

Adoga, H. U. and Pezaros, D. (2024) Towards Latency-aware vNF
Placement on Heterogeneous Hosts at the Network Edge. In: IEEE Global
Communications Conference (GLOBECOM 2023), Kuala Lumpur,
Malaysia, 4–8 Dec 2023, pp. 6383-6388. ISBN
9798350310900 (doi: 10.1109/GLOBECOM54140.2023.10437107)

This is the author version of the work deposited here under a Creative
Commons license: https://creativecommons.org/licenses/by/4.0/

Copyright © 2024 IEEE.

This is the author version of the work. There may be differences between
this version and the published version. You are advised to consult the
published version if you wish to cite from it:
https://doi.org/10.1109/GLOBECOM54140.2023.10437107

https://eprints.gla.ac.uk/304311/

Deposited on 08 August 2023

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1109/GLOBECOM54140.2023.10437107
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/GLOBECOM54140.2023.10437107
https://eprints.gla.ac.uk/304311/
http://eprints.gla.ac.uk/

Towards Latency-aware vNF Placement on
Heterogeneous Hosts at the Network Edge

Haruna Umar Adoga and Dimitrios P. Pezaros
School of Computing Science

University of Glasgow, G12 8QQ, Scotland, UK
h.adoga.1@research.gla.ac.uk, dimitrios.pezaros@glasgow.ac.uk

Abstract—In this paper, we investigate the optimal placement
of vNFs over the distributed edge network while considering
the heterogeneity of packet processing elements. Unlike previous
efforts in this domain, our proposed hybrid placement scheme
places vNFs on user space hosts and the network data plane to
efficiently minimise end-to-end path latency and achieve faster
service delivery. We formulate and solve the Hybrid vNF Placement
Problem as a linear integer programming (ILP) problem and
propose a hybrid placement heuristic algorithm (HYPHA), which
performs an incremental placement of vNFs on heterogeneous hosts
to find a near-optimal solution to the problem quickly. We evaluated
our proposed solution using a simulation of real-world network
topology with realistic latency conditions.

We show that leveraging the fast packet processing speed of
the network data plane in conjunction with abundant user space
resources for vNF placement yields minimal overall end-to-end
latency and fulfils the placement of a diverse set of vNF requests to
speed-up service delivery. Also, our results show that HYPHA can
obtain near-optimal vNF mapping while incurring fewer latency
threshold violations set by network operators.

Index Terms—Latency minimisation, heterogeneous data plane,
Hybrid VNF Placement, Network Function Virtualization, Edge
Network, Network Softwarization, Virtual Network Functions.

I. INTRODUCTION

Service provider networks have evolved over the years with
the ability to virtualise and host network functions at the
network’s edge – closer to the end-users [1]. This paradigm
is primarily made possible due to the flexibility provided by
network function virtualization (NFV) and network programma-
bility, which allows network operators to define and place fine-
grained network functions at the network edge based on cus-
tomers’ SLA requirements [2]. There are diverse frameworks for
implementing vNFs in service provider network environments;
these frameworks can either implement functions in the data
plane, using programmable switching technologies such as P4
[3] or offloaded onto SmartNICs, or using user space hosts [4].

Although the network data plane offers high-speed packet
processing, it is limited in key ways. It has a limited memory
footprint, lacks in-situ packet header manipulation support, has
poor state management support, and does not readily support
manipulating floating-point values [5] etc. The network data
plane is generally resource-constrained and thus does not ac-
commodate vNFs with high storage or scalability requirements
due to the low memory footprint [6].

Due to the diverse nature of emerging applications, a user-
space-only or data-plane-only deployment does not efficiently
cater for use cases such as e-healthcare, autonomous vehicles,
mixed reality (MR), etc. A hybrid solution can leverage the
advances from the data plane and user space. To achieve end-to-
end programmability at the network edge and cater for diverse
use cases, we must design placement frameworks to leverage
data plane heterogeneity along a given network path. Thus,
frameworks that allow us to choose the right packet processing
elements are desirable based on their suitability to host a
particular vNF.

As a departure from how vNFs are currently being placed,
i.e., the lack of frameworks to support the seamless placement
of vNFs implemented on diverse platforms, we propose a
placement scheme that provisions network functions in the pro-
grammable data plane and on user space hosts to reduce packet
processing overhead and overall path latency, by leveraging the
peculiar benefits offered by heterogeneous packet processing
elements. We present a novel ILP model for the hybrid place-
ment of network functions in the heterogeneous network data
planes and on user space hosts (§III), with the objective function
of minimizing end-to-end latency and leveraging the network
data plane vNF placement. We also propose a hybrid placement
heuristic algorithm, HYPHA (§IV), as a way of finding a quick
solution to the hybrid vNF placement problem efficiently, and
present an in-depth evaluation of the proposed placement model
and heuristic algorithm, using real service provider network
conditions (§V).

In the remainder of the paper, we present some related work
in §II. In §III, we introduce the formalization of the hybrid
placement of virtual network functions on heterogeneous hosts.
A hybrid placement heuristic algorithm is presented in §IV; we
evaluate our proposed solution in §V and conclude the work in
§VI.

II. BACKGROUND - RELATED WORK

Some efforts in the literature considered the placement of
network functions in a hybrid manner in the context of
softwarised and hardware functions. Moens et al. [7] proposed
and evaluated an ILP model using service requests that com-
prise hardware and software functions. The genetic algorithms
proposed by Cao et al. [8] aim to minimize link utilization

and bandwidth consumption in hybrid NFV environments. Both
works, however, did not look at the heterogeneity of hosts and
the diverse nature of service requests; our approach differs in
this regard – as we consider the heterogeneity of vNF hosts,
which cater for emerging use cases.

Leivadeas et al. [9] focused on minimizing end-to-end delay
and deployment cost by placing vNFs on cloud and edge servers
in a hybrid context. Carpio et al. [10] presented a hybrid
placement model to place vNFs on VMs and containers using
the edge-cloud continuum. They proposed a MILP model and a
heuristic solution with cost-minimization objective functions.

Shahjalal et al. [11] formulated a multi-objective ILP problem
to handle the placement of vNFs in a hybrid infrastructure.
Functions are placed on edge and cloud servers in a hybrid
manner. Their approach minimises service deployment cost and
maximises QoE, using user budget as a critical constraint. We
place vNFs on user space hosts and leverage the speed of the
data plane in distributed edge network environments. Previous
work assumes a flat network topology in terms of the capabilities
of hosts. We consider a hybrid scenario where vNFs are placed
based on their type and complexity (e.g., delay-sensitive/delay-
tolerant, stateless/stateful applications etc.) on user space and
the network data plane using heterogeneous packet processing
elements.

Our core objective function is minimising end-to-end latency
for users requesting vNFs. We embrace the heterogeneity of
packet processing elements (vNF hosts) in our approach; in
particular, we leverage the processing speed of the data plane
and available resources on user space hosts when placing virtual
network functions. Using our solution, network operators can
improve service delivery by delegating simple, time-critical
operations to the data plane, leaving only more complex stateful
processing for user space vNFs.

III. HYBRID VNF PLACEMENT ON HETEROGENEOUS HOSTS
- SYSTEM MODEL

We formulate the hybrid placement model using the system
parameters presented in Table I. The model outputs a mapping
of vNF requests onto heterogeneous packet processing elements
and the best route (in terms of lowest delay) between source and
destination nodes in the hybrid topology while adhering to the
user and operator-defined constraints.

We represent the capacity of data plane nodes (e.g., I/O,
memory, SmartNIC CPU etc.) with the parameter Qj and vNF
no
i ∈ N bandwidth requirements by users, with the parameter bijk

(deduced from the placement requests and the network topol-
ogy). The latency parameter Lij

k is materialized by summing all
the vNF latency requirements – depending on the application
class, and the latency Lm of the network links em ∈ E along any
given placement path. We capture vNF hosts requirements using
the parameters Vj and Ri for data plane and user space packet
processing elements, respectively, and use the binary decision
variable Xk

ij , which has a value of 1 if a vNF no
i ∈ N is placed

on a data plane host dj ∈ D, and a value of 0 otherwise. We

Table I: System model parameters

Network entities Description
G = (H,E,U) Physical network graph.

H = {h1, h2, hi,, hH} A set of user space hosts.
E = {e1, e2, em,, eE} The physical network links.
U = {u1, u2, uo,, uU} User traffic associated with processing NFs.
P = {p1, p2, pk,, pP } Network paths from source to destination.
D = {d1, d2, dj ,, dD} data plane elements (e.g., switches, SmartNICs)

Mk The last heterogeneous host in path pk ∈ P
Qj Capacity of data plane hosts (e.g., I/O, memory,

CPU, etc.) dj ∈ D.
Wi Supported capacity of user space hosts (e.g., I/O,

memory, CPU, etc.) from hj ∈ H.
Cm Link capacity em ∈ E.
Lm Link latency of em ∈ E.

VNF entities Description
N = {n1

1, n
2
2, n

o
i , ..., n

U
N} Network functions to be placed no

i ∈ N linked
to user uo ∈ U.

Πi Acceptable latency threshold for vNF no
i

Vj data plane vNF host requirements (storage,
memory, cpu) of no

i ∈ N.
Ri user-space vNF host requirements (I/O, memory,

CPU.) of vNF no
i ∈ N.

Derived entities Description
Lij
k Latency to vNF no

i , on a host using path pk .
bijk Required user bandwidth to vNF no

i , using path
pk ∈ P.

Decision variables Description
Xk

ij To denote if a particular vNF no
i is hosted on

a data plane processing element dj ∈ D, using
path pk ∈ P

Y k
ij To denote if a particular vNF no

i is hosted on a
user space hj ∈ H host using path pk ∈ P

also introduced a second binary decision variable Y k
ij which has

a value of 1 if a vNF no
i ∈ N is placed on a user space host

hj ∈ H, and uses path pk ∈ P.

Xk
ij =

{
1 if a vNF no

i is on data plane dj , path pk

0 otherwise
(1)

Y k
ij =

{
1 if a vNF no

i is on user-space hj , path pk

0 otherwise
(2)

A. Placement problem

Consider a given network topology represented by the graph
G, with a set of users U, a set of heterogeneous packet
processing elements, and the set of individual vNFs N, and
a latency matrix l, our hybrid placement model should find
an ideal mapping of all vNFs to heterogeneous hosts, that
minimizes the total expected end-to-end latency from all users
to their respective network functions. Equation (3) minimizes
the expected user latency when placing network functions on
heterogeneous hosts.

min .
∑
pk∈P

∑
dj∈D

∑
hj∈H

∑
no
i∈N

(Xk
ijL

ij
k + Y k

ijL
ij
k) (3)

The above objective function is subject to the constraints
presented next.

1) Capacity constraint: The limitations of the programmable
data plane in terms of capacity to host vNFs must be adhered
to when placing a vNF no

i ∈ N, on packet processing elements
dj ∈ D. We enforce this constraint by using equation (4a) and
ensuring that the resource requirements Vi of all vNFs placed are
below Qi, which represents the capability of hosts at the time
of placement. In eq. (4b), we enforce a similar (but relaxed)
constraint for user space nodes with vNF host requirements Rj

and user space capacity Wi for hosts hj ∈ H.

∑
pk∈P

∑
no
i∈N

Xk
ij(Vi) < Qj ,∀dj ∈ D (4a)

∑
pk∈P

∑
no
i∈N

Y k
ij(Ri) < Wi,∀hj ∈ H (4b)

2) Placement uniqueness constraint: In equation 5, we ensure
that all possible placements of vNFs no

i ∈ N on nodes are
unique. This constraint checks that our hybrid placement model
places a network function of a particular type on exactly one
host, i.e., a data plane or user space packet processing element
along a given path pk ∈ P∑

dj∈D
Xk

ij +
∑
hi∈H

Y k
ij = 1, ∀no

i ∈ N,∀pk ∈ P (5)

3) Link bandwidth constraint: This constraint captures the
available bandwidth of the network links em ∈ E. It ensures
that we do not overload the edge network links along a given
path (Equation (6).

∑
dj∈D

Xk
ijb

ij
k +

∑
hj∈H

Y k
ijb

ij
k < Cm,∀em ∈ pk,∀pk ∈ P (6)

4) Latency threshold: This constraint ensures that the vNF
latency threshold Πi is not exceeded at the time of placement
for all vNFs along a path. Constraint (7) considers user latency
to vNF no

i ∈ N.

(
∑
dj∈D

Xk
ijLijk +

∑
hj∈H

Y k
ijLijk)

∑
pk∈P

< Πi, ∀no
i ∈ N (7)

5) Path validity constraint: The network path used for place-
ment should be valid (i.e., the path should end with the host
of the network function). We enforce this requirement by using
constraint (8).

Xk
ij , Y

k
ij = 0, no

i ̸= Mk,∀no
ι ∈ N,∀pk ∈ P,∀hj ∈ H,∀dj ∈ D

(8)

Algorithm 1 Hybrid Placement

1: procedure PLACEVNFS (G,vNFRequests, paths)
2: Initialise data plane capacity Qj , Wi

3: Initialise vNF requirements Vj , Ri

4: for vNF ∈ vNFRequests do
5: paths.sort(key=len) ▷ shortest paths
6: placements← []
7: while path ∈ paths do
8: if d ∈ D in path Λ Vj < Qj : then
9: if checkvNFtype(vNF) == S then

10: d ∈ D← vNF
11: vNFRequests.remove(vNF)
12: updateResource(vNF req, Qj)
13: placements.append(vNF) ▷ go to 25
14: else:
15: h ∈ H← vNF
16: vNFRequests.remove(vNF)
17: updateResource(vNF req, Wi)
18: placements.append(vNF)
19: end if
20: end if
21: end while
22: if vNFRequests then ▷ remaining requests
23: go to 4
24: end if
25: p← getUsedPath(placements)
26: latency ←computeUsedPathLatency(p)
27: return placements, latency
28: end for
29: end procedure

Our placement model assumes that the network backbone
is appropriately configured to provide sufficient bandwidth to
handle requests from delay-sensitive applications and other
application types.

IV. HYBRID PLACEMENT HEURISTIC ALGORITHM
(HYPHA)

To find an optimal placement solution, the placement problem
introduced in §III requires a lot of computational time, depend-
ing on the topology size (e.g., a small topology with 27 edge
nodes takes ∼ 15 minutes to place about 100 network functions
optimally and compute any latency violations etc.). This time
grows linearly as the size of the topology and complexity of
network functions grows, thus not making it ideal for large-scale
network topologies – other factors, such as available computing
resources and the optimisation solver used, also contribute to the
overall time. Furthermore, the optimisation model assumes the
stability of network-wide information at the time of placement,
which is often unrealistic due to the dynamic nature of edge
network environments characterized by frequent changes in
network conditions (e.g., path latency between edge nodes).

Unlike the optimal placement model in §III, the heuristic
algorithm performs an incremental placement of vNFs, to find
a near-optimal solution (i.e., with a relaxed optimality require-
ment) to the problem, which also gives network operators the
flexibility to prioritise placements. The algorithm makes locally
optimal decisions based on available resources and paths at each
step. Requests are classified in a simple step after checking the
resource requirement of each vNF (i.e., to decide if a given
vNF in a set of placement requests is stateless or stateful). In
Algorithm 1, vNFRequests consists of stateless and stateful
functions S and S′, respectively. We implement our prototype
network infrastructure G, using the Python NetworkX1 Library,
and use the shortest_path() function to compute all
possible network paths for placement. Data plane processing
elements (e.g., programmable switches or SmartNICs) along a
given path are checked with the available resource capacity Qj ,
ensuring the constraints are respected. Note that this condition
is relaxed for user space hosts based on our assumption of the
abundance of resources on such hosts.

We use the checkvNFtype() function to ascertain if a
particular vNF is a stateless or stateful function before assigning
it to the right packet processing element. User space hosts h ∈ H
handle the requests not fulfilled by the data plane due to the
lack of available resource capacity. This process repeats until
all functions in vNFRequests are successfully assigned. The
most up-to-date placements are returned, with the overall latency
of the used path. Depending on the service provider’s policies,
our placement scheme can easily be extended to accommodate
specific needs (e.g., prioritising paths with the lowest latency for
premium subscribed users).

V. EVALUATION

We describe our evaluation environment in §V-A. To show the
benefits of running vNFs on heterogeneous hosts, we evaluate
two placement scenarios in §V-B, i.e., user-space-only and
hybrid vNF placements, particularly to ascertain the average
latency of users to their vNFs. We compare the performance
of our heuristic algorithm and the optimisation model in §V-C
(in terms of objective functions), using three main scenarios,
i.e., data-plane-only, hybrid and user-space-only placements. To
gain insights on the percentage of vNF placement requests
fulfilled, we evaluated in §V-D. Finally, we again compared
the performance of our heuristic to the optimisation model by
considering a scenario with dynamic latency behaviour in §V-E,
particularly in handling latency violations.

A. Evaluation environment design

We used a real-world network topology from topology zoo2.
We modelled the hybrid network topology by capturing the pecu-
liar characteristics and constraints of the network data plane and
introducing compute capacities on edge nodes, representing our
network data plane. Table II shows some of the characteristics of

1https://networkx.org
2http://www.topology-zoo.org/

representative vNF use cases [12], [13], with latency thresholds
ranging between 5 to 80 ms.

Table II: Common use case latency characteristics

Example application Latency class Latency bound
Autonomous vehicles Real-time 5 ms

Smart Grids Low (near real-time) 10 ms
Mixed Reality (AR & VR) Low (soft real-time) 10 - 15 ms

Service Orchestration Near real-time 20 ms
Monitoring applications Non real-time 80 ms

The nationwide Jisc NREN UK backbone network topology
was used by adjusting the bandwidth parameter and topology
size to fit edge DC environments and our use case of having
heterogeneous nodes. The bandwidth limit between vNF hosts is
set to 100 Mbit/s or 1000 Mbit/s, depending on vNF bandwidth
requirements. Compute capacity is provisioned on edge devices,
and we assume the data plane to have finite computing resources
(i.e., I/O, memory, storage etc.) with ample resources on user
space hosts.

The values of link latency are sampled from a Gamma
distribution using the parameters (k = 2.2, θ = 0.22). Thus,
a time series is created by sampling from this distribution
(with a value of 100 in our experiment), representing the link
latency values over time. This time series reflects periods of low
latency and occasional high latency spikes – a typical pattern in
edge/WAN networks due to traffic rerouting, avoiding congested
paths etc. We modelled these values from real-world latencies
observed from the Energy Sciences Network (ESnet) PerfSonar3

measurements.

B. User-space-only and hybrid placement latency

In this evaluation, we show the user latencies of placing
network functions in two main scenarios, i.e., user-space-only
and hybrid. We implemented the placement model presented
in §III using a commercial optimization solver, Gurobi4. Edge
users were assigned a typical last hop latency of 2 ms to their
respective vNFs. We allocated vNFs to each user with different
latency requirements, a typical scenario for vNFs with user space
and hybrid requirements. We allocate computing resources to
our topology’s data plane and user space nodes and generate
500 vNF placement requests.

As depicted in Figure 1, placing the requested functions using
the hybrid topology yields the lowest latency, which deteriorates
as the number of vNFs grows (∼ 300 vNFs). We attribute this
phenomenon to the low resource capacity of the available data
plane nodes closer to the users along a chosen network path,
which results in the use of user space hosts. The user-space-only
placement results in much higher latency, although this comes
with the advantage of fulfilling more diverse vNF placement
requests (demonstrated in §V-D). Note that the hybrid placement
scenario presents a sweet spot in terms of reduced latency, as it

3http://ps-dashboard.es.net/maddash-webui/
4https://www.gurobi.com/

Figure 1: Average user to vNF latency in user-space-only and
hybrid optimisation placement scenarios.

presents a trade-off between the resource-constrained nature of
the data plane and the high latency of user space nodes.

C. Optimisation and heuristic objective functions

In this evaluation, we take note of the values of the objective
functions for all placement scenarios, for the optimisation and
heuristic placements, focusing on analysing how the overall
objective function (end-to-end latency) varies in each scenario.
We maintained the same number of requests as with previous
experiments (500 vNFs) and focused on evaluating the effect
of capacity constraints. As depicted in Figure 2, we varied
the resource capacity of the edge nodes in our topology –
specifically, network functions were assigned using data-plane-
only, hybrid and user-space-only scenarios. This allowed us to
assess the model’s performance and heuristic solutions under
different resource constraints.

Figure 2: Heuristic and optimisation objective functions for
different placement scenarios.

In the first hybrid placement scenario, data plane nodes can
host 50% of the total vNF placement requests; we reduced this
number in the second hybrid placement scenario to 30% to
observe how it affects the objective function and finally to 0
(in the user-space-only scenario).

We noticed that the data-plane-only scenario yields the lowest
end-to-end overall latency, about 78% better than the user-space-
only placement scenario. The best-case scenario in hybrid place-
ments is the first hybrid placement, which is 48% better than
the user-space-only placement. We attribute this phenomenon
to the preference for data plane edge nodes over user space

nodes, particularly in hybrid placement scenarios. The hybrid
scenario also provides the core advantage of encompassing edge
nodes with heterogeneous capabilities – we can thus push more
delay-sensitive applications down to the network data plane to be
processed quickly. The heuristic placement yields near-optimal
objective function values in all scenarios, which is also about
20X faster.

D. Number of placement requests fulfilled

In this evaluation, we focus on the heterogeneity of the placed
vNFs, while keeping other components of our evaluation the
same for consistency. We generated 500 user vNF placement
requests using a Gamma distribution with k=1.6 and θ = 0.5
for stateless functions and k=2.5 and θ = 1 for stateful func-
tions. The Gamma probability distribution captures the nature
of commonly used network functions, where many are simple
stateless functions deployable in the data plane [14]. Thus, the
heavy-tailed distribution values for stateless functions in our
evaluations represent this phenomenon (i.e., a high occurrence
of such functions).

Figure 3: Comparison of the number of fulfilled vNF placement
requests with different numbers of user placement requests.

As depicted in Figure 3, the hybrid scenario maintains many
fulfilled requests, attributed to the support for all types of
network functions. Although the number of fulfilled placement
requests is lower in the data-plane-only scenario, it offers
reduced latency (as demonstrated in §V-B). More than 60% of
received requests are processed in the data plane, particularly for
< 300 requests; this number drops as the number of placement
requests grows, and fewer stateless network functions are found
in the requests.

E. Dynamic latency violations

The dynamic nature of mobile edge users often results in
changes in the temporal latency values over time, i.e., due to the
mobility of users. Note that vNFs have a latency threshold value
Πi > 0 (defined in eq. (7)), which is set by network operators
(e.g., based on latency SLA between providers and customers)
– violating this set latency threshold could result in application
performance degradation.

We analyze the number of latency violations over a time series
(introduced in §V-A); a time instance in the series could be,
e.g., 3 minutes in real-world edge network environments. We set
the value of Πi at 30 ms for this evaluation (note that network
operators can define this threshold based on the agreed SLA). By

incorporating a time series component, we employed a hybrid
placement scenario that expands upon evaluating the heuristic
and optimal objective functions presented in §V-C. Specifically,
we track latency violations at each time instance.

Figure 4: Heuristic and optimisation latency violations perfor-
mance.

In Figure 4, we show the latency violations over the time
series to evaluate the ILP model and heuristic performance and
provide service providers with valuable insights into application
latency violations. Note that the hybrid placement heuristic
presents fewer latency violations – we attribute this to the
incremental placement mechanism employed by the heuristic,
which prioritises the available shortest network paths containing
data plane processing elements at the time of placement, i.e.,
unlike the ILP model, which tries to compute the end-to-end
latency by considering the global network parameters, thus
leading to a higher number of latency violations at several time
instances.

VI. CONCLUSIONS

In this work, we argue that to achieve faster service delivery
and cater for diverse vNF requirements in emerging edge net-
work environments, in addition to edge vNF placement, network
operators can leverage the network data plane for deploying
virtual network functions. We investigated the diverse nature of
user vNF placement requests based on emerging use cases such
as e-healthcare, autonomous vehicles etc. We proposed a hybrid
vNF placement optimisation model and heuristic that leverages
the low-latency, high-speed feature of the network data plane
and the abundant resources on user space hosts.

The heuristic solution is designed to cater to real-world
networks’ dynamic nature, which makes using optimisation
models challenging; thus, HYPHA can quickly obtain near-
optimal vNF mapping while incurring fewer latency threshold
violations set by network operators (§V-C and §V-E). Through
extensive evaluations, we demonstrate that employing a hybrid
deployment scheme that leverages the processing capability of
the network data plane yields minimal user-to-vNF latency and
overall end-to-end path latency, thus fulfilling the placement of a
diverse set of vNF requests from emerging use cases. Network
operators can leverage the high-speed, low-latency feature of
data plane packet processing elements for hosting delay-sensitive
applications and improving service delivery for subscribed users.

Also, in addition to emerging edge use cases, our placement
solution can be adapted to efficiently place network functions in
core network infrastructure while leveraging the heterogeneity of
servers. Further research includes supporting live vNF placement
rescheduling in a hybrid edge network topology to leverage the
heterogeneous network data plane capabilities.

ACKNOWLEDGMENTS

This work was supported in part by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) grant
EP/N033957/1, the PETRAS National Centre of Excellence
for IoT Systems Cybersecurity, which the UK EPSRC has
funded under grant number EP/S035362/1, and the Petroleum
Technology Development Fund (PTDF) Nigeria, grant 1563/19.

REFERENCES

[1] D. Harris and D. Raz, “Dynamic vnf placement in 5g edge nodes,” in 2022
IEEE 8th International Conference on Network Softwarization (NetSoft).
IEEE, 2022, pp. 216–224.

[2] H. U. Adoga and D. P. Pezaros, “Network function virtualization and
service function chaining frameworks: A comprehensive review of require-
ments, objectives, implementations, and open research challenges,” Future
Internet, vol. 14, no. 2, p. 59, 2022.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[4] H. U. Adoga, Y. Elkhatib, and D. P. Pezaros, “On the performance benefits
of heterogeneous virtual network function execution frameworks,” in 2022
IEEE 8th International Conference on Network Softwarization (NetSoft).
IEEE, 2022, pp. 109–114.

[5] K. A. Simpson, R. Cziva, and D. P. Pezaros, “Seir: Dataplane assisted flow
classification using ml,” 2020.

[6] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic external memory
for switch data planes,” in Proceedings of the 17th ACM Workshop on Hot
Topics in Networks, 2018, pp. 1–7.

[7] H. Moens and F. De Turck, “Vnf-p: A model for efficient placement of
virtualized network functions,” in 10th international conference on network
and service management (CNSM) and workshop. IEEE, 2014, pp. 418–
423.

[8] J. Cao, Y. Zhang, W. An, X. Chen, Y. Han, and J. Sun, “Vnf placement
in hybrid nfv environment: Modeling and genetic algorithms,” in 2016
IEEE 22nd International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2016, pp. 769–777.

[9] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “Vnf placement
optimization at the edge and cloud,” Future Internet, vol. 11, no. 3, p. 69,
2019.

[10] F. Carpio, W. Bziuk, and A. Jukan, “On optimal placement of hybrid
service function chains (sfcs) of virtual machines and containers in a
generic edge-cloud continuum,” arXiv preprint arXiv:2007.04151, 2020.

[11] M. Shahjalal, N. Farhana, P. Roy, and M. A. Razzaque, “Qoe aware optimal
deployment of virtual network functions in 5g hybrid cloud,” in 2021
3rd International Conference on Sustainable Technologies for Industry 4.0
(STI). IEEE, 2021, pp. 1–6.

[12] Y. Rafique, A. Leivadeas, and M. Ibnkahla, “An iot-aware vnf placement
proof of concept in a hybrid edge-cloud smart city environment,” in 2022
IEEE Wireless Communications and Networking Conference (WCNC).
IEEE, 2022, pp. 1395–1400.

[13] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vnf placement at the network edge,” in Ieee infocom 2018-ieee
conference on computer communications. IEEE, 2018, pp. 693–701.

[14] X. Chen, H. Liu, D. Zhang, Z. Meng, Q. Huang, H. Zhou, C. Wu,
X. Liu, and Q. Yang, “Automatic performance-optimal offloading of
network functions on programmable switches,” IEEE Transactions on
Cloud Computing, 2022.

	Enlighten Accepted coversheet (IEEE CC BY 4.0)
	304311

