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Abstract
Millimetre‐wave radar has been widely used in health monitoring and human activity
recognition owing to its improved range resolution and operation in a variety of envi-
ronmental conditions. With the MIMO antenna array, 4D radar is increasingly employed
in autonomous driving, while its application in assisted living is recent and therefore the
value added compared to the increase in signal processing and hardware requirements is
still an open question. A model for 4D Time‐division multiplexing (TDM) multiple‐
input‐multiple‐output (MIMO) frequency‐modulated Continuous wave radar is estab-
lished using the human activities from the HDM05 motion capture dataset. The simulator
produces an end‐to‐end simulation, including four human motions (jumping Jack, kick,
punch, and walk), signal time of flight, noise, MIMO signal processing, and classification.
Different pre‐processing and point cloud‐based methods are compared to obtain an
average classification accuracy of 90% with PointNet. This study simulates a specific 4D
TDM MIMO radar configuration to benchmark signal pre‐processing algorithms, which
can also assist other researchers to generate range‐Doppler‐time (range‐Doppler time)
point cloud data sets for human activities testing different radar configurations, array
configurations, and activities saving valuable time in human resources and hardware
development before prototyping to assess expected performances.
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1 | INTRODUCTION

Due to the ageing of population, monitoring the health con-
dition of elderly people becomes a significant problem. Among
popular products on the market, wearable devices are one type
of competing health‐monitoring technologies, but their intru-
siveness, fragility, and battery‐operated necessity limit the
application range sometimes. Wearable devices also have a
weakness with compliance as they must be worn to be effec-
tive. This may not be the case when people live with cognitive
decline forgetting to wear them or people simply do not want
to wear them. In competition with wearable technology, elec-
tromagnetic waves have emerged as one of the most effective
indoor monitoring modalities due to the appealing qualities of
radar, including its non‐obstructive illumination, non‐intrusive
sensing, insensitivity to lighting conditions, and privacy pres-
ervation [1].

In the field of human activity recognition (HAR), 4D
MIMO frequency‐modulated Continuous wave (FMCW) radar
is an ideal choice, which has no blind ranges compared with
pulse radar. 4D refers to the range, velocity, azimuth, and
elevation, which provide complete information about the
target velocity and location in 3D space [2]. While many re-
searchers have been working on classification models related to
deep learning, more work is expected to focus on signal pre‐
processing for enhanced classification accuracy especially for
4D radar since it can vary in geometry, hardware, and signal
processing techniques.

A mainstream method to achieve activity recognition is to
use micro‐Doppler (mD) signatures. The authors in ref. [3]
explained the mD signature comprehensively and illustrated
the phenomenon by explaining the kinematic features seen in
the signature with the motion of humans, quadrupeds and
birds observed by the radar. The focus was on modelling a
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simplified CW radar phase delay model with a vector parti-
tioning the line of sight range in bins. To simulate the mD
phenomenon in [3], a vector is defined representing the dis-
tance divided into range bins. Range bins reflect the range
resolution of the radar, which is defined by the bandwidth of
the signal. A radar system would need to process the received
signal with stretch processing for an FMCW radar or pulse
compression for a signal that was fully digitised to obtain the
range information of the target. The author in ref. [3] calculates
the amplitude of the reflection based on canonical geometric
shapes, such as ellipsoids and spheres, and based on the dis-
tance from the radar to the target determines which range bin
in the distance vector this target would fall into. Then the
phase delay would be calculated based on the time of flight. A
Dirac is then added at that range bin with the polar form with
the calculated amplitude and phase. This is a ‘shortcut’ to
reduce the computational load as opposed to simulating the
full wave, but this means that the raw data and the range in-
formation cannot be exploited as they are not representative of
the radar operation. It was shown in [4] that the algorithm
modelling full waves was more computationally intensive than
the algorithm in [3]. However, it gave more details in simulated
mD signatures, especially in acceleration and deceleration
phases [4]. In [5], the authors also used mD signatures and
benchmarked the classification performance as a function of
aspect angle by comparing eight radar systems. The authors in
[5] have proven that the monostatic radar system recognises
activities best when the aspect angle of targets is less than 30°,
whereas multistatic and interferometric radar geometries can
recognise activities consistently across the range variations.
Hence, we choose the centralised MIMO radar for simulation.
Shelly designed an open‐source simulation tool for creating
micro‐Doppler data in passive WiFi radar scenarios [6], and
simulated data with a full wave simulator indicated 8%
improvement over using real mD signatures.

In [7], the authors proposed a hierarchical activity classi-
fication approach and combined 13 features extracted from
Doppler spectra, including energy features, physical features,
image‐based features, cadence velocity diagram and singular
value decomposition features, yielding 95.4% accuracy to
classify six activities. However, one common problem of uti-
lising mD signatures is that features should be carefully
handpicked based on the dataset, which limits the universality
of the algorithm. Furthermore, with the 2D antenna array,
micro‐Doppler simulations can be extrapolated to 4D radar.
Adding the other data representation from the perspective of
the range domain allows us to extract point clouds, which
provide more exact information about detected targets. Based
on the range‐Doppler surface (RDS) method, a range migra-
tion compensation method based on Keystone transformation
for high‐quality imaging was proposed [8]. In addition, an
adaptive threshold for 2D Constant False Alarm Rate (CFAR)
detection was applied to locate the extended targets in the
Range Doppler Map (RDM). In [9], the authors selected eight
activities from the Carnegie Mellon University mocap dataset
and generated point clouds by extracting the isosurface from
the radar‐Doppler‐time (range‐Doppler time (RDT)) matrix.

In the paper, body parts could be separated by intensity, and
the contour of RDM was retained for surface extraction.
Although this method simplifies the complexity of computa-
tion, it may result in the loss of RDM information. Instead of
separating body parts, our algorithm retains the whole RDM
filtered by 2D CFAR to avoid information losses.

One traditional method of dealing with point clouds is to
match the cloud points with human bones. The authors in ref.
[10] utilised millimetre wave radar to identify the primary
motions of the human body and to detect and monitor 15
separate bone joints through radar reflection signals. The
normalised value of the distance, angle, and power level of the
reflected signal at each location was assigned to the RGB
channel using a radar‐to‐image representation. Finally, a split
CNN architecture was used to predict where the accurate
skeleton joints would be in three dimensions, and ultimately, to
recognise human motions. However, this method is unreliable
as it frequently fails to capture some bone reflections. PointNet
proposed in 2016 [11] is a deep learning architecture for
processing point cloud data directly. The main idea is to use
shared multi‐layer perceptions to extract the global feature and
output k scores, where k is the number of categories. This
network greatly retains the characteristics of point clouds,
including the rotation in‐variance and permutation in‐variance
by applying T‐net and max‐pooling, respectively. Besides the
method of dealing with point clouds directly, some other well‐
known representations of point cloud data include voxelisation
and tabularisation. However, these two methods have some
disadvantages. After the point clouds are voxelised, congested
voxels may result in the loss of information, and empty voxels
will increase the amount of unnecessary computation [12].
Tabularisation saved more storage space and allowed more
features than voxelisation, but the sorting and padding pro-
cessing are complicated when the number of point clouds is
huge [13]. Therefore, PointNet is applied in the paper and the
average classification accuracy of four human activities reaches
90%.

To summarise, the main contributions are as follows:

1. Propose a 4D Time‐division multiplexing (TDM) radar
simulator that can simulate radar returns with 12Tx‐16Rx
radar configuration that generates all the radar data repre-
sentation domains, including raw data, range‐time, spec-
trogram, range‐Doppler, and range‐angle with MIMO
CFAR detection.

2. Propose Range‐Doppler‐Time representations based on the
proposed 4D TDM MIMO radar simulator extracting re-
gions of interest automatically with 2D MIMO CFAR for
activity recognition, including jumping Jack, kick, punch,
and walk with a specific sampling for input into PointNet
achieving 90% classification accuracy, which verifies the
correctness of our radar model.

The paper is organised as follows: In Section 2, the 4D
TDM FMCW radar working principle is briefly introduced. In
Section 3, the methodology is presented for the implementa-
tion of the 4D radar model and human activity classification.

240 - ZHOU and LE KERNEC

 17518792, 2024, 2, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/rsn2.12468 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [07/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



In Section 4, the results are presented and discussed. Finally, in
Section 5, conclusions and ideas for further work are provided.

2 | TDM MIMO FMCW RADAR
WORKING PRINCIPLE

The basic working principle of MIMO radar involves the
transmission of signals at different transmit antenna locations
and the reception of multiple reflections from targets using
multiple receiving antennas, which improves detection per-
formance through the MIMO gain and allows to resolve tar-
gets in angle. This angular resolution depends on the number
of elements and the geometrical arrangement of the transmit
and receive antennas. Multiplexing strategies and antenna array
configuration are crucial parts of the MIMO radar system
explained in this section [2, 14].

Different signals can be transmitted for MIMO radar
implementation, such as OFDM for integrated sensing and
communication [15], Orthogonal Time Frequency Space
Modulation (OTFS) [16], and chirp, which is widespread in
automotive applications for ADAS. For the remainder of the
paper, we will concentrate on the chirp signal for the MIMO
considerations. Other waveforms are out of the scope of this
research work.

� Multiplexing strategies: MIMO radar systems use multi-
plexing methods to transmit and receive signals from mul-
tiple antennas to achieve improved spatial resolution, target
detection, and interference mitigation performance. Some
common multiplexing strategies include TDM, frequency‐
division multiplexing (FDM), Doppler‐division multi-
plexing and code‐division multiplexing (CDM).

� In TDM, the multiple transmitting (Tx) antennas in a
MIMO radar system transmit signals one at a time in a
sequential manner. Each transmit antenna for an FMCW
radar system is responsible for periodically transmitting
signals sequentially [17]. All receiving (Rx) antennas are
receiving the back‐scattered signals at the receiver. The full
radar data cube is complete once all the transmit antennas
have sent their chirp pulse, and then the cycle repeats. In
FDM, transmitted signals are separated in frequency, and the
receiver processes the signals based on their respective
frequency bands. Frequency‐division multiplexing allows
simultaneous transmission/reception from multiple an-
tennas at different frequency bands, but it may require wider
bandwidth than other multiplexing methods or a reduced
bandwidth for each chirp to allow for the separation of the
transmit pulses so they do not interfere with each other.
This may reduce the range resolution in the latter case.
Doppler‐division multiplexing is to introduce frequency bias
in the Doppler dimension to separate the channels [18]. In
this case, the range resolution is not sacrificed; however, the
range of Doppler speeds is divided by the number of
simultaneous transmit compared to a single pulse. About
CDM, the signals are separated at the receiver based on the
unique codes used by each antenna, which causes

interference in the Doppler dimension, making it easy to
overwhelm small targets. As HAR requires a large dynamic
range of echo energy, CDM is not appropriate in simulation.
By contrast, TDM is a simple and low‐cost scheme in
practical implementation, and the maximum detectable
speed satisfies the requirement of the situation. Therefore, it
is adopted as our MIMO scheme for 4D radar.

� Antenna array configuration: The antenna array in an
MIMO radar system is a crucial component that enables the
transmission and reception of signals from multiple an-
tennas to achieve improved angular resolution [14, 19]. The
array configuration refers to the number of elements, type,
and placement. The monostatic MIMO radar is considered
in our research, and thus, the distance between transmitters
and receivers is negligible. For instance, Figure 1 shows a
radar system with 2Tx and 4Rx antennas, and the wave path
difference between two adjacent Rx antennas can be esti-
mated by d sinθ, and the phase difference is Δϕ¼ 2πd sinðθÞ

λ ,
where d is the distance between two adjacent Rx antennas.
For physical antenna configuration, the conception of the
virtual array can be introduced to help analyse signals for
each channel, aiming to produce the same target response as
the original physical configuration. Figure 1 shows the
physical antenna configuration of a 2Tx‐4Rx system and its
equivalent virtual array.

The same principle applies to two‐dimensional arrays. As
the angular separation relies on the phase difference of signals
received by Rx antennas, adding antennas in elevation enables
the radar system to obtain elevation angle information. This
constitutes the four‐dimensional radar with range, Doppler,
azimuth, and elevation that will return the exact coordinates of
the target in a solid angle at a given range from the radar,
travelling at a given speed.

3 | METHODOLOGY

We achieve the goal by building three models: the human ac-
tivity model, the 4D MIMO radar model, and the classification
model. Figure 2 gives a synoptic of the methodology detailed in
this section. The code for this simulator can be found on
github1.

3.1 | Human activity model

The HDM05 database [20] contains the mocap file for
different activities recording 31 joints, which can be mapped to
a 24‐joint skeletal kinematic chain [21]. It was further simpli-
fied to a 21‐joint model owing to three joints (neck, left
clavicle, and right clavicle) were not separated in HDM05.
Ellipsoids are used to emulate the radar cross‐section of the
different body parts in the human model that will constitute

1
https://github.com/JASONZ777/4D-radar-simulator.git
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the reflective surfaces for the construction of the simulated
radar signatures of human activities, which form an ellipsoid
model in Figure 2. The 4 activities chosen for the simulation
are jumping, Jack, kick, punch, and walk, since these are the
activities that have the most samples in the HDM05 database.

3.2 | 4D MIMO radar model

3.2.1 | Simulation parameters

In this section, the simulation parameters are presented and
some radar theoretical performance metrics are calculated to
contextualise the 4D radar capabilities. The radar parameters in
Table 1 have been chosen for simulation.

The choice of frequency was highly dependent on the
computational load going higher in frequencies:

� At 12 GHz, the simulator takes 1.5 h with a 12th Gen Intel
(R) i9‐12900H and 32 GB of RAM to complete the gen-
eration of chirps, interaction with the motion capture data
and the whole signal processing as described in Figure 2 to
generate 1 sample for the machine learning algorithm. This
corresponds to 1 whole motion capture file lasting
approximately 3s.

� At 77 GHz, the simulator runs out of memory and cannot
generate samples.

We have provided the code at https://github.com/
JASONZ777/4D-radar-simulator.git for researchers in
possession of more powerful machines to simulate higher
frequencies to model more recent platforms at 60 and 77 GHz.
Furthermore, the reason is also due to the maximum detectableF I GURE 1 A 2Tx‐4Rx antenna array and its virtual channels.

F I GURE 2 Synoptic of the methodology – human modelling from motion capture data, 4D Time‐division multiplexing MIMO radar simulation and
classification models using point clouds as input.
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velocity without ambiguity as we are getting 8.33 m/s at
12 GHz with 12 transmitters as this is a TDM radar. This
means that the pulses are transmitted sequentially through
every channel. We would only get a maximum detectable ve-
locity of 1.66 m/s and 1.3 m/s at 60 and 77 GHz, respectively.
This would result in Doppler aliasing in the micro‐Doppler
signatures.

As described, the radar is placed at a relative position of
(−4,1,1) m with respect to the origin of the referential (0,0,0)
around which the activities are performed. The target is
therefore 3–5 m away from the radar. The sweep time of each
chirp tc dictates the unaliased maximum detectable velocity. In
our application, walking would generate the maximum Doppler
spread. Considering that walking can range from 0.2 m/s to
2 m/s for a very slow person with an affected gait to a very fast

walker. Considering walking, the walking speed corresponds to
the torso. However, a leg swing can reach more than 3 times
that speed during the gait cycle. Most velocity components
induced by human activities in the context of assisted living
should be below 8 m/s. Therefore, we selected tc = 62.5 μs
giving a maximum detectable velocity at 8.33 m/s, therefore
avoiding aliasing in the mD signatures. This is given by
Equation (3). Since the original frame rate of mocap data is
only 120 Hz and is not sufficient for radar operation, given the
Nyquist sampling theorem, interpolation is required to satisfy
our determined sampling rate Fs = Ns/tc = 4.096 MHz. The
number of total chirps for one radar frame is Ntc = tf/
tc = 1600 at the receiver. Given that the shape of the skeleton
model should be fixed during the interpolation process, a
piece‐wise cubic Hermit interpolation is applied, which gua-
rantees no distortion of the human model. The placement of
transmitting and receiving antennas is described in Figure 3,
which creates 192 virtual channels. However, some virtual ar-
rays overlap and we just consider virtual channels created by
antenna pairs along the y and z axes. They determine the angle
resolution in azimuth and elevation, respectively. The number
of virtual channels per axis is TyRy = TzRz = 48.

From these parameters, the detection limits and resolution
of range, velocity and angle are estimated to meet the perfor-
mance of the simulated system.

Range detection is achieved by performing an FFT in the
fast‐time dimension. The maximum detectable range limit and
minimum distinguishable distance are provided in Equa-
tions (1) and (2).

rmax ¼
cFs

2s
¼ 9:6 m ð1Þ

rdis ¼
c

2Bw
¼ 3:75 cm ð2Þ

when the radar system works in the TDM mode and trans-
mitters take turns transmitting radar signals during different
chirp slots. Therefore, the number of actual working chirps for

TABLE 1 Radar parameters for simulation.

Parameter Description Value

fc Radar starting frequency 12 GHz

Λ Radar wavelength 25 mm

tf Time duration per radar frame 100 ms

(xR, yR, zR) Radar position (‐4,1,1) m

tc Sweep time per chirp 62.5 μs

Ns Number of samples per chirp 256

Bw Radar bandwidth 4 GHz

S The sampling slope of one chirp 6.4 � 1013 Hz/s

C The speed of light 3 � 108 m/s

Ty Number of Tx along y axis 6

Tz Number of Tx along z axis 6

Ry Number of Rx along y axis 8

Rz Number of Tx along z axis 8

dR Distance between adjacent Rx antennas λ/2

dT Distance between adjacent Tx antennas 4λ

F I GURE 3 12Tx‐16Rx MIMO 3D antenna array. (a) MIMO array for 4D radar – 12Tx‐16Rx element positions. (b) 12Tx‐16Rx element and virtual
channels positions.
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every Tx antenna is around Nc = Ntc/(Ty þ Tz) ≃ 133 for the
12‐Tx radar system. Doppler is derived by looking at the speed
of phase variations across range bins in slow time. An FT is
performed in the slow time direction for each range bin over
0.1s to form a range‐Doppler map. The maximum detectable
velocity and minimum unambiguous velocity are obtained by
Equations (3) and (4), respectively.

jvmaxj ¼
λ

4
�
Ty þ Tz

�
tc
¼ 8:33 m=s ð3Þ

vdis ¼
λ

2Nctc
�
Ty þ Tz

�¼
λ
2tf
¼ 0:125 m=s ð4Þ

The angles azimuth (α) and elevation(β) are derived by
exploiting the phase differences between the received signals at
different array elements. Similar to the previous discussion
about 2Tx‐4Rx radar, the maximum angle of arrival (AoA) is
limited by: Δϕ < π, so the range of AoA could be derived:

−sin−1
�

λ
2dr

�

≤ α; β < sin−1
�

λ
2dr

�

ð5Þ

when dr is equal to λ/2, the detectable angles range from −90°
to 90°. About the angular resolution, the phase difference
induced from different AoA (ΔΦ) is considered. According to
Fourier transform, to distinguish two AoA, ΔΦ > 2π

Ry⋅Ty
should

be satisfied. Therefore, angular resolution is then in Equa-
tion (6), where θ refers to the estimated AoA.

α; βres ¼ 2sin−1

 
λ

2
�
Ry ⋅ Ty

�
drcosðθÞ

!

ð6Þ

From Equation (6), it is clear that as the AoA increases, the
angular resolution decreases gradually and non‐linearly. When
the estimated angle is about 0°, the detection resolution rea-
ches the maximum 2/(Ry ⋅ Ty). In the simulation, there are 48
virtual channels for each axis, so the minimum distinguishable
angle is 2.38°. The azimuth and elevation with respect to the
radar are close to 0°, which indicate that more body parts could
be detected and distinguished.

The radar performances are summarised in Table 2.

3.2.2 | Waveform generation

Our method to simulate signals differs from Chen's approach.
Instead of just using the amplitude and signal delay based on a
CW model, our model keeps the whole transmitted signal and
echoes to simulate a real FMCW radar system. For 1Tx‐1Rx,
the transmitted sinusoidal waveform can be represented as x
(t) = cos(2πfct þ πst2). Here, fc is the starting frequency, and s
is the slope of the radar chirp. In the simulation, the complex
signal is used, so the transmitted signal turns to:

xT ðtÞ ¼ ejð2πfctþπst2Þ ð7Þ

For a motionless object at a distance of r from the radar,
the transmitted signal will be reflected after it reaches the
target. The time duration in the air is τ = 2r/c, and the received
signal is:

xRðtÞ ¼
ffiffiffi
σ
p

ejð2πfcðt−τÞþπsðt−τÞ2Þ ð8Þ

where in Equation (8), σ is the radar cross section (RCS), which
measures the strength of an object's reflectivity and is a
function of the object's orientation and the radar‐transmitted
frequency. The authors in ref. [22] provide an approximation
of the ellipsoid back‐scattering model, which is applied in our
simulation to calculate RCS. The received signal is then mixed
with the transmitting ones and goes through a low‐pass filter
to generate an intermediate frequency (IF) signal:

xIFðtÞ ¼ xT ðtÞ ⋅ xRðtÞ ≈
ffiffiffi
σ
p

ej2πðsτtþfcτÞ ð9Þ

Since our human skeleton model is established using 20
body segments, the final IF signal for simulation is the
coherent superposition of the IF signal generated from each
body segment.

For the MIMO radar system, phase differences among
channels occur because the antenna locations for the trans-
mitters and receivers vary increasing spatial diversity, which
allows the radar system to obtain the angle information. When
4D radar operates in the TDM mode, transmitting antennas
work in turn. All Rx antennas receive signals with phase dif-
ferences, which can be analysed independently for antennas
along Y and Z axes as shown in Figure 3. We suppose ty, tz
indicate the Tx antenna index ranged from 0 to 5, and ry, rz
refer to the Rx antenna index ranging from 0 to 7. Then, for
each Tx‐Rx antenna pair, signals in one chirp are calculated as
follows:

xty;ryðtÞ ¼
ffiffiffi
σ
p

e
j

�

2πðfcðt−τÞþπsðt−τÞ2Þþfc
c ð8tyþryÞdRsinðαÞ

�

ð10Þ

xtz;rzðtÞ ¼
ffiffiffi
σ
p

e
j

�

2πðfcðt−τÞþπsðt−τÞ2Þþfc
c ð8tzþrzÞdRsinðβÞ

�

ð11Þ

TABLE 2 Detection performance parameters.

Parameter Description Value

rmax Maximum detectable range 9.6 m

rdis Minimum distinguishable distance 3.75 cm

|vmax| Maximum detectable velocity 8.33 m/s

vdis Minimum unambiguous velocity 0.125 m/s

Arange Detectable angle range �90°

Adis Minimum distinguishable angle 2.38°
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In Equations (12) and (13), α and β refer to azimuth and
elevation, respectively. Accordingly, IF signals should also be
revised to xIFðtÞ ¼ xtyðzÞðtÞ ⋅ xtyðzÞ;ryðzÞðtÞ. In addition, to evaluate
the model's robustness to noise, free space losses are neglected
and white Gaussian noise is added. Typically, the minimum
signal‐to‐noise ratio (SNR) in indoor applications should range
from 15 to 20 dB. Therefore, we test echoes with an SNR equal
to 20 dB and present the final mixed IF signal in Equation (12),
where Z(t) follows Gaussian distribution.

yIFðtÞ ¼ xIFðtÞ þ ZðtÞ ð12Þ

3.2.3 | Signal processing flow

The flow chart for the signal processing chain is shown in
Figure 2. Since the 4D TDM MIMO radar simulation in-
corporates all the processes from signal generation to reflection
to reception, more realistic radar data representations are ob-
tained. Each sub‐block fromFigure 2 is described in this section.

� Range estimation

There are 256 samples per chirp. The resultant discrete
signal waveform in the frequency domain can be derived in

XIF ½k� ¼
ffiffiffi
σ
p

ej2πfcτP
�
2π
Ns

k −
2πsτ
Fs

�

; 0 ≤ k < Ns ð13Þ

where Fs = 4.096MHz is the sampling rate. Function P indicates
the DFTof a square window function withNs = 256 samples. In
the frequency domain, the peak value of theP function is taken at
zero frequency. The frequency of the IF signal is directly pro-
portional to the range of the target as the time of flight of the
wave introduces a time shift τ between the transmitted frequency
slope and the received frequency slope. The range is derived
from the index corresponding to the peak value of xIF[k]. Due to
the strong sidelobe effect caused by P, the trajectories of some
specific body parts with small RCS can be obscured by a stronger
target in a neighbouring range bin. To address this problem, the
Hanning window function is used to help eliminate sidelobes at
the cost of enlarging the main lobe by 100%.We cut out the first
3 s of jumping Jack, kick and walk as time duration to obtain
range‐time output, while about 2.5 s segment is taken from
punch motion since the length of collected data is less than 3 s,
which is presented in Figure 4.

� Velocity estimation

FMCW radar measures the phase difference between the
adjacent chirps to evaluate the velocity of targets, which could

F I GURE 4 Range‐time representation of four activities. (a) Jumping Jack. (b) Kick. (c) Punch. (d) Walk.
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be reflected in the spectral peak of the secondary FFT across
the slow‐time dimension. Suppose the target moves at a ve-
locity of v for a whole chirp, then for the kth sample of two
adjacent chirps, the phase change can be derived in
Equation (14):

Δϕ¼
4πvtc

�
Ty þ Tz

�

λ
ð14Þ

Then, after the range‐DFT across the mth chirp, the IF
signal becomes:

xk½m� ¼ X0½k�ejm
4πvtcðTyþTzÞ

λ ð15Þ

whereX0[k] is the value of the kth sample ofDFTacross the first
chirp, and v refers to the velocity to be estimated. Similar to the
method for range DFT, a secondDFT for the whole radar frame
is performed to extract Doppler information. The Fourier
transform of Equation (15) could be presented in Equation (16),
where l indicates the index of chirps.

Xk½l� ¼ X0½k�P
�
2π
Nc

l −
4πvtc

�
Ty þ Tz

�

λ

�

; 0 ≤ l < Nc ð16Þ

Since the maximum value of the sinc function is taken at the
origin, the maximum velocity component can be measured by
the peak of Xk[l]. However, given that the movement of the
human body is complicated and non‐rigid, Doppler velocitymay
be smeared in RDM. In this step, the Hanning window function
is applied as well. After DFTs on fast‐time and slow‐time di-
mensions are implemented independently on each channel, we
generate the range‐Doppler map (RDM) as the 2D CFAR pro-
cess input. Since 2D CFAR is achieved based on the disparity in
intensity between noises and effective echoes, the combined
RDM is obtained by the incoherent superposition of all
considered virtual channels. Figure 5 illustrates the representa-
tive RDM of four activities during one radar frame.

� 2D CFAR

The objective of the 2D CFAR algorithm is to distin-
guish noise and clutter from the target signal according to the
decision threshold of individual test units in RDM [23, 24]. As
little prior knowledge about the average noise level in a radar
receiver is obtained, it must be evaluated in the first step of the
decision process. A reference window is used to detect the
target compared to the average noise level in the local RDM.
The Cell Under Test is surrounded by a guard band of 2 cells
and a training band of 4.

F I GURE 5 Range Doppler map of four activities. (a) Jumping Jack. (b) Kick. (c) Punch. (d) Walk.
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In this part, 2D Cell Averaging CFAR (CA‐CFAR) and
Order Statistics CFAR (OS‐CFAR) algorithms are applied on a
single channel and MIMO channels to compare the perfor-
mance of target detection. In Figure 5a for example, we plot
the 2D CFAR results of the jumping Jack on the RDM surface
in Figures 6 and 7.

In Figure 6a,b, 2D CFAR processing is performed on the
first virtual channel, while in Figure 7a,b, it is conducted on the
combined RDM. We assume the intensity thresholds of RDM
for a single channel and combined channels are 50 and 85 dB,
respectively, which means that RDM parts with higher intensity
than the thresholdwill be considered real targets. To compare the
performance of different CFAR schemes, precision and the
missing rate are introduced. Precision is defined as the propor-
tion of the number of correctly detected targets to that of all
detected dots, while the missing rate is defined as the proportion

of the number ofmissing targets to that of all real targets. Both of
these parameters are calculated and presented in Table 3. The use
of MIMO OS‐CFAR compared to one‐channel OS‐CFAR re-
duces the number of wrongly detected targets considerably by
6.66% and increases the detection rate by 37.34%.

From Table 3, it is clear to figure out that 2D CFAR
methods conducted on the combined RDM result in higher
precision and less target‐missing rate than that of SISO sys-
tems. Although the precision of MIMO‐CA CFAR is 100%, it
misses most targets in the RDM. In contrast, only around 5%
of targets are not detected by the MIMO OS‐CFAR process.
Therefore, MIMO‐OS CFAR almost retains complete infor-
mation about actual targets. MIMO OS‐CFAR can therefore
automatically identify the regions of interest, which are ideal
for our HAR application compared to the other 3 methods in
this paper. Other CFAR methods may perform better and new

F I GURE 6 2D constant false alarm rate (CFAR) detections on the range Doppler map surfaces on the first virtual channel for the jumping Jack activity.
(a) SISO‐CA CFAR. (b) SISO‐OS CFAR.
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CFAR algorithms are routinely proposed that are application‐
specific but this is outside the scope of this paper.

� Micro‐Doppler (mD) signatures

Short‐time Fourier transform (STFT) is a widely used
tool for analysing mD signatures. It applies the Fourier
transform to overlapping signal segments, typically with a

window function applied to each segment to reduce spectral
leakage. The window function helps taper the signal within
each segment to reduce the side effects of abrupt changes at
the edges of the segment. By analysing the mD signatures,
changes in the frequency content of a signal over time deter-
mine the periodicity of activities.

The MATLAB® function ‘spectrogram’ with a sliding
window length of 128 and an overlap factor of 95% are applied
on the first channel to perform STFT. The mD signatures of
four different activities are shown in Figure 8.

Figure 8 shows that four activities contain different peak
amplitude and variation tendencies of Doppler velocity. For
instance, the speed of the jumping Jack vibrates more
dramatically than another three do, and its peak value is much
larger than that of walking. In addition, various activities may

F I GURE 7 2D constant false alarm rate (CFAR) detections on the range Doppler map surfaces combining MIMO channels for the jumping Jack activity.
(a) MIMO‐CA CFAR. (b) MIMO‐OS CFAR.

TABLE 3 Performance comparison of different constant false alarm
rate schemes.

2D CFAR scheme SISO‐CA SISO‐OS MIMO‐CA MIMO‐OS

Precision 3.57% 41.85% 100% 79.19%

Missing rate 82.17% 11.72% 75.95% 5.06%
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have different periods. For jumping and punching, the move-
ment period is about 1 s, while the period is around 1.5 s for
kicking and walking. This conclusion is also applied in gener-
ating range‐Doppler‐time (RDT) profiles to determine time
duration.

� Range‐angle representation

The direction of the target is determined by measuring
the angle at which the wavefront of the echo reaches the radar.
The direction of the incident wavefront can be determined by
measuring the phase difference received by separate antennas.
Suppose Ny = Ty ⋅ Ry = 48 is the number of channels along
the y axis, and i indicates the virtual channel index. Then, for
kth sample at the lth chirp, Doppler‐DFT derived from the ith
channel is as follows:

Xi
k½l� ¼ X0

0½k�P
�
2π
Nc

l −
4πvtc

�
Ty þ Tz

�

λ

�

eji
2πdr sinðαÞ

λ ; ð17Þ

where k and l are selected through the OS‐CFAR algorithm
from the combined RDM, representing indexes of range and
velocity. As the MIMO radar works in the TDM mode, phase
compensation is necessary [17]. When the time interval of two

adjacent chirps is tc, an additional wave path difference is likely
to be induced due to the velocity of the target, leading to
another phase shift, which should be excluded. After the
compensation, we can derive Xk,l[q] and extract angle infor-
mation by applying DFT across virtual channels.

Xk;l½q� ¼ X0
0½k�P

�
2π
Nc

l −
4πvtc

�
Ty þ Tz

�

λ

�

P
�
2π
Ny

q −
2πdrsinðαÞ

λ

�

; 0 ≤ q < Ny

ð18Þ

The azimuth and elevation could be estimated with the
maximum value. Since some body parts are detected as targets
after OS‐CFAR, their range and speed can be determined. The
range‐angle representation is obtained by summing radar‐angle
matrices of all detected targets. Figure 9 shows the range‐
azimuth and range‐elevation profiles of jumping Jack activity
during the first radar frame, where the axes X(m), Y(m), and Z
(m) refer to the targets' coordinates relative to the radar; D(m)
is the distance between the radar and projection of targets to
the plane formed by x axis, y axis, and radar.

In Figure 9a,b, the azimuth and elevation of the detected
targets are close to 0°. It is desirable because our simulated

F I GURE 8 Micro‐Doppler signature of four activities. (a) Jumping Jack. (b) Kick. (c) Punch. (d) Walk.
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radar has a high angular resolution surrounding 0°, which
reaches up to 2.38°.

3.2.4 | Point clouds representation

For simulation, two methods of point cloud representation are
tested for activity recognition. The first one extracts the shape
of a human model by calculating Cartesian coordinates from
the range‐angle representation. The other method combines
the OS‐CFAR processed RDM surfaces over a time window to
extract an RDT representation. A sampling algorithm is
applied to turn the RDT surface into a point cloud.

(I) Based on spatial position
To generate point clouds from the range‐angle repre-

sentation from the detected targets, the space coordinates
of the target (xt, yt, zt) can be derived as follows:

8
<

:

xt ¼ rcosðβÞcosðαÞ þ xR
yt ¼ rcosðβÞsinðαÞ þ yR
zt ¼ rsinðβÞ þ zR

ð19Þ

Each point cloud image is produced from each radar
frame, and all images obtained during one period of the
activity form a time‐series sequence, which allows us to
use a neural network for classification, such as Point-
Net þ Long Short Term Memory [25]. Point cloud images
of four activities generated from the first radar frame are
illustrated in Figure 10.

(II) Based on range‐Doppler time (RDT)
The RDS is constructed after the 2D OS‐CFAR on the

RDM representation that helps distinguish targets from
clutter and noise. Compared with the construction
method proposed in [9], the whole parts detected by
CFAR are retained instead of the contour of separate
body parts. For those detected targets, their intensity is set
to 1, while other cells are valued as 0, shown in Figures 6
and 7. As discussed before, the time to complete the ac-
tivities of jumping Jack and punching is about 1 s and
about 1.5 s for kicking and walking. Therefore, we can

plot all filtered RDM slices in a 3D volume within one
period and extract an iso‐value surface. To compensate
for lost information in the individual frame and the
absence of correlation between consecutive frames, the
sliding window (0.1 s) with an overlap of 0.025 s (25%) is
applied to produce more RDM slices. The MATLAB®

function ‘isosurface’ creates a surface with the same in-
tensity value by pre‐setting a threshold. The intensity
threshold is set to 0.5 as the intensity of our desired tar-
gets has been binarised to 0 for no detection and 1 for
detected targets. Figure 11 shows the RDT plots of four
different activities, which are, respectively, obtained from
the files jumpingJack3Reps (001_120.amc), kickLSide2R-
eps (001_120.amc), punchLSide2Reps (001_120.amc), and
walkLeft3Steps (001_120.amc) from the HDM05 data-
base [20].

Range‐Doppler surface describes valuable information
from the perspective of range, velocity and time, which con-
sists of thousands of vertices. To obtain point clouds, the
geometrical centre sampling method is applied. In practice,
samples are taken at the centre of all triangles, and 3000 points
are re‐sampled randomly. Figure 12 shows the cloud points of
four activities generated from one period of each after RDS
sampling.

3.3 | Classification model

3.3.1 | Data preparation

Before the point clouds of four activities are created, we
conduct an overall feasibility analysis of the two schemes of
point cloud representation mentioned above.

4D radar provides elevation information, so it can provide
more accurate contour information about the target, which is
one of the vital input characteristics of target classification.
However, during relative movement between radar and target,
the position change of the scattering centre and intensity will
also perform non‐linear modulation of echo amplitude. Hence,
the description of the target shape is not stable over time.
Furthermore, point clouds based on spatial position only

F I GURE 9 Power spectrum for the time‐division multiplexing MIMO radar in the range‐angle domain. (a) Range‐azimuth profile. (b) Range‐elevation
profile.
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contain information about x, y, and z coordinates, which
ignore Doppler information and produced a very poor per-
formance with less than 50% accuracy, which is not suitable.

In comparison, the method based on RDT combines in-
formation around range, velocity and time duration, providing
useful features for classification. Therefore, the RDT repre-
sentation is determined for simulation to produce a point
cloud dataset.

100 cloud images for four activities are generated from the
mocap dataset, and each graph contains 3000 sampling points.
Typically, the data are divided into training sets and test sets.
Given the limited number of samples, 10‐fold cross‐verification
is applied. The average value of 10 evaluations is taken as the
classification accuracy of the model. Totally, 360 (90%) training
samples and 40 (10%) testing samples are produced.

3.3.2 | PointNet

Micro‐Doppler simulations can be extrapolated to 4D radar.
Adding the other data representation from the perspective of
the range domain allows us to extract point clouds, and
PointNet is proven as an effective model to process point
clouds for classification and segmentation [11, 26]. It was one
of the first deep learning approaches that directly operated on

unordered point cloud data without relying on meshing tech-
niques. The main idea is to use shared multi‐layer perceptions
to extract the global feature and output the classes. This
network greatly retains the characteristics of point clouds
including the rotation in‐variance and permutation in‐variance
by applying T‐net and max‐pooling, respectively. PointNet can
be divided into a feature‐extraction network and a classification
network. Before point clouds are sent into the feature‐
extraction network, point clouds are pre‐processed through
normalisation, decentralisation and argumentation. In addition,
since the generated dataset is small, large quantities of points
for each point cloud image may lead to difficulty in training the
model. Therefore, each RDT profile is re‐sampled to contain
500, 1000, 2000, and 3000 points through random selection as
network input. Firstly, we take the number of points as 1000 to
train our model and then make a comparison with the other
two cases. Since point clouds are unordered, a micro‐network
(T‐Net) is used to obtain a spatial transformation network and
adjust point clouds to a uniform pattern for better recognition,
which is the input transformation. After passing an MLP, a
transformation matrix (feature transformation) and MLP are
applied again to create a n � 1024 tensor, where n is the
number of points. Then, the global feature is obtained by
conducting max pooling to the tensor. For the classification
task, an MLP with full connection is employed and then scores

F I GURE 1 0 Point clouds of four different activities. (a) Jumping Jack. (b) Kick. (c) Punch. (d) Walk.
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for four activities are calculated. During the training, NLLLoss
is applied as the loss function [11]. The structure of PointNet is
shown in Figure 13.

At the first trial, the batch size is set to 3. The initial
learning rate is 10−6, and we apply the Adam optimiser to
update the learning rate every 10 samples. In addition, the
dataset is shuffled every epoch to avoid the effect of the input
sequence on network training. The accuracy and loss curves are
presented in Figure 14.

From Figure 14, the training accuracy keeps a low level and
much less than that of testing. The training accuracy fluctuates
around 30%, and the testing accuracy is less than 60%.
Furthermore, it is hard for training loss and testing loss to drop
down, which may result from the small learning rate. To
optimise it, we changed the learning rate to 10−4 and plot the
loss and accuracy curves shown in Figure 15.

Figure 15 shows 200 epochs of the training process. The
training model has converged since the loss has levelled off at
˜0.65. In addition, the testing accuracy is ˜10% higher than the
training accuracy. One possible reason for this phenomenon is
the small sample size. If the distribution of the training set and
the test set is not uniform, and the model can correctly capture
the distribution pattern within the data, the internal variance of
the training set may be more significant than that of the
verification set, resulting in error judgement of the training set.

We saved the model parameters of the 160th epoch as the final
result, which achieves 87.2% testing accuracy. For another nine
iterations, the initial learning rate is fixed to 10−4 for training.
The step size and rate of attenuation are 10 and 0.5, respec-
tively, which indicate that the learning rate is reduced by half
every 10 batches.

4 | RESULTS AND DISCUSSION

Similar to the previous discussion, the number of points for
each cloud image is re‐sampled to 500, 2000 and 3000. Then
models are trained for 10 iterations, respectively, the results of
which are listed in Table 4.

From the tables shown above, we find that the average
value of testing accuracy using 1000 samples in one point cloud
is the highest, reaching 90.0%. The median value of all testing
accuracy is 92.3%, and the 25th and 75th percentiles are 87.2%
and 92.3%, respectively. This interval shows the robustness of
our model. The lowest accuracy is 79.5% and the maximum is
94.9%. The confusion matrix in Figure 16 is shown for the
highest accuracy (94.9%).

The graph shows that only 39 samples are tested, which is
one less than our testing set. This is because the batch size is
set to 3, and the last sample is dropped to guarantee that the

F I GURE 1 1 Range‐Doppler surface of four different activities. (a) Jumping Jack. (b) Kick. (c) Punch. (d) Walk.
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number of testing samples is an integer of multiple of the batch
size. Consequently, there are 11 testing samples for jumping
Jack, 9 samples for kick, 11 samples for punch, and 8 samples
for walk. Furthermore, the wrong prediction occurs between

the kick and punch, and individual testing accuracy for the
jumping Jack, kick, punch and walk are 100%, 77.8%, 100%,
and 100%, respectively. Therefore, only the kick activity is
causing problems in classification.

F I GURE 1 2 Point clouds using range‐Doppler time (RDT) representation. (a) Jumping Jack. (b) Kick. (c) Punch. (d) Walk.

F I GURE 1 3 The structure of PointNet.

F I GURE 1 4 Loss curve and accuracy curve when the learning rate is 10−6—The shaded curves represent the raw data and the trend lines are calculated
using an exponential moving average. (a) Loss‐epoch. (b) Accuracy‐epoch.
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5 | CONCLUSION AND FURTHER
WORK

5.1 | Conclusions

In the paper, we build a 4D TDM radar model with 12 Tx and
16 Rx antennas that can simulate the MIMO radar signal
processing. Profiles of range‐time, spectrogram, range‐
Doppler and range‐angle are obtained, and it is verified that
MIMO 2D OS‐CFAR performs better than CA‐CFAR.
HDM05 mocap dataset is utilised to produce a human skeleton
model, and activities including jumping Jack, kick, punch and
walk are selected to create point clouds through the RDT al-
gorithm. PointNet is chosen as the classification network for
point clouds and average classification accuracy reaches 90%.

5.2 | Suggestions for further work

Regarding the time consumption, it takes about 1.5 h to
generate one point cloud image using RDT representation
using the platform 12th Gen Intel(R) i9‐12,900H. Some steps
are highly time‐consuming like IF signal generation for each
channel, OS‐CFAR filter and iso‐surface extraction. Therefore,
more time‐efficient programming is expected and parallelisa-
tion of the code would improve efficiency as the Rx channels
are processing the Rx signals separately before being joined for
the RDM, range‐angle and micro‐Doppler representations. We
are currently developing a bespoke 4Tx‐4Rx MIMO radar
platform at the University of Glasgow that we will combine
with our Mocap to verify the accuracy of this simulator once
the radar will be operational. Regarding activity recognition,
only 400 point cloud images of four activities are generated for
training, which is quite limited and may lead to the under‐
fitting of the model. The University of Glasgow has its own
motion capture suite and we will collect a more extensive
database of representative activities for assisted living. The
human model is still quite simplistic and we will work with the
Unreal Engine 5 to generate avatars to have more realistic
human models and reflective surfaces to better simulate radar
data representations.
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F I GURE 1 5 Loss curve and accuracy curve when the learning rate is 10−4. The shaded curves represent the raw data and the trend lines are calculated
using an exponential moving average. (a) Loss epoch. (b) Accuracy epoch.

TABLE 4 Relation between the number of sampled points and testing accuracy.

Number\Accuracy\Iteration 1 2 3 4 5 6 7 8 9 10 Average value

500 94.9% 87.2% 92.3% 69.2% 87.2% 84.6% 84.6% 92.3% 87.2% 76.9% 85.6%

1000 87.2% 94.9% 92.3% 92.3% 79.5% 92.3% 94.9% 87.2% 92.3% 87.2% 90.0%

2000 94.9% 89.7% 92.3% 76.9% 94.9% 87.2% 87.2% 94.9% 87.2% 82.1% 88.7%

3000 82.1% 79.5% 87.2% 74.4% 71.8% 71.8% 84.6% 84.6% 87.2% 74.4% 79.8%

F I GURE 1 6 Confusion matrix of four activities.
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