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Abstract

Brain computer interfaces (BCI) depend on reliable realtime detection of conscious EEG

changes for example to control a video game. However, scalp recordings are contaminated

with non-stationary noise, such as facial muscle activity and eye movements. This interferes

with the detection process making it potentially unreliable or even impossible. We have

developed a new methodology which provides a hard and measurable criterion if conscious

EEG changes can be detected in the presence of non-stationary noise by requiring the sig-

nal-to-noise ratio of a scalp recording to be greater than the SNR-wall which in turn is based

on the highest and lowest noise variances of the recording. As an instructional example, we

have recorded signals from the central electrode Cz during eight different activities causing

non-stationary noise such as playing a video game or reading out loud. The results show

that facial muscle activity and eye-movements have a strong impact on the detectability of

EEG and that minimising both eye-movement artefacts and muscle noise is essential to be

able to detect conscious EEG changes.

Introduction

Brain computer interfaces (BCI) have broadly the task to turn brain activity (EEG) into

actions, for example, to control a character in a video game or a wheelchair. In the simplest

way this is achieved by testing if the EEG signal has reached a certain threshold [1]. However,

it is well known that noise originating from muscle activity, eye-movements and other move-

ment artefacts can interfere with the detection of conscious EEG changes [2]. Various tech-

niques have been devised to minimise the effect of noise, in particular the independent

component analysis (ICA) for offline processing [3] but for realtime closed-loop applications

such as BCI one needs to resort to direct causal filtering techniques using bandpass filters, the

short-time Fourier Transform, wavelet transform [4–6] or the derivative [7]. All these

approaches are inferior to the offline noise removal techniques such as ICA and even after fil-

tering the remaining noise will substantially interfere with the detection process.

Given the limited effectiveness of noise reduction techniques for BCI applications, electrode

measurements will be substantially contaminated with noise, in particular EMG, because of

the overlap in EEG and EMG frequencies, no matter what kind of pre-filtering has been
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applied. Consequently, the detection process itself needs to cope with the noise and minimise

its impact. The standard solution to maximise the signal and minimise the noise during detec-

tion is averaging which can be achieved in both the time domain and frequency domain:

• Time-domain: In the “evoked potential” (ep) paradigm the EEG is stimulus-locked and

assumes that EMG noise is uncorrelated to the stimulus repetition and averages out.

ep½m� ¼
1

N

XN

n¼0

d½mþ n � N� ð1Þ

where N is the number of stimulus repetitions and their responses registered as d[m + n � N].

The more repeated stimuli N are presented the more the EMG noise is reduced. For example

in a P300 speller a subject looks at a flashing “A” and the EEG is then added over and over

again until a threshold has been reached. The more repetitions of the letter “A” the better the

signal-to-noise ratio (SNR) but the longer the time to bring it over a threshold to decide the

user has looked at the flashing “A”.

• Frequency-domain: Here, the idea is that the subject can consciously reduce (or sometimes

increase) the power of a narrow frequency band. To detect this change the signal is analysed

in the frequency domain. If the band-power of a frequency band reaches a certain threshold

then an action can be triggered for example moving a cursor. Again, averaging takes place

because the Fourier Transform or a bank of bandpass filters accumulate the correlation

between sine/cosine-waves (e−j2πkn/N) and chunks of EEG d[n]:

X½k� ¼
XN� 1

n¼0

d½n� � e� j2pkn=N k ¼ 0; 1; 2; . . . ;N � 1 ð2Þ

where N is the number of samples the averaging takes place, d[n] is the EEG and X[k] its

spectrum. If the chunk of EEG is long then the frequency spectrum will deliver clear peaks in

the band of interest and thresholding becomes more and more reliable.

No matter if the detection process is performed in the time- or frequency-domain one

needs to wait for N samples until a decision can be made so that a signal reaches a threshold.

Fig 1A shows such a case where a cartoon signal is shown where a signal has to reach the

threshold γ which then can be used to control for example a cursor in a BCI game. The thresh-

old γ0 is chosen in a way that the noise with noise variance s2
0

does not reach the threshold but

the desired conscious EEG signal does (indicated with the tick symbol).

Fig 1. Effects of stationary versus non-stationary noise on signal detection. A) Signal detection with stationary noise, B) signal detection with

non-stationary noise.

https://doi.org/10.1371/journal.pone.0290446.g001

PLOS ONE BCI-Walls

PLOS ONE | https://doi.org/10.1371/journal.pone.0290446 August 24, 2023 2 / 22

study is available from Zenodo: https://doi.org/10.

5281/zenodo.7852162.

Funding: This work was supported in part by the

School of Engineering, University of Glasgow.

Competing interests: B.P. is CEO of Glasgow

Neuro LTD which manufactures the Attys DAQ

board. This does not alter our adherence to PLOS

ONE policies on sharing data and materials.

https://doi.org/10.1371/journal.pone.0290446.g001
https://doi.org/10.1371/journal.pone.0290446
https://doi.org/10.5281/zenodo.7852162
https://doi.org/10.5281/zenodo.7852162


In classical detection theory there is always a number of samples N, if averaged over these,

where reliable detection is possible. However, this does not take into account non-stationary
noise which is the case when recording EEG contaminated with EMG, eye-movements and

movement artefacts (Fig 1B). Here, the noise variance changes, for example, from the small

noise variance s2
0

to a large noise variance s2
1

and then back to the small noise variance s2
0
. The

three peaks indicated at “X” are noise peaks. The threshold γ1 could be set higher than s2
0

so

that the 2nd and 3rd noise peaks are not detected. However, now we are encountering a prob-

lem at “?” which could be either noise or signal. It is most likely an actual signal as the noise

variance has just dropped again to a lower level but this can only be known because noise levels

have been asserted a priori. One could argue again that averaging over more samples N will

eventually average out the noise but because of the changing noise variance peaks as the “?”

become ambiguous and can either be signal or noise. Analytically this means that with non-sta-

tionary noise the number of samples N required to detect robustly a signal can reach infinity
(N! inf) and thus detection is not possible at all. This condition is called SNR-wall [8].

Facial EMG and eye-movements are certainly non-stationary noise sources—in particular

in everyday situations when subjects walk, play a video game or simply talk. This means that

any activity a subject does will define a hard SNR-wall because the EMG and eye-movements

are non-stationary. If the SNR is below the SNR-wall it is not possible to detect the EEG at all

and thus it is not possible at all to design a BCI system for that kind of activity.

In this paper we introduce the concept of SNR-walls to EEG measurements to have an

objective way to determine if an experiment can detect EEG in principle in the presence of

non-stationary noise. As an instructional example of how to generally calculate SNR-walls, we

have recorded the EEG from subjects during a range of different tasks. We will then calculate

the SNR-walls for the different activities and conduct a statistical analysis to gauge if it’s possi-

ble to construct a BCI system given the non-stationary noise created by these tasks.

Methods

SNR-walls

In this section, we briefly explain the relevant analytics of SNR-walls and how to calculate

them practically. Tandra et al [8] provide the analytical derivation of the methodology and

while they applied it to the telecommunication domain we apply it to BCI.

Let us consider a signal measured with an electrode ~d½n� placed on the head of a subject:

~d ½n� ¼ ~a½n� þ ~b½n�
|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

~r ½n�

þ ~c½n�
ð3Þ

where ~c½n� is the consciously controlled part of the EEG. ~b½n� is the background EEG activity

which the subject cannot control. ~a½n� are all artefacts such as muscle activity added to the mea-

surement. Important for this paper is that the noise sources ~a½n� and ~b½n� are both non-station-

ary: for example when smiling the power of ~a½n� will be larger and when relaxing the power of

~a½n� will be less and non-stationary muscle noise is even generated during pure mental tasks

[9]. The only stationary noise in these recordings comes from the measurement equipment.

Together ~b½n� and ~a½n� form the noise ~r½n� of the signal measured. Generally, the raw EEG sig-

nal from the electrode requires filtering, which includes at least DC and powerline interference

removal but usually also bandpass filtering if only a certain EEG band is of interest:

d½n� ¼ ð~r½n� þ ~c½n�Þ ∗ f ½n� ð4Þ
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where we subsume all filtering in f[n] and from now on signals without the ~ are the ones after

filtering.

The decision problem can be considered as a binary hypothesis testing problem which can

be written as:

H0 : d½n� ¼ r½n� þ 0 ð5Þ

H1 : d½n� ¼ r½n� þ c½n� ð6Þ

The hypothesis H0 represents the situation where the signal at the electrode contains just noise

and H1 where consciously generated EEG is present.

Central to the BCI system is that it is able to detect the conscious EEG c[n] so that an action

can be generated, for example, steering a wheelchair. Thus, we need a detector which takes the

signal d[n] and decides with a threshold γ if it has just been noise or consciously generated

EEG on top of the noise.

If one knows nothing about the signal except that it will increase or decrease one can just

detect the average power over N samples and gain a test statistic:

TðXÞ ¼
1

N

XN

n¼1

x½n�2 ð7Þ

which creates a random variable T which in turn is then compared against a threshold γ
which decides if the signal has contained the consciously controlled EEG component c[n] or

not.

Since the SNR-wall analytics is quite complex we follow the same gradual approach Tandra

et al used in their paper [8] and present the analytics in two steps: first, we assume that the

noise is stationary which leads to standard detection theory and then in the 2nd step, we

extend these equations by taking into account non-stationary noise which leads to our new

BCI-walls methodology.

Let us first assume that our total noise/artefacts r[n] = a[n] + b[n] have a single nominal

variance s2
r which means that we have stationary noise. We calculate our detection probabili-

ties P(D) as:

PðDÞjH0 � N 0þ s2
r ;

1

N
2ð0þ s2

r Þ
2

� �

ð8Þ

PðDÞjH1 � N TðcÞ þ s2
r ;

1

N
2ðTðcÞ þ s2

r Þ
2

� �

ð9Þ

where c is the consciously controlled EEG power.

The SNR of the signal d(n) can be expressed as:

SNR ¼
TðcÞ
s2
r

ð10Þ

where T(c) is the average EEG power of the consciously generated EEG component c[n] and

s2
r is our nominal noise variance (i.e. noise power).

PLOS ONE BCI-Walls

PLOS ONE | https://doi.org/10.1371/journal.pone.0290446 August 24, 2023 4 / 22

https://doi.org/10.1371/journal.pone.0290446


The probability of a false alarm PFA can be written as:

PFA ¼ Q
g � s2

rffiffiffiffi
2

N

r

s2
r

0

B
B
@

1

C
C
A ð11Þ

where N is the number of samples, s2
r the noise power, and γ the detection threshold.

In a similar way, the probability for detection PD is given by:

PD ¼ Q
g � ðTðcÞ þ s2

r Þffiffiffiffi
2

N

r

ðTðcÞ þ s2
r Þ

0

B
B
@

1

C
C
A ð12Þ

By eliminating the detection threshold γ in Eqs 11 and 12 and with the help of Eqs 7 and 10 we

are able to obtain an equation for the number of samples N required to detect robustly the con-

scious EEG component c:

N ¼
2½Q� 1

ðPFAÞ � Q� 1
ðPDÞð1þ SNRÞ�2

SNR2
ð13Þ

which means that at a constant noise power σr one just needs to average over N timesteps (Eq

7) to obtain a robust detection and with sufficiently large N it is always possible to perform a

robust detection.

However, brain recordings are contaminated by non-stationary noise and we need to

extend the above analytics to take into account the random changes of the noise variance. To

capture this noise uncertainty we define the parameter ρ which is the ratio between the largest

noise variance s2
r;max and the smallest one s2

r;min:

r ¼

ffiffiffiffiffiffiffiffiffiffi
sr;max

sr;min

r

ð14Þ

Our nominal noise variance s2
r is then defined as:

s2
r;min ¼

1

r
s2

r ð15Þ

s2
r;max ¼ rs2

r ð16Þ

Having defined the noise uncertainty we can express our false alarm and detection proba-

bilities as a function of ρ:

PFA ¼ Q
g � rs2

rffiffiffiffi
2

N

r

rs2
r

0

B
B
@

1

C
C
A ð17Þ
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PD ¼ Q
g � TðcÞ þ

1

r
s2

r

� �

ffiffiffiffi
2

N

r

TðcÞ þ
1

r
s2

r

� �

0

B
B
B
@

1

C
C
C
A

ð18Þ

In a low SNR environment, SNR + 1� 1 can be assumed and Eqs 7, 17 and 18 combined

yield [8]:

N ¼
2½Q� 1

ðPFAÞ � Q� 1
ðPDÞ�

2

SNR � r �
1

r

� �� �2 ð19Þ

where N is again the number of samples that are needed to achieve the target probability of a

permitted false alarm and probability of detection. However, now we note that when the SNR

decreases the required integration/averaging steps N become infinite at SNR ¼ ðr � 1

r
Þ. This

critical SNR is called the SNR-wall. Since only the denominator of Eq 19 counts, the SNR wall

can be calculated simply as:

SNRwall ¼ r �
1

r
ð20Þ

The SNR-wall represents a fundamental limitation of detection ability, which means that rele-

vant uncertainties cannot be countered by a longer averaging time. In order to determine if

EEG can be detected or not we need to determine both the noise uncertainty ρ and the SNR of

our measured brain signal.

Having now derived the underlying analytics we can devise a step-by-step guide on how to

determine if EEG changes c[n] can be detected at all:

1. Calculate the SNR-wall by using the minimum noise variance s2
r;min and the maximum

noise variance s2
r;max of the brain recording (Eq 20).

2. Calculate the SNR as the ratio of pure consciously controlled EEG power and noise power

(Eq 10).

3. Compare the SNR with the SNR-wall:

conscious EEG changes are detectable ¼
yes SNR > SNRwall

no otherwise

(

ð21Þ

In the following sections we call the entire three-step process of determining if conscious

EEG can be detected “BCI-Wall”.

Having described the analytical derivations of the BCI-wall in detail we now show how to

apply it in practise. This also acts as an instructional example of how to determine the BCI

walls for other experiments.

Data acquisition

As shown above, in order to determine if conscious EEG changes can be detected one needs to

calculate the SNR-wall and the SNR. The SNR-wall depends on the ratio between minimum
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noise variance and maximum noise variance (Eq 20) where different activities will cause differ-

ent noise variances. For example lying down with eyes closed will have quite similar maximum

and minimum noise variances resulting in a low SNR-wall. However, while reading out loud

facial muscles will create short bursts of strong muscle noise as well as eye movement artefacts

and the ratio between smallest and highest noise variance will be large which in turn will result

in a high SNR-wall. Consequently, we have devised different tasks ranging from low noise vari-

ance ratios while lying down to extreme noise variance ratios during jaw clench. The resulting

SNR-wall is then compared with the SNR. This is calculated by using the P300 evoked poten-

tial as a measure of the consciously generated EEG power and dividing it by the nominal noise

power. We are now describing the experimental procedure.

Data was obtained from 20 healthy participants (9 males, 11 females). Prior to the experi-

ment, participants were given an information sheet and were asked to give signed consent by

signing two consent forms, one for the researchers and another for them to keep. Ethical

approval was given by the ethics committee at the Institute of Neuroscience and Psychology,

School of Psychology at the University of Glasgow, with reference 300210055. The data was

acquired using an Attys data acquisition device (www.attys.tech), made up of 2 channels at

24-bit resolution, and its data acquisition programmes ‘attys-ep’ and ‘attys-scope’. EEG

recordings were single channel between an Ag/AgCl electrode at Cz & A2 and GND at A1.

The 2nd channel was not used.

Participants 2 and 6 had to be excluded from the study because of faulty electrodes. About

180 sets of data are analysed in this study. These are stored in an open-access database [10], all

ethics files can also be found on the database.

Data was recorded during 10 activities and P300 where pink horizontal stripes were pro-

duced randomly after 7 to 13 seconds while otherwise a chequerboard was inverted every sec-

ond. The P300 was recorded for a duration of 5 minutes while the participants sat on a chair

directly opposite a screen. The tasks generating various levels of artefacts were jaw clenching,

reading, colouring, attempting a word search, trying a Sudoku, playing ‘Subway Surfers’ game

on the phone, lying with eyes closed and repeat with eyes opened. Subjects sat for all tasks

except the lying down ones. Each of these ran for a duration of 2 minutes. The ‘attys-ep’ pro-

gramme was used to record the P300, while the rest were recorded using ‘attys-scope’.

EEG pre-processing

The raw EEG data ~d½n� undergoes causal filtering prior to detection. Here, we have subsumed

all pre-processing steps in the filter function f[n]. We are presenting five different filtering

setups:

1. Wideband detector with minimal filtering: f[n] = 0.1 Hz 4th order highpass and 50 Hz

powerline bandstop which preserves the entire EMG spectrum and also low frequency fluc-

tuations such as eye-movements. This pre-processing is hardly used in practise but acts

here as a worst-case scenario as the whole EMG spectrum is allowed to interfere with the

detection.

2. Low frequency bandpass filtering between a 0.1–3 Hz 4th order Butterworth filter and 50

Hz powerline bandstop. This frequency range is in the EEG delta frequency range and is in

particular suitable to investigate the effect of low frequency artefacts on the ability to detect

EEG such as eye-blink, eye-movements and movement artefacts from the cables.

3. Wideband bandpass: f[n] = 4th order Butterworth bandpass 8–18 Hz, DC-removal, 50 Hz

powerline bandstop with a moderate rejection of higher EMG frequencies used for motor

imagination [11].
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4. Narrow bandpass: f[n] = 4th order Butterworth bandpass 8–12 Hz, DC-removal, 50 Hz

powerline bandstop detecting alpha power around 10 Hz and rejects the higher frequency

EMG power [12].

5. Difference operator: f[n] = f[n] − f[n − 1] and 50 Hz powerline bandstop which has been

used for example in [7].

These five post-processing scenarios are applied separately to the data of all subjects and

tasks, except for those with obvious broken electrode signals or strong artefacts.

BCI-wall calculation

As outlined above, the BCI-wall calculations require three steps: 1) SNR-wall calculation, 2)

SNR calculation and 3) comparing SNR and SNR-wall to determine if conscious EEG detec-

tion is possible. We are now describing how this can be done practically and is also an instruc-

tional example for other datasets. The corresponding Python code is available on GitHub [13].

Step 1: SNR-wall. In order to calculate the SNR-wall we need to calculate ρ (Eq 14) which

is the ratio between the maximum s2
r;max and minimum s2

r;min noise power. To find these two

values we use a sliding window of length τ = 2 sec and calculate the noise power for different

sample positions:

schunk½n� ¼ Tðd½n . . . nþ t�Þ ð22Þ

and obtain its maximum and minimum over the entire recording of N samples: (see Fig 2):

s2
r;min ¼ min

n¼0...N� 1
schunk½n� ð23Þ

s2
r;max ¼ max

n¼0...N� 1
schunk½n� ð24Þ

With Eqs 14 and 20 one can then calculate the SNR-wall which is usually expressed in dB (to

make it comparable to the SNR which is calculated in the next section):

SNRwall ¼ 10 log
10

r �
1

r

� �

ð25Þ

Step 2: SNR. The SNR is calculated as a ratio between signal power T(c) and the nominal

noise power s2
r :

SNR ¼ 10 log
10

TðcÞ
s2
r

� �

¼ 10 log
10

TðcÞ
rs2

r;min

 !

ð26Þ

where we can re-use the SNR-wall parameters ρ and s2
r;min from the previous section to calcu-

late the nominal noise power s2
r . Measuring the pure conscious changes of EEG c and its

power T(c) is only indirectly possible as it is not ethical to paralyse subjects. The P300 evoked

potential offers an individual estimate of the consciously generated signal power T(c) calcu-

lated from the peak P300 voltage. This will be used for estimating the power of the signal for

both a time domain task (i.e. P300) and frequency domain task (i.e. motor imagination):
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• Time-domain power of the signal: The P300 peak can be used straight away for a time

domain calculation of its power (Fig 2A):

TtðcÞ ¼ c2
max ð27Þ

where the Tt(c) is the power of the pure EEG in the time domain.

• Frequency-domain power of the signal: BCI systems using the frequency domain change

the power of a narrow frequency band (Fig 2B), for example by motor imagination. Here, we

assume that:

• The EEG power generated in a narrow frequency band is comparable to the power gener-

ated in the time domain Tt(c). This is indicated between the panels Fig 2A and 2B by not-

ing that the peak powers are identical.

• However, because motor imagination reduces power consciously the actual conscious

power Tf(c) is only as strong as the reduction of power. Here, we assume a 40% reduction

of power.

Given that only the reduction is the conscious power change c and anything else will be

absorbed in the noise term r we can calculate the pure signal power (in contrast to the noise)

Fig 2. Flow diagram illustrating the calculation of the SNR and SNR-wall. A) Time domain signal for the SNR calculation takes the

power Tt(c) of the P300 peak as the consciously generated EEG change. B) Frequency domain signal power for the SNR calculation takes

the power Tt(c) and assumes a conscious 40% reduction of the signal power in a narrow band around a peak. C) For the overall SNR the

nominal variance s2
r is calculated over the whole EEG recording. To calculate the SNR-wall the maximum s2

r;max variance and minimum

s2
r;min variance is detected with a sliding window sample by sample. D) If the SNR is greater than the SNR-wall then a conscious change in

the EEG can be detected. If the SNR is less than the SNR-wall then it is impossible to detect a conscious change.

https://doi.org/10.1371/journal.pone.0290446.g002
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as:

Tf ðcÞ ¼ TtðcÞ � TtðcÞ � 40% ð28Þ

After having calculated the power of the signal Tf(c) we now need to calculate the power of

the noise. Given that the small P300 evoked potentials c are buried in the EEG d, one can

assume that the noise variance containing a consciously generated signal and one without are

basically identical [14]: s2
r � s

2
d. Thus we take the variance of the EEG epoch d[n] (Fig 2D) as

s2
r � TðdÞ ð29Þ

where the power of the EEG epoch T(d) is calculated with Eq 7 which is the average power or

variance.

Step 3: Comparing SNR and SNR-wall: Determining if conscious control can be

detected. If the SNR of the EEG (Eq 10) is above the SNR-wall (Eq 20) then detection of the

conscious EEG change c is possible. Otherwise not.

For every task, for example “Sudoku”, there will be individual pairs of SNR and SNR-

wall values from every subject. Because the SNR and SNR-wall values are calculated over all

subjects they are random variables. A t-test is used to determine if the SNR for all subjects

is significantly above the SNR-wall for each task and each of the four post-processing

scenarios.

Results

We are going to describe the results in three steps:

1. Investigating the raw data: The different datasets (jaw clench, lying eyes closed/open,

word search, Sudoku, phone app, reading, colouring) used in this study exhibit different

signal and noise characteristics in their time- and frequency domain. We will use subject

#20 as a representative example to point out the differences between the datasets.

2. Walk-through of the calculation of the SNR and SNR-wall of one subject for both jaw

clench and reading: As instructional examples we calculate step by step the SNRs and

SNR-walls of one subject for jaw-clench and reading at different EEG frequency ranges such

as: full range, only low frequencies (0.1–3 Hz), wide bandpass (8–18 Hz), narrow bandpass

(8–12 Hz) and derivative.

3. Statistical analysis with t-test: Using the same approach as in step 2 but for all subjects

enables us to do a statistical analysis with a t-test which determines if the SNR of a task is

significantly larger than the SNR-wall and thus conscious EEG changes can significantly be

detected.

Investigating the raw data

Fig 3 shows the measurement results taken from subject 20 which are representative of the

artefacts encountered during the different experimental tasks which are listed on the left-hand

side: jaw clench, lying eyes closed/open, word search, Sudoku, phone app, reading, colouring.

Fig 3A shows the time domain plots for 60 seconds. The signals plotted have only the DC and

50 Hz main interference removed and otherwise represent the full range of raw signals. Panel

Fig 3B shows the power spectra in logarithmic units of the corresponding time domain plot to

the left in Fig 3A. The dotted line at 20 Hz marks the point from where muscle noise
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contribution will decrease towards lower frequencies [15] or in other words: we will expect

muscle noise for frequencies above 20 Hz but also to a lower degree down to 10 Hz. We are

now going through the different tasks step by step. We start with “jaw clenching” followed by

“lying down, eyes closed” being the tasks with the largest difference in noise amplitudes where

Fig 3. Complete dataset of a representative recording (subject 20). A) Time domain of the different recordings (d[n] in μV against s). B) Power spectra of d[n] of the

corresponding recordings (V2/Hz). C) Raw P300 recording (μV against s). D) Averaged P300 response (μV against ms).

https://doi.org/10.1371/journal.pone.0290446.g003
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jaw clenching has about 50 times more noise than lying down. Note that, for the noise wall cal-

culation, it is the ratio between the highest and lowest noise variances that are used (Eq 25),

not the absolute amplitudes. The ratio is again highest for the jaw clench:

• Jaw clenching: For this task the subject had to clench their jaw every 15 seconds when indi-

cated by the researcher and these have been marked with an “&” in Fig 3A. Peak amplitudes

at the onset of the jaw clench reach nearly 1 mV while in the pauses the amplitude is just

around 20 μV. Its corresponding spectrum in Fig 3B is almost flat over the whole frequency

range. Compared to the relaxed state of lying down the spectral power during jaw clenching

is approx 100 times larger for frequencies above 20 Hz. This experiment is useful to gain an

insight into which spectral components are affected by muscle noise and confirms that in

particular frequencies above 20 Hz are affected but this is of course no hard cutoff but the

influence of muscle noise towards lower frequencies decreases gradually.

• Lying down, eyes closed: Here, the subject was asked to relax as much as possible and since

the eyes were closed there are no eyeblink artefacts. The amplitude is at about 20 μV with

small fluctuations. However, muscle activity can still occur as marked with “#” where the

subject had to swallow and the muscle activity can clearly be seen. In the frequency spectrum

an alpha peak at 10 Hz emerges which is expected when closing the eyes.

• Lying down, eyes open: With the eyes open the alpha peak vanished and the subject was

looking at different locations at the ceiling and in the lab which shows up as a mix of eye-

blink and eye-movement artefacts marked with “*”. Generally subjects tended to look

around frequently as it is a slightly unusual situation.

• Word search: Word search engages the eyes but only at a narrow viewing angle looking at a

sheet of paper which causes only small eye saccades. However, the spectrum between 20–50

Hz is elevated indicating muscle activity, possibly because of tense muscles during the task.

• Sudoku appears to have similar muscle activity as lying down with eyes closed, with little

facial muscle tone. However, since the eyes were open and the subject had to scan the

Sudoku grid a few sudden jumps in the EEG potential can be identified which were saccades

indicated with a “*”.

• Phone app game: The phone app has a similar behaviour as “word search” in that the power

spectrum is elevated 20–50 Hz suggesting again high facial muscle activity.

• Reading aloud creates a mix of artefacts as various facial muscles are needed for spoken

word and the eyes need to scan the text which cause eye artefacts as well. The frequency spec-

trum above 20 Hz in Fig 3B is elevated and stays elevated up to 100 Hz. In addition lower fre-

quency components from eye-blinks and saccades “*” appear towards 0.1 . . . 3 Hz. Very low

frequency components indicated at “+” were generated because the subject was turning the

page and then touching their cheek while reading.

• Colouring: Here, the subject had to take different pens and colour a line drawing. This task

is an activity where the colouring makes the whole body move in the rhythm of the strokes

made with the pen. Interestingly these pen-strokes were in the region of 10 Hz and created a

weak fake alpha peak in the spectrum. In addition the activity also created larger movement

artefacts at “+” where the subject switched pens.

The final two panels in Fig 3C and 3D show the recording of the P300 experiment. This

experiment determines the signal power for the SNR calculation (see Eq 27). Recall that it is
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not ethical to paralyse a healthy subject to determine their pure EEG signal power and for that

reason we use the P300 oddball reaction of the brain to have a conscious voltage change to a

surprising stimulus. The subject is presented with the oddball event at irregular intervals as

indicated in Fig 3c as “oddball events”. The actual change in EEG is small and buried in the

original electrode signal d[n]. After event triggered averaging we arrive at Fig 3D where the

oddball event happened at t = 0 ms and the EEG response then reached its peak of cmax = 19μV

after 300 ms.

Walk-through of the calculation of the SNR and SNR-wall of one subject

for both jaw clench and reading

We now present a walk-through of how to calculate the SNR and the SNR-wall for the “jaw

clench” task. This serves as an instructional example for the statistical analysis for all sub-

jects further below. Fig 4 shows the time- and frequency domain signals during jaw clench-

ing in panels A-M and B-N, respectively. Panels A and B are identical to the 1st row in Fig 3.

The column C-O shows the calculated SNR-wall and SNR values based on the time domain

data of the corresponding panels A-M. Let us first focus on the first row Fig 4A–4C and

show step by step how to calculate the SNR-wall and SNR for it. We start with the SNR-wall

calculation (Eqs 14 and 20 & Fig 2C and 2D) for which we need the minimum variance

(here: s2
r;min ¼ 1:1510� 10V) and maximum variance (here: s2

r;max ¼ 2:0010� 8V). This results

in ρ = 13.21 and an SNR-wall of SNRwall = 11.18 dB which is shown in Fig 4C. This means

that the SNR of the electrode signal needs to be larger than SNRwall = 11.18 dB to be able to

detect conscious changes in the EEG. Consequently as a next step we are going to calculate

the SNR of the electrode signal. The overall SNR of the full range electrode signal is the ratio

of the amplitude of the conscious EEG change cmax against the nominal noise power (see Eq

26). The conscious EEG change was already determined in Fig 3 as cmax = 19 μV and its

power TtðcÞ ¼ c2
max ¼ 3:7010� 10 V2. The nominal noise power s2

r can either be calculated

with s2
r ¼ rs

2
r;min or directly from the electrode signal d[n] (Eq 26) and results here in:

s2
r ¼ 2:7510� 09 V2. This leads to an SNR of −8.71 dB which is shown in Fig 4C. Since the

SNR is substantially below the SNR-wall, detection of conscious changes of EEG are not pos-

sible in this case. This comes as no surprise as the SNR-wall is determined by the ratio
between the minimum noise variance s2

r;min and the maximum one s2
r;max. The wider the dis-

tance between these two lines in Fig 4A the higher the SNR-wall.

However, filtering of the electrode signal changes both the SNR-wall and the SNR which

might allow detection of conscious changes. We are now discussing different filtering

approaches. The calculation of both the SNR and SNR-wall is identical to the methodology

described above with the exception that we assume that subjects can only reduce consciously

an EEG frequency band by a certain percentage (“desynchronisation”) which is set to 40%

thus the signal power for the SNR calculation is set to Tf (c) = (60% � 19μV)2. We are now

showing the impact of filtering on the SNR-wall and SNR:

• 0.1–3 Hz, Fig 4D–4F: This low frequency bandpass filter covers the frequency range of eye-

blinks and saccades. While in the original trace Fig 4A these have not been apparent, now

they are easily identifiable in Fig 4D. In particular during the first 10 seconds the subject

blinked repeatedly which has been marked with the “*”. These artefacts drive up the differ-

ence between chunks of small noise power and large noise power which in turn increase the

SNR-wall. However, also the jaw muscle artefacts show up because of their impulse-like

shape they trigger large impulse responses of the 0.1–3 Hz bandpass filter which increase the

maximum variance s2
r;max even further. In contrast the SNR stays again negative at −6 dB
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while the noise wall is driven up to + 14dB. Consequently, it is not possible to detect con-

scious changes in EEG.

• 8–18 Hz, Fig 4G–4I: This moderately narrow bandpass filter is a popular choice in BCI appli-

cations [11] where subjects alter consciously the amplitudes of frequencies in this band. The

Fig 4. SNR and SNR-wall calculations for the “jaw clench” task. Columns A-M: electrode signals in the time domain with lines for the maximum variance s2
r;max

and minimum variance s2
r;min while using a sliding window of 2 sec. Columns B-N: frequency power spectra of the corresponding time domain signals of columns

A-M. Columns C-O: SNR-wall and SNR calculations of the corresponding time domain signals of columns A-M.

https://doi.org/10.1371/journal.pone.0290446.g004
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ratio between lowest s2
r;min noise- and highest s2

r;max noise-power is comparable to Fig 4A but

the SNR has improved due to less muscle activity from the jaw muscles which is only promi-

nent above 20 Hz. Still the SNR lies below the SNR-wall and thus detection of conscious

EEG changes are not possible.

• 8–12 Hz, Fig 4J–4L: This bandpass filtered signal stays substantially below the 20 Hz mark

which promises less muscle activity. Indeed, the effects of the jaw clenches are clearly

strongly suppressed in Fig 4J. This reduces the noise wall to 5dB and improves the SNR to

7dB which means that it is possible to detect conscious alpha frequency changes even with

the jaw muscles being active.

• d/dt, Fig 4M–4O: Applying the derivative to the electrode signal is a popular choice in BCI

as well [7]. The derivative or perhaps higher order derivatives act as a highpass filter which

removes DC and lower frequencies such as eye-movements or eye blinks but favours the

EMG frequency band. Indeed, when comparing the full range electrode signal in Fig 4A with

the highpass filtered one in Fig 4M the jaw muscle activity is strongly emphasised. This leads

to a high SNR-wall of 12dB and a low SNR at −11dB and making it impossible to detect any

conscious EEG changes in the presence of strong non-stationary muscle activity.

While the jaw clench is excellent for demonstrating the effect of strong non-stationary mus-

cle noise the reading task is more realistic in that it contains non-stationary muscle activity at

various levels, eye movements and also movement artefacts. Fig 5 follows the same layout and

the same parameters as Fig 4. The full range signal (Fig 5A–5C) again exhibits a large differ-

ence between the lowest noise power s2
r;min and the highest noise power s2

r;max which leads to a

high SNR-wall of 7 dB and at an SNR of −4 dB it is not possible to detect conscious EEG

changes here. We now move on to the filtered electrode signals (Fig 5D–5O). The filtering of

the electrode signal between 0.1–3 Hz emphasises eye movements and movement artefacts

and shows numerous saccade like voltage changes which are characteristic of reading where

the eyes need to scan the page. The large spike around 40 sec is a movement artefact. Together

these artefacts cause a large difference between the smallest noise power and maximum noise

power which in turn leads to a noise wall which is again much higher than the SNR (Fig 5F).

The frequency range of 8–18 Hz is the one used in motor imagination and rejects most of the

muscle noise. This results in a lower SNR-wall and higher SNR (Fig 5I) so that now detection

of conscious EEG changes are possible. Similarly, the frequency range of 8–12 Hz for alpha

waves allows detection of conscious EEG changes (Fig 5L). A curious case is the use of the

derivative (Fig 5M–5O) which has been detrimental during the jaw muscle contractions but

here leads to a low SNR-wall and an SNR which is just above the SNR-wall, potentially allow-

ing the detection of conscious changes of EEG. This could have been of course just chance and

different for the other subjects which illustrates that both SNR and SNR-wall are random vari-
ables where every subject in an experiment generates individual SNR-wall & SNR pairs. This

calls now for a statistical evaluation with all subjects and a t-test which tests for the SNR being

significantly above the SNR-wall which is described below.

Statistical analysis

Fig 6 shows the statistical evaluation of the SNR-walls against the SNRs. Each panel Fig 6A–6E

shows the SNR-walls and SNRs for the different tasks ranging from lying down to jaw clench-

ing. Panels A-E themselves represent different filtering methods of the electrodes signals. Both

SNR and SNR-walls are shown in dB on a scale from -15 dB to +15 dB. The y-axis shows the

results for each separate task so that one can decide if it is possible to detect a conscious change

in the EEG reliably or not. Both SNR and SNR-walls are random variables from the different
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participants and a t-test (p< 0.05) was used to determine if the SNR is significantly above the

SNR-wall which then predicts that conscious EEG changes can be detected for a specific exper-

iment using a specific causal filtering technique. We describe the statistical analysis first against

the different pre-processing methods and then in relation to the different tasks.

Fig 5. SNR and SNR-wall calculations for the “reading” task. Columns A-M: electrode signals in the time domain with lines for the maximum variance s2
r;max and

minimum variance s2
r;min while using a sliding window of 2 sec. Columns B-N: frequency power spectra of the corresponding time domain signals of columns A-M.

Columns C-O: SNR-wall and SNR calculations of the corresponding time domain signals of columns A-M.

https://doi.org/10.1371/journal.pone.0290446.g005
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A) 0.1> Hz: Fig 6A shows the SNR/SNR-wall pairs after only highpass filtering above 0.1 Hz

and mains removal. The task “jaw clench” has an average SNR-wall of 8 dB but given that

the SNR is at −5 dB it is significantly not possible to detect conscious EEG here. Generally

in Fig 6A all average SNR values are lower than the average SNR-wall values and the corre-

sponding t-test reports that electrode signals after minimal filtering significantly cannot

detect a conscious change of EEG at all.

B) 0.1–3 Hz: As discussed in the previous sections this frequency range strongly emphasises

eye movements and movement artefacts which leads to high average SNR-walls and very

low SNR values for all tasks. Consequently the t-test provides again no significant case

where conscious EEG changes could be detected.

Fig 6. Statistical results. SNR versus SNR-wall for A) full range electrode signal with only highpass filtering at 0.1 Hz and 50 Hz removal, B) 0.1–3 Hz bandpass filtered,

C) 8–18 Hz bandpass filtered, D) narrow bandpass 10±2 Hz and E) derivative. The bars show the average for the SNR-wall and the SNR with error bars for standard

deviation. A t-test was used to determine if conscious EEG changes can be detected at p< 0.05 and the “*” identifies the experimental and filtering conditions where this

is significantly possible.

https://doi.org/10.1371/journal.pone.0290446.g006
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C) 8–18 Hz: This bandpass filter yields significant results predicting the detection of conscious

EEG changes for: lying (eyes closed), using a phone app, playing Sudoku, doing word search

and colouring. Reading which engages a large amount of facial muscles and the jaw clench

as a worst-case scenario obliterate any detection effort. It is interesting to see that lying

down with eyes closed won’t allow detection which anecdotally points to the subjects being

more tense having a higher muscle activity.

D) 8–12 Hz: Best detection ability is achieved with a narrow frequency bandpass around the

alpha band with all tasks allowing detection of a consciously changed EEG.

E) d/dt: Here, pre-filtering is done by a derivative which is popular for realtime BCI [7].

Here, lying down with eyes closed and open, using a phone app, playing Sudoku, doing

word search and colouring allow the detection of a conscious EEG change. Colouring,

reading and jaw clench have the highest EMG components and fail the t-test which

means that conscious EEG changes cannot be detected. As already observed earlier the

derivative emphasises EMG activity which is apparent in panel E for jaw clench where the

average SNR is about 10 dB lower than the noise wall and creates a clear cut non-signifi-

cant result.

It is interesting to note that with the derivative keeping in particular EMG intact that there

is a clear hierarchy of SNR values from eyes closed having the highest SNR down to the jaw

clench for the lowest. In contrast, the bandpass filter approaches in panels C) and D) do not

have this dependence with both bandpass ranges below the 20 Hz boundary for EMG confirm-

ing again that keeping BCI detection below 20 Hz is the safest bet to avoid EMG interference.

In the previous section we have ordered the results according to the pre-filtering of the elec-

trode signal. Of equal interest is which task allows the detection of conscious EEG changes and

which renders it impossible to do so. For this purpose we have re-ordered the results of Fig 6

and show them task by task in Table 1. As in Fig 6 the “*” in Table 1 indicate that conscious

EEG changes can be significantly detected. The labels A-E match the panel labelling in Fig 6

and are the different pre-filtering methods.

Lying down, eyes open: Conscious detection of EEG is possible here for moderate wideband

prefiltering (8–18 Hz), narrow alpha band filtering (10±2 Hz) or using the derivative which

acts as a highpass. Lying flat down and having the eyes open mainly creates eye blink arte-

facts which, without any filtering, cause a high ratio between the minimum and maximum

noise variances which in turn result in a high SNR wall. EEG detection is possible if these

eye-blink artefacts are removed by a highpass filter characteristic.

Table 1. Detection of conscious EEG changes significantly possible ordered by task.

A 0.1 > Hz B 0.1–3 Hz C 8–18 Hz D 10 ± 2 Hz E d/dt
lying/EO * * *
lying/EC * *
phone app * * *
Sudoku * * *
Word Search * * *
Colouring * *
Reading *
Jaw clench *
https://doi.org/10.1371/journal.pone.0290446.t001
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Lying down, eyes closed: With lying down and eyes closed detection of conscious EEG

changes is still possible when focusing on the narrow alpha band or using the derivative as a

highpass filter. However wider bandpass filtering yields no significant results. As mentioned

above closing the eyes in a lab is slightly uncomfortable which seems to result in a higher

muscle tone. Comparing Fig 6c between eyes open and closed only the SNR changes but

not the SNR-wall which means that the actual ratio of min and max noise variance is not

different between those two tasks but rather the constant muscle tone which is reflected in a

higher SNR while having the eyes closed.

Phone app, Sudoku, Word search: As outlined further above these three tasks have only mod-

erately elevated non-stationary muscle activity and eye-movements. The muscle activity

mostly arises from being a bit more tense when solving the tasks but causes only low ratios

between highest noise variance and lowest noise variance which in turn results in low SNR-

walls. Even the simple derivative which favours muscle noise still yields significant results.

Again, the low frequency filtering and wideband filtering make it impossible to detect con-

scious EEG changes because the low frequency eye movements cause high SNR-walls.

Colouring: This is now a task which involves strong arm muscle activity but also most likely

compensatory muscle activity in the entire body such as neck muscles. This results in higher

muscle noise levels compared to the previous tasks and now the filtering with the derivative

no longer allows detection of conscious EEG changes. However, wideband prefiltering (8–

18 Hz) and narrow alpha band filtering (10±2 Hz) still allow significant EEG detections.

Reading aloud: This task causes irregular contraction of facial muscles and the eyes need to

scan the text which cause eye artefacts as well. This non-stationary noise leads to high SNR

walls which prevent the detection of conscious EEG changes except when performing nar-

row band filtering around the alpha band. This filtering steers clear of both eyeblink arte-

facts and higher frequency muscle noise as much as possible.

Jaw clenching: The jaw muscles create very high amplitude bursts of muscle activity which are

about 50 times higher than the baseline noise. Without any filtering this results in high

ratios of minimum and maximum noise variances which in turn results in very high noise

walls. Similarly to reading aloud removing the non-stationary muscle noise is crucial to be

able to detect conscious EEG changes and is only possible if detection focuses just on the

narrow alpha band.

Overall tasks with strong non-stationary facial muscle activity such as reading aloud or jaw

clenching allow only significant detection of conscious EEG changes if one performs narrow

band filtering around the alpha band which steers clear as much as possible of both muscle

noise and eye movement artefacts. However, eye movement artefacts are less of a problem

than muscle artefacts because their frequencies do not overlap with the standard BCI fre-

quency detection ranges. Those tasks which contain mostly eye movements but little muscle

noise such as playing a video game allow detection of conscious EEG changes with a wideband

BCI bandpass (8–18 Hz) but also with a derivative which only attenuates eye-movements but

not muscle noise.

Discussion

In this paper we have introduced an objective hard criterion which determines if it is possible

to detect conscious EEG changes in a recording contaminated with non-stationary noise. Spe-

cifically, this methodology requires the SNR of an electrode signal to be higher than its SNR-
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wall so that conscious changes in EEG can be detected. The SNR-wall is calculated by taking

the ratio between the minimum and maximum noise variances of the electrode signal (Eq 20).

The SNR is calculated using the standard definition of SNR which is here the ratio between the

consciously generated EEG component against the nominal noise level (Eq 10). Both equations

result from sound analytical calculations and were then used to calculate all SNR-wall and

SNR values for all experimental conditions and tasks. In other words, no manual selections of

the SNR-walls, SNRs or thresholds are needed for the BCI-walls framework protecting it from

subjective, possibly arbitrary choices. We then determined the SNR-wall for a range of differ-

ent tasks with non-stationary noise while applying different filtering techniques. Wideband fil-

tering and filtering in the delta band make it impossible to detect any conscious EEG changes.

On the other hand filtering around the alpha band allows EEG detection even under high non-

stationary muscle interference during jaw clenching.

As outlined in the introduction, EEG is contaminated with different forms of noise where

EMG is the hardest to remove because of its broad frequency spectrum [2] ranging from 20 to

80 Hz. The gold standard to measure the EMG contribution is by neuromuscular blockade

where a subject is temporally paralysed and, thus, generates zero EMG. Measuring brain activ-

ity from a paralysed subject reveals substantial EMG contamination above 20 Hz [15] and

matches our results where the SNR-wall is lowest if one uses a narrow bandpass around the 10

Hz alpha band [12] steering clear of the EMG spectrum.

An existing method of how to determine if EMG interference is detrimental to EEG detec-

tion is to use the amplitude of a bandpass filtered electrode signal and suspend data collection

when it is above a certain threshold [2]. Another suggested method is to use a montage consist-

ing of a large number of electrodes and then apply independent component analysis (ICA) to

the electrode signals [2, 3, 16] which separates noise from EEG which then allows the calcula-

tion of the SNR. The ICA could also be used to determine the SNR for the BCI-wall methodol-

ogy. Instead, we have chosen the P300 methodology to determine the pure consciously

controlled EEG power because ICA requires by definition more than one electrode and we

recorded from just one. Future research could also calibrate the SNRs obtained from the ICA

with those from the P300 responses. Be it P300 or ICA they are in stark contrast to determin-

ing the SNR by paralysing a participant temporarily [15, 17] which would certainly yield the

best results but no doubt would raise substantial ethical concerns.

So far ICA has only been suggested to determine the SNR but it can also be used to deter-

mine the SNR-wall because the minimum s2
r;min and maximum noise variances s2

r;max are read-

ily available in the independent component(s) of the ICA carrying the noise. Since the ICA is a

well-established standard tool for EEG offline analysis calculating both the SNR and SNR-wall

could just be a simple additional step which then allows the robust evaluation of an

experiment.

However, it appears that most BCI studies and reviews [18, 19] stay silent about how they

have dealt with noise interference. The first comprehensive literature survey investigating arte-

fact removal [20] finds that most BCI papers do not report whether or not they have consid-

ered the presence of EMG (67.6%) or EOG (53.7%) artefacts in brain signals. This situation

has not improved much ten years later [21] where 41% of the studies did not mention any arte-

fact removal process of EEG and even where artefacts were mentioned 22% of those studies

did not do any cleaning or artefact removal. Given that the BCI-walls methodology has been

proven to be analytically sound [8] and requires only standard EEG recording parameters

such as signal- and noise-variances it should be part of a standard process to evaluate whether

reliable EEG detection is possible or not. Pre-registrations of experimental designs could also

specify a BCI-wall test which could then later provide a robust decision point as to whether
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EEG recordings have been sufficiently high quality to allow the detection of conscious EEG

changes or if the data needs to be discarded.

SNR-wall theory was developed in the field of telecommunications [8] where it is common

that a multitude of transmitters create non-stationary background noise [22–27] and, for

example, making it impossible for a mobile phone to communicate with its base station with

an increasing number of transmitters. The SNR-wall calculations are able to make strong pre-

dictions about the capability of a telecommunications system to work as intended, and simi-

larly this should be also standard practise for BCI systems.
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23. Costa LDS, GUIMARÃES DA, Uchôa-Filho BF. On the Signal-to-Noise Ratio Wall of Energy Detection

in Spectrum Sensing. IEEE Access. 2022; 10:16499–16511. https://doi.org/10.1109/ACCESS.2022.

3149476

24. Gohain PB, Chaudhari S, Koivunen V. Cooperative Energy Detection With Heterogeneous Sensors

Under Noise Uncertainty: SNR Wall and Use of Evidence Theory. IEEE Transactions on Cognitive

Communications and Networking. 2018; 4(3):473–485. https://doi.org/10.1109/TCCN.2018.2840134

25. Vani Vivekanand C, Bhoopathy Bagan K, Brenie Sekar G. Spectrum Sensing in Cognitive Radio with

SNR Wall Estimation. In: Nath V, Mandal JK, editors. Proceedings of the Fourth International Confer-

ence on Microelectronics, Computing and Communication Systems. Singapore: Springer Singapore;

2021. p. 201–217.

26. Captain K, Joshi M. SNR wall for generalized energy detector in the presence of noise uncertainty and

fading. Physical Communication. 2019; 32:172–184. https://doi.org/10.1016/j.phycom.2018.11.013

27. Qian C, Qian H, Gao F. Spectrum sensing and SNR walls when primary user has multiple power levels.

In: 2015 IEEE/CIC International Conference on Communications in China (ICCC); 2015. p. 1–6.

PLOS ONE BCI-Walls

PLOS ONE | https://doi.org/10.1371/journal.pone.0290446 August 24, 2023 22 / 22

https://doi.org/10.1016/j.clinph.2008.01.024
http://www.ncbi.nlm.nih.gov/pubmed/18329954
https://researchdata.gla.ac.uk/1258/
https://doi.org/10.1016/j.neuroimage.2005.12.003
https://doi.org/10.1016/j.neuroimage.2005.12.003
http://www.ncbi.nlm.nih.gov/pubmed/16443377
https://doi.org/10.1016/0013-4694(91)90040-B
https://doi.org/10.1016/0013-4694(91)90040-B
http://www.ncbi.nlm.nih.gov/pubmed/1707798
https://doi.org/10.5281/zenodo.7852162
https://doi.org/10.1016/j.neuroimage.2009.12.010
http://www.ncbi.nlm.nih.gov/pubmed/20004255
https://doi.org/10.1016/j.clinph.2007.04.027
http://www.ncbi.nlm.nih.gov/pubmed/17574912
https://doi.org/10.1111/1469-8986.3720163
https://doi.org/10.1111/1469-8986.3720163
http://www.ncbi.nlm.nih.gov/pubmed/10731767
https://doi.org/10.1109/TBME.2012.2195662
http://www.ncbi.nlm.nih.gov/pubmed/22542648
https://doi.org/10.1016/j.cogr.2021.02.001
https://doi.org/10.1016/j.irbm.2021.07.001
https://doi.org/10.1016/j.clinph.2006.10.019
https://doi.org/10.1016/j.clinph.2006.10.019
http://www.ncbi.nlm.nih.gov/pubmed/17169606
https://doi.org/10.1088/1741-2552/ab0ab5
https://doi.org/10.1088/1741-2552/ab0ab5
http://www.ncbi.nlm.nih.gov/pubmed/30808014
https://doi.org/10.1109/TWC.2021.3118320
https://doi.org/10.1109/ACCESS.2022.3149476
https://doi.org/10.1109/ACCESS.2022.3149476
https://doi.org/10.1109/TCCN.2018.2840134
https://doi.org/10.1016/j.phycom.2018.11.013
https://doi.org/10.1371/journal.pone.0290446

