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Abstract: Paleoproterozoic marbles occur widely in NW Scotland. The isotopically heavy carbonate carbon (δ13C >3‰) in
marbles that characterizes the worldwide Lomagundi–Jatuli Event (2.3–2.05 Ga) is recognized in the Laurentian Foreland, the
Moine Nappe and the Sgurr Beag Nappe, over a 150 km transect across the Caledonian thrust belt. A light oxygen isotope
composition distinguishes marbles that have been sheared and retrogressed by ingress of meteoric water, possibly during both
Laxfordian and Caledonian orogenesis. The shearing of marbles also contributed to graphite formation (mean δ13C −7.2‰).
Pyrite in the marbles contains isotopically heavy sulfur, typical of Paleoproterozoic diagenetic sulfides precipitated from low-
sulfate seawater. These data show that the c. 2 Ga marbles in Scotland are a high-quality archive of information on their
depositional and post-depositional history. The data emphasize a continuum of a Paleoproterozoic marble–graphite–sulfide-
bearing assemblage from eastern Canada and Greenland through Scotland to Scandinavia.
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The record of Paleoproterozoic sedimentation includes an
anomalous globally extensive development of shallow-water
carbonate platform deposits (Condie et al. 2000), which now
occur as marbles. The marbles, and associated sediments, are
a repository for information about the Earth’s surface at c.
2 Ga, including ocean salinity (Parnell et al. 2022),
atmospheric composition (Prave et al. 2021), the sediment-
ary carbon budget (Kerr et al. 2016; Canfield 2021),
palaeobiology (Kamennaya et al. 2018), metallogeny
(Partin et al. 2021) and contribution to plate-tectonic
processes (Parnell and Brolly 2021). Studies of the marbles
are therefore important to an understanding of planetary
development during the Paleoproterozoic. Paleoproterozoic
marbles crop out widely in the North Atlantic region,
including in NW Scotland (Figs 1 and 2). The Scottish rocks
are a mixed package of metasediments and metavolcanic
rocks, which form outliers younger than the predominant
Archean tonalitic gneisses (Park 2002; Mason et al. 2004a, b).
The Paleoproterozoic marbles in NW Scotland have a
mineralogical and geochemical signature of deposition from
evaporative seawater (Parnell et al. 2022). Globally, the carbon
isotope record of Paleoproterozoic marbles is central to
documenting a worldwide episode of anomalously heavy
carbon deposition, known as the Lomagundi–Jatuli Event, and
concomitant inferences about oxygenation of the atmosphere
(Martin et al. 2013; Eguchi et al. 2020; Prave et al. 2021). The
contribution to the isotopic record from Scotland hitherto is
based on data from marbles at Gairloch (Baker and Fallick
1989; Kerr et al. 2016). However, many other localities in
Scotland (Fig. 2) include Paleoproterozoic (c. 2 Ga) marbles
that hitherto have not been measured. We show here that
isotopic studies of themarbles have the potential to improve our

understanding of stratigraphic age, sedimentary environment
and structural history of some of the oldest rocks in Britain.
Some marble horizons, but not all, were also a focus of

deformation, including isoclinal folding and mylonite
formation (Park 2002). Six marble occurrences stand out as
associated with shearing. Three are within the Laurentian
foreland to the (west of the) Caledonian thrust belt, and they
are assumed to record deformation in the late
Paleoproterozoic Laxfordian Orogeny. The other three are
within the thrust belt, and their proximity to thrust planes
juxtaposing supracrustal rocks and theNeoproterozoicWester
Ross and Loch Ness supergroups (Krabbendam et al. 2021)
implies that they could record Caledonian deformation. The
occurrence of marble indicates potential for deformation, but
does not discriminate between minor movement and much
more intense shearing that could support thrusting.We sought
to test a possible means of making this distinction by analysis
of the oxygen isotope composition of the marble. In several
other datasets from marbles (Baker et al. 1989; Buick et al.
1997; Pili et al. 1997; Famin et al. 2004), retrogression along
sheared surfaces caused a shift to a lighter isotope
composition. One locality at Gott, Tiree, contains abundant
graphite in the sheared marble.
This study reports the carbon and oxygen isotopic

compositions of Paleoproterozoic marbles from 21 localities
in NWScotland (Figs 2 and 3), carbon isotopic compositions
of associated marble and graphite at Gott (Fig. 4) and sulfur
isotopic compositions of pyrite in seven marbles.
The objectives of the study are as follows:

(1) determination of the record of the Lomagundi–Jatuli
Event in the carbon isotope composition;

© 2023 The Author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/
licenses/by/4.0/). Published by The Geological Society of London for EGS and GSG. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

Research article Scottish Journal of Geology

https://doi.org/10.1144/sjg2023-009 | Vol. 59 | 2023 | sjg2023-009

Downloaded from http://pubs.geoscienceworld.org/sjg/article-pdf/doi/10.1144/sjg2023-009/5940019/sjg2023-009.pdf
by University of Glasgow user
on 18 August 2023

http://orcid.org/0000-0002-5862-6933
mailto:J.Parnell@abdn.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.geolsoc.org.uk/pub_ethics
http://crossmark.crossref.org/dialog/?doi=10.1144/sjg2023-009&domain=pdf
https://doi.org/10.1144/sjg2023-009?ref=pdf&rel=cite-as&jav=VoR


(2) interpretation of variations in the oxygen isotope
composition; in particular, marbles were analysed to
test if they might indicate selected involvement in
orogenic deformation;

(3) measurement of the carbon isotope composition in
coupled marble and graphite at Gott to test for any
relationship between them;

(4) measurement of the sulfur isotope composition of
pyrite in marbles;

(5) incorporation of the isotopic record from Scotland
into a broader record in the Paleoproterozoic of the
North Atlantic region from Canada to Scandinavia.

Methods

Geological setting and sampling

Paleoproterozoic marbles were sampled from 21 localities in
NW Scotland (Figs 2 and 4). Details of the localities are
given in Table 1. Marbles occur in the Laurentian foreland,
and in nappes in the Caledonian thrust pile. Most samples in
the Moine Thrust Zone are located in the Moine Nappe and
Sgurr Beag Nappe (Table 1). The basement east of theMoine
Thrust Zone was formerly regarded as Lewisian Complex of
the Northern Highlands Terrane (Friend et al. 2008).
Recently, the eastern basement has been attributed to a
terrane in Baltica that was juxtaposed against Lewisian rocks
of Laurentia along the Grenvillian suture, now marked by the
Moine Thrust Zone (Strachan et al. 2020). Notwithstanding
this model in which basement rocks from two terranes are
now juxtaposed, they both include supracrustal outliers with
marbles. The marbles are consistently calcite, with porphyr-
oblasts predominantly of phlogopite and fosterite (Table 1).
Three of the largest marble-bearing outcrops, including 11 of
the localities, in South Harris, Gairloch and Glenelg, have
each been interpreted to represent accretionary complexes
(Park et al. 2001; Baba 2002; Storey 2008b). It is likely that
marbles in the smaller outcrops were deposited in a similar

context, in carbonate platforms prior to accretion. The larger
outcrops are each dated at 2.0–1.9 Ga. The Loch Maree
Group at Gairloch is dated at 1.9–2.0 Ga, based on Nd crustal
ages (O’Nions et al. 1983), minimum ages of detrital zircons
(Kerr et al. 2016) and a 1.90 Ga intrusive gneiss (Park et al.
2001). The metasediments in South Harris are dated at 1.8–
1.9 Ga, by detrital zircons (Whitehouse and Bridgwater
2001) and associated c. 1.9 Ga arc rocks (Mason et al.
2004a). Eclogites at Glenelg–Loch Duich, whose protoliths
were possibly synchronous with metasediments, yield
HfTDM ages around 2.0 Ga (Brewer et al. 2003; Storey
2008a). Individual marble beds are typically of 0.5–3 m
thickness, modified by local shearing and thrusting. The
marbles are isoclinally folded, tectonically interleaved with
other lithologies, and marble-bearing horizons include
mixed cataclasite–mylonite (Park et al. 2001). Associated
lithologies include quartzose sandstones (psammites),
graphitic schists and ironstones (Table 1). The mineral
assemblage, recorded particularly in studies on Tiree
samples, indicates metamorphism at granulite facies, fol-
lowed by retrogression to amphibolite and greenschist facies
associated with shearing (Westbrook 1972; Beach 1980;
Cartwright 1992).
Six marbles in shear zones were identified:

(1) Armadale, at the thrust margin of the Strathy
Complex, where the marble is a suggested control
on deformation (Moorhouse and Moorhouse 1983);

(2) Gleann Meinich, mapped along a thrust contact
between the Neoproterozoic Loch Ness Supergroup
and the Archean–Paleoproterozoic basement, within
the Scardroy Inlier, a ductile thrust slice along the
Sgurr Beag Thrust (Holdsworth 1989);

(3) Glen Shiel, along the thrust eastern margin of the
Glenelg–Loch Duich Inlier, identified as the Sgurr
Beag Thrust (Harris and Strachan 2010);

(4) Bay Steinigie, a sedimentary package along the
sheared contact between the Leverburgh and

Fig. 1. Outcrops of Paleoproterozoic
marbles, NW Scotland. (a) Marble layered
with dark graphitic matter, below
ironstone, Gott, Tiree. (b) Marble layered
with silicate porphyroblasts and quartzite
laminae, Bay Steinigie, South Harris
(field width 1 m). (c) Lens of marble
(with lens for scale) within bedded
quartzites, Armadale. (d) Marble intruded
by pegmatites (brown, horizontal),
Rosemarkie.
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Langavat belts of the South Harris Complex (Mason
et al. 2004b);

(5) Gott, Tiree, a sedimentary package with an intense
shear fabric (Cartwright 1992);

(6) Meal Aundury, along a ductile shear zone in the Loch
Maree Group at Gairloch (British Geological Survey
1999).

The shear zone at Gott additionally contains graphite in the
marble. The locality also includes graphitic schists for
comparison (Westbrook 1972; Parnell et al. 2021a).

Analysis

Samples of marble were drilled using a Sherline microdrill
and collected in plastic vials. Analyses were performed at the
Scottish Universities Environmental Research Centre, East
Kilbride (SUERC) on an automated continuous flow VG
Prism Series II Isotope Ratio Mass Spectrometer using
international standard IAEA-CO-8 (calcite) and internal
standard MAB2C. Carbon isotope ratios were calibrated to
Vienna Pee Dee Belemnite (VPDB). Oxygen isotopes were
calibrated to Vienna Standard Mean Ocean Water

(VSMOW). Reported analyses are each the mean of four
values.
Stable carbon isotope analysis was conducted on graphitic

samples digested in 10% HCl to remove trace carbonate.
Samples were analysed by standard closed-tube combustion
method by reaction in vacuo with 2 g of wire form CuO at
800°C overnight. Marble samples were crushed to a powder,
then 1 mg of each powdered sample was dissolved in
phosphoric acid at 70°C before measurement of isotope
ratios was carried out at SUERC. Data are reported in per mil
(‰) using the δ notation v. Vienna Pee Dee Belemnite
(V-PDB). Repeat analysis gave δ13C reproducibility around
±0.2‰ (1σ).
Pyrite was sampled from millimetre-scale crystal masses

in the marbles. For sulfur isotope analysis, pyrite samples
were combusted with excess Cu2O at 1075°C to liberate the
SO2 gas under vacuum conditions. Liberated SO2 gases were
analysed on a VG Isotech SIRA II mass spectrometer, with
standard corrections applied to raw #66SO2 values to produce
true #34S. The standards employed were the international
standard NBS-123, IAEA-S-3 and SUERC standard CP-1.
Reproducibility of standards is ±0.2‰ and ±0.3‰ for carbon
and oxygen respectively at 1σ.

Fig. 2. Map of NW Scotland, showing
localities for Paleoproterozoic supracrustal
marble, with mean carbon isotope
compositions.
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Fig. 3. Map of NW Scotland, showing
localities for Paleoproterozoic supracrustal
marble, with mean oxygen isotope
compositions.

Fig. 4. Map of Gott Bay, Island of Tiree,
showing location of graphite-bearing
marble and graphitic gneiss. LWM, low
water mark; HWM, high water mark.
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Scanning electron microscopy (SEM) was conducted in
the Aberdeen Centre for Electron Microscopy, Analysis and
Characterisation (ACEMAC) facility at the University of
Aberdeen using a Carl Zeiss Gemini SEM 300 VP Field
Emission instrument equipped with an Oxford Instruments
NanoAnalysis Xmax80 Energy-Dispersive Spectroscopy
(EDS) detector, and AZtec software suite.
Structural ordering of graphite was measured using a

Renishaw inVia reflex Raman spectrometer, with a back-
scattering geometry in the range of 700–3200 cm−1, a
2400 l mm−1 spectrometer grating and charge-coupled
device (CCD) detector. Microscopic observations were
carried out with a ×100 optical power objective. A
514.5 nm diode laser was used for excitation with an
output of 50 mW. The laser power was reduced by using a
10% filter. The Raman system was calibrated against the
520.7 cm−1 band of silica. Raman band deconvolution was
calculated using LabSpec6 software by Horiba, and
maximum temperatures were calculated from the R2 ratio
(Schito et al. 2017).

Results

The mean δ13C and δ18O values for marbles do not show a
mutual dependence (Fig. 5), and they are treated as two
distinct datasets.
The C δ13C values fall into two groups, in the ranges −3 to

0‰ and +3 to +12‰. Anomalously heavy isotope composi-
tions are recorded in marbles from Rodel, Loch Langavat,
Carr, Letterewe, Meall Aundrary, Shieldaig, Scardoy and
Gleann Meinich (Figs 3 and 6). These localities are in the
Laurentian Foreland, and the Moine and Sgurr Beag nappes
(Fig. 7). In the supracrustal outcrops in South Harris and
Glenelg, there are both localities with and without
anomalous compositions.
The δ18O values also fall into two groups, of six and 15

localities (Fig. 8) in the ranges 11–16‰ and 17–22‰
respectively.
The graphite in marble at Gott is finely interlaminated with

chlorite, and they are both deformed by the shearing motion
(Fig. 9). In some beds the streaks are linked to form a laminar

Table 1. Mean values for δ18O, δ13C and δ34S isotope data (‰) in Paleoproterozoic marbles, NW Scotland

Locality
Grid
reference

Structural
level Description, associated facies Reference

δ18O
(SMOW)

δ13C
(PDB) δ34S (CDT)

Sheared
Armadale NC 774655 Naver Nappe Layered with quartzite lenses; sulfidic

(pyrite); minor ironstone
Strachan et al.
(2010)

12.7 −1.7 6.3, 9.9

Gleann
Meinich

NH 235545 Sgurr Beag
Nappe

Massive, phlogopite-rich Sutton and Watson
(1951)

13.2 8.1

Glen Shiel NH 007136 Sgurr Beag
Nappe

Massive, phlogopite–diopside-rich Harris and
Strachan (2010)

14.8 0.0

Bay Steinigie NG 019939 Foreland Layered, much detrital matter; minor
graphite

Fettes et al. (1992) 11.9 −0.4

Gott, Tiree NM
045456

Foreland Layered, graphitic laminae; sulfidic
(pyrite); graphitic schist, ironstone

Cartwright (1992) 11.1 −2.8 11.7, 11,7, 11.7,
11.9, 12.3

Meall
Aundrary

NG 855722 Foreland Pure calcite, recrystallized? Park (2002) 15.7 11.6

Non-sheared
Loch Shin NC 521139 Moine Nappe Layered, amphibole-rich; sulfidic

(pyrrhotite)
Parnell et al.
(2021b)

20.3 −0.7 8.0

Rosemarkie NH 745594 Sgurr Beag
Nappe

Massive, phlogopite-rich; pegmatite veins Garson et al.
(1984)

20.3* −0.4

Scardroy NH 223523 Sgurr Beag
Nappe

Massive, phlogopite-rich; sulfidic (pyrite);
minor graphite, ironstone

Sutton and Watson
(1951)

20.0 0.4, 8.8† −0.2, −0.3, −0.4,
−1.2, −1.3

Glenelg NG 840201 Moine Nappe Massive, forsterite-rich May et al. (1993) 19.8 −0.8
Ratagain NG 905210 Moine Nappe Massive, phlogopite-rich May et al. (1993) 17.5 −2.8
Totaig NG 875253 Moine Nappe Massive, phlogopite-rich; sulfidic (pyrite);

graphitic schist
May et al. (1993) 17.6 −0.3 7.7

Carr NG 901245 Moine Nappe Massive, phlogopite–forsterite-rich May et al. (1993) 19.2 8.1
Rodel NG 048832 Foreland Massive, phlogopite-rich; sulfidic

(pyrrhotite); graphitic schist
Fettes et al. (1992) 21.5 4.8 11.3, 11.4, 11.6

Loch Langavat NG 052890 Foreland Massive, phlogopite-rich; sulfidic (pyrite) Fettes et al. (1992) 18.1 3.9 10.2
Kilkenneth,
Tiree

NL 933454 Foreland Massive, phlogopite-rich Cartwright (1992) 21.2 −0.1

Balphetrish,
Tiree

NM
010475

Foreland Massive, talc-rich, pink Cartwright (1992) 18.0 −1.8

Caolas, Tiree NM
094490

Foreland Massive, phlogopite-rich Cartwright (1992) 20.2 0.2

Iona NM
265216

Foreland Massive, forsterite-rich; graphitic schist,
ironstone

Bailey et al. (1925) 20.2 −1.0

Shieldaig NG 812725 Foreland Layered, phlogopite-rich Park (2002) 21.7 7.7
Letterewe NG 952720 Foreland Massive, phlogopite-rich; ironstone Robertson et al.

(1949)
18.6 5.4

Bold type indicates anomalously heavy carbon.*Excludes one aberrant result.
†Two populations.
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fabric that accentuates a mylonitic texture, similar to that in
younger deformed marbles (Carlson et al. 1990). The Raman
spectra from the graphite in marble and in the associated
schists are distinct, despite their close proximity. Graphite in
the schist is fully ordered and shows a well-defined order (G)
peak, but graphite in the marble additionally shows a
pronounced disorder (D) peak (Fig. 10). The marble graphite
also shows a broad S band peak in the second-order region
(Fig. 10), which is split into two bands upon complete
graphitization. Peak intensity ratios (ID/IG) for marble
graphite range from 0.34 to 0.46 (n = 6), and for schist
graphite are zero owing to complete order. The carbon
isotope composition of the schist graphite (−17.4 to
−24.0‰, mean −20.0 ± 2.01‰, n = 6) is also distinct from

the composition of the marble graphite (−6.4 to −9.0‰,
mean −7.2 ± 0.86‰, n = 6). The composition of the
carbonate in the graphite-bearing marble is typical of
marine limestones (−2.4 to −3.3‰, mean −2.87 ± 0.29‰,
n = 6), as recorded in the majority of the marbles.
Measurements of δ34S determined in pyrite–pyrrhotite in

the marbles (Table 2) are consistently positive over six
localities spanning the whole region, in the range 6.3–
12.3‰, and near-zero at Scardroy (Fig. 11).

Discussion

Carbon isotope composition of marbles

The carbon isotope data fall into two groups, which plot with
ranges measured previously in the Gairloch district (Fig. 5),
interpreted as either unrelated to, or related to, the
Lomagundi–Jatuli Event (Kerr et al. 2016). The significance
of the Lomagundi–Jatuli Event is open to interpretation,
although this does not affect its value as a time marker. It has
been regarded as a perturbation of the global carbon cycle
linked to oxygenation of the atmosphere (Martin et al. 2013;
Eguchi et al. 2020; Mänd et al. 2020), but recently has been
reasoned instead to be a facies-dependent consequence of
shallow-water deposition (Prave et al. 2021). The isotope
compositions from Scotland do not bear on the interpretation,
but they add to the global database that records isotopically
heavy carbonate carbon in marbles in the mid-
Paleoproterozoic (Fig. 6). The event is dated at 2.3–
2.05 Ga (Martin et al. 2013), which implies that the
marbles with anomalous compositions in Scotland were
deposited as limestones at this time. The dates measured at
2.0–1.9 Ga in the main outcrops are partly dates of early
metamorphism of the sediments and are not inconsistent with

Fig. 5. Cross-plot of oxygen and carbon
isotope compositions for new marble
samples (red), plotted relative to data
fields measured previously in the Gairloch
district, interpreted as unrelated to, or
related to, the isotopic excursion of the
Lomagundi–Jatuli Event. Source: Gairloch
district data fields from Kerr et al. (2016).

Fig. 6. Global compilation of carbon isotopic compositions for marbles
through the early Proterozoic, showing anomalously heavy isotope
compositions during the c. 2.2–2.1 Ga Lomagundi–Jatuli Event. Data
range for isotopically heavy samples from NW Scotland indicates that
they are products of this event. Scottish samples plotted to show
composition, not age, for clarity, and some are independently dated at
2.0–1.9 Ga. Source: after Prave et al. (2021).
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deposition at 2.3–2.05 Ga. Evidence from Gairloch shows
that the succession records a transition from marble bearing
the anomaly to marble without anomaly, and that it could
therefore include dates from both the Lomagundi–Jatuli
Event and slightly younger sedimentation (Kerr et al. 2016).
The new data from South Harris and Glenelg show similar
transitions, although the sediment ‘way up’ cannot be
proven. There is no evidence that the carbon isotope
compositions were modified in the samples from shear
zones, and they can be considered as reliable records of the
marine composition during deposition.
The localities that record the Lomagundi–Jatuli Event are

in the Laurentian Foreland, and the Moine and Sgurr Beag
nappes (Fig. 7); that is, they occur on both sides of the Moine

Thrust Zone. Correlation of a stratigraphic horizon (i.e. the
marble containing the Lomagundi–Jatuli signature) between
different structural levels supports the model of structural
repetition by Caledonian thrusting, but the relationship
between the localities is complicated by uncertainty about
how and when the terranes on either side of the thrust zone
were juxtaposed, and we do not interpret this further.

Oxygen isotope composition: Laxfordian and Caledonian
deformation

The carbon and oxygen compositions do not show any
mutual relationship (Fig. 5); that is, the oxygen compositions
are not controlled by primary variations in the carbon
composition. Rather, the data fall into two groups. The
composition of the larger group matches the range 17–22‰
that is characteristic of marine carbonate rocks at about 2 Ga
(Shields and Veizer 2002). The smaller group, with a lighter
isotopic composition, consists of the six localities where
marked shearing is observed (Fig. 8). This match strongly
suggests that the context allowed modification of the original
isotopic signature. The tightly clustered nature of the data for
individual marbles shows that there was wholescale
alteration of the primary composition, rather than milli-
metre-scale fluctuations. Retrogressive mineralogy was
identified at several of the sheared localities, including
Armadale (Burns et al. 2004), at Gott, Tiree (Cartwright
1992), and in the shear zones at Gairloch (Shihe and Park
1992) and South Harris (Mason et al. 2004b). The ingress of
meteoric water during or after shearing would explain a shift
to a lighter composition by isotopic exchange between the
water and the minerals. There is no evidence of hydrothermal
alteration such as mineralization along fractures, which
might have indicated an alternative source of water. Data are
available for other case studies showing the effects on
isotopic composition of retrogressive metamorphism by
water-rich fluids along shear zones through marbles. Marbles
from Naxos, Greece (Baker et al. 1989), Tinos, Greece
(Famin et al. 2004), the Reynolds Range, Australia (Buick

Fig. 7. Simplified structural map of NW Scotland mainland, showing
occurrence of Lomagundi–Jatuli signature in Laurentian foreland
(Gairloch district), and Moine Nappe (Carr) and Sgurr Beag Nappe
(Scardroy district).

Fig. 8. Oxygen isotope compositions of
Paleoproterozoic supracrustal marbles,
NW Scotland, distinguishing sheared and
non-sheared localities. For comparison,
published data trends are shown for
marbles in shear zones, becoming lighter
with retrogression. Sources: Baker et al.
(1989), Buick et al. (1997), Pili et al.
(1997) and Famin et al. (2004).
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et al. 1997) and Madagascar (Pili et al. 1997) all show
increasingly light isotope data with retrogression as they
interacted with isotopically lighter water-rich fluids (Fig. 8).
The starting composition was wide-ranging among these
examples, but all reached a lightest composition comparable
with those of the sheared Paleoproterozoic marbles.
Retrogression in NW Scotland is attributed to several

orogenic episodes, including the Laxfordian (Shihe and Park
1992), Grenvillian (Storey et al. 2005), Knoydartian and
Caledonian (Friend et al. 2008) orogenies. TheMoine Thrust
Zone in the region is a classic representation of imbricate
thrust stacking, during the Caledonian Orogeny (Watkins
et al. 2014; Searle et al. 2019). Detachment of the thrust

slices occurred especially on the Cambrian An-t-Sron
Formation (Butler 2004), which is carbonaceous, carbon-
ate-rich and evaporite-bearing. However, the Moine Thrust
Zone is superimposed upon rocks recording older orogenic
events, including the Laxfordian Orogeny, and
Mesoproterozoic faulting (Hardman et al. 2023), which
deformed the Archean–Paleoproterozoic Lewisian Complex.
The marbles that show shearing and retrogression possibly
record both Laxfordian and Caledonian deformation.
The Paleoproterozoic age of the sheared marbles places

them at the advent of ‘modern’ plate tectonics at about 2 Ga
(Brown and Johnson 2019; Wan et al. 2020) and widespread
detachment on carbonaceous shales and carbonate-rich rocks
(Parnell and Brolly 2021). The detachment surfaces that
slipped during Paleoproterozoic orogenies were reactivated
during younger orogenies superimposed at the same
locations (Parnell and Brolly 2021). Conceivably, marbles
sheared during the Laxfordian could have been reactivated
during the Caledonian thrusting.

Carbon isotope composition in graphite

The heavy isotope composition of the marble-hosted
graphite in Tiree implies that its origin was distinct from
the graphite in the adjacent schist, and also from graphite
elsewhere in the Lewisian Complex (Parnell et al. 2021a).
The graphite is therefore attributed to decarbonation of the
marble during deformation, rather than from organic matter
as in the graphitic schist, as recorded in other studies (Luque
et al. 2012) The greater disorder also suggests that the
marble-hosted graphite formed at a younger time, before
fully graphitizing conditions occurred. Regardless of its
mode of formation, it does not appear to have experienced
the granulite-facies metamorphism that fully graphitized the
schist. The temperature equivalents for marble graphite and
schist graphite calculated from the R2 parameter (Beyssac
et al. 2002) are 449–477°C and >600°C respectively. The
timing post-peak metamorphism is corroborated by detailed
petrographic examination. The graphite on the slip planes is
intricately accompanied by chlorite, both intensely deformed
into tight folds (Fig. 9c). The chlorite was a product of
retrogression, so the deformation must have been no older
than this event. There is widespread evidence for retrogres-
sion to greenschist facies in the Lewisian Complex,
especially associated with shear structures (Beach 1980;
Cartwright 1992), formed by Laxfordian deformation during
the latest Paleoproterozoic and early Mesoproterozoic.
Graphite formation was associated with deforming marble

during post-collision relaxation (orogenic collapse) (Jamtveit
et al. 2019). The relaxation phase was an opportunity for the
ingress of fluid, including meteoric water, which caused
hydration to a retrograde mineralogy (Jamtveit et al. 2019).
Reaction weakening enhanced shear deformation, and thus
slip is associated with orogenic collapse. Fluid ingress and
shearing are mutually enhancing and would have been
focused by slices of supracrustal sediment interleaved with
the Archean gneisses.

Paleoproterozoic sulfides

Hitherto, sulfur isotope data from sulfides in the
Paleoproterozoic supracrustal inliers have been from the

Fig. 9. Petrography of graphitic marble, Gott, Tiree. (a) Mylonitic fabric,
defined by graphitic streaks (dark) and porphyroblasts. (b) Backscattered
electron micrograph, showing graphitic streak (black) and pyrite (white) in
calcite matrix. Red box marks position of (c). (c) Close-up of graphite in
(b), showing interlaminated chlorite.
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volcanic massive sulfide ore prospect at Kerry Road,
Gairloch (Jones et al. 1987; Drummond et al. 2020). The
Kerry Road data are tightly grouped around 0‰, and they
were assumed to represent fluids of magmatic–hydrothermal
origin (Jones et al. 1987; Drummond et al. 2020). With the
exception of the pyrite from Scardroy, which also has a near-
zero composition, the pyrite–pyrrhotite measured here in
marbles at six other localities (Table 2) is markedly heavier
(13 samples measuring 6.3–12.3‰). The values are
comparable with those of mid-Paleoproterozoic sulfides in
sedimentary rocks elsewhere that are attributed to an origin in
seawater (Fig. 11). The isotopically heavy sulfur isotopic
composition, which contrasts with younger diagenetic pyrite
with a light isotope composition, reflects derivation from
Paleoproterozoic seawater with a relatively limited sulfate
content (Scott et al. 2014). The similarity of the Scardroy and
Kerry Road data suggests that Scardroy may host unrecog-
nized hydrothermal mineralization.

The North Atlantic context

Paleoproterozoic marbles occur also in terranes adjacent to
Scotland, in eastern Canada, Greenland and Scandinavia.
Isotope data for these marbles show similar trends to the
Scottish data, including a signature of the Lomagundi–Jatuli
Event in Labrador (Melezhik et al. 1997; Hodgskiss et al.
2020), the Superior region (Bekker et al. 2006) and north
Sweden (Melezhik and Fallick 2010). The Canadian and
Scandinavian localities also contain isotopically heavy
carbon in graphite formed by the decarbonation of marble
(Parnell et al. 2021a), and isotopically heavy sulfur in
diagenetic pyrite (Motomura et al. 2018). Together with
similar facies associations between marble and ironstones
and graphitic beds (e.g. St-Onge et al. 2020; Rosa et al.
2023), the commonalities in data add weight to a picture of a
continuum in Paleoproterozoic orogenic belts (Fig. 12) from
Canada to Scotland to Scandinavia (Park et al. 2001; Tuisku
et al. 2012; Bagas et al. 2020).

Conclusions

Twenty-one Paleoproterozoic marbles from distinct localities
in NW Scotland yielded stable isotope data that have helped
to improve our understanding of their stratigraphic age,
sedimentary environment and structural history. Anomalies
in the data contribute to an understanding of their history. In
particular,

(1) isotopically heavy carbonate carbon at eight localities
indicates deposition during the Lomagundi–Jatuli
Event, dated elsewhere at 2.3–2.05 Ga;

(2) isotopically light oxygen at six localities reflects
shearing, and isotopic exchange after ingress of

Fig. 10. Carbon isotope compositions (‰)
and Raman spectra for schist graphite,
marble graphite and marble carbonate,
Tiree. Marble graphite is isotopically
heavier than schist graphite, and more
similar to marble carbonate. Marble
graphite is more disordered than schist
graphite, shown by the D (disorder) peak,
and preservation of minor S band peaks.

Table 2. Determinations of δ34S for sulfides in Paleoproterozoic marbles,
NW Scotland

Locality
Grid
reference Mineral δ34S (‰ CDT)

Rodel, Harris NG 048832 Pyrrhotite 11.3, 11.4, 11.6
Loch Langavat,
Harris

NG 052890 Pyrite 10.2

Gott, Tiree NM 045456 Pyrite 11.7, 11,7, 11.7, 11.9,
12.3

Totaig NG 875253 Pyrite 7.7
Scardroy NH 223523 Pyrite −0.2, −0.3, −0.4, −1.2,

−1.3
Loch Shin NC 521139 Pyrrhotite 8.0
Armadale NC 774655 Pyrite 6.3, 9.9
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meteoric water; shearing may have been variably
Laxfordian and/or Caledonian;

(3) shearing of marble at Gott, Tiree, caused the
formation of graphite by decarbonation, distinct
from graphite that represents metamorphosed
organic matter;

(4) isotopically heavy sulfur in pyrite–pyrrhotite in six of
seven marbles, in contrast to isotopically light
diagenetic pyrite in younger rocks, may indicate
precipitation from relatively low-sulfate
Paleoproterozoic seawater.

A comparison of the compositions with known trends in
isotopic fractionation in Paleoproterozoic and other marbles
suggests that the Scottish Paleoproterozoic marbles yield data
that can be successfully interpreted in terms of age,
environment and subsequent deformation.
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