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Canceling the elastic Poynting effect with geometry
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The Poynting effect is a paragon of nonlinear soft matter mechanics. It is the tendency (found in all incom-
pressible, isotropic, hyperelastic solids) exhibited by a soft block to expand vertically when sheared horizontally.
It can be observed whenever the length of the cuboid is at least four times its thickness. Here we show that the
Poynting effect can be easily reversed and the cuboid can shrink vertically, simply by reducing this aspect ratio.
In principle, this discovery means that for a given solid, say one used as a seismic wave absorber under a building,
an optimal ratio exists where vertical displacements and vibrations can be completely eliminated. Here we first
recall the classical theoretical treatment of the positive Poynting effect, and then show experimentally how it can
be reversed. Using finite-element simulations, we then investigate how the effect can be suppressed. We find that
cubes always provide a reverse Poynting effect, irrespective of their material properties (in the third-order theory
of weakly nonlinear elasticity).
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I. INTRODUCTION

The importance and ubiquity of the simple shear deforma-
tion is well recognised in the natural and man-made worlds.
For example, it is at play both in earthquakes, when tec-
tonic plates move in opposite directions along a fault, and in
earthquake protection, when seismic base isolation systems
decouple buildings from ground motion. Simple shear is also
an accepted standard protocol for testing the mechanical prop-
erties of elastic solids. The Poynting effect in simple shear
is an aspect which might be less appreciated because it is
a nonlinear effect which occurs beyond the realm of linear
elasticity.

In 1909, Poynting [1] observed that long cylindrical steel
rods lengthen when twisted. Four decades later, Rivlin [2]
proved this result analytically in a landmark paper of nonlin-
ear rubber elasticity. He went on to show that rubber tends
to expand vertically when sheared horizontally [3]. Because
of this effect, buildings resting on base isolations systems can
experience vertical forces in principle. Also, when the skull
is subjected to a rotational acceleration as in a boxing event,
brain matter may experience not only shearing forces in the
horizontal plane but also vertical forces of a magnitude com-
patible with axonal diffusion injury [4]. Here we show that the
effect may be reduced, and even reversed, with choices of the
solid’s geometry.

The Poynting effect in simple shear is easy to prove in
the framework of exact, incompressible, isotropic elasticity,
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where the strain energy density W depends on two strain
invariants only: I1 = tr(FT F), I2 = tr(F−1F−T ), and F is the
deformation gradient. Indeed Rivlin found that when a solid
is sheared by an amount K , simple shear can be modeled by
the deformation

x1 = X1 + KX2, x2 = X2, x3 = X3, (1)

bringing a particle originally at X to its current position at
x. Assuming there is no stress applied in the out-of-plane
direction, the deformation is maintained by the application of
the following Cauchy stress

σ11 = 2
∂W

∂I1
K2, σ22 = −2

∂W

∂I2
K2, σ12 = 2

(
∂W

∂I1
+ ∂W

∂I2

)
K,

(2)

while all the other components are zero. Clearly, ∂W/∂I2 �= 0
in general, showing that it is necessary to provide a normal
force to effect the simple shear.

Now consider the Mooney-Rivlin model W = C1(I1 −
3)/2 + C2(I2 − 3)/2, where C1, C2 are positive constants.
Then σ22 = −C2K2, showing first that the Poynting effect is
not captured by linear elasticity (where quadratic terms are
neglected), and second that the solid will expand vertically
unless a force is applied downwards to compensate σ22. Note
that this result is actually valid for all solids for small-to-
moderate amounts of shear because, as noted by Rivlin, the
Mooney-Rivlin model coincides [5,6], at the same level of ap-
proximation, with the most general model of (incompressible,
isotropic) third-order elasticity.

The idealised deformation [Eq. (1)] is for a solid of infi-
nite extend. In practice, we must deal with finite dimensions.
Typically, in the laboratory we prepare a cuboid of length
L, thickness H , and width A, and glue two rigid platens to
its two large faces. We then move one platen parallel to the
other by a distance d (see Fig. 1), so that K = d/H , and
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(a)

(b)

FIG. 1. Experimental shear of a soft block. (a) When the
length/height ratio is large, the cuboid tends to expand in thickness
and exerts a positive normal force on the shearing platens (positive
Poynting effect). (b) When it is close to unity, the Poynting effect is
reversed.

measure the horizontal component F of the required force
to obtain the shear stress component experimentally as σ12 =
F/(AL).

A major conceptual issue arises then, as it turns out that
traction forces must also be applied to the slanted faces to
prevent them from bending and realize the homogeneous de-
formation [Eq. (1)]. These forces are never applied in the
laboratory. Instead, the accepted standard protocol [7] is to
use “thin” cuboids such that H/L < 0.25, hence minimis-
ing the effects of face bending to be of local and small
magnitude.

II. RESULTS

Figure 1 displays our main result, showing that the Poynt-
ing effect can be reversed by decreasing the aspect ratio of the
block.

Figure 1(a) shows the shear of a rectangular cuboid
(20×20×5 mm, H/L = 0.25) made of silicone. The data (n =
9 samples, with standard deviation on each side of the aver-
age) reveals an almost linear relationship between the normal
force and the squared amount of shear for K up to 0.35 (K2

up to 0.125), confirming that the third-order/Mooney-Rivlin
modeling is adequate. Here the normal force is positive, and
the cuboid pushes against the platens. In contrast, Fig. 1(b)
reveals that when cubic samples (10×10×10 mm, H/L = 1.0,
n = 8) are sheared, the normal force is negative, because
the geometry leads to large variations in the distribution of

0

FIG. 2. Computed normal force N in the simple shear of a
soft block with β = 0.3, cross-section 20×20 mm, and aspect ra-
tios H/L = 0.47, 0.48, 0.495, 0.51, 0.53 (see arrow). When H/L =
0.495, N is one order of magnitude smaller than when H/L =
0.48, 0.51 and we conclude that the Poynting effect is effectively
canceled when H/L � 0.495.

stresses and strains; the homogeneous simple shear [Eq. (1)]
is no longer a valid approximation of the deformation taking
place, leading to a reversal of the Poynting effect. For consis-
tency across both pictures, we plot the normal force against
K2, and we use F instead of σ12 because the stress cannot be
given in Fig. 1(b), as it varies across the surface of the platens.
We now anticipate that between the ratios H/L = 0.25 and
H/L = 1.0 there might exist a geometry for which the normal
force is close to zero.

We write the Mooney-Rivlin constants as C1 = μ(1 −
β )/2, C2 = μ(1 + β )/2, where μ is the infinitesimal shear
modulus and β takes any value in [−1, 1] to cover the gamut
of all Mooney-Rivlin solids or, equivalently for small-but-
finite deformations, all third-order elastic solids. The theory
based on the homogeneous deformation [Eq. (1)] predicts a
normal force of magnitude −(μ/2)(1 + β )K2 per unit area.
Here, using finite-element analysis, we compute the normal
force N to be applied on the top face to maintain the hori-
zontal displacement of the platen. We note that alternatively,
an analytical, asymptotic treatment is possible [8]; however,
it requires the introduction of torques for the sheared faces,
which we were not able to measure in our experiments.

Figure 2 illustrates our strategy when β = 0.3 and H/L
varies between 0.47 and 0.53. We see that the computed nor-
mal force switches from a positive value (classical Poynting
effect) to a negative value (reverse Poynting effect) as H/L
increases, and is almost zero (canceled Poynting effect) when
H/L = 0.495, giving one point in our H/L Vs β graph dis-
played on Fig. 3.

Figure 3 shows the resulting graph of the critical H/L ratio
for all materials (−0.3 � β � 1.0). Practically, a block of
a given material parameter β and given geometry H/L, for
which the (β, H/L) point is below (respectively, above) that
curve, will expand (respectively, shrink) in simple shear. The
curve itself provides the required block geometry for the anni-
hilation of the normal force. We note that cubes (H/L = 1.0)
always produce the reverse Poynting effect, irrespective of
their material parameters.

For further illustration, we used finite-element simulations
(not shown) to determine the material parameters of our sam-
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FIG. 3. Plot of the critical aspect ratio H/L of canceled Poynting
effect. The two points (see arrows) correspond to the characteristics
of the cubic and rectangular cuboid samples used in the experiments.

ples through inverse analysis. We found μ = 62.5 kPa and
β � 0.7, which allowed us to place the corresponding experi-
mental points on the figure.

III. MATERIALS AND METHODS

We created an experimental setup similar to that developed
by Yan et al. [9]. A 100 N (accuracy <0.5%) load cell was
attached to a Zwick Roell tensile tester (Zwick Roell Ltd,
UK) with an additional 500 N (accuracy <0.5%) load cell
(Richmond Industries, UK) attached to a laptop PC. It was
not possible to record both data concurrently on the same
PC; instead, the start times were synced to within 0.1 s using
internal timers. Both load cells were calibrated within two
weeks of testing.

A rig was designed so that samples were sheared as the
tensile tester moved vertically. The 100 N load cell mea-
sured the shear force and the 500 N load cell recorded the
normal force. Two different sample geometries were used:
n = 9 rectangular cuboid samples (20 mm width, 20 mm
length, 5 mm height) and n = 8 cubic samples (side 10 mm).
We prepared silicone samples using three-dimensional (3D)
printed molds (0.1 mm accuracy), left to cure as per instruc-
tions and tested the same day once set. The samples were
glued between Perspex plates with quick curing cyanoacrylate
(RS-Pro Radionics Ltd, Ireland). Once the glue had cured,
the Zwick Roell tester was set to move at a rate of 0.2 mm/s
for quasistatic deformation. Tests ended once the sample had
undergone significant deformation (at least up to K = 0.35)
or the glue failed. Finally we analyzed the data with Rstu-
dio (Integrated Development for R. RStudio, PBC, Boston,
MA) to arrive at plots of the mean data and standard
deviation.

We performed a series of finite-element simulations
using ABAQUS/Standard (2017) [10]. We used samples with
20 mm width, 20 mm length, and different heights H (from
1 mm to 20 mm), with top and bottom surfaces clamped
to two elastic plates with 1 mm height, 30 mm width and
30 mm length. The samples were assumed to be perfectly
incompressible hyperelastic Mooney-Rivlin solids with the

same initial shear modulus μ = 62.5 kPa and different β

(varying from −0.3 to 1). The plates were assumed to be lin-
early elastic with a Poisson ratio of 0.3 and a Young modulus
of 200 GPa, so that they were effectively rigid compared to
the samples. The bottom plate was totally constrained during
the deformations and the simple shear displacements were
applied to the top plate and transferred to the samples. We
extracted the normal force by measuring the normal reaction
force of the top plate.

We used eight-node linear reduced integration brick ele-
ments (C3D8R) to discretize the elastic plates and 8-node
linear reduced integration hybrid brick elements (C3D8RH) to
discretize the incompressible hyperelastic samples. To reduce
the computational time and the impact of corner distortions
on the simulation, we used a linearly distributed mesh, and
made the corners have the densest mesh. The minimum and
maximum mesh sizes in the length and width directions are
both twice the minimum mesh size in the height direction.
To prevent excessive mesh density for larger sample sizes, we
also limited the maximum mesh size to be no less than 0.2.
The total number of elements for the samples ranged from
30, 000–120, 000 depending on the geometry; for the plates
it was 900. When the minimum grid size was equal to or
less than 0.02H , the finite element model gave a convergent
normal force result.

IV. CONCLUSION

The Poynting effect in simple shear is a well-studied
topic of nonlinear elasticity. It is known that it can be
reversed in solids with fibers [11–13], extreme strain stiffen-
ing [14], slight compressibility [15], porosity [16], mixture
[17], network vibrations [18], etc. Here we saw that this
reversal can also be achieved for all isotropic, moderately
nonlinear, incompressible, homogeneous solids, simply by
tuning the aspect ratio of the sample according to the curve
in Fig. 3.

In practice, it is not easy to quantify the Poynting effect in
the laboratory accurately, because the normal forces generated
are of the second order in the amount of shear and subject to
cell-load sensitivity. Moreover, the effect of block geometry is
often overlooked when preparing samples, which can have un-
expected consequences, such as producing unphysical model
response with a cubic geometry [19].

In summary, when the cancellation of normal force is de-
sirable, as in seismic base isolation units, the aspect ratio of
the block can be tweaked to minimize its effects. Conversely,
when implementing the simple shear testing protocol, stan-
dards should be adhered to, so that artificial effects making
the response stray away from the exact homogeneous solution
are minimized.
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