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Abstract We propose the governing equations for a pre-stressed poroelastic composite material. The structure
that we investigate possesses a porous elastic matrix with embedded elastic subphases with an incompressible
Newtonian fluid flowing in the pores. Both the matrix and individual subphases are assumed to be linear elastic
and pre-stressed. We are able to apply the asymptotic homogenisation technique by exploiting the length-scale
separation that exists between the porescale and the overall size of the material (the macroscale). We derive
the novel macroscale model which describes a poroelastic composite material where the elastic phases possess
a pre-stress. We extend the current literature for poroelastic composites by addressing the role of the pre-
stresses in the functional form of the new system of derived partial differential equations and its coefficients.
The latter are computed by solving appropriate periodic cell differential problems which encode the specific
contribution related to the pre-stresses. The model in the first instance is derived in the most general scenario
and then specified for a variety of particular cases which are associated with different macroscale behaviour
of materials.

Keywords Poroelasticity · Multiscale modelling · Composites · Pre-stress

1 Introduction

Amaterial comprising a porous elasticmatrixwith fluidflowing in the pore space can be described as poroelastic
and is modelled using the theory of poroelasticity. This was first developed by Biot in [1–4] after conducting a
variety of experiments. The theory canonlybe applied if there exists a scale atwhich the interactions takingplace
between the elastic matrix and the fluid can be resolved together with the interactions occurring in the matrix
and in the fluid. This is a widely applied modelling framework with many real-world problems of interest.
These problems include, but are not limited to, hard hierarchical tissues (undergoing small deformations),
such as bones and tendons [5,6] or the interstitial matrix in healthy and tumorous biological tissues [7]. It is
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also applicable to the heart (myocardium) such as in [8,9] or artery walls (see e.g [10–13]). The theory of
poroelasticity does not just have applications within human biology, it has also been used to model artificial
constructs and biomaterials [14–16], and as in the original theory of Biot, it can be applied to soil and rock
mechanics [17,18].

We are considering materials that are characterised by a variety of structural features that are generally
found over multiple microstructural levels (scales). Since we are modelling porous media, it is appropriate to
consider a scale where the interactions between the various solid phases and the fluid flowing in the pores take
place. This scale is called the porescale. The porescale is a fine microstructural level and has associated length
much smaller than the whole domain. The whole material can be described by a scale which we will denote
the macroscale.

Since we have a material that comprises multiple scales, we wish to find a model that is both detailed in the
characterisation of the effective properties of the material and computationally feasible. In order to do this, we
aim to relate the macroscale governing equations to properties and interactions taking place on the porescale.
The first step in this process is to create a fluid–structure interaction (FSI) problem for the interactions that are
taking place on the porescale. This problem can then be used in an upscaling process to obtain the macroscale
governing equations. The upscaling process can be carried out by a variety of techniques proposed in the
literature. These methods can be described as homogenisation techniques. These homogenisation techniques
can be some of the following, including mixture theory, effective medium theory, volume averaging and
asymptotic homogenisation. Each of the techniques have a variety of differences and should be selected based
upon both the intended application and the type of information that one wishes to encode or have available
from the resulting macroscale model. For a review and discussion of each of these techniques, see [19,20].

Within this article, we employ the asymptotic homogenisation technique. This technique is popularly used
in the context of poroelasticity and has been applied to derive Biot’s equations in [18,21–23]. The theory
of poroelasticity has been extended to more complicated dynamics, such as to include growth and remod-
elling and transport of solute, see, for example, [24,25] by using the asymptotic homogenisation technique.
Developments in the theory also include the vascularisation of poroelastic materials [26]. In recent years, the
technique has also been used to consider elastic composites such as in [27] and poroelastic materials with
more complicated microstructures such as poroelastic composites [28] and double poroelastic materials [29].
It has also been considered to determine how non-local diffusion affects the transport of chemical species in a
composite material in [30]. Despite its main use residing in the linear setting being a critique of the technique,
it has recently also been used in the context of poroelastic materials undergoing large deformations such as
active poroelastic materials [25] and nonlinear poroelastic composites [31]. The resulting models derived via
asymptotic homogenisation are also computationally feasible. In [32], the role of porosity and microscale
solid matrix compressibility on the mechanical behaviour of poroelastic materials is considered. This was then
further developed to consider the macroscale behaviour in [33]. More recently, a micromechanical analysis of
the effective stiffness of poroelastic composites has been investigated in [34], and the results presented therein
have then been further specialised to investigate the structural changes involved in myocardial infarction [35],
thereby making a first step towards the use of a piecewise linear elastic asymptotic homogenisation model in
the study of myocardial infarction.

We are applying the asymptotic homogenisation technique to the fluid–structure interaction (FSI) prob-
lem that we set up to describe the behaviour of a pre-stressed porous elastic matrix and subphases, with an
incompressible Newtonian fluid flowing in the pores. This setting means that both the elastic matrix and the
various subphases are in contact with the fluid flow. Structures of this type are applicable to many physical
scenarios, particularly biological tissues. For example, this setting could be considered for artery wall models.
In [36,37], the authors present FSI problems in pre-stressed tubes to model the artery walls. Our structure
investigated can be applicable for this scenario as we can identify the matrix portion with the extra cellu-
lar matrix and the elastic subphases with the embedded collagen and elastic fibres found in the artery wall
microstructure [38]. Pre-stresses have also been considered when investigating the nonlinear stability analysis
of thick, incompressible, isotropic elastic bodies subject to finite strains in [39].

We consider the components of the material at a scale where clearly visible and distinct from the matrix
are the various solid subphases and the pores. We call this scale the microscale. This scale is much smaller
than the entire material (where the pores or subphases are no longer distinctly visible), and so, we call it the
macroscale. We then apply the asymptotic homogenisation technique to upscale the FSI problem, accounting
for the continuity of tractions, displacements and velocities across the fluid–solid and solid–solid interfaces,
that is, between the matrix and the fluid, the subphases and the fluid, and the matrix and the subphases. The
novel macroscale model which is presented in the quasi-static case, for a general pre-stress, is of Biot type
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and is an extension of [28] for poroelastic composites. Our model contains additional terms to account for the
different pre-stresses of each of the elastic phases. We are able to recover [28] by assuming that the matrix and
the subphases have no pre-stress. The coefficients of the model encode the properties of the microstructure.
These are computed by solving the microscale differential problems that arise as a result of applying the
asymptotic homogenisation technique. These cell problems are of the type of [28] for poroelastic composites
plus additional problems to account for the differences in pre-stresses among all the elastic phases.

We are able to make a comparison between the formalisms of our model and that of [40] on electrostrictive
composites in the absence of the fluid phase. The model in [40] investigates the application of the asymptotic
homogenisation technique to a linear elastic composite whose deformations are driven by the divergence of
the generalised Maxwell stress tensor.

The paper is organised as follows. We begin by introducing the fluid–structure interaction problem that
describes the material domain that we are considering in Sect. 2. This problem describes the interactions
between the pre-stressed porous elastic matrix and subphases, and the fluid that flows in the pores. In Sect. 3,
we then perform the multiscale analysis of the FSI problem that is given in Sect. 2. By doing this, we derive
the new macroscale model describing the homogenised mechanical behaviour of pre-stressed poroelastic
composites. In Sect. 4, we present the new macroscale model and discuss it for a variety of choices of the
pre-stress. We also present a scheme for solving the macroscale model and compare the results derived here
with [40] in the absence of a fluid compartment. In Sect. 5, we provide the conclusions to our work as well
as further perspectives. We also have Appendix. A which contains all the cell problems presented herein in
components notation that will be useful for carrying out the numerical simulations.

2 The fluid–structure interaction problem

We begin by considering a set � ∈ R
3, where � represents the union of a solid porous matrix �p, a connected

fluid compartment �f and a collection �c of N disjoint subphases (which could represent either inclusions or
fibres) �α , such that

�c =
N⋃

i=1

�α, (1)

and �̄ = �̄c ∪ �̄p ∪ �̄f . A sketch of a cross section of the three-dimensional domain � is shown in Fig. 1.
Before describing the equations that govern each of the domains in our structure, we first wish to clarify

the notation that will be used throughout this manuscript.

Remark 1 (Notation) We use the following for a generic field, F. For a scalar, we use ordinary lowercase
letters, e.g. f , for a vector we use boldface, e.g. f , and then, F is used for second-rank tensor. We use F for
third-rank tensors, and finally, F is used for fourth-rank tensors. We define the operations that will take place
between each of these quantities such as the double contraction of a fourth-rank tensor with a second-rank
tensor in components in Appendix. A. There are some exceptions to this notation in the final macroscale model
in order to keep the style consistent with classical notation used for the Biot’s modulus and the Biot’s tensor of
coefficients as well as porosity. In these cases, the Biot’s modulus is M̂ , the Biot’s tensor is α̂ and the porosity
is φ as used in [21,41].

The balance equations in the solid domains �α and �p, by neglecting volume forces and inertia, then read
∀ α = 1, ..., N

∇ · Tα = 0 in �α, (2)

and

∇ · Tp = 0 in �p. (3)

The symbols Tα and Tp that appear in relationships (2–3) denote the solid Cauchy stress tensors corre-
sponding to each subphase �α and the one corresponding to the matrix �p, respectively. We then assume
that both the matrix and each subphase are general linear elastic solids, and since we admit the presence of
pre-stresses, we express Tα and Tp as

Tα = C
α∇uα + σ 0α, (4a)
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Fig. 1 A 2D sketch showing the three-dimensional domain � and two different levels of magnification. In the most magnified
(the microscale), the fluid phase is represented in blue, the porous matrix in pink and the subphases in orange. The inclusions
and/or fibres can potentially be in contact with both the matrix and the fluid flowing in the pores, or alternatively, they can be
fully embedded in the matrix. Note that the different sizes given to the dots representing the fluid and the inclusions/fibres do not
mean that these phases intersect with each other. Rather, it simply means that the subphases and fluid channels have a variety of
geometries and elastic properties

Tp = C
p∇up + σ 0p, (4b)

where uα and up are the elastic displacement in each subphase and the matrix, respectively, and σ 0α and σ 0p

are pre-stresses in both the subphase and the matrix. The first term in each of (4a) and (4b) is the constitutive
expression of the Cauchy stresses.

The fourth-rank tensors Cα and Cp are the elasticity tensors in each subphase and the matrix, respectively,
with corresponding components Cα

i jkl and Cp
i jkl , for i, j, k, l = 1, 2, 3. We note that each C

α and C
p are

equipped with right minor and major symmetries, namely

Cα
i jkl = Cα

i jlk; Cp
i jkl = Cp

i jlk, (5a)

Cα
i jkl = Cα

kli j ; Cp
i jkl = Cp

kli j , (5b)

and therefore, also left minor symmetries follow by combining (5a–5b). In particular, by applying right minor
symmetries we can equivalently rewrite equations (4a–4b) as

Tα =C
αξ(uα) + σ 0α, (6a)

Tp =C
pξ(up) + σ 0p, (6b)

where

ξ(•) = ∇(•) + (∇(•))T

2
(7)

is the symmetric part of the gradient operator.
The balance equation in the fluid compartment reads

∇ · Tf = 0 in �f , (8)

where Tf is the fluid stress tensor. We assume that the fluid compartment is an incompressible Newtonian fluid,
so that the constitutive equation for Tf is given by

Tf = −pI + 2μξ(v) in �f , (9)

where v denotes fluid velocity, p the pressure andμ the viscosity, togetherwith the incompressibility constraint

∇ · v = 0 in �f . (10)

Substituting relationship (9) in (8) and using the divergence-free condition (10) yields the Stokes’ problem

μ∇2v = ∇ p in �f . (11)
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In order to close the fluid-structure interaction problem in the whole domain �, we also require interface
conditions between the fluid and the solid phases. We first define the interface between the fluid phase and the
α inclusion/fibre as

�α = ∂�α ∩ ∂�f (12)

and the one between the matrix and the fluid phase as

�p = ∂�p ∩ ∂�f . (13)

We then impose continuity of velocities and stresses across each �α and �p, namely

u̇α = v on �α, (14a)

Tfnα = Tαnα on �α, (14b)

u̇p = v on �p, (14c)

Tfnp = Tpnp on �p, (14d)

∀ α = 1...N , where u̇α and u̇p are the solid velocities in each subphase�α and the matrix�p, respectively. The
unit outward (i.e. pointing into the fluid domain �f ) vectors normal to the interfaces �α and �p are denoted
by nα and np, respectively.

Finally,we require continuity of stresses anddisplacements across the interface between each solid subphase
and the matrix. We define this boundary as �αp = ∂�α ∩ ∂�p, so that

Tαnαp = Tpnαp on �αp. (15a)

uα = up on �αp, (15b)

∀ α = 1, ..., N , where nαp is the unit vector normal to the interface �αp pointing into the inclusion �α .
In the next section, we perform a multiscale analysis. This involves (i) non-dimensionalising the par-

tial differential equations (PDEs) (2), (3), (8) and (10) as well as interface conditions (14a)–(15b) that we
have described in this section, (ii) introducing two well-separated length scales, (iii) applying the asymptotic
homogenisation technique to the resulting non-dimensional systems of PDEs and (iv) deriving the effective
governing equations for the material as a whole.

3 Multiscale analysis

We now perform a multiscale analysis of the fluid–structure interaction problem introduced in the previous
section, which is summarised below

∇ · Tα = 0 in �α, (16a)

∇ · Tp = 0 in �p, (16b)

∇ · Tf = 0 in �f , (16c)

∇ · v = 0 in �f , (16d)

u̇α = v on �α, (16e)

u̇p = v on �p, (16f)

Tfnα = Tαnα on �α, (16g)

Tfnp = Tpnp on �p, (16h)

Tαnαp = Tpnαp on �αp, (16i)

uα = up on �αp, (16j)

where, by means of the stress relationships (6a), (6b) and (9), together with the incompressibility constraint
(16d), the balance equations (16a), (16b) and (16c) can also be rewritten as

∇ · (Cαξ(uα)) + ∇ · σ 0α = 0 in �α (17a)

∇ · (Cpξ(up)) + ∇ · σ 0p = 0 in �p (17b)

μ∇2v = ∇ p in �f , (17c)

∀ α = 1, ..., N . The problem (16a–16j) is then to be closed by prescribing suitable external boundary conditions
on ∂�.
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3.1 Non-dimensional form of the equations

Our system is multiscale in nature. In particular, we denote the average size of the whole domain � by L
(the macroscale), while d refers to the porescale (the microscale), which here is assumed to be comparable
with the distance between adjacent subphases interacting with the matrix and the fluid domain. In order to
emphasise the difference between such scales, it is helpful to perform a non-dimensional analysis of the system
of PDEs (16a–16j). We carry out the non-dimensional analysis by assuming that the system is characterised
by a reference pressure gradient C and that the characteristic (reference) fluid velocity is given by the typical
parabolic profile proportional to that of a Newtonian fluid slowly flowing in a cylinder of radius d .

Therefore, in our case we have

x = Lx∗, C
α = CLCα∗, C

p = CLCp∗,

uα = Lu∗
α, up = Lu∗

p , v = Cd2

μ
v∗, p = CLp∗.

(18)

We then exploit (18) and observe that

∇ = 1

L
∇∗ (19)

to obtain the non-dimensional form of the system of PDEs (16a–16j), namely

∇ · Tα = 0 in �α (20a)

∇ · Tp = 0 in �p (20b)

∇ · Tf = 0 in �f (20c)

∇ · v = 0 in �f (20d)

u̇α = v on �α (20e)

u̇p = v on �p (20f)

Tfnα = Tαnα on �α (20g)

Tfnp = Tpnp on �p (20h)

Tαnαp = Tpnαp on �αp (20i)

uα = up on �αp (20j)

∀ α = 1, ..., N , where we have dropped the ∗ for the sake of simplicity of notation. The non-dimensionalised
counterparts of the stress tensors (6a), (6b) and (9) are given by

Tf = −pI + ε2(∇v + (∇v)T) (21a)

Tα = C
αξ(uα) + σ 0α (21b)

Tp = C
pξ(up) + σ 0p, (21c)

so that the balance equations (20a–20c) rewrite

ε2∇2v = ∇ p in �f (22a)

∇ · (Cαξ(uα)) + ∇ · σ 0α = 0 in �α (22b)

∇ · (Cpξ(up)) + ∇ · σ 0p = 0 in �p, (22c)

where

ε = d

L
. (23)

In the next section, we introduce the asymptotic homogenisation technique which is used to upscale the non-
dimensional system of PDEs (20a–20j) by formally assuming that the microscale and the macroscale are well
separated.



Homogenised governing equations 2281

3.2 The asymptotic homogenisation technique

In this section, we introduce the two-scale asymptotic homogenisation technique which is used to derive a
macroscale model for the equations (20a−20j). We first assume that the characteristic length of the microscale,
denoted by d , and representing the length scale atwhich the pores and the individual inclusions/fibres are clearly
resolved, is small compared to average size of the domain L , i.e.

ε � 1. (24)

We then introduce a local spatial variable to capture microscale variations of the field via setting

y = x
ε
. (25)

The spatial variables x and y are to be considered formally independent and represent the macroscale and the
microscale, respectively. The gradient operator then transforms as

∇ 	→ ∇x + 1

ε
∇y, (26)

with the symmetric part of the gradient operator transforming as

ξ 	→ ξx + 1

ε
ξy. (27)

We further assume that all the fields up,uα, v, p,Tf ,Tα,Tp, σ 0α and σ 0p as well as the elasticity tensorsCp

and C
α , ∀ α = 1, ..., N , are functions of both x and y. We also assume that the fields up,uα, v, p,Tf ,Tα,Tp,

σ 0α and σ 0p can be represented in terms of a series expansion in powers of ε, i.e.

ϕε(x, y, t) =
∞∑

l=0

ϕ(l)(x, y, t)εl , (28)

where ϕ collectively denotes each field involved in the present analysis.

Remark 2 (Porescale Periodicity) In order to carry out the analysis of the microstructure, we wish to focus
on a single periodic cell. To do this, we make the assumption that every field ϕ(l) in our present analysis is
y-periodic. This assumption allows for the microscale differential problems that arise from the asymptotic
homogenisation technique to be solved on a finite subset (periodic cell) of the domain.

However, the assumption that all fields are y-periodic is not necessary to continue with the analysis.
We instead could proceed by assuming local boundedness of fields only. This approach means we are only
able to determine the functional form of the macroscale model. The coefficients obtained by assuming local
boundedness are related to microscale problems which are to be solved on the whole microstructure of the
material. This is virtually impossible if not prohibitive computationally. Some examples where the assumption
of local boundedness is made are found in [21,42].

Remark 3 (Macroscopic Uniformity) The microscale geometry of a given material can vary with respect to
individual points on the macroscale. Such variation of the microstructure has been considered in the follow-
ing [21,24,43–45] and results in the presence of additional terms in the final macroscale model by proper
application of the Reynolds transport theorem. To simplify the derivation of the model, this dependence of the
microstructure on the macroscale point is generally neglected. That is, we assume that at every macroscale
point the microscale will be the same. This is equivalent to say that the microscale geometry does not depend
on x. We call this property macroscopic uniformity. We make this assumption here. We therefore have the
following result for differentiation under the integral sign

∫

�

∇x · (•)dy = ∇x ·
∫

�

(•)dy, (29)

where (•) is a tensor or a vector quantity.
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Fig. 2 A sketch of a 2D cross section of the periodic cell which we focus on. We have one subphase/fibre shown in orange that is
in contact with the matrix shown in pink and the fluid shown in blue. We also highlight the interfaces �c, �p and �cp among the
phases

Remark 4 (Porescale geometry) For clarity of presentation and without loss of generality with respect to the
properties of the model, we can restrict our analysis by assuming that only one subphase is contained in each
periodic cell, as shown in Fig. 2. The model can be easily extended to a number of subphases within the
periodic cell if necessary for a particular application. Therefore, the index α is no longer needed and we adjust
the notation accordingly. We identify the domain � with its corresponding periodic cell, with fibre/inclusion,
matrix and fluid cell portions denoted by �c, �p and �f , respectively. The interfaces between the different
phases are then denoted by �c = ∂�c ∩ ∂�f , �p = ∂�p ∩ ∂�f and �cp = ∂�c ∩ ∂�p, with corresponding unit
normal vectors nc, np and ncp.

3.3 Derivation of the macroscale model

We apply the asymptotic homogenisation assumptions (26) and (28) to equations (20a–22c) to obtain, account-
ing for periodicity, the following multiscale system of PDEs

∇y · Tε
c + ε∇x · Tε

c = 0 in �c (30a)

∇y · Tε
p + ε∇x · Tε

p = 0 in �p (30b)

∇y · Tε
f + ε∇x · Tε

f = 0 in �f (30c)

∇y · vε + ε∇x · vε = 0 in �f (30d)

u̇ε
c = vε on �c (30e)

u̇ε
p = vε on �p (30f)

Tε
f nc = Tε

c nc on �c (30g)

Tε
f np = Tε

pnp on �p (30h)

Tε
c ncp = Tε

pncp on �cp (30i)

uε
c = uε

p on �cp, (30j)

equipped with multiscale expressions for Tε
f , T

ε
c , T

ε
p , given by

Tε
f = −pε I + ε(∇yvε + (∇yvε)T) + ε2(∇xvε + (∇xvε)T) (31a)

εTε
c = C

cξy(uε
c ) + εCcξx (uε

c ) + εσ ε
0c (31b)

εTε
p = C

pξy(uε
p ) + εCpξx (uε

p ) + εσ ε
0p, (31c)

while the balance equations in terms of uε
p , u

ε
c , v

ε , pε read

∇y · (Ccξy(uε
c )) + ε∇y · (Ccξx (uε

c )) + ε∇y · σ ε
0c + ε∇x · (Ccξy(uε

c ))

+ ε2∇x · (Ccξx (uε
c )) + ε2∇x · σ ε

0c = 0 in �c, (32a)

∇y · (Cpξy(uε
p )) + ε∇y · (Cpξx (uε

p )) + ε∇y · σ ε
0p + ε∇x · (Cpξy(uε

p ))

+ ε2∇x · (Cpξx (uε
p )) + ε2∇x · σ ε

0p = 0 in �p (32b)

ε3∇2
xv

ε + ε2∇x · (∇yvε) + ε2∇y · (∇xvε) + ε∇2
yv

ε

= ∇y p
ε + ε∇x p

ε in �f . (32c)
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We can now substitute power series of the type (28) into the relevant fields in (30a−32c). Then by equating
the coefficients of εl for l = 0, 1, ... we derive the macroscale model for the material in terms of the relevant
leading (zeroth)-order fields. Whenever a component in the asymptotic expansion retains a dependence on the
microscale, we can take the integral average, which we define as

〈ϕ〉i := 1

|�|
∫

�i

ϕ(x, y, t)dy i = f, c, p (33)

where the integral average can be performed over one representative cell due to y-periodicity and |�| is the
volume of the domain and the integration is performed over the microscale. We note that |�| := |�f |+ |�c|+
|�p|. Due to the assumption of y-periodicity, the integral average can be performed over one representative
cell. Therefore, (33) represents a cell average. For the sake of brevity, we also introduce the notation

〈ϕc + ϕp〉s := 1

|�|

(∫

�c

ϕc(x, y, t)dy +
∫

�p

ϕp(x, y, t)dy

)
, (34)

for fields ϕ with restrictions ϕc and ϕp defined in the solid cell portions �c or �p, respectively.
Equating coefficients of ε0 in (30a−30j), we obtain

∇y · T(0)
c = 0 in �c (35a)

∇y · T(0)
p = 0 in �p (35b)

∇y · T(0)
f = 0 in �f (35c)

∇y · v(0) = 0 in �f (35d)

u̇(0)
c = v(0) on �c (35e)

u̇(0)
p = v(0) on �p (35f)

T(0)
f nc = T(0)

c nc on �c (35g)

T(0)
f np = T(0)

p np on �p (35h)

T(0)
c ncp = T(0)

p ncp on �cp (35i)

u(0)
c = u(0)

p on �cp (35j)

and the stress equations (31a−31c) for Tε
f , T

ε
c , T

ε
p have coefficients of ε0

T(0)
f = −p(0)I in �f (36a)

C
cξy(u(0)

c ) = 0 in �c (36b)

C
pξy(u(0)

p ) = 0 in �p (36c)

while the balance equations (32a−32c) have coefficients of ε0

∇y · (Ccξy(u(0)
c )) = 0 in �c (37a)

∇y · (Cpξy(u(0)
p )) = 0 in �p (37b)

∇y p
(0) = 0 in �f . (37c)

Similarly we now wish to equate the coefficients of ε1 in equations (30a–30j), which gives

∇y · T(1)
c + ∇x · T(0)

c = 0 in �c (38a)

∇y · T(1)
p + ∇x · T(0)

p = 0 in �p (38b)

∇y · T(1)
f + ∇x · T(0)

f = 0 in �f (38c)

∇y · v(1) + ∇x · v(0) = 0 in �f (38d)
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u̇(1)
c = v(1) on �c (38e)

u̇(1)
p = v(1) on �p (38f)

T(1)
f nc = T(1)

c nc on �c (38g)

T(1)
f np = T(1)

p np on �p (38h)

T(1)
c ncp = T(1)

p ncp on �cp (38i)

u(1)
c = u(1)

p on �cp (38j)

and the stress equations (31a−31c) for Tε
f , T

ε
c , T

ε
p have coefficients of ε1

T(1)
f = −p(1)I + (∇yv(0) + (∇yv(0))T) in �f (39a)

T(0)
c = C

cξy(u(1)
c ) + C

cξx (u(0)
c ) + σ

(0)
0c in �c (39b)

T(0)
p = C

pξy(u(1)
p ) + C

pξx (u(0)
p ) + σ

(0)
0p in �p (39c)

while the balance equations (32a−32c) have coefficients of ε1

∇y · (Ccξy(u(1)
c )) + ∇y · (Ccξx (u(0)

c )) + ∇x · (Ccξy(u(0)
c ))

+ ∇y · σ
(0)
0c = 0 in �c (40a)

∇y · (Cpξy(u(1)
p )) + ∇y · (Cpξx (u(0)

p )) + ∇x · (Cpξy(u(0)
p ))

+ ∇y · σ
(0)
0p = 0 in �p (40b)

∇2
yv

(0) = ∇y p
(1) + ∇x p

(0) in �f . (40c)

We can now see from (35c) and (36a) that p(0) does not depend on the microscale variable y. That is,

p(0) = p(0)(x, t). (41)

From (36b) and (36c) and the periodicity conditions, we also have that u(0)
c and u(0)

p are independent of the
microscale variable y, although they do still depend, in general, on the macroscale variable x and time t , see
[21,23]. That is,

u(0)
c = u(0)

c (x, t) (42a)

u(0)
p = u(0)

p (x, t). (42b)

Since we have the boundary condition u(0)
c = u(0)

p on �cp, we can define

u(0) = u(0)
c = u(0)

p , (43)

which we will use throughout the following sections.

3.4 Fluid flow on the macroscale

We now wish to investigate the leading order of the velocity which we denoted v(0). We can define the relative
fluid–solid displacement, w, by

w(x, y, t) = v(0)(x, y, t) − u̇(0)(x, t). (44)

Using equations (36a), (35e), (35f), (38c) and (39a), exploiting notation (43), we have a boundary value
problem of Stokes’ type, which is given by
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∇2
yw − ∇y p

(1) − ∇x p
(0) = 0, in �f , (45a)

∇y · w = 0, in �f , (45b)

w = 0, on �c ∪ �p. (45c)

Now exploiting linearity and using (41), we can propose the following ansatz for the Stokes-type boundary
value problem (45a–45c),

w = −W∇x p
(0), (46)

p(1) = −P∇x p
(0) + c(x), (47)

where p(1) is defined up to an arbitrary y-constant function. Equation (47) is the solution to the problem
(45a−45c) provided that second-rank tensorW and vector P satisfy the following cell problem

⎧
⎪⎨

⎪⎩

∇2
yW

T − ∇yP + I = 0 in �f

∇y · WT = 0 in �f

WT = 0 on �c ∪ �p,

(48)

where periodic conditions apply on the boundary ∂�f\�c ∪ �p and a further condition is to be placed on P for
the solution to be unique (for example zero average on the fluid cell portion). Taking the integral average of
(46) over the fluid domain leads to

〈w〉f = −〈W〉f∇x p
(0), (49)

meaning that the fluid flow is described by Darcy’s law in the macroscale.

3.5 Poroelasticity on the macroscale

We now require the macroscale equations for the elastic displacement u(0) and p(0). Summing up the integral
averages of Eqs. (38a), (38b) and (38c), we have

∫

�c

∇y · T(1)
c dy +

∫

�p

∇y · T(1)
p dy +

∫

�f

∇y · T(1)
f dy

+
∫

�c

∇x · T(0)
c dy +

∫

�p

∇x · T(0)
p dy +

∫

�f

∇x · T(0)
f dy = 0. (50)

Applying the divergence theorem to the first three integrals and rearranging the last three integrals using
macroscopic uniformity, we obtain

∫

∂�c\�c∪�cp

T(1)
c n�c\�c∪�cpdS +

∫

�c

T(1)
c ncdS −

∫

�cp

T(1)
c ncpdS

+
∫

∂�p\�p∪�cp

T(1)
p n�p\�p∪�cpdS +

∫

�p

T(1)
p npdS +

∫

�cp

T(1)
p ncpdS

+
∫

∂�f\�c∪�p

T(1)
f n�f\�c∪�pdS −

∫

�p

T(1)
f npdS −

∫

�c

T(1)
f ncdS

+ ∇x ·
∫

�c

T(0)
c dy + ∇x ·

∫

�p

T(0)
p dy + ∇x ·

∫

�f

T(0)
f dy = 0, (51)

where nc, np, ncp, n�c\�c∪�cp , n�p\�p∪�cp and n�f\�c∪�p are the unit normals corresponding to �c, �p, �cp,
∂�c\�c ∪ �cp, ∂�p\�p ∪ �cp and ∂�f\�c ∪ �p. Since the contributions over the external boundaries of �c, �p

and �f cancel out due to y-periodicity, Equation (51) becomes
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∫

�c

T(1)
c ncdS +

∫

�p

T(1)
p npdS −

∫

�c

T(1)
f ncdS

−
∫

�p

T(1)
f npdS −

∫

�cp

T(1)
c ncpdS +

∫

�cp

T(1)
p ncpdS

+ ∇x ·
∫

�I

T(0)
c dy + ∇x ·

∫

�p

T(0)
p dy + ∇x ·

∫

�f

T(0)
f dy = 0. (52)

The first six integrals in (52) cancel out due to (38g), (38h) and (38i), and the final three terms can be written
as

∇x · 〈T(0)
c + T(0)

p 〉s − φ∇x p
(0) = 0, (53)

where φ = |�f |/|�| is the porosity of the material.
By exploiting (41) and (43), and using (35a), (35b), (35g), (35h), (35i), (36a), (38j), (39b) and (39c), we

can write the following problem for u(0)
c and u(0)

p

∇y · (Ccξy(u(1)
c )) + ∇y · (Ccξx (u(0))) + ∇y · σ

(0)
0c = 0 in �c (54a)

∇y · (Cpξy(u(1)
p )) + ∇y · (Cpξx (u(0))) + ∇y · σ

(0)
0p = 0 in �p (54b)

C
cξy(u(1)

c )ncp − C
pξy(u(1)

p )ncp = (Cp − C
c)ξx (u(0))ncp

+ (σ
(0)
0p − σ

(0)
0c )ncp on �cp (54c)

u(1)
c = u(1)

p on �cp (54d)

(Ccξy(u(1)
c ) + C

cξx (u(0)) + σ
(0)
0c )nc = −p(0)nc on �c (54e)

(Cpξy(u(1)
p ) + C

pξx (u(0)) + σ
(0)
0p )np = −p(0)np on �p. (54f)

The solution to the problem given by (54a−54f), exploiting linearity is given as

u(1)
c = Acξx (u(0)) + ac p(0) + bc (55)

u(1)
p = Apξx (u(0)) + ap p(0) + bp, (56)

whereAc andAp are third-rank tensors and ac, ap, bc and bp are vectors. The auxiliary fieldsAc,Ap, ac, ap, bc

and bp solve the following cell problems

∇y · (Ccξy(Ac)) + ∇y · Cc = 0 in �c (57a)

∇y · (Cpξy(Ap)) + ∇y · Cp = 0 in �p (57b)

C
cξy(Ac)ncp − C

pξy(Ap)ncp = (Cp − C
c)ncp on �cp (57c)

Ac = Ap on �cp (57d)

(Ccξy(Ac))nc + C
cnc = 0 on �c (57e)

(Cpξy(Ap))np + C
pnp = 0 on �p (57f)

and

∇y · (Ccξy(ac)) = 0 in �c (58a)

∇y · (Cpξy(ap)) = 0 in �p (58b)

(Ccξy(ac))ncp = (Cpξy(ap))ncp on �cp (58c)

ac = ap on �cp (58d)

(Ccξy(ac))nc + nc = 0 on �c (58e)

(Cpξy(ap))np + np = 0 on �p (58f)

and

∇y · (Ccξy(bc)) + ∇y · σ
(0)
0c = 0 in �c (59a)
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∇y · (Cpξy(bp)) + ∇y · σ
(0)
0p = 0 in �p (59b)

C
cξy(bc)ncp − C

pξy(bp)ncp = (σ
(0)
0p − σ

(0)
0c )ncp on �cp (59c)

bc = bp on �cp (59d)

(Ccξy(bc))nc + σ
(0)
0c nc = 0 on �c (59e)

(Cpξy(bp))np + σ
(0)
0p np = 0 on �p. (59f)

We now consider the leading-order solid stress tensors. Since from (39b) and (39c) we have that u(1)
c and u(1)

p

are related to T(0)
c and T(0)

p , respectively, we can write

T(0)
c = C

c
M

cξx (u(0)) + C
cQc p(0) + C

cξx (u(0)) + C
cRc + σ

(0)
0c (60)

and

T(0)
p = C

p
M

pξx (u(0)) + C
pQp p(0) + C

pξx (u(0)) + C
pRp + σ

(0)
0p , (61)

where we define

M
c = ξy(Ac), M

p = ξy(Ap),

Qc = ξy(ac), Qp = ξy(ap)

Rc = ξy(bc), Rp = ξy(bp). (62)

Adding (60) and (61) and taking the integral average over the solid domain gives

〈T(0)
c + T(0)

p 〉s = 〈Cc
M

c + C
c + C

p
M

p + C
p〉sξx (u(0)) + 〈CcQc + C

pQp〉s p(0)

+ 〈CcRc + C
pRp + σ

(0)
0c + σ

(0)
0p 〉s . (63)

From (53), we have that

∇x · TEff = 0 (64)

where

TEff = 〈T(0)
c + T(0)

p 〉s − φp(0)I

= 〈Cc
M

c + C
c + C

p
M

p + C
p〉sξx (u(0))

+ (〈CcQc + C
pQp〉s − φI)p(0) + 〈CcRc + C

pRp + σ
(0)
0c + σ

(0)
0p 〉s . (65)

We are able to describe (64) and (65) as the average force balance equations for our poroelastic composite
material.

We now return to (38d), the incompressibility condition and integrate to obtain

0 =
∫

�f

∇y · v(1)dy +
∫

�f

∇x · v(0)dy (66)

Applying the divergence theorem twice to the first integral and using (38e) and (38f) and also rearranging the
second integral, we obtain

0 = −
∫

�c

∇y · u̇(1)
c dy −

∫

�p

∇y · u̇(1)
p dy + ∇x · 〈v(0)〉f (67)

= −
∫

�c

Tr(ξy(u̇(1)
c ))dy −

∫

�p

Tr(ξy(u̇(1)
p ))dy + ∇x · 〈v(0)〉f . (68)

Therefore, we have

〈Tr(ξy(u̇(1)
c ) + ξy(u̇(1)

p ))〉s = ∇x · 〈v(0)〉f . (69)
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Using (55) and (56) with (62), we have that

ξy(u̇(1)
c ) + ξy(u̇(1)

p ) = (Mc + M
p)ξx (u̇(0)) + (Qc + Qp) ṗ(0) + Rc + Rp. (70)

So using (70), then equation (69) becomes

∇x · 〈v(0)〉f = 〈Tr(Mc + M
p)〉sξx (u̇(0)) + 〈Tr(Qc + Qp)〉s ṗ(0) + 〈Tr(Rc + Rp)〉s . (71)

Now returning to (44), the expression for relative fluid–solid displacement and taking the integral average over
the fluid domain, we obtain

〈w〉f = 〈v(0)〉f − φu̇(0), (72)

where φ is the porosity of the material. Then rearranging in terms of the average of v(0), we obtain

〈v(0)〉f = 〈w〉f + φu̇(0). (73)

We will then use this relation to rewrite (71) as

∇x · (〈w〉f + φu̇(0)) = 〈Tr(Mc + M
p)〉sξx (u̇(0)) + 〈Tr(Qc + Qp)〉s ṗ(0) + 〈Tr(Rc + Rp)〉s . (74)

We can expand the left hand side of (74) and then rearrange to obtain the following expression for ṗ(0). We
note that we are able to express φ∇x · u̇(0) as φIξx (u̇(0)). Then

ṗ(0) = 1

〈Tr(Qc + Qp)〉s
(

∇x · 〈w〉f + (φI − 〈Tr(Mc + M
p)〉s)ξx (u̇(0)) − 〈Tr(Rc + Rp)〉s

)
. (75)

We can then define

M̂ = −1

〈Tr(Qc + Qp)〉s and α̂ = φI − 〈Tr(Mc + M
p)〉s, (76)

and then, we can use (76) to write (75) as

ṗ(0) = −M̂(∇x · 〈w〉f + α̂ξx (u̇(0)) − 〈Tr(Rc + Rp)〉s). (77)

Finally dividing through by M̂ , we obtain

ṗ(0)

M̂
= −∇x · 〈w〉f − α̂ξx (u̇(0)) + 〈Tr(Rc + Rp)〉s . (78)

We have now derived all the equations required to be able to state our macroscale model for a poroelastic
composite.

4 The macroscale model

The equations in the macroscale model describe the effective poroelastic behaviour of the material in terms
of the pore pressure, the average fluid velocity and the elastic displacement in a quasi-static regime. The
macroscale model is then given by

〈w〉f = −〈W〉f∇x p
(0), (79a)

∇x · TEff = 0, (79b)

TEff = 〈Cc
M

c + C
c + C

p
M

p + C
p〉sξx (u(0)) + (〈CcQc + C

pQp〉s − φI)p(0)

+ 〈CcRc + C
pRp + σ

(0)
0c + σ

(0)
0p 〉s, (79c)

ṗ(0)

M̂
= −∇x · 〈w〉f − α̂ξx (u̇(0)) + 〈Tr(Rc + Rp)〉s, (79d)
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where we have that p(0) is the macroscale pressure, u(0) is the leading-order solid displacement and u̇(0) is
the leading-order solid velocity. The novel model comprises the equation governing the fluid flow (79a). This
equation is Darcy’s Law and is not impacted by the pre-stressed elastic phases. We have that (79b) is the
balance equation for our material with the constitutive law given by (79c). The constitutive law incorporates
the influence of the pre-stresses by including the leading-order pre-stresses, σ (0)

0c and σ
(0)
0p , in each phase and

the additional terms, CcRc and C
pRp that arise from solving the cell problem (59a)–(59f) that account for the

difference in pre-stress at different points in the microstructure. The final equation (79d) is the conservation
of mass equation which is that of poroelastic composites but with the additional term, 〈Tr(Rc + Rp)〉s that
accounts for the difference in pre-stress at different points in the microstructure.

4.1 Choices of the pre-stress

The macroscale model has been derived without specifying any details about the pre-stress in each elastic
phase. We will now consider the following cases and discuss in detail the effect that each of these cases has
on the macroscale model and the cell problems used to compute the model coefficients.

• Dependence on both scales
In the case that the pre-stresses σ 0c(x, y) and σ 0p(x, y) depend on both the microscale and the macroscale,
we derive exactly the macroscale model (79a)–(79d). The cell problems for the fluid do not involve the
pre-stresses so remain as (48). In the case of the solid portion of the cell, then we have that problems
(57a)–(57f) and (58a)–(58f) are unaffected by the pre-stresses; however, (59a)–(59f) is affected. We can
see that in (59a)–(59f) we have the pre-stresses σ

(0)
0c (x, y) and σ

(0)
0p (x, y). If we are assuming that these

tensors depend on both the microscale and macroscale, then the porescale periodic cell problems have
a dependence on the macroscale and therefore cannot be easily solved. These pre-stresses depending on
both scales means that the two scales are not fully decoupled, and therefore, this dramatically increases
the computational complexity. There are, of course, emerging techniques that can be used to try to address
solving coupled problems numerically [46]. The technique involves using artificial neural networks (ANNs)
for quick, accurate upscaling and localisation of problems. This is carried out via an incremental numerical
approach where there is a rearrangement of the cell properties relating to the current deformation or stress,
and this means that there is a remodelling of the macroscopic model after each incremental time step. This
method is applicable to finite strain and large deformation problems, whilst there will only be infinitesimal
deformation or change in stress within each incremental time step. In the case that the material is an elastic
composite comprising pre-stresses (no pores), then an approach similar to the one outlined in [47] for
stratified layered elastic materials, whose material properties only change along one direction, can be used.
This approach can, however, not be used in this model due to the pores. The case that the pre-stress depends
on both scales is the most likely case found in biological tissues such as in the case of artery walls or the
myocardium [36–38] where there are pre-stressed microscale collagen and elastic fibres contributing to
the macroscale residual stress of the material.

• Decompositions of pre-stress into two components with variation on one scale
Anotherway inwhichwe can potentially tackle the coupling of the two scales, is to propose a decomposition
of the pre-stress into two parts, one depending on the macroscale and the other depending on only the
microscale.Wemake the following assumptions: firstly, the elasticity tensor depends only on themicroscale

C
c = C

c(y) and C
p = C

p(y), (80)

and secondly, the leading-order pre-stresses have the following decomposition

(σ
(0)
0c )i j = (σ

L(0)
0c (y))i jkl(σ

G(0)
0c (x))kl (81a)

(σ
(0)
0p )i j = (σ

L(0)
0p (y))i jkl(σ

G(0)
0p (x))kl , (81b)

where the new superscripts L and G represent Local (microscale) and Global (macroscale), respectively.
Here we have decomposed in such a way that the second-rank pre-stress arises from the double contrac-
tion of a fourth-rankmicroscale componentwith a second-rankmacroscale component.We need to take this
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decomposition into account in the ansatz that we propose for elastic problem (54a)–(54f). The new solution
that we propose is given as

u(1)
c (x, y) = Ac(y)ξx (u(0)(x)) + ac(y)p(0)(x) + Bc(y)σG(0)

0c (x) + Dc(y)σG(0)
0p (x) (82a)

u(1)
p (x, y) = Ap(y)ξx (u(0)(x)) + ap(y)p(0)(x) + Bp(y)σG(0)

0p (x) + Dp(y)σG(0)
0c (x), (82b)

where Ac(y), Ap(y), Bc(y), Bp(y), Dc(y) and Dp(y) are third-rank tensors with a dependence on only
the microscale variable y and ac(y) and ap(y) are vectors depending on the microscale variable y. There
are now two choices that can be made that will result in different cell problems. If we assume that the
second-rank tensors σ

G(0)
0c (x) �= σ

G(0)
0p (x), then we obtain the following cell problems that do not retain

any macroscale dependency

∇y · (Ccξy(Ac(y))) + ∇y · Cc = 0 in �c (83a)

∇y · (Cpξy(Ap(y))) + ∇y · Cp = 0 in �p (83b)

C
cξy(Ac(y))ncp − C

pξy(Ap(y))ncp = (Cp − C
c)ncp on �cp (83c)

Ac(y) = Ap(y) on �cp (83d)

(Ccξy(Ac(y)))nc + C
cnc = 0 on �c (83e)

(Cpξy(Ap(y)))np + C
pnp = 0 on �p (83f)

and

∇y · (Ccξy(ac(y))) = 0 in �c (84a)

∇y · (Cpξy(ap(y))) = 0 in �p (84b)

(Ccξy(ac(y)))ncp = (Cpξy(ap(y)))ncp on �cp (84c)

ac(y) = ap(y) on �cp (84d)

(Ccξy(ac(y)))nc + nc = 0 on �c (84e)

(Cpξy(ap(y)))np + np = 0 on �p (84f)

which are the cell problems (57a)–(57f) and (58a)–(58f) which are now y-dependent only since we make
assumption (80). We have the change in the cell problems which include the pre-stresses which we have
decomposed and these are

∇y · (Ccξy(Bc(y))) + ∇y · σ
L(0)
0c (y) = 0 in �c (85a)

∇y · (Cpξy(Dp(y))) = 0 in �p (85b)

(Ccξy(Bc(y)) − C
pξy(Dp(y)))ncp = −σ

L(0)
0c (y)ncp on �cp (85c)

Bc(y) = Dp(y) on �cp (85d)

(Ccξy(Bc(y)))nc + σ
L(0)
0c (y)nc = 0 on �c (85e)

(Cpξy(Dp(y)))np = 0 on �p (85f)

and

∇y · (Ccξy(Dc(y))) = 0 in �c (86a)

∇y · (Cpξy(Bp(y))) + ∇y · σ
L(0)
0p (y) = 0 in �p (86b)

C
cξy(Dc(y))ncp − C

pξy(Bp(y))ncp = σ
L(0)
0p (y)ncp on �cp (86c)

Dc(y) = Bp(y) on �cp (86d)

(Ccξy(Dc(y)))nc = 0 on �c (86e)

(Cpξy(Bp(y)))np + σ
L(0)
0p (y)np = 0 on �p. (86f)

These cell problems can be solved completely on the microscale.
If we instead make the assumption that the second-rank tensors

σ
G(0)
0c (x) = σ

G(0)
0p (x) = σ

G(0)
0 (x), (87)
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then we can rewrite the ansatz (82a)–(82b) as

u(1)
c (x, y) = Ac(y)ξx (u(0)(x)) + ac(y)p(0)(x) + Bc(y)σG(0)

0 (x) (88a)

u(1)
p (x, y) = Ap(y)ξx (u(0)(x)) + ap(y)p(0)(x) + Bp(y)σG(0)

0 (x), (88b)

where againAc(y),Ap(y),Bc(y) andBp(y) are third-rank tensors with a dependence on only themicroscale
variable y and ac(y) and ap(y) are vectors that depend only on the microscale. This allows us to obtain the
following cell problems that do not retain any macroscale dependency. We have exactly (83a)–(83f) and
(84a)–(84f) and the following different microscale cell problem

∇y · (Ccξy(Bc(y))) + ∇y · σ
L(0)
0c (y) = 0 in �c (89)

∇y · (Cpξy(Bp(y))) + ∇y · σ
L(0)
0p (y) = 0 in �p (90)

C
cξy(Bc(y))ncp − C

pξy(Bp(y))ncp = (σ
L(0)
0p (y)

− σ
L(0)
0c (y))ncp on �cp (91)

Bc(y) = Bp(y) on �cp (92)

(Ccξy(Bc(y)))nc + σ
L(0)
0c (y)nc = 0 on �c (93)

(Cpξy(Bp(y)))np + σ
L(0)
0p (y)np = 0 on �p. (94)

These different decompositions and assumptions lead to us having well-posed cell problems that when
supplemented with the periodic conditions on the cell boundary, an additional condition for uniqueness
can be easily solved to determine the coefficients of the macroscale model. Here we have introduced a
more complicated notation that emphasises the scale that the quantity has a dependence on and shows the
decomposition of the pre-stress into the local and global components. Despite this increased complexity
in the notation, the resulting model can actually be solved at a reduced computational cost than when
assuming that the pre-stresses depend on both the microscale and macroscale in full. We actually find
that the decomposition of the pre-stresses leads to a complete decoupling between the macroscale and the
microscale problems eliminating the issues discussed in the previous bullet point of this subsection. Since
we have this decoupling, we then solve the six elastic-type cell problems (83a)–(83f), the vector problems
(84a)–(84f) and then either vector problems (85a)–(85f) and (86a)–(86f) or (89)–(94).

• Microscopically varying pre-stress
If we make the assumption that the pre-stresses σ 0c(y) and σ 0p(y) depend only on the microscale, then we
derive exactly the macroscale model (79a)–(79d); however, we can notice that the effective stress,

TEff = 〈Cc
M

c + C
c + C

p
M

p + C
p〉sξx (u(0)) + (〈CcQc + C

pQp〉s − φI)p(0)

+ 〈CcRc + C
pRp + σ

(0)
0c + σ

(0)
0p 〉s, (95)

contains the pre-stresses as terms. This means that when we use this effective stress in our macroscale
balance equation then these pre-stress terms will disappear as they only depend on the microscale. That is,

∇x · TEff = ∇x · (〈Cc
M

c + C
c + C

p
M

p + C
p〉sξx (u(0)) + (〈CcQc + C

pQp〉s
− φI)p(0) + 〈CcRc + C

pRp〉s
) = 0. (96)

The cell problems for the fluid, as before, do not involve the pre-stresses so remain as (48). Again for the
solid cell portion, we have that problems (57a)–(57f) and (58a)–(58f) are unaffected by the pre-stresses;
however, (59a)–(59f) is affected. We can see that in (59a)–(59f) we have the pre-stresses σ

(0)
0c and σ

(0)
0p .

In this cell problem, we take the microscale divergence of the pre-stress tensors and also have the differ-
ence in pre-stresses as the driving force of the cell problem. Since those pre-stresses depend solely on the
microscale, then the two scales are fully decoupled. Then the cell problem is of the general asymptotic
homogenisation type, where it only depends on the microscale and therefore can be solved in a straightfor-
ward way. For example, for linear elastic composites [27] the porescale asymptotic homogenisation cell
problems were solved in [44]. The problems for linear poroelasticity were solved in [32] to investigate
the role of porosity and microscale solid matrix compressibility on the mechanical behaviour of poroe-
lastic materials. More recently, the cell problems for a poroelastic composite have been solved in [34] to
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perform a micromechanical analysis of the effective stiffness of poroelastic composites. The case where
the pre-stress is depending on the microscale only could be applicable to additively manufactured metallic
materials, such as stainless steel, which commonly possess substantial microscale residual or pre-stresses
[48].

• Macroscopically varying pre-stress
Finally we consider the case where the pre-stresses σ 0c(x) and σ 0p(x) depend only on the macroscale. We
have the same macroscale model (79a)–(79d). Again all but cell problem (59a)–(59f) remain unchanged.
We write the leading-order pre-stresses using the following decomposition

(σ
(0)
0c )i j = δikδ jl(σ

G(0)
0c (x))kl (97a)

(σ
(0)
0p )i j = δikδ jl(σ

G(0)
0p (x))kl . (97b)

In this case, we see that the elastic problem (54a)–(54f) can be written as the following, since σ 0c and σ 0p

have no y dependence,

∇y · (Ccξy(u(1)
c )) + ∇y · (Ccξx (u(0))) = 0 in �c (98a)

∇y · (Cpξy(u(1)
p )) + ∇y · (Cpξx (u(0))) = 0 in �p (98b)

C
cξy(u(1)

c )ncp − C
pξy(u(1)

p )ncp = (Cp − C
c)ξx (u(0))ncp

+ (σ
(0)
0p (x) − σ

(0)
0c (x))ncp on �cp (98c)

u(1)
c = u(1)

p on �cp (98d)

(Ccξy(u(1)
c ) + C

cξx (u(0)) + σ
G(0)
0c (x))nc = −p(0)nc on �c (98e)

(Cpξy(u(1)
p ) + C

pξx (u(0)) + σ
G(0)
0c (x))np = −p(0)np on �p (98f)

We also need to take this decomposition (97a) and (97b) into account in the ansatz that we propose for
elastic problem (98a)–(98f). We are able to use (82a) and (82b) and we obtain (57a)–(57f) and (58a)–(58f)
which are now y-dependent only since we make assumption (80) and we also obtain the two following cell
problems

∇y · (Ccξy(Bc(y))) = 0 in �c (99a)

∇y · (Cpξy(Dp(y))) = 0 in �p (99b)

(Ccξy(Bc(y)) − C
pξy(Dp(y)))ncp = −I ⊗ ncp on �cp (99c)

Bc(y) = Dp(y) on �cp (99d)

(Ccξy(Bc(y)))nc + I)nc = 0 on �c (99e)

(Cpξy(Dp(y)))np = 0 on �p (99f)

and

∇y · (Ccξy(Dc(y))) = 0 in �c (100a)

∇y · (Cpξy(Bp(y))) = 0 in �p (100b)

C
cξy(Dc(y))ncp − C

pξy(Bp(y))ncp = I ⊗ ncp on �cp (100c)

Dc(y) = Bp(y) on �cp (100d)

(Ccξy(Dc(y)))nc = 0 on �c (100e)

(Cpξy(Bp(y)))np + Inp = 0 on �p. (100f)

This decomposition is a special case of (81a) and (81b). These different decompositions and assumptions
lead to us having well-posed cell problems that when supplemented with the periodic conditions on the
cell boundary, as well as an additional condition for uniqueness can be easily solved to determine the
coefficients of the macroscale model. The case where the pre-stress is depending on the macroscale only
could be applicable to constitutive models of shear damage of pre-stressed anchored jointed rocks [49].
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4.2 Scheme for solving the macroscale model

We now propose a scheme for solving the full macroscale model (79a)–(79d). The model is solvable using the
following scheme for the suggested decompositions of the pre-stress, when the pre-stress only depends on the
microscale, or when it only depends on the macroscale as discussed in Sect. 4.1. We provide a clear step-by-
step guide on how to find the effective coefficients of the model and then how those are used when solving
the macroscale model (79a)–(79d). The model coefficients encode the structural details such as geometry and
elastic properties. In this guide, we include particular references that will assist the readers understanding of
the type of numerical simulations that are to be carried out to find both the coefficients and solve the final
model such as [32,34].

We have made the assumption of global-scale uniformity of the material and assumed that the two scales
are fully decoupled via one of the scenarios discussed in Sect. 4.1; then, we can propose the following steps
to solve the model. The process is as follows:

1. The first step is to fix the original material properties of the elastic matrix and the elastic subphases at the
microscale. We make the assumption of isotropy of each of the elastic phases. This means that we fix two
parameters for thematrix and the subphase. These are two independent elastic constants such as the Poisson
ratio and Young’s modulus (or alternatively depending on the experimental measurements available, the
Lamé constants). We could, however, not make the assumption of isotropy and just provide the elasticity
tensor with components depending on the symmetry that exists in each elastic phase.

2. We then must fix the microscale geometry, and this means we determine the specific geometry of a single
periodic cell including the volume fraction of each of the phases.

3. The next step is then to find themacroscalemodel coefficients.We beginwith the solid (elastic) coefficients.
We solve the elastic-type cell problems (57a)–(57f), (58a)–(58f), (59a)–(59f) to obtain the auxiliary tensors
M

c, Mp, Qc, Qp, Rc and Rc which appear in the macroscale model coefficients. The cell problems to be
solved are, in components

∂

∂y j

(
C c
i j pqξ

kl
pq(Ac)

)
+ ∂C c

i jkl

∂y j
= 0 in �c, (101a)

∂

∂y j

(
Cp
i j pqξ

kl
pq(Ap)

)
+ ∂Cp

i jkl

∂y j
= 0 in �p, (101b)

C c
i j pqξ

kl
pq(Ac)ncp

j − Cp
i j pqξ

kl
pq(Ap)ncp

j = (Cp − C c)i jkln
cp
j on �cp, (101c)

Ac
ikl = Ap

ikl on �cp, (101d)

C c
i j pqξ

kl
pq(Ac)nc

j + C c
i j pqn

c
j = 0 on �c, (101e)

Cp
i j pqξ

kl
pq(Ap)np

j + Cp
i j pqn

p
j = 0 on �p, (101f)

and

∂

∂y j

(
C c
i j pqξpq(a

c)

)
= 0 in �c, (102a)

∂

∂y j

(
Cp
i j pqξpq(a

p)

)
= 0 in �p, (102b)

C c
i j pqξpq(a

c)ncp
j = Cp

i j pqξpq(a
p)ncp

j on �cp, (102c)

ac
i = ap

i on �cp, (102d)

C c
i j pqξpq(a

c)nc
j + nc

j = 0 on �c, (102e)

Cp
i j pqξpq(a

p)np
j + np

j = 0 on �p, (102f)

and

∂

∂y j

(
C c
i j pqξpq(b

c)

)
+ ∂(σ

(0)
0c )i j

∂y j
= 0 in �c, (103a)

∂

∂y j

(
Cp
i j pqξpq(b

p)

)
+ ∂(σ

(0)
0p)i j

∂y j
= 0 in �p, (103b)
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C c
i j pqξpq(b

c)ncp
j − Cp

i j pqξpq(b
p)ncp

j = (σ
(0)
0p

− σ
(0)
0c )i j n

cp
j on �cp, (103c)

bc
i = bp

i on �cp, (103d)

C c
i j pqξpq(b

c)nc
j + (σ

(0)
0c )i j n

c
j = 0 on �c, (103e)

Cp
i j pqξpq(b

p)np
j + (σ

(0)
0p)i j n

p
j = 0 on �p, (103f)

where we have used the notation

ξ klpq(Ac) = 1

2

(
∂Ac

pkl

∂yq
+ ∂Ac

qkl

∂yp

)
; ξ klpq(Ap) = 1

2

(
∂Ap

pkl

∂yq
+ ∂Ap

qkl

∂yp

)
, (104a)

ξpq(ac) = 1

2

(
∂ac

p

∂yq
+ ∂ac

q

∂yp

)
; ξpq(ap) = 1

2

(
∂ap

p

∂yq
+ ∂ap

q

∂yp

)
, (104b)

ξpq(bc) = 1

2

(
∂bc

p

∂yq
+ ∂bc

q

∂yp

)
; ξpq(bp) = 1

2

(
∂bp

p

∂yq
+ ∂bp

q

∂yp

)
. (104c)

The solution of the problem (101a)–(101f) is found by solving six elastic-type cell problems by fixing the
couple of indices k, l = 1, 2, 3. When we do this, we can see that we have strains ζ kl

pq(Ac) and ζ kl
pq(Ap) so

that for each fixed couple of indices k, l we have a linear elastic problem. For more details on this process,
see [32,34]. The problems (102a)–(102f) and (103a)–(103f) are vector problems. These have driving forces
of the normals to the interface between either the matrix and the void or the subphase and the void or the
matrix and the subphase and the difference in the leading-order pre-stresses depending on which problem
you are solving. The normal encodes the geometry of the voids and is used to compute the solution. We
note that here we are providing the most general cell problems and that depending on the properties of the
pre-stress it may be appropriate to use the modified versions of the cell problems appearing in Sect. 4.1,
see Appendix A for all the cell problems in components.

4. To ensure uniqueness of solution, we require one additional condition. We choose to enforce that the cell
averages of the cell problem solutions are zero, i.e.

〈Ac〉c = 0, 〈Ap〉p = 0, 〈ac〉c = 0, 〈ap〉p = 0,

〈bc〉c = 0, 〈bp〉p = 0.
(105)

5. We also have coefficients related to the fluid flow in the material. We have the fluid cell problem (48),
which is solved to obtain the tensor W and the vector P which appear in the macroscale coefficients. The
cell problem to be solved is, in components

∂2Wi j

∂yk∂yk
− ∂Pi

∂y j
+ δi j = 0 in �f (106)

∂Wi j

∂yi
= 0 in �f (107)

Wi j = 0 on �c ∪ �p. (108)

6. The auxiliary second-rank tensors arising form the cell problems (Mc,Mp,Qc,Qp,W, Rc and Rp) are then
used to obtain the coefficients of the macroscale model.

7. The macroscale structure and geometry must be prescribed. We also set boundary conditions for the
homogenised cell and provide initial conditions for the macroscale solid displacement and pressure.

8. Finally, our macroscale model can then be solved. For further details, consider [33]

4.3 Comparison of our work with [40]

We finally wish to compare the macroscale model (79a)–(79d) with the macroscale model for electrostrictive
composites found in [40]. In the work of [40], the asymptotic homogenisation technique is used to derive a
macroscale model that captures the behaviour of a linear elastic composite whose deformations are driven
by the divergence of a given tensor, which is therein identified with the Maxwell stress tensor. The formal
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results of [40] can be compared with our ones in the absence of the fluid phase. Since in [40] there is no fluid
contribution, then we can first consider the reduction of (79a)–(79d) to the case where there is no fluid. We will
retain only the balance equation (79b) and will have a modified constitutive law (79c). That is, our reduced
model is given by

∇x · TEff = 0, (109a)

TEff = 〈Cc
M

c + C
c + C

p
M

p + C
p〉sξx (u(0)) + 〈CcRc + C

pRp + σ
(0)
0c + σ

(0)
0p 〉s, (109b)

In order for a more precise comparison, we can use the notation (34) that we introduced in Sect. 3.3 to rewrite
the constitutive law as

TEff = 〈Cc
M

c + C
c〉cξx (u(0)) + 〈Cp

M
p + C

p〉pξx (u(0)) + 〈CcRc + σ
(0)
0c 〉c + 〈CpRp + σ

(0)
0p 〉p. (110)

We can then see that the balance equation (79b) and the constitutive law (110) are exactly (60), (61a) and (61b)
that are found in [40] when we make the following identifications in the notation. We have

C
c = CS, C

p = CM, ξy(Ac) = M
c = Xy(χS),

ξy(Ap) = M
p = Xy(χM), ξy(bc) = Rc = ξ y(ωS),

ξy(bp) = Rp = ξ y(ωM), σ
(0)
0c = σ

(e)
S . σ

(0)
0p = σ

(e)
M (111)

where the tensors that we call the pre-stresses, σ (0)
0c and σ

(0)
0p , are identified with σ

(e)
S and σ

(e)
M which [40] uses

as the generalised Maxwell stress tensor.
We can also compare the cell problems that we obtain here with those in [40]. We again will only need the

solid elastic cell problems since there is no fluid involved in the formulation of [40]. This means that we will
only require (57a)–(57f) and (59a)–(59f) modified for the case of no fluid. This means that these cell problems
will become

∇y · (Ccξy(Ac)) + ∇y · Cc = 0 in �c, (112)

∇y · (Cpξy(Ap)) + ∇y · Cp = 0 in �p, (113)

C
cξy(Ac)ncp − C

pξy(Ap)ncp = (Cp − C
c)ncp on �cp, (114)

Ac = Ap on �cp, (115)

and

∇y · (Ccξy(bc)) + ∇y · σ
(0)
0c = 0 in �c, (116)

∇y · (Cpξy(bp)) + ∇y · σ
(0)
0p = 0 in �p, (117)

C
cξy(bc)ncp − C

pξy(bp)ncp = (σ
(0)
0p − σ

(0)
0c )ncp on �cp, (118)

bc = bp on �cp. (119)

Using the identifications in notation that we made above, we can see that these are exactly the cell problems
(44a-44d) and (45a-45d), respectively, found in [40].

5 Conclusion

Throughout this work, we have carried out the derivation, in a quasi-static regime, of a novel system of
partial differential equations that describe the effective mechanical behaviour of a poroelastic composite that
is subjected to pre-stresses. We investigate materials with a microstructure comprising a porous elastic matrix
and subphases with an incompressible Newtonian fluid flowing in the pores. The elastic matrix and individual
subphases are assumed to be linear elastic but are pre-stressed. Materials with this microstructure have many
real-world applications, including modelling of biological tissues such as the artery walls. Another problem
of biological interest that can be studied by using the multiscale approach developed in the present manuscript
is that of focal adhesions, by extending, for instance, the analysis proposed in [50,51], where non-elastic
processes have been considered.
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In order to derive the new model for this type of microstructure, we create a fluid–structure interaction
(FSI) problem that appropriately describes each component of the geometry. The problem is closed by applying
some interface conditions on the three different interfaces that exist in the structure. We apply the continuity
of tractions and velocities on the interfaces between matrix and the fluid and on the interface between the
subphase and the fluid.We also apply the continuity of tractions and displacements between the different elastic
subphases and the matrix.We know that there is a sharp length-scale separation between the microscale (where
all individual phases are clearly visible) and the macroscale (average length of the material) so due to this we
are able to apply the asymptotic homogenisation technique to derive the novel model that governs the material
behaviour. The coefficients of the newly obtained governing equations encode the precise microstructural
details of geometry and material properties. We are able to compute the model coefficients by solving the
periodic cell problems that arise as a result of using the asymptotic homogenisation technique. We then
investigate different choices of the pre-stress that will influence the overall macroscale model and the cell
problems that will determine the model coefficients. We provide a scheme for solving the macroscale model
and state all possible arising cell problems in components in appendix. Finally we make the assumption that
our model does not have a fluid phase and we recover the model of [40] on electrostrictive elastic composites.

The novel model obtained in this manuscript is an important extension of [28] and can be considered
a useful advancement of the existing models for poroelastic materials with detailed microstructures such as
biological tissues. The key novelty of this work resides in considering the influence of an existing pre-stress in
each of the elastic phases. By considering the pre-stresses, we derive the model of [28] with additional terms
and coefficients that encode these stresses. We have that the leading-order term in the asymptotic expansion of
the pre-stress appears in the macroscale constitutive law for the material and is the driving force in the novel
cell problem (59a)–(59f). This cell problem, along with (57a)–(57f) and (58a)–(58f), can be solved to find the
coefficients which encode the details of the geometry and stiffness of the microstructure as well as the tensors,
Rc andRp, which appear in the constitutive law and the conservation of mass equation in the macroscale model
and account for the changes in pre-stress at different parts in the microstructure. Due to these cell problems,
we are directly able to account for the microscale complexity within the macroscale governing equations.

The model that we have derived is subject to some limitations that can easily be amended if the desired
application requires. We have formulated a quasi-static and linearised macroscale model. This means that we
have not taken linearised inertia into consideration. However, it would be very possible to relax this assumption
and this would give rise to additional terms in our macroscale model effective balance equation (79b). The
addition of these inertial terms can be useful to applications of lung modelling where the acoustic properties
can be used to aid the diagnosis of pulmonary diseases [52,53].

We also have formulated this model in a linear elastic setting. The theoretical model can be extended to
nonlinear elasticity and would be a special extension of [31]. By extending to the nonlinear setting, we create
the complication in carrying out the numerical simulations. This complication arises because the two length
scales in the system remain coupled leading to an increased computational load. There are emerging techniques
that can potentially solve these models whilst not being computationally too expensive, such as using artificial
neural networks [46,54].

The theory could also be applicable in the context of viscoelasticity. The recent work [55] considers
an underlying microstructure comprising several elastic phases and a fluid phase which when upscaled via
asymptotic homogenzation gives a Kelvin–Voigt-type model for viscoelastic composites. It would be possible
to extend this to assume that the solid phases were indeed pre-stressed. Fractional viscoelasticity has recently
been used to analyse experimental data that describe the behaviour of a variety of heterogeneous biological
materials. In [56], the effective properties of a composite with viscoelastic constitutive response is considered
where each constituent is described by a fractional viscoelastic model. This could be further developed to
include a pre-stress within each constituent of the composite.

In order to progress themodel further, it would be necessary to obtain solutions to themodel using a specific
microstructure with the parameters chosen by real-world data. These data could relate to a wide variety of
biological examples including artery walls and the myocardium. In the literature, the macroscale model of
standard Biot’s poroelasticity has been solved by [33] and the microscale cell problems for poroelasticity have
been solved by [32] and those for poroelastic composites solved by [34].
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A Appendix

In this appendix, we provide both the notation used throughout as well the cell problems for the different
choices of pre-stresses discussed in Sect. 4.1 in components.

A.1 Notation

In this section, we will define exactly what is meant by the operations carried out between all the tensor and
vector fields in our computations.

When we have the double contraction between a general fourth-rank tensor F and a second-rank tensor F
written as FF, then in components this is given by

(F)i jkl(F)kl , (120)

where sum over repeated indices is understood. Similarly when we have the double contraction between a
third-rank tensor F and a second-rank tensor F which is written as FF, we write

(F)ikl(F)kl , (121)

and again sum over repeated indices is understood. For the operation between a second-rank tensor F and a
vector f , we use the notation Ff which in components is

(F)ik(f)k, (122)

again with sum over repeated indices. Finally we have the scalar product between two vectors, say f and p,
which is written fp, and in components will be

(f)k(p)k, (123)

with the sum over k.

A.2 Pre-stress depends on both microscale and macroscale

When we have the decomposition of the pre-stress in each solid phase into a macroscale component and a
microscale component (81a)–(81b), we have four sets of cell problems (83a)–(83f), (84a)–(84f), (85a)–(85f)
and (86a)–(86f). The first two kinds in components are given by (101a)–(101f) and (102a)–(102f). We then
must write (85a)–(85f) and (86a)–(86f) in components. That is,

∂

∂y j

(
C c
i j pqξ

kl
pq(Bc)

)
+ ∂(σ

(0)
0c (y))i jkl
∂y j

= 0 in �c, (124a)

∂

∂y j

(
Cp
i j pqξ

kl
pq(Dp)

)
= 0 in �p, (124b)

C c
i j pqξ

kl
pq(Bc)ncp

j − Cp
i j pqξ

kl
pq(Dp)ncp

j = −(σ
(0)
0c (y))i jkln

cp
j on �cp, (124c)

Bc
ikl = Dp

ikl on �cp, (124d)

C c
i j pqξ

kl
pq(Bc)nc

j + (σ
(0)
0c (y))i jkln

c
j = 0 on �c, (124e)
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Cp
i j pqξ

kl
pq(Dp)np

j = 0 on �p, (124f)

and

∂

∂y j

(
C c
i j pqξ

kl
pq(Dc)

)
= 0 in �c, (125a)

∂

∂y j

(
Cp
i j pqξ

kl
pq(Bp)

)
+ ∂(σ

(0)
0p(y))i jkl

∂y j
= 0 in �p, (125b)

C c
i j pqξ

kl
pq(Dc)ncp

j − Cp
i j pqξ

kl
pq(Bp)ncp

j = (σ
(0)
0p(y))i jkln

cp
j on �cp, (125c)

Dc
ikl = Bp

ikl on �cp, (125d)

C c
i j pqξ

kl
pq(Dc)nc

j = 0 on �c, (125e)

Cp
i j pqξ

kl
pq(Bp)np

j + (σ
(0)
0p(y))i jkln

p
j = 0 on �p, (125f)

We make the assumption that the notation for the gradient of the third-rank tensors Bc, Bp, Dc and Dp is the
same as the notation used for Ac and Ap in (104a).
We also consider the case that when we decompose the pre-stresses we have the continuity of the macroscale

component between the two phases (87). This means that we obtain the cell problems (83a)–(83f), (84a)–(84f)
and (89)–(94). We have already written the problems (83a)–(83f) and (84a)–(84f) in components in equations
(101a)–(101f) and (102a)–(102f). So we can just write the different problem (89)–(94) in components as

∂

∂y j

(
C c
i j pqξ

kl
pq(Bc)

)
+ ∂(σ

(0)
0c (y))i jkl
∂y j

= 0 in �c, (126a)

∂

∂y j

(
Cp
i j pqξ

kl
pq(Bp)

)
+ ∂(σ

(0)
0p(y))i jkl

∂y j
= 0 in �p, (126b)

C c
i j pqξ

kl
pq(Bc)ncp

j − Cp
i j pqξ

kl
pq(Bp)ncp

j = ((σ
(0)
0p(y))i jkl

− (σ
(0)
0c (y))i jkl)n

cp
j on �cp, (126c)

Bc
ikl = Bp

ikl on �cp, (126d)

C c
i j pqξ

kl
pq(Bc)nc

j + (σ
(0)
0c (y))i jkln

p
j = 0 on �c, (126e)

Cp
i j pqξ

kl
pq(Bp)np

j + (σ
(0)
0p(y))i jkln

p
j = 0 on �p, (126f)

A.3 Pre-stress depends only on the macroscale

The final cell problemswe need to consider are for the case that the pre-stresses depend only on themacroscale.
This is the pre-stresses are given by (97a) and (97b). This leads to the cell problems (83a)–(83f), (84a)–
(84f), (99a)–(99f) and (100a)–(100f). We have already written the problems (83a)–(83f) and (84a)–(84f) in
components in equations (101a)–(101f) and (102a)–(102f). So we can just write the different problems (99a)–
(99f) and (100a)–(100f) in components as

∂

∂y j

(
C c
i j pqξ

kl
pq(Bc)

)
= 0 in �c, (127a)

∂

∂y j

(
Cp
i j pqξ

kl
pq(Dp)

)
= 0 in �p, (127b)

C c
i j pqξ

kl
pq(Bc)ncp

j − Cp
i j pqξ

kl
pq(Dp)ncp

j = −δikδ jln
cp
j on �cp, (127c)

Bc
ikl = Dp

ikl on �cp, (127d)

C c
i j pqξ

kl
pq(Bc)nc

j + δikδ jln
c
j = 0 on �c, (127e)

Cp
i j pqξ

kl
pq(Dp)np

j = 0 on �p, (127f)
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and

∂

∂y j

(
C c
i j pqξ

kl
pq(Dc)

)
= 0 in �c, (128a)

∂

∂y j

(
Cp
i j pqξ

kl
pq(Bp)

)
= 0 in �p, (128b)

C c
i j pqξ

kl
pq(Dc)ncp

j − Cp
i j pqξ

kl
pq(Bp)ncp

j = δikδ jln
cp
j on �cp, (128c)

Dc
ikl = Bp

ikl on �cp, (128d)

C c
i j pqξ

kl
pq(Dc)nc

j = 0 on �c, (128e)

Cp
i j pqξ

kl
pq(Bp)np

j + δikδ jln
p
j = 0 on �p, (128f)
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