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Abstract

Artificial neural nets can provide a general framework for non-
linear modelling and control. This paper describes the use of
neural nets to model and control a non-linear second order
electromechanical model of a drive system with varying time
constants and saturation effects. A Model Predictive Control
structure, with neural network model is used. This is compared
with a Pl controller with regards to performance and robust-
ness against disturbances. Two types of network architecture
were compared: Multi-layer Perceptrons and Radial Basis
Function Nets. The problems involved in the transfer of con-
nectionist theory to practice are discussed.
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Model Predictive Control, Drive Systems,
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Notation used

T — Torque reference

T — Load torque

Tel — Electrical torque

Tme —mechanical torque

Tmax — 1" saturation level

Tmaxo — initial saturation level

Tinit — initial motor time constant

T — motor time constant

J —inertia

® — shaft speed

T - threshold speed

ts - sampling time

th — Prediction horizon

Uk —input at time k

Yk — output at time k

Yref — target output

Ymodel — Model output

Yopt — mode! prediction used by optimisation routine

digo — plant and measurement disturbances

d — estimated disturbance

E - modelling error

Emax — worst modelling error in training set

| — index of the controller quality

Ko — Proportional constant in Pl controller

K; — integral constant in Pl controlier

Neural Networks in Modelling and Control

The conventional method of modelling and controlling dynamic pro-
cesses is to try to form a physically based mathematical model of the

system being studied which approximates the input-output relation-
ship observed from the real system. For the sake of practicality, this
usually involves the engineer making simplifying assumptions dur-
ing the modelling phase, which results in poorer control perfor-
mance, and requires a great deal of experience. Non-linear systems
present particular problems since there is no simple and unifying
body of theory available for this case.

Itis often claimed that learning systems such as neural nets offer an
alternative, faster, better solution to such problems. The networks
are inherently non-linear and multi-variable. They can theoretically
learn arbitrary input-output mappings of data which can be both
quantitative and qualitative. Hunt and Sbarbaro have suggested the
use of conventional control structures which are ideal for neural net-
works [4].

This paper describes an implementation of some of these ideas, with
the intention of evaluating their applicability and any difficulties, on
the basis of a simple example.

Modelling & Control of Non-linear Dynamic Systems

The problem considered involves the speed control of a second or-
der system based on a rough model of an electromechanical drive
system, which can be controlied using normal control techniques,
but which also provides some challenging problems. Five models of
varying complexity have been analysed (Systems A—E).

The basic model (System E) is shown in Figure 1. The model has in-
ternal feedback effects, which are introduced by making the satura-
tion limit on the control input inversely proportional to , when > o,
The variable w is available for feedback.
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Figure 1 : The model with varying time constant and saturation (Syst. E)
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The saturation and time constant varying as shown below:

Tmaxo

Tint »(1 + (LQL(;T_U)T))

Systems A to D are varying configurations of this model, described
later.

Thax =

T =

Interesting areas in this problem are:

1. Modelling a non-linear system using neural nets.

2. Modelling a dynamic system

3. Use of neural nets in standard control structures for more robust
control.

4. The load torque was viewed as an unmeasurable disturbance.

Modelling the Plant

A major proportion of any control project is spent trying to form an
adequate mode! of the plant. This is where itis claimed that neural
networks have a greatadvantage over classical techniques because
they can be ‘trained’ with observed data from the real plant (or an ex-
isting model of the plant), to reproduce the characteristics of the
plant, as a black box model. The neural networks are used as non-
linear, multi-variable function approximation tools.

The ‘training’ involves the optimisation of the weights in the network
untit the knowledge distributed among them is sufficient to provide
ablack-box model of the plant. There are different methods of adijust-
ing the weights (learning algorithms), and different neural architec-
tures.

Dynamic Models

The construction of a dynamic model with neural nets is a more diffi-
cult task than that of a static model. To ensure that past inputs are
considered, the problem can be transformed from a temporal one to
spatial one by supplying the past values of inputs and outputs as new
input dimensions. An alternative to this is the use of recurrent net-
works, which contain internal feedback connections.

Two feed-forward network types, the Multi-Layer Perceptron (MLP)
and Radial Basis-Function Nets (RBF), were used to model the sys-
tem. As this system is second order, the discretised form of the func-
tion can be described by an equation of the form

Yk = f(Uk-1, Uk-2, Vi1, Yk-2). The use of neural networks to describe
a non-linear dynamic system is based on the assumption that the
system can be represented by a non-linear auto-regressive moving
average model with exogenous inputs (NARMAX) over the whole
operation envelope. The validity of this assumption is discussed by
Leontaritis and Billings in [6].
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Figure 2 : Training a neural model of a dynamic plant

Creating the Training Data

A training set of input output pairs is needed to provide sufficient in-
formation to model the non-linear plant. An input signal must be cho-
sen which will excite all the dynamic modes of the system and cover
the whole amplitude range of interest, otherwise the validity of the
model will become highly input sensitive. The aim of this work was
to see how feasible it is to try and form a non-linear dynamic model
using a training set obtained by measuring the inputs to, and outputs
from the real plant, using a minimum of a priori knowledge.
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Figure 3 : Training data for the neural model of the plant

The data used for training was obtained by putting the model in a
simple proportional feedback control structure. The choice of an ex-
citing reference trajectory for a non-linear dynamic system is not
easy and intuition is not always optimal [2].The reference signal
used during the data acquisition phase was a low frequency sinu-
sional input which was disturbed by white noise. The sinusoidal ba-
sis ensured that the training examples were taken from the whole in-
put space. The white noise ensured that throughout the input space
the network had been exposed to the system'’s dynamics by making
abrupt changes to the reference inputs. It is important that the basic
sine wave is of a low enough frequency that the plantcan easily keep
up with it. If a plant spends most of its time at a particular operating
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point, it is also sensible to provide more training examples in this
area.

The quality index used to determine the model performance over the
training set was the average absolute error from each pattern p:

total
_ YretP) — ¥Ymodel(P)
E= Z total

p=1
also important is the worst error found in the data set.

Emax

= max("yref(p) - ymodel(p)”)

The creation of test and training sets by stimulating non-linear dy-
namic systems is a complex area which requires further study. As the
model quality is dependent on the training set quality, an important
research goal is to produce a general, clear procedure for the pro-
duction of a training set, as for the techniques necessary to test the
trained model and controller.

Measurement Noise and Disturbances

Many systems are prone to unmeasureable disturbances. If pos-
sible, these should be kept to a minimum during training, as they pro-
vide conflicting training data. This does not mean that the system
cannot learn, just that the results are usually poorer. The unmeasur-
able factor in this experiment was the load, T. During the collection
of the training data, this was maintained at a constant operating
point. Performance can be improved by modelling the disturbances
and using this to improve control.

In a real system, the measurements of the training data are likely to
be subject to noise, and the system output is going to be influenced
by unpredictable disturbances. The training set will, therefore, have
contradictory examples and an exact fit to the training set will not be
possible. The job of the neural net is therefore; to find a generalisa-
tion which represents the underlying system, while ignoring the
noise, or which finds the underlying characteristics of the distur-
bances.

Simulation Environment

All experiments were carried out in a MATLAB/SIMULAB program-
ming environment. This enabled the combination of neural netideas
with standard control and signal processing toolboxes.

Modelling Results

All results in this section refer to the same sets of training data. This
consisted of 4000 input—output pairs. The figures for average and
worst error shown in Tables 1 & 2, refer to the results of a test run of
1000 input—output pairs not presented during the training phase.

The radial basis function (RBF) network used was a standard RBF
Net, with Gaussian units, as described in [7][8]. The optimisation of
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the weights in these networks is linear, and fast, if the centres are
fixed beforehand.

The simplest method of placing the centres is simply to cover the in-
put space with a regular pattern of Gaussian units, in a similar tech-
nique to that of Albus [1]. We experimented with this method, but the
problem with was that to achieve an adequate resolution to approxi-
mate the transfer function required a large number of units with very
restricted receptive fields. This then lead to the requirement of even
more training data, and long training times, which proved to be im-
practical.

Moody and Darken [7] used a fully supervised method which at-
tempted to optimise weights, centres and radii together, but this was
not particularly successful. They then developed a hybrid method,
where the centres are chosen using k-means clustering and the radii
using a global first nearest neighbours statistic. The weights were
then optimised using LMS optimisation.

A similar solution to Moody and Darken’s hybrid one was chosen.
The basis function centres were placed using a clustering technique,
which reduced the number of units required dramatically. The unitra-
dii were set according to the proximity of the neighbouring centres.
The weights were then adapted using one-pass training by the cal-
culation of the pseudo-inverse.

The Back-Propagation algorithm (BP) [3] was used to train multi-
layer perceptrons (MLP) for comparison, as it is the most widely
used learning algorithm.

The ability of the two neural architectures to model the varying de-
grees of non-linearity is compared in Tables 2 and 3.

System parameters were:

J=1kgm2 t=0.1s, T =0.0 Nm, Tmax= 1 Nm,

wr=0.5rads™".

The sampling time was ts = 0.05 s. A discrete representation of the
plant was used. The inputs and outputs were all normalised to lie
within the range 0 to 1. The various systems (A—E) are described in
Table 1 below.

System Description

A Tax=, fixed .

Fixed Tmax, fixedt.
Varying Tmax. fixed t.

Fixed Tmax, varying t.

m| O] O| @

As in Figure 1,

Varying Tmax, varying t.

Table 1 : Systems A-E with varying complexity.

The resuits shown in Table 2 are for the RBF Net. The numbers in
brackets are the results of a test set of data, which had not been used
during network training.



System [No. units [Av. error [Max er- [Max Aw |Ave. Aw
ror
A 118 0.08 0.32 2.80 0.59
(0.11) (1.18)
B 119 0.08 0.35 2.06 0.59
0.11) (1.55)
C 114 0.07 0.28 2.02 0.57
(0.08) (2.35)
D 120 0.07 0.28 2.1 0.56
(0.08) (2.35)
E 121 0.07 0.31 1.91 0.50
(0.08) (1.77)
F 114 0.12 0.95 212 0.42
(0.33) (4.62)
Table 2 : Modelling results for the RBF Net
System [No. hid- [Av. error [Max er- [Max Aw Ave. Aw
den units ror
A 20 0.1 04 2.80 0.59
(0.11) (0.5)
B 20 0.15 14 2.06 0.59
(0.16) (1.1)
(o} 20 0.15 1.1 2.02 0.57
(0.15) (1.3)
D 20 0.1 1.1 2.1 0.56
(0.12) (1.2)
E 20 0.17 13 1.91 0.50
(0.18) (1.5)

Table 3 : Modelling resuits using MLP trained with BP.

The most basic form of BP, with no ‘improvements’ was used, for
simplicity. The standard three-layered network, with one input layer,
one hidden layer and one output layer, was used. The hidden layer
contained 20 units. Different sizes of networks were tested, but in-
creasing the size did not bring any improvement in performance.

A comparison of the model accuracies described in the above tables
shows a consistantly higher modelling accuracy from the RBF nets.
This is consitent with claims that RBF nets have the better approxi-
mation ability, compared to multi-layer perceptrons[8].
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Figure 4 : The output of the RBF model of System E, operating in
parallel with the plant.
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A plot of the model working in parallel with the plant is shown in Fig-
ure 4. Note that only one line can be seen in the upper plot, as the
model and plant have such similar behaviour.

It is also interesting to note that for both BP and RBF, the different
types of non-linearities in the various systems have littie effect on the
accuracy of the final model.

Model Predictive Control

Model Predictive Control (MPC) is one of many conventional control
structures suitable for use with neural networks.

Ifitis possible to model the system dynamics adequately with a neu-
ral network, the trained network can be used to provide predictions
of the plant response over a specified prediction horizon t,{9]. These
predictions can then be used by an optimisation routine to produce
the optimum contro! output for the current time step, by minimising
the index:

t,+k

2
L= > (Veetl) = Yrmosel®) + MAU()?
i =k
yref, A T‘ 4
S Optimisation E Uk rant )yK
i : ant |——C
u’ y
: Predict f L Model |Ymodel
! Model ' -
RE S oo
T b Yk
Controller

Figure 5 : Predictive control using a neural network for the model

Optimising the Controlier

In this experiment, the index we used was as above, with A; set to
zero. The control effort u was optimised by using a gradient descent
algorithm to minimise the index. In other words, to adjust u, use

__6yg:.,. to calculate the desired change in u (Au), and apply this itera-

tively, until the convergence criteria are met.

2
E = (yref - ymodel)

_9E
Au ou
9E_ 9Y mode
AU x — ————==
aYmodel ou

0

Au x — (yref - ymodel)_y%ﬁ&

If the model is a neural network the numerical derivation is theoreti-
cally easy. In practice, using gradientdescent is not quite so straight-
forward. The step size is important, local minima can occur, the con-
vergence criteria will vary from problem to problem, and the model




must be accurate. The models produced by the Back-Propagation
learning algorithm were too inaccurate to produce good control
using gradient descent optimisation.

This method can also be used to produce a training set for a neural
controller, where the optimal value for each starting point in the opti-
misation process is found. Training another neural network on this
data will result in improved run-time efficiency, as the on-line opti-
misation is computationally expensive.

Control Results compared to Pl Control

The two control algorithms; Proportional+Integral (P1), and Model
Predictive Control (MPC) were tested with the reference inputs
shown below, controlling System E. A Pl controlier was chosen, not
only because of its simplicity, but also because it is still a very widely
used controller for drive systems [5].

To prevent controller windup of the Pl controller in the saturation
area, the control variable was limited between -Tmyax and Tmax, The
control law is therefore:

u(k) = limit(u(k—1) + Kpe(k) + (KiKp)e(k=1), [-Tmax Tmax]),

The Pl constants were tuned using the Ziegler-Nichols method, giv-
ing Kp = 6.75 & K = 19.62.

The RBF Model for System E was used for the Model Predictive Con-
trol. The prediction horizon t, was set to be two steps ahead of the
current time.

The minimum expectation is that the controller should have a steady
state error of zero (i.e. matches the integral part of the classical P}
controller). For step changes in the reference input, the percent
overshoot of the actual output should not be more than 5%. The set-
tling time to within 2% of the desired value should be minimised. The
load cannot be measured and can change instantaneously.

1 Reference & plant

; [\

;

time(s)

Control effort
1F i
PR -—1\/\,__} W
1F J
5 10 15 20 25

time(s)

Figure 6 : Controlling system E with a Pl Controlier.
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Figure 7 : Model Predictive Controller with a neural model.

Controlier Index
Pl 6.710
RBF MPC 5.733

Table 4 : Performance index for controllers, without disturbances.

Comparing the above plots, itis obvious that the MPC approach pro-
vides better control. There is less overshoot and osciliation, which
is to be expected, taking the simplicity of the P! controller into ac-
count. The design of a linear controller for a non-linear plant will al-
ways have to make trade-offs of performance at various operating
points. This is reflected in the indices in Table 4.

Optimising Control Effort, with Disturbances

The difference between ymogdel and y is effectively an estimate of the
disturbance acting on the plant, as well as the modelling error. This
can be included in the predictive model, during optimisation at time
k, as shown in the equations below. d’ is taken to be a step-like distur-
bance. yop is the predicted motor speed used by the optimisation
routine.

yom(i + D =y{+1)+dG)

. d'(i), i>k
d'i+1) = Y0) = Yimogel> 1 = K

This can be clarified by imagining a disturbance caused by an in-
crease in the load. If the estimated disturbance were not to be taken
into account, the optimisation routine would produce a control effort
inadequate for the new situation, being modelied on the systems re-
sponse with a lower load.

r
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Controlling Disturbances

The controller was applied to a system with disturbances. The load
was increased and decreased, as shown in Figure 8.

Load disturb
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Figure 8 : Load disturbances
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Figure 9 : P Controller with disturbances

The Model Predictive Controller (MPC) coped with the disturbances
well, returning to the reference value, then producing a control signal
which exactly balanced out the disturbance, without overshoot, or
oscillation, unlike the P1 controller. The relative performance can
also be observed by comparing the indices.
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Figure 10 : Model Predictive Control with disturbances

Controller Index
Pl 0.788
RBF MPC 0.578

Table 5 : Performance index for both controllers, with disturbances.

Conclusions

An accurate model of a non-linear second order system was created
by exciting the system, measuring the inputs and outputs, and using
this data to train a neural model. RBF nets produced more accurate
models of the system than the MLP architecture trained with Back-
Propagation.

The system was then controlled by using a standard model predic-
tive control structure with the trained neural network model, achiev-
ing better performance than a P! controller with anti-windup. This
provides a stepping stone to more imaginative use of such learning
algorithms on more realistic systems.

The experience gained during this work also indicates that more
widespread use of neural networks in practical applications requires
generally refiable engineering strategies for the implementation of
these new techniques. Such strategies are far from complete.

A priori knowledge about the system being modelled is not disre-
garded when neural nets are used, contrary to claims made by many
neural net researchers. It plays a vital role implicitly; the choice of in-
put variables to the model, the limits on these variables, the
construction of the training data, and the choice of control structure
are all factors which are heavily influenced by an understanding of
the system. Neural networks must be seen as an extension to the
conventional modelling and control methods, rather than a replace-
ment.
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