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ABSTRACT
Data-driven (deep) learning methods has led to parameterised ab-
stractions of the data, often leading to stereotype societal biases
in their predictions, e.g., predicting more frequently that women
are weaker than men, or that African Americans are more likely to
commit crimes than Caucasians. Standard approaches of mitigating
such stereotypical biases from deep neural models include modi-
fying the training dataset (pre-processing), or adjusting the model
parameters with a bias-specific objective (in-processing). In our
work, we approach this bias mitigation from a different perspective
- that of an active learning-based selection of a subset of data in-
stances towards training a model optimised for both effectiveness
and fairness. Specifically speaking, the imbalances in the attribute
value priors can be alleviated by constructing a balanced subset
of the data instances with two selection objectives - first, of im-
proving the model confidence of the primary task itself (a standard
practice in active learning), and the second, of taking into account
the parity of the model predictions with respect to the sensitive
attributes, such as gender and race etc. We demonstrate that our
proposed selection function achieves better results in terms of both
the primary task effectiveness and fairness. The results are further
shown to improve when this active learning-based data selection is
combined with an in-process method of multi-objective training.

CCS CONCEPTS
• Computing methodologies→ Supervised learning.
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1 INTRODUCTION
The ubiquitous use of data-driven (deep) learning has led to risks of
these models learning their own characteristic abstractions of the
data, often eventually manifested as stereotype societal biases in
their predictions [9, 17, 18, 27, 30], examples of which may include
predicting more frequently that women are weaker as compared
to men [21], or that African Americans are more likely to commit
crimes than Caucasians [2]. The main reason why such biases man-
ifest themselves into deep neural models is due to the data-only
training mode (not involving any manually engineered features),
which means that there is a smaller degree of control on how the
task-specific data abstractions are constructed via the model pa-
rameters (e.g., for a feature-based model, it is possible to leave out
a certain set of features to a model, e.g., the race of a person for
recidivism prediction [2, 37]).

As a concrete example of biases in data-driven learning, consider
the classification problem that we specifically address in this pa-
per - that of identifying the age-group (young or not) of a person
from their facial image; it is observed that a standard ResNet-based
deep neural classifier [19] leads to predicting more frequently that
men with glasses are not young, and also that women are younger
than men. The reason this bias occurs is likely due to the inherent
mapping learnt between the high-level characteristic elements of
the input images (e.g., presence of glasses) with the ground-truth
labels of the data.

As other examples of biases in AI models that are likely to lead
to a communal hatred, consider the following - i) the well known
Correlational Offender Management Profiling for Alternative Sanc-
tions (COMPAS), an automated decision making system used by
the US criminal justice system for assessing a criminal defendant’s
likelihood of re-offending [2], has been shown to be biased against
the African American ethnicity [2], ii) Google’s targeted advertising
system, which advertised highly paid jobs more frequently to men
than to women [23].

https://doi.org/10.1145/3583780.3615261
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Existing bias mitigation methods can be classified into three
general categories as follows: (i) Pre-processing methods, which
modify the training dataset before feeding it to the DL model; these
approachesmodify the prior distributions of the attribute (metadata)
variables (e.g., age, gender etc.), or more generally, perform specific
transformations on the data with an aim to reduce disparity of the
class priors in the training data [5, 6, 16, 20, 25]; (ii) In-process
methods, which employ a multi-task learning with a bias-specific
objective added to the primary task objective [3, 8, 11, 29, 34] or
an adversarial loss component [1, 32, 40]; (iii) Post-processing
methods, which modify the final decisions of the classifiers by
transforming model outputs to improve prediction fairness [10]
(also see [7] for an overview).

In our work, we approach this problem of mitigating biases from
the perspective of selecting a subset of data instances in an optimal
manner using active learning. We argue that a dataset which is
imbalanced in terms of both the class and attribute priors is likely to
lead to biased predictions, and this can be alleviated by constructing
a balanced subset of the data instances with two selection objectives
in mind - first, of improving the model confidence of the primary
task itself (a standard practice in active learning [35]), and the
second, of taking into account the parity of the model predictions
with respect to the sensitive attributes, such as gender and race etc.
Similar to our work, multi-objective learningwith AL bootstrapping
were applied to improve model interpretability [28], and also for
privacy preservation [4].

Our Contributions: We propose an active learning (AL) [35]
based strategy to select a subset of the training set on which if the
model is trained, the predictions would be less biased than when it
is trained on the entire training set. Moreover, such training on a
more balanced subset of the data should not lead to a substantial
loss of the effectiveness of the primary task. The work in [14] seeks
to mitigate bias and improve diversity of features in subset selection,
where the authors argue that it is not always the case that fairness
and diversity objectives are in agreement. In our work, however, we
propose a selection function for AL that caters to both effectiveness
and fairness. To the best of our knowledge, this is the first attempt
at incorporating the fairness criterion directly into the selection
function of AL for the downstream objective of bias mitigation.
Subsequently, we combine the AL based data selection with an
in-process method of multi-objective training and demonstrate that
our proposed strategy improves model effectiveness and fairness.

2 ACTIVE LEARNING FOR BIAS MITIGATION
Notations. Consider a dataset D = (X ,S,Y), where X is a set

of data instances (e.g., images of faces), and each 𝑦 ∈ Y is one of
the 𝑐 target labels (e.g., 𝑐 = 2 for predicting if the face in an image
is of a person’s under 40). Additionally, S = {𝐴1, . . . , 𝐴𝑘 } is a set
comprised of 𝑘 sensitive attributes, where the 𝑖th attribute can be
associated to 𝑎𝑖 possible values, e.g., if the set of attributes corre-
spond to ‘race’ and ‘gender’, then 𝑘 = 2 and 𝑎2 = 2, representing the
labels for male and female (see Table 1 for a glossary of notations).

For fair predictions, ideally, a parameterised predictive model
corresponding to the primary task should be independent of S [7],
i.e., \ : X ↦→ Y . However, it is often the case that the attributes
manifest themselves as inherent characteristic patterns within the

Notation Description

x ∈ X A particular data instance within a set of such
instances (X ).

S = {𝐴1, . . . , 𝐴𝑘 } Set of 𝑘 sensitive attributes, e.g., 𝐴1=RACE and
𝐴2=GENDER.

𝑉𝑖 = Z𝑎𝑖 ∀𝑖 = 1, . . . , 𝑘 The 𝑖th constitutes one of 𝑎𝑖 possible categorical
values, e.g., 𝑎2 = 2 because the possible values
for 𝐴2 (GENDER) are MALE (0) and FEMALE (1).

P (S ) = Z𝑎1 × . . . × Z𝑎𝑘 All possible attribute value combinations.
s ∈ P (S ) A 𝑘-dimensional vector denoting a particu-

lar attribute-value combination, e.g., s1 =

{ASIAN, FEMALE} and s2 = {AFRICAN, MALE}.

Table 1: Glossary of notations.

data, thus potentially leading to biased parameterised models where
\ : X ,S ↦→ Y .

AL-based dataset selection. The key idea behind our proposed
AL selection function is to leverage this notion of fairness for select-
ing an optimal subset of data. Instead of the standard use-case of
AL, which involves selecting data instances for further annotations
towards extending a labeled dataset, in the context of our work,
we use it for an optimal subset selection in an incremental manner.
More precisely, we first start with a randomly selected seed dataset
D0 ⊂ D, and then to select the most promising batch of instances
during the 𝑖th iteration, we consider a number of different subsets
B𝑖 ⊂ D − D𝑖 each of size 𝑏. We then compute a fairness penalty
score for each batch, and then add the one with the minimum value
to D𝑖 to make a larger set D𝑖+1 and so on. We repeat the AL steps
𝑀 number of times (𝑀 = 10 in all our experiments).

Fairness-based objective. Existing AL approaches seek to min-
imise the uncertainty of predictions so that when trained with
additional data, a model may generalise well and lead to more ef-
fective results [24, 36]. In contrast, the active learning selection
criteria is different in the context of our problem. Rather than cater-
ing to the sole objective of primary task effectiveness, our proposed
selection function also estimates how fair the model predictions
would be with the inclusion of the additional training data.

We employ the commonly used idea for quantifying fairness
in terms of the similarity in predictions across a pair of instances
from different groups of attribute values (commonly called cross
pairs) [15, 39]. Such a similarity in the predictions across a pair
indicates that the output for each instance of the pair is indepen-
dent of their attribute values, e.g. predicting the age of a person
is independent of the gender. More formally, given a pair of data
instances with identical labels but different attribute values, i.e.,
(x, s, 𝑦), (x′, s′, 𝑦′) ∈ D with𝑦 = 𝑦′ but s ≠ s′, a fair model \ should
output similar class posteriors, i.e., | |𝑃 (𝑦 |x;\ ) − 𝑃 (𝑦′ |x′;\ ) | | → 0,
where 𝑃 (𝑦 |x;\ ) ∈ R𝑐 is a 𝑐-dimensional softmax distribution.

To select the optimal batch, the idea is to form cross-pairs across
the selected data and the unselected ones. The hypothesis is that a
batch D𝑖 where the predictions with the currently trained model
(𝑖th iteration), \𝑖 : X𝑖 ↦→ Y𝑖 , yields more fair results should be a
better candidate for including inD𝑖+1. In particular, we measure the
fairness of such a candidate batch in terms of average agreement
with the class posteriors measured over the cross pairs. Formally,
the fairness score ofB ⊂ D−D𝑖 (the set of yet unselected instances)
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Table 2: Summary of the datasets.

Dataset Primary task Attributes for bias

CelebA P(Young|Face Image) Gender (M/F), Eye-Glasses (G,Ḡ)
COMPAS P(Recidivism|Features) Race - African (A), Caucasian (C)
EEC P(Emotion|Sentence) Gender (M/F)

during the 𝑖th step of the AL-based selection is computed as

𝜙𝐹 (B) =
1

|D𝑖 | |B |
∑︁

(x,s,𝑦) ∈D𝑖

∑︁
(x′,s′,𝑦) ∈B

(𝑃 (𝑦 |x;\𝑖 ) − 𝑃 (𝑦 |x′;\𝑖 ))2 .

(1)
Finally, we combine the fairness penalty of Equation 1 with a

standard selection criteria of AL, namely uncertainty sampling
[24], which includes those points for which the current version
of the classifier (\𝑖 trained on D𝑖 ) yields a small confidence or
a high uncertainty. This combination ensures that the subset of
instances that are selected incrementally via AL, potentially yields a
model that is not only fair (Equation 1) but also effective, as per the
standard AL technique of uncertainty sampling [24, 35]. Formally,
the combined objective, which we minimise, is

𝜙 (B) = _𝜙𝐹 (B) + (1 − _) 1
𝑏

∑︁
x∈B

𝑐max
𝑙=1

𝑃 (𝑦 = 𝑙 |x;\𝑖 ), (2)

where _ ∈ [0, 1] is an interpolation parameter.

AL-based selection with multi-objective training. In addi-
tion to the AL-based framework, which is a pre-processing approach
for bias mitigation, we also explore its combination with standard
in-processing approaches that include an adversarial component
(corresponding to the bias) in the primary loss function [11, 34].
More concretely speaking, the bias component of the loss aims to
‘not learn effectively’ the mapping between the attribute values and
the labels. Formally,

𝑃` (𝑦 | (x, s)) = `𝑃 (𝑦 = 𝑐 |x) + (1 − `)𝑃 (𝑦 ∼ Z𝑐 − 𝑐 | (x, s)), (3)

where the adversarial part of the loss (the second term on the right
hand side of Equation 3) uses a label different from the ground-
truth one, thus making the prediction independent of the attribute
values.

In the combined approach of ALwith bias mitigation loss, instead
of using a standard cross-entropy loss as the model \𝑖 at every
step of the AL iteration, we instead use the likelihood function of
Equation 3 as the realisation of \𝑖s (𝑖 = 1, . . . , 𝑀).

3 EVALUATION
Datasets. For our experiments, we employ three datasets from

three different modalities - images, feature-based, and text, which
we now describe next (Table 2 presents a summary).

CelebA is an image dataset that is widely used for evaluating
models for face detection, particularly for recognising facial at-
tributes [31, 38]. It consists of over 200K facial images of 10, 177
celebrities [26]. Each image is annotated with 40 different binary at-
tributes describing the image, including attributes, such as Black_Hair,
Pale_Skin, etc. The images in this dataset cover large pose variations
and background clutter.

The COMPAS dataset contains data from Broward County,
Florida originally compiled by ProPublica [2]. The task is to predict
whether a convicted individual would commit a violent crime in
the following two years or not. Following the analysis of Propub-
lica, we considered black and white defendants who were assigned
COMPAS risk scores within 30 days of their arrest. Furthermore,
we restricted ourselves to defendants who “spent at least two years
outside a correctional facility without being arrested for a violent
crime, or were arrested for a violent crime within this two-year
period” [12].

The Equity Evaluation Corpus (EEC) dataset, compiled by
[22], is an emotion prediction dataset. Given a natural language sen-
tence, the task involves predicting the primary emotion expressed
in the sentence from among 5 possible emotion classes, namely
‘fear’, ‘anger’, ‘joy’, and ‘sadness’ (along with the neutral class). In
addition to being associated with an emotion, each sentence in this
dataset expresses a gender or race.

Model and hyper-parameter settings. In our experiments
involving CelebA, we use pre-trained ResNet-18 [19] and fine-tune
it for predicting whether the celebrity in the input image is ‘Young’
(an annotated feature of the CelebA dataset). For the COMPAS task,
we employ a 2-layer feed-forward network, whereas for the EEC
task, we employ a 3-layer feed-forward network with sentence
embeddings as inputs. As model optimiser, we employ SGD with
momentum set to 0.9. We set the number of iterations in AL (𝑀)
to 10. We start with a seed set of size 1% of the total training set
size (i.e., |D0 | = 0.01 × |D |). We ensure that there is an equal
representation of the sensitive attribute values in the seed set. For
our proposed sampling strategy, we set the number of candidate
batches (B) to 30. The optimal values of these hyperparameters
were obtained via a grid search.

Baselines. We compare our approach1 with the following.
(1) Entire Dataset (ED): We train the model on the entire training

set. This baseline is indicative of the bias learned by the model
due to the bias in the training data itself.

(2) Random Sampling - Balanced (RS-B) : We split the entire
training set into 𝐾 possible groups corresponding to the at-
tributes values. We select all instances from the most under-
represented group and sample those many instances from all
other groups. This down-sampling based baseline tests whether
making the training data balanced leads to mitigating biases.

(3) Random Sampling (RS): The first amongst the AL-based base-
lines is a simple yet a standard baseline used in the AL literature
[35]. Instead of employing a selection function, it simply adds a
random batch of instances at each step of an AL iteration.

(4) Uncertainty Sampling (US): This is an ablation of our ap-
proach (Equation 2) where we set _ = 0, which means that we
incrementally construct the dataset only with the uncertainty
sampling criterion [24].

(5) Fairness Penalty only (FP-O): This is another ablation of
Equation 2, where we set _ = 1 to employ only the cross-pair
based fairness criteria.

(6) Multi-Objective on the Entire Dataset (MO-ED): This is
an in-process only method, where we instead of applying the

1Code available at https://github.com/ManishChandra12/AL4fairAI.
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Table 3: Results on the CelebA (image) dataset. FNR: the false nega-
tive rate of the entire test set, FNR𝑠1,𝑠2 : attribute values for ‘gender’
and ‘whether wearing eyeglasses’, respectively - the values being
M/F, and G/Ḡ. The best F1, FNED and EWP values are bold-faced,
with ↑s indicating higher the better and ↓s indicating the contrary.

Method F1(↑) FNR FNR(M,G) FNR(F,G) FNR(M,Ḡ) FNR(F,Ḡ) FNED(↓) EWP(↑)

ED 0.836 0.052 0.255 0.099 0.093 0.027 0.3158 0.376
RS-B 0.801 0.075 0.405 0.211 0.117 0.044 0.5393 0.292
RS 0.822 0.064 0.309 0.145 0.114 0.033 0.4062 0.345
US 0.834 0.043 0.219 0.033 0.081 0.021 0.2460 0.396
FP-O 0.801 0.041 0.219 0.105 0.059 0.026 0.2766 0.380
MO-ED 0.813 0.067 0.213 0.118 0.090 0.052 0.2351 0.394
AL 0.825 0.028 0.189 0.033 0.049 0.014 0.2015 0.406
MO+AL 0.822 0.044 0.181 0.069 0.062 0.034 0.1900 0.408

Table 4: Results on the COMPAS dataset. A and C denote the at-
tribute values for race (African American and Caucasian).

Method F1 FNR FNR(A) FNR(C) FNED EWP

ED 0.561 0.864 0.811 0.976 0.1651 0.3354
RS-B 0.553 0.871 0.822 0.976 0.1540 0.3346
RS 0.552 0.879 0.833 0.976 0.1429 0.3358
US 0.562 0.856 0.811 0.952 0.1413 0.3397
FP-O 0.542 0.886 0.844 0.976 0.1317 0.3337
MO-ED 0.549 0.894 0.856 0.976 0.1206 0.3380
AL 0.554 0.871 0.833 0.952 0.1190 0.3401
MO+AL 0.552 0.802 0.795 0.905 0.1100 0.3407

data selection based method, we train a classifier using the loss
function of Equation 3 on the entire dataset.

Our proposed methods. In addition to the baselines, we ab-
breviate our proposed method of AL-based data selection as AL,
whereas the combinedmethod, wherewe employ themulti-objective
loss (Equation 3) at each AL iteration, is denoted byMO+AL.

Evaluation Metrics. We employ the following metrics for our
experiments (averaged across 5 different runs).
• F1: Macro-averaged F1-score to measure the effectiveness of the
primary task.

• False Negative Equality Difference (FNED) [13]: Equality
of Odds [3, 13, 18] measures how close are the false positive
rates (FPRs) and false negative rates (FNRs) across each group of
attribute value combinations. Formally speaking,

FNED =
∑︁

s∈P (S )
|𝐹𝑁𝑅 − 𝐹𝑁𝑅s |, (4)

where P (S) denotes the set of all possible attribute value com-
binations (see the notations in Table 1).

• Effectiveness with Parity (EWP): To report a common metric
that combines both F1 (higher the better) and FNED (lower the
better), we report EWP as the harmonic mean of F1 and (1 -
FNED), which is similar in flavour to combining precision and
recall via the harmonic mean. A high value of EWP indicates that
a model’s predictions are both effective and fair.

Results. Table 3 shows the results of our experiments on the
CelebA dataset. It can be observed from the second row (RS-B) that
making the training data balanced with respect to the attributes
does not work adequately well. Next, comparing rows 7 and 8 with
the remaining ones, it can be seen that that our proposed approach

Table 5: Results on the EEC dataset. FNR(M) and FNR(F) denote the
FNRs for the male and female groups respectively. FNRs computa-
tion considers ‘not angry’ as the +ve class, and the rest as -ve.

Method F1 FNR FNR(F) FNR(M) FNED EWP

ED 0.671 0.135 0.110 0.159 0.0483 0.3935
RS-B 0.667 0.176 0.154 0.197 0.0426 0.3931
RS 0.653 0.160 0.141 0.178 0.0365 0.3892
US 0.661 0.172 0.157 0.186 0.0282 0.3934
FP-O 0.637 0.064 0.050 0.078 0.0275 0.3849
MO-ED 0.657 0.016 0.008 0.024 0.0164 0.3939
AL 0.657 0.138 0.130 0.146 0.0162 0.3939
MO+AL 0.658 0.138 0.130 0.146 0.0162 0.3943

(a) ED (b) MO+AL

Figure 1: A sample image from the CelebA dataset with LIME-based
[33] explanations for the prediction �̂� = YOUNG for a ResNet-18
model trained on a) the entire dataset, vs. b) trained with our pro-
posed AL+MO approach. Important regions within each image is
shown with the yellow colored curves. While the model on the left
focuses on the presence of eyeglasses for age estimation (thus ex-
hibiting a stereotype), the one on the right actually focuses on the
jaw and the hair line thus making this estimation independent of
the presence of eyeglasses.

(AL and MO+AL) outperforms the baselines in terms of FNED and
the EWP metrics, without a substantial decrease in the F1 scores.
Similar trends are also observed on other modalities in Tables 4 and
5, the gains on EEC dataset are marginal because it exhibits less
disparate treatment compared to other datasets (compare row 1 of
each table).

Figure 1 shows the qualitative model explanations as outputted
by LIME for a sample image from the test set. The regions marked
with yellow colored curves indicate the important regions within
the image that contribute positively towards the model prediction.
It can be observed that the model trained on entire dataset attends
to the pixels on and around the eyeglasses to make its predictions.
However, the model trained using our proposed combination of
in-process and pre-process strategies rather attends to other facial
attributes to make its predictions.

Concluding Remarks. In this study, we propose an AL based
strategy to select a subset of the training set to learn classification
models such that their predictions are less biased as opposed to
learning a model on the entire training set. We also demonstrate
that when the AL-based approach is combined with a standard
in-process approach, model training yields better results in terms
of both fairness and effectiveness. In future, we would like to adapt
our approach to other domains and tasks, such as mitigating biases
from neural ranking.
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