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A B S T R A C T

Functionally graded materials (FGMs), possessing properties that vary smoothly from one region to another,
have been receiving increasing attention in recent years, particularly in the aerospace, automotive and
biomedical sectors. However, they have yet to reach their full potential. In this paper, we explore the potential
of FGMs in the context of drug delivery, where the unique material characteristics offer the potential of fine-
tuning drug-release for the desired application. Specifically, we develop a mathematical model of drug release
from a thin film FGM, based upon a spatially-varying drug diffusivity. We demonstrate that, depending on the
functional form of the diffusivity (related to the material properties) a wide range of drug release profiles
may be obtained. Interestingly, the shape of these release profiles are not, in general, achievable from a
homogeneous medium with a constant diffusivity.
1. Introduction

Technological advances over the past decades have led to the de-
velopment of sophisticated drug delivery devices (DDDs) that enable
targeting and control of drug delivery [1]. Important examples include
drug-eluting stents for the treatment of coronary artery disease, cap-
sules for the delivery of drug across several applications and antibiotic-
eluting orthopaedic implants to combat post-surgical infection, to name
but a few [2–4]. The drug is usually contained within one or more
materials, often polymers, whose properties ultimately dictate how the
drug is released. Better control of the drug release is often desired
and many new technologies are being developed to try to address
this [5]. In most cases, maintaining local drug concentrations in the
biological environment within a therapeutic range is desirable, while
most DDDs deliver a burst of drug (i.e. almost all drug delivered over a
short period of time) followed by more sustained release over a longer
period. This can lead to intervals of time where (i) toxic and/or (ii)
sub-therapeutic concentrations are achieved if the drug release is not
tailored appropriately. Technologies that enable fine-tuning of the drug
release properties would fill this gap, particularly as we move into an
era of personalized medicine.

Among the possible concurrent physical processes, such as dissolu-
tion, polymer swelling and degradation, diffusion remains a key (and
often the dominant) mechanism used to control the release rate from
DDDs. Indeed, there is an abundance in the literature of mathematical
models focussing on diffusion-controlled DDDs [6,7]. These typically
describe diffusion of drug from a homogeneous single-layered plat-
form, with an associated constant effective diffusion coefficient [8].
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However, there are also several models that consider diffusion within
heterogeneous multi-layer materials, exhibiting a different constant
diffusivity in each layer [9,10], deriving from differing properties
such as polymer type/composition, or varying levels of porosity [11].
Stimuli-responsive DDDs are another class of DDDs that control the
release of drug in response to external triggers such as temperature,
pH and many others [12,13]. In these systems, the effectiveness of
delivery can be improved by designing structures capable of responding
to specific conditions by altering their properties and favouring the
selective release of the loaded drug. However, to the best of our knowl-
edge, a comprehensive investigation of diffusion-based drug release
from a continuous non-homogeneous medium is lacking. This is despite
growing interest in continuous non-homogeneous materials in many
areas of science [14].

Recently, much attention has been paid to functionally graded ma-
terials (FGMs), a variety of composite media in which the constitutive
properties vary smoothly and continuously from one surface to another.
This is in contrast to more common approaches for achieving varying
material structure, such as layer-by-layer assembly, where there is an
abrupt change in properties from one layer to the next (Fig. 1). FGMs,
i.e. materials that have a progressive compositional gradient changing
from one side to the other, are already being used in a wide range of
applications [15–17]. They have primarily been used in engineering
and material science, with the purpose to relax the internal thermal
stress at elevated temperatures [18]. FGMs have already shown promise
in a number of applicative fields, including the aerospace, automotive,
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Fig. 1. Schematic showing (a,c,d,e) a multi-layered medium with step-wise properties versus a functionally graded material (b,f,g,h) with continuously varying material
characteristics [11].
tissue engineering and biomedical sectors [15,19], but have yet to reach
their full potential. In this context, new possibilities are derived from
3D printing technology to manufacture smart materials having graded
micro-porosity and density [20]. However, despite today’s capabilities
in micro-engineering technology, FGMs do not appear to have been
considered for fine-tuning drug release [17].

In this paper, through a mathematical mechanistic model and a
simulation approach, we explore the potential of FGMs as a new
class of controlled drug delivery materials, in the attempt to establish
whether varying material properties can provide an advantage over
a homogeneous medium. We develop a continuum model to describe
drug transport within, and release from, a thin film FGM which exhibits
a spatially-dependent drug diffusivity. A numerical solution is derived
and results are presented for several different spatially-dependent diffu-
sivity functional forms. Comparisons are made between resulting drug
concentration and release profiles.

2. Methodology

2.1. Formulation of the problem

Consider a thin film FGM whose properties vary smoothly and
continuously across its thickness 𝐿 (Fig. 2). Assuming drug transport
is governed by diffusion, and neglecting edge effects, we describe
transport of drug via the diffusion equation, with a spatially dependent
diffusion coefficient 𝐷(𝑥):
𝜕𝑐
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝐷(𝑥) 𝜕𝑐
𝜕𝑥

)

, 𝑥 ∈ [0, 𝐿], 𝑡 ∈ [0, 𝑇 ], (2.1)

where 𝑐(𝑥, 𝑡) is the volume-averaged concentration of drug. Given the
continuously varying nature of the material and the common desire to
control a large burst release, we assume a monotonically decreasing
functional form for 𝐷(𝑥) ranging from 𝐷𝑚𝑎𝑥 at 𝑥 = 0 to 𝐷𝑚𝑖𝑛 at 𝑥 = 𝐿.
While, in principle, a FGM may be manufactured to exhibit diffusion
properties satisfying any such spatial-dependence, we choose as our
baseline case a logistic function of the form

𝐷(𝑥) = 𝐷𝑚𝑎𝑥 − (𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛)
1

1 + 𝑒−𝜆(𝑥−𝜎)
, (2.2)

where 𝜆 ≥ 0 [cm−1] is inversely related to the width of the transition
layer, and 𝜎 ∈ [0, 𝐿] [cm] denotes the location of the transition centre.

Through the many combinations of parameters 𝜆 and 𝜎, the func-
tion (2.2) can describe a variety of different material properties and
2

configurations. For example, the case of a homogeneous medium with
constant diffusion coefficient at the midpoint of the two extreme values
is recovered for 𝜆 = 0, while a two-layer substrate with a diffusivity
jump from 𝐷𝑚𝑎𝑥 to 𝐷𝑚𝑖𝑛 at 𝜎 is recovered for 𝜆 → ∞. For simplicity,
a constant initial drug concentration, 𝐶0, is considered. At 𝑥 = 0, a
zero-flux condition is imposed, mimicking the typical case where the
drug-containing material is applied as a coating over an impermeable
platform, while at 𝑥 = 𝐿 (contact with the release medium) a perfect
sink condition is imposed (Fig. 2), replicating typical in-vitro drug
release experiments and in-vivo scenarios where the material is in
contact with a relatively large volume of fluid:

𝑐(𝑥, 0) = 𝐶0, 𝑥 ∈ [0, 𝐿], (2.3)

−𝐷(0) 𝜕𝑐
𝜕𝑥

(0, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ], (2.4)

𝑐(𝐿, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ]. (2.5)

In addition to the logistic function, many other choices for 𝐷(𝑥)
ranging from a maximum value 𝐷𝑚𝑎𝑥 to a minimum 𝐷𝑚𝑖𝑛 are possi-
ble, and we also consider as three further examples, a power-law, a
trigonometric and an exponential form:

𝐷(𝑥) = 𝐷𝑚𝑎𝑥 − (𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛)𝑥𝛼 , (2.6)

𝐷(𝑥) = 𝐷𝑚𝑖𝑛 + (𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛)
(

arccos (2𝑥 − 1)
𝜋

)𝜃
, (2.7)

𝐷(𝑥) = 𝐷𝑚𝑎𝑥 exp
(

− ln
(

𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

)

𝑥𝛾
)

. (2.8)

parametrized by 𝛼, 𝜃, 𝛾 > 0 (FGM parameters), respectively. With
these choices, sharp diffusivity variations and changes of concavity are
possible, depending on the selected parameters.

2.2. Modelling drug release from a FGM

Eqs. (2.1)–(2.5) are non-dimensionalized via

𝑥 →
𝑥
𝐿
; 𝑡 → 𝐷∗

𝐿2
𝑡; 𝑇 →

𝐷∗

𝐿2
𝑇 ; 𝜆 → 𝜆𝐿; 𝜎 →

𝜎
𝐿
;

𝐷(𝑥) →
𝐷(𝑥)
𝐷∗ ; 𝑐 → 𝑐

𝐶0
,

where 𝐷∗ ∈ [𝐷𝑚𝑖𝑛, 𝐷𝑚𝑎𝑥] is a reference value for the diffusivity, chosen
to be one order of magnitude higher than 𝐷𝑚𝑖𝑛 and one order of
magnitude lower than 𝐷 (Table 1).
𝑚𝑎𝑥
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Fig. 2. Schematic representation of a thin film FGM drug release system (shaded green) in contact on one side with an impermeable backing and on the other by release medium.
The arrow represents the direction of the mass flux (figure not to scale).
This gives rise to the following non-dimensional model
𝜕𝑐
𝜕𝑡

= 𝜕
𝜕𝑥

(

𝐷(𝑥) 𝜕𝑐
𝜕𝑥

)

, 𝑥 ∈ [0, 1], 𝑡 ∈ [0, 𝑇 ], (2.9)

𝑐(𝑥, 0) = 1, 𝑥 ∈ [0, 1], (2.10)

𝐷(0) 𝜕𝑐
𝜕𝑥

(0, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ], (2.11)

𝑐(1, 𝑡) = 0, 𝑡 ∈ [0, 𝑇 ], (2.12)

where

𝐷(𝑥) = 𝐷𝑚𝑎𝑥 − (𝐷𝑚𝑎𝑥 −𝐷𝑚𝑖𝑛)
1

1 + 𝑒−𝜆(𝑥−𝜎)
, (2.13)

and the functions (2.6), (2.7), (2.8) are non-dimensionalized similarly.
The drug release profile, 𝑃𝑟, the cumulative mass of drug released

over time, is a key quantity measured by experimentalists to explore
how changes in DDD design impact the rate of drug release. This may
be calculated from the model via

𝑃𝑟(𝑡) =
(

1 −
𝑀(𝑡)
𝑀0

)

× 100, 𝑡 ∈ [0, 𝑇 ], (2.14)

where 𝑀(𝑡) is the time-varying non-dimensional mass of drug in the
FGM, taking the initial value 𝑀0 = 1:

𝑀(𝑡) = ∫

1

0
𝑐(𝑥, 𝑡)𝑑𝑥, 𝑡 ∈ [0, 𝑇 ], 𝑀(0) = 1. (2.15)

Eq. (2.14) allows one to explore how variations in model parameter
values would theoretically influence the drug delivery, in principle en-
abling one to optimize the FGM design to achieve a target drug release
profile for a given application. Here, we are particularly interested in
comparing the release profiles that are obtained from a homogeneous
material (constant diffusion coefficient) with those obtained from a
FGM (space-varying diffusion coefficient).

2.3. Numerical method

Eqs. (2.9)–(2.12) are solved numerically by considering a meshgrid
with equispaced nodes 𝑥𝑖 ∶= 𝑖𝛥𝑥, 𝑖 = 0,… ,𝑀 with 𝛥𝑥 = 10−2 for
the discretization of [0, 1]. The time discretized points in [0, 𝑇 ] are
taken as 𝑡𝑛 ∶= 𝑛𝛥𝑡, 𝑛 = 0,… , 𝑁 . The model parameters are reported
in Table 1. Following [21], we approximate Eq. (2.9) with a finite
difference scheme obtained by means of Taylor expansions:

𝛥𝑖(𝐷, 𝑐) ∶=
(𝐷𝑖 +𝐷𝑖+1)(𝑐𝑖+1 − 𝑐𝑖) − (𝐷𝑖−1 +𝐷𝑖)(𝑐𝑖 − 𝑐𝑖−1)

2𝛥𝑥2
, (2.16)

giving rise to

𝑐𝑛+1𝑖 = 𝑐𝑛𝑖 + 𝛥𝑡𝛥𝑖(𝐷𝑛, 𝑐𝑛), 𝑖 = 1,… ,𝑀 − 1, 𝑛 = 0,… , 𝑁, (2.17)

where 𝑐𝑛𝑖 denotes 𝑐(𝑥𝑖, 𝑡𝑛). The stability condition 𝛥𝑡 ≤ 𝛥𝑥2

2max𝐷(𝑥) is
imposed. The above scheme reduces to the classical explicit finite
difference method for 𝐷 constant. A second order approximation [22]
for the Neumann boundary condition at 𝑥0 = 0 and perfect sink
condition at 𝑥𝑀 = 1 are applied for Eqs. (2.11)–(2.12), respectively:

𝑐𝑛+10 = 4
3
𝑐𝑛+11 − 1

3
𝑐𝑛+12 , 𝑛 = 0,… , 𝑁, (2.18)

𝑐𝑛+1𝑀 = 0, 𝑛 = 0,… , 𝑁. (2.19)
3

Table 1
Physical and numerical parameters of the problem. For the purposes of this study, 𝐿
is chosen to be representative of a thin drug-eluting stent coating, while [𝐷𝑚𝑖𝑛 , 𝐷𝑚𝑎𝑥]
covers a range of typical drug diffusion coefficients within stent coatings reported in
the literature [23,24].

Parameter Description Value [dim.] Value [non-dim.]

𝐿 Coating thickness [23,24] 5 ⋅ 10−4 cm 1
𝐷𝑚𝑎𝑥 Max. diffusivity 10−11 cm2/s 10
𝐷𝑚𝑖𝑛 Min. diffusivity 10−13 cm2/s 0.1
𝐷∗ Reference diffusivity [23,24] 10−12 cm2/s 1
𝑇 Max. time 30 days 10.4
𝐶0 Initial concentration 0.5 mol/cm3 1
𝛥𝑥 Space step 5⋅ 10-6 cm 10−2

𝛥𝑡 Time step 1.25 s 5⋅ 10-6

All the simulations are implemented in Matlab©. We compute the
approximate mass 𝑀 by the composite rectangle rule:

𝑀(𝑡𝑛) = 𝛥𝑥
𝑀
∑

𝑖=0
𝑐𝑛𝑖 , 𝑛 = 0,… , 𝑁. (2.20)

3. Results

3.1. Case A: constant 𝐷

While the numerical method described above is, in general, required
for a spatially-varying diffusivity, the problem with constant diffu-
sion coefficient may be solved analytically by separation of variables,
providing the non-dimensional exact solution [25]:

𝑐(𝑥, 𝑡) =
∞
∑

𝑗=0
𝑎𝑗 cos(𝜆𝑗𝑥) exp(−𝜆2𝑗𝐷 𝑡), (3.1)

with the eigenvalues 𝜆𝑗 = 𝜋
(

𝑗 + 1
2

)

, 𝑗 = 0, 1, 2…, and the coefficients:

𝑎𝑗 = 2∫

1

0
cos (𝜆𝑗𝑥)𝑑𝑥 = (−1)𝑗 4

𝜋(2𝑗 + 1)
.

The corresponding exact solution for the non-dimensional drug mass
is written as:

𝑀(𝑡) = ∫

1

0
𝑐(𝑥, 𝑡)𝑑𝑥 =

∞
∑

𝑗=0

𝑎2𝑗
2

exp(−𝜆2𝑗𝐷 𝑡), for all 𝑡 ∈ [0, 𝑇 ], (3.2)

and the drug release profile is obtained by Eq. (2.14). By comparing the
exact solution with the numerical approximation in the above section,
we are able to validate the numerical scheme. In practice, the series
(3.1) is truncated at a finite number of terms, 𝐽 , with 𝐽 = 10 found
to be sufficient to guarantee good accuracy at all times. Here, 𝐷 = 1
is chosen for the purposes of the comparison. In Fig. 3 (left) the exact
solution given by Eq. (3.1) and the approximate solution given by the
numerical solution of Eqs. (2.9)–(2.12) are depicted at three times. The
corresponding drug release profiles are shown on the right panel. The
agreement is excellent, providing confidence in the accuracy of the
numerical scheme.
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Fig. 3. Left: Nondimensional concentration profiles at three times, with exact (3.1) vs. the approximate solution obtained by the numerical scheme (2.17)–(2.19) with constant
𝐷 = 1. Right: Corresponding exact and approximated drug release profiles computed using (2.14) with the exact mass in Eq. (3.2) and its numerical approximation in Eq. (2.20).
Fig. 4. Nondimensional drug concentration profiles at three times. Top left: Logistic function (2.13) (𝜆 = 25, 𝜎 = 0.5). Top right: Power-law function (2.6) (𝛼 = 0.5). Bottom left:
Arccos function (2.7) (𝜃 = 3). Bottom right: Exponential function (2.8) (𝛾 = 2).
3.2. Case B: variable 𝐷(𝑥)

Fig. 4 compares the spatial drug concentration profiles within the
FGM at three different times, for the logistic, power-law, arccos and
exponential forms of 𝐷(𝑥). This figure demonstrates that, differently
from a multi-layer configuration, where a concentration jump may be
possible at the interfaces, the concentration is a continuous decreasing
function in space. However, while in all cases a steep gradient is
observed near the release medium 𝑥 = 1, where a sink condition is
imposed, the drug is retained differently depending on the form of 𝐷(𝑥)
related to the FGM properties.

In Fig. 5 we present the results obtained with the logistic diffusivity
function 𝐷(𝑥) defined in (2.13). We start by fixing 𝜎 = 0.5 and varying
4

𝜆 in the range 𝜆 ∈ {15, 25, 50}. Fig. 5 (left) displays 𝐷(𝑥), while
Fig. 5 (right) shows the corresponding drug release profiles. The spatial
distribution gives rise to varying drug release profiles. In particular, the
release rate increases with decreasing 𝜆, giving rise to quicker overall
drug delivery.

Next, we fix 𝜆 = 50 and vary 𝜎 in the range 𝜎 = 0.5, 0.7, 0.8,
with Fig. 6 (left) displaying 𝐷(𝑥), and 6 (right) displaying % of mass
released. We observe that increasing 𝜎 (moving the transition centre
closer to the release medium) results in quicker release. This is ex-
plained because the higher diffusivity region occupies a larger portion
of the thin film. Taken together, the results in Figs. 5–6 demonstrate
the tunability of the drug release profile by varying model parameters,
in other words, by varying the underlying FGM properties. Figs. 7–9
show the corresponding results for the other functional forms of 𝐷(𝑥)
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Fig. 5. Variable diffusion functions 𝐷(𝑥) as in Eq. (2.13) for 𝜎 = 0.5 and 𝜆 = 15, 25, 50 (left). Corresponding drug release profiles (right).
Fig. 6. Variable diffusion functions 𝐷(𝑥) as in Eq. (2.13) for 𝜆 = 50 fixed, 𝜎 = 0.5, 0.7, 0.8 (left). Corresponding drug release profiles (right).
considered: power law (7), Arccos (8) and exponential (9). Although
the release curves are always enclosed between the corresponding
curves for the limit cases 𝐷 = 𝐷𝑚𝑖𝑛 and 𝐷 = 𝐷𝑚𝑎𝑥, a wide spread of
drug release profiles obtainable by varying model (FGM) parameters is
observable.

To quantitatively compare the various cases, in Table 2 we compute
three indices: the time taken for (i) 50% release (𝑇50) and (ii) 95%
release (𝑇95) and (iii) the % of drug released at an arbitrary early time
(𝑃 𝑡=0.5

𝑟 ), with the last of these being indicative of the initial drug release
rate. The corresponding values for the limiting cases of homogeneous
materials with constant 𝐷 = 𝐷𝑚𝑖𝑛 and 𝐷 = 𝐷𝑚𝑎𝑥 are reported in the first
two lines. For the power law model, increasing the parameter 𝛼, reduces
𝑇50 and 𝑇95 while increasing𝑃 𝑡=0.5

𝑟 . For the Arccos model, decreasing 𝜃
reduces 𝑇50 and 𝑇95 while increasing𝑃 𝑡=0.5

𝑟 . Finally, for the exponential
model, increasing 𝛾 reduces 𝑇50 and 𝑇95 while increasing 𝑃 𝑡=0.5

𝑟 .
At first glance, the drug release profiles in Figs. 5–9 may appear

similar in shape and typical of those resulting from linear diffusion
problems. This begs the question of whether it is worth the effort
developing a complicated FGM with a varying 𝐷(𝑥) if a homogeneous
material with a constant 𝐷 could also achieve the same drug release
profile. To probe this, we checked whether the drug release profiles
for the various 𝐷(𝑥) were proportional to

√

𝑡 for sufficiently ‘small
times’: for Fickian diffusion, indeed, it can be shown that the

√

𝑡
relationship is valid for 𝑃𝑟 ≤ 60%, see [26]. We found that, in general,
this relationship was not satisfied across the different functional forms
for 𝐷(𝑥) considered. Assuming 𝑃𝑟 = 𝐾𝑡𝛽 , we inversely estimated the
best-fitting 𝐾 and 𝛽 for a subset of the cases considered (Figs. 10–
11), finding that exponents of 𝑡 giving rise to a linear drug release
profile varied from around 0.5–0.7 (Table 3). This demonstrates that the
variety of shape of profiles obtained with an FGM cannot, in general,
be obtained with a homogeneous material.
5

Table 2
Characteristic release times for FGMs having the same extreme values 𝐷𝑚𝑖𝑛 = 0.1 and
𝐷𝑚𝑎𝑥 = 10, but different forms of 𝐷(𝑥).

Parameters time for 50%
release (𝑇50)

time for 95%
release (𝑇95)

% release at
𝑡 = 0.5 (𝑃 𝑡=0.5

𝑟 )

𝑫𝒎𝒊𝒏 – 2.0 11.0 25.22

𝑫𝒎𝒂𝒙 – 0.02 0.12 100

logistic
(2.13)

𝜆 = 15, 𝜎 = 0.5 1.02 4.81 31.62
𝜆 = 15, 𝜎 = 0.7 0.30 1.21 71.52
𝜆 = 15, 𝜎 = 0.8 0.12 0.43 96.98
𝜆 = 50, 𝜎 = 0.5 1.72 8.93 25.42
𝜆 = 50, 𝜎 = 0.7 1.11 5.50 29.33
𝜆 = 50, 𝜎 = 0.8 0.72 3.13 41.32

power-law
(2.6)

𝛼 = 0.1 0.81 4.02 36.58
𝛼 = 0.5 0.34 1.62 63.18
𝛼 = 3 0.11 0.45 96.24

arccos
(2.7)

𝜃 = 5 1.53 7.51 26.42
𝜃 = 3 0.82 3.87 36.24
𝜃 = 1 0.10 0.48 95.76

exponential

(2.8)

𝛾 = 0.5 1.28 6.40 28.83
𝛾 = 2 0.64 3.00 42.66
𝛾 = 10 0.19 0.85 83.09

4. Conclusions

This study has presented a theoretical model of drug release from a
thin film DDD, assuming spatially-varying diffusion to be the dominant
transport mechanism. Several different functional forms have been
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Fig. 7. Power-law diffusivity functions as in Eq. (2.6) for three values of 𝛼 (left). Corresponding release profiles (right).
Fig. 8. Arccos diffusion functions 𝐷(𝑥) as in Eq. (2.7) for three values of 𝜃 (left). Corresponding release profiles (right).
Fig. 9. Exponential diffusion functions 𝐷(𝑥) as in Eq. (2.8) for three values of 𝛾 (left). Corresponding release profiles (right).
considered for the diffusivity. The results show that a wide range of
drug release profiles can be obtained by varying the material shape
and, moreover, by varying the parameters within each functional form.
This work demonstrates that drug release can in principle be controlled
and tailored towards the given application, by manufacturing FGM with
smoothly varying diffusivity properties. In particular, the model may
be used as a computational tool by the pharmaceutical industry to
reverse-engineer desirable FGM material properties and drug dosing to
achieve a desirable drug release profile. As we move towards a future
6

of precision medicine, tools that facilitate personalized drug delivery
are becoming increasingly important.

We have also uncovered that, in general, the shape of the resulting
drug release profiles cannot be obtained from a homogeneous material
with a constant diffusivity. It is important to recognize that there are
a number of limitations present in this work. Firstly, drug delivery
often involves complex interactions between many physical, chemical
and biological processes in addition to diffusion, which may in general
also be concentration and/or time dependent. More effort is required to
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Fig. 10. Release curves 𝑃𝑟 for logistic law (2.13) with 𝜆 = 50 and 𝜎 = 0.5, 0.7, 0.8 drawn vs 𝑡𝛽 and related linear curves with 𝑃𝑟 = 𝐾𝑡𝛽 parameters reported in Table 3.
Fig. 11. Release curves 𝑃𝑟 for power-law (2.6) with 𝛼 = 0.1, 0.5, 3 drawn vs 𝑡𝛽 and related linear curves of the form 𝑃𝑟 = 𝐾𝑡𝛽 with parameters reported in Table 3.
Table 3
Parameter fitting for 𝐾 and 𝛽 assuming 𝑃𝑟 = 𝐾𝑡𝛽 for logistic and
power-law release curves.

Parameters 𝐾 𝛽

logistic
(2.13)

𝜆 = 50, 𝜎 = 0.5 36.5 0.57
𝜆 = 50, 𝜎 = 0.7 46 0.61
𝜆 = 50, 𝜎 = 0.8 64 0.7

power-law
(2.6)

𝛼 = 0.1 40 0.58
𝛼 = 0.5 37 0.55
𝛼 = 3 35 0.5

build in these additional complexities and assess their influence on drug
release. A simple typical in-vitro scenario is modelled here: future work
should couple a model of drug release from the DDD with the biological
environment. Despite these limitations, this work serves as proof-of-
concept, motivating the design of FGM with smoothly and continuously
varying diffusivity properties. We hope and expect that this work will
inspire experimental feasibility testing and validation of the ideas and
models presented here.
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