Banach algebra, and let f : M — N be a morphism of
Banach A-modules (equipped with norms |-[;; and |-|y, respectively). We say that f is
completely continuous if there exists a sequence of finite A-submodules N; of N such
that the operator norms of the compositions M — N — N/N; tend to 0 (where N/N; is

equipped with the quotient semi-norm)

Note that this is slightly different than the standard definition (cf. the discussion
of [28, Remark 1.12]).
We also recall [28, Definition 5.11:

Definition 3.3. Letf: (4,4A") — (A’,A’") be a localization of complete Tate rings over
a complete Tate ring (B, B™). We say that f is inner if there is a strict B-linear surjection
B()_() — A such that each element of X maps to a topologically nilpotent element of A’.

Here X is a (possibly infinite) collection of formal variables.

If B is a nonarchimedean field of mixed characteristic and A and A’ are topo-
logically of finite type over B, Kiehl proved that inner homomorphisms are completely
continuous. We prove the analogous result, using Definition 3.2 as the definition of

complete continuity (which is slightly different than Kiehl's definition).

Proposition 3.4. If[a’,b'] C (a,b) and [a, b] C (0, o), then the map Ag , y1x = AR @ b1k

induced by restriction is completely continuous.

Proof. The pairs (Ag (41 &+ A;,[a,b],K) and (Ag [/ b5/ A;?_,[a’,b’],K) are localizations of (Ry®
Oplngl,Ry ® Oplngl); since [a’,b'],[a, bl C (0,00), they are adic affinoid algebras over
(R,R™). Since [a’,b'] C (a,b), the natural restriction map is inner. Then [28, Lemma 5.7]

implies that it is completely continuous. |
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Lemma 3.5. Suppose a € (0,b/pl. Then the functor D ~ Ag 415 @aponx P =" Dlabl
induces an equivalence of categories between g-modules over Ag o x @and g-modules

over AR,[a,b],K'

Proof. Suppose we have a ¢-module D, ; over Ag,; k- Then the Frobenius pull-
back ¢*Dy, ;) is a finite module over Ag ./, p/px, and the isomorphism ¢p 1,5 /m
AR lab/plE BApa/pb/px ¢*Digpy = ARfab/plk @Agesx Plap (@nd the assumption that
a < b/p) provides a descent datum. Thus, we may construct a finite module Dy p,p) OVEr
AR [q/p,b),x» Which restricts to Dy, p;.

To show that Dy, ,, ;) is a ¢g-module over Ag ;1 x, We need to construct an

isomorphism

. * ~
D,la/pb/pl - MR la/pb/plK B2k @ Pla/pbl ~ DRla/pb/plK ®Agapsx Plaspbl-

By construction, we have an isomorphism

.k =~
¢p,lab/pl * P Diab) = ARlaspb/plk ©Apia/psix Pla/p.bl

and if we pull ¢p, , /5 back by Frobenius, we obtain an isomorphism

. * =~
¢D,la/pb/p?) * AR la/pb/p2K On ¢ Diasp,b/pl = ARa/pb/p?1K BAgiapb/pix Pla/pb/pl:

Rla/p?b/p?1 K

On the overlap, they induce the same isomorphism ¢*Dy, ;1) = AR (a/p,b/p21x @ag la/pb/plE
Dy p,b/p1 by construction), so we obtain the desired isomorphism ¢p, 14/, 1/p]-

Iterating this construction, lets us construct a g-module over Ag ¢ p) k-

This proves essential surjectivity; full faithfulness follows because the natural

maps Ag opx — AR g,k Rave dense image. |

Corollary 3.6. If D is a p-module over Ag 5 k. the morphism of complexes
-1 p—1
[Do,51 = Do,p/pi] = [Diap] = Dig,p/pil
is a quasi-isomorphism for any a € (0, b/pl.

Proof. This follows from the previous lemma because we may interpret the cohomology

groups as Yoneda Ext groups. |
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In order to prove that the restriction map D — Dgp/p induces an isomor-

phism on cohomology, we will need to use the ¥ operator:

Lemma 3.7. Let D be a (¢, I')-module over Ag ¢ 1 x for some b > 0. Then there is some

0 < b’ < b such that the action of y — 1 on (D(oyb/])‘”z0 admits a continuous inverse.

Proof. We may replace D with Indgf’ (D). Since (D(Olb/pn])‘/’zo = Gaje(z/pn)x[e};<p”(D), it
suffices to show that y — 1 has a continuous inverse on [¢V¢™(D) for j prime to p and
sufficiently large n. Moreover, since y” — 1 = (y — 1)(y™* ! + ... + 1), we may replace Fop
with a finite-index subgroup.

If y, € g, is such that x(y,) = 1 4 p", then

Vu (1eV9"(0) — 9" () = eV el T (1, (00) — [V g™ ()
= [V " ([eV y,, (x) — %)

= [V 9" (G,, (%)),

where G,, (%)= [s}jyn(x) —x=(eV-1)- (1 + [g[l‘f.—gl(yn — 1)) (x). Thus, if we can choose n

; k
00 eV i
such that > - (—[65—_1()/,1 - 1)) converges on D, ,, we will be done.

The action of I'g, on Dy, 4 is continuous, so we may choose n, such that for
n > ng, the sum above converges in End(Dy,p, p). But Dy i1 ppky = ©*Dpyy ik pjpr-17 fOr

all k > 0 and the action of I' commutes with the action of ¢, so the sum converges in

=0

End(Dy pk+1 ppky) for all k = 0 and y — 1 acts invertibly on D, ;)

for n > n,. [ |

Proposition 3.8. If D is a (¢, ')-module over R, then the cohomology of D is computed
by

(p—1,y—1) (y—Dd(1—¢)
Digpy = Diabyp) ® Pigpy = Dia,p/pi

for some sufficiently small b and any a € (0, b/pl.

Proof. We may assume that D is a (¢, I')-module over Ag 5 x for some b > 0. Since
(D g, L Do,p/p] = [Digp) L Dyg,p/py] induces an isomorphism on cohomology, we
see that the cohomology of D, 5, is computed by the above complex.

Since the cohomology of Co r(D) is computed by the direct limit of the cohomology

groups of C? .(D(q p/pn)) @s 1 — o0, it suffices to show that the natural morphism
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Cloy: Diop) Db/ ® Do) Do,b/p)
Clov/m): Do,b/p) — Di0,p/p2] @ D(0,6/p) — Di0,0/p?]

induces an isomorphism on cohomology groups for sufficiently small b.
We first show that the morphisms 1,¢ : Clom = Clop /p) are homotopic. This
follows by considering the diagram

(p—1,7—1) (v—1e(1-¢)
Do) Do,p/p) © D(o,p) Do,b/p)

L |
1 ¥ 1 %) 1 ]
( (y-D&(1—¢p)

p—1,y-1)
Dop/p) == Dwo,p/p>) © D(o,p/p) == D0,p/p?):

Thus, it suffices to show that the morphism ¢ : C('0 b~ C(°0 b/p] is a quasi-isomorphism.

But the cokernel (in the category of complexes) is the complex

y=0 (lLy-1) _y=0 y=0 (=D&l _y—0
Dot — Pt @Popypt — Piopypr-

¥=0
(0,b/pl"
result follows. u

Since y — 1 acts invertibly on D the cohomology of this complex vanishes and the

Corollary 3.9. IfDisa (¢, I')-moduleover Ay qp x and [a’,b'] C la, bl and b is sufficiently

small, the restriction map

Diap) = Diab/p) @ Dlap) = Diab/p]

| | i

D[a’,b/] S D[a’,b’/p] D D[a’,b’] —_— D[a’,b’/p]

induces an isomorphism on cohomology.

Proof. We may assume that b’ € [b/p, b], so that we have induced homomorphisms

H(;,F (D(O,b]) — H(lp,r(D(O,b/]) —> Hé),l" (D(O,b/p]) e H(;,F (D(O,b//p])

Since the compositions H;,F(D(Olb]) — H;,F(D(O,b/p]) and H;,F(D(o,b’]) - H;;,I‘(D(O,b’/p]) are
isomorphisms, the homomorphism Hj, (D)) — Hy, (Do 5/p)) is also an isomorphism,

and we are done. [ |
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Now we can finally prove that (¢, I')-modules have finite cohomology.

Theorem 3.10. If Dis a (¢, I')-module over AR,(O,b],K' its cohomology is R-finite when b

is sufficiently small.

Proof. If[a’,b'] C (a,b), the restriction map induces a quasi-isomorphism

Drap) —— Diab/p] @ Dlap) = Diab/p]

l | l

Dy pr) —= Do v jp) @ Diar ) —— Diar v /s
which is completely continuous. Then the result follows, by [28, Lemma 1.10]. [ |

erf

Corollary 3.11. If D is a projective (¢, I')-module over R, then Corg@D) € DE'Z] (R).

Proof. Finiteness of the cohomology of C;,FK (D) implies that C;'FK D) € D;erf(R), and
by [3, Proposition 3.47], the complex C} . (D) consists of flat A-modules. Then as in the

proof of [29, Theorem 4.4.5(1)], it follows that C;’FK (D) € Dg)éﬂ(R). |

Corollary 3.12. If D is a projective (¢, I')-module over R, then the cohomology groups

H(f;,r (D) are coherent sheaves on Spa R.

Proof. Since C;;,r (D) € ch’oh(R), we have a quasi-isomorphism R’®]§ Cor(D) = C;’F(R’®R
D) for any homomorphism R — R’ of pseudoaffinoid algebras. If R — R’ defines an
affinoid subspace of SpaR, the morphism is flat and the derived tensor product is an
ordinary tensor product. On the other hand, we have a natural homomorphism Cor (R'®g
D) — C;,F(R’ ®g D), and it is a quasi-isomorphism after every specialization R’ — S to
a finite-length algebra (since D is flat over R). Then the result follows from [29, Lemma
4.1.5]. |

As a corollary, if R — R’ is a homomorphism of pseudoaffinoid algebras, there is
a natural quasi-isomorphism
R ®" C; (D) = C} (R ® D)

and there is a corresponding second-quadrant base-change spectral sequence. We record

the low-degree exact sequences of the base-change spectral sequence here:
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Corollary 3.13. Let R — R’ be a morphism of pseudoaffinoid algebras and let D be a
(¢, I'g)-module over Ag 1, x- Then
1. The natural morphism R’ ®p Hf,rK D) - HgHK (R’ ®g D) is an isomorphism.
2. The natural morphism R’ ®z H;'FK(D) — H;'FK(R/ ®g D) fits into an exact

sequence

0 — Torj (H, 1, (D),R") > R ®g H, 1, (D) > H, 1. (R’ ®g D) — Tor{(H, 1. (D),R") - 0

3. If H;:FK (D) and Héer (D) have Tor-dimension at most 1, then we have an exact

sequence

0 — R' ®g H (D) > H, (R ®p D) — Tor} (H, . (D),R) — 0.
Proof. This follows from the convergence of the base-change spectral sequence. |

Since we have shown that C; reD) € Dféf}(R) is a perfect complex, we may define
its Euler characteristic. If P* € Di)“éll,’f](R) is a complex of finite projective R-modules, we

define the Euler characteristic

b
X(P*) =D (~1)'rk P'.
i=a
This is invariant under quasi-isomorphism and additive under distinguished triangles.

If D is a (¢, 'g)-module, we simply write x (D) for x(P°*), where P* is any complex in
[0,2]
D ’

pe]rf(R) quasi-isomorphic to C;,FK (D). Then we have the following:

Corollary 3.14 (Euler characteristic formula). If D is a projective (¢, I'y)-module with
coefficients in a pseudoaffinoid algebra R, then x (D) = —(rkD)[K : Op].

We will use the slope filtration theorem of [27, Theorem 1.7.1], which holds if the

coefficients are a finite extension of either Q, or F,(u). We first note the following:

Lemma 3.15. If D is a (¢, 'y)-module with coefficients in a field R, which is pure of

slope O, then D arises from a Galois representation.

Proof. By [27, Theorem 1.7.1], the hypothesis implies that D is étale, and hence (by [27,
Proposition 1.5.5]) arises from a (¢, I'y)-module over Ag 0 5] o, for some b > 0, and hence

from a (¢, I'x)-module over Agg 05,0, 0- |
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Proof of Corollary 3.14. Euler characteristics are locally constant, so it suffices to
compute x (D,) for a single maximal point x on each connected component of SpaR. Thus,
we may assume that R is a finite extension of either Q, or F,(w).

Since Euler characteristics are additive in exact sequences, we may assume
that D is pure of slope s; if necessary, replace R by an étale extension so that the
slope of D is in the value group of R. The moduli space X := (;;;)R = G%"R of
D owg) > 00, so

we may consider the Fontaine-Herr-Liu complex C;,r of the (¢, I'y)-module D(8

continuous characters of (wy) has a universal character §,;,

univ)

over X.
Since C* .(D(5)) e D92
oIl s}

erf

(R) for every affinoid subdomain Spa(R’) C X, its
Euler characteristic is constant on connected components of X, and it suffices to
verify the statement at one point on each component. But each connected compo-
nent contains a point x such that the slope of D(§) at x is 0; then (D(3))(x) is étale
and by Lemma 3.15 we may appeal to the Euler characteristic formula for Galois

cohomology. |

In section 4.2, we will prove Tate local duality for projective (¢, I')-modules when
Ris afinite extension of F, (u)). We deduce the corresponding result for families of (¢, I')-
modules over general pseudoaffinoid algebras here, and the reader may check that there

is no circular dependence.

Theorem 3.16 (Tate local duality). Let R be a pseudoaffinoid algebra and let D be a

family of projective (¢, 'y)-modules over R. Then the natural morphism

3.1 (D) — RHOomg(Cy r (DY (Xoye)), RI-2]

is a quasi-isomorphism.

Proof. For every maximal point x € SpaR, we have a quasi-isomorphism Cy r B/my ®p
D) > R HomR(C;IFK(R/mX g DV(XCYC)),R/mX), by [30, Theorem 4.7] (when R/m, has
characteristic 0) and Theorem 4.9 (when R/m, has positive characteristic). Then by [29,
Lemma 4.1.5], the result follows. [ |

We conclude this section by recording the following result for later use; it is a
corollary of the method of the proof of finiteness of cohomology, rather than finiteness
itself.
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Corollary 3.17. If D is a projective (¢, I'y)-module over R, f is the inertial degree of K,
and « € R, then for b sufficiently small and any a < b/p/*!, the complex

of —ay—1 (y-D&—¢)
Digp) = Diab/pf1 © Digpy = Dia,p/pf)

[0,2]

is in Dp of(R), and its cohomology groups form coherent sheaves on SpaR.

Proof. Choose some a’ € (a,b/p/*1). As in the proof of Proposition 3.8, we consider the

complex
(¢ —a,y-1) (v=D®(a—p)
D[a,b] D[a,,b/pf] S5 D[(L,b] D[u,,b/pf]
@ —ay-1) (y—1D@(a—¢f)

Diarppr) == Diarp/pr+1] @ Diar p/p7) [a’b/p7+1]

This shows that “restrict and multiply by «” is homotopic to ¢/, which is a quasi-
isomorphism. Applying [28, Lemma 1.10] again, we see that the cohomology groups
of our complex are R-finite. We conclude as in the proofs of Corollary 3.11 and
Corollary 3.12. [ ]

4 Positive Characteristic Function Fields

In this section, we closely study overconvergent (¢, ')-modules where the coefficients
are finite extensions of Fp(w); throughout this section, R will denote such an
extension. This is similar to the situation studied by Hartl-Pink [21], but because we
are interested in (¢,')-modules related to representations of characteristic-0 Galois
groups, we may work with imperfect coefficients. For this reason, we rely on the
slope filtration theorem from [27], rather than the Dieudonné-Manin classification
theorem from [21]. We first calculate the cohomology of certain rank-1 (go,FQp)-
modules (using techniques similar to [13]), and then use those calculations to deduce
the Tate local duality theorem for all (¢, I'yx)-modules (following the strategy of
[30D).

4.1 Cohomology of rank-1(¢, ')-modules

We begin by computing the cohomology of certain distinguished (¢, I'y)-modules of
character type. When K = Q,, we let Aq, = Hp_1 be the maximal torsion subgroup

of I'g,.
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Lemma 4.1. Letd$ : K* — R* be a continuous character. Then HS,FK(‘S) = 0 unless § is

trivial, in which case it is a free R-module of rank 1.

Proof. Write § = §,5,, where §; is trivial on &y and §, is trivial on (). We first show
that the kernel of ¢ — 1 on Ag 1, ¢ (8;) is trivial unless é, (wg) = 1, in which case it is R,
and then compute the elements of ker(¢ — 1) fixed by I'.

If f(Tg) € ARrigx (1), we may write f(g) uniquely as f(Tg) = > iz a7, where
a; € R® k' (for some finite extension k'/kg). There is some integer f > 1 such that that
¢fcf fixes k. Using the fact that o< (7,) = ﬁj;ffp , a straightforward calculation shows
that the kernel of ¢/ — 1 is trivial unless S(wK)f =1, in which case it is R ® k’. We now
need to compute the kernel of ¢/ — 1 on Dy, s(wg) @iy K- But there is a basis {eg, ..., ep_;}
of k' /ky such that ¢/€ acts via ¢/%(e;) = e; ;, where the indices are taken modulo f, so the
kernel of ga{)K — 1 is trivial unless §(wy) = 1, in which case it is Dy, o We have reduced to
computing the kernel of ¢ —1 on Dy, ;, but the construction makes clear that this kernel
is precisely R.

Now suppose 3, is trivial, so that H) [ (Agizx(8)) is R'€=1. If y € Ty is a
topological generator of I'g, it acts on R via multiplication by g for some 8 € Ag ¢ 4 k-

This clearly fixes no elements unless 8 = 1, in which case it fixes all of R. | |

Corollary 4.2. If D is a rank-1 (¢, I')-module over A, ;, ¢ of character type, then D has

no proper non-trivial sub-(gp, I')-module or quotient (¢, I')-module.

Lemma 4.3. Suppose ¢ € R* satisfies vg(a) < 0. Then if f € AR,[O,b],Op is in the image of

¢, f is also in the image of wp — 1 : AR 0,510, ~ AR10b/p1,0,-

Proof. We are looking for a solution to the equation («g — 1)(g) = ¢(f'); applying v to
both sides, it suffices to show that the sum Zkzo(a‘lw)k converges on Ag g x- Since
ARobk = AR 0blK [%] and ¢ is R-linear, we may assume that f’ € ARo,IO,b],Op' If f/ =

> icz @;T', we may write

Dot = pil (Z 7T i) T = pZ_l (Z 7T i)

ieZ j=0 \ieZ j=0 \ieZ

J .
I\, 1 \k -k
Z(k)( 1)kl

k=0

. —pi 2 . .
Since > ;.7 ap; 7" is in the image of ¢, we see that

p—1
w(Zaﬁi)zz > Wy, |7

i€Z ieZ \j=0
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We may write f' = f_ + f,, where
fo= Zaiﬁi and fi= Zaiﬁi.
i<0 i>0
By definition f, € Agg 0,01,0, € ARo,0,61,0,,0- a0d We see that ¢ (f,) is another element of
ARy ,[0,001,0,- THUS, Zkzo(afll//)k applied to f converges.
It remains to show that > ;. (@~ 1y)¥ converges when applied to f_. But we may

compute

where the second inequality follows because L%J > { for i < 0. It follows that

> k=0(@”"¥)¥ converges on all of Ag (o4, u

Lemma 4.4. Suppose @ € R*. Then ap — 1 : TgAg 0001k > TxAR,0,001K 1S SULjECtiVE.

Ifo#1,thenap —1: Ag ¢k = AR, 0,00,k 1S SULjECEIVE.

Proof. It suffices to show that Zkzo(o“l))k converges on T Ag [, oo x fOT all @ > 0. For

any f = > ;. a;T, we have

k . pk+1al’
VRa(@Q) () = k- vp(@) +inf ) vale) +=
Zk.VR(oz)+a(pk+...+p)+inf{VR(ai)+ppiul]

= Vé?,a(f)+k~VR(a)+a(pk+...+p).

Thus, for any « € R* and any a > 0, the sum Zkzo(ago)k(f) converges to an element of
Tx AR a,00, S desired.
If a # 1, then (ap — 1) (ﬁ) =1, so R is also in the image of ap — 1. [ |
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Corollary 4.5. Suppose « € R* satisfies vg(e) < 0. If f € AR (04,0, then there is some
=0
9 € AR, 0,p10, such that f — (@¢ — 1)g € Aﬁ,lo,b],op'

Proof. We have exact sequences

it
0 — Ryl7l [a} — AR, 0,001,0, ® AR0,51,0, > AR,0b1,0, > O

for every b > 0, so we may write f = f, +f_, where f, € TAg (01,0, a0d f- € Agjo,4,0,-
Then we can find g, € TARg 9,010, a0d g € Ag[op),0, Such that f, = (g — 1)(g,) (by
Lemma 4.4) and f_ — (ap — 1)(g_) € Ag,TO?b],Qp (by Lemma 4.3 applied to ¢y (f_)), so f —
(ap —1)(g, +g_) € Aﬁ,?o?b],op' as desired. [ |

Corollary 4.6. If § : Q; — R* is a continuous character trivial on 1 + pZ, C Z;, such
that vz(8(p)) < O, then Hf,rop (8) = 0.

Proof. Corollary 4.5 implies that after subtracting an element of the form (x¢ — 1)(g),

2 : ¥=0 ;
any cohomology class of H(p,Fop (8) has a representative f € AR,[o,b],op' for sufficiently
small b. But if y is a topological generator of FQp/AQp’ by [3, Proposition 4.8] y — 1 acts
invertibly on AzToob] a,’ for sufficiently small b, and the result follows. | |

Now we can compute H‘; Io, (8 when vz (§(p)) < 0 and § is trivial on 1 +pZy:
= Yp

Lemma 4.7. If § : 0; — R* is a character with vz(8(p)) < 0 and 5|1+pzp = 1, then
H;’FQP (8) is 1-dimensional.

Proof. This follows from Corollary 3.14, Lemma 4.1, and Corollary 4.6. | |

4.2 Tate local duality
We now begin proving Tate’s local duality theorem (which we stated in general in

Theorem 3.16).

Lemma 4.8. If§:Q; — R* is a continuous character such that vg(s(p)) < 0 and 8|1+pzp

is trivial, then Tate duality (as stated in 3.16) holds for Ag ;g ,(8) and Ag rig , (5_1chc)-

Proof. Corollary 3.14 implies that dimpg H;,Fop (572chc) > 1, and so there is a non-split

extension of (¢, Fop)-modules

0 = Arsiga, (6 Xeye) > D — AR riga,(®) = 0 (4.2.1)
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We claim that D is semistable of slope O (in the sense of [27, §1.4]). Indeed, if D' ¢ D
is a rank-1 submodule, the corresponding homomorphism D' — AR riga,(9) is either an
isomorphism or 0. The former would contradict the assumption that 4.2.1 is a non-split
extension. But then we must have D' = Ag 10,6 Xeyc), and v(E ™ (P) Xeyo (P)) > O.

By [27, Theorem 1.7.1], this implies that D is étale, and hence (by [27, Proposition
1.5.5]) arises from a (¢, I')-module over Ag g4 o, for some b > 0. Thus, D comes from a
Galois representation, so Tate local duality holds for its cohomology.

We have a long exact sequence in cohomology associated to 4.2.1:

First, we observe that 6~ chc and § are non-trivial, so by Lemma 4.1 H (p Fap G chc) =
w Fap (6) = 0. Hence, we also have H(p ro, @ = 0, so duality implies that
" Yp
(/7 FQ (DV(chc)) - 0
Since vg(8(p)) < 0, we additionally have Hg ro, ) =0, by Corollary 4.6. Again
' Yp
using the vanishing of HS I'o (8), Corollary 3.14 implies that qu) I'o (8) is 1-dimensional.
" Yp = Ep

If we dualize 3.14 and tensor with x.,., we get a second exact sequence

0— AR,rig,Qp (5_1chc) - Dv(chc) - AR,rig,Qp () —0

and its associated long exact sequence in cohomology. Then the cup product (as con-

structed in [29, Definition 2.3.10]) gives us a commutative diagram

0 s Hl o (07 Xeye) —— Hlpg (D (Xee)) ——— Hl g (6) ——— HZ 1 (5~ Xeye)

| | | | |

(6 Yeye)VY ——— H'#lf«FQp (0)Y ——— H], ra, (D)Y ——— H,, ra, (0 eye)Y ————— 0

2
H&« q,

Since H! (DY Aeye) = H! . (D)V is an isomorphism (by the classical theo-

(pFQ WFO
rem), a diagram chase shows that H; Fop (S*IXCYC) — H(})'FQP((S)v is injective, so
dimg H, wFo O M Aeye) = dimg H; H! . (8) = 1. But Theorem 3.14 implies that
dimg H wFo (0 Xeye) = 1, 80 dimR T (67 "Yeye) = 1 and the map H, </>Fo 0 Xeye) =

Hl

0Ty (8)V is an isomorphism. |
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Theorem 4.9. Tate local duality holds for every projective (¢, I')-module D over Ag i, g-

Proof. We may replace D by Indg"D and treat the case of (¢, I')-modules over Ag iy q,-
We may also assume that D is pure of slope s, and by replacing it with DV(XCYC) if
necessary, that s > 0.

If s = 0, D is étale and the result follows from the comparison with Galois
cohomology. Otherwise, we proceed by induction on the degree of D, that is, deg(D) :=
(rkD)s. Let § : O; — R* be a continuous character with vz(§(p)) = —1 and 5|1+pzp trivial.

Since dimg H(:, ro (D(571)) = rkD > 1 by Theorem 3.14, there is a non-split extension
mYp

0—-D—>D — AR riga,©®) — 0.

We will prove that Tate local duality holds for D’; since it also holds for AR riga,(8), we
may deduce it for D.

If D’ is pure, the result follows, since D’ has degree deg D—1 and slope (degD—1)/
(rkD + 1) < s. Otherwise, D’ has a unique slope filtration 0 = Dy C D; C --- C D = D'
by saturated (¢,I')-submodules, such that the successive quotients are pure and
(D, /Dy) < w(Dy/Dy) < -+ < (Dy/Dy_y). Then p(Dy) < u(@') < u(D).

We have an exact sequence

0—-D,ND— D, —D;/(D;ND)—0

Since D is pure of positive slope, D; N D also has positive slope. Since D, /(D; N D) is the
image of D, in the quotient D’ — AR rig.,(4), it has slope (and hence degree) either 0
or —1. Therefore, u(D,) > 0, as well.

It follows that u(D;/D;_;) > O for all i. Moreover, degD’ = > ;deg(D;/D;_;) =
> iu(D;/D;_,) - tk(D;/D;_;), so deg(D;/D; ;) < degD for all i. Then the inductive
hypothesis implies that Tate local duality holds for each D,/D;_;, so it holds for D', and

we are done. [ ]

Now we can complete the computation of the cohomology of (¢, I'y)-modules of

character type when the coefficients are a finite extension of Fp(w).

Corollary 4.10. Let§: K* — R* be a continuous character. Then
1. Hg,FK(‘S) = 0 unless § is the trivial character, in which case HgerQS) is a
1-dimensional R-vector space.
2 _ _
2. H(p,l"K(a) = 0 unless § =

1-dimensional R-vector space.

Xeye © Nmgq , in which case HgHK(é) is a
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3. H;)'FK (8) is an R-vector space of dimension [K : Qp] unless either Hg,rg &) #0

or Hg,FK (8) # 0, in which case it is an R-vector space of dimension [K : Q,]+1.

In order to handle the case where K # Qp, we use induction and Lemma 2.7 to

reduce to the settled case over Op.
5 Triangulations
5.1 Classification of rank-1(p, I')-modules

In this section, we show that projective rank-1 (¢, I')-modules over a pseudorigid space
X are free locally on X, and up to twisting by a line bundle on X, are of character type.
Throughout this section, we will assume that all of our (¢, I')-modules are projective. The
proof is largely the same as in [29, §6.2]. We first treat the case where the coefficients are
a field, where we can exploit the fact that Ag ¢, ¢ is Bézout, and then deduce the case

where the coefficients are artinian by a deformation argument.

Proposition 5.1. Suppose R is an artin local pseudoaffinoid algebra. If D is a rank-1
(¢, I')-module over Ag k. then there is a unique continuous character § : K* — R*
such that . := HS'FK (D(571)) is free of rank 1 over R and the natural map AR'rig'K(S) ®r

% — D is an isomorphism. Moreover,

1. H(})IFK(D(S_I)) is free over R of rank 1+ [K : Q.
2. HgHK(D(s—l)) =0.

Proof. This proof is nearly identical to the proof of [29, Lemma 6.2.13], so we only give
a sketch.

When R is a field and D has slope s, we may choose « € R with vgz(a) = s. If
§:Q, — R* be the character with §(p) = « and 8|z; = 1, then é o Nmg o, is a character
K* — R* trivial on 0y and sending a uniformizer of K to of, and by construction, the

associated (¢, I')-module D(§ o NmK/Qp) has slope s. Twisting D by its inverse, we reduce

to the étale case. But when D is étale, M := (KR,rig ®D)w=1 is a Galois representation
with D = Dy (M). Then local class field theory and the construction of (¢, I')-modules of
character type imply that there is a unique character § : K*R* with D = Ap 1, ¢ (6). The
calculation of cohomology follows from Corollary 4.10.

In order to bootstrap to the case where R is an artin local ring, we factor the

extension R — R/mpy as a sequence of small extensions, that is, extensions of the form

0>I—-R—>R —0.
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Here my C R is the maximal ideal of R and I C R is a principal ideal with Imz = 0. Then
R — R’ is a square-zero thickening, and deformation theory (of characters and of (¢, I')-
modules) implies that if D is a (¢, I')-module over R of rank 1 with R’ ®g D of character
type, then D is of character type.

If D = AR’rig’K(S), then HS,FK (D(571)) contains R, and considerations on lengths
of R-modules imply that if Hg,l“x (R ®z D(57')) = R, then HS,FK (D5~ 1)) = R. Moreover,

R/mp ®g HZ 1 (D(8™")) = HZ 1 (DR (671)) =0

SO ijrK (D(5~1)) = 0. Then the base change spectral sequence implies that the formation
of H(/l;,rK (D(571)) commutes with base change on R, and the Euler characteristic formula

implies that dimg,, H;!FK(DR/mR((S_l)) = 1+ [K : Qp]. Then by Nakayama's lemma,

qu;,rK (D(8™1)) is free of the same rank, and we are done. [ ]

In order to give a classification over a general base, we again follow the strategy
of the proof of [29, Theorem 6.2.14] and twist our rank-1 (¢, I')-module by the universal
family of characters. Then we can use the settled case over artin local rings and
cohomology and base change to cut out the appropriate character. The difficulty is in
verifying that the slopes and weights of a family of (¢, I')-modules over a pseudoaffinoid
algebra are bounded; boundedness of the slopes is the essential content of the following

proposition, whose proof we do not duplicate in detail.

Proposition 5.2. Let R be a pseudoaffinoid algebra with pseudouniformizer u, and let

D be a (¢, I'g,)-module over Ag ;g o - Then

1. The quotient D/(y — 1) is a finitely generated R-module.
2. fneZleté,: 0; — R* be the character trivial on Z;, which sends p to u”.
Then for all n >» 0, the map v — 1 : D(5_,,) — D(5_,,) is surjective.

Sketch of proof. The proof of [29, Proposition 3.3.2] carries over verbatim. We take a
model of D as a finite projective module over Ag (), consider it as a summand of a
finite free module D’ with basis {e;}, and carefully analyze the actions of ¢ and y. We
choose an interval [a, b] C R (depending on ¢ and ¢ on D) and consider the image D" of
®; Djele,pinz R In D. Then D” is a finite R-module, and it is possible to show that every

element of D differs from an element of D” by something in the image of ¢ — 1. |

We can use this to deduce that the weights are bounded:
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Corollary 5.3. Let R be a pseudoaffinoid algebra with ring of definition R, C R and
pseudouniformizer u € R, and let D be a (¢, 'y )-module over Agi;q, - Let 8y -
Z, — R* be the universal character on Zj R Then the support of the cokernel of
Yy —1 1 D yp)/ (W — 1) = D@ piy)/ (¥ — 1) is contained in a quasi-compact subspace

of {u # 0} C Spa(Ry ® Z,[Tq,H?".

Proof. We consider the action of y — 1 on D(8,,;,/(¥ — 1). Choose a presentation R®? —
D/(y —1), and lift the action of y on D/(y —1) to amatrix 1+ G € GL;(R); replacing y with
a power if necessary, we may assume that G = (gij) € uMaty(R). Thenif r := (Sl:nliv(y) -1,
themap y — 1 : D8 ypie/(W — 1) = D(Syp;/ (¥ — 1) lifts to the matrix r + G + rG; if this
matrix is invertible, then y — 1 is surjective.

But this matrix fails to be invertible only at points where det (l—ir + G) vanishes.
There is a finite extension R — R’ such that the characteristic polynomial of G splits
over R as (X — A;)--- (X — Ay), and we see that if |1—frr| > |A;| for all i, then y — 1 is
invertible. Since G is topologically nilpotent, the A; are also topologically nilpotent, so we

see that there is some N 3> 0 such that the vanishing locus of det (l—ir + G) is contained

N o~
in {| (1L+r) | <|ul # 0} C Spa(Ry ® ZPIIFQP]]) (where Ry, is a ring of definition of R).
Thus, we see that the open affinoid subspace {|rV| <|u| #0} C Spa(R, ® Zpl[l“Qp]I)aln

is the quasi-compact subspace we were looking for. |

Now we give the desired general classification. The primary difference from the
argument of [29, Theorem 6.2.14] is in using Corollary 5.3 to bound the weight, rather

than arguments using Sen weights.

Theorem 5.4. Let X be a pseudoaffinoid algebra with pseudouniformizer u, and let D
be a rank-1 (¢, I')-module over Ay ., . Then there exists a unique continuous character
§:K* — I'(0x,X)* and a unique invertible sheaf .2 on X such that D = Ay 1, x(0)® ¢, 2.

Remark 5.5. If such a § and .¥ exist, then £ (U) = HgHK(D(8*1)|U) for every open
subspace U C X.

Proof. We may assume X = SpaR is affinoid. We first treat uniqueness. Since the
formation of HS:FK (D(57!)) commutes with flat base change on R, it suffices to show that
i 770
if H, !
dense subspace U C SpaR such that Hj . (Ag iy x()|y) is flat forall i; if x € Uand m, C R

(AR rigx(9)) is locally free of rank 1 over R, then § is trivial. There is a Zariski-open

is the corresponding maximal ideal, then the base change spectral sequence implies
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that Hi g (R/mk @5 Ag rig,x(8) = R/mk ®p Hi g0 forall i and all k > 1. In particular,

H, FK(AR/m rng(S)) is free of rank 1 over R/m which implies that § : K* — (R/mx)X

is trivial for all k > 1. It follows that § : K* — (Ry,)* is trivial for all affinoid U’ C U.

But the condition § = 1 defines a Zariski-closed subspace of SpaR; since it contains a
Zariski-open dense subspace, it is all of Spa R.

To show existence, we follow [29] and consider the twist of D by the inverse of the

over I?;R; recall that I?;R := G2 x, Spa z, 101 Xz,

SpaR is the moduli spaces of continuous characters of K* valued in pseudoaffinoid R-

universal family of characters §,;,

algebras.
This twist D((Smilv) is a (¢, I'y)-module over I??R, and we use Tate local duality
to cut out a subspace corresponding to the desired character More precisely, we let I'j,

and I'}) be the support of H2 g DY BuniyXeye)) and Hy - (D(S, ! Xeyo)) in the pseudorigid

tp 'k univ
space
X ad S x7) 2"
K*p C Gy, Xg (Spa(R0®Zp|[ﬁK]I)
respectively, and let I'y = T} X7 p I'}. Since the formation of H(irK commutes with

arbitrary base change on SpaR, the formation of F/D and I‘g, and hence I';;, commutes
with arbitrary base change on Spa R.

There is a natural projection map I'; — SpaR; a section induces a morphism
SpaR — Kx g, OT equivalently, a continuous character § : K* — R*. We will show that
I'p — SpaR is actually an isomorphism.

Granting this, we may replace D with D(SBI), where §, : K* — R* is the
continuous character corresponding to SpaR = I'y — I/{§R, so that ', corresponds to
the trivial character Then we need to show that HO D) is a line bundle over Spa R, and
D = Agqrigx ®r H, (p re (D) as a (¢, T'y)-module. If R’ is a pseudoaffinoid artin local ring and
R — R’ is a homomorphism, there is a unique continuous character §' : K* — R’*
such that HOF (Dg/(8'1)) is free of rank 1 over R’ and the natural map Ag rigx ®r'

w lﬂK(DR,(B’ 1)) — Dp/(8"™ ) is an isomorphism, and in addition, H (})'FK(DR/(S’*l)) is free
of rank 1+ [K : Q,] and H2 . (Dg/(8'~ y =o.

Thus, the formation of HOF (DR,((S/_I)) commutes with arbitrary base change
on R’; in particular, H rK(DR Jmg cia )) is non-zero. Since H2F (DR,/m (@ Xoye)) and

H; 1 (Dpi oy, or Prr gy, 81) and Hyp Dy
tively, and the formation of Hg,rK commutes with arbitrary base change on R, we see
that H;FK (DV,(S’XCYC)) and ijrK(DR/ (8’7IXCYC)) are both non-zero. Thus, the graph of the

i Xcyc)) are dual to H (8")), respec-

morphism SpaR’ — E?R induced by ¢’ is contained in I'j;; since I';; corresponds to the

trivial character, &’ is trivial.
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In other words, for any homomorphism R — R’ with R’ a pseudoaffinoid artin
local ring, HS,FK (Dg) is free of rank 1 over R/, qu),FK (Dg/) is free of rank 1 4+ [K : Op], and
H?p (D) = 0; on residue fields, this implies that H2 - (Dp//m,,

lemma, Hger (Dg) = 0, as well. This implies that H;j'FK (D) is locally free of rank 0, so by

) = 0, so by Nakayama's

the base change spectral sequence, the formation of H(/l)er (D) commutes with arbitrary
base change on R. It follows that H(ll),FK (D) is locally free of rank 1 + [K : Q,], so the base
change spectral sequence again implies that the formation of HS!FK (D) commutes with
arbitrary base change on R, and we conclude that HS,FK (D) is locally free of rank 1, as
desired.

We now prove that 'y — SpaR is an isomorphism. In fact, it suffices to
prove that I'j; is affinoid: by Theorem A.15, an isomorphism of pseudoaffinoid algebras
can be detected on the level of completed local rings, and by Proposition 5.1, I'y —
Spa R induces an isomorphism on the completed local ring at every maximal point of
Spa R.

Since I'j is a Zariski-closed subspace of the quasi-Stein space I/{\XR, it is enough
to show that that it is contained in an affinoid subspace. We replace D with Indgp D.

As in [29, Lemma 6.2.18], we first check that the image of 'y, in G, r is bounded.
By Proposition 5.2, there is some NV > 0 such that for all n > N,

¥ —1:DY(_pXeye) = DYy Xeye)

and

¥ —1: DGy Xeye) = D6_yXeye)

are surjective. Surjectivity is preserved under arbitrary base change R — R/, and the

isomorphism H . — Hy . from Lemma 2.4 implies that

¥v.I'x
H*(DY(8_18 Xeye)) = Hi g (D(B_p8 Xeye)) = O

for all continuous characters §' : 0y — R’ X Thus, if T denotes the coordinate on G,
the image of I';; is contained in the subspace {|T| < IuNI} C Gy, r and the image of I'}) is
contained in the subspace {|T!| < [u¥|} C G, z.

We let Cg y = {lu=| < |T| < |u"|} denote the annulus above, and we replace
SpaR and D with Cgy and the universal twist of D. Then by Corollary 5.3, T'p is
contained in a pseudoaffinoid subspace {|([y] — 1)N/| < |u| # 0} for some N’ > 0, so we

are done. [ |
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5.2 Interpolating triangulations

Trianguline (¢, ')-modules are those that are extensions of (¢, I')-modules of character

type. More precisely,

Definition 5.6. Let X be a pseudorigid space over &y for some finite extension E/Q,), let
K/Qp be a finite extension, and let § = (§;,...,8,) : (Kx)d — I'(X, ﬁ;) be a d-tuple of
continuous characters. A (¢, I'y)-module D is trianguline with parameter § if (possibly
after enlarging E) there is an increasing filtration Fil*D by (¢, I'y)-modules and a set of
line bundles .%}, . .., %, such that griD = Ax rigx (8) ® Z; for all i.

If X = Spa R where R is a field, we say that D is strictly trianguline with
parameter § if for each i, Fil'' 1D is the unique sub-(¢p, I'r)-module of D containing Fil'D
such that grit!'p = AR rig.x(8;11)- Equivalently, D is trianguline with parameter § and
HO ((FﬂiD)V(ai)) is 1-dimensional.

We wish to interpolate triangulations at dense sets of points of pseudorigid

spaces.

Definition 5.7. Let X be a pseudorigid space, and let Q2 C X be a set of maximal points.
We say that Q is Zariski-dense if any Zariski-closed subspace Z C X containing 2 also
contains the underlying reduced space X™4. We say that a Zariski-dense set Q C X is
very Zariski dense if for every x € X and every irreducible affinoid neighborhood U C X
containing x, Q N U is Zariski-dense in U, that is, any function in & (U) vanishing on all
of QN U is nilpotent.

Lemma 5.8. Let X = Spa R be a reduced pseudorigid space over Z, with p ¢ R*, let D
be a (¢, T')-module over Ag i, ¢, and let § : K* — R* be a continuous character such that
HS,FK(DV(‘S)) is free of rank 1 over R and H(;VFK(DV(S)) has Tor-dimension at most 1 for
i = 1,2. Then the morphism D — AR'rig'K(S) corresponding to a basis of H(S,FK(DV((S)) is

surjective over an open subspace U C X containing {p = 0} C X.

Proof. Choose a basis element of Hg rK(DV((S)); there is some b > 0 such that the
corresponding homomorphism D — Ag ., x(6) is defined over Ag 1k, and we may
view it as a morphism of coherent sheaves over the corresponding quasi-Stein space.

Moreover, g-equivariance means that to check surjectivity, it suffices to check that

AR b/pblE @Agosx P = DRIb/pbLE OAg sk R0k (8) 18 surjective.
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The morphism Ag /1, 1) x Bngosx P = ARbpbE Ongomx MR0b1KOE) fails to
be surjective on a Zariski-closed subspace Z C Spa Ag k- Since Spadgp,p,px iS
affinoid, so is Z.

Consider specializations at the characteristic p maximal points x € Spa R. If
HS,FK (DY (8)) is flat of rank 1 over R, then k, ®5 H(Ser (DY (8)) is a 1-dimensional k,-vector
space. If H;IK(DV(S)) has Tor-dimension at most 1 for i = 1,2, then the specialization

maps R — k, give us exact sequences
0 — ky ®g H) 1 (D" (8)) = HY -, (ky ®g D" (8)) — Tor{(H, (D" (8)), ky) — O

by Corollary 3.13. Thus, the induced maps k, ®g D — k, ®g Ag rig x (§) are non-zero, and
if k, has positive characteristic, this implies that the corresponding map is surjective.
Thus, p is a nowhere-vanishing function on Z, and since Z is affinoid, the
maximum modulus principle discussed in Appendix A.1 implies that p|, is bounded away
from 0. That is, there is some A such that {|p| < A} NZ is empty. Setting U := {|p| <A} C X
yields the desired subspace. n

Theorem 5.9. Let X be a reduced pseudorigid space over Z,, let D be a (¢, I'g)-module
over X of rank d, and let § : K* — I'(X, ﬁ;) be a continuous character. Suppose there is
a Zariski-dense set X° ¢ X of maximal points such that for every x € xel HS,FK (DY (8,))
is 1-dimensional and the image of Ay, x under any basis of this space is saturated in
DY (8,). Then there exists a proper birational morphism f : X’ — X of reduced pseudorigid
spaces, a line bundle .# on X', a homomorphism A : f*D — Ay ;5 x(8) ®x £ of (¢, Tg)-
modules, and an open subspace U C X’ containing {p = 0} such that

L. My : f*Dly = Ay rigrGly) @y Ly is surjective

2. the kernel of A|;; is a (¢, 'g)-module of rank d — 1

Proof. We may replace X with its normalization (using the theory of normalizations of
pseudorigid spaces developed in [26]), and we may consider the connected components
of X separately.

Using perfectness of C‘:’;FK (DY (8)), we may use [29, Corollary 6.3.6(2)] to construct
a proper birational morphism fj : X’ — X such that D" := f (D" (8)) has HS,FK (D) flat and
H;'FK (D) with Tor-dimension at most 1 for i = 1,2. Then for any maximal point x € X’,

the base change spectral sequence gives us a short exact sequence

0 — k, ®g H) 1 (D) - HY) . (k, ®g D') — Torf{(H, 1 (D), k) — O.
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By [29, Lemma 6.3.7], the set of points x € X’ such that the last term is non-zero is a
(D)

(D")Y, we obtain a homomorphism %, : f*D —

Zariski-closed subspace Z; C X’ whose complement is open and dense. Thus, Hg
is flat of rank 1. Letting ¥ := H, |,
Ay rigk(8) ®x L.

The formation of H‘S,FK (D) commutes with flat base change on X; we may find

Tk

a collection {X;} of open pseudoaffinoid subspaces of X’ such that HS,FK(D,)le is free,
{p =0} C U;X, and p is not invertible on X;. Then we may apply Lemma 5.8 to conclude
that A0|Xl; is surjective (possibly after shrinking X?). Setting U := UX], we see that X’,
U C X', and %, satisfy the first of our desired properties.

To check the second claim, observe that for some b > 0 we have an exact sequence

over U
0 — P — AU,(O,b],K ®D/|U —> AU,(O,b],K((S) ®U "%'U —> 0

Since Ay gy x(8) ®x £ is R'-flat, this sequence remains exact after specializing at any
point x € U, so k, ® Pis a (¢, I'y)-module of rank d — 1. It follows by [29, Lemma 2.1.8(1)]
that P is a vector bundle of rank d — 1 over the quasi-Stein space associated to Ay (g p) &+

and hence is a (¢, 'g)-module of the correct rank. |

Remark 5.10. The morphism f : X’ — X is, in general, not compatible with the
analogous morphism constructed in [29, Theorem 6.3.9]; in that argument, the authors
make an additional blow-up, in order to control the cohomology groups of f*M/t, which
is what permits them to deduce that X°' ¢ f~1(U). But Fontaine's element ¢ does not
make sense in our mixed- or positive-characteristic overconvergent period rings, so we
cannot deduce that X°! c f~1(U).

As in [29, Corollary 6.3.10], we may deduce the following:

Corollary 5.11. Let X be a reduced pseudorigid space over Z,, all of whose connected
components are irreducible. Let M be a (¢, I'y)-module over X of rank d and let § :=
(6y/....89) : (K% > I'(X, 0y%) be a parameter such that D|, is strictly trianguline with
parameter § at a Zariski dense set X°! C X of maximal points x € X. Then there exists
a proper birational morphism f : X’ — X of reduced pseudorigid spaces, an increasing

filtration Fil®*(f*D), and an open subspace U C X’ containing {p = 0} such that
1. (Fil*(f*D)) |, is a strictly trianguline filtration on (f*D)|, for all x € U,

2. there are line bundles .Z; on U and isomorphisms of (¢, 'x)-modules
gr'(f*Dly) = Ay rigx(8) @y %

20z Ateniged 9z uo 1senbB Aq GLEGIL L/6662/1/720Z/2101E/UIWI/LO0D"dNO"0ILISPEOE)/:SARY WO.) PAPEOIUMOQ



Cohomology of (¢, I')-Modules 3031

Proof. We may assume that X is affinoid. Then for any A € R, setting U, := {|pl, < A}
and V, := {|pl, > A} vields a cover of X. Then at least one of the following holds: XN U,
is Zariski-dense in U,, or X! N V, is Zariski-dense in V,. Moreover, if 2’ < A and X' NV,
is Zariski-dense in V,, then X' N V,, is dense in V).

Thus, we see that if X! doesn’t accumulate at {p = 0} (in the sense of being
Zariski-dense in each U,), it provides a Zariski-dense subset of X \ {p = 0}. In the
latter case, we may apply [29, Corollary 6.3.10] to see that over a Zariski-open and dense
subspace W of X \ {p = 0}, M|,y is trianguline with parameter §. Since U, N W is Zariski-
open and dense in U, , we see that each U, contains a Zariski-dense set of points at which
M is trianguline with parameter §.

Now we may apply Theorem 5.9 inductively to construct f : X’ — X, U c X', and
{-Z;} satisfying the given properties. |

6 Applications to Eigenvarieties
6.1 Set-up

Extended eigenvarieties have been constructed by [1], [25], and [19] for various groups;
these extended eigenvarieties are expected to (and in some cases known to) carry families
of Galois representations such that local Galois-theoretic data matches certain Hecke-
theoretic data. At places away from p and the level, this compatibility specifies that
the local Galois representation is unramified and gives a characteristic polynomial
for Frobenius. At places dividing p, this compatibility specifies that the local Galois
representation is trianguline and gives the parameters of the triangulation.

In this subsection, we use our results on trianguline (¢, ')-modules to study
extended eigenvarieties at the boundary of weight space, in order to address two
questions:

1. Areirreducible components proper at the boundary of weight space?

2. Are Galois representations at characteristic p points trianguline at p?

We will give partial affirmative answers to both questions.

Before stating our assumptions more precisely, we recall the construction of [25].
Let F be a number field, let H be a reductive group over F split at all places above p, and
set G := Resg oH. Fix a tame level by choosing a compact open subgroup K, C G(Q,)
for each prime ¢ # p, such that K, is hyperspecial for all but finitely many ¢, and let
I C G(Q,) be an Iwahori subgroup. Let " denote the set of places w of Q such that either
w = oo, or K, is not hyperspecial, and let S denote the set of places of F lying above the

places in S'. Then [25] proved the following:
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Theorem 6.1. [25, Theorems A and B] The eigenvarieties for G constructed in [20]
naturally extend to pseudorigid spaces £ equipped with a weight map wt : Z; - W
to extended weight space W := (Spa sz[T(/)]]) an, where T} is a certain quotient of the Z,-
points of a (split) maximal torus of a model of G over Z,. Moreover, if F is totally real or
CM and H = GL, there is a continuous d-dimensional determinant D : 0(Z¢)[Galg 5] —
ﬁ’ﬂ%cre‘l) such that D(1 — X - Frob,) = P,(X) for all v ¢ S, where P,(X) is the Hecke

polynomial.

When F is totally real with p completely split, and H = GL,, the characteristic
0 eigenvariety ,%”Grig contains a very Zariski dense set of “essentially classical” points (in
the sense of [11], using [9, Lemme 6.2.10], [9, Lemme 6.2.8], and a “small slope implies
classical” criterion). Furthermore, local-global compatibility at places dividing p is
known for classical Hilbert modular forms of motivic weight by [35], [31], [34], [8], and so
in this case %éig contains a very Zariski dense set of points at which D corresponds to
a trianguline Galois representation.

When H is a totally definite quaternion algebra over a totally real field, split at p,
a similar argument shows that %Grig contains a very Zariski dense set of essentially
classical points. Moreover, the p-adic Jacquet-Langlands correspondence of [10], [5] can
be extended to the pseudorigid setting. This identifies each irreducible component of a
quaternionic eigenvariety with an irreducible component of an eigenvariety for Hilbert
modular forms; it follows that a Galois determinant can be pulled back to Z;, and
it corresponds to a trianguline representation at a very Zariski dense set of points
of 238,

There is a similar story when G is a definite unitary group over Q split at p.
Characteristic 0 eigenvarieties have been constructed [9], [2], which interpolate classical

automorphic forms and carry a family of Galois determinants:

Theorem 6.2. [2, Chapter 7] Let F/Q be an imaginary quadratic field and let G be
a definite unitary group associated to F, split at p. Then the characteristic 0 eigen-
variety %Grig contains a very Zariski dense set of classical points (corresponding to
p-refined automorphic representations), and there is a continuous determinant D
ﬁ’ﬂ%gig)[GalF,S] — ﬁ’ﬂﬁ&”gig) such that D(1 — X - Frob,) = P,(X) for all v ¢ S, where
P,(X) is the Hecke polynomial.

Moreover, the corresponding Galois representation is known to be trianguline at

classical points ; thus, there is a continuous Galois determinant D: ﬁﬂﬁ&”élg)[GalF,S] —
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ﬁ’ﬂ%gig) defined on the closure of %gig in 2, and it corresponds to a trianguline Galois
representation at a very Zariski dense set of points.

We will make more precise what kind of trianguline conditions we have (or hope
for) at places dividing p. If T is a split maximal torus of a model of G over Z,, consider
a splitting of the inclusion T(Z,) — T(Qp), and let ¥ denote the kernel. There are two
submonoids X' ¢ £ C X; we refer the reader to [25, §3.3] for precise definitions, but

we note that when G(Z,) = [, GL4(0F,), we may take T to be the standard torus and

» = [[(diag@,..., @) | a; € Z)
vip
vt = H{diag(w{,‘l, R e a;,, > a;}
vip
P = [[(diag@, ..., @y | aiy, > a;).
vip
The construction of Z; depends on a choice of t € > ¢Pt which in the above case
we take to be [, diag(l,..., wd~1); the authors construct a spectral variety 2 C Gy
using the Fredholm series of the corresponding controlling Hecke operator U, := [ItI],
and then construct Zg; — £ finite, such that there is a homomorphism ¢ : T(AP,KP) —
O(%). Here T(AP,KP) is a Hecke algebra with no Hecke operators at places above p.
However, it is possible to make the same construction using other choices of
Hecke algebras, and we will need to do so (this is discussed in greater detail in [26,
§3.4]. In particular, let %+ C Zp[G(Op)//I] be the subring generated by the characteristic

. . . . A . .
functions 1j; for s € 7. Then there is an extended eigenvariety 2 ” equipped with

o ot
a homomorphism T(AP,KP) ®z, %* — 0(Zg ") and a finite morphism 2" — 2.
+

. .. . o, . . .
There is a surjective finite map 2 P — 2, and we obtain a Galois determinant

o/t red o+ red

O(Zg? " HIGalggl — 0(2g " " ) by pulling back the determinant on %éed.

o
We have finite morphisms 2,7 — 2 — G, ). By [26, Lemma 3.4.1], the image

. AN . . _
of [IsIl in O(Z Py is invertible for all s € 1, and so for s € ¥, we can write s = s's” !

M—F
for s',s” € £t and obtain ¥ (IIsS'IHy (Is"I171) € O(Zg " )*. Thus, we have a morphism
ot =~
Za P — %)) = Hom(Z, G, y) such that the diagram

y/j S
25 S

| !

Za — Gpw
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commutes and has finite horizontal maps. Here the right vertical map is induced by
evaluation at U,. Any choice of a basis of ¥ will give us parameters §; ,, : F} — ﬁ(%é%;)x.

When F is a number field and G = Resp/qGL4 with the standard maximal torus,
, 1), where

there is a natural ordered basis {s; of ¥, namely s; , := diag(l,..., @

lV}lV vt

v|p and w, is placed in the d — i + 1 slot. Then (restrlctlng to non-critical points for
simplicity), [20, Conjecture 1.2.2(iii)] predicts that if x € 2 % is non-critical, the (¢, I')-
module corresponding to Dy|g,, is trianguline with parameter §, such that §; ,(w,) =

¥ (s; ) (@and 5i,v|0; corresponds to the automorphic weight). Similarly, in the unitary case

oF
sketched above, [2, Proposition 7.5.13] implies that at non-critical points x € 2 P the

(¢, I')-module corresponding to Dy|g,,, is trianguline with parameter §,, where §; ,(p) =
¥(diag(l,...,p,...,1)).

In the Hilbert, quaternionic, and unitary cases sketched above, we can actually
say that at a very Zariski-dense set of classical points, the corresponding (¢, I')-module

is strictly trianguline.

6.2 Properness at the boundary

We follow the strategy of [17] to show extended eigenvarieties are proper at the boundary.
We assume we have a Galois representation, and sufficiently many classical points where
it is known to be trianguline at p, with parameters compatible with the Hecke algebra

at p:

o . . . .
Theorem 6.3. Suppose 2 " is an extended eigenvariety such that there is a continuous
. o Fred o, red
determinant D : 0(Z2; " e Galp gl — O(2 p e ) for some number field F. Suppose we
have a commutative diagram

+
c/p ,red

SpaR\Z —— %G

l ” J

SpaR —"% W

where R is a normal pseudoaffinoid Z,-algebra, and Z C SpaR is a Zariski-closed
subspace of SpaR with codimension at least 1. Here SpaR — W corresponds to a
weight « : T(Z, — R*. Suppose in addition that there is an ordered basis {s; ,} of ¥
with ]_[Ji-:1 Sjv € ¥+ such that for a Zariski-dense set of points X¢' ¢ SpaR the Galois
representation attached to the pull-back of D is strictly trianguline at all places v | p,

with parameters {3, } induced by {s; ,} and «. Then the dashed arrow can be filled in.
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Remark 6.4. For the eigenvarieties discussed in the previous section, we will be able
to check that X°! exists so long as SpaR has the same dimension as its image in weight
space, and classical weights are dense in «(SpaR). We can view this as saying that the
limit of a family of overconvergent automorphic forms exists, so long as it tends to the
deleted subspace in a sufficiently regular manner. In particular, we may deduce that
every irreducible component of the extended eigencurve is proper at the boundary of

weight space.
We first treat the case of a finite morphism:

Lemma 6.5. Suppose 2 — % is a finite morphism of pseudorigid spaces and we have

a commutative diagram

SpaR~ Z —— %

1
-
-
-
-
-
-
-
P

SpaR ——— %

where R is a normal pseudoaffinoid Z,-algebra and Z C SpaR is a Zariski-closed

subspace of codimension at least 1. Then the dashed arrow can be filled in uniquely.

Proof. We use the Hebbarkeitssdtze of [32]. Let u € R be a pseudouniformizer, and
suppose Z is defined by the vanishing of the ideal I = (f,...,f,) C R. By [24, 1.4.4], the
pre-image in .2 of any affinoid subspace of # is itself affinoid, so we may assume that
Z and % are both affinoid. If 2" = SpaA and # = SpaB, we choose a pseudouniformizer
of B; its image u € R and its image in A are also pseudouniformizers.

The morphism SpaR~\Z — % is induced by a compatible sequence of continuous

nfg)ilonz] L

for some noetherian ring of definition Ry C R and k > 1. Since Z has codimension at least

homomorphisms

1 in Spa R, [32, Theorem 5.1] implies that the power-bounded functions on Spa R \ Z are
precisely R°, and we have a continuous homomorphism A° — R°. Since A° contains a
ring of definition of A, we obtain a continuous homomorphism A — R, as well. Since the
composition SpaR — Z — % agrees with the specified morphism Spa R — % after
restricting to SpaR \ Z and ¥ is separated, it agrees on all of Spa R. |
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Combined with the theory of determinants discussed in Appendix B, the assump-
tion that a determinant D : 0(Z¢)[Galg ] — O(Z) exists implies that there is a natural
map %éed — X, where X is the adic space associated to the deformation rings of all of
the determinants attached to isomorphism classes of d-dimensional modular residual

representations of Gal g.

Lemma6.6. LetR be anintegral normal pseudoaffinoid Z,-algebra, and let Z C Spa R be
a Zariski-closed subspace of codimension at least 1. Then any morphism Spa R\ Z — X,

extends uniquely to a morphism Spa R — X,,.

Proof. We again use the Hebbarkeitssétze of [32]. The pseudorigid space Spa R \ Z is
connected, so its image in Xp has constant residual determinant D. Thus, the morphism

Spa R\ Z — X}, is induced by a homomorphism
Ry — 04, g (SPAaR N 2),

where Ry is the pseudodeformation ring parametrizing lifts of D. Since Z has codimen-
sion at least 1 in Spa R, by [32, Theorem 5.1] we have ﬁ;;)a r(Spa R\ Z) = R°, so we get

a continuous homomorphism Ry — R° and a morphism Spa R — Spa Ry |
i %*’,red .
Lemma 6.7. Foranyse X7, ¥(s) € O(Zg ) is power-bounded.

Proof. This follows from the construction of [25] and we use the notation of that
paper freely. By [25, Corollary 3.3.10], the action of s on D] is norm-decreasing, for
any weight x : Ty — R* and any r > 1/p (depending on «). It follows that the action
of s is power-bounded, hence power-bounded on C*(X,D;), hence power-bounded on
#* :=ker® Q*(U,), and hence power-bounded on H*(¢*). |

Now we are in a position to prove Theorem 6.3:
d

i ,Qip*,re
Proof of Theorem 6.3. Since 2

to lift ¥ to a morphism « : SpaR — /E\W (compatibly with the given map SpaR\Z — fW).

— fw is finite, Lemma 6.5 implies that it suffices

In other words, we need to show that the image of ¥/ (s; ) in Og,,z (SpaR \ Z) is an element
of R* foralliand all v | p.

By the construction of eigenvarieties, the image of v(s;,) is a unit of
Ospar (Spa R\ Z) for all i and v. Set U;,, = ]_[]i'z1 s;y € XT; then ¥(U;,) is a unit of
Ospar (Spa R\ Z), and by Lemma 6.7, ¥ (U;,) is power-bounded for all i and all v | p.
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By [32, Theorem 5.1], the image of ¥ (U;,) in ﬁspaR (SpaR ~\ Z) lands in R° C R, so it
remains to see that y(U; ,) does not vanish at any point of Spa R.

We use the family of Galois representations on %G%+'r3d to prove this. By Lemma
6.6, the determinant D : ﬁ(%é%+'red)[GalFls] — ﬁ(%¢%+'red) extends to a determinant
R[Galy g] — R. By Lemma B.4 there is a morphism f': X' — Spa R and a family of rank-d
Galois representations M’ over X’ such that M’ induces the pullback f*Dy of Dy to X', and
we may assume that X’ — SpaR is the composition of a blow-up and a finite surjective
morphism. Let M}, denote the restriction of M’ to the local Galois group at v | p.

For each i = 1,...,d, the exterior product AiM{, is a Galois representation. For
each x’ lying above a point of X°! the associated (g, I')-module k, ® Drig(AiM",) is strictly
trianguline, and the first step in the filtration has character f* (]_[Jl-:1 8;); note that
r* (]_[Jl-:1 8 (@) = b (¥ (U; ). Moreover, by the construction of (¢, I')-modules, there
is a finite cover {ij := Spa R}} of X’ by affinoids and a finite extension L,/F, such that

ﬁl"g(M/ |V() is a free AVJ(,rig,LV—module for each j.

Thus, we are in the following situation: we have a X’-locally free (¢, I')-module
D over X', an element o € R, which is non-vanishing away from Z, and a character § :
LY — Ox(X' ~ Z)* with 8§(w) = «, such that at a Zariski-dense set of maximal points
x € X%, k, ® D is strictly trianguline with § giving the first step in the triangulation.
After twisting by (S|_X (which is defined by « and therefore makes sense on all of) X/, we
may also assume that (S|ﬁ>< is trivial. We will show that this implies that « is everywhere
non-vanishing.

Consider the complex

o —ay—1 (y-1)®@—¢)
Co : Digp) = Dig,p/pfr] ® Dig p)

D[a,b/prI

for some sufficiently small a, b, where f; is the inertial degree of L, /Q,,. By Corollary 3.17,
C; is a perfect complex, so the function x — dim; H'(Cj ,) is upper semicontinuous. At a
Zariski-dense set of maximal points x € X', H*(C Cy x) has k,-dimension at least 1, so this
holds for all x € X’. But if @ vanishes at a point x, this contradicts the injectivity of ¢ on
(¢, I')-modules. [ |

6.3 Trianguline points

In this section, we show that the Galois representations attached to certain character-
istic p points of X in the closure of the characteristic 0 eigenvariety are trianguline,

partially answering a question of [1] and [25].
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Our setup is similar to the previous section:

Ay . . . .
Theorem 6.8. Suppose 2 " is anextended eigenvariety such that there is a continuous

o Fred o red
determinant D : 0(2; " e NGalp gl — O0(25° ° ) for some number field F, and let
ot red . . .. . .
X — 25" " be an irreducible Zariski-closed subspace. Suppose in addition there

is an ordered basis {s; ,} of ¥ with H;zl sjv € T for all i such that for a very Zariski
dense set of points X°! ¢ 2" the Galois representation attached to D is trianguline at all
places v | p, with parameters {§,} induced by {s; ,}. If x € 2" is a maximal point whose
residue field has positive char;:teristic, then the Galois representation associated to

the restriction D|, is also trianguline at all places v | p, with parameters {4,} induced

bY {si,V}'

Proof. LetU =SpaR C X(rfd be an irreducible affinoid pseudorigid subspace containing
x, with U \ {p = 0} non-empty. By [37, Theorem 3.8], there is a topologically finite-
type cover f' : U’ := SpaR’ — U and a Galois representation p’ : Galpg — GL,(R"®)
such that the determinant associated to p’ is equal to R”® ®g. D. By [3, Theorem 1.1],
for each place v | p of F, there is a projective (¢, ' )-module Drig(p‘/,) associated
to pl,.

By assumption, there is a Zariski-dense set of points {x;} C U ~ {p = 0} and
continuous characters §,; : F' — R* such that the (¢, I'g)-module attached to D, is
trianguline with parameters {§,}. Thus, by Corollary 5.11, there is a further cover f” :
U” — U and there is an open subspace V C U” containing {p = 0} C U” such that f"*po'|,
is trianguline with parameters {5,}.

In particular, f//*p/l(f/of//)—l(x) is trianguline. Since (f' o f)7l(x) — ({(x} is
rig(0x) With the desired

parameters. |

faithfully flat, the triangulation descends to a triangulation on D

This argument applies strictly to positive characteristic points lying in the
closure of points where the Galois representation is already known to be trianguline.
In particular, if there are irreducible components supported entirely in positive
characteristic, we can say nothing at all. However, [26, Lemma 4.2.2] implies that the
extended Coleman-Mazur eigencurve does not contain any strictly characteristic p
components, and so the Galois representations associated to its boundary points are

all trianguline at p.
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A Complements on Pseudorigid Spaces

Let E be a complete discretely valued field with ring of integers &%, uniformizer wyg,
and residue field k. We briefly recall the definition of a pseudorigid space over O,
before discussing pseudorigid generalizations of the maximum modulus principle and
the generic fiber constructions of Bosch-Liitkebohmert [6] and Berthelot [15].

Pseudoaffinoid algebras (which are the building blocks for pseudorigid spaces)
were defined in [32, Definition 4.3]:

Definition A.1. Let R be a Tate ring. We say that R is a pseudoaffinoid 0z-algebra if
it has a noetherian ring of definition Ry, C R, which is formally of finite type over J%. If
X is an adic space over Spady, we say that X is pseudorigid if it is locally of the form

SpaR := Spa(R, R°), where R is a pseudoaffinoid 0-algebra.

Example A.2. Let A = % € Q. be a positive rational number with (n,m) = 1, and set
DS = Oglul <i—g> and D, := D5 [1]. Then D, is a pseudoaffinoid algebra.

Every pseudoaffinoid algebra R is a topologically finite type D, -algebra for some
sufficiently small A > 0, by [32, Lemma 4.8].

A.1 Maximum modulus principle

In classical rigid analytic geometry, the maximum modulus principle states roughly that
every function on an affinoid domain attains its supremum at some closed point. We
wish to give an analogous result for affinoid pseudorigid spaces. We note that we have
chosen to present it using the language of valuations, rather than norms, since there is no
longer a natural exponential base, so what we prove might better be called a “minimum
valuation principle”.

Let E and D, be as above, and let D, , := D, (X;,...,X,), which is a pseudoaffinoid
algebra corresponding to a closed ball over D, . Let D;° denote the ideal of topologically
nilpotent elements of D5.

We begin by defining valuations on D, and on Tate algebras over it. Each element
of D, may be written uniquely in the form Y, , a;u’ with a; € &, which permits the

following definition:

Definition A.3. We define analogues of the Gauss norm on D, and D, ,, via

Vp, (Z aiui) = illlf [VE(ai) + % }

i€z
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and

vn,, | 2 X | i=infvp, (@),
jeZ®" I
respectively.

For any Tate ring R with ring of definition R, and pseudouniformizer u € R, we

also define the spectral semi-valuation
v '=— inf —
rsp(f) {(ab)ezeN| b

u®fPeRo)

for f € R.

Note that vg o, depends on a choice of pseudouniformizer, but we suppress this
in the notation.

Then it is clear from the definition that f € Dj | if and only if vp, (f) = 0, and f
is topologically nilpotent if and only if VDM(f) > 0. Moreover, for all f € D, ., VDM(uf) =
AT+ VDM(f), and VDM(af) = vg(a) + VDM(f) for all a € O%. Similarly, for a general
pseudoaffinoid algebra R and f € R, vg ¢, (uf) = 1 + vg o, (f) and VR'sp(fk) = k- vg e ()
for all integers k > 0.

We also observe that v, takes values in the discrete subgroup of R generated by
17! and vy (wp).

We give an alternate interpretation of the spectral semi-valuation; I am grateful

to the referee for permitting me to include this argument:

Lemma A.4. If Ris a Tate ring with ring of definition R, and pseudouniformizer u € R,

then for any f € R

1
VR’sp(f) — OgLf|X ] ,

xeSpa(R,Re)Berk [ log|ul,

where the Berkovich spectrum Spa(R,R°)Berk denotes the rank-1 points of Spa(R, R°).

loglflx
loglulx

that vg ¢, (f) —& < —% and u%f? € R,. Then for any x € Spa(R, R°), [u®f?|, = |ul?|f|2 and
moreover, |u“fb|X <1 (since Ry C R°). Hence 10g|u“fb|X = aloglu|, +blog|f|, < O (for any

Proof. Let v’ := inf, gp,(g,Rre)Berk { } For any ¢ > 0, we can find a € Z, b € N such

choice of logarithm base), so

log|fl, a
m 2 Z > VR,Sp(f) E.

Since this inequality holds for any choice of ¢ > 0, we have v/ > VR,sp @.
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On the other hand, for any ¢ > 0, we can find a € Z and b € N so that
a
V-—e<—-=<V.
b

log|f1x
loglulx

hence |u“fb|X < 1. If y € Spa(R,R°) has associated rank-1 point x, then |u“fb|X <1

Then for any x € Spa(R,R")Berk, we have > —%, so blog|fl, < —alogl|ul,, and
implies |u“fb|y < 1. Hence, in fact, |uafb|x < 1 for all x € Spa(R, R°), and by [22, Lemma
3.3(i)], this implies that u®f? is power-bounded. This means there is some ¢ € Z such that
ul(ulfbyn ¢ Ry foralln e N, so

for all n. Since this holds for all n € N and all ¢ > 0, we see that VR'Sp(f) > v/,

as desired. |
Lemma A.5. If f € R and vg 4, (f) > 0, then f is topologically nilpotent.

Proof. By assumption, there is some a € Z_, and some b € N such that u?f? € R,, so
fbe u~%R, and f is topologically nilpotent. |

Corollary A.6. If f € D, . and vp (f) =0, then vy o, (f) = 0, as well, where v, o, is

computed with respect to the pseudouniformizer u € D, .

Proof. The hypothesis implies that f' € D} . \ D3, so vp, ¢ (f) > 0 by definition. If we
had vp, ¢ (f) > 0, then Lemma A.5 would imply that f is topologically nilpotent. Since

this is impossible, we must have Vp, r,sp(f) =0. ]

LemmaA.7. Iff €D, . thenvy . (af) =2ivg(a)+vp, () foralla € Of wherevy, o

is computed with respect to the pseudouniformizer u € D,.

Proof. We may assume that f € D5 , and a = wy. Then

n
VD, ,sp(@Ef) = Vp, , sp(@E) +Vp,  op(f) = m +Vp,,spF) =2 +Vp, p(F)

since u™ "y’ € D ...

On the other hand, we need to show that if u“(u‘"wﬁ"fm)b c Di,r' then u“fbm c
D; .. Writing Dy - = Oplul (X, X,,...,X,)/(u"X — @), it suffices to show that if f' € D, ,
satisfies Xf’ € D} , then f’ € D} .. We may write f’ = u=Nf" for some f” € D} .~ uDj .
and some integer N > 0. Then we see that Xf” = u¥(Xf’), which is an element of uNDiyr;

in particular, if N > 1 then Xf” = 0 in D‘)’hr/u = (Og/wfhIX, X,,...,X,]. But X is not a
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zero-divisor in this ring, so f” € uD} ,, contradicting our assumption. Therefore, N = 0
/ o 3
and f' € D; ., as desired. [ |

Corollary A.8. For f € D, ,, vy (f) = )FlvD“’Sp(f), where vp o, is computed with

respect to the pseudouniformizer u € D,.

Proof. There is some a € E and some k € Z such that VD“(aukf) = 0; by Corollary A.6,

we also have vp, o, (auXf) = 0. Then

k
vp, () = —vp(@ 7

and

Vp,, sp) = —Avg(@) — k

by Lemma A.7, and the result follows. |

Corollary A.9. If f € D, ,, then f € D5, if and only if v, .(f) > O, where v, . is

computed with respect to the pseudouniformizer u € D,.
Proof. This follows from the same statement for v, (f) via Corollary A.8. |

The maximal points of SpaD, consist of the points of a classical half-open
annulus (which is not quasi-compact), together with a positive characteristic “limit
point” Spa(D, /wg) = Spakg((w). Similarly, the maximal points of SpaD, , consist of the
product of a closed r-dimensional unit ball with a classical half-open annulus and a
closed r-dimensional unit ball over Spa kg ().

The advantage of working with vg o, for a pseudoaffinoid algebra R is that it
makes sense on the residue fields of maximal points, letting us compare vy ,(f) and
VR/leSp(f(X)) for f € R and x a maximal point of Spa R (here we use the image of u
in R to compute the spectral semi-valuation on residue fields). It was demonstrated
in the proof of [26, Lemma 2.2.5] that if m C R is a maximal ideal, then Spa(R/m)
is a singleton. Then for a maximal point x € SpaR, the corresponding equivalence
class of valuations contains the composition of the specialization map R — R/m, with
Vi my,sp ().

Then we have the following analogue of [4, Lemma 3.8.2/1]:
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Lemma A.10. Let R be a pseudoaffinoid algebra over &% and let x € MaxSpec R be a

maximal point, corresponding to a maximal ideal m, C R. Then for any f € R,
VR/mX,sp(f) = VR,sp(f)-

Proof. The quotient map R — R/m, carries R, to the ring of definition of R/m,. Thus,
. )
if u?f? € R, then ©%f e (R/m,)°. [ |

Thus, the spectral semi-valuation is a lower bound for the residual spectral semi-
valuations. In fact, it is the minimum. Analogously to the classical setting, we first prove

this for R = D, , before deducing the general result.

Lemma A.11. For any f € D, ,, the function x — vy .. (f) on MaxSpec D, attains

its infimum, and its minimum is equal to v, ().

Proof. Fix f € D, ,. After scaling by an element of the form auk for a € Oy, we may
assume that vy, (f) = vp, ¢ (f) = 0,s0f € D7 and we need to find a maximal point
x € SpaD, ,suchthatvy o (f(x)) =0. Letf = 2 anj denote the image of f in D5 ,/D5°, =

kglX, X,,.... X1 Sincef # 0 by assumption, there is some closed point (¥,%,,...,X%,) €
—r+1 - . .

k;r such that f(X,X;,...,X,) # 0. Then for any maximal point x € SpaD, , whose kernel
m, reduces to (X,Xx;,...,X,), VD, 5P (f(x)) =0, as desired. [ |

In order to deduce the same result for more general pseudoaffinoid algebras, we

use the Noether normalization result of [32, Proposition 4.14]:

Proposition A.12. Let R be an 0-flat pseudoaffinoid algebra such that wy ¢ R* and let

€ R. Then inf v = min v =V .
f xeMaxSpecR R/m,sp (f) xeMaxSpecR R/m,sp (f) R.sp (f)
Proof. If p;,...,p, are the minimal prime ideals of R, we claim that VR'Sp(f) =

minjVR/pj'Sp(f), so it suffices to prove the result for each R/p;. Indeed, one can
consider the natural homomorphism R — [];R/p;, whose kernel is the nilradical
of R. Alternatively, we can write Spa(R, R°)Be™k — U;Spa (R/pj, (R/pj)")Berk and apply
Lemma A.4.

Thus, we may assume that R is an integral domain. The algebra R/wy is a kz(w))-
affinoid algebra, so Noether normalization for affinoid algebras provides us with a finite

injective map kz(w) (X,,....X,

r) — R/wyg for some r > 0. Then [32, Proposition 4.14]

implies that it lifts to a finite injective map D, ., — R(ZE) for some sufficiently large
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integer n. Then we may argue as in the proof of [4, Proposition 3.8.1/7] to see that

inf \% f) = inf min 1% 3
R/m,sp R/m,sp
xeMaxSpec R<f—§> yeMaxSpec Dnr y c\raxSpec R<%>®Dn,r/my

1
= i f m n b )
yeMa)gi)ec Dp,r jln d _jVDn,r/my,Sp( (V)

= A VD,psp (b)),

where Y4+ b, ;Y9! ...+ b, is the minimal polynomial for f over Dy, ,.Since vy, (D))
attains its infimum on MaxSpec D,, , by Lemma A.11 and the fibers of MaxSpec R(%)
over MaxSpec D,, ,. are finite, vg ., ¢, (f) also attains its infimum.

Since VR,sp is “power-additive” for all R, [4, Proposition 3.1.2/1] implies in
addition that VR(%),sp(f) > min; 5=

VR/m,sp(f), Lemma A.10 implies that min . R(%>VR/m'Sp(f)

Vp,,sp(bj)- Since the right side is equal to

nf
xeMaxSpec R<:—E>

‘a3t
To conclude, we use the result for classical affinoid algebras on SpaR <;—’;> Since

SpaR(Z£) U SpaR <;—;> is a cover of SpaR, the result follows. [ |

A.2 Analytic loci of formal schemes

Recall that a point of a pre-adic space Spa(4,A™) is said to be analytic if the kernel of
the corresponding valuation is not open. We can describe the analytic locus in certain
O-formal schemes as explicit pseudorigid spaces, following [15]. Let X = SpfA be a
noetherian affine formal scheme over 0j, and let X = SpaA be to corresponding adic
space; let I C A be the ideal of topologically nilpotent elements, and assume in addition
that A/I is a finitely generated ky-algebra.

IfI1=(f,....f.), then X3 = UiX<]%i>. In the special case when A = R, is the ring
of definition of a &z-pseudoaffinoid algebra R, we have X" = Spa R.

As in [15, Proposition 7.1.7], we can give a functor-of-points characterization

of xan.

Proposition A.13. Let X and X be as above, and let Y := SpaR be an affinoid pseudorigid
space. Then

lim Homrg,, (Spf Ry, X) 5 Hom(Y, X?™) (A.1)

RoCR
ring of definition

is an isomorphism.
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Proof. Given any two rings of definition of R, there is a third that contains both
of them. Moreover, suppose R, C R is a ring of definition, and g : R — R’ is a
continuous homomorphism of pseudoaffinoid algebras. By [22, Proposition 1.10], g is
adic; it therefore carries Ry C R to a ring of definition of R'.

Thus, for a fixed X, we can view li—n>1RocR ring of definition Hom;s/ﬁE(Spf Ry, X) as
a covariant functor evaluated on R, and equation A.1 as a natural transformation. We
will construct an inverse. Suppose we have a morphism Y — X?2%; it is induced by a
continuous ring homomorphism g : A — R. Using the description of the analytic locus
of X, we see that the image of Y is contained in U := U;U;, where U; := X<J%l> for some
finite set {f;} C I.

Let V; C Y denote the rational subset Spa R <%> (note that by [22, Proposition
3.8(iii)l, g(I) C R’ is open, so rational localization makes sense), and let R; denote its
coordinate ring. Each morphism V; — U; is induced by a continuous ring homomorphism
A <%> — Ry ;, for some ring of definition R, ; C R;.

Let Ry C R° be the equalizer of [[; Ry; = [, R};; we claim that the map A —
I'(U, Ox) — R factors through R, and R, is a ring of definition of R. For the first claim,

we consider the diagram

00— I(U.6%) —— [T, %) I, T %)
. \
0 R() Hz RO,i
0 R° [LR? IL,; B,

It is commutative with exact rows, and a diagram chase shows that the dotted arrow
exists.

For the second claim, let u € R be a pseudouniformizer; we check that RO[u_I] =R
and R, is a bounded subring of R. Given r € R, we may write [[; r; for its image in []; R;.
Since Ry ; C R; is a ring of definition, there is some n € N such that u™ ([]; r;) € [1; Ro
by construction, u” ([];r;) is in the kernel of []; Ry; = [1;, R}, so it defines the desired
element of Ry,.

To see that Ry C R is bounded, we let R6 C R be a ring of definition. It induces
rings of definition Ry, ; C R;; since R; C R; is bounded, there is some n’ € N such that
u" [1;Ro; C [1; Ry ; and a diagram chase shows that u" R, C R,

We have constructed a continuous homomorphism A — R, inducing the mor-

phism ¥ — X°®", where R, C R is a ring of definition. The corresponding morphism
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Spf Ry — SpfAisthe desired element of the left side of equation A.1.It is straightforward

to verify that this defines a natural transformation. |

A.3 Local structure of pseudorigid spaces

We give a result on the local structure of pseudorigid spaces, using the theory of formal
models developed in [6] and [7]. Although the authors had in mind applications to
classical rigid analytic spaces, they worked in sufficient generality that their results
hold in the more general pseudorigid context. More precisely, they related rigid spaces
to admissible formal schemes over a base formal scheme S, where S could be the
formal spectrum of an arbitrary noetherian adic ring. Since a pseudoaffinoid algebra
is topologically of finite type over some D, and D5 is noetherian and complete for the
u-adic topology, this is sufficient for our purposes.

We give the definition of admissible formal schemes, from [6, §1]:

Definition A.14. Let A be a ring with a finitely generated ideal J C A such that
A is J-adically complete and has no J-torsion. An A-algebra R is admissible if
R = A(X,,...,X,)/I for some finitely generated ideal I C A(X,,...,X,) and R has no
J-torsion.

An affine formal A-scheme X := SpfR is admissible if R is an admissible A-
algebra. A quasi-compact formal A-scheme is said to be admissible if it has a cover by

admissible formal A-schemes.

There is an implicit assertion here that admissibility can be checked locally on

X, which follows from [6, Proposition 1.7]; we refer the reader there for more details.

Theorem A .15. Let f : R — R’ be a continuous homomorphism of pseudoaffinoid
algebras over Oy, such that for every maximal ideal m C R, the induced maps R/m" —

R’/m'™ are isomorphisms. Then f is an isomorphism.

Proof. To begin with, we observe that f induces a bijection MaxSpec(R’) — MaxSpec(R).
Furthermore, by [36, Tag 0523], the maps R,, — R/, on algebraic localizations are flat.
By [32, Lemma 4.8] there is some A € Q_, such that R is topologically of finite type
over D, , so we may choose aring of definition R, C R, which is topologically of finite type
over Df. Similarly, since R’ is topologically of finite type over R by [25, Corollary A.14],

we may choose a ring of definition R; C R’, which is topologically of finite type over R.
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Setting X = SpfR, and 9 = SpfR;, we have a morphism ) — X of admissible formal
SpfDS-schemes, which corresponds to f after inverting u.

By [7, Theorem 5.2], there are admissible formal blow-ups X — X and @ -9
and a flat morphism ) — X. By [7, Corollary 5.3], we may also assume this morphism
is quasi-finite. We claim this morphism is surjective. Indeed, flat morphisms are open;
if it is not surjective, the complement 3 C X of its image is a closed formal subscheme,
whose associated pseudorigid generic fiber Z C SpaR contains maximal points that are
not in the image of SpaR’, which contradicts our assumptions.

Now we consider the morphism 9), — X, between the mod u fibers. This is a
separated flat quasi-finite morphism between finite-type Fp—schemes, and we claim it
is actually an isomorphism. For this, it suffices to show that the fibral rank is constant
and equal to 1 (since this implies it is finite of rank 1, by [16, Lemma II1.1.19]). Moreover,
the locus in -%0 of points with fibral rank-d is constructible by [18, Lemma 9.8.8], and
constructible sets contain closed points, so it suffices to check that all closed points
have rank-1 fibers.

Butif x, € X, is a closed point, there is some local integral domain A of dimension
1 and a morphism SpfA — X whose reduction modulo u is Xy, by [6, Proposition 3.5]. The
base change ij — SpfA is again flat and quasi-finite; since A is a local ring, the rank of
its fiber over A [%] is equal to its fiber over the residue field. But by assumption, the fiber
over A [%] has rank 1, so the fiber @XO has rank 1, as desired.

Now we have a morphism of sheaves of topological rings 05 — ﬁ%, which is
surjective modulo u. By [36, Tag 07RC(11)], it is surjective modulo all powers of u. Since
Oz and ﬁ’@ are u-adically complete, it is surjective.

o Suppose O3 — ﬁ@ has kernel sheaf #.Since ﬁ5€0 — ﬁ@o is an isomorphism and
2 is X-flat, # /u =0 and by [36, Tag 07RC(11)] # = 0.
Thus, @ — X is an isomorphism; inverting u, we see that R — R’ is an

isomorphism, as desired. [ |

B Pseudorigid Determinants

We need to extend some of the results of [12] on moduli spaces of Galois determinants
from the rigid analytic setting to the pseudorigid setting. Recall that for any topological
group G and d € N, [12] defines functors E‘d 1 FS/Z, — Set and Ed,z : FS/Z, — Set on
the category of formal schemes over Z, where z is a d-dimensional determinant G — k

for some finite field k. More precisely,

E,4(X) := {continuous determinants ¢'(X)[G] — ¢(X) of dimension d}
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and E‘dyz(%) - E’d(%) is the subset of continuous determinants that are residually
constant and equal to z.

Suppose that G is a topological group satisfying the following property:

For any open subgroup H C G, there are only finitely many continuous group
homomorphisms H — Z/pZ.

Under this condition (which is satisfied by absolute Galois groups of character-
istic 0 local fields, and by groups Galp g, where F is a number field and S is a finite set
of places of F), [12, Corollary 3.14] implies that E’d and Ed,z are representable. Moreover,
every continuous determinant is residually locally constant, and so E; =[], Ed,z-

We may define an analogous functor E‘Sn on the category of pseudorigid spaces,

and we wish to prove the following:

Theorem B .1. The functor E'gn is representable by a pseudorigid space X,;, and X, is
canonically isomorphic to the analytic locus of E;. The functor E‘flnz is representable by
a pseudorigid space X;; ,, and X , is canonically isomorphic to the analytic locus of Ed,z'

Moreover, E‘Sn is the disjoint union of the E'gnz

Remark B.2. This is a direct analogue of [12, Theorem 3.17], and the proof is virtually

identical. However, we sketch it here for the convenience of the reader.

If Ris a pseudoaffinoid algebra, it contains a noetherian ring of definition Ry C R,
and we have R° = li_I)nRO, where R° C R is the subring of power-bounded elements of R

and the colimit is taken over all rings of definition of R. We have an injective map

L lim E(Spf Ry) — E™(R).

RoCR
ring of definition

Exactly as in [12, Lemma 3.15], we have the following:

Lemma B.3. Let R be a pseudoaffinoid algebra, and let D € E’fln(R). Then
1. For all g € G, the coefficients of D(1 + gt) € RI[t] lie in R°.
2. Themap::lim, . EESprO) — E“in(R) is bijective.
3. If Ris reduced, then E;(SpfR°) = Efln(R).

In particular, if L is the residue field at a maximal point of SpaR and & is its

ring of integers, E;(Spfo;) = E3"(L). Every L-valued point of SpaR therefore defines
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a map
E, (SpaR) — E4(L) = E4(Spf 0}) — E4(ky),

where k; is the residue field of &7}.

Thus, we may talk about residual determinants of determinants R[G] — R, and
define E'gnz for any continuous determinant z valued in a finite field.

Now the proof of Theorem B.1 follows by combining Proposition A.13 and
Lemma B.3.

For the convenience of the reader, we record the following analogue of [2,
Lemma 7.8.11]; its proof carries over verbatim to the setting of pseudorigid families of

determinants.

Lemma B.4. Let D : G — O(X) be a continuous d-dimension determinant of a

topological group on a reduced pseudorigid space X. Let U C X be an open affinoid.

1. There is a normal affinoid Y, a finite surjective map g : Y — U, and a
finite-type torsion-free & (Y)-module M(Y) of generic rank d equipped with
a continuous representation py : G — GLy,, whose determinant at generic
points of Y agrees with g*D.

2. Moreover, py is generically semisimple and the sum of absolutely irreducible
representations. For y in a dense Zariski-open subset Y/ C Y, M(Y), is free of
rank-d over ﬁy, and M), ® k(y) is semisimple and isomorphic to Py(y)-

3. Thereis a blow-up g’ : ) — Y of a closed subset of ¥ \ Y’ such that the strict
transform My, of the coherent sheaf on Y associated to M(Y) is a locally free
Oy-module of rank d. That sheaf M,, is equipped with a continuous Oy-
representation of G with determinant (¢’g)? o D, and for all y € Y, My, ®
k(y))ss is isomorphic to Pggy)-
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