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a b s t r a c t

Our experience of the world around us is governed almost entirely by light–matter
interactions. At the most fundamental level, such interactions are described by quantum
electrodynamics (QED), a well-established theory that has stood up to decades of
experimental testing to remarkable degrees of precision. However, the complexity
of real systems almost always means that the quantum electrodynamical equations
describing a given scenario are often infeasible or impractical to solve. Thus, a sequence
of approximations and idealisations are made, in order to build up from the simple
case of an isolated electron interacting with a gauge field leading to the deceptively
simple laws governing reflection and refraction at mirrors and lenses. This review
provides a pedagogical overview of this journey, concentrating on cases where external
boundary conditions can be used as a control method. Beginning from the fundamental
Lagrangian, topics include gauge freedom, perturbative macroscopic QED descriptions
of spontaneous decay, Casimir–Polder forces, resonant energy transfer, interatomic
Coulombic decay, all of which are described in terms of the dyadic Green’s tensor
that solves the Helmholtz equation. We discuss in detail how to calculate this tensor
in practical situations before outlining new techniques in the design and optimisation
of perturbative light–matter interactions, highlighting some recent advances in free-
form, unconstrained inverse design of optical devices. Finally, an outlook towards the
frontiers in the interaction of quantum light with matter is given, including its interface
with chemical reactivity via polaritonic chemistry and quantum chemistry via quantum
electrodynamical density functional theory (QEDFT).
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Light–matter interactions as governed by the theory of quantum electrodynamics are at the heart of physics, being
esponsible for a large majority of everyday physical phenomena (with the notably exception of gravity). The theory of
uantum electrodynamics is well-understood — indeed it results in some of the most precisely-tested quantities in all the
ciences [1]. So why is quantum electrodynamics still an active field of research? The answer lies in the complexity frontier
while the fundamental interactions are known, solving the resulting equations is either infeasible or impossible in
any practical situations. For example, using quantum electrodynamics to predict the properties of a macroscopic object
ill, at the fundamental level, involve computing the mutual interactions of upwards of very roughly 1023 particles. This
hould contextualised against idealised few-body systems where predictions of properties for even a handful of particles
roves computationally highly non-trivial (see, e.g., [2], meaning that a fully quantum-electrodynamical description of a
acroscopic object is simply beyond reach.
Physics has, of course, developed ways to deal with this issue. These rely on abstracting away much of the complexity

f the underlying system and concentrating on effective quantities, often with those actually being described before the
nderlying structure was discovered. For example, Newtonian mechanics is more than capable making accurate physical
redictions within its realm of validity without considering the constituent atoms that make up macroscopic objects.
In this review we will consider the ‘mixed’ situation, where a quantum object such as an atom or molecule is influence

y macroscopic objects in its surroundings. We will begin from first principles and stick to the perturbative case, where
he quantum object can be considered to be weakly coupled to the electromagnetic field.

We begin in Section 2 with the fundamental Lagrangian for quantum electrodynamics as a gauge theory, verifying
hat this reproduces Maxwell’s equations regardless of a choice of gauge. We then introduce the charge and current
2
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ensities relevant to an atom, and address the question of gauge choice. Using an arbitrary-gauge Lagrangian, we introduce
oulomb gauge then demonstrate in detail that an alternative gauge choice leads to the multipolar Hamiltonian usually
ost convenient for describing the interaction of atoms (or any other kind of quantum emitter) with light. The long-
avelength limit of this leads to the dipolar Hamiltonian that finds extensive use in cavity quantum electrodynamics and
elated fields.

In Section 3 we address the question of how the quantum theory of light and matter can be adapted and extended to
eal with macroscopic objects made up of overwhelmingly large numbers of atoms. After discussing the advantages and
rawbacks of various macroscopic quantisation methods, we explicitly carry out the quantisation of macroscopic quantum
lectrodynamics, arriving at electromagnetic fields expressed in terms of a set of polariton-like creation and annihilation
perators and the (classical) dyadic Green’s tensor summarising the effect of the electromagnetic environment. Section 4
overs how the environment-dependent theory of electromagnetism can be used to yield observable quantities such
s forces and decay rates, as well as how it can be used to predict the parameters entering into quantum models of
ight–matter interaction such as the Jaynes–Cummings model.

The goal of Section 5 is to delve further into the actual calculation of the dyadic Green’s tensors that the preceding two
ections will have demonstrated to be central to describing perturbative environment-modified light–matter interactions.
articular attention is given to the Green’s tensor for a dielectric half-space with its form, approximations and evaluation
ia contour integration discussed in significant detail. This section closes with an account of how Green’s tensors can be
alculated numerically, and how such quantities can be accessed experimentally.
Having discussed the consequences of choosing a particular Green’s tensor to calculate in Section 5, Section 6 reverses

he logic entirely to ask the question; what Green’s tensor is needed in order to realise a given goal specified by a merit
unction? This is the realm of inverse design, which is a rapidly-expanding subfield of nanophotonics where structures can
e wavelength or sub-wavelength scale, dramatically complicating their design. Remarkable theoretical, computational
nd experimental results are summarised as an invitation, before moving onto an examination of the underlying methods
hat make inverse design feasible. Taking spontaneous decay as an example, a merit function is explicitly calculated before
brief summary of popular methods of implementing inverse design algorithms.
This review ends with Section 7, which discusses relation of the material in the preceding sections to some aspects

f the current state of the art in light–matter interactions, namely polaritonic chemistry and quantum electrodynamical
ensity functional theory.
Throughout this review two additional goals are kept in mind. Firstly, as far as possible this work aims to be

edagogical, especially in Sections 2, 3 and 5. The remaining parts present more of an overview of developments, with
nly some simple examples explicitly derived. Nevertheless, the focus is kept on a pedagogical explanation of ‘real-world’
echniques the reader would need in order to actually reproduce and expand upon such results, as well as acknowledging
ssues with overlapping and confusing terminology that often cause unnecessary stumbling blocks to those beginning in
his field.

. Fundamentals

The history of electromagnetism has been characterised by a gradual process of unification — beginning with Maxwell’s
nification of the entirely unrelated phenomenologies of electric and magnetic fields, all the way up to the modern
iewpoint of electromagnetism as a gauge theory and its unification with the weak force. All of these viewpoints are still
f use today, the choice of which statement of the theory is most appropriate depends on the conditions and requirements
f a particular calculation. Here we will begin from the quantum electrodynamical Lagrangian at its most fundamental
evel, and gradually introduce approximations which bring the theory closer and closer to our everyday experience.

The symmetry law underlying quantum electrodynamics (QED) is that the theory should be invariant under a U(1)
rotation, corresponding to rotation of the field in the complex plane. Up to operators of mass dimension 4, the most
general Lagrangian density that can be written that obeys such a symmetry is (see, for example, [3]):

L = ih̄cψ̄γ µDµψ −mc2ψ̄ψ −
1

4µ0
FµνFµν, (1)

with, in the (+,−,−,−) metric convention:

Dµ = ∂µ + i
q
h̄
Aµ, ψ̄ = ψ†γ 0, Fµν = ∂µAν − ∂νAµ,

where ψ is a complex four component spinor representing matter, γ are matrices obeying {γ µ, γ ν} = 2ηµν with η the
inkowski metric, A is the gauge potential (ultimately leading to electric and magnetic fields),m is the mass of the electron
nd q is its charge. As usual h̄ is the reduced Planck constant, c is the speed of light and µ0 is the vacuum permeability,
elated to the vacuum permittivity ε0 and the speed of light via c2 = 1/(ε0µ0).

The statement (1) of QED is almost never used outside high-energy physics, since it has little clear relation to the
observables of low-energy settings such as electric and magnetic fields or particle positions and momenta. In order to bring
this theory into a form more useful for everyday laboratory situations, we make some manipulations and approximations.
3
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2
.1. Matter field

The Euler–Lagrange equation arising from variation of L with respect to ψ̄ results in the Dirac equation;[
ih̄cγ µ

(
∂µ + i

q
h̄
Aµ

)
−mc2

]
ψ = 0, (2)

while varying ψ results in the adjoint Dirac equation;

ψ̄

[
ih̄c
(
←−
∂µγ

µ
− i

q
h̄
Aµ

)
−mc2

]
= 0, (3)

where
←−
∂µ denotes a derivative acting to the left. Multiplying the Dirac Eq. (2) by ψ̄ from the left, the adjoint Dirac Eq. (3)

by ψ from the right and adding the two equations together causes all terms without derivatives to cancel:

ψ̄(γ µ∂µ +
←−
∂µγ

µ)ψ = ψ̄γ µ∂µψ + (∂µψ)γ µψ = 0, (4)

or equivalently;

∂µ(ψ̄γ µψ) = 0, (5)

showing that ψ̄γ µψ is a conserved quantity. We define the conserved current as;

Jµ = qcψ̄γ µψ. (6)

A factor qc has been introduced for later convenience [which of course does not affect the current’s defining property
(5)], this means the current above may looks slightly different to textbook versions where different conventions are used.

The standard textbook method of finding the non-relativistic approximation to the Dirac Lagrangian uses the equations
of motion (2) and (3), and highlights its coupling to the field as a demonstration of the emergence of the coupling of
the spin to the magnetic field. Here we are considering the matter part only and would like to stay in the Lagrangian
formalism as much as possible. We therefore take a different route along the same lines as Ref. [4]. The non-relativistic
approximation is based on the principle that one component of the energy–momentum four vector (the rest mass) should
dominate over the others, so it makes sense to separate the matter-field Lagrangian density

LM = ih̄cψ̄γ µ∂µψ −mc2ψ̄ψ (7)

into its scalar and three-vector parts, giving;

LM = ih̄ψ†∂tψ + ih̄cψ†αi∂iψ −mc2ψ†βψ, (8)

where αi
≡ γ 0γ i and γ 0

≡ β , and the property γ 0γ 0
= 1 has been used. In the Dirac representation of the gamma

matrices

γ 0
=

(
I2 0
0 −I2

)
= β, γ i

=

(
0 σ i

−σ i 0

)
, (9)

the αi take the explicit form

αi
≡ γ 0γ i

=

(
0 σ i

σ i 0

)
. (10)

Splitting the four-spinor ψ into its upper and lower components ϕ and χ

ψ =

(
ϕ

χ

)
(11)

and expanding out the matter-field Lagrangian density (7), one has;

LM = ih̄(ϕ†∂tϕ + χ
†∂tχ )+ ih̄c(ϕ†σ i∂iχ + χ

†σ i∂iϕ)−mc2(φ†ϕ − χ†χ ) (12)

In a non-relativistic approximation, mc2 can be taken to be much larger than any other quantity. This suggests making
the following transformation;(

ϕ

χ

)
= e−imc2t/h̄

(
ϕ0
χ0

)
(13)

where ϕ0 and χ0 are still time-dependent, but will eventually be considered as slowly varying compared to the
rapidly-oscillating factor e−imc2t/h̄. Applying this to the Lagrangian LM , one finds;

L = ih(ϕ†
∂ ϕ + χ

†
∂ χ )+ ihc(ϕ†

σ i∂ χ + χ
†
σ i∂ ϕ )+ 2mc2χ†

χ (14)
M ¯ 0 t 0 0 t 0 ¯ 0 i 0 0 i 0 0 0

4
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here, importantly, the term proportional to ϕ†ϕ cancelled out with one of the terms coming from applying the product
ule to the time derivative of the transformed spinors on the right hand side of (13). Similarly to the textbook approach
see, e.g. [5]), we can here use the approximate equations of motion to write the lower spinor as

χ0 = −
ih̄

2mc
σ i∂iϕ0. (15)

ubstituting this into the Lagrangian density (14) and using the Pauli matrix property that σiσi = δij + iϵijkσk one finds;

LM = ih̄ϕ†
0∂tϕ0 +

ih̄3

4m2c2
(∂iϕ

†
0)(∂i∂tϕ

†
0)+

h̄2

2m
ϕ

†
0∂i∂iϕ0 −

h̄2

2m
(∂iϕ

†
0)(∂iϕ0)+

h̄2

2m
(∂iϕ

†
0)(∂iϕ0) (16)

n which the final two terms cancel. Keeping terms only up to order 1/m and switching to vector notation gives the
on-relativistic matter Lagrangian

LM ≈ ih̄ϕ†
0∂tϕ0 +

h̄2

2m
ϕ

†
0∇

2ϕ0 (17)

eversing the transformation (13) gives the final Lagrangian

LM = ih̄ϕ†∂tϕ −
h̄2

2m
ϕ†
∇

2ϕ −mc2ϕ†ϕ (18)

arying ϕ† gives the Schrödinger equation with a rest mass term;

ih̄∂tϕ = −
h̄2
∇

2

2m
ϕ +mc2ϕ (19)

s expected in a non-relativistic approximation. This is the so-called Schrödinger field, after subtracting off the constant
ass-energy. Finally, we transform to the particle picture (first quantisation), as opposed to working with fields (second
uantisation). In this picture, this is the Schrödinger equation for a free non-relativistic point-particle with Lagrangian

LM =
p2

2m
. (20)

.2. Photon field

The Lagrangian (1) can be rewritten as;

L = ih̄cψ̄γ µ∂µψ −mc2ψ̄ψ −
1

4µ0
FµνFµν − AµJµ, (21)

here we have used the conserved current Jµ = cqψ̄γ µψ defined in Eq. (6). When considering the photon field there is
o hope or reason to attempt a non-relativistic approximation like in the previous section since the photon is intrinsically
elativistic as it has no mass. Instead, we will have to directly vary the gauge field A in the full statement of the Lagrangian
ensity (21) in order to get its equations of motion.
Before progressing we note that the Lagrangian density (21) contains some redundancy which can be eliminated.

efining an arbitrary spacetime function χ (known as a gauge generating function) and applying a transformation of the
orm

Aµ → Aµ + ∂µχ (22)

o the Lagrangian density (21), the first two terms are unaffected but the second two terms become;

Fµν = ∂µAν − ∂νAµ → ∂µ(Aν + ∂νχ )− ∂ν(Aµ + ∂µχ ) = ∂µAν − ∂νAµ + ∂µ∂νχ − ∂ν∂µχ = Fµν , (23)

nd

JµAµ → Jµ(Aµ + ∂µχ ) = JµAµ + Jµ∂µχ = JµAµ + ∂µ(Jµχ )− χ∂µJµ. (24)

he final term in (24) is zero by current conservation [see Eqs. (5) and (6)], and the penultimate term is a total divergence
o can be eliminated from the Lagrangian via the divergence theorem (assuming, as always, that all fields vanish at
nfinity). Eqs. (23) and (24) therefore demonstrate that the Lagrangian density (21) remains unchanged by a transformation
f the form (22) — in other words there is more than one choice of the gauge field A that leads to the same Lagrangian
ensity. That this must happen perhaps should have been obvious from the start — the Lagrangian density (21) does
ot contain the time-derivative of A0 (Fµν is antisymmetric in its indices), meaning that this field component has no
anonically conjugate momentum and no dynamics.
We will postpone choosing a gauge as long as possible in order to emphasise that the equations of motion for the field

are Maxwell’s equations, independent of a particular choice of gauge. We begin by expanding the free photon term in
5
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he Lagrangian density (21) into scalar and three-vector components:

−
1
4
FµνFµν = −

1
2
(∂µAν)(∂µAν)+

1
2
(∂µAν)(∂νAµ)

=
1
2
(∂iA0)2 +

1
2
(∂0Ai)2 −

1
2
(∂iAj)2 + (∂iA0)(∂0Ai)+

1
2
(∂iAj)(∂jAi)

=
1
2
(∂iA0 + ∂0Ai)2 −

1
2
(∂iAj)2 +

1
2
(∂iAj)(∂jAi) .

Restoring the factor 1/µ0 and adding back the term −AµJµ, we have an expanded version of all the A-dependent terms
in the Lagrangian density (21)

−
1

4µ0
FµνFµν − AµJµ =

1
2µ0

(∂iA0 + ∂0Ai)2 −
1

2µ0
(∂iAj)2 +

1
2µ0

(∂iAj)(∂jAi)− A0J0 + AiJ i, (25)

from which we can find the equations of motion for the gauge field A. First considering the scalar part A0, the relevant
Euler–Lagrange equations are

∂L

∂A0
− ∂i

∂L

∂(∂iA0)
= 0, (26)

rom which one finds

−J0 −
1
µ0
∂i(∂iA0 + ∂0Ai) = 0. (27)

Identifying the charge density ρ as J0/c and the electromagnetic scalar potential as φ = A0c , this becomes

−cρ −
1

cµ0
∂i(∂iφ + ∂tAi) = 0, (28)

r, switching to vector notation;

−∇
2φ −∇ · Ȧ =

ρ

ε0
(29)

here c2 = 1/(ε0µ0) was used. Here we have suppressed the arguments (r, t) in order to keep the notation compact, this
will be done throughout unless multiple positions/times are involved in an expression.

Moving on to the equations of motion for the field A, we note that since L depends on the derivatives of A with
respect to both space and time, its corresponding Euler–Lagrange equations are

∂L

∂Aj
− ∂i

∂L

∂(∂iAj)
− ∂0

∂L

∂(∂0Aj)
= 0, (30)

iving

µ0Ji + ∂j∂jAi − ∂j∂iAj − ∂0∂0Ai + ∂0∂iA0 = 0, (31)

r, in vector notation;
1
c2
∇φ̇ +

1
c2

Ä−∇2A+∇(∇ · A) = µ0J . (32)

wo quantities can be defined from the potentials A and φ, the familiar electric field E and magnetic field B

E = −Ȧ−∇φ, B = ∇ × A, (33)

hich by construction immediately implies two of Maxwell’s equations;

∇ · B = 0 (Gauss’s law for magnetism), (34)

∇ × E = −Ḃ (Faraday’s law of induction). (35)

aking the divergence of the definition (33) of the electric field gives another of Maxwell’s equations;

∇ · E = −∇ · Ȧ−∇2φ =
ρ

ε0
(Gauss’s law). (36)

The fourth and final Maxwell equation can be found by taking the curl of the definition (33) of the magnetic field;

∇ × B = ∇ × ∇ × A = ∇(∇ · A)−∇2A, (37)

using the equation of motion for A

∇ × B = µ0J−
1
∇φ̇ −

1
Ä = µ0J+

1 ∂ (
−∇φ − Ȧ

)
, (38)
c2 c2 c2 ∂t
6



N. Westerberg and R. Bennett Physics Reports 1026 (2023) 1–63

a

W
b
f

s

w
w
c

w

a

f

C

nd the definition (33) of E, giving

∇ × B = µ0J+ ε0µ0Ė (Ampere’s law). (39)

e have derived all four of Maxwell’s equations from the Lagrangian (1), without specifying a gauge. This of course is to
e expected as Maxwell’s equations depend only on the gauge-invariant fields E and B. We could also have written the
ree photon Lagrangian density in terms of gauge invariant quantities. Note that for any vector field;

(∇ × V)2 = (∂iVj)2 − (∂iVj)(∂jVi), (40)

o;

−
1

4µ0
FµνFµν =

1
2µ0c2

(∇φ + Ȧ)2 −
1

2µ0
(∇ × A)2 =

1
2µ0

(
1
c2

E · E− B · B
)
. (41)

It is important to note that the appearance of E and B in this form of the Lagrangian density should be understood only
as a shorthand for the version written in terms of φ and A — the latter in particular is one of the dynamical variables of
the theory which will later be used to identify canonical momenta and carry out a quantisation.

2.3. Atoms and photons

In order to more closely study the interaction of light and matter, we look at the two coupling terms in the Lagrangian
density (21),

−
1

4µ0
FµνFµν − AµJµ =

1
2µ0

(
1
c2

(Ȧ+∇φ)2 − (∇ × A)2
)
− φρ + A · J , (42)

here again we have identified the charge density ρ as J0/c and the electromagnetic scalar potential as φ = A0c. Since
e are interested in the interaction of matter with bound collections of charged particles (chiefly atoms), we specify the
harge density as a bound charge density ρ = ρb via

ρb(r) = −eδ(r− q)+ eδ(r), (43)

where q is the coordinate of an electron bound to a nucleus fixed at r = 0. The corresponding current density is

Jb(r) = −eq̇δ(r− q). (44)

We can additionally use these in the matter-only Lagrangian density [see Eq. (20)] to find the total Lagrangian L;

L =
1
2
mq̇2
−

∫
d3rL (A, φ), (45)

ith

L (A, φ) =
ε0

2

[
(Ȧ+∇φ)2 − c2(∇ × A)2

]
− φρ + A · J

=
ε0

2

[
(Ȧ(r)+∇φ(r))2 − c2(∇ × A(r))2

]
+ eφ(r)δ(r− q)+ eφ(r)δ(r)− eA(r) · q̇δ(r− q) (46)

s our final non-relativistic Lagrangian using which the interaction with atoms can be studied.
Following [6] we will adopt q and A as the independent dynamical variables of the theory. The momenta conjugate to

q and A are;

p =
∂L
∂q̇
= mq̇− eA(q) ≡ p(q), (47)

Π =
∂L

∂Ȧ
= ε0(Ȧ+∇φ) = −ε0E(r) ≡ Π (r). (48)

rom which the Hamiltonian can be obtained via the Legendre transform

H = p · q̇+
∫

d3rΠ(r) · Ȧ(r)− L . (49)

arrying out the integral in the final term of (46), we have for all the terms in (49) that are not under an integral;

p · q̇−
mq̇2
+ eq̇ · A(q) = mq̇2

− eA(q) · q̇−
mq̇2
+ eq̇ · A(q) =

mq̇2
, (50)
2 2 2
7
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iving

H =
mq̇2

2
+

∫
d3rΠ(r) · [Π(r)−∇φ(r)] −

1
2

∫
d3r

[
Π2(r)− B2(r)− ρb(r)φ(r)

]
=

1
2m

[p+ eA(q)]2 +
1
2

∫
d3r
{
Π2(r)+ B2(r)+ [ρb(r)+∇ ·Π(r)]φ(r)

}
, (51)

here Eq. (47) has been used and the term proportional to ∇φ has been integrated by parts. The terms proportional to
φ can be eliminated by noting that;

∇ ·Π+ ρb = 0 (52)

which follows from Eqs. (36) and (48). In this, φ acts as a Lagrange multiplier that allows us to fix Gauss’s law as a primary
constraint at a classical level. At this point, we will leave φ unspecified, noting that it depends on the particular chosen
gauge. This leaves

H =
1
2m

[p+ eA(q)]2 +
1
2

∫
d3r

[
Π2(r)+ B2(r)

]
, (53)

s the Hamiltonian, together with the Poisson brackets {A(r),Π(r′)} = δ⊥(r − r′)1 and {qi, pj} = δij, which we will
ltimately use to describe atom-light interactions after redundant degrees of freedom have been eliminated by choosing
gauge.

.4. Gauges

We already saw that the Lagrangian is invariant under a gauge transformation (22). In order to continue postponing
he choice of gauge as long as possible, here we will continue to follow [6] and take a very general form of the gauge
enerating function, introducing a gauge density χ̃

χ (r) =
∫

d3r ′χ̃ (r, r′,A(r′)) ≡
∫

d3r ′χ̃ (r, r′). (54)

he Lagrangian (46) in the new gauge is given simply by replacing the original potentials with their transformed
ounterparts:

L′ = L(A′, φ′) = L(A−∇χ, φ + χ̇ ). (55)

ecalling that the square-bracketed terms in (46) are gauge invariant [see Eqs. (23) and (24)], the new Lagrangian can be
ritten in terms of the original fields as;

L′ = L−
∫

drρb(r)χ̇ (r)−
∫

drJb(r) · ∇χ (r) = L−
∫

drρb(r)χ̇ (r)+ eq̇ · ∇χ (q) . (56)

ince χ depends on time only via its dependence on the time-dependent quantity A, we have;

χ̇ (r) =
∫

dr ′Ȧ(r′) ·
∂χ (r, r′)
∂A(r′)

, (57)

iving for the second term of (56);∫
d3rρb(r)χ̇ (r) =

∫
d3rρb(r)

∫
d3r ′Ȧ(r′) ·

∂χ̃ (r, r′)
∂A(r′)

=

∫
d3rȦ(r) ·

∫
d3r ′

∂χ̃ (r′, r)
∂A(r)

ρb(r′)

=

∫
d3rȦ(r) · P(r), (58)

here we have defined;

P(r) ≡
∫

d3r ′
∂χ̃ (r′, r)
∂A(r)

ρb(r′). (59)

y application of this gauge transformation, the Lagrangian has changed its form so the momenta conjugate to q and A
will correspondingly change theirs;

p′ =
∂L′

∂q̇
= mq̇− eA(q)+ e∇χ (q) = p(q)+ e∇χ (q), (60)

Π ′(r) =
∂L ′

∂Ȧ
= ε0[Ȧ(r)+∇φ(r)] − P(r) = Π (r)− P(r). (61)

1 Here δ is the transverse delta function, defined in detail in Eq. (67) later on.
⊥
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Our derivation of the Hamiltonian (53) was done in an arbitrary gauge, so still remains true in the new gauge we
have transformed to here. However, the velocities q̇ and Ȧ take on different forms when expressed in terms of the new
canonical momenta, giving

H =
1
2m

[
p′(q)− e∇χ (q)+ eA(q)

]2
+

1
2

∫
d3r

{
1
ε0

[
Π′(r)+ P(r)

]2
+

1
µ0

B(r)2
}

(62)

s the Hamiltonian of a system of charged particles coupled to the electromagnetic field in an arbitrary gauge for A, with
ll quantities except B being gauge-dependent. To write this in a new gauge, one would simply declare the various fields
nd particular momenta to be in a particular gauge, generated by a certain χ , with the values of the Poisson brackets
emaining the same if the fields are expressed in the new gauge. The particular form of χ will be determined by the
hoice of gauge, of which we will discuss two examples: Coulomb gauge and multipolar gauge.

.5. Coulomb gauge

The textbook way to introduce Coulomb gauge is via a constraint on the vector potential, but here we will begin by
pecifying the gauge generating function χ and ultimately show that this reproduces the familiar transversality condition
n A. This will serve as a mathematically simpler introduction to the corresponding calculation for multipolar gauge in
he next section.

Consider the following generator [6]

χC(r) =
1
4π

∫
dr ′A(r′) · ∇ ′

1
|r− r′|

≡

∫
dr ′χ̃C(r, r′), (63)

nd its gradient;

∇iχC(r) =
1
4π

∫
dr ′Aj(r′)∇i∇

′

j
1

|r− r′|
= −

1
4π

∫
dr ′Aj(r′)∇ ′i∇

′

j
1

|r− r′|
, (64)

here we have used an identity to switch the variable onto which the derivative has been applied. A vector field V is
longitudinal if it satisfies ∇×V = 0 at all points in space. For any scalar field ϕ, the vector calculus identity ∇× (∇ϕ) = 0
holds, so the quantity ∇χC(r) in Eq. (64) must be longitudinal, which we denote by the symbol ∥. We can therefore use
it to define the longitudinal delta function δ∥ with components δ∥,ij,

δ∥(r− r′) = −
1
4π
∇ ⊗ ∇

1
|r− r′|

(65)

(a⊗ b)ij = aibj] which ‘picks out’ the longitudinal part of a field, as in:∫
d3r ′δ∥(r− r′) · X(r′) = X∥(r). (66)

nvoking the Helmholtz theorem, this naturally leads to the definition of an analogous quantity that picks out the
ransverse part of a field, given by subtracting (65) from the ‘total’ delta function:

δ⊥(r− r′) = δ(r− r′)− δ∥(r− r′) = δ(r− r′)+
1
4π
∇ ⊗ ∇

1
|r− r′|

. (67)

Using the longitudinal delta function, we find

∇χC(r) =
∫

d3r ′δ∥(r− r′) · A(r′) = A∥(r), (68)

showing that the chosen generator is the one whose gradient [which is the quantity that appears in the Hamiltonian (62)]
depends only on the transverse part of A. If we now write out the three-vector part of gauge transformation in terms of
longitudinal and transverse fields

AC(r) = A⊥(r)+ A∥(r)−∇χC(r) . (69)

the final two terms cancel so we are left with;

AC(r) = A⊥(r). (70)

This is entirely transverse, so AC satisfies the definition of a transverse field;

∇ · AC(r) = 0, (71)

as expected.
Choosing a gauge generator also fixes PC, which we can see from (59);

PC(r) =
1
∫

dr ′
∂

[
A(r) · ∇ 1

|r−r′|

]
ρb(r′) = ∇

1
∫

dr ′
1

ρb(r′). (72)

4π ∂A(r) 4π |r− r′|

9
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aking the divergence of this gives;

∇ · PC(r) = ∇ · ∇
1
4π

∫
dr ′

ρb(r′)
|r− r′|

= −

∫
dr ′ρb(r′)δ(r− r′) = −ρb(r, t). (73)

One of Maxwell’s equations that follows from the Lagrangian is [c.f. Eq. (36)]

ε0∇ · E = ρb, (74)

so ∇ · PC = −ε0∇ · E. Since PC(r) is the gradient of a scalar, the curl of PC(r) must be zero, meaning it is a longitudinal
quantity. Therefore we can identify;

PC(r) = −E∥(r), (75)

where possible constant additions are excluded by the assumption that all fields vanish at spatial infinity. This is then
combined with Eq. (61) to show that the momentum conjugate to A is;

ΠC(r) =
∂L

∂Ȧ
= Ȧ+∇φ − E∥ = −E+ E∥ = −E⊥, (76)

o is therefore a transverse vector field. The Coulomb gauge Hamiltonian is immediately obtained from Eq. (62) simply
y specifying that all gauge-dependent quantities are now in Coulomb gauge, denoted by a subscript C.

HC =
1
2m

(pC − e∇χC + eAC)
2
+

1
2

∫
dr
{

1
ε0

[ΠC + PC]2 +
1
µ0

B2
}
. (77)

hen, substituting in (68)

HC =
1
2m

(pC + eA⊥)2 +
1
2

∫
dr
{

1
ε0

[
Π2

C + P2
C

]
+

1
µ0

B2
}
, (78)

where the expansion of the square bracket in the integrand follows because Π(r) is transverse and PC(r) is longitudinal.
Using Eqs. (75) and (76) gives finally;

HC =
1
2m

(pC + eA⊥)2 +
1
2

∫
dr
[
1
ε0

E2
+

1
µ0

B2
]

(79)

s the Hamiltonian in Coulomb gauge.

.6. Multipolar gauge

.6.1. Basic expressions
Following [6], we now consider the following alternative gauge generating function

χM(r) = −
∫

d3r ′
∫ 1

0
dλA(r′) · rδ(r′ − λr). (80)

his choice of gauge generator is harder to physically motivate than the corresponding one in Coulomb gauge, but it will
ecome clear that this is a choice which causes the polarisation field to be that of a straight line of singular dipole moment
ensity from the fixed origin r′ to the position r of a charge. In order to show this we will follow the same recipe as in
he Coulomb gauge calculation in the previous section, namely finding the gradient of the gauge generating function and
n expression for the polarisation field, then using these in the arbitrary gauge Hamiltonian (62). We therefore begin by
alculating

∇χM(r) = −
∫

d3r ′
∫ 1

0
dλ∇

[
A(r′) · rδ(r′ − λr)

]
. (81)

n Appendix this is shown to be equal to;

∇χM(r) = A(r)+
1
e

∫
d3r ′ θ(r′, r)× B(r′). (82)

here

θ(r′, r) ≡ −e
∫ 1

0
dλ λrδ(r′ − λr) (83)

e will also need the polarisation field given by Eq. (59). As noted in [6], it is convenient for this part of the calculation
o write the charge density as ρ (r, q), emphasising its dependence on the electron coordinate as well as the observation
b

10
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osition. Since the polarisation PM depends on ρb(r, q) we also emphasise its dependence on q, writing:

PM(r, q) ≡
∫

d3r ′
∂χ̃M(r′, r)
∂A(r)

ρb(r′, q) =
∫

d3r ′
∂χ̃M(r′, r)
∂A(r)

[
−eδ(r′ − q)+ eδ(r′)

]
= −e

∂χ̃M(q, r)
∂A(r)

+ e
∂χ̃M(0, r)
∂A(r)

. (84)

The solution to this differential equation is;

−e [χ̃M(q, r)− χ̃M(0, r)] = A(r) · PM(r, q). (85)

We can see from (84) that PM(r, 0) = 0, so to satisfy Eq. (84) we can choose χ̃M(0, r) = 0, giving;

χ̃M(q, r) = −
1
e
A(r) · PM(r, q) =

∫ 1

0
dλA(r) · qδ(r− λq), (86)

where the second equality follows from the definition (80) of the gauge generator. This also allows us to identify;

PM(r, q) = −e
∫ 1

0
dλ qδ(r− λq) (87)

as the polarisation field in the multipolar gauge, which fits with the interpretation of this gauge given at the start of this
section.

2.6.2. Hamiltonian
The multipolar gauge Hamiltonian is immediately obtained from Eq. (62) simply by specifying that all gauge-dependent

quantities are now in multipolar gauge, denoted by a subscript M .

HM =
1
2m

[pM(q)− e∇χM(q)+ eAM(q)]2 +
1
2

∫
d3r

{
1
ε0

[ΠM(r)+ PM(r, q)]2 +
1
µ0

B(r)2
}
. (88)

Of course, the actual utility of this comes from using the forms of the gradient of the gauge generator and the polarisation
field derived in the previous subsection. Using Eq. (82)

HM =
1
2m

(
pM(q)−

∫
d3r ′ θ(r′, q)× B(r′)

)2

+
1
2

∫
d3r

{
1
ε0

[ΠM(r)+ PM(r, q)]2 +
1
µ0

B(r)2
}
. (89)

sing the cyclic property of the triple product a · (b× c) we can expand the cross term outside the integral;

pM(q) ·
[
θ(r′, q)× B(r′)

]
+
[
θ(r′, q)× B(r′)

]
· pM(q)

= B(r′) ·
[
pM(q)× θ(r′, q)

]
+
[
pM(q)× θ(r′, q)

]
· B(r′)

= B(r′) ·
[
θ(r′, q)× pM(q)− pM(q)× θ(r′, q)

]
. (90)

f we define;

MMM (r′, q) =
1
2m
[θ(r′, q)× pM(q)− pM(q)× θ(r′, q)], (91)

hen the first term of Eq. (89) can be multiplied out to give;

p2
M

2m
−

∫
d3r ′B(r′) ·MMM (r′, q)+

1
2m

(∫
d3r ′ θ(r′, q)× B(r′)

)2

. (92)

ombining this with the second term of (89);

HM =
p2
M

2m
+

1
2m

(∫
d3r ′ θ(r′, q)× B(r′)

)2

−

∫
d3r ′B(r′) ·MMM (r′, q)

+
1
2

∫
d3r

{
1
ε

[ΠM(r)+ PM(r, q)]2 +
1
µ

B(r)2
}

(93)

0 0
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nd again multiplying out, we get the full expression of the multipolar gauge Hamiltonian

HM =
p2
M

2m
+

1
2m

(∫
d3r θ(r, q)× B(r)

)2

+
1
2

∫
d3r

{
1
ε0

ΠM(r)2 +
1
ε0

P2
M(r, q)+

2
ε0

ΠM(r) · PM(r, q)− 2B(r) ·MMM (r, q)+
1
µ0

B(r)2
}
. (94)

n agreement with [6].

.6.3. Long wavelength approximation
The most useful form of the multipolar Hamiltonian (94) comes from applying a long wavelength approximation, which

llows systematic approximation in terms of the multipole moments of a charge distribution. This expansion is physically
seful as in most situations the wavelength of incident light is much larger than any characteristic size associated with
he atom.

The long wavelength approximation begins from a small q expansion of the delta function appearing in the statement
87) of PM;

PM(r, q) = −e
∫ 1

0
dλ qδ(r− λq) = −e

∫ 1

0
dλ q [δ(r)− λ(q · ∇)δ(r)+ · · · ]

= −eqδ(r)+
e
2
q(q · ∇)δ(r)+ · · · , (95)

nd similarly in the auxiliary function θ defined in Eq. (83), where we also expand up to first order in λ

θ (r′, q) = −e
∫ 1

0
dλ λqδ(r′ − λq) = −

e
2
qδ(r′)+ · · · , (96)

hich in turn also gives us the magnetisation defined in Eq. (91)

MMM (r′, q) = −
e
4m
[q× pM − pM × q]δ(r′)+ · · · . (97)

sing the general conjugate momenta defined via Eqs. (48) and (61), we have;

ΠM = −ε0E− PM ≡ −D, (98)

here we have introduced the usual definition of the electric displacement field D.
These can be used in the multipolar Hamiltonian (94), beginning with the electric polarisation coupling term;

1
ε0

∫
d3rΠM · PM(r, q) =

e
ε0

∫
d3rD · qδ(r)−

e
2ε0

∫
d3r(q · D)(q · ∇)δ(r)+ · · ·

=
e
ε0

D(0) · q−
e

2ε0
(q · ∇)(q · D(r))|r=0 + · · · , (99)

hen the two magnetic coupling terms;

1
2m

(∫
d3r θ (r, q)× B(r)

)2

= −
e2

8m

(∫
d3r qδ(r)× B(r)

)2

= −
e2

8m
[q× B(0)]2 , (100)

nd

−

∫
d3rB(r) ·MMM (r, q) = −

e
4m

B(0) · [q× pM(q)− pM(q)× q] = −B(0) ·m, (101)

here

m ≡
e
4m
[q× pM(q)− pM(q)× q]. (102)

he integrand of the term of (94) proportional to P2
M depends on the square of delta functions (and their derivatives)

valuated at r, so the result contains various delta functions evaluated at the origin. These correspond to infinite self-
nergies which, while being an interesting area of physics in their own right (see, e.g. [7]), have no effect on the quantities
e will calculate here so will be absorbed into a renormalisation term Vrenorm in the Hamiltonian. This gives the multipolar
auge Hamiltonian up to second order in the long wavelength limit [denoted by the superscript (2)]

H (2)
M =

p2
M

2m
−

e2

8m
[q× B(0)]2 − B(0) ·m+

e
ε0

D(0) · q−
e

2ε0
(q · ∇)(q · D(r))|r=0

+ Vrenorm +
1
2

∫
d3r

(
1
ε0

D2
+

1
µ0

B2
)
. (103)
12
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efining the dipole moment d = −eq, we finally have;

HM =
p2
M

2m
+

1
2

∫
d3r

(
1
ε0

D2
+

1
µ0

B2
)
+ Vrenorm + H (2)

M,int, (104)

ith an interaction Hamiltonian of

H (2)
M,int = −

1
ε0

d · D(0)−m · B(0)−
e2

8m
[q× B(0)]2 . (105)

There is an important subtlety to the interpretation of the first term. The electric displacement D is defined by the electric
field and the polarisation field via Eq. (98), and the polarisation field is in turn defined via Eq. (87) in terms of the positions
and charges of the particles that constitute a given atom. Therefore, the quantity D as written in Eq. (105) includes the
influence of the atomic charge distribution. This fine distinction arises from the fact that there are many ‘displacement
fields’ D, depending on which charges are designated as ‘free’ or ‘bound’. In this case, D is actually the displacement field
which includes the field of the specific atom, but not the atoms which constitute the medium as may be more familiar.
The electric displacement field corresponding to the latter will be defined in Section 3. As such, the field D discussed
here is commonly denoted as E, as in the absence of the specific atom, the field is identical to the electric field inside the
medium.

Later we will restrict to the term in (105) of leading order in q, known as the dipole approximation and motivated by
the fact that the atomic or molecular extent is usually much smaller than the wavelength of incident light. Recalling the
definition (102) of m, the we are left with the final dipole-approximated interaction Hamiltonian in the multipolar gauge
for an electric atom;

H (1)
M,int = −d · E(rA). (106)

where we have also redefined the origin as being the position rA of the atom. This electric dipole Hamiltonian is used
across atomic, molecular and optical physics, and will be explicitly used as the basis for calculations in Section 4.

3. Macroscopic media

3.1. Classical electrodynamics in the presence of macroscopic media

We now have everything we need to describe non-relativistic atoms weakly interacting with electromagnetic fields, as
described by the Lagrangians at the end of Section 2. Since atoms consist of collections of charged (and neutral) particles,
the consequences of the electromagnetic field interacting with an atomic medium can in principle be found by solving
equations of motion for each atom and field variable. The problem, of course, is that atoms in general have many electrons,
and macroscopic objects consist of an overwhelming number of atoms. Even the classical electron dynamics within a single
given atom will ordinarily be too complex to solve, so asking for a solution of the semiclassical coupled field–matter
dynamics for the approximately 1023 atoms making up an everyday sized object is a hopeless task.

We therefore need to abstract one level away from individual atoms, instead treating their collective properties inside
a medium as something akin to a fluid which is in some sense bound to the host medium. We already know from Eqs. (5)
and (6) that the four-current obeys a continuity equation

∂µJµ = 0. (107)

Converting this into its scalar and three-vector parts and making the usual identification of J0 as ρc gives the continuity
equation

ρ̇ +∇ · J = 0, (108)

where, again, we suppress position and time arguments until they are needed. The charge density within the material
may be split into a bound part ρb (stemming from polarisation of a dielectric material by an external field) and a free part
ρf , each of which must obey its own independent continuity equation. As shown in Eq. (73), the bound charge density
can be identified as minus the divergence of a polarisation field P,

ρb = −∇ · P. (109)

This means the total charge density ρ may be written as;

ρ = ρb + ρf = −∇ · P+ ρf , (110)

so that Gauss’s law (36) becomes;

ε0∇ · E = −∇ · P+ ρf . (111)

Similarly to Eq. (98), we can use the definition of the electric displacement D = ε0E+ P, transforming this into;

∇ · D = ρ . (112)
f
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sing Eq. (109) the continuity equation for bound charge (ρ̇b +∇ · Jb = 0) can be rewritten as

∇ · (Jb − Ṗ) = 0. (113)

Since the curl of a divergence always vanishes, this implies that Jb − Ṗ can be written as the curl of another quantity,
which we will identify as the magnetisation M;

∇ ×M = Jb − Ṗ. (114)

The total charge density J = Jb + Jf is therefore;

J = Jf +∇ ×M+ Ṗ (115)

meaning Ampere’s law (39) becomes;

∇ × B = µ0Jf + µ0∇ ×M+ µ0Ṗ+ ε0µ0Ė, (116)

or

∇ × H− Ḋ = µ0Jf , (117)

where H = 1
µ0

B−M.
We now make an assumption that can only be justified on a physical basis: the polarisation field of a medium responds

linearly to an external electromagnetic field. This is a very good approximation in most situations, the exception being
when an interrogating field modifies the properties of the material itself. This can happen if the field is sufficiently strong,
but can also happen at low intensities (see, e.g. [8]). This review will be concerned only with linear optics, with non-linear
optics being its own rich field of study (see, e.g., [9]).

The most general way to write the response of a time-dependent quantity x(t) that depends linearly on y(t) is;

x(t) =
∫
∞

−∞

dτχ (τ )y(t − τ ) (118)

here χ (t) is known as the response function. This is seen to relate the value of x at a particular time t to the value of
at a different time t − τ , identifying τ as a delay time. By integrating over all τ , the behaviour of y at all times is taken

nto account. The function χ (t) simply relates the response of x to y, so will in general be peaked around τ = 0. Causality
equires that χ (τ < 0) = 0 (negative delay would correspond to reacting to signals from the future).

Generalising this to a position and time-dependent vector field, the linear response of the polarisation field is thereby
escribed by

P(r, t) = ε0
∫
∞

−∞

dτ
∫

d3r ′χ(r, r′, τ ) · E(r′, t − τ ), (119)

here the response function is now matrix-valued in its most general form, and a factor of ε0 has been extracted as a
atter of convention. The causality requirement becomes;

χ(r, r′, τ ) = 0 for |r− r′| > cτ . (120)

The Fourier transform of P(r, t) is

P(r, ω) = ε0
∫

d3r ′χ(r, r′, ω) · E(r′, ω), (121)

which becomes simpler if the response is taken to be local [χ(r, r′, ω)→ δ(r−r′)χ(r, ω)] and isotropic [χ(r, ω)→ Iχ (r, ω)
where I is the identity matrix];

P(r, ω) = ε0χ (r, ω)E(r, ω), (122)

giving

D(r, ω) = ε0 [1+ χ (r, ω)] E(r, ω) = ε0ε(r, ω)E(r, ω), (123)

where the position- and frequency-dependent relative permittivity ε(r, ω) has been defined. Similarly, the linear response
of the magnetisation field can be described by

M(r, t) =
1
µ0

∫
∞

−∞

dτ
∫

d3r ′ζ(r, r′, τ ) · B(r′, t − τ ), (124)

where the response function ζ obeys the same causality constraints as its electric counterpart χ. Again specialising to a
local and isotropic response, this reduces to

M(r, ω) =
ζ (r, ω)

B(r, ω), (125)

µ0
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o that in turn

H(r, ω) =
1
µ0

[1− ζ (r, ω)]B(r, ω) =
1

µ0µ(r, ω)
B(r, ω), (126)

here the position- and frequency-dependent relative permeability µ(r, ω) has been defined. Eqs. (123) and (126) are
ogether known as the constitutive relations for electrodynamics in media. They allow a description which is closely
nalogous to free space2 electrodynamics, with modified E and B. To see this it is useful to convert Ampere’s law (39) to
he frequency domain:

∇ × H(r, ω)+ iωD(r, ω) = µ0Jf (r, ω), (127)

then use the constitutive relations (123) and (126), and the definition (33) of the magnetic field to convert this to

∇ ×
1

µ0µ(r, ω)
∇ × A(r, ω)+ iωε0ε(r, ω)E(r, ω) = µ0Jf (r, ω). (128)

aking time derivative (in frequency space) of the whole equation and using the curl of the definition (33) of the electric
ield [∇ × Ȧ = −∇ × (E+∇φ) = −∇ × E] gives finally:

∇ ×
1

µ0µ(r, ω)
∇ × E(r, ω)− ω2ε0ε(r, ω)E(r, ω) = iωµ0Jf (r, ω). (129)

his is essentially a wave equation, which is most conveniently solved via Green’s function methods (see, e.g., [10]).
efining the Green’s tensor3 G(r, r′, ω) as the solution to;

∇ ×
1

µ(r, ω)
∇ × G(r, r′, ω)− ω2ε0µ0ε(r, ω)G(r, r′, ω) = δ(r− r′) (130)

here δ(r− r′) = Iδ(r− r′), it is straightforward to show that the electric field obeys;

E(r, t) =
µ0

2π

∫
∞

0
dω
∫

d3r′[iωG(r, r′, ω) · J(r′, ω)+ c.c.] (131)

here we have transformed the field back into the time domain.

.2. Approaches to quantisation

Now that a theory of classical electromagnetism in macroscopic media has been obtained, an obvious next step is
o transition to a quantum theory. This is surprisingly difficult, chiefly due to the need to include absorption in any
ealistic model of a material. Absorption causes energy to be lost by the electromagnetic field, stopping it from having an
cceptable Hamiltonian, which in turn precludes the identification of canonically conjugate position and momenta and
heir respective Poisson brackets. Canonical quantisation is based on promotion of Poisson brackets of the classical theory
o the commutators of the quantum theory, so without Poisson brackets the canonical quantisation procedure cannot be
ollowed.

We will focus the discussion on three distinct approaches to avoiding or solving this issue4

1. Ignoring absorption and using normal modes5 similar to in free-space quantum electrodynamics. This type of
approach is also limited in which types of dispersion it can include,6 but can be a very useful approximation for
objects whose frequency-domain response is sufficiently flat at the relevant frequencies.

2. Taking the theory of classical electrodynamics in absorptive media and using it to perform a phenomenological
quantisation, enforcing consistency with the fluctuation–dissipation theorem (an approach referred to here as
macroscopic QED or MQED).

3. Microscopically including absorption via harmonic oscillator baths (referred to here as Huttner–Barnett QED or
HBQED), such that the whole system is energy-conserving and a Hamiltonian formalism can be used.

2 Here and throughout we will use ‘free space’ to refer to infinite, unbounded vacuum. The reason for not referring to this case simply as ‘vacuum’
is that a certain point can be locally in vacuum but still be affected by the presence of an inhomogeneous environment (near a surface, for example)
— this distinction will be important later.
3 Note that the quantity G is variously referred to as the Green’s function (e.g. [11]), Green’s dyadic (e.g. [12], dyad being a name for a rank 2

tensor, similar to vector for a rank 1 tensor), Green’s tensor (e.g. [13]), Green’s bi-tensor (e.g. [14]), dyadic Green’s function (e.g. [15]) and dyadic
Green’s tensor (e.g. [16]). Whichever name is preferred, fundamentally the object G is simply a 3 × 3 matrix of functions relating the components
of a (vector) current source to an observed electric field vector. This quantity will be referred to as the Green’s tensor or dyadic Green’s tensor in
this review.
4 While we have focused on these three, we also mention that absorption laser theory can be accounted for by constant flux states [17], and

that non-Hermitian photonics [18,19] has found success in modelling systems with both balanced and imbalanced loss and gain.
5 In this article we refer to normal modes as those which form an orthogonal and complete set of solutions to the Helmholtz equation.
6 It is possible to carry out normal-mode quantisation in the presence of an inhomogeneous dispersive medium modelled as an undamped

plasma [20,21], but the techniques used there break down for any more complicated response.
15
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Quite some mileage can be obtained using the first approach in homogeneous dielectric media [22] and highly-
reflecting cavities (see, e.g., approaches used in laser theory [23,24]) A normal-mode quantisation of the modes near
an imperfectly reflecting dielectric half space given by Carniglia and Mandel as long ago as 1971 [25]. These normal
modes were put to great use in the subsequent few decades, being used to find, for example, static dipole moments [26],
polarisabilities [27], correlation functions [28], radiation patterns [29], radiation from moving dielectrics [30]. Even after
the advent of the more sophisticated quantisation schemes discussed below, the normal mode approach still finds
value in being simple, physically transparent and understandable, so finds modern applications as a simplifying agent
in calculations of Casimir–Polder forces near layers [31], out of equilibrium [32] and with external fields [33], as well
as self energies of elementary particles [34,35], Cherenkov friction [36] and the anomalous magnetic moment of the
electron [37,38]. All of these calculations ignore the unavoidable presence of dissipation in any realistic medium.

MQED was originally proposed as a solution to the dissipation problem by Welsch and co-workers [39,40] and has
been used with great success in a huge variety of settings [41–43]. Its foundations are essentially phenomenological
— a fluctuating noise polarisation field is postulated (loosely representing the fact that quantised electromagnetic fields
fluctuate), then a number of consistency conditions are used to in order to pin down the correct form of the corresponding
electromagnetic field operators. The advantage of this approach is that all details (material, geometry, etc.) of the medium
are abstracted away into the macroscopic response of the medium described by a Green’s tensor which need not be
specified until the very end of the calculation. A notable disadvantage, in common with the Lifshitz approach [44,45], is
that there is no Hamiltonian for the theory (at least not in its original form) so it cannot be strictly considered canonically
quantised (as mentioned above, there is no opportunity to identify Poisson brackets and promote these to commutators).
The HBQED method takes a more microscopic approach — various baths of harmonic oscillators representing a medium
are coupled to the free electromagnetic field, and the resulting Hamiltonian diagonalised to find the corresponding hybrid
field–matter (polaritonic) fields. The disadvantage of this in its original formulation, however, is that there is no general
prescription for how to deal with different geometries. In principle the whole theory must be rebuilt each time a new
situation is required as was done for the dielectric half-space in [46] (with two earlier Refs. [47,48] having similar results
stemming from any method that begins with the phenomenological MQED approach instead of a rigorous quantisation
provided by HBQED). The HBQED method has some commonalities with the system–bath methods used in the theory of
open quantum systems [49] or in random laser theory [50–52].

More recently, the formulations of MQED and HBQED were shown to be equivalent to each other in a remarkable
paper by Philbin [14]. The approach taken there gives the best of both worlds — the observables of the theory in any
inhomogeneous background can be expressed in terms of the macroscopically useful and flexible notion of the Green’s
tensor, while it also rests on firm theoretical foundations. The calculation is somewhat involved, in the next few sections
we simply give an outline of the steps required, the full algebraic details can be found in Ref. [14].

3.3. Canonical formulation of classical electrodynamics in the presence of macroscopic media

Following Ref. [14], the starting point of the quantum theory of electromagnetism in media is a Lagrangian density

Lc = Lem +LX +LY +Lint, (132)

which will be shown to be that which reproduces the equations of classical electrodynamics in media presented in
Section 3.1. The first term of (132) corresponds to the free electromagnetic field, given in Eq. (41) as:

Lem =
1

2µ0

(
1
c2

E · E− B · B
)
. (133)

Again we recall that here and throughout the symbols E and B are just shorthands for their representations (33) in terms
of A and φ, which we repeat here

E = −Ȧ−∇φ B = ∇ × A. (134)

The second term in the Lagrangian (132) is that of a bath of reservoir oscillators X, which will represent electric excitations,
expressed in frequency space as;

LX =
1
2

∫
∞

0
dω(Ẋω · Ẋω − ω2Xω · Xω). (135)

The third term is that for another identical bath Y, which will represent magnetic excitations.

LY =
1
2

∫
∞

0
dω(Ẏω · Ẏω − ω2Yω · Yω) (136)

he final term in (132) represents the coupling between the electric field E and its bath X, and the magnetic field B and
its bath Y:

Lint =

∫
∞

dω (αXω · E+ βYω · B) , (137)

0
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here the coupling strengths are given by

α =

√
2ε0
π
ωImε(r, ω) and β =

√
−

2
µ0π

ωIm
(

1
µ(r, ω)

)
, (138)

ith ε(r, ω) and µ(r, ω) being the permittivity and permeability introduced in Eqs. (123) and (126). Even though only
he imaginary part of these couplings appears in the Lagrangian, the real parts follow from the Kramers–Kronig relations
see, e.g., Chapter 7 of Ref. [53]), which ultimately express the fundamental notion of causality.

Variation of the Lagrangian (132) with respect to the dynamical fields φ and A gives;

ε0∇ · E+
∫
∞

0
dω∇ · [α(r, ω)Xω] = 0, (139)

−
1
µ0
∇ × B+ ε0Ė+

∫
∞

0
dω{α(r, ω)Ẋω +∇ × [β(r, ω)Yω]} = 0. (140)

These are already reminiscent of Maxwell’s inhomogeneous Eqs. (36) and (39), suggesting that the quantities given by
frequency integrals in Eqs. (139) and (140) will ultimately be identified as the charge and current densities. Varying the
Lagrangian (132) with respect to the bath variables X and Y gives two more equations that relate X to E and Y to B;

−Ẍω − ω2Xω + α(r, ω)E = 0 − Ÿω − ω2Yω + β(r, ω)B = 0 (141)

Since we seek equations describing the dynamics of the electromagnetic fields E and B, the task therefore to use the above
quations to express X and Y in terms of E and B, and then substitute these into the Maxwell-reminiscent Eqs. (139) and
140). The results are [14];

∇ · D = ρf ∇ × H− Ḋ = Jf , (142)

here

D(r, t) =
ε0

2π

∫
∞

0
dω[ε(r, ω)E(r, ω)e−iωt + c.c.], (143)

H(r, t) =
1

2πµ0

∫
∞

0
dω
[

1
µ(r, ω)

B(r, ω)e−iωt + c.c.
]
, (144)

nd the free charge and current densities are

ρf (r, t) = −
1
2π
∇ ·

∫
∞

0
dω[α(r, ω)Zω(r)e−iωt + c.c.], (145)

Jf (r, t) = −
1
2π

∂

∂t

∫
∞

0
dω[α(r, ω)Zω(r)e−iωt + c.c.]

+
1
2π
∇ ×

∫
∞

0
dω[β(r, ω)Wω(r)ωe−iωt + c.c.], (146)

where Zω is the solution of the homogeneous version of the equation of motion for Xω shown in Eq. (141) (i.e. that with
E = 0). Eqs. (134) and (142) are the four Maxwell equations in media, showing that the Lagrangian (132) is an acceptable
one for (classical) macroscopic electrodynamics in media.

3.4. Quantum electrodynamics in the presence of macroscopic media

Now that we have a Lagrangian formulation of classical electrodynamics in media, a quantisation can be readily
performed by identifying the momenta conjugate to φ, A, X and Y;

Πφ =
∂Lc

∂(∂tφ)
= 0 Π A =

∂Lc

∂(∂tA)
= −ε0E−

∫
∞

0
dωα(r, ω)Xω (147)

Π Xω =
∂Lc

∂(∂tXω)
= ∂tXω Π Yω =

∂Lc

∂(∂tYω)
= ∂tYω (148)

As in free-space QED, the momentum conjugate to the scalar potential φ vanishes, and there are redundant degrees of
freedom which can be eliminated by a gauge choice. The gauge employed here is Coulomb gauge ∇ · A = 0, which also
leads to a constraint on the momentum conjugate to A. Quantisation of constrained systems proceeds via promotion of
Dirac brackets to commutators, rather than promotion of Poisson brackets as in the unconstrained theory. In particular,
the quantum canonical operators should be defined by the following equal-time commutation relations

[Â(r, t), Π̂ A(r′, t)] = ih̄δ⊥(r− r′) (149)

[X̂ (r, t), Π̂ ′ (r′, t)] = ihδ(r− r′)δ(ω − ω′) (150)
ω X,ω ¯
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[Ŷω(r, t), Π̂ Y ,ω′ (r′, t)] = ih̄δ(r− r′)δ(ω − ω′) (151)

with the transverse delta function defined in (67), and all other commutators being zero. Performing a Legendre
transformation to obtain the Hamiltonian operator

Ĥ =
∫

d3r
{

1
ε0

Π̂A ·

[
1
2
Π̂A +

∫
∞

0
dωα(r, ω)X̂ω

]
+

1
2µ0

(∇ × Â)2

+
1
2

∫
∞

0
dω
[
Π̂2

Xω + Π̂2
Yω + ω

2(X̂2
ω + Ŷ2

ω)
]
+

1
2ε0

[∫
∞

0
dωα(r, ω)X̂ω

]2
−

∫
∞

0
dωβ(r, ω)Ŷω · (∇ × Â)

}
, (152)

ne can then verify using the above commutators that the Heisenberg equations of motion produce four equations which
re identical in form to Eqs. (140) and (141), but with A, X and Y promoted to operators Â, X̂ and Ŷ.
Given the Hamiltonian (152), one in principle has all the ingredients necessary for a description of quantised electric

ields in media. However, the Hamiltonian can be written in a much more useful form by diagonalising it in terms
f bosonic creation and annihilation operators f̂†λ(r, ω) and f̂λ(r, ω) for the eigenmodes of the (combined field–matter)
ystem. The Hamiltonian is quadratic in the canonical variables, so we aim to show that Hamiltonian can be written in
he following form

Ĥ =
∑
λ=e,m

∫
d3r

∫
∞

0
dωh̄ωf̂†λ(r, ω) · f̂λ(r, ω) (153)

ith [
f̂λ(r, ω), f̂

†
λ′
(r′, ω′)

]
= δλλ′δ(ω − ω′)δ(r− r′) (154)

nd all other commutators being zero, and λ = e,m representing the electric and magnetic responses of the system. The
ix fields (Â, X̂ω(r, t) and Ŷω(r, t), together with their corresponding canonical momenta) appearing in the Hamiltonian
152) are assumed to be expressible as linear combinations of the operators f̂ and f̂†, meaning that the task reduces to
inding the correct expansion coefficients7 such that the diagonal form (153) of the Hamiltonian is produced. A lengthy
rocedure8 follows in order to find the explicit form of the coefficients, which we will not repeat here. Instead, we will
ummarise the steps taken in the clear and explicit process detailed in Section 4 of Ref. [14], namely:

1. The fields are taken to be expressible as a linear combination of the diagonalised operators f̂λ, e.g. Â(r) =∑
λ

∫
d3r′

∫
∞

0 dωsλ(r, r′, ω) · f̂λ(r′, ω) and similarly for the other fields and conjugate momenta. This expansion must
be invertible and consistency implies that f̂λ can be written as a linear combination of the coefficients and their
corresponding fields and conjugate momenta.

2. The desired Hamiltonian (153) and commutation relations (154) imply that we can use h̄ωf̂λ = [f̂λ, Ĥ] (expanded
in terms of the fields and conjugate momenta) to find an expression for the coefficients. These take the form of a
coupled set of differential equations, which resemble Maxwell’s equations together with the equations of motion
for the baths X̂ and Ŷ

3. The solution of these differential equations, normalised by demanding consistency with the commutation relation
(154) when expanded in terms of the fields, completes the procedure. In the case of the photon field, the coefficients
are given in terms of the Green’s tensor [see Eq. (130)].

he result of this procedure is that the operator corresponding to the electric field (131) is;

Ê(r, t) =
µ0

2π

∫
∞

0
dω
∫

d3r′[iωG(r, r′, ω) · Ĵ(r′, ω)e−iωt + c.c.], (155)

here

Ĵ(r, ω) = −2π iω

√
h̄ε0
π

Imε(r, ω)f̂e(r, ω)+ 2π∇ ×

[√
−

h̄
µ0π

Im
(

1
µ(r, ω)

)
f̂m(r, ω)

]
, (156)

7 A caution about notation — in Ref. [14] the diagonalising operators which we call f̂ are instead called Ĉ, and the expansion coefficients which
e have named s are called f in Ref. [14].
8 It is noteworthy that this follows in an identical fashion to the lossless normal mode case, except that the matter field(s) is now a bath of
scillators.
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hich, as promised, shows that the field can be written in terms of the diagonalising operators f̂λ(r, ω) with a coefficient
e or Gm that depends on the Green’s tensor G. It proves useful to define;

Ge(r, r′, ω) = i
ω2

c2

√
h̄
πε0

Imε(r′, ω)G(r, r′, ω), (157)

Gm(r, r′, ω) = i
ω

c

√
h̄
πε0

Imµ(r′, ω)
|µ(r′, ω)|2

[∇
′
× G(r, r′, ω)]T, (158)

hich obey a useful integral relation [see, e.g., Ref. [42]. Eq. (2.262)]∑
λ=e,m

∫
d3sGλ(r, s, ω) · G∗Tλ (r′, s, ω) =

h̄µ0

π
ω2ImG(r, r′, ω). (159)

inally, E becomes;

Ê(r, t) =
∫
∞

0
dω

∑
λ=e,m

∫
d3r′

[
Gλ(r, r′, ω) · f̂λ(r′, ω)e−iωt + c.c.

]
, (160)

r in terms of frequency components

Ê(r) =
∫
∞

0
dω

∑
λ=e,m

∫
d3r′

[
Gλ(r, r′, ω) · f̂λ(r′, ω)+ c.c.

]
. (161)

This is the central equation for the ‘end user’ of quantum electrodynamics in the presence of media, representing the
lectric field in terms of a bosonic field with creation and annihilation operators f̂† and f̂. Excitations of this field represent
ombined field–matter excitations, as can easily be motivated by observing that (161) depends on the permittivity and
ermeability via Eqs. (157) and (158). This mixed light–matter character means they are sometimes referred to as being
polariton-like’. It will become important later to distinguish between the polaritons arising from a mixture of light with
he bulk medium described as simple harmonic oscillators, and ‘polaritons’ arising from the coupling of that field to
uantum emitters. To avoid this confusion we will follow a standard convention from the macroscopic QED literature,
eferring to the excitations created and annihilated by f̂† and f̂ as ‘photons’, even though they have a matter component.
his is consistent with the common practice of treating D and H like electric and magnetic fields, even though they both
lso have a matter component.
There is one more delicate point to discuss — in the limit of a non-absorptive medium the imaginary parts of the

ermittivity and permeability will vanish, so inspection of (157) and (158) implies that the field E in (161) should vanish
n this case. This would naïvely imply, for example, that there is no vacuum field in free space, meaning no spontaneous
ecay, which would be in clear contradiction with both normal-mode QED and experiment. It would also appear to
nvalidate the relation (159) — the right hand side remains finite in the lossless limit while the left hand side seems
o vanish. This question has been revisited a number of times [54–58], and there are several perspectives on an answer.
erhaps most convincingly, it was shown in [58] that if sufficient care is taken with evaluation of the limit of small
bsorption, then Eq. (159) does in fact hold (for unit relative permeability) in the lossless limit even though at first sight
t appears not to. The crucial ingredient is that evaluation of the spatial integral reveals a factor cancelling the imaginary
art of the permittivity. In a finite medium the situation is more delicate, but it was shown in [55] that (159) should be
upplemented by a surface term. This surface term vanishes in the presence of a background medium with any amount
f loss (even infinitesimal). This is related to earlier physical arguments [59,60] that at least a small amount of absorption
hould always be retained if no boundary contribution is to arise. This issue is usually of no consequence in practical
alculations, since one invariably ends up with combinations of Green’s tensors like that shown in (159), use of which
auses the offending factors of Imε and Imµ to drop out of the calculation.9 This ad-hoc procedure allows the lossless
imit to be taken at the end of the calculation, which is in agreement with the corresponding results if lossless QED had
een used from the start (see e.g. [59,60] for discussions specifically of this, and any of the literature on atomic processes
n macroscopic QED for agreements with lossless limits).

. Selected perturbative atomic processes

In this section we will give an overview of selected perturbative atomic processes that can be modified by choice of
n electromagnetic environment, with the ultimate goal of having some observables to optimise in Section 6. We begin
n Section 4.1 with the spontaneous decay of an excited atom, then move on to the Casimir–Polder force in Section 4.2,
ollowed by energy transfer in 4.3. It should be noted that even in the weak coupling regime considered here, this is by
o means an exhaustive list of atomic processes, instead acting as a representative selection for introducing perturbative
ethods. Other phenomena that can be described in similar ways include (but are not limited to) atomic waveguide
ED [61,62], photon condensation [63], Auger decay [64] and non-linear optics [65].

9 A rigorous proof that observable quantities in unbounded space cannot suffer from this problem would be a valuable addition to the subject.
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.1. Spontaneous decay in free space

Left to its own devices, an excited atom will eventually release its energy into the electromagnetic field. This is the
rocess famously described by Einstein’s A coefficient [66], and can be understood either as radiation reaction from an
scillating dipole, or stimulated emission induced by vacuum fluctuations (or indeed any mixture between the two [67]).
ere we will quantify this rate of spontaneous decay by carrying out a simple calculation (analogous to those appearing
n [57,68,69]) that will lead into a first example of how light–matter interactions can be manipulated for a given purpose.

We will assume that the dominant mechanism of relaxation is an electric dipole transition, so the interaction
amiltonian will be taken from Eq. (106) as

Hint = −d̂ · Ê(rA) (162)

e will calculate the emission rate Γ from Fermi’s Golden Rule (see, for example, Chapter 5 of [70])

Γ =
2π
h̄

∑
f

|⟨f |Hint|i⟩|2δ(Ef − Ei), (163)

here |i⟩ is the initial state, |f ⟩ is the final state and Ei/f are their respective energies. The summation should be taken
o be either a summation or integral (or both), depending on the nature and normalisation of the final states which we
o not know yet, in principle. We will take the initial and final states to be products of the eigenstates of the atom and
hoton field

|i⟩ = |e⟩ ⊗ |0⟩ ≡ |e; 0⟩ |f ⟩ = |g⟩ ⊗ |1λ(r, ω)⟩ ≡ |g; 1λ(r, ω)⟩, (164)

here |g⟩ and |e⟩ are the ground and excited states as indicated in Fig. 1, |0⟩ is the ground state of the photon field,
nd finally |1λ(r, ω)⟩ ≡ f̂†λ(r, ω)|0⟩ is a one-photon state. Note that |f ⟩ is now strictly a vector of kets, so the appropriate
tatement of Fermi’s golden rule is10

Γ =
2π
h̄

∫
d3r ′′

∫
dω′

∑
λ′

⟨e; 0|Hint|g; 1λ(r′′, ω′)⟩ · ⟨g; 1λ(r′′, ω′)|Hint|e; 0⟩δ(Ef − Ei) (165)

he electric field is given by (161), repeated in expanded form here for clarity;

Ê(r, t) =
∫
∞

0
dω

∑
λ=e,m

∫
d3r ′

[
Gλ(r, r′, ω) · f̂λ(r′, ω)e−iωt + G∗λ(r, r

′, ω) · f̂†λ(r
′, ω)eiωt

]
(166)

Then we can calculate each factor in the rate (165) in turn;

⟨g; 1λ(r′′, ω′)|Hint|e; 0⟩ = ⟨g; 1λ′ (r′′, ω′)|
∫
∞

0
dω

∑
λ=e,m

∫
d3r ′

[
Gλ(r, r′, ω) · f̂λ(r′, ω)e−iωt

+ G∗λ(r, r
′, ω) · f̂†λ(r

′, ω)eiωt
]
|e; 0⟩. (167)

Using the commutation relation (154), this becomes

⟨g; 1λ(r′′, ω′)|Hint|e; 0⟩ = ⟨g; 1λ′ (r′′, ω′)|d̂ ·
∫
∞

0
dω

∑
λ=e,m

∫
d3r ′G∗λ(r, r

′, ω) · f̂†λ(r
′, ω)eiωt |e; 0⟩

= d↓ · G∗λ′ (r, r
′′, ω′)eiω

′t , (168)

where d↓ ≡ ⟨g|d̂|e⟩. Similarly;

⟨e; 0|Hint|g; 1λ(r′′, ω′)⟩ = d↑ · Gλ′ (r, r′′, ω′)e−iωt , (169)

where d↑ ≡ ⟨e|d̂|g⟩. Combining (168) and (169) as dictated by Eq. (165) gives

⟨e; 0|Hint|g; 1λ(r′′, ω′)⟩ · ⟨g; 1λ(r′′, ω′)|Hint|e; 0⟩ = [d↑ · Gλ′ (r, r′′, ω′)] · [d↓ · G∗λ′ (r, r
′′, ω′)]. (170)

This can be simplified by noting the identity that (a ·B) · (c ·D) = a · (B ·DT) · c for vectors a, c and matrices B, D. Applying
this to the above gives;

⟨e; 0|Hint|g; 1λ(r′′, ω′)⟩ · ⟨g; 1λ(r′′, ω′)|Hint|e; 0⟩ = d↓ · [Gλ′ (r, r′′, ω′) · G∗Tλ′ (r, r
′′, ω′)] · d↑ (171)

10 A note on dimensions and normalisation — the operator f̂λ(r, ω) has a dimension of (volume × frequency)−1/2 as can be seen from the
commutation relation (154), so |f ⟩ = |g; 1λ(r, ω)⟩ = f̂†λ(r, ω)|g; 0⟩ shares this dimension. The state |f ⟩ appears twice in the integrand of (165)
so the dimensions cancel with those of the integration measure, ensuring that the whole expression produces a rate.
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Fig. 1. Levels and energies involved in spontaneous decay.

iving for the rate (165):

Γ =
2π
h̄

∫
d3r ′′

∫
dω′

∑
λ′

d↓ · [Gλ′ (r, r′′, ω′) · G∗Tλ′ (r, r
′′, ω′)] · d↑δ(Ef − Ei) (172)

Using the integral relation (159), this simplifies to

Γ =
2π
h̄

h̄µ0

π

∫
dω′ω′2d↓ · ImG(r, r, ω′) · d↑δ(Ef − Ei), (173)

giving finally

Γ =
2ω2

A

h̄ε0c2
d↓ · ImG(r, r, ω) · d↑, (174)

here Ef − Ei = h̄ω′ − h̄ωA, the scaling property of the delta function [δ(ax) = |a|−1δ(x)] and µ0 = 1/(ε0c2) were used.
his result relies on the non-trivial weak-coupling and timescale separation assumptions that went into deriving Fermi’s
olden Rule in the first place (see, e.g., Ref. [71]), but nevertheless this elementary derivation (the simplest example
f working with a G in perturbation theory) is in agreement with more complex calculations based on explicit atomic
ynamics [72]. Note here that we have also neglected any environment-induced shifts in the atomic transition frequency
known as the Lamb shift when in free space [73], and the Casimir–Polder shift when an inhomogeneous medium is
ntroduced as discussed in detail in Section 4.2).

The simplest case of Eq. (174) is vacuum, for which the Green’s tensor is given by (see, e.g. Appendix B of [42]);

Gvac(r, r′, ω) = −
c2

3ω2 δ(ρ)−
c2eiωρ/c

4πω2ρ3

{[
1− i

ωρ

c
−

(ωρ
c

)2]
I3 −

[
3− 3i

ωρ

c
−

(ωρ
c

)2]
eρ ⊗ eρ

}
(175)

where ρ = r−r′, ρ = |ρ| and eρ = ρ/ρ. We require the imaginary part of this at equal positions r = r′, which immediately
presents a problem as it appears to diverge as ρ → 0 (and indeed the real part does). Taylor-expanding the exponential,
however, reveals that

ImGvac(r, r, ω) =
ω

6πc
I3, (176)

hich can be substituted into (174) to find;

Γ vac
=
|d|2ω3

A

3π h̄ε0c3
, (177)

which is the well-known rate of spontaneous decay in free space. It is hopefully obvious that use of a different G
(corresponding to a different environment) would have resulted in a different value for the rate Γ – this ability to tune a
decay rate through the environment is known as the Purcell effect, introduced in a remarkably short paper in 1946 [74].
The arguments originally put forward by Purcell were not based on Eq. (174), but instead concerned modifications to
the density of states available to an emitter. This is of course equivalent to the more modern approach, where the local
density of states (LDOS) for an emitter at position rA with transition dipole moment aligned along the direction n̂ which
an be derived from classical electrodynamics as [75–77]

ρL(rA) =
2ωA

πc2
n̂ · ImG(rA, rA, ωA) · n̂, (178)

with a particularly clear pedagogical derivation being found in Ref. [78]. This formula assumes a fixed emitter direction
so is sometimes known as the partial LDOS. If the total emitted power of a randomly oriented dipole is desired then one
should sum over the three orientations, giving the ‘full’ LDOS

ρL,full(rA) =
2ωA Tr [ImG(rA, rA, ωA)] . (179)

πc2
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Fig. 2. Schematic illustration of the ground Casimir–Polder potential as a integral over virtual transitions to all excited states, modified by the
presence of an arbitrary inhomogeneous environment with scattering Green’s tensor G(1) .

he spontaneous decay rate in terms of the LDOS is [76]

Γ =
πωA

h̄ε0
|d|2ρ(rA). (180)

Combining this with Eq. (178) reproduces the environment-dependent decay rate (174) as expected. One can also define
a similar quantity known as the ‘cross’ density of states

ρC(rA, rB) =
2ω
πc2

n̂A · ImG(rA, rB, ω) · n̂B, (181)

hich characterises the degree of coherence between two emitters A and B (see, for example, Refs. [77,79–81]), or can
lternatively be understood in a classical sense as counting the contribution of the modes connecting rA and rB at a specific
requency ω [82].

Beginning with the pioneering measurement of dielectric interface modified decay time by Drexhage in [83], the
odified spontaneous decay rate in an environment been experimentally observed and exploited far too many times

o count as it forms the basis of the pervasive Purcell effect (see, for example, [84–87]). More recently the environment-
ependent LDOS and/or CDOS have been characterised in their own right in microwave circuits [88,89] as discussed in
ore detail in Section 5.5. The LDOS has also been experimentally probed with electron energy loss spectroscopy [90]
nd fluorescence intensity measurements in the near-field [91,92].
In exactly the same way as the rate of spontaneous decay can be adjusted by choice of environment with a different

, a wide variety of different atomic quantities and processes can be written in terms of G and therefore designed by its
choice. In the following subsections we will very briefly outline the derivation of a selection of these and for each we will
survey how the expressions have been taken advantage of in order to manipulate light–matter interactions. In all of the
examples below, the basic logic is the same — an atomic process which involves emission/absorption from vacuum modes
is modified when those vacuum modes become subject to the boundary conditions imposed by macroscopic objects.

4.2. Ground-state Casimir–Polder potential

The energy levels of an atom are modified slightly by the existence of the quantised vacuum field into which it can
emit and re-absorb virtual photons — in free space this is known as the Lamb shift [73]. The properties of an atom are
similarly modified if it is brought close to its mirror image in a conducting surface — this was known before the invention
of QED as the London dispersion force. Some discrepancies with experiment in the long-range behaviour of intermolecular
forces [93] caused Casimir and Polder to consider the influence of relativistic retardation on this effect [94], necessitating
the full apparatus of QED and producing the effect which bears their names.11 Interestingly, Casimir and Polder’s original
derivation of the potential did not invoke the idea of the vacuum field at all, instead relying on retarded correlations
between fluctuating dipole moments, which incidentally turns out to be very complicated. While both points of view
(source theory and vacuum fluctuations) are correct [99] (being connected by the fluctuation–dissipation theorem),
Casimir and Polder remark that the simple form of their results might mean that they can be derived in an alternative
and simpler way — this turned out to be the case using the vacuum field for which Casimir’s famous effect [100] is one
of the main observable signatures.

11 There is some unfortunate confusion in the literature about nomenclature for Casimir–Polder and van der Waals forces. Some authors refer
to any far-zone interaction between atoms or between an atom and a macroscopic body as Casimir–Polder, with the corresponding short-distance
limits being called van der Waals (e.g. [95,96]). However, other authors refer to the Casimir–Polder effect as being the interaction (at any distance)
between a neutral atom and a macroscopic body (e.g. [97]), and the van der Waals force as being the interaction (at any distance) between neutral
atoms (e.g. [98]). Either of these is a reasonable reading of Casimir and Polder’s original paper, whose contribution was a theory that works at
arbitrary distances between atoms and between an atom and a plate, with the far-zone limit being their main novel result.
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Fig. 3. Selected systems to which the theory of Casimir–Polder forces has been applied. (a) Plate with a hole of diameter d, obtained by Kelvin
ransformation of the (static) Green’s function [114] (see also Section 5.3.2). (b) Phase accumulated at a dielectric sphere of radius R for use in
atter–wave diffraction calculations [115]. (c) Potential landscape for probing Casimir–Polder interactions of a grating using a BEC [116] (d) Lateral

orces with corrugated surfaces [117]. (e) Shielding of vacuum fluctuations to expose possible fifth forces [118]. (f) Shielding vacuum fluctuations a
istance d above a gold substrate using graphene [119]. (g) Casimir–Polder forces between chiral objects [120], which requires a non-zero electric
ipole moment d and a non-zero magnetic dipole moment m (h) N-body Casimir–Polder effect enhanced by collective behaviour [111].

For a ground state atom, the Casimir–Polder effect can be understood as originating in virtual transitions from the
round level to all other states (real or virtual) lying above it (see Fig. 2). The potential arising from this can be calculated
rom second-order time-independent perturbation theory, and for the simplest case of an electrically polarisable atom at
ero temperature is given explicitly by [72];

U(rA) =
h̄µ0

2π

∫
∞

0
dξ ξ 2Tr

[
αA(iξ ) · G(1)(rA, rA, iξ )

]
, (182)

where αA(ω) is the dynamical polarisability of the atom, and the integration contour has been rotated to imaginary
frequencies to tame a rapidly-oscillating integral. The force on the atom (in conservative cases, see e.g. [101]) then follows
as minus the gradient of this potential. In the case of a perfectly reflecting planar surface, this equation reproduces Casimir
and Polder’s original results [94]. Similar formulae can be reached for atoms prepared in excited states [21,72,102–104],
the essential difference being additional terms that result from resonant processes to lower-lying levels. The theory can be
extended for paramagnetic [105,106] and diamagnetic [107] atoms, as well as for non-zero temperature [44,108–110] and
collective effects [111,112]. Theoretical investigations based on formula (182) and its generalisations are far too numerous
to list in full (for a recent comprehensive review on atom–surface interactions see [113]), selected systems to which the
formula (182) can be directly applied are shown in Fig. 3.

As mentioned above, the Casimir–Polder force is closely related to the short-range London dispersion force between an
atom and its image which was observed in various experiments dating back to the 1960s. Such experiments were either
carried out with conducting surfaces [121,122] (see Fig. 4a) [123–126] or dielectrics [127–129]. More recently the effect
of these short-range forces on matter–wave diffraction has been quantified [130–133], including most very recently with
Poisson spot diffraction [134]. The longer-range Casimir–Polder force was first measured in 1993 [135] (see Fig. 4b) by
measuring the deflection of sodium atoms passing through a micron-sized cavity. This was followed by measurements of
Casimir–Polder forces using quantum reflection [136–139], ion trapping [140,141], Bose–Einstein condensates [142–144]
(see Fig. 4c), and very recently by slow atom diffraction [145] (see Fig. 4d).

4.3. Resonant energy transfer and interatomic Coulombic decay

Resonant energy transfer is a process by which energy is transferred from an excited atom or molecule (referred to as
the donor) to another atom or molecule (known as the acceptor), as schematically illustrated in Fig. 5. The process should
be contrasted with the shorter-range Dexter energy transfer [146], where atomic or molecular wave function overlap
is significant enough for electrons themselves to be transferred between donor and acceptor — in RET the donor and
acceptor are taken to be well enough separated that all electrons stay bound to their respective nuclei.

The history of RET is long and meandering, as detailed in a recent comprehensive review by Jones and Bradshaw [147].
Briefly, RET was first observed in the 1920s under the name ‘sensitised fluorescence’ [148–150] when, upon illumination
of a binary mixture of vapours at the resonance frequency of one of the constituents, emission was observed at that of
the other, implying an interspecies transfer of energy which was first explained theoretically in Ref. [151]. The theory was
23
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Fig. 4. Illustration of selected methods of measuring atom–surface forces. (a) Apparatus for measuring the deflection of a beam of caesium atoms
y a gold cylinder (from [122]). (b) Experimental schematic of a micron-sized cavity for deflection of sodium atoms (from [135]). (c) Oscillations of
BEC trapped near a surface from (from [142]). (d) Slow atom diffraction by a grating (from [145]).

Fig. 5. Schematic illustration of resonance energy transfer by relaxation to the ground state |gD⟩ of a donor molecule initially in its excited state
eD⟩, transmitting its energy to an acceptor molecule, causing it to be excited from its ground state |gA⟩ to its excited state |eA⟩.

refined and put into the most basic (short-range) version of its modern form by Förster12 [152,153]. Förster’s theory was
the first to include the effect of broadened – and hence possibly overlapping – donor emission and acceptor absorption
spectra. It was also the first to exploit the close analogy between the interaction energy of oscillating dipoles and the
interaction of a single transition dipole with light, and the first to quantitatively predict the characteristic dependence
of the RET rate on the inverse sixth power of the separation, as experimentally verified some decades later [154]. This
high sensitivity to distance is the basis of the idea of the ‘spectroscopic ruler’ [155] still in use as an analytical tool today
in the field known as FRET microscopy (see, for example, [156–161]). Modern usage of the Förster theory in interpreting
microscopy data comes with significant caveats concerning deviations from the original Förster theory [162,163], with the
common theme being breakdown of a point-dipole model at short distances (discussed in the context of the closely-related
interatomic Coulombic decay process in [164]).

The modern theory of resonance energy transfer at general intermolecular distances (that is, any distance larger
than the orbital overlap region) is based on non-relativistic QED as described in Section 2. This incorporates the short-
distance limit as originally predicted by Förster, but also predicts deviations at distances significantly larger than the
characteristic wavelength of the donor transition. While the first steps towards an account of far-zone RET were taken in
the 1960s [165,166], the first full statement of the theory connecting the two regimes was given in the 1980s by Power
and Thirunamachandran [167] and advanced further by Andrews and co-workers [168,169] in the subsequent years. One

12 For this reason RET sometimes bears the name Förster energy transfer or FRET, where the F is sometimes taken to denote ‘fluorescence’.
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f the main difficulties and points of contention in the QED theory of RET is the correct choice of contour in the complex
requency plane when integrating over wave vectors, this problem was circumvented in [170] by careful re-expression
f the involved integrals to be oscillatory but convergent, finding agreement of final results with the choice of contour
eemed to be most physically acceptable in prior work. More recently an approach based on vector spherical harmonics
as taken [171], eliminating the need for contour integration entirely and confirming the choices made in previous works.

n practice, probably the most convenient method of dealing with this issue is simply displacing the offending poles away
rom the real axis [172], equivalent to having started with the presence of vibronic structure which would entail using
he so-called generalised Fermi’s Golden Rule;

Γ =
2π
h̄

∑
f

|⟨f |T |i⟩|2δ(Ef − Ei), (183)

with

T = Hint + lim
ϵ→0

Hint
1

Ei − H + iϵ
Hint. (184)

and the summation representing the same notion as in Eq. (163). Considering donor and acceptor to be modelled as
dipoles interacting via Hamiltonian (106), sitting in free space separated by a distance ρ, calculation of the RET rate using
ermi’s Golden rule and the QED formalism of Ref. [167] leads to;

Γvac =
|d↑D|

2
|d↓A|

2

36π h̄ε20

[
3
ρ6 +

ω2
D

c2
1
ρ4 +

ω4
D

c4
1
ρ2

]
, (185)

here, similarly to in Section 4.1, d↓D = ⟨gD|d̂D|eD⟩ and d↑A = ⟨eA|d̂A|gA⟩ and ωD is the transition frequency of the donor.
q. (185) exhibits the expected 1/ρ6 dependence of the Förster theory at short distances, but also contains additional
ontributions which depend on distance as 1/ρ4 and 1/ρ2. These become more important at higher frequencies, when
he wave-like nature of the mediating photon becomes more relevant. As we will discuss in more detail in relation to the
reen’s tensor in Section 5.2.3, the short- and long-distance limits are also known as the non-retarded and retarded (or
ear-zone and far-zone) regimes since they are distinguished by the significance of the time delay between emission and
bsorption.
Once the fundamental formalism for calculating the RET rate using QED had been laid down, a profusion of extensions

nd generalisations began to appear. A selection of these are discussed next.

.3.1. Higher multipole moments
Instead being described simply by their electric dipole moments d, donor and acceptor can also be taken to have

agnetic dipole moments m and/or electric quadrupole moments [173–176]. This is of importance when ultra-short
ange processes are considered, such that the donor and acceptor can no longer be considered point-like. The particular
ombination of electric–magnetic coupling is of importance to chiral discriminatory RET [174,175], where the relevant
oupling is the optical rotatory strength Im(d · m). Expressions for the rate for electric multipole moments of arbitrary
rder have been given [177], with included special cases worked out all the way up to quadrupole–quadrupole and
ipole–octupole coupling.

.3.2. Mediating particles
Studies of the effect of mediating particles on the RET process began in Ref. [178] which concentrated on the

hort-range asymptotics of the transfer matrix element in the presence of a third body. Later works extended this to
rbitrary distances [179], highly polar [180], charged [181] and non-absorbing [182] mediators, as well as dimensionally-
onstrained systems (e.g. quantum dots) replacing the molecules [183] and mediators embedded in homogeneous
edia [184,185]. A mediator has also been considered as an agent that can placed and oriented such that energy transfer
an be switched on and off [186]. Further extension to two mediating particles (i.e. four bodies in total) has also been
nvestigated [187], and the advances in inclusion of external environments discussed in the next section have been
ombined with a three-body calculation [188].

.3.3. External environments
The first foray into the quantum theory of RET with an external environment was the microscopically derived approach

f Ref. [189], where many-body QED was used in order to derive the modified rate of dipole–dipole energy transfer in
homogeneous (non-vacuum) medium. In the earlier Ref. [190], the classical rate of energy transfer was evaluated for
olecules adsorbed at or near surfaces, with a similar calculation for microspheres carried out in Ref. [191]. Normal-
ode QED was used to calculate the rate in aerosol particles [192], dielectric nanospheres [193], a highly-reflecting
avity [194,195] and near a dielectric surface [196]. The normal-mode basis of those works meant they could not
nclude absorption (see Section 3.2) and became cumbersome for complex geometries — this difficulty was overcome
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n Ref. [197] where macroscopic QED was used to find general expressions for the two-body transfer rate in arbitrarily-
haped dispersing and absorbing media. For donor and acceptor with dipole operators d̂A and d̂D and positions rA and rD
ndergoing the process shown in Fig. 5, it reads in the same notation as Eq. (185) as;

Γ =
2πµ2

0ω
4
D

h̄
|d↑A · G(rA, rD, ωD) · d

↓

D|
2
. (186)

sing d↑D/A = d↓
∗

D/A, and carrying out isotropic averaging via [see, e.g., Ref. [198]. Eq. (16)];

d↓D ⊗ d↑D →
1
3
d↑Dd

↓

DI =
1
3
|d↓D|

2
I d↑A ⊗ d↓A →

1
3
d↓Ad

↑

AI =
1
3
|d↑A|

2
I (187)

e have13;

Γiso =
2πµ2

0ω
4
D|d
↑

D|
2
|d↓A|

2

9h̄
Tr
[
G(rA, rD, ωD) · G∗(rD, rA, ωD)

]
(188)

where Lorentz reciprocity G(r, r′, ω) = GT(r′, r, ω) has been used. Substituting in the vacuum Green’s tensor from
Eq. (175) and simplifying, one finds exactly the free space rate Eq. (185).

As discussed in more detail in Section 5.5, Refs. [89,199] and report close agreement between the predictions of
Eq. (186) and experiments on microwave cavities. The expression (186) has been used to theoretically investigate
enhancement of the rate in dielectric layers and near microspheres [197], as well as in nanocavities [200], near wires,
wedges and channels [201], and in the evanescent fields of non-local media [202]. Similarly, the general phenomenon of
environment-dependent RET has been observed to exist in a wide variety of contexts ranging from the plasmon-assisted
processes reported in [203,204], to experiments on energy transfer within aerosol particles [205], microcavities [206],
hyperbolic metamaterials [207] and quantum well complexes [208], between quantum dot monolayers [209] as well as
near a movable photonic nanoantenna [210] and nanoparticles positioned using DNA origami [211,212].

A process closely related to RET is interatomic Coulombic decay (ICD), which gained recognition as a novel process in
1997 [213] though qualitatively similar processes had been described earlier.14 As shown in Fig. 6, the essential difference
from RET is that the acceptor atom or molecule is no longer excited to a higher state, instead being ejected entirely and
causing the acceptor to become ionised. Combined with a preparation step, this can cause a ‘Coulomb explosion’ which
is one of the characteristic signatures of ICD. With hindsight, ICD is known to have been observed in neon dimers [216]
and silicon fluoride [217], though not explicitly identified as a separate energy transfer process. Later, ICD was specifically
searched for and observed in neon clusters [218], and has been observed in a wide variety of dimers and clusters since
then, including in water [219,220]. It has also been shown that the ionisation of the acceptor atom produces a low-energy
free electron [221], which are known to be damaging to DNA [222]. This, coupled with the recently-confirmed presence
of interatomic decay in liquid water [223] means that the ICD process is a key mechanism in radiation biology [221,224].
ICD is most efficient at very short distances (of the order of the atomic radii), where orbital overlap is significant so
electronic correlations can play a role [225]. At larger distances the main mechanism of energy transfer is a (virtual)
photon, so at these distances the phenomenology of ICD can be expected to be very similar to that of RET. This is indeed
the case [225,226] (see Fig. 7a), with the essential difference in the theory being that the dipole moment of the acceptor
is converted to a photoionisation cross section. At distances beyond orbital overlap, the characteristic rate dependence
on the inverse sixth power of the distance is recovered [see Fig. 7a]. In Ref. [226] is showing that all the theoretical
machinery developed for RET (influence of retardation, dielectric environments etc.) can be transferred over to the case
of the long-distance behaviour of ICD, using for example the surface-enhancement and local-field corrections. Mirroring
the development of RET, three body effects have recently been investigated in parallel using both the QED model and
ab initio quantum chemistry [227,228]. The ‘single-body’ version of ICD (Auger decay) has also been investigated in the
framework of macroscopic QED [64]

When comparing and contrasting RET and ICD, one needs to be careful with terminology. In the RET community the
donor and acceptor are almost universally considered to be distant enough that orbital overlap is not relevant, so there
the ‘short distance’ regime is synonymous with the electrostatic or non-retarded regime where the first term of (185)
dominates (this is discussed further in the context of the Green’s tensor in Section 5.2.3). Similarly, for RET the long-
distance regime is synonymous with the far-zone or retarded regime. In ICD, however, ‘short’ distances refer to those
with orbital overlap (sometimes referred to as ultra-short in literature discussing ICD and RET, e.g. [147]), while ‘long’
distances are those in which a non-retarded virtual photon model suffices. Distances where retardation matter are almost
never considered in ICD because most ICD-active systems are separated by distances within or just outside the orbital
overlap region, so there is no standard long-distance terminology although ‘ultra-long’ would probably be appropriate.
This nomenclature, alongside an illustrative rate plot for a RET/ICD-like process is shown in Fig. 8.

13 For vectors a and b and matrix M one has |a ·M · b|2 = aiMijbjakM∗klbl = (a⊗ a∗)ikMijM∗kl(b⊗ b∗)jl Carrying out isotropic averaging over a and
b this becomes (1/9)|a|2|b|2δikMijM∗klδjl = (1/9)|a|2|b|2MijM∗ij = (1/9)|a|2|b|2Tr(M ·M∗T).
14 For example Penning ionisation [214] is essentially the same process but expressed in the language of collisions as discussed in [215].
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Fig. 6. Schematic illustration of an interatomic relaxation process resulting in Coulomb explosion. (a) A neutral donor and neutral acceptor are
repared. (b) The donor is ionised in an inner vacancy by an external agent (e.g. a laser). (c) The ICD process ejects an electron from the acceptor
sing the excess energy from relaxation of the donor. As discussed in the main text, this is the step that can be described along the same lines as
ET. (d) Both donor and acceptor are now ionised (only the outer levels are shown here) so experience strong Coulomb repulsion.

Fig. 7. Representative examples of results, systems and theoretical underpinnings of ICD (a) Theoretical demonstration of the deviations from
he virtual photon model at short distances (from [225]). The straight dot-dashed line shows the predictions of the virtual photon model, with
he other lines representing the results of ab initio quantum chemistry calculations. (b) Distinctive diagonal experimental signature of Coulomb
xplosion in coincidence detection of the ionic partners (from [229]) (c) Illustration of two sub-types of ICD, p-RICD (participator resonant ICD) and
-RICD (spectator resonant ICD) (from [230]) — these are only a tiny subset of the very many ICD-related processes gaining attention cite ICEC (d)
chematic of ICD in sodium-doped helium nanodroplets (from [231]) — this is one of the systems in which environment-modified ICD as described
y macroscopic QED is clearly of relevance.

Fig. 8. Summary of distance perspectives taken in the RET and ICD communities, and an illustration of how the position dependence of the rate varies
ith distance ρ. The distance ρ0 is the characteristic length for the exponential decay region where orbital overlap is important (see, e.g. Ref. [215]

and Fig. 7a), and depends on the specific donor/acceptor combination at hand.

5. The Green’s tensor

In the previous section, only the simplest Green’s tensor was discussed — that describing unbounded empty space. In
this section we will discuss the generalisation to inhomogeneous environments, and discuss one particular inhomogeneous
Green’s tensor (that for a dielectric half-space) in detail. We will also discuss selected methods for approximating Green’s
tensors analytically and outline methods for calculating them fully numerically.
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.1. Green’s tensors for inhomogeneous environments

There are a variety of existing works containing exhaustive presentations of the derivation of Green’s tensors in bulk
homogeneous but non-vacuum) media and in the presence of planes, cylinders, spheres and layered versions thereof.
extbooks include Refs. [15,42,43,232,233] with representative references for layered planar media being [234–237],
ith [238–240] for cylindrical and spherical media, respectively. Here we will introduce the general principles needed

or writing down Green’s tensors for inhomogeneous environments, and then discuss one example in detail.
The defining Eq. (130) is linear G, so it will always be possible (and eventually useful) to decompose it into two parts

hich we will call G(0) and G(1):

G(r, r′, ω) = G(0)(r, r′, ω)+ G(1)(r, r′, ω). (189)

This decomposition is evidently not unique — the only constraint is that G(r, r′, ω) should solve the defining Eq. (130) with
a given set of boundary conditions. Assuming for a moment that the source and observation points are both in the same
medium, we choose to identify the term G(0)(r, r′, ω) with the (fictitious) situation that the medium is considered to be
unbounded and homogeneous. This means that G(1)(r, r′, ω) must make up the remainder of the whole process described
by G, so therefore must represent any effect of boundaries between different media. If the source and observation points
are in different media, then G(0)(r, r′, ω) is defined as simply zero as there is no other meaningful way to define it.15 We
are thus left with:

G(r, r′, ω) =
{
G(0)(r, r′, ω)+ G(1)(r, r′, ω) if r and r′are both in the same medium,
G(1)(r, r′, ω) otherwise.

(190)

In the common case of a medium described by a frequency dependent local, scalar16 permittivity ε(ω) and permittivity
µ(ω), the bulk Green’s tensor G(0)(r, r′, ω) is given by (see, e.g. Appendix B of [42]);

G(0)(r, r′, ω) = −
µ(ω)
3k2

δ(ρ)−
µ(ω)eikρ

4πk2ρ3

{[
1− ikρ − (kρ)2

]
I3 −

[
3− 3ikρ − (kρ)2

]
eρ ⊗ eρ

}
(191)

ith k =
√
ε(ω)µ(ω)ωc and the remaining notation the same as in Eq. (175). In the limit ϵ(ω) → 1, µ(ω) → 1 the bulk

reen’s tensor (191) reduces to the vacuum Green’s tensor (175) as expected.
Bulk media is essentially the only situation where the Green’s tensor can be given as an elementary algebraic formula

t all distances. Considering layered planar geometries, for example, the Green’s tensor is most usefully expression in
he spectral domain, which introduces an integral over wave vector k. One integral over the component of the k vector
erpendicular to the interface (normally called k⊥ or kz) can be done analytically via contour methods without knowledge
f the specific Green’s tensor (see, e.g. [232]. Chapter 7). The specifics of the remaining integral over the parallel wave
ector k∥ = (kx, ky)

G(r, r′, ω) =
∫

d2k∥G(r, r′, ω; k∥) (192)

epend on the problem at hand, and ultimately mean that the actual evaluation of the Green’s tensor for a given frequency
annot always proceed analytically (not to mention any complications from an additional frequency integral required for
ome observables). The k∥ integral entails quite some technical overhead [13], so it is often worth considering the physical
arameters of the problem to see if approximations can be made that allow the integration to be circumvented. Since
his review is geared towards design of complex geometries for which G cannot be expressed analytically, we will only
iscuss this for one case (a dielectric half-space) in order to illustrate the general principles involved, leaving any more
omplex geometries to fully numerical treatments.

.2. The half-space Green’s tensor and its approximations

Consider a dielectric half-space of permittivity ε(ω) and permeability µ(ω) = 1 filling the region z < 0, with vacuum
n the region z > 0 as shown in Fig. 9. The source and observation points r′ and r will be taken as being in the vacuum
egion. This particular arrangement is an important special case as (ordinarily) for an atomic radiative process taking place
n vacuum near an object, both source and observation points will be located at the atom [see, e.g., the spontaneous decay
ate (174) or Casimir–Polder potential (182)]. The half-space is also important because for sufficiently small distances any
omplex geometry can be approximated locally as a half-space — indeed a version of this for parallel plates is the basis
f the widely-used proximity-force approximation (PFA) for the Casimir force [241].

15 For example, trying to generalise the definition for when source and observation points and in the same medium, one runs into the problem
of which medium’s properties should be chosen as those for the (fictitious) unbounded and homogeneous one.
16 This excludes non-local, non-reciprocal, and anisotropic media. These have permittivities and permeabilities which matrix-valued (non-reciprocal
case), require the use of auxiliary parameters besides ε and µ (anisotropic) or have defining equations which involved additional spatial convolutions
(non-local media).
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Fig. 9. Half space of permittivity ε(ω) (and unit permeability) filling the region z < 0, with z > 0 being vacuum. The solid line indicates the type
of contribution the scattering Green’s tensor G(1) makes, while the dashed one indicates the contribution of the homogeneous Green’s tensor G(0) ,
hich in this case will be that for vacuum.

The half-space Green’s tensor we will work with is (see, for example, Appendix B of [42]);

G(1)(r, r′, ω) =
i

8π2

∫
d2k∥

1
kz

eik∥·(r−r
′)+ikz (z+z′)

∑
σ=s,p

rσ (ω, k∥)eσ+ ⊗ eσ−, (193)

here

rs(ω, k∥) =
kz − kdz
kz + kdz

, rp(ω, k∥) =
ε(ω)kz − kdz
ε(ω)kz + kdz

(194)

and

kz =
√
ω2/c2 − k2

∥
≡

√
k20 − k2

∥
,

kdz =
√
ε(ω)ω2/c2 − k2

∥
=

√
ε(ck0)k20 − k2

∥
,

es± = ek∥ × ez,

ep± =
1
k
(k∥ez ∓ kzek∥ ), (195)

with ek∥ =
1
k∥
(kx, ky, 0) and ez = (0, 0, 1). It should be emphasised that kz and kdz appearing in Eq. (193) are simply

horthands — the independent variables are k∥ and ω = ck0. Using the definitions (194) and (195) in the Green’s tensor
193), one finds;

G(1)(r, r′, ω) =
i

8π2k20

∫
∞

−∞

dkx

∫
∞

−∞

dky
ei(kxX+kyY+Z

√
k20−k

2
x−k2y )√

k20 − k2x − k2y
g(kx, ky) (196)

here X = x− x′, Y = y− y′, Z = z + z ′ and;

g(kx, ky) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

k20

(
k2y rs−k

2
x rp
)
+k2x rp

(
k2x+k

2
y

)
(
k2x+k2y

)
2

kxky
(
rp
(
k2x+k

2
y

)
−k20(rp+rs)

)
(
k2x+k2y

)
2

−
kxrp

√
−k2x−k2y+k20
k2x+k2y

kxky
(
rp
(
k2x+k

2
y

)
−k20(rp+rs)

)
(
k2x+k2y

)
2

k20

(
k2x rs−k

2
y rp
)
+k2y rp

(
k2x+k

2
y

)
(
k2x+k2y

)
2

−
kyrp

√
−k2x−k2y+k20
k2x+k2y

kxrp
√
−k2x−k2y+k20
k2x+k2y

kyrp
√
−k2x−k2y+k20
k2x+k2y

rp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(197)

o assumptions have been made about the reflection coefficients rs and rp so far, they still depend on ω, kx and ky in an
unknown way.

The first simplification that can be made is to assume that the material has no spatial dispersion — the permittivity
can only depend on the frequency rather than the wave vector. This means that the reflection coefficients only depend
on total transverse wave vector k∥, rather than on its individual components kx and ky. This means we can transform into
cylindrical polar coordinates kx = k∥ cos θ and ky = k∥ sin θ , analytically carry out the angular integral and therefore be
left with a single integral, which is much more amenable to numerical analysis than the double integral from which it
came. For simplicity we choose y′ = y (Y = 0) — any coordinate system can be rotated such that this is true so there is
no loss of generality here. Combined with the angular integration, this causes the Green’s tensor components G , G , G
xy yx zy
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nd Gyz to vanish, leaving only five of the nine components,

G(1)(x, z, x′, z ′, ω) =
i

4πk20

∫
∞

0
dk∥

k3
∥
eiZ

√
k20−k

2
∥√

k20 − k2
∥

⎛⎝gxx 0 gxz
0 gyy 0
gzx 0 gzz

⎞⎠ (198)

ith (dimensionless) matrix elements

gxx =
1

k3
∥
X

(
k20
(
rp + rs

)
− k2
∥
rp
)
J1
(
Xkp
)
+

1
k2
∥

(
k2
∥
− k20

)
rpJ0

(
k∥X

)
,

gyy =
1
|X |k3

∥

(
k2
∥
rp − k20

(
rp + rs

))
J1
(
|X |k∥

)
+

k20rs
k2
∥

J0
(
Xk∥
)
,

gxz =
i
k∥

√
k20 − k2

∥
rpJ1

(
Xk∥
)
= −gzx

gzz = rpJ0
(
Xk∥
)
, (199)

here Jn is the nth Bessel function of the first kind (similar expressions but in cylindrical polar coordinates appear for
xample in the appendix of [13])

.2.1. A user’s guide to the half-space Green’s tensor
Eq. (198) is a very general and useful form of the Green’s tensor, so we will devote some attention to how to actually

ork with it in a real calculation. It is usually a good idea to transform the integrand into a scale-invariant form by
ntroducing dimensionless variables defined by some arbitrary length scale a.

k0 → k̄0/a k∥ → k̄∥/a Z → Z̄a X → X̄a (200)

hen one has;

G(1)(x, z, x′, z ′, ω) =
i

4πak̄20

∫
∞

0
dk̄∥

k̄3
∥
eiZ̄

√
k̄20−k̄

2
∥√

k̄20 − k̄2
∥

⎛⎝gxx 0 gxz
0 gyy 0
gzx 0 gzz

⎞⎠ (201)

where the dimensionless coefficients gij, of course, remain dimensionless and given by

gxx =
1

k̄3
∥
X̄

(
k̄20
(
rp + rs

)
− k̄2
∥
rp
)
J1(k̄∥X̄)+

1
k̄2
∥

(
k̄2
∥
− k̄20

)
rpJ0(k̄∥X̄)

gyy =
1
|X̄ |k̄3

∥

(
k̄2
∥
rp − k̄20

(
rp + rs

))
J1
(
|X̄ |k̄∥

)
+

k̄20rs
k̄2
∥

J0
(
X̄ k̄∥

)
gxz =

i
k̄∥

√
k̄20 − k̄2

∥
rpJ1

(
X̄ k̄∥

)
= −gzx

gzz = rpJ0
(
X̄ k̄∥

)
(202)

ith the reflection coefficients also written in terms of the dimensionless variables;

rs(k̄0, k̄∥) =

√
k̄20 − k̄2

∥
−

√
ε(ω)k̄20 − k̄2

∥√
k̄20 − k̄2

∥
+

√
ε(ω)k̄20 − k̄2

∥

(203)

rp(k̄0, k̄∥) =
ε(ω)

√
k̄20 − k̄2

∥
−

√
ε(ω)k̄20 − k̄2

∥

ε(ω)
√
k̄20 − k̄2

∥
+

√
ε(ω)k̄20 − k̄2

∥

(204)

While formidable looking, (201) is now ready for numerical integration. The only dimensions are carried by the factor a,
so for numerical examples we multiply through by this and report the dimensionless number aG(1)(x, z, x′, z ′, ω). Care
should be taken in the co-linear limit X → 0, which, while well-defined if taken properly, will cause a division by zero
error if expression (201) is used naively — it is usually advisable to either avoid this point or split this off into a special
case (see next section).

The main difficulty in evaluation of (201) is the presence of a factor
√
k̄20 − k̄2

∥
in the integrand, which introduces branch

uts where the sign of its imaginary part changes. Recalling the discussion at the end of Section 3 and in appreciation
f causality, we are proceeding under the prescription that the vacuum wavenumber k0 has a small positive imaginary
art. This leads us to consider (201) to be a contour integral in the complex k̄ plane, and seek to deform the contour to
∥

30



N. Westerberg and R. Bennett Physics Reports 1026 (2023) 1–63

o
w
l

w
B

U
t

v

w

T
c
o
t
p
S
F
a
e
b
(

W
p
p
t
t
t
c

ne that avoids the branch cuts entirely. In order to deform the contour it must be completed in the upper half plane —
e will do this by extending the range of the integral to be over the whole real k̄∥ axis and subsequently showing that a

arge semicircle in the upper half-plane does not contribute by Jordan’s lemma.
Firstly we note that (201) is a sum of terms of the form;∫

∞

0
dxO(x)Jn(x) with n even, and

∫
∞

0
dxE (x)Jn(x) with n odd, (205)

here E (x) and O(x) are arbitrary even or odd functions, respectively. We make use of the following identity relating
essel and Hankel functions of the first kind H (1)

n (x) [see, e.g., Ref. [242]. Eqs. (10.4.4) and (10.11.5)];

Jn(x) =
1
2

[
H (1)

n (x)− einπH (1)
n (−x)

]
(206)

sing this in both cases of (205) separately, changing variables x→−x in the term proportional to H (1)
n (−x), and finally

aking advantage of the parities of E (x) and O(x), one finds;∫
∞

0
dxO(x)Jn(x) =

1
2

∫
∞

−∞

dxO(x)H (1)
n (x) with n even, and∫

∞

0
dxE (x)Jn(x) =

1
2

∫
∞

−∞

dxE (x)H (1)
n (x) with n odd. (207)

These relations mean that the Green’s tensor (201) can be equivalently represented by replacing each Bessel function Jn
with a Hankel function (of the first kind) H (1)

n , extending the lower limit of the integration to −∞, and dividing by 2. For
complex x, the Hankel functions H (1)

n (x) decay to zero exponentially in the upper half-plane (see Ref. [242]. Eq. 10.17.5),
so the form of (201) in terms of Hankel functions allows us to carry out the required deformations of the integration
contour.

In order to avoid the branch cut when deforming the contour we want to maintain Im
√
k̄20 − k̄2

∥
> 0, so the critical

alues are those where it is real, i.e. where Re
√
k̄20 − k̄2

∥
= 0;√

k̄20 − k̄2
∥
=
{
[Re(k̄0)+ iIm(k̄0)]2 − [Re(k̄0)+ iIm(k̄0)]2

}1/2
=
{
Re(k̄0)2 + 2iRe(k̄0)Im(k̄0)− Im(k̄0)2 − Re(k̄∥)2 − 2iRe(k̄∥)Im(k̄0)+ Im(k̄∥)2

}1/2
(208)

hich is real if;

Re(k̄∥)Im(k̄∥) = Re(k̄0)Im(k̄0) and Re(k̄∥)2 − Im(k̄∥)2 ≤ Re(k̄0)2 − Im(k̄0)2. (209)

he first of these defines curves, while the second defines a region. Where the curves and region overlap, the branch
uts exist and the contour should not be deformed through them. This can be used as a guiding principle in construction
f a contour — a problem which is well-studied in the literature (see, e.g. [232]). A permissible choice of contour is
he Sommerfeld path shown in Fig. 10, though some authors use other paths for numerical convenience [13]. We will
arameterise the Sommerfeld contour by defining a complex number η with Re(η) > 0 and Im(η) > 0, then the
ommerfeld contour runs from a point {−∞, Im(η)} to η, then down to η∗, then along to {+∞,−Im(η)} as shown in
ig. 10 for a particular choice η = η0. That figure also shows that Sommerfeld contour avoids the branch cuts, as long
s the displacement from the axis is not too large, or, equivalently, the imaginary part of k0 is not too small. Taking the
xample physical parameters as X̄ = 1, Z̄ = 1, k̄0 = 1+ 0.5i and ε(ω) = 2+ 2i and the integration path as being defined
y η = 0.1 + 0.1i ≡ η0 (which is a permissible combination of parameters as shown in Fig. 10a), we carry out integral
201),17 using the NIntegrate routine in Mathematica [243] finding

aG(1)(X̄ = 1, Z̄ = 1, k̄0 = 1+ 0.5i) =

(
−0.0088− 0.0016i 0. −0.0223− 0.0053i

0. 0.0153 − 0.0037i 0.
0.0223 + 0.0053i 0. −0.0014+ 0.0112i

)
(210)

e can also see explicitly which contours would not have been appropriate by varying the value of η in the complex
lane. A representation of this is shown in Fig. 11, where the absolute value of the trace of the Green’s tensor with these
arameters is evaluated for various η and compared with the corresponding result for the acceptable contour that led to
he corresponding result for (210) (|0.0051 + 0.0059i| = 0.0078). There it is seen there are some contours which cross
he branch cut but evaluate to the correct result anyway, this is because they cross a square-root branch cut twice and
hereby find their way back to the correct Riemann sheet (see, for example, Chapter 6 of [244]). Contours which only
ross the branch cut once result in incorrect values for the integral, quickly diverging away from the correct answer.

17 The contour is implemented in practice simply by splitting up the integration range and changing variables so that the integration variable runs
over real numbers only, parameterising the path along that section. For example the vertical section of the Sommerfeld contour corresponds to an
integral from k̄ = η to η∗ , so an appropriate variable change to a new variable p is k̄ → 0.1+ ip, with the p integral running from +0.1 to −0.1.
∥ 0 0 ∥
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Fig. 10. Schematic illustration of the complex k̄∥ plane with the curves and regions defined by Eqs. (209), for decreasing values of Im(k̄0), with
= 0.1+ 0.1i ≡ η0 in all cases. Where the solid curves and shaded region overlap, the branch cuts exist and the contour should not be deformed

hrough them. (a) Im(k̄0) = 0.5, representing an acceptable combination of parameters and contour (b) Im(k̄0) = 0.002, demonstrating that there are
on-zero values of Im(k̄0) for which the branch cut is crossed (c) Im(k̄0) = 0, which will necessarily cause the integration path to cross the branch
uts.

Fig. 11. Evaluation of the absolute value of the trace of the half-space Green’s tensor with the same parameters that led to Eq. (210), with various
choices of integration path normalised to the result for the path shown in Fig. 10a.

The above was all done in dimensionless units for convenience, but we can easily convert back to SI units. If we take
our arbitrary length scale a to be, say, 1 µm, then we have found for example that

ReG(1)
zz (x, z, x

′, z ′, ω) = −0.0088 µm−1 (211)

t z + z ′ = 0.1 µm, x− x′ = 1 µm, ω = ck0 = ck̄0/a = 299.8× (1+ 0.5i) THz.
Finally, in the limit where x′ → x, the Green’s tensor becomes diagonal.

G(1)(z, z ′, ω) =
i

4πk20

∫
∞

0
dk∥

k3
∥
eiZ

√
k20−k

2
∥√

k20 − k2
∥

diag

{
k20
(
rs − rp

)
+ k2
∥
rp

2k2
∥

,
k20
(
rs − rp

)
+ k2
∥
rp

2k2
∥

, rp

}
, (212)

which is a suitable starting point for the perfect reflector and short/long distance limits discussed in the next two
subsections.

5.2.2. Perfect reflector
Integral (212) can be carried out at general distances if rs and rp are taken as constants. A physically-motivated choice

for those constants is given by ‘perfect reflector’ approximation defined by ε→∞, in which case r → −1 and r → 1,
s p
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G(1)
PM(z, z ′, ω) =

i
4πk20

∫
∞

0
dk∥

k3
∥
eiZ

√
k20−k

2
∥√

k20 − k2
∥

diag

{
k2
∥
− 2k20
2k2
∥

,
k2
∥
− 2k20
2k2
∥

, 1

}
(213)

These integrals can be carried out analytically, with result;

G(1)
PM(z, z ′, ω) =

1
Z
e

iωZ
c

4π

(
ωZ
c

)2

diag

{
1− i

ωZ
c
−

(
ωZ
c

)2

, 1− i
ωZ
c
−

(
ωZ
c

)2

,
1
2

(
1−

iωZ
c

)}
(214)

.2.3. Short- and long-distance limits
The Green’s tensor (212) only contains one separation distance so can be more easily approximated for small and large

istances without assuming a specific form of the permittivity. The short distance (also called non-retarded, near-zone or
lectrostatic) limit is defined by Zk0 ≪ 1. This implies that k0 should be small, which in turn can be equivalently expressed
s the main contribution to (212) is when k∥ ≫ k0 = ω/c . The long distance (retarded, far-zone, radiation-zone) limit
s similarly defined by the opposite limit Zk0 ≫ 1, under which circumstances (212) becomes highly oscillatory. In that
ase the main contribution to (212) is from the stationary phase point where the following is satisfied;

d
dk∥

Z
√
k20 − k2

∥
= −

Zk∥√
k20 − k2

∥

= 0 (215)

olved by k∥ = 0, meaning we take the condition as k∥ ≪ k0 = ω/c. Before evaluating (212) directly, we can use these
onditions on k∥ to work out simplified expressions for the non-retarded (NR) and retarded (R) reflection coefficients18

rs(ω, k∥) =

√
ω2/c2 − k2

∥
−

√
ε(ω)ω2/c2 − k2

∥√
ω2/c2 − k2

∥
+

√
ε(ω)ω2/c2 − k2

∥

≈

{
0 for k∥ ≫ ω/c (NR)
1−
√
ε

1+
√
ε

for k∥ ≪ ω/c (R)
(216)

rp(ω, k∥) =
ε(ω)

√
ω2/c2 − k2

∥
−

√
ε(ω)ω2/c2 − k2

∥

ε(ω)
√
ω2/c2 − k2

∥
+

√
ε(ω)ω2/c2 − k2

∥

≈

{
ε−1
ε+1 for k∥ ≫ ω/c (NR)

−
1−
√
ε

1+
√
ε

for k∥ ≪ ω/c (R)
(217)

he non-retarded versions of these can then be substituted back into to small k0 limit of (212)

G(1)
NR(z, z

′, ω) =
1

8πk20

∫
∞

0
dk∥k2∥e

−(z+z′)k∥
ε − 1
ε + 1

(1 0 0
0 1 0
0 0 2

)
(218)

and the integral carried out to find

G(1)
NR(z, z

′, ω) =
1

4πk20(z + z ′)3
ε − 1
ε + 1

(1 0 0
0 1 0
0 0 2

)
(219)

imilarly substituting the retarded versions into the large k0 limit of (212) and evaluating the integral, one finds;

G(1)
R (z, z ′, ω) =

e−i(z+z
′)ω/c

4π (z + z ′)3
1−
√
ε

1+
√
ε

(1 0 0
0 1 0
0 0 0

)
(220)

summary of long- and short-distance behaviours is shown in Fig. 12.
We can use the same stationary phase approach to verify, for example, Snell’s law19 is contained within the relevant

reen’s tensor. We need a slightly different expression to Eq. (193) because for a refraction problem the source and
bservation points should be on opposite sides of the interface. The full expression for z > 0 (permittivity ε1) and z ′ < 0
permittivity ε2) with unit relative permeability everywhere can be found for example in Appendix B of [42], here we

18 Note that strictly the reflection coefficients do not depend on distance z so cannot have distinct ‘short’ and ‘long’ distance limits. A certain
distance limit’ of a reflection coefficient should be understood as ‘the reflection coefficient evaluated at a transverse wavenumber that dominates
he integrand the reflection coefficient appears in when the relevant distance limit is taken in that integrand’, with the less-than-rigorous shorthand
tatement being preferred for obvious reasons.
19 As discussed in detail in Ref. [245], this law of refraction was known long before Snell’s 1621 statement. The law was first written down in
artial form by Ptolemy in the second century, before being completed by Ibn Sahl in the tenth century, and later by Thomas Harriot in around 1600.
t was also arrived at independently just after Snell by Descartes in 1637 and also by Fermat as an application of his principle of least action [246].
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Fig. 12. Non-retarded and retarded approximations to the absolute value of the trace of the half-space scattering Green’s tensor at length scale
a with coincident lateral coordinates [solid line, given by (212) converted into the dimensionless quantities defined in (200)], with ε = 2 + 2i,
k̄0 = 1+ iδ with δ→ 0, compared to the non-retarded [dotted line, given by (219), similarly converted] and retarded [dashed line, given by (220)]
approximations. Agreement is best far away from the critical point Z̄ = c

ω
=

1
k0
= 1, as expected.

Fig. 13. Example trajectories defined by kx , kz1 and kz2 , with the colour scale representing the absolute value of the phase derivative (222) for that
trajectory. The trajectory highlighted in red is the one which satisfies Snell’s law, which is the one with the smallest phase derivative.

only report the part important for the stationary phase approximation, which is the oscillating exponential factor in the
k∥ integrand;

eik∥·(r−r
′)+ikz1z−ikz2z′ = eikx(x−x

′)+ikz1z−ikz2z′ ≡ eiφ (221)

where kzi =
√
εiω2 − k2

∥
and we have assumed without loss of generality that y = y′. Differentiating the exponent with

respect to kx and setting the result to zero in order to find the points of stationary phase in the kx integral, we have;

dφ
dkx
= x− x′ +

kx
kz1

z −
kx
kz2

z ′ = 0 (222)

he values of this phase gradient for various values of kx and fixed frequency ω (and the resulting kz1 and kz2) are shown
n Fig. 13 with ε1 > ε2. The kx for which the phase gradient vanishes has been highlighted in red, and indeed this is the
ne that satisfies Snell’s law of refraction

√
ε1 sin θ1 =

√
ε2 sin θ2. This means the biggest contribution to the k∥ integral

in the far-field Green’s tensor is from that trajectory.

5.3. Approximations for more general geometries

Having discussed the methods by which the half-space Green’s tensor can be approximated by making assumptions
about the materials and distances involved, we now turn to approximation methods which can take into account more
complex geometries.
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.3.1. Born series
If the situation at hand can be meaningfully decomposed into an analytically solvable ‘background’ region, plus a

erturbation on top of that, then the Green’s tensor can be approximated by the techniques of the Born series [247],
hich is closely related to the later Dyson series [248] and the Lippmann–Schwinger equation [249].
Before deriving the Born series for the Green’s tensor, we will first look at an analogy provided by the following

chrödinger-like equation

(∇2
+ k2)ψ(r) = V (r)ψ(r). (223)

The general solution of this is the sum of the solution ψ0(r) to the associated homogeneous equation

(∇2
+ k2)ψ0(r) = 0, (224)

(assumed to be known), and of a particular solution, which we will write as

ψP(r) =
∫

d3r ′g(r− r′)V (r′)ψ(r′), (225)

where a Green’s function g(r− r′) has been defined as the solution to;

(∇2
+ k2)g(r− r′) = δ(r− r′). (226)

The whole solution to Eq. (223) can then be written as;

ψ(r) = ψ0(r)+
∫

d3r ′g(r− r′)V (r′)ψ(r′). (227)

Essentially nothing has happened so far — all that we have done is converted an equation from differential form (223)
to integral form (227). The advantage of the integral form, however, is that it can be solved iteratively by substitution of
ψ(r) into the integrand in the final term;

ψ(r) = ψ0(r)+
∫

d3r ′g(r− r′)V (r′)ψ0(r′)+
∫

d3r ′
∫

d3r ′′g(r− r′)V (r′)g(r′ − r′′)V (r′′)ψ(r′′) (228)

If linear order in V is considered sufficient, then we can truncate to;

ψ(r) ≈ ψ0(r)+
∫

d3r ′g(r− r′)V (r′)ψ0(r′) (229)

where the right hand side now depends only on the solution ψ0(r) to the homogeneous equation, which is assumed to
be known. Therefore, if we know the Green’s tensor g(r− r′) we have enough information to evaluate the whole solution
ψ(r) to linear order in V . The process can of course be repeated [beginning by substituting (227) into the final term of
(228)] to find ψ(r) to arbitrary order in V .

We can use the same method to perturbatively solve for the Green’s tensor defined as the solution to the differential
equation (130). Following [250] and assuming a non-magnetic environment (µ(ω) = 1 everywhere), we begin by writing
the permittivity as;

ε(r, ω) = ε̄(r, ω)+ δε(r, ω), (230)

where ε(r, ω) is the permittivity of the whole environment for which the Green’s tensor is to be found, ε̄(r, ω) is
the background permittivity for which the Green’s tensor Ḡ(r, r′, ω) is analytically known, and δε(r, ω) is a small20
perturbation on top of that as shown in Fig. 14. By definition we can then assume that the solution Ḡ(r, r′, ω) to the
following equation is known;

∇ × ∇ × Ḡ(r, r′, ω)−
ω2

c2
ε̄(r, ω)Ḡ(r, r′, ω) = δ(r− r′) (231)

and the solution to the following equation is sought;

∇ × ∇ × G(r, r′, ω)−
ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r− r′). (232)

ubtracting (231) from (232) we have

∇ × ∇ ×
[
G(r, r′, ω)− Ḡ(r, r′, ω)

]
−
ω2

c2
[
ε(r, ω)G(r, r′, ω)− ε̄(r, ω)Ḡ(r, r′, ω)

]
= 0. (233)

20 The exact conditions for convergence of this series are complex — it is often assumed that the use of a small permittivity contrast δε(r, ω)≪ 1
(the ‘dilute’ approximation if the background is vacuum) is sufficient, but of course an arbitrarily large object will induce significant scattering,
regardless of the weakness of its dielectric response. For detailed discussions of this and related questions, see for example Refs. [251–254].
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Fig. 14. Basic idea behind the Born series.

Defining δG(r, r′, ω) = G(r, r′, ω)− Ḡ(r, r′, ω), we can eliminate G(r, r′, ω) and ε(r, ω) in favour of δG(r, r′, ω), Ḡ(r, r′, ω),
δε(r, ω) and ε̄(r, ω);

∇ × ∇ × δG(r, r′, ω)−
ω2

c2
ε̄(r, ω)δG(r, r′, ω) = ω2δε(r, ω)

[
Ḡ(r, r′, ω)+ δG(r, r′, ω)

]
(234)

This is now an inhomogenous differential equation for δG(r, r′, ω) analogous to Eq. (223), with the permittivity contrast
δε(r, ω) playing the role of the scattering potential V . The Green’s function for this differential equation (which is itself a
differential equation for a Green’s function) satisfies;

∇ × ∇ × H(r, r′, ω)−
ω2

c2
ε̄(r, ω)H(r, r′, ω) = δ(r− r′) (235)

which is the analogous relation to Eq. (226). Comparing this with Eq. (231) shows that we may take H = Ḡ. Thus the
olution to differential equation (234) is;

δG(r, r′, ω) =
ω2

c2

∫
d3sḠ(r, s, ω)δε(s, ω) ·

[
Ḡ(s, r′, ω)+ δG(s, r′, ω)

]
(236)

giving finally

G(r, r′, ω) = Ḡ(r, r′, ω)+
ω2

c2

∫
d3sḠ(r, s, ω)δε(s, ω) · G(s, r′, ω) (237)

which is analogous to Eq. (227) in that no approximations have yet been made but the equation is implicit, containing
the desired solution G(r, r′, ω) on both sides. The way around this is, as before, to undertake repeated re-substitution;

G(r, r′, ω) = Ḡ(r, r′, ω)+
ω2

c2

∫
d3s1Ḡ(r, s1, ω)δε(s1, ω) · Ḡ(s1, r′, ω)

+
ω4

c4

∫
d3s1

∫
d3s2Ḡ(r, s2, ω)δε(s2, ω) · Ḡ(s2, s1, ω)δε(s1, ω) · Ḡ(s1, r′, ω)+ · · · (238)

r to arbitrary order

G(r, r′, ω) = Ḡ(r, r′, ω)+
∞∑
k=1

(ω
c

)2k⎡⎣ k∏
j=1

∫
d3sjδε(sj, ω)

⎤⎦ Ḡ(r, s1, ω) · Ḡ(s1, s2, ω) · · · Ḡ(sk, r′, ω) (239)

An important special case is when the background environment is free space, so that Ḡ(r, r′, ω) is given by Gvac(r, r′, ω)
via (175) and ε̄(r, ω) = 1. The dielectric contrast in this case is given by δε(r, ω) = ε(r, ω)−1. This can be converted into
a polarisability α(r) using the dilute limit of the Clausius–Mosotti law [53];

δε(r, ω) = ε(r, ω)− 1 =
n(r)α(r)
ε0

= µ0c2n(r)α(r) (240)

where n(r) is the number density of atoms having polarisability α. Then, for example, Eq. (238) becomes;

G(r, r′, ω) = Gvac(r, r′, ω)+ µ0ω
2
∫

d3s1Gvac(r, s1, ω)n(s1)α(s1, ω) · Gvac(s1, r′, ω)

+ µ2
0ω

4
∫

d3s1

∫
d3s2Gvac(r, s2, ω)n(s2)α(s2, ω) · Gvac(s2, s1, ω)n(s1)α(s1, ω) · Gvac(s1, r′, ω)+ · · · (241)
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Fig. 15. Multiple scattering interpretation of Born series.

If the dielectric constant is assumed to be piecewise constant, then

G(r, r′, ω) = Gvac(r, r′, ω)+ µ0ω
2nα(ω)

∫
V
d3s1Gvac(r, s1, ω) · Gvac(s1, r′, ω)

+ µ2
0ω

4n2α2(ω)
∫
V
d3s1

∫
V
d3s2Gvac(r, s2, ω) · Gvac(s2, s1, ω) · Gvac(s1, r′, ω)+ · · · (242)

where V represents the volume of the object(s) placed in the vacuum environment.
The Born series has a useful physical interpretation based on multiple scattering, as shown in Fig. 15. It approximates

the full Green’s tensor (which takes into account all possible scatterings) as a sum of terms containing a one scattering
event, then two scattering events and so on. For a sufficiently dilute medium, the probability of multiple scattering will
be so low that the series converges quickly, meaning only one or two orders need to be taken into account (comparing
contributions from successive terms can give an indication of the convergence of the series, and a rigorous condition is
provided in [255]). The scattering interpretation also provides some physical insight, for example in calculation of the
Casimir force between two macroscopic objects using the Born series, only terms which have (at least) one scattering
event in one object and (at least) one scattering event in the other object contribute [256], necessitating the use of a Born
series of at least second order in the permittivity contrast. This is to be expected as scattering from one object to the
other is the only way for them to ‘know’ of each other’s presence, and is therefore the only mechanism that can result in
a non-zero Casimir force.

The Born series has provided fundamental understanding of local-field corrections for atoms embedded in macroscopic
media [257,258], the microscopic origins of dispersion forces [259], and the form of the stress tensor in colloidal
media [260]. On top of this, it has provided practical calculations of the interactions between atoms and non-trivially
structured surfaces [116,261–264], as well as similar calculations for Casimir forces [256] which have complemented
various dielectric-contrast perturbation theories [265–267]. The Born series also forms a crucial part of the inverse design
techniques derived in [268] and detailed in Section 6 and, in a more general sense, is the basis of numerical calculations
via the volume integral method discussed in Section 5.4.2.

5.3.2. Transformations in the electrostatic limit
The final method of analytic approximation we will discuss in this review is based on the ideas of transformation

optics (see, e.g., [269] for a recent review), in which complicated optical problems can be solved by relating the real
problem at hand to a fictional one. In our context, this will mean beginning with a simple geometry, applying a coordinate
transformation that transforms the simple geometry to a more complicated one while preserving the Green’s tensor and
thereby generating solutions for the complex geometry that we desire. One well-known method for this is the Kelvin
transform [270], which preserves the form of solutions of the Poisson equation (which is the low-frequency limit of
(130), which is a form of the Helmholtz equation). To work with the Kelvin transform it is therefore useful to understand
how to convert between the general form of the Green’s tensor and its low frequency limit.

The defining Eq. (130) for the Green’s tensor specialised to a non-magnetic medium is;

∇ × ∇ × G(r, r′, ω)−
ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r− r′) (243)

ollowing [271], we take the divergence of both sides

−
ω2

c2
∇ ·

[
ε(r, ω)G(r, r′, ω)

]
= ∇ · δ(r− r′) (244)

and then define as an intermediate result the static limit Gstat(r, r′) of the Green’s tensor via

lim
ω2

G(r, r′, ω) = Gstat(r, r′) (245)

ω→0 c2
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nder which conditions Eq. (244) becomes;

−∇ ·
[
ε(r, ω)Gstat(r, r′)

]
= ∇δ(r− r′) (246)

where we also used [∇ · δ(r− r′)]j = [∇ · Iδ(r− r′)]j = ∂iδijδ(r− r′) = ∂jδ(r− r′) = [∇δ(r− r′)]j.
The scalar Green’s function G of electrostatics is defined via the Poisson equation as;

−∇ · [ε(r)∇G(r, r′)] = δ(r− r′) (247)

Taking the gradient of both sides with respect to r′ and switching to index notation we have

− ∂ ′i ∂jε(r)∂jG(r, r
′) = ∂ ′i δ(r− r′) = ∂jε(r)Gstat

ji (r, r′) (248)

where in the second equality we used (246) and ∇δ(r − r′) = −∇ ′δ(r − r′). Comparing the leftmost and rightmost
expressions in Eq. (248), and taking advantage of the boundary condition that the Green’s tensor should vanish at spatial
infinity, we can identify ∂ ′i ∂jG(r, r

′) = Gstat
ji (r, r′). Switching back to vector notation and using Eq. (245) we now have the

relations between the full Green’s tensor G, its static limit Gstat and the scalar Green’s function G;

∇∇
′G(r, r′) = −Gstat(r, r′) = lim

ω→0

ω2

c2
G(r, r′, ω) (249)

The atomic processes considered in Section 4 were written in terms of G, so we can write down general expressions
or their low-frequency limits using the above prescription. For example, the Casimir–Polder potential given by Eq. (182)
epends linearly on G, so can be expected to depend linearly on ∇∇ ′G(r, r′) in the static limit, as is borne out in Ref. [114].
Having found the low-frequency (electrostatic) limit, we are now ready to discuss the Kelvin transform itself, which

non-linear coordinate transformation in space corresponding to reflection through a sphere of radius S, and is defined as;

T(r) =
S2

|r− s|2
(r− s)+ s (250)

This transform is useful here because the transformed Green’s function G(T(r), T(r′)), with an appropriate pre-factor, also
satisfies (247), as in;

−∇
2
[

S2

|r− s||r′ − s|
G(T(r), T(r′))

]
= δ(r− r′), (251)

o that the transformation

G(r, r′)→
S2

|r− s||r′ − s|
G(T(r), T(r′)) ≡ G′(r, r′), (252)

roduces an exact new solution G′(r, r′) of the transformed geometry from a known one G(r, r′). Depending on the initial
geometry and the choice of parameters s and S in the transformation (250), a variety of geometries can be generated
and their (electrostatic) Green’s functions G′(r, r′) produced. One example of this is shown in Fig. 16 where a half-plane
is transformed into a plate with a hole as is done in [114], where the resultant Green’s function is used to evaluate the
Casimir–Polder force on an atom near such a structure. Further applications have included the interaction of a neutral
atom with a sphere and a ‘boss-hat’ (a hemisphere on a plane) [272], a conductor-patched dielectric and conducting
spherical bowl [273], and a toroid [274]. Evaluations of other physical effects using the same ideas include the use of
perfectly reflecting surfaces as starting point for numerical modelling of heat transfer [275], quantification of electric field
noise [276], Coulomb interactions [271] superconductor-mediated magnetic dipole–dipole interactions [277], as well as
van der Waals forces [278].

5.3.3. Quasinormal modes
Atomic processes in regular, highly reflecting cavities can often be understood as coming from one or several

resonances — these can be described by quasi-normal modes [279–283] which have complex eigenvalues and outgoing
boundary conditions (rather than vanishing at infinity, as is the case with normal modes). Despite not being true modes
of the system (unless the lossy nature of the mode is shifted instead into an imaginary part of the permittivity [284]),
they form a locally bi-orthogonal and complete set. In certain cases they can be shown to be orthogonal inside a
resonator [285,286] but not necessarily outside [284,287,288] and can be the basis of perturbation theory [289]. Quasi-
normal modes work by analogy to normal modes, but are applicable to systems with absorption where normal modes
cannot be defined. Even after restriction to just a few of the important modes of the cavity, close agreement is found with
full numerical simulations of, for example, nanosize photonic and plasmonic resonators [290,291] and coupled gain–loss
resonators [288,292].

The quasi-normal expansion can be applied by taking advantage of the spectral decomposition of the dyadic Green’s
function [293,294]

G(r, r′, ω) ∼
∑ Eα(r)⊗ Eα(r′)

2ω(ω − ω)
(253)
α
α
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Fig. 16. Kelvin inversion of a half-plane into a plate with a hole (see Ref. [114]).

where E(r) are the fields of the relevant modes (which are found via an eigenfrequency search), and the sum runs over
their complex frequencies.

5.4. Fully numerical methods

In cases where the above approximations do not apply, the Green’s tensor must be calculated in a more numerical
fashion. Two of the most prominent and general methods are finite-difference time-domain and volume integral methods
which we will discuss in turn.

5.4.1. Finite difference time-domain
The finite-difference time domain (FDTD) technique is popular in nanophotonics due to its simplicity, versatility

and suitability for sub-wavelength problems. At the core of the method is discretisation of the differential statements
of Maxwell’s equations in both space and time, with derivatives replaced by finite difference approximations. Spatial
discretisation onto a cubic lattice allows an arbitrary structures to easily be included by changing the relative permittivity
and/or permeability of a given set of cells.

The starting point for FDTD is the two time-dependent Maxwell equations in media [Eqs. (35) and (117)], in the absence
of sources;

∇ × E = −Ḃ (254)

∇ × H = Ḋ (255)

f central difference approximations are used in the time-dependent Maxwell equations, the resulting expressions are
econd-order accurate in the temporal and spatial steps. This leads to a method for discretising fields on a lattice
ntroduced by Yee [295] and illustrated in Fig. 17a, where the fields are defined at the centres of various edges/facets
f a cubic unit cell. The electric-type fields (E and D) are defined along the edges of the lattice cell at half-integer time
teps (Fig. 17b), while the magnetic-type fields (B and H) are defined on points shifted half a grid cell in all directions
effectively placing them in the middle of each face of the cell) at integer timesteps. The values of each component of
he fields are stored on one edge/face only, so for example the value of Ex is only stored at the point halfway along the
axis and Hy is at the centre point of the facet of constant y, with corresponding definitions for the remaining four field
omponents. The size of each Yee cell is the key to achieving sufficient numerical accuracy — a standard recommendation
s that no dimension of the cell should exceed around 5% of the shortest wavelength involved [296]. This means that in
rinciple a large spatial grid is required to simulate far-field behaviour, although this problem can be circumvented by
nly calculating the near fields and using a near-to-far field transformation (see e.g. [76]. Sec 4.6). Care must also be taken
t the edge of the grid to minimise unphysical reflections, these can be dealt with using perfectly-matched layers [297].
ispersion (which of course is most conveniently expressed in the frequency domain) is also relatively cumbersome to
ntroduce in the FDTD method compared to others, for example necessitating an additional convolution in time [298].

The FDTD algorithm above calculates electric and magnetic fields in real space in the time domain — this is not
ecessarily what a particular application demands. Inspection of Eq. (174) for the spontaneous decay rate and Eq. (186)
or resonance energy transfer (and indeed anticipating Eq. (280) for the Rabi frequency) shows that for atomic processes
e generally need the Green’s tensor G in (angular) frequency space. The Fourier components of the electric field of a
oint current source is j(ω) at rs are given by;

E(r, ω) = iµ ωG(r, r , ω) · j(ω). (256)
0 s
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Fig. 17. (a) Illustration of a single cell of the Yee lattice (b) Main loop of calculations carried out during one time step of the FDTD algorithm.

Simulating the electric field of, for example, an x-polarised point source in the time domain, Fourier transforming the
result and dividing by iµ0ωjy then gives Gxy (as discussed in, for example, Ref. [268]). The other components of G can
then be built up in an analogous way.

FDTD is a well-established and mature algorithm, meaning that while it is useful to understand its fundamentals,
it is usually unnecessary to implement it from the ground up in order to carry out a calculation in nanophotonics.
Various commercial and free FDTD solvers exist in both command-line and graphical user interface (GUI) forms — these
include Meep [299] (free, command-line), Optiwave [300] (commercial with limited free version, GUI), Lumerical [301]
(commercial, GUI), CST Studio [302] (commercial, GUI), COMSOL [303] (commercial, GUI) and JCMWave [304] (commercial,
GUI).21

5.4.2. Volume integral methods
An alternative way of numerically calculating dyadic Green’s tensors is the volume integral method [305–307]. Instead

of working with the differential form of Maxwell’s equations like the FDTD approach, volume integral methods transform
Maxwell’s equations into an integral form so that the field in a given volume can be solved for. In a similar spirit to the
discussion after Eq. (256), the quantity that is actually calculated is the electric field of a point source, then the source
strength is divided out to give the components of the Green’s tensor. For convenience we will find the volume integral
equations for the electric field by beginning from our Born-series expanded Green’s tensor (237):

G(r, r′, ω) = Ḡ(r, r′, ω)+
ω2

c2

∫
d3sḠ(r, s, ω)δε(s, ω) · G(s, r′, ω), (257)

aking the scalar product of both sides with a source current j(r′′, ω) and integrating over r′′, we have;∫
d3r ′′G(r, r′′, ω) · j(r′′, ω) =

∫
d3r ′′Ḡ(r, r′′, ω) · j(r′′, ω)

+
ω2

c2

∫
d3r ′′

∫
d3s Ḡ(r, s, ω)δε(s, ω) · G(s, r′′, ω) · j(r′′, ω), (258)

iving the standard volume integral form of the electric field (see, e.g. [76]. Sec 16.2);

E(r, ω) = Ē(r, ω)+
ω2

c2

∫
d3s Ḡ(r, s, ω)δε(s, ω) · E(s, ω), (259)

here Ē(r, ω) is the electric field in the presence of only the unperturbed structure. The volume integral on the right hand
ide of (259) can then be discretised by assuming that the electric field is constant within each elementary volume, which
educes the system to a set of matrix equations which can be solved directly for small systems. For larger systems, the
quations can be re-expressed as discrete convolutions, which can be solved via Fast Fourier Transform (FFT) methods
ombined with any algorithm for solution of system of linear equations (see, e.g., Chapter 6 of [233] for an overview of
uch methods). An advantage over the FDTD method discussed in the previous section is that the elementary volumes
aking up the scatterer can be of arbitrary shape — choice of a suitable meshing function increases the geometrical
ccuracy of the representation. A disadvantage however is that volume integral methods converge quite poorly for highly
cattering materials [296].

21 Licensing and feature information correct to the authors’ knowledge at time of submission.
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Fig. 18. (a) Microwave circuit used for measuring LDOS [Eq. (178)], CDOS [Eq. (181)] and RET [Eq. (186)]. The source voltage Vg drives the donor,
which is placed near a similar acceptor circuit (but without driving). The mutual impedance Z21 is proportional to the voltage V2 , which is itself
proportional to the electric field over the acceptor antenna length (much shorter than the wavelength, so assumed constant), which in turn is
proportional to the relevant elements of the Green’s tensor G. (b) External environment of the donor–acceptor pair, which is removed to find
free-space quantities used as normalisations. (c) Comparison of the theoretically predicted LDOS with that measured in the experiment, showing
close agreement.
Source: All reproduced from [89].

5.5. Experimental reconstruction of the Green’s tensor

Aside from being relevant to a wide variety of atomic and molecular processes, the Green’s tensor itself has been
the subject of recent experimental interest. In Ref. [89], the authors measure the mutual impedance between two dipolar
antenna at microwave frequencies as shown in Fig. 18. Even though the majority of photonics applications work at optical
frequencies, the scaling properties of electromagnetism can be used to transfer results from the microwave to optical
regime, with various scale-transforming techniques existing to mimic molecular aggregates [308] and optical phenomena
(loss, plasmons) [309,310] at microwave frequencies by carefully structured surfaces.

6. Design

6.1. Inverse design in nanophotonics

The problem of how best to guide light through a structure with sub-wavelength features is an extremely complex
one. Historically, this and related problems have been dominated by intuition-based approaches, where a designer uses a
template which is known to work for a specific application, then adjusts a small number of parameters to tune the device
to a specific outcome. At a certain level of complexity, this kind of approach becomes infeasible as multiple interacting
parameters must be simultaneously optimised, leading to the development of free-form inverse design approaches which
also take advantage of recent growth in computing power.

The basic idea of inverse design is to work backwards from a desired set of device characteristics, allowing an
algorithm to ‘grow’ or modify a structure which satisfies those constraints. While this has found tremendous application
in nanophotonics, it predates the existence of that field, being a standard tool in the field of mechanics [311–313],
before early optical applications in photonic crystals [314]. Its first applications in nanophotonics came with the use of
evolutionary (genetic) algorithms in the design of a fibre-to-waveguide coupler [315] and to gradient methods in bandgap
optimisation [316]. Several related works on band structure [317,318], and waveguides [319–323] appeared soon after.

The above studies relied on tuning a relatively small number of parameters. The extension to truly freeform design
in optics came later with the introduction of the adjoint method [329,330], originating in fluid dynamics [331] and
first being applied to optimisation problems in Ref. [332]. In free-form optimisation the space of possible designs is
overwhelmingly large, so any brute force method is doomed to fail. The adjoint method makes it possible to iterate
efficiently using the gradient of some objective (merit) function with respect to design parameters. While it will not
be known in general if the resulting devices are globally optimal (unless they can be compared to a fundamental
performance bound, see e.g. Ref. [333]), huge performance gains relative to intuition-based approaches have been found
as summarised in a number of recent reviews of the state of the art in inverse design. These include summaries of
its use in nanophotonics [334], flat optics [335] and tuneable metasurfaces [336], surveys of its relationship with deep
learning [337–340], as well as pedagogical tutorials explaining the underlying methods [341,342]. Here we will summarise
recent developments22 in selected areas, but the explosive growth of the field means the accounts below will not be
exhaustive.

• Waveguides and dispersion engineering. Continuing the lines of research discussed above, studies are ongoing in
on-chip resonators, for example Ref. [343] where problems inherent in designing a resonant structure are overcome
by mapping to a set of non-resonant problems. Studies in dispersion engineering include the dispersion suppression
in graded optical fibres proposed in [344], and the fully three-dimensional couplers detailed in [345]. Purcell

22 Broadly speaking those since 2018 when the comprehensive review [334] was published.
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Fig. 19. Selected recent applications of inverse design (a) generation of THz radiation via the Smith–Purcell effect (from [324]), where an electron
beam passes a periodic structure and resulting in synchronous radiation. (b) reflectors for relativistic lightsail propulsion (from [325]) (c) cascaded
all-optical logic devices (from [326]), demonstrating integration into silicon photonic platforms (d) nonlinear nanophotonic devices (from [327]) (e)
inclusion of structural integrity (from [328]).

enhancements of more than three orders of magnitude have been predicted for inverse-designed dielectric nanos-
tructures [346], passive photonic components for mid-IR photonics have been proposed [347], periodic structures
for sub-wavelength focusing have been suggested to out-perform photonic crystals [348] and Mie scattering based
metasurfaces have been shown to produce helical focusing patterns [349].
• Metasurfaces: Very recent applications of the inverse design methodology have included using neural networks

to generate dielectric metasurfaces [350,351], ‘divide and conquer’ approaches based on stitching together differ-
ent metasurface sections [352] and even meta-optics for virtual reality [353]. Ultra-high efficiency metamaterial
polarisers were designed and manufactured in [354], while metagratings for beam steering have been designed
and manufactured in [355], with metasurfaces also being proposed for similar problems [356] and designed using
genetic-type tree optimisation [357]. Recently a metasurface based on non-local media was designed and manu-
factured [358], resulting in the thinnest visible-range transmissive meta-lens to date. A general software platform
for designing metadevices capable of polarisation splitting, beam bending and focusing was detailed in [359].
Other metamaterial problems to which inverse design has been applied include manufacture of transmission-mode
colour filters [360] and metastructures for beam collimation [361], as well as a proposal for metasurfaces for
frequency conversion [362]. Performance gains by cascaded metasurfaces were investigated in Refs. [363,364], and
the feasibility of reconfigurable metasurfaces was investigated in [365]. Studies also continue into metasurfaces for
solar collection efficiency, which began with varying the geometrical properties of silicon arrays to reduce reflection
and transmission losses between photovoltaic devices [366,367] as well as introducing periodic nanostructures [368],
textured surfaces [369] and diffractive optical elements [370,371] on top of the collection region. More recent
solar collection research has been towards quasi-random silicon nanostructures [372] and multilayer dielectric
stacks [373].
• Non-linearity Techniques of inverse design have recently found applications in non-linear devices, producing

photonic switches in [327,374] (see Fig. 19d), second- and third-harmonic generation in fibres and metasur-
faces [362], and switches in neural networks [375]. Non-linear response has applications in non-reciprocal devices
(see, e.g., [376]), this phenomenon was taken advantage of in the same setup as an inverse designed (linear) in/out
coupler in Ref. [377].
• Novel systems and materials: Emerging fields of application include proposals for magnonic circuit elements [378],

for performance increases of ion-based devices (e.g. electron microscopes and mass spectrometers) [379], pas-
sive generation of complex optical lattices from only one or a few beams [380], topology-optimised topologi-
cal insulators [381] and topological waveguides [382], Raman scattering [383], spontaneous parametric down-
conversion [384], environment-induced coherence [385], interfacing with nuclear physics [386], and even lightsail
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propulsion [325] (see Fig. 19b). Resonators and gratings for ultrarelativistic electrons were designed and manu-
factured in Refs. [324,387] (see Fig. 19a), as were optimised scintillating nanostructures [388], photon extractors
from NV centres [389] and all-optical logic gates in [326] (as shown in Fig. 19a) and [390]. While many of the
inverse-designed devices proposed and manufactured so far rely on silicon, studies are beginning to explore other
materials, including diamond [391] (due to its hosting of colour centres) and indium phosphide [392] due to its more
comprehensive range of photonic functionality (see, e.g., [393]).

Spanning all of these applications and directions are the practical aspects of actually manufacturing the inverse-
designed devices. These were investigated in general in Ref. [394] and in detail in works where fabrication constraints were
explicitly built in to the optimisation algorithm [328,395–399] (see Fig. 19e). Related advances include the introduction
of energy constraints to propose [400] and then manufacture [401] a robust, integrated demultiplexer. Another issue
which is pervasive across the field is that not all processes are particularly amenable to inverse design, as was noticed
in [385,402], and also that some fundamental bounds exist even for optimised devices as discussed in general terms
in [403,404]. Some specific bounds are known for extinction cross sections [333], near-field radiative heat transfer [405]
and the reflection/transmission properties of metasurfaces [406].

6.2. Inverse design of light–matter interactions via the dyadic Green’s tensor

So far this review will hopefully have made it clear that a central object in the study of light–matter interactions is the
dyadic Green’s tensor G — indeed all the examples given in the previous subsection could in principle have been expressed
at least partly in terms of it. Hidden within the Green’s tensor are all of the geometrical and material properties of any
scatterers that may be present in the environment. It therefore stands to reason that a designer could simply choose a
specific G that is optimal for a given situation. Unfortunately, such generality comes hand-in-hand with an astonishing
amount of hidden complexity — as discussed in Section 5 the full (general distance, general material properties) Green’s
tensor is only analytically known for the very simplest of geometries. These only represent a tiny proportional of the
vast space of device geometries so are almost certainly not optimal — the remainder must either be approximated as
discussed in Section 5.3, or accessed numerically as in Section 5.4. This means that brute force optimisation in order
to find the optimal G (and thereby the optimal structure) is normally computationally infeasible, so a more judicious
approach is needed — this is provided by the adjoint method.

.3. Adjoint method

To introduce the adjoint method we follow Ref. [268], and begin by defining a merit function F that is assumed to be
real-valued functional f of the Green’s tensor G;

F = f [G(r, r′, ω)], (260)

hich we will aim to maximise. In principle we could integrate over source and observation positions, as well as frequency,
n order to take into account delocalised sources and sinks as well as multimode effects. This will not be done here since
t has essentially no effect on the core of the method, and can easily be added back in afterwards (see Ref. [268]). The
uestion we seek to answer is ‘‘what change of G will cause a maximal increase in F?’’. This is analogous to the problem

of finding out what change of x will cause a maximum increase in f = y(x). The answer is of course that we would
differentiate y with respect to x and look for the x at which this is maximal. Doing the same thing for our merit function
F corresponds to taking a functional derivative, as f is a functional of G. Note that G in general has complex-valued entries,
meaning in principle that one would have to take functional derivatives with respect to the real and imaginary parts of
G separately. However, it turns out to be more convenient to consider G and its complex conjugate G∗ separately, as is
often done in field theory, giving for the required derivative:

δF =
∂F
∂G

(r, r′, ω)⊙ δG(r, r′, ω)+
∂F
∂G∗

(r, r′, ω)⊙ δG∗(r, r′, ω)

= 2Re
[
∂F
∂G

(r, r′, ω)⊙ δG(r, r′, ω)
]
, (261)

here ⊙ denotes the Frobenius product; A ⊙ B =
∑

ij AijBij. Eq. (261) still contains the unknown quantity δG(r, r′, ω),
representing an infinitesimal change in G. This is precisely the situation for which the Born series introduced earlier in
Section 5.3.1 is suited;

δG(r, r′, ω) = µ0ω
2nα(ω)

∫
V
d3r ′′G(r, r′′, ω) · G(r′′, r′, ω) = µ0ω

2nα(ω)VG(r, s, ω) · G(s, r′, ω). (262)

where we have assumed a homogeneous scattering body in the second step [see Eq. (240)]. Using this in Eq. (261) we
have

δF = 2µ0ω
2nα(ω)Re

[
∂F

(r, r′, ω)⊙
∫

d3r ′′G(r, r′′, ω) · G(r′′, r′, ω)
]
. (263)
∂G V
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n principle calculating δF given by the above expression is enough to find the optimal position s of a small inclusion
hat will maximally increase F . However, there is a serious computational problem. In any numerical method, the field
s calculated throughout the simulation domain with a given set of sources. Observing the field at a particular point
imply means choosing a particular spatial point in the resulting dataset, so changing the observation point is trivial.
hanging the source distribution, however, entails doing a whole new simulation. Looking back at Eq. (263), we can see
hat the optimisation position s appears in the source (second) position in the Green’s tensor G, meaning that changing the
ptimisation position entails doing a whole new simulation. Use of Eq. (263) is therefore no better than simple brute-force
alculation of the relevant observable for all possible optimisation points, which for a realistic problem will be unfeasibly
umerous.
To get around this, there is one very neat trick that leads to huge computational gain. This is to take advantage of the

ource-observer symmetry of Maxwell’s equations, which, in terms of G translates to;

G(r, r′, ω) = GT(r′, r, ω), (264)

also known as the Lorentz reciprocity condition. This constraint holds in any medium that is reciprocal, with non-
reciprocal media including for example Faraday media under the influence of an external magnetic field (the basis of
magneto-optical isolators). Therefore, by making the broadly-applicable assumption that the material at hand is reciprocal
media we can use (264) to rewrite (263) as:

δF = Re
[
∂F
∂G

(r, r′, ω)⊙
∫
V
d3r ′′GT(r′′, r, ω) · G(r′′, r′, ω)

]
(265)

here we have also dropped the factor 2µ0ω
2nα(ω) since these (positive) constants will have no effect on the spatial

osition of the maximum of δF . This can be further approximated if V is sufficiently small that the integral can be
pproximated by its value at the centre, taken to be at s;

δF = Re
[
∂F
∂G

(r, r′, ω)⊙
(
GT(s, r, ω) · G(s, r′, ω)

)]
, (266)

where a factor V has again been dropped. Eq. (266) is the central formula of Green’s tensor based optimisation. The
positions appearing in the second arguments of the Green’s tensor are r and r′ which are both fixed, meaning that only
two simulations are required to produce δF for the whole space for any given F . After this a computationally trivial
data processing step identifies the position of the maximum of the δF found by combining those two Green’s tensors
via Eq. (266). Equations playing the role of (266) are sometimes known as topological derivatives, especially in the
mathematics literature (e.g. [407,408]).

The version of the adjoint method used above is particularly suited for working with the statements of atomic
emission/absorption rates and processes dealt with in Section 4, as these work directly and only with the Green’s tensor.
If the desired observable is, for example, the electric field itself in an extended region, the direct Green’s tensor method
becomes unwieldy. This is because a spatial integral needs to be taken to calculate the electric field from the Green’s
tensor, which ordinarily will have been calculated by first simulating an electric field anyway. In such situations it is more
natural to work with the version of the adjoint method based on electric fields, as was done in the original formulations
of nanophotonic inverse design upon which the completely Green’s tensor based version was built. In the electric field
case the equivalent of (266) for an observation position r′ is [330]

δFE ∝ Re
[
αE(s) · EA(s)

]
, (267)

where α is the polarisability of the chosen building block (a cube, a sphere, etc.), E(s) is the electric field and EA is the
adjoint electric field, which is the field that a dipole placed at position r′ would radiate.

6.3.1. Merit function example: spontaneous decay
A simple and pedagogical example of how to use the Green’s tensor merit function gradient expression (266) is

provided by spontaneous decay, as discussed in Section 4.1. The rate of spontaneous decay for a two-level atom with
transition frequency ωA and dipole moment dA, placed at position r is given by Eq. (174) as;

Γ =
2µ0ω

2
A

h̄
d · ImG(rA, rA, ωA) · d =

2µ0ω
2
A

h̄
1
2i

di
[
Gij(rA, rA, ωA)− G∗ij(rA, rA, ωA)

]
dj. (268)

e can therefore take our spontaneous decay merit function as;

FSD = d · ImG(rA, rA, ωA) · d =
1
2i

di
[
Gij(rA, rA, ωA)− G∗ij(rA, rA, ωA)

]
dj. (269)

The derivative with respect to G can then be taken, giving

∂FSD
=

1
didjδikδjl. (270)
∂Gkl 2i
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Fig. 20. Schematic representation of (a) the additive inverse design process based on the topological derivative (266) and (b) the level set inverse
design process based on the shape derivative (279).

Using this in Eq. (266), we have:

δFSD = Re
[
∂FSD
∂Gkl

(rA, rA, ωA)GT
km(s, rA, ωA)Gml(s, rA, ωA)

]
= Re

[
1
2i

didjδikδjlGT
km(s, rA, ωA)Gml(s, rA, ωA)

]
=

1
2
Im
[
didjGT

im(s, rA, ωA)Gmj(s, rA, ωA)
]

(271)

giving

δFSD =
1
2
Im
{[

d · GT(s, rA, ωA)
]
·
[
G(s, rA, ωA) · d

]}
(272)

in agreement with Ref. [268]. This expression could be used, for example, to design nanophotonic cavities for Purcell
enhancement.

6.4. Practical implementation

Given a merit function gradient, there are a number of ways to implement a practical optimisation scheme. Here we
will concentrate on two of these, a simple additive method and the more complex level-set approach.

The additive approach is conceptually the simplest, being based on adding a small block of dielectric material at the
position of maximal δF as illustrated schematically in Fig. 20a. Such an approach can naturally build fabrication constraints
via the size and shape of the added blocks, but takes a large number of iterations to build up a complex structure (see,
e.g. [268,385]).

A more sophisticated approach is one where the geometry is encoded via function Φ , known as the level set function as
introduced by Osher and Sethian in 1988 [409] and subsequently applied to photonics in Ref. [410]. Here, the boundary
of a geometry is represented by the contour Φ = 0, with Φ < 0 representing the interior and Φ > 0 the exterior.
The level set function Φ is defined in one higher dimension than the geometry at hand, so that for example a circle
in a 2D simulation is represented by the values of a 3D function as shown in Fig. 21(a) and (b). In order to implement
the optimisation, a formal ‘time’ parameter t is introduced, which represents the iteration number. The surface of the
geometry at a given time is therefore defined by;

Φ(r(t), t) = 0. (273)

Taking a total time derivative of this equation yields
∂
Φ(r(t), t)+∇Φ(r(t), t) ·

∂r(t)
= 0, (274)
∂t ∂t
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Fig. 21. Two two-dimensional geometries [(a) and (c)], and two possible three-dimensional level set functions [(b) and (d)] corresponding to them.

hich is the advection equation, well-studied in fluid dynamics where it governs, for example, the motion of clouds in
velocity field given by the wind. Since only deformations perpendicular to the boundary are relevant (those along the
oundary just represent a reparameterisation of the shape), we can simplify this by introducing a scalar velocity field vn,
ormal to the surface

∂

∂t
Φ(r(t), t)+ vn(r(t))|∇Φ(r(t), t)| = 0. (275)

The boundaries of the geometry should be varied in such a way that F increases, meaning we have to choose an appropriate
vn that ensures this. Rewriting the volume integral in Eq. (265) as the product of an area integral overdA and infinitesimal
change δx in the boundary in the normal direction, we have∫

V
d3r ′′ →

∫
∂V

dAδx(r′′) =
∫
∂V

dAvn(r′′)δt, (276)

where in the second step the normal perturbation δx has been replaced by the product of the velocity vn and the time
step δt . The merit function change is now;

δF = Re
[
∂F
∂G

(r, r′, ω)⊙
∫
∂V

dA vn(r′′)δtGT(r′′, r, ω) · G(r′′, r′, ω)
]
. (277)

By choosing the velocity field as;

vn(r′′) =
∂F
∂G

(r, r′, ω)⊙ GT(r′′, r, ω) · G(r′′, r′, ω)δt, (278)

e have

δF =
∫
∂V

dA v2n(r
′′)δ, (279)

hich ensures a positive change in the merit function at each timestep, and is known as a shape derivative. The
rocess of level-set inverse design is schematically illustrated in Fig. 20b. This process is finding wide use across
anophotonics [399,411] including in fabrication-constrained settings [398] and in terms of its relation to explainable
achine learning [412]. Very recent designs based on level-set methods have included CMOS-compatible waveguide
ends [413], random meta-atoms [414], fabrication-constrained multiplexers [415], solar energy concentrators [416],
odal switches [417] directional routing of light using dielectric nanorods [418] and polarisation rotators [419,420].

. Frontiers

.1. Strong coupling and polaritonic chemistry

All of the atomic processes discussed in Section 4 were considered in the weak-coupling, perturbative regime. What
appens beyond this? To answer this question we have to first consider what determines whether a light–matter system
s strongly or weakly coupled. The key quantity is the Rabi frequency ΩR, which is expressed in terms of the Green’s
tensor as (see, e.g., [43]);

Ω2
R (r) =

2µ0γω
2

h̄
d · ImG(r, r, ω) · d. (280)

where γ is the frequency width of a resonant mode of frequency ω, and d is the expectation value of the dipole moment
operator for the relevant atomic transition. The strong coupling regime is entered when the Rabi frequency is much larger
46



N. Westerberg and R. Bennett Physics Reports 1026 (2023) 1–63

t
w
r
d

t
s
i

w
t
c
γ
e
t
e
m
l
i

(
f
f
a
e
r
b
t
p
m
l
t
w

7

d
r

han both the free space decay rate and the dissipation rate of any cavity present (such a dissipation rate could itself be
orked out from G, in which case one could identify strong coupling from G alone). In other words, the strong coupling
egime is entered when the coherent exchange of energy between a quantum emitter and light becomes faster than the
ecay rates of the atom and the cavity.
In the weak-coupling treatments shown so far we have, without necessarily realising it, used the idea of weak coupling

o effect a clear separation between light and matter. This, alongside many of the other qualitative features of the
trong coupling regime, can be encapsulated by considering a simple model of coupled harmonic oscillators as is done
n the pedagogical treatment in Ref. [421]. Consider two independent oscillators of equal mass m with eigenfrequencies
ωA =

√
k/m and ωB =

√
(k+∆k)/m. Defining ω0 as

√
k/m, we have;

ωA

ω0
= 1

ωB

ω0
=

√
1+

∆k
k

(281)

which are plotted in panel of Fig. 22a, where we emphasise that the eigenfrequency of oscillator A is independent of any
of the properties of B. When coupling is introduced, the two equations describing the motion of the two oscillators are;

mẍA + kxA +Ω(xA − xB) = 0, (282)

mẍB + kxB +Ω(xB − xA) = 0. (283)

Seeking solutions of the form xA/B = x0A/Be
iωt , this pair of coupled equations can be rewritten as a matrix equation:(

−mω2
+ k+Ω −Ω

−Ω −mω2
+ k+∆k+Ω

)(
x0A
x0B

)
= 0. (284)

Non-trivial solutions are given by the values of ω± for which the matrix on the left hand side has zero determinant;

ω± =

√
1
2

(
ω̄2

A + ω̄
2
B ±

√(
ω̄2

A − ω̄
2
B

)2
+ 4Ω2/m2

)
(285)

ith ω̄A =
√
(k+Ω)/m and ω̄B =

√
(k+∆k+Ω)/m. The frequencies ω± are shown in panel (b) of Fig. 22, where

he characteristic ‘avoided crossing’ feature of coupled systems appears. The model can be extended by incorporating a
onstant23 damping coefficient γ , corresponding to the introduction of terms γ ẋA to the left hand side of Eq. (282) and
ẋB to the left hand side of Eq. (283). The eigenfrequencies then become complex (and far too unwieldy to write down
xplicitly here), with the imaginary parts corresponding to the widths of the two states. This has the effect of ‘blurring’
he lines in panels (a) and (b) in Fig. 22, leading to panels (c) and (d) where the magnitude of the imaginary part of the
igenfrequencies is shown as an error band either side of the real parts. If the coupling is small enough the spectrum
ay not be spectroscopically distinguishable from the uncoupled case as shown in panel (c) of Fig. 22. If the coupling is

arger, the two lines are distinguishable even in the presence of finite linewidth, which is an indication that the system
s in the strong coupling regime as shown in panel (d) of Fig. 22.

Strong coupling between light and matter can be reached by a combination of light being restricted to a resonator
either by high confinement or low leakage, or both), and use of emitters with large transition dipole moments (high Rabi
requency). The former can be achieved by using highly localised surface plasmon modes, while the latter is frequently
ound by using organic materials. The resulting mixed light–matter excitations are known as polaritons24 which have
pplications in polaritonic devices that take advantage of their strong intrinsic nonlinearities and ability to be selectively
xcited [422]. In the last ten years or so there has been an increasing focus on using strong coupling to affect the
ate of chemical reactions, beginning with photoisomerisation from spiropyran to merocyanine [423]. This inspired the
urgeoning field of polaritonic chemistry, which is reviewed in detail [424–426] and very recently surveyed in terms of
heoretical challenges [427]. The main issue is that modelling of cavity molecular polaritons is a fundamentally multi-scale
roblem — wavelengths in optical cavities are much larger than molecular sizes, leading to a large number of participating
olecules. Conversely, sub-wavelength cavities are much harder to construct and model accurately, and generally have

arge associated losses. Taking this to the extreme, ‘picocavities’ where atom-scale features are manipulated have been
he subject of proposals [428] and demonstrations [429] in other contexts — an open question in polaritonic chemistry is
hether similar techniques can be applied to control of chemical reactions at single-molecule level.

.2. Quantum electrodynamical density functional theory

As mentioned near the end of Section 4.3, the QED theory of resonance energy transfer and interatomic Coulombic
ecay has a frontier at very short distances, in particular when wave function overlap becomes significant. Such short-
ange problems are solved by density-functional theories (DFTs) have found wide applicability in ab initio quantum

23 In reality the damping term would depend on the coupling strength itself, but for the features to be highlighted in this simple model here it
suffices to consider a constant.
24 The polaritons should be carefully distinguished from the other type of polaritonic excitations introduced in Section 3, see discussion following
Eq. (161).
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Fig. 22. Uncoupled and coupled oscillators, in weak and strong coupling regimes. Panel (a) shows the eigenfrequencies of two undamped, uncoupled
oscillators while panel (b) adds coupling. Panel (c) shows the eigenfrequencies of damped coupled oscillators, but where the coupling is weak
enough that they can effectively be considered as uncoupled. Finally, panel (d) shows two damped coupled oscillators but the coupling strength is
large enough (or the damping small enough) that this can be unambiguously discriminated from the weak- or no-coupling case – this is the strong
coupling regime.

chemistry calculations but are incapable of capturing the longer-range behaviour of the QED theory due to the lack of
photonic degrees of freedom. Quantum electrodynamical density functional theory (QEDFT) provides a bridge between
the two theories.

DFTs are capable of treating a many-electron problem, which is ordinarily infeasible due to the ‘curse of dimensionality’
that prevents wave functions from being stored on a realistic medium for any systems other than the tiniest ones. DFT
avoids this by considering instead the electron density (depending on only one coordinate), with an appropriate effective
potential (a unique functional of the electron density) that ensures the many-body problem and the fictitious one-body
problem have the same electron density, in principle given exact results. This is known as the Kohn–Sham construction
and is illustrated schematically in Fig. 23.

The Kohn–Sham fields can be calculated uniquely from a given charge density, depending on three terms; the potential
generated by the charged density itself, the Hartree energy of the charge density (both known exactly), and the potential
associated with exchange and correlation effects. The latter takes into account all the complex quantum-mechanical
mutual interactions of the electrons, and has to be accessed via approximations, for which there are several sophisticated
approaches in the DFT literature.

Standard DFT as outlined above is wildly successful at electronic structure calculations, but does not include the
quantum nature of light. Conversely, in quantum optics the quantum nature of light is treated in full generality, while
simple approximations are used for the charged particles (e.g. two- or few-levels, dipole approximation as taken in the
examples shown in this review). As mentioned above, the goal of quantum electrodynamical density (QEDFT) [424,430,
431] is to bridge this gap, providing a way of treating the quantum natures of particles and light on an equal footing.
This is achieved by applying a ‘density functionalisation’ process, analogous to that shown in Fig. 23, in which internal
variables and external variables are identified (in standard DFT these are the charge density and the Kohn–Sham potentials,
respectively). If a one-to-one mapping between a given internal variable (or set of them) and an external variable can be
found, then analogous processes to those illustrated in Fig. 24 to find observables that are exact in principle.

In QEDFT the internal/external variables are actually pairs of quantities, representing current and vector potential.
Just as in standard DFT, finding the relevant Kohn–Sham fields for a given internal pair is a non-trivial task requiring
approximations [432–434]. In the non-relativistic limit, multipolar gauge and dipole approximation the relevant external
variables turn out to be the electronic external potential and the time derivative of a classical current, which can be shown
to be in one-to-one correspondence with the internal variables of electron density and the mode resolved displacement
coordinate of a photon (the latter essentially proportional to the displacement field D [435]).
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Fig. 23. Schematic illustration of the general principles of the Kohn–Sham construction in density-functional theory.

Fig. 24. Computational process for DFT calculations, representing the canonical example of ‘density functionalisation’ which was later applied to
produce QEDFT.

The QEDFT formalism is still in its early stages of development, with explicit numerical results demonstrated for model
systems such as a two-site Hubbard model coupled to a single cavity mode [430] or a GaAs ring model restricted to two
dimensions and interacting with one mode of the electromagnetic field [434]. Calculations relevant to real systems include
dynamic observables of carbon dioxide [436] and electron–photon interaction-distorted ground densities of an isolated
azulene molecule and chains of sodium dimers [434], all located within optical cavities. More recent extensions to the
QEDFT formalism have been introduction of dissipative dynamics [437] and combination with macroscopic QED [438].

8. Conclusions and outlook

The quantum electrodynamical theory of light–matter interactions is old, well-understood and, as far as we know, a
complete description of all electromagnetic phenomena with its predictions having been experimentally confirmed to
remarkable accuracy. So why are light–matter interactions such an active field of research? The answer, of course, is
that while we have a complete set of equations describing the theory, exact practical solution of them is impossible
except in the very simplest of situations. The various sub-fields dealing with light–matter interaction are usually defined
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y the way in which this difficulty is circumvented — for example in macroscopic QED the atomic nature of a medium
s approximated away, while in density functional theory the photonic degree of freedom is normally ignored. Recent
dvances have been made in bridging these gaps, for example the polaritonic chemistry techniques discussed in Section 7.1
ring quantum-optical ideas to the study of chemical reactions. Open questions still remain in these new realms of
pplication, for example it is still unclear whether polaritonic chemistry can be used to modify chemical reactions at
he single-molecule level. Quantum electrodynamical density functional theory as discussed in Section 7.2 is still in its
nfancy, but its unification of quantum optics and density functional theory is expected to provide a consistent description
f the fundamental light–matter interaction process at a wide range of energy scales.
Even within the framework of a certain theory, the overwhelming complexity of real systems still persists. For example,

n macroscopic QED there quite some restrictive assumptions made (linear response, normally point-like dipolar atoms,
alidity of macroscopic constitutive relations), but even with these one still runs into the problem that the Green’s tensor
or almost any realistic geometry or material response cannot be found analytically. Some of the ways around this were
iscussed in Section 5.3, ranging from the Born series for dilute media, techniques from transformation optics, quasi-
ormal modes and finally fully numerical approaches. The latter allow completely general structures to be described,
hich is the basis of the free-form optimisation techniques discussed in Section 6. Such techniques circumvent the
ifficulties encountered when designing sub-wavelength structures for nanophotonics applications by reversing the design
rocess — a goal is specified and an algorithm does the rest.
The next decades are sure to see further unifications between the various realms of applicability of various theories, as

s the case across the history of physics. The ability to accurately describe ever more complex quantum electrodynamical
ystems will lead to applications which cannot be predicted with certainty, but will continue to represent an active and
ruitful field of research for some time yet.
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ppendix. Gradient of multipolar gauge generator

In this appendix we will prove that the right hand sides of Eqs. (81) and (82) are equivalent. We begin by making use
f the following vector calculus identity;

∇(a · b) = (a · ∇)b+ (b · ∇)a+ a× (∇ × b)+ b× (∇ × a) (A.1)

oting that A(r′) is independent of r, Eq. (81) becomes;

∇χM(r) = −
∫

d3r ′
∫ 1

0
dλ
{[

A(r′) · ∇
]
rδ(r′ − λr)+ A(r′)× {∇ × [rδ(r′ − λr)]}

}
(A.2)

Considering the first term in the integrand, we have;[
A(r′) · ∇

]
rδ(r′ − λr) = A(r′)δ(r′ − λr)+ r

[
A(r′) · ∇

]
δ(r′ − λr)

= A(r′)δ(r′ − λr)− λr
[
A(r′) · ∇ ′

]
δ(r′ − λr) (A.3)

where we used the following relation;

∇δ(r′ − λr) = −λ∇ ′δ(r′ − λr) (A.4)

which can be directly proved by using the Fourier representation of the delta function

δ(r′ − λr) =
1

(2π )3

∫
d3keik·(r

′
−λr) (A.5)

Then;

∇χM(r) = −
∫

d3r ′
∫ 1

0
dλ
{
A(r′)δ(r′ − λr)− λr

[
A(r′) · ∇ ′

]
δ(r′ − λr)+ A(r′)× {∇ × [rδ(r′ − λr)]}

}
(A.6)

Now considering the final term;

∇ × [rδ(r′ − λr)] = δ(r′ − λr)∇ × r− r× [∇δ(r′ − λr)] = λr× [∇ ′δ(r′ − λr)] (A.7)
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w
here a vector calculus identity and ∇ × r = 0 were used. This means Eq. (A.2) becomes;

∇χM(r) = −
∫

d3r ′
∫ 1

0
dλ
{
A(r′)δ(r′ − λr)− λr

[
A(r′) · ∇ ′

]
δ(r′ − λr)+ A(r′)× {λr× [∇ ′δ(r′ − λr)]}

}
(A.8)

We can use the Jacobi identity:

a× (b× c)+ b× (c× a)+ c× (a× b) ≡ 0 (A.9)

on the final term

∇χM(r) = −
∫

d3r ′
∫ 1

0
dλ
{
A(r′)δ(r′ − λr)− λr

[
A(r′) · ∇ ′

]
δ(r′ − λr)

− λr× {[∇ ′δ(r′ − λr)] × A(r′)} − λ[∇ ′δ(r′ − λr)] × [A(r′)× r]
}

(A.10)

The first term on the second line can be simplified by noting that;∫
d3r ′[∇ ′δ(r′ − λr)] × A(r′) = −

∫
d3r ′δ(r′ − λr)∇ ′ × A(r′) = −

∫
d3r ′δ(r′ − λr)B(r′) (A.11)

where integration by parts has been used in the first step. To simplify the second term on the second line we go into
index notation{

[∇
′δ(r′ − λr)] × [A(r′)× r]

}
i = εijk[∇

′

j δ(r
′
− λr)][A(r′)× r]k

= εijk[∇
′

j δ(r
′
− λr)]εklmAl(r′)rm

=
(
δilδjm − δimδjl

)
[∇
′

j δ(r
′
− λr)]Al(r′)rm

= [∇
′

j δ(r
′
− λr)]Ai(r′)rj − [∇ ′j δ(r

′
− λr)]Aj(r′)ri

= [r · ∇ ′δ(r′ − λr)]Ai(r′)− ri[A(r′) · ∇ ′]δ(r′ − λr) (A.12)

So

∇χM(r) =−
∫

d3r ′
∫ 1

0
dλ
{
A(r′)δ(r′ − λr)− λr

[
A(r′) · ∇ ′

]
δ(r′ − λr)

+ λr× δ(r′ − λr)B(r′)− λ[r · ∇ ′δ(r′ − λr)]A(r′)+ λr[A(r′) · ∇ ′]δ(r′ − λr)
}

(A.13)

The second and final terms cancel out, so we are left with;

∇χM(r) =−
∫

d3r ′
∫ 1

0
dλ
{
A(r′)δ(r′ − λr)+ λr× δ(r′ − λr)B(r′)− λ[r · ∇ ′δ(r′ − λr)]A(r′)

}
=−

∫
d3r ′

∫ 1

0
dλ
{
A(r′)

{
δ(r′ − λr)− λ[r · ∇ ′δ(r′ − λr)]

}
+ λr× δ(r′ − λr)B(r′)

}
(A.14)

Again using the Fourier representation of the delta function, it is straightforward to show that;∫ 1

0
dλ
[
δ(r′ − λr)− λr · ∇ ′δ(r′ − λr)

]
= δ(r′ − r) (A.15)

giving

∇χM(r) = −A(r)−
∫

d3r ′
∫ 1

0
dλ λr× δ(r′ − λr)B(r′) (A.16)

If we now define

θ(r′, r) = −e
∫ 1

0
dλ λrδ(r′ − λr) (A.17)

we are left with;

∇χM(r) = A(r)+
1
e

∫
d3r ′ θ(r′, r)× B(r′) (A.18)

which is Eq. (82) in the main text.
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[172] D.L. Andrews, G. Juzeliūnas, Intermolecular energy transfer: Retardation effects, J. Chem. Phys. 96 (9) (1992) 6606–6612, http://dx.doi.org/10.
1063/1.462599.

[173] D.P. Craig, E.A. Power, T. Thirunamachandran, The interaction of optically active molecules, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 322
(1549) (1971) 165–179, http://dx.doi.org/10.1098/rspa.1971.0061.

[174] D.P. Craig, T. Thirunamachandran, Chiral discrimination in molecular excitation transfer, J. Chem. Phys. 109 (4) (1998) 1259–1263, http:
//dx.doi.org/10.1063/1.476676.

[175] J.J. Rodriguez, A. Salam, Effect of medium chirality on the rate of resonance energy transfer, J. Phys. Chem. B 115 (18) (2011) 5183–5190,
http://dx.doi.org/10.1021/jp105715z.

[176] K. Nasiri Avanaki, W. Ding, G.C. Schatz, Resonance energy transfer in arbitrary media: Beyond the point dipole approximation, J. Phys. Chem.
C 122 (51) (2018) 29445–29456, http://dx.doi.org/10.1021/acs.jpcc.8b07407.

[177] A. Salam, A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using
molecular quantum electrodynamics, J. Chem. Phys. 122 (4) (2005) 044112, http://dx.doi.org/10.1063/1.1830430.

[178] D.P. Craig, T. Thirunamachandran, Third-body mediation of resonance coupling between identical molecules, Chem. Phys. 135 (1) (1989) 37–48,
http://dx.doi.org/10.1016/0301-0104(89)87004-1.

[179] A. Salam, Mediation of resonance energy transfer by a third molecule, J. Chem. Phys. 136 (1) (2012) 014509, http://dx.doi.org/10.1063/1.
3673779.

[180] G.J. Daniels, D.L. Andrews, The electronic influence of a third body on resonance energy transfer, J. Chem. Phys. 116 (15) (2002) 6701–6712,
http://dx.doi.org/10.1063/1.1461819.

[181] C. Abeywickrama, M. Premaratne, S.D. Gunapala, D.L. Andrews, Impact of a charged neighboring particle on Förster resonance energy transfer
(FRET), J. Phys.: Condens. Matter 32 (9) (2020) 095305, http://dx.doi.org/10.1088/1361-648X/ab577a.

[182] D.L. Andrews, J.S. Ford, Resonance energy transfer: Influence of neighboring matter absorbing in the wavelength region of the acceptor, J.
Chem. Phys. 139 (1) (2013) 014107, http://dx.doi.org/10.1063/1.4811793.

[183] D. Weeraddana, M. Premaratne, D.L. Andrews, Direct and third-body mediated resonance energy transfer in dimensionally constrained
nanostructures, Phys. Rev. B 92 (3) (2015) 035128, http://dx.doi.org/10.1103/PhysRevB.92.035128.

[184] J.S. Ford, A. Salam, G.A. Jones, A quantum electrodynamics description of quantum coherence and damping in condensed-phase energy transfer,
J. Phys. Chem. Lett. 10 (18) (2019) 5654–5661, http://dx.doi.org/10.1021/acs.jpclett.9b02183.

[185] D. Green, G.A. Jones, A. Salam, Polariton mediated resonance energy transfer in a fluid, J. Chem. Phys. 153 (3) (2020) 034111, http:
//dx.doi.org/10.1063/5.0011562.

[186] J.S. Ford, D.L. Andrews, Geometrical effects on resonance energy transfer between orthogonally-oriented chromophores, mediated by a nearby
polarisable molecule, Chem. Phys. Lett. 591 (2014) 88–92, http://dx.doi.org/10.1016/j.cplett.2013.11.002.

[187] A. Salam, Near-zone mediation of RET by one and two proximal particles, J. Phys. Chem. A 123 (13) (2019) 2853–2860, http://dx.doi.org/10.
1021/acs.jpca.9b00827.

[188] M.C. Waller, R. Bennett, Environment-modified three-body energy transfer, 2022, http://dx.doi.org/10.48550/arXiv.2206.03790, arXiv:2206.
03790.
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