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Serological evaluation of risk 
factors for exposure to malaria 
in a pre‑elimination setting 
in Malaysian Borneo
Isabel Byrne 1*, Timothy William 2,3,4, Tock H. Chua 5, Catriona Patterson 1, Tom Hall 1, 
Mark Tan 1, Chetan Chitnis 6, John Adams 7, Susheel K. Singh 8,9, Lynn Grignard 1, 
Kevin K. A. Tetteh 1, Kimberly M. Fornace 1,10,11 & Chris J. Drakeley 1

Malaysia has reported no indigenous cases of P. falciparum and P. vivax for over 3 years. When 
transmission reaches such low levels, it is important to understand the individuals and locations where 
exposure risks are high, as they may be at greater risk in the case of a resurgence of transmission. 
Serology is a useful tool in low transmission settings, providing insight into exposure over longer 
durations than PCR or RDT. We ran blood samples from a 2015 population‑based survey in northern 
Sabah, Malaysian Borneo on a multiplex bead assay. Using supervised machine learning methods, 
we characterised recent and historic exposure to Plasmodium falciparum and P. vivax and found 
recent exposure to P. falciparum to be very low, with exposure to both species increasing with age. 
We performed a risk‑factor assessment on environmental, behavioural, demographic and household 
factors, and identified forest activity and longer travel times to healthcare as common risk‑factors 
for exposure to P. falciparum and P. vivax. In addition, we used remote‑sensing derived data and 
geostatistical models to assess environmental and spatial associations with exposure. We created 
predictive maps of exposure to recent P. falciparum in the study area and showed 3 clear foci of 
exposure. This study provides useful insight into the environmental, spatial and demographic risk 
factors for P. falciparum and P. vivax at a period of low transmission in Malaysian Borneo. The findings 
would be valuable in the case of resurgence of human malarias in the region.

Malaysia has made strong progress in the prevention and control of malaria since the introduction of the Malaria 
Eradication Program in the 1960s. In 2011, the country introduced the National Malaria Elimination Strategic 
Plan and set the target of reaching the “malaria-free” status by 2020, here meaning the elimination of human 
indigenous malaria transmission. Malaysia was on track to achieve this goal for human malaria species P. falcipa-
rum, P. malariae, P. ovale and P. vivax1. There have been zero indigenous human malaria cases reported for over 
three years and zero malaria deaths since  20172. In the past two decades, however, the emergence and increase 
in human cases of the zoonotic P. knowlesi has threatened the certification of Malaysia as malaria-free2. As the 
epidemiology of zoonotic malaria changes in Malaysia, it is important to track decreases and understand risks 
for human malarias alongside.
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In the case of nonzoonotic, human malarias, as a country transitions from endemic to low-transmission and 
finally to an elimination setting, the epidemiology changes; infections become more spatially heterogenous and 
may be more difficult to detect and to diagnose. At this stage, classic passive surveillance systems which do not 
detect asymptomatic  cases3–5, and cases in hard-to-reach communities or in populations who are unlikely or 
unable to visit health  facilities6,7 may need supplementing with active surveillance. Active surveillance seeks out 
infections and asymptomatic parasite carriers, and can help to identify populations at higher risk of  transmission8. 
Common active surveillance methods in malaria are cross-sectional sampling of communities using RDT diag-
nostics and PCR to detect active infections. Although they often identify asymptomatic cases, these are active 
infections and surveillance in low-transmission settings can benefit from approaches that improve burden esti-
mates and understand risk-factors for  exposure7.

Serological assays are one-such approach. They provide measurements of an individual’s antibody responses to 
a specific pathogen, which is used as a proxy for previous exposure. With a growing understanding of the speci-
ficity, longevity and duration of specific malaria biomarkers in the immune system, it is possible to characterise 
an individual’s recent and past exposure history to the human malarias P. falciparum and P. vivax9–13. Utilising 
multiplex bead assays (MBA) makes the measurement of serological responses at a population-level operation-
ally feasible, as they only require small amounts of serum or plasma collected by finger-prick sampling in EDTA 
microcontainers to measure a broad range of immune  responses14,15. Incorporating participant questionnaires in 
active surveillance surveys with serology can provide information on the anthropological factors impacting risk 
of exposure in populations. Understanding the factors underpinning exposure in higher risk populations may 
provide guidance for policy in the remainder of the country, which may be useful in the mitigation of human 
malaria resurgence in the  future4,8.

Geostatistical methods can be applied to serological response data to understand the spatial heterogeneity of 
malaria exposure. By relating infection metrics with environmental and spatial covariates, geostatistical map-
ping can predict disease burden in unsampled space, identifying areas of higher exposure risk and receptive 
areas at risk of  outbreaks7,14,16,17. Geostatistical methods are increasingly being applied in malaria research to 
identify environmental risk-factors for exposure and map incidence, prevalence, or other burden  metrics18–20. 
This is especially useful in areas of low-transmission where infection data is sparse and transmission is spatially 
heterogenous. The use of serology data in geostatistical mapping exercises has previously come with challenges, 
where serological markers which represent historical exposure are linked to data representing current environ-
mental and spatial  conditions14. Additionally, when mapping P. vivax exposure the potential for relapses due to 
the reactivation of hypnozoite stage parasites should be considered. Differentiation between novel and relapse 
cases in P. vivax remains a challenge in mapping, as antibody production may be occurring in a different loca-
tion to the original site of  exposure18,21. Mapping historic exposure or P. vivax exposure can therefore result in 
temporally inconsistent patterns of exposure and risk being mapped. For this reason, geostatistical methods are 
currently better suited to mapping novel recent or current exposure to malaria antigens. These methods can be 
used to produce maps of uncertainty in predictions, which can highlight areas to prioritise for data  collection19.

To examine the risk of exposure to nonzoonotic malaria, we analysed blood-samples collected during a 2015 
ecologically stratified cross-sectional survey in Northern Sabah, Malaysia using a serology MBA. The survey was 
conducted closely prior to the last reported indigenous cases of P. falciparum and P. vivax. We aimed to estimate 
short and long-term population exposure to P. falciparum and P. vivax based on antibody profiles, and to assess 
the individual and household-level risk-factors for exposure to these species. As historical exposure may reflect 
past environmental conditions or residence locations, geostatistical methods are best fit to predict recent or novel 
current infection, therefore we only performed spatial analysis on predictions for recent exposure to P. falciparum. 
We aimed to find environmental and spatial risk-factors for exposure and used geostatistical methods to predict 
population-level exposure probabilities.

Results
Sample collection. 10,100 individuals were sampled from 2849 households in 180 villages (Fig. 1), with 
ages ranging from 3 to 105 years old. The demographic breakdown of the sampled population and their malaria 
prevention measures are reported in Fornace et al.22.

Diagnostics. Despite 303 (3%) sampled individuals reporting fever, no individuals were identified as posi-
tive for malaria by microscopy. 55 (0.005%) individuals were positive for infection with P. falciparum by pooled 
PCR. Mono-infections were found for 3 individuals with P. knowlesi, three with P. malariae, and one with P. 
vivax22. Two mono-infections were also identified with the zoonotic malaria P. cynomolgi23. Additionally, one 
mixed-infection with P. knowlesi and P. vivax and one mixed-infection with P. vivax and P. malariae were found. 
One infection was identified with a Plasmodium species which could not be  confirmed22. The mono-infections 
identified are listed in Table 1, and Fig. 2 presents a map of PCR results for P. falciparum. 3 village-level clusters 
of positive households were found. Cross-reactivity between these infections and antibody responses were not 
investigated as it was not possible to rule out previous exposure to other malaria species, all of which were circu-
lating in the area at the time of the survey.

MFI data for 10,542 samples of known P. falciparum exposure status were used as training and validation 
data in the Super Learner models for classification of recent exposure to P. falciparum (Supplementary Table 1).

The final combination of antigens used in the classification model were P. falciparum AMA1, MSP1-19, 
GLURP-R2, Etramp5, MSP2-Ch150/9, GEXP18 and SEA (Supplementary Fig. 1). The results of the tests for rela-
tive influence of each antigen are presented in Supplementary Table 2. The final SuperLearner weighted ensemble 
performed better than all individual algorithms except for the boosted regression tree (BRT) (Supplementary 
Information Table 3). While the BRT yielded predictions which were marginally more accurate than the final 
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SuperLearner ensemble, > 500 predictions were classified as missing values. To maximize the classified data 
which we could use, we used predictions from the SuperLearner ensemble. The AUC values of each algorithm’s 
predictions are presented in the Supplementary Information Table 3. The final SuperLearner weighted ensemble 
model for to P. falciparum identified recently exposed individuals highly accurately with a cross-validated AUC 
of 0.996 (0.974–1). 406 individuals (0.04% prevalence, 95% CI 0.036–0.044) were predicted to be positive for 
recent exposure to P. falciparum.

Fornace et al22 used the SuperLearner methodology on the same test data to estimate historic exposure to P. 
falciparum and exposure to P. vivax. They used confirmed positives samples and adults from previously hyper-
endemic areas as training data. Estimations from Fornace et al.22 found that historical exposure prevalence to P. 
falciparum was 32.4% (95% CI 31.4–33.4) and 16.4% (95% CI 15.6–17.1) for P. vivax. Exposure was positively 
associated with increasing age for both species (Fig. 3).

Household‑level risk factors for exposure. The results of the risk factor assessments for historic and 
recent exposure to P. falciparum and historic exposure to P. vivax are provided in Figs. 4, 5 and 6.

Higher travel times to hospitals and clinics were found to be a risk factor in all three assessments. Various 
forest activities were also found to be risk factors for both species and all exposures. Falling within higher wealth 
quantiles was a protective factor for historic exposure to both P. falciparum and P. vivax, and the head of the 
household being educated to a secondary level or above was a protective factor for recent and historic exposure 
to P. falciparum. Male gender was also a risk factor for exposure to P. vivax and recent exposure to P. falciparum.

Figure 1.  Right: Map of Malaysian Borneo. Left: Map of northern Sabah, Malaysian Borneo with survey 
households. Maps were created using QGIS (version 3.16.11)24.

Table 1.  Positive results for mono-infections from microscopy and PCR investigations.

Individuals sampled Microscopy positive
PCR P. falciparum 
positive PCR P. vivax positive

PCR P. knowlesi 
positive

PCR P. malariae 
positive

PCR P. cynomolgi 
positive

10,100 0 55 1 3 3 3
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Environmental risk factors and spatial distribution of exposure. We identified multiple bioclimatic 
variables, normalised vegetation index (NDVI), distance from old forest, agriculture and the sea, as environmen-
tal and spatial risk factors for household seroprevalence of recent exposure to P. falciparum. The inclusion of the 
spatial term was found to improve the fit of the geostatistical model (Supplementary Table 5). Figure 7 shows 
the map of predicted prevalence for recent exposure to P. falciparum. In addition to predicting the prevalence of 
exposure across the study area, the exceedance probabilities for each location were calculated. To investigate the 
impact of setting different prevalence thresholds, we produced exceedance probability maps at 10%, 20% and 
30% seroprevalence (Fig. 8).

The PCR positive samples were too scarce to model geostatistically as a single outcome. Consequently, we 
produced predicted prevalence and exceedance probability maps for the combined outcome of current and 
recent exposure to P. falciparum from PCR and serology diagnostic endpoints (Supplementary Figs. 2 and 3).

Discussion
The key objective of this study was to describe population-level exposure to the human malarias P. falciparum 
and P. vivax in Sabah, Malaysia at a time when the country was nearing elimination. Our predictions showed 
recent exposure to P. falciparum within the population to be very low, with exposure increasing with age. We 
found that forest activity and longer travel time to health facilities were common risk factors for recent and 
historic exposure to P. falciparum and P. vivax. Additionally, we produced prediction maps of recent exposure 
to P. falciparum within the study area in Sabah, and corresponding exceedance probability maps which showed 
3 clear foci of exposure in the Pitas and Kota Maradu districts. This study demonstrates the application of MBA 
serology, machine learning, geostatistical methods and remote sensing derived data to characterise the exposure, 
risk factors and spatial distribution of human malarias in a pre-elimination setting.

Figure 2.  Map of P. falciparum PCR results. Maps were created using QGIS (version 3.16.11)24.
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Overall, the exposure predictions for historic and recent P. falciparum, and P. vivax align with knowledge 
of transmission in South–East Asia and specifically in Malaysia at the time of the study. Recent exposure to P. 
falciparum was very low in comparison to historic exposure and P. vivax exposure, which can be expected for a 
country in the pre-elimination  stage26. The age-stratified seroprevalence for recent P. falciparum exposure was 
close to 0% for the survey population until 30 years of age, and not increasing past 15% in older populations. 
The higher levels of recent exposure in older age groups may be due to activities such as travelling, hunting and 
working in forested areas, which bring individuals into proximity with forest-dwelling malaria vectors. Such 
activities are typically performed by adults, resulting in higher exposure in older age-groups27,28. P. vivax expo-
sure was higher than recent P. falciparum exposure. This is common as countries in Asia and the Americas near 
elimination, where P. vivax often contributes to more of the malaria burden than P. falciparum. Here, primary 
infections from mosquitoes drop and more cases are caused by reactivation of hypnozoite stage  parasites29.

We produced geostatistical maps for recent exposure to P. falciparum. The results show recent exposure to be 
highly spatially heterogeneous, as is common in low-transmission and pre-elimination settings. We predicted 
three foci of high transmission, where there is a high probability that seroprevalence exceeds 30%. These exceed-
ance probabilities are useful as they contextualise the predicted prevalence maps into units which are more 
interpretable for health-decision  making18,19. These probabilities could be used by National Control Programmes 
to inform prioritisation of control or surveillance efforts. In this study we showed exceedance probabilities for 
seroprevalences of 10% 20% and 30%, however these thresholds could be set by control programmes according 
to their own criteria. One of the unique facets of serology is that it captures exposure over longer periods of 
time than infection metrics such as PCR and  RDT30. We fit models for recent exposure using training data from 
individuals with known P. falciparum infections within the past two years, including recently infected individuals 
(e.g. exposed within the past week or month). Due to this, identified foci likely correspond to transmission within 
this time window. Longitudinal studies would be required to identify how foci change in the future, particularly 
with on-going malaria control activities.

The village-level clustering of PCR confirmed cases of P. falciparum and P. vivax suggests some focal outbreaks 
at the time of the survey. Genotyping of these samples may be interesting to investigate the inter and intra-village 
relatedness of parasites. The low numbers of PCR confirmed cases of P. falciparum and P. vivax limited our 
ability to use them in a joint model to investigate any shared spatial effect and common underlying processes 
between recent exposure and infection. We did, however, combine the exposure and infection results and pro-
duced a prediction map of ‘recent and current infection’. Overall, these maps predicted the same three hotspots 
of transmission, and an additional area of transmission in the south-east of the study area. There were no PCR 
confirmed cases in this additional area, and we suspect that these predictions were based off new associations 
between PCR results and environmental variables.

The age-stratified seroprevalence curves for all exposures follow the same trend of low exposure until around 
20 years of age, with exposure increasing after this point. Typically, in South–East Asia, malaria is an occupational 
hazard for forest workers and exposure increases at around 20 years of age when males begin forest work. The risk 
of human (and zoonotic) malarias from forest activity in South-East Asia is well-documented4,22,31–36. We found 

Figure 3.  Age-stratified seroprevalence for exposure to P. vivax (red line), historic P. falciparum (green line), 
recent P. falciparum (blue line). Vertical lines represent confidence intervals for seroprevalence estimates.
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that forest activities (travelling to forest and going to the forest in the evening) were common risk factors across 
exposures to recent and historic P. falciparum, and P. vivax. In Sabah, this is driven by the ecology of the shared 
primary vector Anopheles balabacensis. An. balabacensis is primarily reported as a forest-dwelling  species37, 
although recent research has highlighted that the vector may be adapting to changing land-use  patterns38. Col-
lecting food from the forest was found to be a protective factor for exposure to P. vivax. This is interesting as 
it opposes the main findings from this paper and widely reported findings in the literature of forest and forest 
activities being risk factors for exposure. One explanation may be that individuals gather food during daytime 
when malaria vectors are biting less, resulting in less time spent in the forest during the evening biting hours 
of An. balabacensis. Additionally, primary and intact forests have lower vector  densities39, and have also been 
found to be a protective factor for P. knowlesi in this area, so this finding may reflect differences in land type as 
well as behaviour. It is important to also acknowledge the low levels of human malaria transmission seen in this 
study, meaning the majority of P. vivax antibody responses are likely to be relapse cases, which can confound 
exposure patterns.

The second risk factor which was common between all exposures was longer travel times to health facilities 
(hospitals and clinics). Geographic distance or travel time to health facilities is often a significant predictor when 
modelling malaria prevalence and a significant factor for controlling  burden40–45. This highlights the vulner-
ability of communities living in remote areas who are less able to seek access to healthcare when it is  needed46. 
Improving equity in access to prompt diagnosis and treatment is vital to achieve and sustain elimination of 
malaria in these hard-to-reach  communities6. We found other risk and protective factors which were common 
across more than one exposure type. Male gender was found to be a risk-factor for P. vivax and recent exposure 
to P. falciparum. Similarly, men were found to be at higher risk of exposure to human and zoonotic malarias in 
a previous case–control study in the  area47. This suggests that the activities which bring males into contact with 
vectors are similar between zoonotic and non-zoonotic malaria, and the vectors for zoonotic and non-zoonotic 
malaria are the same or may occupy similar habitats. A higher level of education was found to be a protective 
factor against recent and historic exposure to P. falciparum, and wealth was found to be a protective factor in 
historic exposure to P. falciparum and P. vivax. Education and wealth are likely to be lower in the hard-to-reach 
communities described above. Forest-fringe environments with high malaria transmission are often inhabited 

Figure 4.  Results of the final multivariate model for risk factors for recent exposure to P. falciparum. Factors 
with an odds ratio > 1 are classed as risk factors (found to increase an individual’s likelihood of exposure), and 
factors with an odds ratio < 1 are classed as protective factors (found to reduce an individual’s likelihood of 
exposure).
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by ethnic minority groups, migrant workers and workers involved in illegal or semi-illegal activities (logging, 
mining), experiencing a high degree of poverty and with difficulty accessing  healthcare6,48,49. Promising solu-
tions to the challenges of access to healthcare and health education may be mobile malaria clinics and village 
volunteer malaria  workers6.

Environmental variables around the household were only included in the risk-factor analysis for recent 
exposure to P. falciparum. This is as it is unlikely that the environmental conditions at the time of the survey 
would affect an individual’s lifetime exposure. Individuals may have moved away from the location, and thus the 
environmental conditions, where they were historically exposed. We found that fragmentation of agricultural 
land over 3 km was a risk-factor for recent exposure to P. falciparum. Mixed agriculture was also found to be a 
predictive factor for the geostatistical mapping of recent P. falciparum exposure, highlighting how risk-factors 
around individual’s households translate to broader-scale patterns in transmission. Land-use change and frag-
mentation, and agricultural activities have been shown to be significant risk factors for zoonotic P. knowlesi in 
the study  area22, which is transmitted by the same vector An. balabacensis. Habitat fragmentation and agriculture 
have also been shown to be associated with this vector’s  breeding50.

There were some limitations in this study. At the time of classification of P. vivax exposure by Fornace et al.22, 
there was not sufficient machine-learning training data to differentiate between recent and historical P. vivax 
exposure. For this study we have therefore treated the P. vivax classification as a “general exposure” to P. vivax. 
More discriminatory antigens for defining time-specific exposures to P. vivax have since been  developed12. 
The complex biology and epidemiology of P. vivax is the reason we did not perform geostatistical mapping on 
this exposure metric, as we were not capable of confidently defining recent exposure. Additionally, there were 
limitations to the risk-factor analysis. Our definition of historic exposure to P. falciparum is infection within the 
past 20 years, based on an estimated antibody half-life of 20 years. However, participants’ answers likely reflect 
their behavior at and around the time of the survey in 2015. Therefore, the ‘risky’ behaviors they report in the 
questionnaire may not be those which resulted in their historical exposures. Similarly, behaviors reported in the 
survey may not have resulted in primary P. vivax exposures, and serological signals from relapses may influence 
these results. These limitations should be considered when interpreting the risk factors for historic exposures 
to P. falciparum and exposure to P. vivax. There were also some limitations to the training data used to classify 
sero-negative individuals. Antigenic variation and variation in the human immune system may limit how well the 
negative reference population of naïve individuals from a non-endemic area compare with exposed individuals 
from the study  area51. While it would have been ideal to use training data of known exposure status from the 

Figure 5.  Results of the final multivariate model for risk factors for historic exposure to P. falciparum. Factors 
with an odds ratio > 1 are classed as risk factors (found to increase an individual’s likelihood of exposure), and 
factors with an odds ratio < 1 are classed as protective factors (found to reduce an individual’s likelihood of 
exposure).
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geographic region of the study site, the continued transmission of P. falciparum and P. vivax made it impossible 
to identify unexposed individuals within the study site.

Despite some limitations, there is huge potential for the use of these methods to supplement surveillance 
activities in elimination settings. Serological surveillance is increasingly being used to monitor elimination 
efforts in low transmission settings where the probability of detecting active infections is low. Integrating this 
into geostatistical frameworks enables identification of areas with the highest probability of recent transmission 
and prediction across wider geographical areas. Most of the Earth Observation-derived data is free, frequently 
available and easily accessible, therefore the analysis could be repeated if serological data were available. MBA 
serological surveys are relatively low-cost and logistically feasible to supplement existing surveillance activities. 
Additional approaches have explored using serological surveillance with convenience sampling methods to col-
lect community level data at relatively low  cost52. A key characteristic of MBA is the ability to assess exposure 
to multiple pathogens simultaneously. This study and supporting studies from the same serological survey on 
Neglected Tropical Diseases (NTDs) by Chan et al.53, and zoonotic malaria by Fornace et al.22 demonstrate the 
wealth of information which can be yielded from integrating serology with geostatistical methods, and how 
useful the outputs of such studies can be.

Although this is a retrospective analysis of data which was collected 7 years prior to the time of writing, in a 
country which has now effectively eliminated local transmission of P. falciparum and P. vivax, the findings are still 
useful. This study sheds important insights into the individual and household-level risk factors for human malaria 
exposures in Sabah during the pre-elimination phase. We showed that forest activities and distance from health 
facilities were significant risk factors for exposure across P. falciparum and P. vivax. We also produced predictive 
maps of seroprevalence for recent exposure to P. falciparum, based on environmental predictors. Additionally, 
we built on previous work by Fornace et al.22 using machine learning methods to predict exposures from MBA 
serology data. The ability to estimate recent exposure to P. falciparum allowed for environmental and spatial risk 
factors for ongoing transmission to be assessed, and for meaningful geostatistical modelling to be performed. 
Our results may be useful to inform policy makers and surveillance teams of common risk factors for human 
malaria, and areas which may be receptive to outbreaks in the unfortunate event of a resurgence of transmission.

Methods
Study site. The study took place from September 17th to December 12th 2015 across the Kudat, Ranau, 
Pitas and Kota Marudu districts of Northern Sabah, Malaysian Borneo. The climate in the region is tropical and 
elevations range from sea-level to over 4000 m above sea-level. The combined population of these districts was 

Figure 6.  Results of the final multivariate model for risk factors for exposure to P. vivax. Factors with an odds 
ratio > 1 are classed as risk factors (found to increase an individual’s likelihood of exposure), and factors with an 
odds ratio < 1 are classed as protective factors (found to reduce an individual’s likelihood of exposure).
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280,000 at the time of the study, situated predominantly in rural locations and with most occupations being 
associated with agricultural or plantation activities.

Study design and sample collection. An environmentally stratified, population-based cross-sectional 
survey was conducted, as described by Fornace et  al. 22. A non-self-weighting two-stage sampling design of 

Figure 7.  Geostatistical map showing mean posterior estimated prevalence of recent exposure to P. falciparum 
from serological markers. Maps were developed using R-INLA25 and visualised using QGIS (version 3.16.11)24.

Figure 8.  Exceedance probability using a 10% threshold, 30% threshold and 50% threshold (i.e. In the left hand 
image the probability that seroprevalence exceeds 10%). Maps were developed using R-INLA25 and visualised 
using QGIS (version 3.16.11)24.
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919 villages was used to estimate seroprevalence to various malaria species; this analysis focuses on antibody 
responses to antigens from the human malaria species P. falciparum and P. vivax. The villages were stratified 
by forest cover, with a target sample size of 2650 households. All individuals who had been residing in selected 
households for the past month were asked to participate. Finger prick blood sampling was performed to prepare 
blood smears for the detection of malaria parasites by microscopy, and whole blood spots were collected using 
finger-prick blood sampling and EDTA microtainers (BD). Samples were spun to separate plasma and red blood 
cells and stored at − 20 °C. Participants also completed a questionnaire survey on individual and household 
information including demographic, health and socio-economic indicators. Location data was recorded for all 
households using a handheld GPS receiver (Garmin, USA).

Laboratory procedures. Laboratory procedures for the analysis of samples collected during the study are 
described by Fornace et  al.22. For the molecular identification of infection, DNA was extracted from whole 
blood samples. Samples were pooled into 10 × 10 matrices with 40 μl of each sample loaded on one vertical and 
one horizontal pool. QIAsymphony DNA Midi kit (Quiagen, UK) were used to extract the 400 μl pools on a 
QIAsymphony SP/AS instrument (Quiagen, UK). The pools were eluted in 200 μl of elution buffer provided 
within the kit. The extracted DNA pools were amplified by genus-specific 18S-ribosomal DNA nested PCR as 
described by  Singh54. The nested PCR products were analysed on 1.5% agarose gels, and genus-positive sample 
pools were de-pooled and reamplified. Positive samples were visualised on agarose gels and speciated using 
methods described by 54,55.

Immunoglobulin G responses to 16 non-zoonotic malaria parasite antigens were measured: Plasmodium 
falciparum glutamate-rich protein (GLURP-R2), early transcribed membrane protein (Etramp) 5, gameto-
cyte exported protein (GEXP18), merozoite surface protein (MSP)2-Ch150/9, MSP2-Dd2, apical membrane 
antigen 1 (AMA1), MSP1–19, and schizont egress antigen (SEA)-1; Plasmodium vivax MSP-1, erythrocyte bind-
ing protein (EBP), Duffy binding protein (DBP) RII, and DBPII. P knowlesi and P. vivax AMA-1 were excluded 
from the analysis due to possible cross-reactivity with Plasmodium vivax  antigens56. Luminex (Luminex, Aus-
tin, TX, USA) magnetic microsphere conjugation was done by standard methods. Results were read using the 
LuminexMaGPIX system, measuring quantitative antibody responses measured as median fluorescent intensity 
(MFI). Sera from confirmed clinical cases of P. falciparum and P. vivax as described by Herman et al.56 were used 
as positive control pools, and serial dilutions of the positive control pools for were used to generate standard 
control curves.

Classification of exposure. All analysis was performed in R statistical  software57.
To classify individuals as seropositive for recent exposure to P. falciparum, we used an ensemble approach for 

binary classification with the Super Learner  algorithm58. This algorithm estimates the performance of multiple 
machine learning models by cross validation, then creates an “ensemble” optimal weighted average of those 
models 59. The machine learning models included in the ensemble were support vector machine (SVM), random 
forest (RF), lasso, K-nearest neighbour (KNN) and boosted regression tree (BRT). Weights for base learners were 
calculated using the Nelder-Mead method to maximise the Area Under the ROC Curve (AUC).

The algorithms were trained with datasets of antibody responses from individuals with a known exposure 
to, or concurrent infection with P. falciparum, and negative controls from immunologically naïve individuals 
from the UK and USA (Supplementary Information Table 1). To avoid overfitting, we used a random 70% of the 
dataset to build the model, leaving the remaining data for independent validation. The full dataset with tenfold 
cross-validation was used to make predictions. The outcome was a prediction of probability of recent exposure 
to P. falciparum. Individuals with a probability of > 0.5 were classed as positive to infection within the last 2 years, 
as training data included cases within this timeframe. This is hereby referred to as “recent exposure”.

To specify the combination of antigens included in the final classification model, the relative influence of each 
antigen in the prediction of positivity for recent exposure to P. falciparum was calculated using a BRT algorithm. 
The SuperLearner ensemble was run on combinations of 3 to 8 antigens, beginning by dropping the antigen of 
least influence. The final combination was taken as the most parsimonious model with the highest predictive 
power, i.e., the lowest number of antigens which yielded the highest AUC.

Historic exposure to P. falciparum and exposure to P. vivax were classified as described by Fornace et al.22, 
using the SuperLearner methodology with different training data and combinations of antigenic targets. To clas-
sify historic exposure to P. falciparum they used molecularly confirmed cases from Northern Sabah taken up to a 
year after  diagnosis47, and longitudinal samples from individuals over 5 years old in a previously hyper-endemic 
area which was experiencing massive reductions in  tramsission60. To classify exposure to P. vivax, training data 
for sero-positives included molecularly confirmed P. vivax  infections47, confirmed P. vivax exposed individuals 
from endemic areas in Ethiopia and  Brazil56, and positive P. vivax controls. Negative reference populations for 
both species consisted of samples from UK residents with no history of travel.

Risk factor assessment. Individual-level demographic, health and socio-economic risk factors for recent 
exposure to P. falciparum, historic exposure to P. falciparum, and historic exposure to P. vivax were assessed. 
Additionally, remote-sensing derived environmental risk factors for recent exposure to P. falciparum over multi-
ple spatial scales (100 m–5 km) were also investigated. All risk factors investigated are detailed in Fornace et al.22. 
Age-adjusted univariate binomial mixed-effect logistic regression models were run for each covariate against 
each exposure classification, with household included as a random effect to account for spatial autocorrelation. 
Variables with p < 0.2 were included in the multivariate analysis. The final age-adjusted multivariate model was 
developed using a forward-stepwise logistic regression procedure, where all variables significant at p < 0.05 were 
retained, and each step was assessed to ensure reduction in Akaike Information Criterion (AIC). Factors with an 
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odds ratio > 1 were classed as risk factors (found to increase an individual’s likelihood of exposure), and factors 
with an odds ratio < 1 were classed as protective factors (found to reduce an individual’s likelihood of exposure).

Mapping exposure risks. The spatial distribution of the household prevalence of recent exposure to P. 
falciparum was assessed and a prediction map was developed using Earth Observation-derived data. Potential 
environmental and spatial covariates including climatic variables, accessibility to hospitals and clinics, popula-
tion density, distance to various types of land cover and forest, and topographic measures, were assembled (Sup-
plementary Information Table 4.) Demographic data was not available across all locations within this region, 
therefore questionnaire survey data was not included.

Geostatistical models of household prevalence were fit in a Bayesian framework where p(xi) denoted the 
seroprevalence at locations xi , i = 1 . . . n , with mi individuals sampled per household location. The full model 
was specified as:

With the linear predictor for the binomial model specified as:

where β0 represents the intercept, β0 + d(xi)
′β + wi represents a vector of location-specific covariate effects, and 

wi represents the spatial effect. The stochastic partial differential equation (SPDE) approach was used to model the 
spatial effect as a Matern covariance function. The model was built and implemented in Integrated Nested Laplace 
Approximation (R-INLA)25. Penalised complexity priors were used for the spatial effect and weakly informative 
priors were used for the fixed effect coefficients and  intercepts61. Deviance Information Criteria (DIC) was used to 
assess final model fit. The posterior probabilities for final model predictions were estimated from 1000 posterior 
samples. The uncertainty around predictions were visualised as exceedance probabilities for seroprevalence at a 
10%, 20% and 30% threshold. These maps represent the probability that a location exceeds each seroprevalence 
threshold, where areas with exceedance probability around 50% are highly uncertain, above 50% are increasingly 
likely to be above the threshold, and below 50% are decreasingly likely to be positive.

Although village-levels clusters of positive results were observed, the number of positive pooled PCR results 
were too sparse for geostatistical modelling. To investigate the spatial distribution of a combined outcome for 
current infection and recent P. falciparum exposure, we combined the PCR and serology results and ran geosta-
tistical models as described above.

Ethics. This study was approved by the Medical Research Sub-Committee of the Malaysian Ministry of 
Health (NMRR-14-713-21,117) and the Research Ethics Committee of the London School of Hygiene and Trop-
ical Medicine (8340). Written informed consent was obtained from all study participants, and all methods were 
performed in accordance with the relevant guidelines and regulations.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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