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Abstract
This paper investigates the application of Deep Reinforcement Learning (DRL) for attitude tracking ma-
noeuvres of a 6U-CubeSat. The desired reference trajectories to be tracked are generated using the quater-
nion SLERP and SQUAD algorithms. The use of Long Short-Term Memory layers to reconstruct temporal
angular velocity information that would otherwise be unobservable by the controller is investigated. It is
demonstrated that DRL-based controllers that use a direction cosine matrix-based attitude parameterisa-
tion perform better than controllers that use a quaternion attitude parameterisation. The performance of
the DRL controller is compared against a tuned quaternion rate feedback controller in Monte Carlo simu-
lations.

1. Introduction

Attitude control is one of the principal abilities required by modern spacecraft. Traditional attitude control strategies
use a combination of sensors and state estimators to infer orientation and rotational information. Feedback controllers
such as Quaternion Rate Feedback (QRF)25, 26 or sliding mode2, 22 controllers are then used to control actuators that
drive the spacecraft to commanded orientations. A new area of research has considered augmenting or replacing the
existing attitude control pipeline with Deep Reinforcement Learning (DRL)-based controllers. DRL is a feedback
control strategy where a decision-making agent learns to achieve control objectives by interacting with the problem.
DRL does not require a model of the problem, only the ability to interact with the problem. DRL has been shown to
outperform humans in games, including Atari video games,12, 16 Chess,20 Go,19–21 and Shogi.20 DRL has also been
used for motor control of robots.10, 15, 16 While most of this research was on simulated environments, DRL agents have
also been deployed onto real robots after training.9 Another example of DRL agents bridging the simulation-to-real
gap is for magnetic control of plasma in the Tokamak fusion reactor.1

DRL has been applied in the aerospace domain in planetary landing scenarios,6 missile guidance,5 and attitude
and altitude control of a spacecraft over unknown characteristic asteroids.7 In the spacecraft attitude control domain,
DRL has been proposed for the detumbling of a spacecraft after sudden changes to spacecraft mass distribution.24

DRL for end-to-end attitude control during large angle slew manoeuvres has been investigated.3, 4, 23 In large-angle slew
manoeuvres, the objective is to reorient the spacecraft into a specific constant orientation relative to an inertial reference
frame. This paper extends this previous research by looking at DRL for end-to-end attitude control in attitude tracking
of unknown trajectories. In attitude-tracking scenarios, the spacecraft desired reference orientation is time-varying, and
the attitude controller must continuously command torques to follow the reference trajectory. The increased difficulty
of this problem over large angle slews is because the time history of attitude information should be considered to predict
the required control torques. The relative simplicity of the attitude tracking problem makes it suitable for a case study
for DRL. Specifically, the attitude tracking problem is a sub-problem to more complex problems, including full attitude
and orbit control of a spacecraft.

To generate reference trajectories, the quaternion SLERP17 and SQUAD17 algorithms are used. The SLERP al-
gorithm provides constant angular velocity trajectories between two orientations. Due to the constant angular velocity,
all future orientations on the trajectory can be predicted from only measurements of the current reference orientation
and angular velocity. The SQUAD algorithm spherically interpolates between 4 unit quaternion control points similar
to cubic Bézier curves. SQUAD trajectories are non-constant angular velocities, and so provide a more difficult track-
ing trajectory. Due to this non-constant angular velocity, the observational input to the DRL controller can lose the
Markov property. The observational input to the controller has the Markov property if it contains equivalent informa-
tion as the time history of observations. This paper investigates the use of Long Short-Term Memory (LSTM) artificial
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neural network layers in the DRL policy to infer the missing temporal information. Specifically, the performance of
three DRL controllers is compared for SLERP tracking. The first controller is only provided the current reference
orientation as input; the second is also provided the angular velocity, and as such, the observation has the Markov
property. The third DRL controller is provided with only the position of the reference but utilises LSTM layers to
infer the angular velocity of the reference. For SQUAD trajectories, even when the angular velocity is provided to the
controller, the observation still loses the Markov Property. For the SQUAD tracking scenario, the performance of three
controllers is compared. The first is only provided the reference orientation; the second is also provided the angular
velocity. The third is provided the orientation and angular velocity of the reference while also utilising LSTM layers
to infer information about the non-constant angular velocity. For both the SLERP and SQUAD tracking scenarios, the
performance of the controller is compared against a QRF controller.

In Section 2, the relevant quaternion mathematics and kinematics are provided. Section 3 provides an introduc-
tion to reinforcement learning. Section 4.1 provides the dynamic model of the spacecraft. Section 4.2 details how the
trajectories to be tracked were generated. Section 4.3 formalises the attitude tracking problem as a discrete-time Markov
decision process, including the observation provided to the controller, the actions it can take to control the spacecraft,
and the reward function used to train the controller. Section 4.4 provides details on the agents trained, including the
architecture of the artificial neural networks and hyperparameters. Lastly, Section 5 compares the performance of the
trained agents and discusses the effectiveness of the LSTM in recovering the performance of the Markovian controller.

2. Quaternions

This paper uses a scalar-first convention to parameterise unit quaternions. A unit quaternion describes a rotation by an
angle ϕ about an axis, specified by the unit vector e = (e1, e2, e3), using four components:

qw = cos
(
ϕ

2

)
q1 = e1 sin

(
ϕ

2

)
q2 = e2 sin

(
ϕ

2

)
q3 = e3 sin

(
ϕ

2

)
(1)

A unit quaternion qAB describes a frame rotation between two reference frames F A and F B. The quaternion can
be converted to a Direction Cosine Matrix (DCM) C:

CAB =

qwqw + q1q1 − q2q2 − q3q3 2(q1q2 + q3qw) 2(q1q3 − q2qw)
2(q1q2 − q3qw) qwqw − q1q1 + q2q2 − q3q3 2(q2q3 + q1qw)
2(q1q3 + q2qw) 2(q2q3 − q1qw) qwqw − q1q1 − q2q2 + q3q3

 (2)

Using Eq. (2), a vector vB in the F B frame can be converted to its corresponding representation in the F A frame:

vA = CABvB (3)

The angular velocity ωAB
A = (ω1, ω2, ω3) between the F A frame and the frame F B as viewed from F A can be

used to find the rate of change of the quaternion representing the rotation:

q̇AB =
1
2
Ξ(qAB)ωAB

A (4)

Ξ(qAB) =


qw −q1 −q2 −q3
q1 qw −q3 q2
q2 q3 qw −q1
q3 −q2 q1 qw

 (5)

whereωAB
A is treated as a pure quaternion with 0 in the scalar part. The inverse of Eq. (5) can be used to find the angular

velocity from the quaternion rate of change:

ωAB
A = Ξ

T (qAB)q̇AB (6)
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ΞT (qAB) =

−q1 qw q3 −q2
−q2 −q3 qw q1
−q3 q2 −q1 qw

 (7)

3. Reinforcement Learning

Reinforcement learning is a framework for solving discrete-time Markov Decision Processes (MDP). MDPs formalise
the sequential decision-making of an agent in an environment. At each step in the MDP, the environment provides
an observation to the agent, typically a vector of sensor measurements or images. The observation is a representation
of the internal state of the environment. Based upon the observation, the agent selects an action, typically actuator
commands. The action causes the environment to transition into a new state. The environment then provides a new
observation to the agent and a scalar reward. The scalar reward informs the agent how desirable the current internal
state of the environment is. Based upon the new observation, the agent selects a new action, and the process repeats
until the environment transitions into a terminal state that ends the current episode of interactions between the agent
and the environment. The goal of the agent is to select actions that maximise the discounted sum of future rewards:

Gt =

K−1∑
l=t

γl−trl (8)

where K is the number of steps in the episode horizon, rt is the scalar reward provided to the agent after step t. γ ∈ [0, 1)
is a constant discount factor that causes the agent to value rewards that will be received sooner more than rewards that
will be received later.

In reinforcement learning, the agent employs a decision-making policy π(a|o) that maps observations o to ac-
tions a. DRL utilises Artificial Neural Networks (ANNs) to parameterise the behavioural policy. Specifically, an ANN
with parameters θπ is used to parameterise the behavioural policy π(a|o, θπ), the goal is then to find parameters θπ that
maximise the discounted sum of future rewards. The ANN takes as input the observation and outputs probabilities that
are used to generate actions. Initially, the parameters θπ are random, and the agent attempts to learn parameters that
generate actions that maximise the discounted sum of future rewards. To do this, the agent interacts with the envi-
ronment for a specific number of steps. The observations seen, actions taken, and rewards received are recorded and
used to update the parameters θπ towards parameters that provide a better behavioural policy using gradient descent.
The exact loss function used depends on the DRL algorithm being employed, in this case, the clipped Proximal Policy
Optimisation (PPO) algorithm.16 The PPO algorithm was selected as it provides competitive performance on contin-
uous action space control problems and also has a recurrent LSTM implementation available in the software package
Stable-Baselines3.13 The PPO algorithm is an actor-critic algorithm in the family of policy gradient algorithms. The
PPO algorithm runs the current agent for M ≤ K time-steps in N copies of the environment while recording the taken
actions, seen observations, and received rewards. A loss function is used to update the behavioural policy with the
recorded data. PPO clips the updates to the parameters θπ to be within a specified range. This is done to limit de-
structive updates to the policy. For a more detailed explanation of the PPO algorithm, the reader is referred to Ref.
16.

The observations provided to the agent are usually sensor measurements, provided as either a vector or a matrix
in the case of a camera sensor. If the observation does not have the Markov property (provides equivalent information
as full observation and action history), then the MDP is considered to be partially observable. In a Partially-Observable
Markov Decision Process (POMDP), the observation provided to the agent is a function of the true internal state (st) of
the environment (ot = H(st)). An example of this is when the measurements of the sensors that generate the observation
are subject to noise. The observation vector loses the Markov property if some information can only be observed from
a time series of observations. A lack of ability to remember previous states can prevent the agent from being able to
learn a successful behavioural policy. In this case, it is common to use LSTM layers8 in the ANN. LSTM layers are
recurrent ANNs layers that allow the agent to propagate information across time steps. Each LSTM layer is made up of
a specified number of cells, and as such can only store limited information. When combined with DRL, then the agent
must learn what information to store inside the LSTM cells while simultaneously learning the behavioural policy.
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4. Methodology

4.1 Spacecraft Model

Three reference frames are considered in this paper: the spacecraft body frame F B, in which control torques are applied
and the dynamics are calculated; the target reference frame F R, which defines the desired orientation of the spacecraft;
and the inertial reference frame F N , with respect to which the spacecraft tracks its own orientation and relative to which
the desired reference orientation is defined. Subscripts indicate the reference frame in which a quantity is measured
and two consecutive superscripts are used to indicate a rotation of one reference frame relative to another. A quantity
LB is a vector measured in the body reference frame and a quantity ωBN

B is a vector related to the rotation of the body
reference frame relative to the inertial reference frame when measured in the body reference frame. The 6U-CubeSat
is modelled as a rigid uniform-density cuboid with side lengths of 30 cm, 20 cm, and 10 cm and a mass of 6 kg. A
model of the spacecraft and its body axes is shown in Fig. 1.

Figure 1: Body frame, inertial reference frame, and dimensions of 6U-CubeSat

The inertia tensor of the spacecraft in body axes is calculated from the side lengths and mass of the cuboid:

JB =
m
12

w
2 + h2 0 0

0 l2 + h2 0
0 0 l2 + w2

 =
0.025 0 0

0 0.05 0
0 0 0.065

 kgm2 (9)

The rotational dynamics of the rigid body are governed by Euler’s equation of rotational motion14 in the body frame:

JBω̇
BN
B = LB − ω

BN
B × (JBω

BN
B ) (10)

where ωBN
B is the angular velocity of the body frame relative to the inertial frame and LB are the applied external

control torques. The attitude parameterisation considered is unit quaternions. The unit quaternion qBN parameterises
the rotation required to move from the inertial reference frame to the body reference frame. The rate of change of
the quaternion attitude representation is found from the angular velocity and current attitude quaternion using Eq. (4).
Eqs. (4) and (10) are sufficient to fully define the orientation of the spacecraft. To simulate spacecraft rotation, these
equations can be numerically integrated; in this case, the Basilisk astrodynamics simulator1 was used to provide fast
simulations. The dynamics are integrated using the Runge-Kutta 4th order method with a time step of 0.005 s; this
simulation time step was found to provide stable simulations for rotations of less than 1 rad/s and be sufficiently fast to
support thousands of attitude tracking simulations.

4.2 Trajectory Generation

4.2.1 Quaternion SLERP

To randomly generate time-series quaternion reference trajectories, the quaternion Spherical Linear intERPolation
(SLERP) algorithm is used.17 The SLERP algorithm interpolates linearly between two endpoint quaternions q1, q2,

1Note, the Basilisk astrodynamics simulator actually uses a modified Rodriguez parameter attitude parameterisation to simulate the dynamics
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using an interpolation parameter u, that represents the normalised manoeuvre time u = t/T , where t is the current
time in the simulation and T is the total manoeuvre time (100 s). The resulting quaternion qRN describes the reference
orientation relative to the F N frame:

qRN(u) = SLERP(q1, q2, u) = q1(q∗1q2)u (11)

where q∗1 is the conjugate quaternion of q1. Note, consecutive quaternions (e.g. q∗1q2) such as in Eq. (11) indicates
quaternion multiplication. To generate a time series of N quaternions, u is varied linearly from 0 to 1 in N steps. When
the quaternion trajectory is used to parameterise rotations, the result is a constant angular velocity rotation, departing
from q1 at u = 0 and arriving at q2 at u = 1, along great-circle arcs. The quaternion rate of change with respect to u
associated with the SLERP is found by differentiating Eq. (11):

dqRN

du
= qRN log(qRN) (12)

Through the chain rule, the time derivative of the quaternion trajectory is found as:

dqRN

dt
=

1
T

qRN log(qRN) (13)

which can be converted to angular velocity ωRN
R using Eq. (6).

4.2.2 Quaternion SQUAD

Another method for generating quaternion trajectories is the SQUAD algorithm,17 which interpolates between 4 quater-
nions q1, q2, q3, q4. The SQUAD interpolation between the 4 unit quaternions is similar to cubic Bézier curves but
using the SLERP for the individual interpolations instead of linear interpolation:

qRN(u) = SQUAD(q1, q2, q3, q4, u) = SLERP(SLERP(q1, q2, u), SLERP(q3, q4, u), 2u(1 − u)) (14)

The resulting trajectory has qRN departing from q1 at u = 0 towards q2 and arriving at q4 at u = 1 from q3. when
used to generate smooth rotation trajectories, the associated angular velocity is not constant. The differentiation of
Eq. (14) with respect to u is non-trivial due to the fact that the endpoint quaternions in the SLERP become functions of
time as opposed to constants. The SQUAD derivative does not, to the authors’ knowledge, have a closed-form general
solution in terms of the endpoint quaternions and the interpolation factor only. Therefore, the SQUAD is differentiated
numerically:

dqRN

du
≈

qRN(u + ∆u) − qRN(u)
∆u

(15)

where ∆u = ∆t
T is the interpolation step size, and ∆T is the control time step (0.2 s). The angular velocity associated

with the SQUAD is found via Eq. (6). Due to the numerical Euler forward differentiation, this generates only N − 1
points in the angular velocity trajectory. However, measurements at t = T are not required as the simulation ends here
and there are no further actions to take. Hence the angular velocity for the final point is not necessary. As with the
SLERP, the endpoint quaternions are randomly generated.18

As the quaternion trajectory generated by the SLERP algorithm is a constant angular velocity trajectory, the
future quaternions on the trajectory are defined by the angular velocity and the starting point only. As such, a vector
containing the angular velocity and current quaternion will have the Markov property (provide equivalent knowledge
as knowing the entire trajectory). The angular velocities associated with the SQUAD trajectory are not constant, and
as such, measurements of the angular velocity and current quaternion provide insufficient information to predict the
future quaternions on the trajectory.

4.3 Markov Decision Process

4.3.1 Observation and Action Space

To apply DRL to the spacecraft attitude control problem, the problem must be converted into a discrete-time POMDP.
This requires defining: the observation provided to the agent at every step; the actions the agent can take; how the inter-
nal state of the environment transitions between states; and the function that maps the internal state of the environment
to rewards that will be provided to the agent. The internal state of the environment tracks the attitude information of
the reference and the spacecraft and is propagated forward in time by simulating the dynamics presented in equations

5
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Eqs. (4) and (10). At the start of every time step, the agent receives an observation vector ot based upon which it selects
an action at . In the observation vector, flattened direction cosine matrices are used to parameterise rotations in place
of quaternions, as it was found that the two-to-one attitude parameterisation of quaternions degraded performance.
Specifically, the DRL agent only learned to target an error quaternion qBR with a scalar component of +1 or −1 but not
both, which forced the agent to take the long rotation 50% of the time. The observation vector:

ot =
[
CBN CRN CBR ωBN

B ωRN
R ωBR

B

]
(16)

contains information as to the orientation and angular velocity of the spacecraft and the reference, as well as the relative
orientation and angular velocity between the spacecraft and reference. The actions taken by the agent are the control
torques to be applied to the spacecraft in the body axes frame. The controller receives an observation and takes an
action every 0.2 seconds; between control time steps, the applied control torques are held constant as a zero-order hold.
The control torques are subject to the constraint that the torque about any body axis, i should not exceed 0.005 Nm in
magnitude:

LB,i(t) =


0.005, if at,i ≥ 0.005 Nm
−0.005, if at,i ≤ −0.005 Nm
at,i, otherwise

(17)

4.3.2 Reward function

After the agent selects an action, the control torques are applied to the spacecraft, whose dynamics are numerically
simulated for 0.2 s. The agent then receives a new observation and a scalar reward. The reward function calculates the
reward based upon the current rotation angle ϕ(t) = 2 arccos(qw) between the reference orientation and the spacecraft
orientation:

rt,1 = log2

(
|ϕ(t − ∆t)|
|ϕ(t)|

)
(18)

where ∆t is the control time step of 0.2 s. This reward function provides a reward equal to 1 every time the pointing
error is halved. This reward function was selected as it encourages the agent to reduce the pointing error even if the
size of the pointing error is small. The reward function is undefined for both ϕ(t) = 0 and ϕ(t − ∆t) = 0. To avoid
this issue, the pointing error used for the computation is clipped to be greater than 10−6 rad. In practice, this is not an
issue as the agent does not achieve this level of tracking accuracy and sensors on the spacecraft would have difficulty
measuring the spacecraft’s attitude to this precision.

Additionally, a hard angular velocity constraint is implemented as an additional reward function:

rt,2 =

−1, if |ωBN
B | ≥ 1

0, otherwise
(19)

This reward function is used to prevent angular velocities that could be dangerous to the spacecraft and to prevent
instability in the numerical simulation. Additionally, it was found that adding this angular velocity limit actually
improved the performance of the controller; this could be because the velocity of the reference trajectories generally
does not exceed 1 rad/s and, as such, limiting the search space for behavioural policies eases the search for a desirable
policy. The total reward provided to the agent is the sum of these two reward functions rt = rt,1 + rt,2.

4.4 Implementation Details

4.4.1 Agents

The objective of the tracking SLERP trajectory scenario is to ascertain to what degree LSTM layers can be used to
reconstruct temporal information not present in the observation vector. As SLERP trajectories are constant angular
velocity, if the observation vector contains the angular velocity ωRN

R of the reference, it will have Markov property.
Four different agent neural network architectures were investigated, as detailed in Table 1. All architectures have as
many input neurons as elements in their observation vector, 3 output neurons to provide control torques for each body
axis, and use 2 fully-connected dense layers of 64 neurons to parameterise the behavioural policy. Agents 3 and 4
have an additional LSTM layer directly after the input, which provides these agents with the ability to remember some
information from previous observation vectors in an internal state. For the SLERP tracking scenario, agents 1, 2, and
3 were trained. For agents 1 and 3, the state vector is modified to remove angular velocities ωRN

R and ωBR
B . Agent 1

6
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can only observe the instantaneous position of the reference. Agent 3 attempts to reconstruct the missing temporal
information by using a layer of 256 LSTM cells.

For SQUAD trajectory tracking, there is no simple way to define a Markov observation vector. The endpoint and
support quaternions, as well as the interpolation parameter, could be added to the state vector, but it is assumed in this
work that the trajectory to be tracked is not known to the agent. For the SQUAD tracking scenario, agents 1, 2, and
4 were trained. Here agents 1 and 2 use the same architecture as in the SLERP tracking scenario but are retrained in
the SQUAD tracking scenario. Agent 4 is an LSTM variant of Agent 2 that attempts to construct temporal information
that cannot be observed by Agent 2 due to the non-constant angular velocity of the reference. Agents 1 and 2 were
trained using the PPO algorithm, implementation from Stable-Baselines3, and agents 3 and 4 use the recurrent PPO
implementation from Stable Baselines3 - Contrib.13 All agents use the hyperparameters listed in Table 2. In all cases,
both the actor and critic networks use the architecture specified in Table 1, except that the critic only has one output
neuron corresponding to the estimated value of the current observation. The actor and critic networks are separate and
do not share any layers.

Table 1: Agent network architectures

Agent 1 Agent 2 Agent 3 Agent 4
Layer Activation #Neurons #Neurons #Neurons #Neurons
Input Linear 30 36 30 36

LSTM Linear - - 256 256
Dense LeakyReLU 64 64 64 64
Dense LeakyReLU 64 64 64 64
Output Linear 3 3 3 3

In DRL, the data gathered by the agent while interacting with the environment is dependent on the current
behavioural policy employed by the agent. Before training, the policy is initialised randomly. Whether or not the agent
is able to learn a successful behavioural policy can be entirely dependent on this initialisation. To ensure that the agent
is generally successful, it is trained independently in 5 repeat runs, each making use of a different random seed. The
reference trajectories are also varied across the 5 repeat runs.

Table 2: Hyperparameters

# Independent repeat runs 5
# Asynchronous environments 16

Learn steps 5 × 106

Rollout horizon 500
Mini-batch size 125

Epochs 10
Clip range 0.2

Discount factor 0.99
Learning rate 3 × 10−4

Optimizer Adam
Evaluation frequency 5000
# Evaluation episodes 20

# Testing episodes 1000

4.4.2 Episode

At the start of every episode, a uniformly-random quaternion18 is generated for the initial orientation of the spacecraft
qBN , for the SLERP and SQUAD tracking scenarios the two endpoint quaternions are generated randomly as well
as the two support quaternions for the SQUAD. On every control time step, the agent outputs three control torques
to be applied. During training, Gaussian white noise is superimposed onto the commanded control torque to ensure
sufficient exploration of the state space. During testing and evaluation, the exploration noise is disabled as the agent is
no longer learning and does not need to explore. The body torques to be applied are constrained such that each body
torque should be less than 0.005 Nm in magnitude. An episode ends when the simulation time reaches the end of the
manoeuvre (t=100 s) or if the spacecraft’s angular velocity exceeds 1 rad/s. The agents are simultaneously trained in

7
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16 asynchronous environments, which speeds up training and improves stability.11, 16 Every agent is trained for 5× 106

time steps corresponding to approximately 10000 episodes or 11 days and 14 hours of simulated time. During training,
after every 5000 steps, the agents are evaluated for 20 episodes. After training, the best instance (as determined by
mean reward during evaluation episodes) of every agent is tested for 1000 episodes to establish the final tracking
performance of the agent. The best agent, according to evaluation episode performance, is tested instead of the final
agent as training can be destructive, and the final agent (weights), after training, is not necessarily the best-performing
instance of that agent.

4.5 Quaternion Rate Feedback Controller

The performance of the DRL attitude controller is compared against that of a Quaternion Rate Feedback (QRF) con-
troller. The QRF controller14 is implemented for tracking of the reference trajectory:

LB = −KβBR
− PωBR

B + ω
BN
B × (JBω

BN
B ) (20)

where K is a scalar gain and P is a diagonal gain matrix and βBR is a three-component vector of the error quaternion
qBR between the body and reference orientation. To ensure the controller takes the shortest path towards the target
rotation, the sign of βBR is switched if the scalar component is less than 0:

βBR =

 (q1, q2, q3), if qw ≥ 0
(−q1, −q2, −q3), else

(21)

Initial gain values were obtained by linearising the dynamics presented in Eqs. (4) and (10), and then adjusting
the gains to be less aggressive to avoid overshoot due to the actuator saturation limit.

K = 0.2 (22)

P =

0.1 0 0
0 0.2 0
0 0 0.26

 (23)

5. Results

The average rewards obtained by the agents during training for SLERP trajectory tracking are shown in Fig. 2. Agent
2, which has access to the angular velocity of the reference, learns faster than the other agents and maintains the highest
average reward throughout training. Initially, Agent 3 learns slower than the other agents but is then able to achieve
significantly higher rewards than Agent 1. The LSTM Layer allowed Agent 3 to infer the angular velocity of the
reference trajectory and use this information to obtain better tracking performance than Agent 1. The average rewards
obtained during training for SQUAD trajectory tracking are shown in Fig. 3. Here agents 1 and 2 achieve slightly lower
average reward than for tracking of SLERP trajectories due to non-constant angular velocity. Agent 4, which is Agent
2 with an LSTM layer, performs worse than Agent 2, showing that, in this case, the LSTM layer did not help the agent
infer additional temporal information.

8
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Figure 2: Sliding mean (window size: 40) of average reward (across runs) during training for SLERP trajectory track-
ing. Shaded area indicates standard deviation.

Figure 3: Sliding mean (window size: 40) of reward during training for SQUAD trajectory tracking. Shaded area
indicates standard deviation.

As the spacecraft begins an episode in a random orientation, it will generally not start while being aligned with
the reference trajectory. The controller must first catch up (slew) with the reference trajectory and then begin tracking
it as closely as possible. As a result of this, the tracking error is usually high during the first half of the episode. The
performance metric considered is the mean tracking error during the final 50 seconds of the episode. The performance
of the DRL attitude controller when tracking SLERP and SQUAD trajectories in 1000 testing episodes is shown in
Figs 4 and 5 respectively as violin plots. Violin plots are similar to box plots but instead of showing the interquartile
range a rotated kernel density plot is shown on each side. These plots are used to show the distribution of mean
pointing errors across episodes. Fig. 4 shows that, across all runs, Agent 3 outperforms Agent 1 but performs worse
than Agent 2. This demonstrates that for SLERP tracking, Agent 3 was able to utilise the LSTM layer to infer the
angular velocity of the reference trajectory. The tracking performance of Agent 1 is poor, showing the requirement to
know the angular velocity of the reference trajectory. Fig. 5 shows that the LSTM layer did not allow Agent 4 to infer
additional information about the non-constant angular velocity of SQUAD trajectories. This could be due to the fact
that the rate of change of the angular velocity and rotational axis is small compared to the 100 s episode horizon.
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Figure 4: Violin plot of DRL agent mean tracking error during last 50 s of episode in 1000 testing episodes of tracking
SLERP trajectories.

Figure 5: Violin plot of DRL agent mean tracking error during last 50 s of episode in 1000 testing episodes of tracking
SQUAD trajectories.

Tables 3 and 4 provide the mean, standard deviation, minimum, and maximum tracking error of the best runs
(as defined by mean reward) in the SLERP and SQUAD tracking scenarios, respectively. In both cases, the tracking
performance of the QRF controller is also provided. For the SLERP tracking scenario, the QRF controller provides
approximately an order of magnitude better tracking performance, with a significantly reduced spread in performance
across episodes. Both agents 1 and 3 have a high maximum tracking error; in these particular episodes, the controller
was still catching up with the reference at the halfway point in the episode. This could be caused by the fact that
the reward function does not explicitly require the controller to catch up to the reference as quickly as possible. The
agents are only encouraged to catch up to the reference trajectory in minimum time due to reward discounting. In the
SQUAD tracking scenario, the QRF controller outperforms the best DRL agent, but by a lesser margin. The maximum
tracking error of Agent 1 is particularly large. It is not clear what exactly caused this; near the end of the episode, the
tracking error was reduced to 3.2◦ with the spacecraft oscillating about the reference in an underdamped fashion. The
second-largest tracking error of Agent 1 when tracking SQUAD trajectories was 9.8971◦. The QRF controller also has
a high maximum tracking error; in this particular episode, the reference trajectory had a rapid angular velocity change
near the halfway point, which caused the increased tracking error.
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Table 3: Comparison of mean SLERP tracking performance between DRL agent and QRF controller.

Controller mean(|ϕ|) [deg] std. dev.(|ϕ|) [deg] min(|ϕ|) [deg] max(|ϕ|) [deg]
Agent 1a 1.2272 0.4964 0.1918 3.1043b

Agent 2a 0.0733 0.0250 0.0142 0.1455
Agent 3a 0.1480 0.1766 0.0245 3.5897b

QRF 0.0087 0.0007 0.0007 0.0107
a Best run according to mean reward
b Controller had not caught up to reference by t = 50 s

Table 4: Comparison of mean SQUAD tracking performance between DRL agent and QRF controller.

Controller mean(|ϕ|) [deg] std. dev.(|ϕ|) [deg] min(|ϕ|) [deg] max(|ϕ|) [deg]
Agent 1a 1.4086 2.4998 0.2826 77.3763b

Agent 2a 0.1253 0.0563 0.0312 0.7576
Agent 4a 0.1636 0.0613 0.0448 0.9613

QRF 0.0881 0.0925 0.0239 2.4770c

a Best run according to mean reward
b Cause unknown
c Trajectory had a rapid angular velocity change near t = 50 s

Agents 1-3 were retrained but with unit quaternion attitude parameterisation. Specifically, the elements CBN ,
CRN , and CBR in Eq. (16) are replaced with qBN , qRN , and qBR. The performance of the quaternion agents is compared
against the direction cosine matrix agents in Fig. 6 (note the logarithmic y-axis). For all three agents, the direction
matrix attitude parameterisation achieves on average better tracking error than the quaternion agents. Agent 1 is
the least impacted by this change, but the performance of Agents 2 and 3 is severely impacted. The reason that
the quaternion agents underperform is due to the two-to-one mapping of quaternions to rotations. Specifically, both
quaternions qBR and −qBR represent the same physical orientation, and as such, the reinforcement learning agent needs
to learn when to target which of the two quaternions as moving to the other one will require a rotation by 180◦. The
sign of the error quaternion qBR will switch if either qBN or qRN switch sign.

Figure 6: Violin plot of SLERP tracking performance in 1000 testing episodes of agents 1-3 when trained with a
quaternion attitude parameterisation.
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6. Conclusion

This paper investigated Deep Reinforcement Learning (DRL) for attitude tracking of SLERP and SQUAD trajectories.
For SLERP trajectories, the DRL controller that had access to the observation vector containing the angular velocity
significantly outperformed the agent that only had access to the position of the reference trajectory. The DRL attitude
controller was able to utilise recurrent Long Short-Term Memory (LSTM) layers to significantly improve tracking per-
formance when the observation vector contained only the orientation of the reference trajectory and not the associated
angular velocity. For SQUAD trajectory tracking, an additional LSTM layer and angular velocity measurements pro-
vided slightly worse tracking performance than the agent that did not have an LSTM layer. The latter may be due to the
fact that the angular velocity during the SQUAD changes slowly and any additional information that the agent could
infer about how the angular velocity will change only provides a small benefit, which might have been outweighed
by the increased difficulty of learning a recurrent policy. For both SLERP and SQUAD trajectories, the DRL-based
attitude controller is outperformed by a traditional Quaternion-Rate Feedback (QRF) controller. It was also found that
DRL agents that utilise a quaternion-based attitude parameterisation in the observation vector perform significantly
worse than DRL agents that use flattened direction cosine matrices to parameterise orientation.

Replacing the traditional attitude control pipeline with a DRL agent provides poorer performance and results in
the loss of stability guarantees. In future research, the combination of state estimators to infer temporal information,
QRF controller for high-frequency control, and DRL for gain scheduling of the QRF controller will be investigated.
This hierarchical control structure will be investigated for more complex problems, including full attitude and orbit
control, highly-variable inertia spacecraft attitude control, and multi-spacecraft attitude and orbit control.
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