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Abstract

Pattern selection and subsequent morphological evolution are of remarkable significance, since
they are critical for living creatures to fulfill certain biological functions and also have widespread
potential applications from disease diagnosis to advanced manufacturing. Geometrical incompati-
bility is omnipresent in biological systems and plays a critical role in pattern selection of the growing
soft biological tissues. However, how geometrical incompatibility guides pattern selection in grow-
ing soft matter remains poorly understood. Here, we present a theoretical model to investigate the
influence of geometrical incompatibility on pattern selection of growing bilayer tubes. Our linear
stability analysis illustrates that an increase of the geometrical incompatibility parameter provokes
the instability pattern transition from a longitudinal pattern to a two-dimensional (2D) pattern
and then to a circumferential pattern. Based on the theoretical model, a series of quantificational
experiments and finite element simulations are implemented to study how geometrical incompat-
ibility guides pattern selection of growing bilayer tubes and explore the post-buckling evolution
of the emerging patterns. Both the numerical simulations and experimental observations agree
well with our theoretical predictions. In particular, with further growth far beyond the thresh-
old, a secondary bifurcation is observed in the post-buckling evolution of the 2D pattern. This
study suggests that geometrical incompatibility can serve as an implementable experimental tool to
quantificationally guide pattern selection and subsequent morphological evolution of growing soft
matter, which can be used for growth self-assembly and multifunctional surface manufacturing.
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1. Introduction

Diverse surface patterns across length scales in soft matter are ubiquitous in nature. Numerous
instances can be found in our surroundings, including various shapes of plant leaves (Huang et al.,
2018; Dervaux and Ben Amar, 2008; Xu et al., 2020a), wrinkling and cusp formation of spherical
fruits and vegetables (Yin et al., 2009; Liu et al., 2020; Chakrabarti et al., 2021), buckling instability
of growing tumors (Ben Amar et al., 2011; Ciarletta, 2013), morphological evolution of the gut
during embryogenesis (Savin et al., 2011; Shyer et al., 2013), and pattern formation in dehydrated
leaves, green pea and many types of fruits (Xiao and Chen, 2011; Li et al., 2011b; Liu et al.,
2015). These specific morphologies in living creatures are indispensable to fulfill certain biological
functions. Meanwhile, morphological instabilities have attracted considerable attentions due to
their widespread potential applications from the diagnosis of certain diseases (Li et al., 2011a;
Ben Amar and Jia, 2013), deterministic organoid patterning (Gjorevski et al., 2022), biomimetic
4D printing (Sydney Gladman et al., 2016; Ge et al., 2013; Du et al., 2020), multifunctional surface
designs (Barros et al., 2012; Bae et al., 2017; Cheewaruangroj and Biggins, 2019; Xu et al., 2020b),
to the fabrication of stimuli-responsive hydrogel composites (Erb et al., 2013; Thérien-Aubin et al.,
2013). Therefore, understanding the underlying mechanism of pattern selection and morphological
evolution of growable soft matter is of remarkable significance.

Abundant surface patterns in biological systems are generally induced by differential growth
or shrinkage. Much effort has been devoted to studying the mechanical mechanism underlying the
morphogenesis induced by volumetric growth (Rodriguez et al., 1994; Ben Amar and Goriely, 2005;
Goriely and Ben Amar, 2005; Goriely, 2017). The basic theoretical framework of tissue growth has
been established, and it was demonstrated that both differential growth and anisotropic growth
play a crucial role in the mechanical response and morphological instability of soft tissues. Sub-
sequently, the volumetric growth theory was widely employed to experimentally and theoretically
investigate the circumferential instabilities of hydrogel ring and tubular soft tissue (Dervaux and
Ben Amar, 2011; Dervaux et al., 2011; Li et al., 2011a; Moulton and Goriely, 2011). In practice, the
instability pattern in tubular soft tissue can be circumferential, longitudinal and even 2D (Wilcox
et al., 2012). Then, Ciarletta and his collaborators (Ciarletta et al., 2014; Balbi et al., 2015) pro-
posed a three-dimensional model to investigate surface pattern formation and performed a series of
finite element (FE) simulations to explore the post-buckling evolution of a growing bilayer tubular
tissue with axial constraint. Nevertheless, these models were limited to the assumption that bio-
logical tissue is initially stress-free, which is inconsistent with the experimental observations that
a biological tissue is residually stressed at almost any growth state (Stylianopoulos et al., 2012).

In order to characterize the initial stressed elastic solids, Shams et al. (2011) proposed a free
energy density that depends on the elastic strains and initial residual stresses. Besides, Gower
et al. (2015) presented the initial stress symmetry (ISS) condition to restrict the possible choices
of free energy densities. Using the new constitutive model, Ciarletta et al. (2016) studied the
morphological instability of residually stressed tubular soft tissue. To describe the growth and
wrinkling of initially stressed biological tissue, a modified multiplicative decomposition model that
can concatenate any two growth states of an initially stressed soft tissue was established by Du
et al. (2018). Soon after, Du and his collaborators developed a three-dimensional model and
implemented a qualitative control experiment to investigate the influence of initial residual stress
on the growth and pattern formation of bilayer tubular tissue (Du et al., 2019a,b). However,
quantificational experiments for investigating pattern selection of residually stressed growing soft
matter have not been carried out up to now, since the complex distribution of the residual stresses
is difficult to accurately reproduce in the experiments. Therefore, it is of great significance to
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propose a quantificationally implementable strategy to experimentally investigate pattern selection
in residually stressed growing soft matter.

Figure 1: Evidence of geometrical incompatibility in soft biological tissues. (a) Anatomical separation of fresh
human aorta shows that the layer-specific geometrical incompatibilities reside in both circumferential and axial
directions (Holzapfel et al., 2007); (b) Illustration of the existence of geometrical incompatibility by microsurgical
separation of pig oesophagus into three layers in the no-load state (left) and zero-stress state (right) (Zhao et al.,
2007); (c) Rat duodenum strips bent outwards in the longitudinal direction after longitudinal cutting (Dou et al.,
2006); (d) The intact wall and separated layer strips have different opening angles in their zero-stress state, after
removal from the nine consecutive aortic levels in circumferential directions (Sokolis et al., 2021).

Geometrical incompatibility is ubiquitous in living creatures (Buganza Tepole et al., 2016;
Rebocho et al., 2015), especially in layered biological tissues (Fig.1), and has been identified as
the origin of residual stresses in biological tissues (Sommer et al., 2010; Steinmann, 2015). Owing
to easy accessibility with high precision, geometrical incompatibility has been adopted to shape
numerous elegant patterns in soft matter without growth (Aharoni et al., 2017; Caruso et al., 2018;
Davidovitch et al., 2019). Here, we propose using geometrical incompatibility to quantificationally
guide pattern selection in growing soft matter, both theoretically and experimentally, and explore
the post-buckling evolution of the emerging patterns.

In this paper, we attempt to theoretically and experimentally explore the effect of geometrical
incompatibility on pattern selection in growing soft matter. Based on the modified multiplicative
decomposition model, we establish an improved theoretical model to investigate how geometrical
incompatibility governs the onset of instability and pattern selection of a growing bilayer tube by
quantificationally prescribing a residual stress field. Accordingly, a series of quantificational experi-
ments are implemented to investigate patterns formation and subsequent morphological evolutions
of the growing bilayer tubes. Morphological phase diagrams for patterns selection, obtained from
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the linear stability analyses and verified both numerically and experimentally, illustrate how geo-
metrical incompatibility guides pattern selection of the growing bilayer tubes.

This paper is organized as follows. Section 2 gives an initial geometrically incompatible bilayer
tube, and then theoretically analyzes the distributions of residual stresses induced by geometrical
incompatibility and differential growth. In Section 3, we perform a linear stability analysis based
on the incremental theory to derive the critical instability condition and corresponding wavenum-
bers. Section 4 implements a wide class of swelling experiments and a series of FE simulations
to validate the results of our theoretical analysis, as well as explore the morphological evolutions
of the emerging patterns. The results are provided in Section 5, including the phase diagrams on
patterns selection and the post-buckling evolution of the instability patterns. Finally, the main
conclusions are summarized in Section 6.

2. Growth of geometrically incompatible bilayer cylindrical tubes

2.1. Residual stresses induced by geometrical incompatibility

Consider a geometrically incompatible bilayer cylindrical tube constructed from two hypere-
lastic and isotropic tubes with the same length. Here, we introduce the dimensionless parameter δ
to denote the degree of geometrical incompatibility of the bilayer cylindrical tube. We begin from
the stress-free but geometrically incompatible state in which the outer tube has an inner radius B
and an outer radius C, while the inner tube has an inner radius A and an outer radius B(1+ δ), as
shown in Fig.2. In the following, the physical fields of the out tube and inner tube are indicated
by the superscripts o and i, respectively. Accordingly, the initial thicknesses of the outer tube and
the inner tube are Ho = C −B and H i = B(1 + δ)− A, respectively.

Figure 2: Kinematics of a bilayer tube from the geometrically incompatible state to the residually stressed reference
configuration B0 and then to the grown current configuration B.
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Here, we designate the cylindrical coordinates X̃ =
(
R̃, Θ̃, Z̃

)
, X = (R,Θ,Z) and x = (r, θ, z)

for the geometrically incompatible state, the reference configuration B0 and the current config-
uration B, respectively. Fig.2 depicts the interference fit assembly and growth process of the
geometrically incompatible bilayer tube. The inner tube is radially stretched or compressed to
perfectly fit inside the outer tube. The area along the interface between the two tubes is glued
to achieve perfect adhesion, and the bilayer tube is allowed to relax. We denote the inner, in-
terface, and outer radii in the reference configuration B0 as Ri, Rs and Ro, respectively. After
growth, the internal, contact, and external radii in the current configuration B become ri, rs and
ro, respectively.

Due to geometrical incompatibility between two layers, the interference fit assembly will gener-
ate inhomogeneous deformation and residual stress in the bilayer tube. We adopt the incompress-
ible neo-Hookean constitutive model to characterize the deformations of both layers, with elastic
energy densities

W k =
µk

2

[(
λk
R

)2
+
(
λk
Θ

)2
+
(
λk
Z

)2 − 3
]
, (1)

where µk are the shear modulus with k = {i, o}, λk
R, λ

k
Θ, λ

k
Z are the radial, circumferential, and

axial stretches, respectively. For the sake of notation simplicity, from now on, we will omit the
superscript k unless explicitly stated.

The interference fit assembly of the bilayer cylindrical tube is assumed as an axisymmetric
plane strain model, and then the deformation gradient tensor can be given by

Fτ = diag

(
dR

dR̃
,
R

R̃
, 1

)
, (2)

with detFτ = 1 imposed by the incompressibility. Then, using the constitutive law in Eq.(1), the
principal initial residual stresses in the bilayer cylindrical tube are obtained as

τRR = µλ−2 − pτ ,

τΘΘ = µλ2 − pτ ,

τZZ = µ− pτ ,

(3)

where λ = R/R̃ and pτ is the hydrostatic pressure to be determined. In the absence of the body
force, the initial stresses should satisfy the following equation of equilibrium,

∂τRR
∂R

+
τRR − τΘΘ

R
= 0. (4)

Using the stress-free boundary condition at the inner and outer surfaces, we have

τ iRR
∣∣
R=Ri

= 0, τ oRR|R=Ro
= 0. (5)

Besides, since the interface between the two layers is perfect, the radial stresses at the interface
are required to be continuous, being

τ iRR
∣∣
R=Rs

= τ oRR|R=Rs
. (6)

Using Eq.(3) and replacing the variable R by λ, Eq.(4) can be rewritten as

∂τRR
∂λ

= −µ
(
λ−1 + λ−3

)
. (7)

5



Integrating Eq.(7) with the boundary conditions in Eq.(5), the radial stresses of both layers are
derived as

τ iRR =
µi

2

(
R̃2

R2
i + R̃2 − A2

− A2

R2
i

)
+ µi ln

 R̃Ri

A
√

R2
i + R̃2 − A2

 ,

τ oRR =
µo

2

(
R̃2

R2
o + R̃2 − C2

− C2

R2
o

)
+ µo ln

 R̃Ro

C
√

R2
o + R̃2 − C2

 , (8)

where Ri =
√

R2
s + A2 −B2(1 + δ)2, and Ro =

√
R2

s + C2 −B2 with Rs to be determined. Sub-
stituting Eq.(8) into Eq.(6), the continuity condition can be reduced to the dimensionless form:

1

2

(
B̄2(1 + δ)2

R̄s
2 − [B̄(1 + δ)− (H i/Ho)(1− B̄)]2

R̄i
2

)
− µo

µi
ln

B̄

√
R̄s

2
+ 1− B̄2

R̄s


+ ln

(
B̄R̄i(1 + δ)

R̄s[B̄(1 + δ)− (H i/Ho)(1− B̄)]

)
− µo

2µi

(
B̄2

R̄s
2 − 1

R̄s
2
+ 1− B̄2

)
= 0. (9)

Where R̄i =

√
R̄s

2 − B̄2(1 + δ)2 + [B̄(1 + δ)− (H i/Ho)(1− B̄)]2 with R̄s = Rs/C, and B̄ = B/C.

The unknown interface radii Rs can be determined by numerically solving Eq.(9) with an explicit
Newton method. Finally, the principal residual stresses induced by geometrical incompatibility
can be calculated.

/
τ

i
μ

RR

iμτ /

θθ

iμτ /

ZZ

iμτ /

FEM

z

/
τ

i
μ

RR

iμτ /

θθ

iμτ /

ZZ

iμτ /

FEM

z

Figure 3: Transmural distributions of the normalized residual stresses induced by the geometrical incompatibility
of the bilayer tubes that δ = −1/6 (a), δ = 1/6 (b), fixing B/C = 0.75, µo/µi = 10, Hi/Ho = 0.5.

Fig.3 depicts the dimensionless transmural distributions of the residual stresses induced by
geometrical incompatibility in the cylindrical bilayer tube with ζ = (R − Ri)/(R

o − Ri). Here,
we are interested in the distribution of residual stresses in the inner layer. It is apparent that a
negative geometrical incompatibility parameter (δ < 0) can induce radial tensile stress, as well as
circumferential and axial compressive stresses. By contrast, a positive geometrical incompatibility
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parameter (δ > 0) generates radial compressive stress, circumferential and axial tensile stresses in
the inner layer. The maximum circumferential and axial stresses arise at the inner surface of the
bilayer tube. In particular, our theoretical solution show an excellent agreement with the results
of FE simulation.

2.2. Growth of residually stressed bilayer tubes

According to the modified multiplicative decomposition growth model (Du et al., 2018), the
overall deformation gradient tensor F = ∂x/∂X can be decomposed multiplicatively as

F = FeFgF0, (10)

in which Fe, Fg and F0 stand for the elastic deformation tensor, the pure growth tensor, and
the initial elastic deformation tensor, respectively. The initial elastic deformation tensor F0 is
induced by releasing the initial residual stress, and is quantitively the same as F−1

τ here. To be
consistent with the following swelling experiment, we assume that both layers grow isotropically
as Fk

g = diag{gk, gk, gk} with k = {i, o}, where gi and go are the growth factors of the inner layer
and outer layer, respectively. For the sake of simplicity, we defined ḡ = gi/go as the differential
growth ratio of the bilayer cylindrical tube. Then, using the expression of the initial residual stress
τ = µF0

−1F0
−T − p0I, the constitutive equation can be derived as

σ = J
− 2

3
g

(
FτFT + p0FF

T
)
− pI, (11)

where Jg = detFg indicates the volume change ratio and p0, p are the Lagrange multipliers in the
reference and current configurations, respectively.

Here, we characterize the geometrical deformation of the growing residually stressed bilayer
cylindrical tube by prescribing F = diag (dr/dR, r/R, 1). The axial and tangential displacements
at the two ends of the bilayer tube are fully constrained. With the traction free boundary conditions
σi
rr|r=ri

= 0, σo
rr|r=ro

= 0, the continuity at the contact interface σi
rr|r=rs

= σo
rr|r=rs

, as well as the

incompressibility condition det
(
FF−1

g

)
= 1, the radial Cauchy stresses of both layers are obtained

as

σi
rr =

∫ ξi

0

[(
τ iΘΘ + pi0

)( ri

Ri

)2

−
(
τ iRR + pi0

)(J i
gR

i

ri

)2
]
×

(
J i
g

) 1
3 H i

τ (ξ
iH i

τ +Ri)

J i
gξ

iH i
τ (ξ

iH i
τ + 2Ri) + r2i

dξi,

σo
rr =

∫ ξo

1

[
(τ oΘΘ + po0)

(
ro

Ro

)2

− (τ oRR + po0)

(
Jo
gR

o

ro

)2
]
×

(
Jo
g

) 1
3 Ho

τ (ξ
oHo

τ −Ro)

Jo
g ξ

oHo
τ (ξ

oHo
τ − 2Ro) + r2o

dξo, (12)

where H i
τ = Rs −Ri, ξi = (R−Ri)/H

i
τ , Ho

τ = Ro −Rs, ξo = (Ro −R)/Ho
τ . Finally, we are able

to calculate the radial, circumferential and axial components of the Cauchy stress in the current
configuration.

Fig.4 shows the effect of geometrical incompatibility on the circumferential compressive stresses
σθθ and longitudinal compressive stresses σzz at the inner surface, during the differential growth.
It reveals that both circumferential and axial compressive stresses are generated and accumulated
as the differential growth ratio ḡ increases. During the differential growth, a positive geometrically
incompatible (δ = 1/6) bilayer tube generally generates a higher level of compressive stresses than
the initial geometrically compatible (δ = 0) counterpart, both circumferentially and axially. By
contrast, the negative geometrically incompatible (δ = −1/6) bilayer tube generates initial tensile
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stresses, which transform into compressive stresses with gradual growth, and the compressive
stresses are smaller than that in the initial geometrically compatible counterpart with the same
differential growth ratio. The compressive stress, either circumferential or axial, tends to trigger
the instability of the inner layer when it accumulates to a critical value.

g

δ

δ

δ

δ

δ

δ

s θθ

s zz

s θθ

s zz

s θθ

s zz/
σ

i
μ

Figure 4: Normalized circumferential and longitudinal stresses at the inner surface of initial geometrically in-
compatible bilayer cylindrical tubes against the differential growth ratio ḡ. The curves are shown for constant
B/C = 0.75, µo/µi = 7.5, and Hi/Ho = 0.5 at varying δ = {1/6, 0, −1/6}.

3. Linear stability analysis

3.1. Theoretical formulations

In order to study the critical instability and pattern selection of the initial geometrically in-
compatible bilayer tube induced by differential growth, we perform a linear stability analysis based
on the incremental theory for tissue growth (Ben Amar and Goriely, 2005). Then the incremental
displacement field can be expressed as

ẋ = u(r, θ, z)er + v(r, θ, z)eθ + w(r, θ, z)ez, (13)

where the functions u, v, w are incremental displacements, and er, eθ, ez represent the unit base
vectors of the cylindrical coordinate system. Hence, the incremental displacement gradient tensor
Ḟ I becomes

Ḟ I =
∂ẋ

∂x
=


∂u
∂r

1
r

(
∂u
∂θ

− v
)

∂u
∂z

∂v
∂r

1
r

(
∂v
∂θ

+ u
)

∂v
∂z

∂w
∂r

1
r
∂w
∂θ

∂w
∂z

 , (14)

together with the incremental incompressibility condition:

tr Ḟ I =
∂u

∂r
+

1

r

(
∂v

∂θ
+ u

)
+

∂w

∂z
= 0. (15)
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Then, the incremental nominal stress Ṡ in push-forward form can be obtained as

ṠIij = AI
eijklḞIlk − ṗδij + pḞIij, (16)

where ṗ is the incremental Lagrange multiplier and AI
eijkl = FeiαFekβ

∂2W
∂Fejα∂Felβ

are the instanta-

neous elastic moduli. In the absence of body forces, we can postulate the incremental equilibrium
equation and boundary condition as follows:

divṠI = 0, ṠT
I n = 0. (17)

To determine the critical condition of surface instability, we consider the variable separation of
incremental fields in the following form:

u = U(r) cos(mθ) cos (kzz) , ṠIrr = Σrr(r) cos(mθ) cos (kzz) ,

v = V (r) sin(mθ) cos (kzz) , ṠIrθ = Σrθ(r) sin(mθ) cos (kzz) ,

w = W (r) cos(mθ) sin (kzz) , ṠIrz = Σrz(r) cos(mθ) sin (kzz) ,

ṗ = P (r) cos(mθ) cos (kzz) , (18)

where m and kz = 2nπ/L (with m,n ∈ N) are the circumferential and axial modes respectively,
and the amplitudes U, V, W, P, Σrr, Σrθ, Σrz are scalar functions of r only. Thereafter, the
governing equations in Eqs.(15) and (17) can be rewritten in the Stroh form:

d

dr
η(r) =

1

r
G(r)η(r), (19)

where η = [U, rS]T is the displacement-traction vector, in which U = [U, V,W ]T and S =
[Σrr,Σrθ,Σrz]

T . Here, G is the so-called Stroh matrix that can be decomposed into the follow-
ing block form:

G =

(
G1 G2

G3 −GT
1

)
. (20)

The components of the 3× 3 sub-blocks are given by

G1 =


−1 −m −kzr

mp
AI

erθrθ

p
AI

erθrθ
0

kzrp
AI

erzrz
0 0

 ,G2 =


0 0 0

0 1
AI

erθrθ
0

0 0 1
AI

erzrz

 ,G3 =


κ11 κ12 κ13

κ12 κ22 κ23

κ13 κ23 κ33,

 (21)

with

κ11 = m2

[
AI

eθrθr −
p2

AI
erθrθ

]
+AI

eθθθθ + 2p+ k2
zr

2

(
AI

ezrzr −
p2

AI
erzrz

)
+AI

errrr,

κ12 = m

(
AI

eθrθr +AI
eθθθθ + 2p− p2

AI
erθrθ

+AI
errrr

)
,

κ13 = kzr
(
AI

errrr + p
)
,

κ22 = m2
(
AI

eθθθθ + 2p+AI
errrr

)
+AI

eθrθr + k2
zr

2AI
ezθzθ −

p2

AI
erθrθ

,

κ23 = kzrm
(
2p+AI

errrr

)
,

κ33 = m2Aeθzθz + k2
zr

2
(
AI

ezzzz + 2p+AI
errrr

)
. (22)
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In order to numerically solve the incremental equations in Eq.(19), we adopt the surface
impedance matrix method to implement a robust numerical procedure. With the linear functional
relation rS = ZU (Destrade et al., 2009), we derive the following Riccati differential equation

dZ

dr
=

1

r

(
G3 − ZG1 −GT

1Z− ZG2Z
)
, (23)

where Z is the surface impedance matrix.
To find the numerical solutions, we must perform numerical integration from the initial condi-

tion Zo(ro) = 0 to the target condition detZi(ri) = 0. The continuity condition Zo(rs) = Zi(rs)
is also employed to integrate numerically, since the radial stress, shear stress, and displacements
are continuous at the interface between two layers. The initial condition and the target condition
correspond to the traction-free boundary condition at the outer and inner surface, respectively.

3.2. Theoretical results of the linear stability analysis

Based on the linear stability analysis, we specifically investigate how geometrical incompati-
bility governs the onset of instability and pattern selection with varying stiffness ratio µo/µi and
thickness ratio H i/Ho of the layers. Fig.5 illustrates the influence of the geometrical incompatibil-
ity parameter interplaying with the stiffness ratio and the thickness ratio on the critical differential
growth ratio and critical instability modes with 3D diagrams.

0.3
=-δ

0.3
=δ

0=δ

o

H / H
i

o

H / H
i

o

H / H
i

crm

o

H / H
i

o

H / H
i

o

H / H
i

crn

Figure 5: Critical differential growth ratio ḡcr(a) and the corresponding critical circumferential wavenumbersmcr(b),
and critical axial wavenumbers ncr(c) for varying the geometrical incompatibility parameter δ, stiffness ratio µo/µi,
and thickness ratio Hi/Ho of the bilayer tube at fixed B/C = 0.75. The marks on the vertical face are obtained
by projection.

We first investigate the influence of geometrical incompatibility on the onset of buckling in-
stability with varying stiffness ratio µo/µi and thickness ratio H i/Ho (Fig.5(a)). As the stiffness
ratio µo/µi of the layers increases, the critical differential growth ratio ḡcr decreases. Besides, an
increase in the thickness ratio H i/Ho corresponds to a decreasing critical differential growth ratio
when the stiffness ratio µo/µi is large (µo/µi > 12.5), but leads to a increasing critical differential
growth ratio for a small stiffness ratio (µo/µi < 7.5). Notably, geometrical incompatibility always
exerts a remarkable influence on the critical differential growth ratio ḡ, for any given stiffness ratio
µo/µi and thickness ratio H i/Ho. A positive geometrical incompatibility parameter (δ > 0) leads
to a decrease of the instability threshold, while a negative geometrical incompatibility parameter
(δ < 0) increases the instability threshold.
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On the other hand, our linear stability analysis demonstrates that geometrical incompatibility
also plays an improtant role in pattern selection. Fig.5(b) and Fig.5(c) give the critical circumferen-
tial wavenumbermcr and the critical longitudinal wavenumber ncr , respectively. An increase of the
geometrical incompatibility parameter δ leads to an increasing critical circumferential wavenumber
mcr and a decreasing critical longitudinal wavenumber ncr. Besides, it is found that the critical
stiffness ratios for both circumferential instability and longitudinal instability decrease as the ge-
ometrical incompatibility parameter increases.

From Fig.5(b) and (c), we can conclude that the thinner the inner layer, the more wrinkles
are generated. Nevertheless, the thickness ratio can govern pattern selection only in some specific
cases, resulting in lack of generality. By contrast, the stiffness ratio can efficiently regulate pattern
selection but has a slight effect on the wavenumbers of either circumferential or longitudinal pat-
terns unfortunately. It is worth noting that geometrical incompatibility can not only guide pattern
selection but also exerts a noticeable impact on the wavenumbers.

4. Experimental and numercial implementation

4.1. Experiments

We conduct experiments to explore the patterns formation and subsequent non-linear evolutions
of the initial geometrically incompatible bilayer tubes induced by differential swelling. An initial
geometrically incompatible bilayer tube consists of an inner hydrogel tube and an outer rubber
tube. The inner hydrogel tube swells observably when immersed in water whereas the swelling of
the rubber tube is negligible in the same environment. Particularly, hydrogel is deemed as a highly
suitable material to mimic the growth of soft biological tissues.

In the experiments, the Mold MaxTM 30 and Mold StarTM 15 SLOW are adopted to fabricate the
rubber tubes, whose elastic moduli (color) are 759 kPa (pink) and 380 kPa (green), respectively.
The manufacturing processes are following the instructions provided by the manufacturer. All
rubber tubes have the same geometric parameters, with B = 30 mm, C = 40 mm, and L = 70
mm. To fabricate the hydrogel tubes, we prepare tubular acrylic molds that allow the penetration
of ultraviolet ray. Then, the hydrogel tubes are fabricated following the fabrication process of
(Han et al., 2020). The required elastic moduli for the hydrogel tubes can be obtained by changing
the concentration of the monomer solution. For the sake of distinction, the yellow (green) color is
selected for the inner hydrogel tube when the outer rubber tube is pink (green). Using the acrylic
molds, we fabricate the hydrogel tubes with various sizes and thicknesses but have a uniform length
of L = 70 mm.

Initially, the hydrogel tube and the rubber tube are radially incompatible but have the same
length. We radially expand or compress the hydrogel tube to make it fully fits inside the rubber
tube, and then glue the contact surface to obtain the perfectly bonded bilayer tube. To avoid
dehydration of the hydrogel tube, the bilayer tube is placed in a constant humidity cabinet during
the whole curing time of the glue. The length of both tubes are fixed and the bilayer tube is
allowed to relax radially. Then, the bilayer tube is placed in an Acrylic frame whose headroom
is identical to the length of bilayer tubes. Furthermore, the top and bottom plates of the Acrylic
frame are fixed to confine the axial deformation. To make sure water can flow freely into the
bilayer tubes during the whole swelling period, two circular holes are reserved both on the top
and bottom plates on the axis of the bilayer tubes. The whole experimental setup is shown in
Fig.6. Finally, we immerse the experimental setup into a water tank to observe the morphological
evolution of the bilayer tubes induced by differential swelling. Images are taken every one hour for
future analysis.
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Figure 6: Experimental setup for exploiting geometrical incompatibility for guiding pattern selection in growing
bilayer tubes.

4.2. Finite element simulations

In order to investigate pattern selection and the post-buckling behavior of initial geometrically
incompatible bilayer cylindrical tubes in response to differential growth, the non-linear FE simu-
lations are performed using the commercial software Abaqus (Version 6.13). We discretize both
layers of the geometrically incompatible bilayer tube using eight-node hexahedral hybrid elements
(C3D8H). An inherent interference fit methodology is adopted to implement the interference fit
assembly of the geometrically incompatible bilayer tube. The distributions of residual stresses after
interference fit remarkably agree with the theoretical analyses, as depicted in Fig.3. Thereafter,
a thermal dilatation process are performed to model volumetric growth using a pseudo-dynamic
method. To trigger the buckling instability, an initial geometrical imperfection is introduced from
the eigenvalue buckling analysis. In this way, the FE simulation can well capture the patterns
formation and subsequent morphological evolutions, as presented in the following section.

5. Results and discussions

In this section, we simultaneously present the results of theoretical analysis, numerical simu-
lation, and swelling experiment. Our findings demonstrate that geometrical incompatibility can
guide pattern selection and affect the post-buckling evolution of the emerging pattern. Further-
more, geometrical incompatibility can also guide pattern selection by coupling with the thickness
ratio and the stiffness ratio. Both the results of FE simulation and swelling experiment are com-
pared to our theoretical predictions, as shown below.

5.1. Pattern selection guided by geometrical incompatibility

Fig.7 illustrates the effect of geometrical incompatibility on the instability threshold and pattern
selection of the growing bilayer tube. Based on the linear stability analysis, we separate Fig.7
into three distinct regions to denote three typical surface instability patterns. The left and right
regions represent the longitudinal and circumferential patterns, respectively. The region between
the longitudinal pattern and the circumferential pattern is characterized by the 2D pattern, in
which the circumferential wrinkles and the longitudinal wrinkles emerge simultaneously. For the
sake of presentation clarity, only half the length of the bilayer tubes in FE simulation are presented
in this figure.
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Figure 7: Influence of the geometrical incompatibility parameter δ on the instability threshold and pattern
selection of the growing bilayer tubes with theoretical prediction, finite element (FE) simulation, and experimental
observation. The parameters are set as µo/µi = 7.5, Hi/Ho = 0.5, and B/C = 0.75.

Fig.7 highlights that geometrical incompatibility has a significant influence on the instability
threshold and pattern formation of the growing bilayer tube. In agreement with our theoretical
prediction, both FE simulation and experiment show that all of the circumferential, longitudinal
and 2D patterns can be captured at the inner surface by varying the geometrical incompatibil-
ity parameter. In particular, with the increase of the geometrical incompatibility parameter δ,
the instability pattern transforms from the longitudinal pattern to the 2D pattern and then to
the circumferential pattern. An increasing geometric incompatibility parameter δ also leads to
a decrease of instability threshold ḡcr. Moreover, an increase of the geometrical incompatibility
parameter (δ > 0.062) tends to increase the wavenumber of the circumferential pattern mcr. The
wavenumber of the longitudinal pattern ncr increases slowly as the geometrical incompatibility
parameter decreases (δ < 0.042). Notably, the results of FE simulation show the same trend of the
critical wavenumbers varying with the geometrical incompatibility parameter. The wavenumbers
of longitudinal instability pattern and circumferential instability pattern in our experiment also
show good agreements with the theoretical predictions.

Fig.7 has shown how to guide pattern selection by adjusting the geometrical incompatibility
parameter, for given stiffness ratio and thickness ratio. However, the stiffness ratio and thickness
ratio have been demonstrated that they also affect pattern selection of growing bilayer tubes. In
what follows, we will show how geometrical incompatibility guides pattern selection by coupling
with the thickness ratio and the stiffness ratio. In addition, corresponding FE simulations and
swelling experiments are performed to validate our theoretical model.

Phase diagrams spanned by µo/µi and δ, indicating the influence of geometrical incompatibility
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Figure 8: Linear stability analysis, FE simulation, and corresponding swelling experiment on pattern selection of
the bilayer tubes. (a-b) Phase diagrams in the (µo/µi, δ)-space with corresponding FE simulations, show the effect
of geometrical incompatibility coupling with the stiffness ratio on pattern selection. The thickness ratio in two
phase diagrams are Hi/Ho = 0.5(a) and Hi/Ho = 0.8(b), with fixed B/C = 0.75. (c-d) Top view results of FE
simulations and swelling experiments, correspond to the markers in the three regions of (a) and (b).

on pattern selection with varying stiffness ratio, are depicted in Fig.8(a) and (b). In general,
increasing either the geometrical incompatibility parameter or the stiffness ratio can provoke the
instability pattern to transform from the longitudinal pattern to the 2D pattern and then to the
circumferential pattern. However, the 2D pattern disappears when the geometrical incompatibility
parameter is large than a critical value (δ > 0.34) or the stiffness ratio is small than a critical value
(µo/µi < 5.4). In addition, it is found that the critical geometrical incompatibility parameters for
both circumferential and longitudinal instability patterns decrease as the stiffness ratio increases.
Fig.8(c) and (d) display the results of numerical simulations and swelling experiments in the top
view. In agreement with the phase diagrams predicted by linear stability analysis, the instability
pattern undergoes a transtion from a circumferential pattern to a 2D pattern and than to a
longitudinal pattern as the geometrical incompatibility parameter decrease. It worthy noting
that the numbers of wrinkls in numerical simulations and swelling experiments are very close.
Furthermore, the thinner inner layer of a bilayer tube (Fig.8(c)) generates more wrinkles than the
thicker one (Fig.8(d)), which is consistent with the prediction of linear stability analysis in Fig.5.

Fig.9(a) and (b) give morphological phase diagrams for patterns selection in the (H i/Ho, δ)-
spaces, which show how geometrical incompatibility governs pattern selection by coupling with the
thickness ratio. Consistently, an increase of the geometrical incompatibility parameter leads to a
morphological transition from a longitudinal pattern to a 2D pattern and then to a circumferential
pattern. As depicted in Fig.9(a) and (b), an increasing inner layer thickness tends to expand
the 2D pattern region. In particular, the 2D pattern is difficult to be captured on the thin
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Figure 9: Linear stability analysis, FE simulation, and corresponding swelling experiment on pattern selection of
the bilayer tubes. (a-b) Phase diagrams in the (Hi/Ho, δ)-space with corresponding FE simulations, show the effect
of geometrical incompatibility coupling with the thickness ratio on pattern selection. Stiffness ratio in two phase
diagrams are µo/µi = 7.5(a) and µo/µi = 10(b), with fixed B/C = 0.75. (c-d) Top view results of FE simulations
and swelling experiments, correspond to the markers in the three regions of (a) and (b).

inner layer (H i/Ho < 0.18). Moreover, by comparing Fig.9(a) and Fig.9(b), it can be inferred
that the stiffness ratio determines how the thickness ratio affects pattern selection of the growing
bilayer tube. Similarly, the phase diagrams predicted by linear stability analysis are verified both
numerically and experimentally, as illustrated in Fig.9(c) and (d).

5.2. Post-buckling evolutions

Understanding the post-buckling evolution of a growing bilayer tubular soft matter is also
of great significance for disease diagnosis and 4D printing. In this subsection, we numerically
and experimentally investigate the effect of geometrical incompatibility on pattern formation, as
well as the post-buckling evolution of the emerging pattern in the fully non-linear regime. In
the following, we will show the post-buckling evolutions of circumferential, longitudinal and 2D
patterns primarily prescribed by geometrical incompatibility.

Formation and evolution of circumferential pattern: Fig.10 illustrates the circumferential pat-
tern formation and the post-buckling evolution of the emerging instability pattern. Fig.10(a) and
(e) show that the inner surface of the bilayer tube is smooth before growth/swelling. With the grad-
ual accumulation of circumferential compressive stress that arisen from differential growth/swelling,
critical circumferential instability occurs at the inner surface, as shown in Fig.10(b) and (f). As
differential growth/swelling continues, the amplitude of the circumferential pattern increases but
the wavenumber remains unchanged, as depicted in Fig.10(c-d) and (g-h). Note that the slight
decrease of the wrinkles in the swelling experiment is mainly due to the initial transient instability
induced by the inhomogeneous swelling of the hydrogel tube (Ilseng et al., 2019; Curatolo et al.,
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2017). In other words, the instability pattern induced by homogeneous swelling is the desired
result corresponding to our theoretical model.

Figure 10: Comparison of the formation and subsequent morphological evolution of the circumferential instability
pattern between FE simulation (a-d) and experimental observation (e-h); (a) and (e) show the initial state before
growth/swelling; (b-d) and (f-h) depict the onset of buckling instability and the post-buckling evolution of the
growing bilayer tube. The parameters are set as δ = 1/6, µo/µi = 10, Hi/Ho = 0.5, and B/C = 0.75.

Formation and evolution of longitudinal pattern: Fig.11 shows the longitudinal pattern forma-
tion, as well as the morphological evolution of longitudinal pattern in the post-buckling regime.
A negative geometrical incompatibility parameter prescribes a tensile residual stress field within
the inner layer (Fig.11(a) and (e)). Then, the axial compressive stress is generated in response to
gradually differential growth/swelling and then leads to longitudinal instability of the inner layer,
as shown in Fig.11(b) and (f). With the continuous growth/swelling of the inner layer, the wrin-
kles become increasing deeper whereas the wavenumber is constant, as seen in Fig.11(c-d). Similar
to the post-buckling evolution of circumferential pattern, the wrinkles in our swelling experiment
undergo a slight decrease, as depicted in Fig.11(g-h). As expected, Fig.11(h) is in good agreement
with the result of FE simulation (Fig.11(d)).

Formation and evolution of 2D pattern: In Fig.12, the 2D pattern formation in a bilayer tube
induced by differential growth/swelling, as well as the post-buckling evolution of the 2D pattern
are demonstrated. Fig.12(a) and (e) give a stress free bilayer tube with a smooth inner surface.
As seen in Fig.12(b) and (f), the inner surface of a growing bilayer tube is characterized by a
2D instability pattern when the circumferential and axial compressive stresses reach the critical
value almost simultaneously. Then, with further growth/swelling of the inner layer, the 2D pattern
deepens gradually and a secondary bifurcation is observed when the amplitude of the 2D pattern
reaches a critical value. The nearby circular shapes interact with each other and then the symmetry
of the pattern is abruptly broken, leading to a transition from a dimple into a herringbone pattern
(Fig.12(c-d)). Furthermore, a secondary bifurcation is also observed in our swelling experiment as
shown in Fig.12(g-h).

16



Figure 11: Comparison of the formation and subsequent morphological evolution of the longitudinal instability
pattern between FE simulation (a-d) and experimental observation (e-h); (a) and (e) show the initial state before
growth/swelling, (b-d) and (f-h) depict the onset of buckling instability and the post-buckling evolution of the
growing bilayer tube. The parameters are set as δ = −1/6, µo/µi = 10, Hi/Ho = 0.5, and B/C = 0.75.

Figure 12: Comparison of the formation and subsequent morphological evolution of the 2D instability pat-
tern between FE simulation (a-d) and experimental observation (e-h); (a) and (e) show the initial state before
growth/swelling, (b-d) and (f-h) depict the onset of buckling instability and the post-buckling evolution of the
growing bilayer tube. The parameters are set as δ = 0, µo/µi = 8.5, Hi/Ho = 0.5, and B/C = 0.75.
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6. Conclusions

In summary, we have established an improved theoretical model and implemented a series of
quantificational experiments and numerical simulations to investigate how geometrical incompati-
bility governs pattern selection and subsequent morphological evolutions in growing bilayer tubes.
The results demonstrate that geometrical incompatibility indeed plays an important role in pat-
tern selection, as well as the post-buckling evolution of the emerging patterns. As the geometrical
incompatibility parameter increases, the instability pattern undergoes a transition from a longitu-
dinal pattern to a 2D pattern and then to a circumferential pattern. Furthermore, we find that
geometrical incompatibility can also guide pattern selection by coupling with the thickness ratio
and stiffness ratio of the bilayer tubes. Phase diagrams on pattern selection are derived from the-
oretical computations and have been validated numerically and experimentally. Notably, both the
numerical simulations and experimental observations are consistent with our theoretical predic-
tions. A secondary bifurcation has been observed in the post-buckling evolution of the 2D pattern
with continuous growth far beyond the critical state. Our findings provide, both experimentally
and theoretically, a fundamental understanding of surface pattern formation in growing biological
tissues. In addition, geometrical incompatibility can also be exploited for guiding pattern selection
of other geometric configurations, such as core-shell spheres and composite plates.
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