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Safe Motion Planning for Autonomous Vehicles by
Quantifying Uncertainties of Deep Learning-enabled

Environment Perception
Dachuan Li, Member, IEEE, Bowen Liu, Zijian Huang, Qi Hao, Member, IEEE, Dezong Zhao, Senior

Member, IEEE, and Bin Tian, Member, IEEE

Abstract—Conventional perception-planning pipelines of au-
tonomous vehicles (AV) utilize deep learning (DL) techniques
that typically generate deterministic outputs without explicitly
evaluating their uncertainties and trustworthiness. Therefore, the
downstream decision-making components may generate unsafe
outputs leading to system failure or accidents, if the preceding
perception component provides highly uncertain information. To
mitigate this issue, this paper proposes a coherent safe perception-
planning framework that quantifies and transfers DL-based
perception uncertainties. Following the Bayesian Deep Learning
paradigm, we design a probabilistic 3D object detector that
extracts objects from LiDAR point clouds while quantifying the
corresponding aleatoric and epistemic uncertainty. A chance-
constrained motion planner is designed to formulate an explicit
link between DL-based perception uncertainties and operation
risk and generate safe and risk-bounding trajectories. The
proposed framework is validated through various challenging sce-
narios in the CARLA simulator. Experiment results demonstrate
that our framework can effectively capture the uncertainties
in DL, and generate trajectories that bound the risk under
DL perception uncertainties. It also outperforms counterpart
approaches without explicitly evaluating the uncertainties of DL-
based perception.

Index Terms—Autonomous driving, motion planning, object
detection, Bayesian Deep Learning, uncertainty quantification.

I. INTRODUCTION

SAFETY is one of the primary goals in the design and
development of autonomous driving vehicles (AV). Deep

learning (DL) techniques have emerged as a common setting
for the software stack of AV systems, due to their effectiveness
in feature extraction and environment state predictions after
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Fig. 1. Framework of the proposed uncertainty-aware 3D object detection
and chance-constrained motion planning system for autonomous driving. An
explicit link is established between quantified uncertainties in Deep Learning-
based perception and risk in motion planning

training with annotated data [1]. However, developing a DL-
enabled AV perception-planning pipeline with trustworthiness
has to deal with new technical challenges.

In a typical AV functional pipeline, the downstream
decision-making and motion planning modules operate based
on the output of upstream environment perception components
[2], [3]. Therefore, errors and uncertain outputs of DL-based
environment perception will propagate downstream and ulti-
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mately affect the subsequent decision-making results. How-
ever, existing DL networks generally output deterministic state
predictions without explicitly measuring their confidence [4],
but the downstream decision-making units simply ’trust’ these
estimations even if they are highly untrustworthy nevertheless.
One example of such circumstances is the fatal accident of
Uber AV in Arizona [5], where the victim was detected by the
perception system and classified vacillatingly as an unknown
object, a vehicle, and finally a bicycle prior to the crash.
Therefore, Without evaluating the uncertainty of perception,
the decision-making modules can not generate proper actions
accordingly to ensure operation safety.

Therefore, it is crucial that the perception neural network
not only outputs accurate information about environments but
also provides explicit measures of the level of uncertainties
in its outputs. In addition, how to deal with the propagated
perception uncertainties in the downstream decision-making
stage to ensure operation safety is still a challenging issue.

To address these challenges, this paper proposes a novel
coherent uncertainty-aware framework for planning safe tra-
jectories for AVs by quantifying and propagating uncertainties
in DL-based perception (Fig.1). The main contributions of this
work include:

• Developing a uncertainty-aware 3D object detector
(Bayesian Point-RCNN) which can estimate bounding
boxes of surrounding vehicles from 3D LiDAR point
clouds with explicitly quantified epistemic and aleatoric
uncertainties in both classification and regression.

• Developing an chance-constrained safe motion planning
approach (perception uncertainty-aware-RRT, PU-RRT)
that builds an explicit link between quantified uncertain-
ties in the DL-based object detector and operation risk via
spatial chance constraints, and checks the probabilistic
feasibility of trajectories to bound the risk under DL
perception uncertainties.

• Performing comprehensive evaluations using real-world
data and simulated driving scenarios involving various
factors that cause perception uncertainties. We show
an improvement in safety by explicitly modeling and
incorporating perception uncertainties of DL.

The remainder of this paper is organized as follows: Section
II provides an overview of related work in the related domains.
Section III presents the system architecture and problem for-
mulations. Section IV provides a detailed description of the 3D
object detector with quantification of perception uncertainties.
The uncertainty-aware motion planning approach is presented
in Section V. Section VI provides experiment results, and the
paper is finally concluded in Section VII.

II. RELATED WORK

A. Quantifying Uncertainties in Deep Learning

Uncertainties in a Deep Neural Network can be decomposed
into two sources: the epistemic uncertainty (EU) and the
aleatoric uncertainty (AU) [6]. The EU captures the inherent
uncertainty of model parameters due to the mismatch between
the training and inference input data, while AU is typically
caused by randomness and incompleteness of observations(e.g.

sensor noises). Uncertainty quantification(UQ) approaches for
DL can be generally divided into three major categories:
Monte-Carlo (MC) dropout, deep ensembles, and direct mod-
eling.

Bayesian Neural Network(BNN) [7] provides a principled
paradigm for representing uncertainties in neural networks
based on the Bayesian theory. Instead of using determinis-
tic values of weights, the BNN framework places a prior
probabilistic distribution over the weights of networks, and
the uncertainties and be estimated by inference of associ-
ated posterior distributions. Since performing direct inference
of such posterior distributions is intractable, sampling-based
techniques have been proposed as approximation methods.
Sampling-based Variation inference (VI) approaches esti-
mate EU by approximating distributions that minimize the
Kullback-Leibler divergence from the actual distributions over
network weights [8], [9]. For Monte-Carlo dropout-based
approaches [10], [11], samples are generated from the ap-
proximated posterior distributions of weights by performing
multiple inferences with dropout. Instead of using the same
network architecture, they add dropout layers and obtain
different predictions by randomly dropping out neurons for
each forward pass. In addition, the deep ensemble methods
[12], [13] pass a single input through an ensemble of networks
to estimate the predictive variances.

As for AU, direct modeling approaches use additional output
layers to directly estimate the parameters of the distribution of
the network outputs.[14], [15], [16]. These approaches require
modification of the loss function and incorporation additional
output layer. Usually, direct modeling approaches may have
difficulties in converging for those detectors with large output
spaces. (c.f. [17] for a more comprehensive survey of UQ of
general DL techniques.)

More recent work has attempted to quantify uncertainties in
DL-based 3D object detection frameworks in AV applications.
In [18], the MC dropout technique is utilized to quantitatively
model the EU for the DL-based 3D vehicle detection tasks.
They demonstrate an improvement in the accuracy of detection
by modeling the uncertainties. It is further extended in [19]
to quantify the heteroscedastic AU in a regional proposal-
based LiDAR 3D object detector. The proposed detector
achieves improved accuracy and robustness against noisy data
by biasing the training to more informative data. Similarly, [6]
extends the LaserNet detector to estimate the uncertainty in
the labels of annotated data and learn distributions of vehicle
bounding boxes.

However, most of the current UQ techniques of DL are
designed only with the objective of improving the robustness
and accuracy of detection. They typically ignore how to
propagate the DL perception uncertainties to the downstream
decision-making stage to ensure operation safety, which is the
motivation of our work in this paper.

B. Decision-making and Planning under Perception Uncer-
tainties

Decision-making and planning under sensing uncertainties
in the domain of AV can be typically formulated as Partially
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Observable Markov Decision Process (POMDP) problems and
desired policies can be generated by optimizing a reward
function that considers the costs and risks of actions. Recent
research attempts to incorporate uncertainties caused by sen-
sory noise [20] and occlusion/partial perception [21], [22] in
motion planning. However, real-world applications of POMDP
frameworks to AV problems with continuous space are still
very limited, as solving the POMDP is computationally inten-
sive.

Alternatively, sampling-based motion planners have been
validated as effective in planning dynamically-feasible trajec-
tories for AVs. The Rapidly-exploring Random Trees(RRT))
has been extended to deal with uncertainties. For instance, the
Chance-Constrained RRT (CC-RRT) [23] (later extended by
CC-RRT∗ [24]) models the sensing uncertainties for checking
the probabilistic feasibility of trajectories. In addition, the
Rapidly-exploring Random Belief Tree (RRBT) [25] extends
the RRT∗ framework by propagating both state and sensing
uncertainties to bound the risk of operation.

It is worth mentioning that [26] proposes a unified frame-
work with similar motivation to our work. It models the
epistemic uncertainty caused by out-of-domain scenarios
and stochasticity in demonstration data. A robust imitation
learning-based planning method is designed on that basis
to improve the safety of AVs. In addition, the more recent
research in [27] utilizes MC-dropout and ensemble-based
techniques to evaluate the uncertainties in the prediction of the
behavior of the ego vehicle, and the uncertainties are leveraged
for the threat assessment of lane-keeping assistance.

In spite of the effectiveness achieved by the above ap-
proaches, they typically assume simplified and unrealistic
model of the perception uncertainty and their feasibility for
systems involving uncertainties of DL has not been validated.

III. PRELIMINARIES

A. Overall Framework

This work considers a common AV architecture, where a
vehicle-mounted LiDAR sensor captures 3D point clouds of
the operation environments, and the perception component of
the AV software stack uses such measurements to estimate
states of the environment for decision-making. Fig. 1 illustrates
the framework of the proposed system consisting of two major
components: an uncertainty-aware 3D LiDAR object detector
and a chance-constrained motion planner.

The proposed uncertainty-aware 3D LiDAR object detec-
tor utilizes a DL-based model (Probabilistic PointRCNN) to
recognize surrounding traffic participants and extract their 3D
bounding boxes from LiDAR point clouds, while explicitly
modeling the aleatoric and epistemic uncertainties associated
with the classification and bounding box regression. Such
information is then fed to the proposed chance-constrained
motion planner (PU-RRT) to generate safe and probabilistic
feasible reference trajectories that navigate the vehicle to the
goal. To explicitly incorporate the quantified DL perception
uncertainties, the detected object is formulated as a proba-
bilistic spatial representation, based on which the PU-RRT
evaluates the risk of collision and checks the probabilistic

feasibility while growing the tree of trajectories. In this man-
ner, the motion planner can generate risk-bounding trajectories
under DL-based perception uncertainties. Methodologies of
the proposed perception and planning components in the
framework are detailed in subsequent sections.

B. Preliminaries

1) Quantifying Uncertainties of Deep Learning via Dropout
approximation: Following the Bayesian deep learning prin-
ciple, the epistemic uncertainty can be modeled by placing
prior distributions over the network’s weights and estimating
the variation of weights with respect to the given data.

Denote D = {X,Y} as an annotated training dataset (X =
{xi}Ni=1 denotes the data sample, Y = {yi}Ni=1 is the ground
truth label). A DNN is a model fW(·) with weight parameters
W = {wj}Lj=1 trained using D. During inference, fW(·)
maps an data input x∗ to its expected prediction y∗. In the
BDL framework, given an input sample x∗, the network infers
a predictive posterior distribution [28]:

p (y∗|x∗,D) =

∫
p(y∗|fW(x∗))p(W|D)dw, (1)

where p(W|D) denote the posterior distribution of weight
over the training dataset, and p(y∗|fW(x∗)) is the model
likelihood. Theoretically, the EU can be evaluated by per-
forming Bayesian inference to estimate the posterior distribu-
tion. However, it is intractable to analytically infer p(W|D)
[10]. Therefore, practical approaches typically utilize various
techniques to estimate an approximate posterior distribution
q̂θ(W) of p(W|D), and the predictive output of the DNN
turns to:

q (y∗|x∗,W) =

∫
p(y∗|x∗,W)q(W)dW (2)

It is shown in [10] that training a DNN model with MC
dropout is equivalent to approximating the posterior distri-
bution in Eq.(1). For inference, the trained network oper-
ates by performing multiple forward passes with dropout to
generate samples from the approximate distribution (Wk ∼
q̂θ(W), k ∈ {1...N}).

Considering the ith intermediate hidden layer Li (with
mi hidden units) of a DNN. Denote Wi, Wi+1 as
the weight matrices connecting its preceding hidden layer
(Li−1, with mi−1 hidden units ) and succeeding hidden
layer (Li+1, with mi+1 hidden units), respectively(Wi ∈
Rmi−1×mi , Wi+1 ∈ Rmi×mi+1 ). For Li, dropout oper-
ates by sampling two random vectors ri, ri+1 with el-
ements distributed according to Bernoulli distribution (i.e.
ri,j ∼ Bernoulli(pi), ri+1,k ∼ Bernoulli(pi+1), j ∈
[1...mi−1], k ∈ [1...mi+1], pi, pi+1 ∈ [0, 1]. For each forward
pass or backward propagation, by multiplying weight matrices
with random vectors (riWi, ri+1Wi+1), part of the weight are
stochastically set to zero and the corresponding hidden units
are thus dropped.

This article has been accepted for publication in IEEE Transactions on Intelligent Vehicles. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TIV.2023.3297735

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Glasgow. Downloaded on July 28,2023 at 19:19:39 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON INTELLIGENT VEHICLES 4

Taking advantage of the Monte Carlo dropout approxima-
tion, the predictive variance of the NN model for regression
tasks can be estimated by:

σq̂(y∗|x∗)(y
∗) = Eq̂(y∗|x∗)(y

∗Ty∗)

− Eq̂(y∗|x∗)(y
∗)TEq̂(y∗|x∗)(y

∗)

≈ σ2 +
1

T

T∑
t=1

fŴt(x∗)T fŴt(x∗)− 1

T

T∑
t=1

fŴt(x∗)

(3)

where T is the number of stochastic forward passes, the
weights Ŵt of each forward pass are sampled from the
approximated distribution: Ŵt ∼ q̂θ(W).

On the other hand, the aleatoric uncertainty (σ2 in Eq.
3) can be quantified by modeling the observation likelihood
p(y∗|fW(x∗)) in Eq.(1) via direct modeling (Section IV).

2) Chance-constrained motion planning: In contrast to
deterministic motion planning, the DNN-based perception unit
outputs estimated states of surrounding entities with uncer-
tainties. In this work, given the probabilistic description of
environment states, the major objective of chance-constrained
motion planning is to generate optimized and probabilistic-
feasible trajectories that bound the risk of collision. We
formulate such a problem as:

Problem 1 (chance-constrained optimal motion planning
under perception uncertainties). Given an agent with the
following dynamics model: xt+1 = f(xt,ut) (xt ∈ X : state
vector, ut ∈ U : control vector at time t), an initial state
xinit, a goal state xgoal, and the set of detected obstacles
Bt = {bi,t}Nobs

i=1 with uncertainties, find the sequence of states
and control policy: π∗ = {xt,ut}, (t ∈ [0,∆t]) in ∆t that
navigates the agent from xinit to xgoal, which minimizes the
cost of executing the sequence:

π∗ = argmin
π

t+∆t∑
t

J(πt,Bt), (4)

while ensuring the following chance constraints are satisfied:

P (cls|π∗,B) = 1− P

(
t+∆t∧

t

¬cls|π∗,B

)
< ∆, (5)

where cls indicates a collision with an arbitrary obstacle
in the environment. ∆ denotes a predefined threshold on the
probability of collision.

IV. QUANTIFYING UNCERTAINTY IN POINT CLOUD-BASED
3D OBJECT DETECTION NEURAL NETWORK

A. Network architecture

The framework of the proposed probabilistic 3D vehicle
detector (Bayesian-PointRCNN) is shown in Fig. 2. We adopt
the two-stage backbone of the PointRCNN detector[29], which
consists of a region proposal network (RPN, stage 1) and
a subnetwork for bounding box refinement and uncertainty
quantification (stage 2).

The inputs of the stage 1 RPN are raw 3D point clouds
captured by LiDAR. The RPN of the Bayesian-PointRCNN
directly generates regional proposals (RP) of 3D bounding
boxes from point clouds by segmenting 3D points into fore-
ground and background points. Outputs of the RPN are the

learned point-wise feature vectors as well as the 3D bounding
box region proposals for each detected vehicle (represented
by b̂i = [x̂i, ŷi, ẑi, ĥi, ŵi, l̂i, θ̂i]

T , where x, y, z denote the
location, h,w, l represent the 3D scale of the box, and θ denote
the orientation.)

For the stage 2 sub-network, a pooling procedure is first
performed on the 3D points and their features learned by RPN.
After pooling, points within 3D proposals are selected with its
local point-wise features: p = [ xp, yp, zp, rp,mp, fp] (where
xp, yp, zp denote the 3D coordinates of the point, rp repre-
sents intensity, mp is the foreground/background segmentation
mask, and fp is the feature extracted in RPN). The local
spatial features p̃ are merged with global semantic feature fp
from RPN and fed to another encoder to generate rich feature
vectors for 3D bounding box refinement and uncertainty mod-
eling. The ultimate outputs of the proposed network consist
of the refined bounding boxes for each detected object in the
frame: {bi} (bi = [xi, yi, zi, hi, wi, li, θi]

T ), the correspond-
ing classification results:{ci} (indicating the category: car, van,
truck, etc.) along with its softmax score {Softmaxi(f

Ŵt)}, as
well as the quantified AU, EU and hybrid spatial uncertainty.

To quantitatively model the uncertainties, we extend the
original network by introducing two major components: in-
termediate layers with dropout for modeling epistemic un-
certainty, and AU quantification layers for modeling aleatoric
uncertainty.

B. Intermediate Layers with Monte-Carlo Dropout

To quantify the EU, we utilize the MC-dropout approxima-
tion technique by introducing intermediate layers to the stage 2
sub-network (Fig.2). 3 fully connected layers (FC) are added,
where the first two FC layers consist of 512 and 1024 hidden
units, respectively, and the number of units of the output
FC layer fits the input dimension of the subsequent proposal
refinement sub-network. We incorporate a dropout layer to
follow each FC layer and perform Monte-Carlo sampling of
the posterior distribution of the model’s weights. Following
the MC dropout principle (Section III B), T stochastic forward
passes are performed for each input frame to generate samples
of weights from the approximated distribution q̂(W). Utilizing
the outputs of intermediate layers, the EU of regression and
classification tasks are modeled as follows:

1) Quantifying regression epistemic uncertainty: The re-
gression task relates to the estimation of 3D bounding boxes of
surrounding entities. Therefore, the regression EU represents
the uncertainty of the network output {bi} from a spatial
perspective. Given the input x∗and the bounding box output
of T forward pass y∗ = {b̂i,t}, (t = 1...T ), and following
Eq. (3), the regression EU can be quantified by calculating
the covariance matrix:

Si(y∗reg) =
1

T

T∑
t=1

b̂i,tb̂
T

i,t −

(
1

T

T∑
t=1

b̂i,t

)(
1

T

T∑
t=1

b̂i,t

)T

(6)
where i indicates the index of the detected object. Therefore,
under the assumption of Gaussian distributions, the diago-
nal elements of the matrix Si represent the corresponding
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Fig. 2. The Bayesian PointRCNN architecture for 3D object detection and uncertainty quantification from point clouds. Uncertainty quantification-related
components are marked in pink (ROI: region of interest; FC: fully-connected layer).

epistemic uncertainty of each dimension in the estimated 3D
bounding box vector, e.g.:

Varregi = diag(Si) =
[
σ2
xi
σ2
yi
, σ2

zi , σ
2
hi
, σ2

wi
, σ2

li , σ
2
θi

]T
(7)

2) Quantifying classification epistemic uncertainty: The
classification EU represents the network’s confidence in cate-
gorizing detected objects. Similar to [7], we employ Shannon
Entropy (SE) and Mutual Information (MI) as metrics for
the evaluation of the classification EU. Both MI and EU are
evaluated based on the the probability that a detected object
(obji) takes a certain category cj ∈ C(e.g. vehicle: cveh). In
the proposed network, such probability can be calculated as
the mean of the softmax score of T forward passes:

p (yi = cj |x∗) =
1

T

T∑
t=1

Softmax(cj , t) (8)

Denoting σsftmx(c) as the softmax score, the SE can be
calculated as:

H(y∗
cls|x∗) = −

∑
cj∈C

p(y = cj |x∗,D) log p(y = cj |x∗,D)

≈ −
∑
cj∈C

(
p(y = cj |x∗,Ŵt)

)
log
(
p(y = cj |x∗,Ŵt)

)

= −
∑
cj∈C

(
1

T

T∑
t=1

σsftmx(cj , t)

)
log

(
1

T

T∑
t=1

σsftmx(cj , t)

)
(9)

SE reflects the model’s confidence in its prediction results,
as it reaches a high value when all classes are predicted to
have similar probability, indicating the network model is very
uncertain about its classification results.

The MI is calculated as:

I(y∗
cls,W|x∗,D) = H(y∗|x∗)− Ep(W|D)(H(y∗|x∗))

= −
∑
c

(
1

T

T∑
t=1

σsftmx(cj , t)

)
log

(
1

T

T∑
t=1

σsftmx(cj , t)

)
+

1

T

∑
t

∑
c

σsftmx(cj , t) log σsftmx(cj , t)

(10)

MI evaluates the network’s confidence in its outputs by mea-
suring the information difference over multiple inferences, and
it shows a high magnitude when the network outputs from
multiple trials are diverse. The quantified PE and MI can
be used as metrics to filter out incorrect detection in motion
planning, as they tend to come with high uncertainties.

C. Aleatoric Uncertainty Quantification

The observation noise-related aleatoric uncertainty can
be quantified by direct modeling the observation likeli-
hood p

(
y∗|fW(x∗)

)
. For the classification task, this is

achieved using the softmax function (p
(
y∗|fW(x∗)

)
=

Softmax(fW(x∗))). For the 3D bounding box regression task,
we need to estimate the data-related parameter σ as in Eq.
(3). For a fixed Gaussian likelihood [15], p

(
y∗|fW(x∗)

)
can

be modeled as a multi-variant Gaussian distribution with a
diagonal covariance matrix:

p(y∗|x∗,ω) ∼ N (fW,Σ(x∗)),

Σ(x∗) = diag(σ2
y∗),

(11)

where y∗ is the predicted bounding box which is rep-
resented by a 7-dimensional vector. Therefore, the noise
parameters from Σ(x∗) are encoded as a vector σ2

x∗ =
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[σ2
x, σ

2
y, σ

2
z , σ

2
h, σ

2
w, σ

2
l , σ

2
θ ]

T, with each element corresponding
to the observation noise-related uncertainty in the predicted
parameter of the bounding box vector.

It is shown in [15] that the observation noise can be
explained as a function of the input data, and thus the
network can be trained to directly learn the noise as model
loss attenuation. In the proposed network, we model the AU
by introducing output layers and training the network with
attenuated loss. The structure of the AU layers is depicted
in Fig. 3. Considering the uncertainties in both the RPN
stage and RP refinement stage contribute to the ultimate AU,
both the feature vector of the predicted bounding box and
its candidate proposals are taken as input of AU layers. The
observation noise parameters of the RPN stage and stage
2 are firstly predicted separately via FC layers. The two
sources of uncertainty features are then concatenated and fed
to the ultimate output layers to predict the ultimate logarithmic
observation noise λx∗ (Note that for numerical stability, we
use logarithm term λx∗ := logσ2

x∗ to avoid potential division
by zero). The proposed network is trained via the following
attenuated loss function:

Lreg (W) =
1

T

T∑
t

1

2
exp(−λt)∥y∗

t − ŷ∗
t ∥2 +

1

2
λt (12)

where λt represents the estimated noise variance of the tth
sampling during training. The first term represents the residual
loss, and the second term is for regularization.

Fig. 3. Layers for modeling the aleatoric uncertainty via loss attenuation.

D. Spatial Representation of Hybrid Perception Uncertainty

To explicitly utilize the quantified perception uncertainties
in the motion planning stage, we first convert AU and EU
into a fused uncertainty model and formulate it as a spatial
representation in the planning space. Following Eq. (3), the
quantified EU and AU can be fused into a syndicated uncer-

tainty model of the estimated bounding box:

Varreg(y
∗) =

1

T

T∑
t=1

btbT
t −

(
1

T

T∑
t=1

bt

)(
1

T

T∑
t=1

bt

)T

+
1

T

T∑
t

σ̂tσ̂
T
t

(13)

The diagonal elements of Varreg can be extracted into
a vector to represent the uncertainties corresponding
to the predicted parameters of vehicles, i.e. Qreg =
[σ2

x, σ
2
y, σ

2
z , σ

2
h, σ

2
w, σ

2
l , σ

2
θ ]

T. We ignore parameters in the ver-
tical dimension and extract the elements relating to the lateral
and longitudinal location (σx,σy), 2-D scale (σw,σl), and the
orientation (σθ). Considering the elements in the predicted
bounding box vector are mutually-dependent Gaussian vari-
ables, variance elements in Qreg related to the same dimension
are additive. Given a detected vehicle’s bounding box, we can
thus derive the total variance of the lateral and longitudinal
dimension by

σlat =
√
σ2
x + σ2

w

σlon =
√
σ2
y + σ2

l

(14)

To incorporate the uncertainty in orientation (σθ), we con-
vert the estimated angular uncertainty to magnitude variance
by projection, and derive the orientation-related additive vari-
ance in lateral and longitudinal dimensions:

σθ,lon =
l

2

(
1− w

√ (
1 + tan2 (σθ)

)(
w2 + l2 tan2 (σθ)

))
σθ,lat =

w

l
∆a

(15)

Therefore, by incorporating the lateral and longitudinal un-
certainty, the bounding box of detected vehicles is transformed
into a 2-D 2-σ uncertainty ellipse-like formulation (Fig. 4),
with the magnitude of lateral and longitudinal axis given by:

La = σlon + l/2 + σθ,lon

Lb = σlat + w/2 + σθ,lat

(16)

Larger ellipses indicate higher uncertainty in bounding box
estimation. Such a spatial representation provides the basis
for chance constraint formulation and allows for simple and
efficient probabilistic feasibility check in the motion planning
stage, which will be described in detail in the following
section.

V. RISK-BOUNDED SAFE MOTION PLANNING

A. Chance Constraint and Risk Evaluation

In this section, we describe how to incorporate the quantified
spatial uncertainties in DL perception (described in subsection
IV-D) to formulate the chance constraints and evaluate the
probability of collision during motion planning.

Given the belief of an initial state N (x̂0,Σ0) and the se-
quence of control inputs ut, the ego-vehicle can be formulated
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as a linear time-invariant model corrupted by additive Gaussian
noise [23]:

xt+1 = Axt +But + γt

x0 ∼ N (x̂0,Σ0)

γt ∼ N (0,Σγ)

(17)

where xt denotes the state of the ego-vehicle at time t,
and A,B are the state-transition matrix and control matrix,
respectively. γt represent the additive process noise.

(a) (b)

Fig. 4. Risk evaluation based on linear inequalities and 2-σ uncertainty ellipse.

Recall from Eq. (5) that the chance-constrained motion
planning requires that the probability of collision between the
ego-vehicle and any of the surrounding obstacles at any time
step is bounded within a safety threshold δ. Considering the
shape of the ego vehicle is perfectly known and the uncertainty
in its state is neglectable, the ego vehicle is modeled as
a convex polygon specified by a conjunction of four linear
inequalities: (Fig. 4): ∧

i=1,2,3,4

aTi xt < bi (18)

where {ai} denote unit outer normal vectors of four edges
of the minimum convex polygon that bounds the ego-vehicle,
and xt represent a state in the planning space at t. Given
K obstacles (vehicles) detected from 3D point clouds by
the probabilistic object detector, and denoting zj,t as the 2-
D coordinate of the geometric center of the jth obstacle’s
bounding box at time t (represented by the random variable Zt

with covariance Σj), a collision with obstacle j only occurs
only if all of the four linear constraints in Eq. (18) are satisfied.
Therefore, it is true that the probability of colliding with jth
obstacle is less than the probability that any one of the four
linear constraints being satisfied:

Pcollision,j = P

 ∧
i=1,2,3,4

aTi zj,t < bi


≤ P

(
aTi zj,t < bi

)
≤ min

i=1,2,3,4
P
(
aTi zj,t < bi

)
∀j ∈ {1, ...,K}

(19)

Therefore, to ensure that the overall risk does not exceed
the given safe threshold ∆, it is sufficient to require that

probability of any of the constraints being satisfied is less than
∆.

It is shown in [30] that the above probabilistic constraint can
be converted to deterministic constraints. Defining variables
C, c as C = aTi Zt − bi, c = aTi zj,t − bi, the above proba-
bilistic constraint is equivalent to the following deterministic
constraint [30]:

P
(
aTi Zt < bi

)
= P (C < 0) ≤ ∆⇔

c ≥
√
2Pcerf

−1 (1− 2∆)
(20)

where erf denotes the standard error function. It is also
proved in [30] that Eq.(20) can be converted to the following
equality-based relationship:

P (C < 0) = p̄⇔ c =
√
2Pc erf−1 (1− 2p̄) (21)

Given the Gaussian distribution {c, Pc}, the probability p̄ can
be solved based on Eq.(21). Therefore, the probability the
ith linear constraint of ego-vehicle being satisfied by the jth
obstacle at time t (∆ijt) can be calculated as:

∆ijt = P
(
aTi zj,t − bi < 0

)
=

1

2

(
1− erf

(
aTi zj,t − bi√
2aTi Σjai

))
(22)

where Σj denotes the lateral and longitudinal variance of the
detected obstacle, which is calculated using the quantified
uncertainty described in Section IV. Recall that Eq. (19)
provides an upper bound of the probability of collision, then
for time step t, the overall probability of collision with any of
the detected obstacles can be approximated by:

Pcollision(t) ≤
K∑
j

Pcollision,j

≤
K∑
j

min
i=1,2,3,4

P
(
aTi zj,t < bi

)
≈

K∑
j

min
i=1,2,3,4

∆ijt

(23)

Given the predefined safety requirements of the ego-vehicle
psafe, the overall probability of collision must satisfy:

Pcollision(t) = ∆t < ∆ = 1− psafe (24)

As the value of erf function in Eq.(22) can be pre-computed
and stored as look-up tables, the proposed approach allows
for very efficient computation of collision probability and
trajectory-wise chance constraint checking. In this manner, an
explicit correlation between perception uncertainties and risk
of planning is established, enabling the subsequent motion
planner to explicitly incorporate the quantified uncertainties
in DNNs.

B. Probabilistic Feasible Tree Expansion

We build our Perception Uncertainty-aware RRT (PU-RRT
) motion planner based on the baseline Closed-loop Rapidly-
exploring Random Trees (CL-RRT) [31] framework. Similar to
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the baseline CL-RRT, the tree expansion operation of PU-RRT
incrementally grows a tree of probabilistic-feasible trajectories
by random sampling (Algorithm 1). The algorithm takes as
input the initial state of the ego-vehicle x0, a given goal state
xgoal, the predefined safety threshold psafe and the current
searching tree Ti. The output of the tree expansion algorithm
is a tree of probabilistic-feasible nodes Ti+1.

During operation, the algorithm firstly updates the envi-
ronment model using bounding boxes of detected obstacles
and their spatial uncertainty Qt = {Qj,t} (where Q =
[σx, σy, σw, σl, σθ]

T ) transferred by the proposed Probabilistic
PointRCNN detector, and incorrect detection is filtered out
by evaluating the classification uncertainty (MI and SE, Al-
gorithm 2, line 4). A tree of feasible nodes is continuously
expanded by recursively sampling from the planning space
and connecting the current tree to the newly sampled nodes.
To guarantee the kinodynamic feasibility of the generated
trajectory, a closed-loop model containing the kinematic model
and controllers is utilized to propagate its state toward the
sample. The PU-RRT offers the flexibility of incorporating any
off-the-shelf kinematic or dynamic vehicle models and lateral-
longitudinal controllers. In our proposed planner, we adopt a
simple bicycle model of the ego vehicle:

ẋ = v cosϕ, ẏ = v sinϕ, ϕ̇ =
v

l
tan δ, v̇ = a (25)

where x, y denote the planar position of the vehicle, ϕ refers to
the heading (yaw), and l is the wheelbase. The control inputs
are the steering angle δ and acceleration a. For lateral control,
the proposed PU-RRT utilizes the pure-pursuit controller to
generate the steering control input:

δcmd = arctan
2 sinα

ld
(26)

where α is the heading angle of a selected look-ahead target
point on the reference path toward xsample, with respect to
the vehicle body heading, and ld denotes the look-ahead
distance from the target point (see [32] for a more detailed
definition). The longitudinal control of the proposed PU-
RRT is implemented based on a proportional-derivative (PD)
controller:

acmd = Kp(vref − v) +Kd
d(vref − v)

dt
(27)

where Kp and Kd denote the proportional and derivative
control gains, respectively. vref is the reference velocity.

The quantified DL perception uncertainties are utilized in
the nearest-node selection (line 3) and feasibility checking
operations (line 6, 10).

To bias the tree expansion to low-risk regions, we make
extensions to the nearest node selection step by using a
risk-based heuristic: for a newly sampled node Nsample, the
algorithm selects M nearest nodes in T to be connected to,
by evaluating a cost metric with two factors: the steering time
from root node Nroot to the specified node, and the operation
risk δi,t estimated using the quantified uncertainties:

C(Ni) = kcc∆i,t + kdist
Cdist(Ni, Nroot)

v
(28)

where v is the sampled velocity, and kcc, kdis are weights
for adjusting the strength of the two metrics, and the risk
∆i,t is evaluated by estimating the probability of collision
using the quantified uncertainties, as specified in Section V-
A. In this manner, the proposed planner achieves a trade-off
between bounding the operation risk and finding paths with
low operation costs.

After the new feasible nodes are generated, the algorithm
finally updates the upper and lower bound cost-to-go value
of each node along the corresponding trajectory (line 23),
depending on whether a probabilistic feasible trajectory di-
rectly to xgoal can be found. Such cost values are kept with
the nodes for the selection of the best path, which will be
specified in the following section. This procedure expands a
tree of probabilistic- and dynamic-feasible trajectories within
a predefined period of time and it operates in a receding
horizontal manner.

Algorithm 1 PU-RRT, Tree Expansion

Input: x0, xgoal, B̂t, Qt, C, psafe, T
1: Take a sample xsample from the configuration space C
2: Sort the nodes in the tree using heuristics as in Eq.(28)
3: Choose M nodes with the lowest cost Nnear = {ni}M1
4: for each node ni ∈ Nnear do
5: Obtain the state of the ego-vehicle xt

6: Evaluate the probability of collision using the quan-
tified perception uncertainty (Section V-A):
∆t ← EvaluateRisk(xt, B̂t,Qt)

7: k = 0
8: while xt+k|t has not reached xsample do
9: Propagate the state towards xsample

xt+k+1|t ← steer(xt+k|t,xsample)
10: Evaluate the probability of collision (Section V-A):

∆t+k+1|t ← EvaluateRisk(xt+k+1|t,Qt)
11: if isFeasible(xt+k+1|t) and ∆t+k+1|t < 1 − psafe

then
12: Generate new intermediate nodes

nt+k+1|t ← generateNode(xt+k+1|t)
13: Add node nt+k+1|t to T
14: k ← k + 1
15: else
16: Exit while
17: end if
18: end while
19: for each newly generated node n by step in line 12 do
20: Obtain the state of node n
21: Try connecting n to xgoal (line 8-18)
22: if connection to xgoal is probabilistic feasible then
23: Update upper-bound cost-to-go from goal via node

n to x0

24: end if
25: end for
26: end for
Output: Tree T
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C. Best Trajectory Selection and Execution

The ego-vehicle it keeps obtaining new measurements of
the environment during operation, and the state estimation
and perception uncertainties update dynamically. To cope with
dynamic environments and variation of perception uncertainty,
while growing the tree, the proposed PU-RRT periodically
selects the current best path for execution. The path execution
operation of PU-RRT is presented in Algorithm 2. The
algorithm selects the current best sequence of nodes from
the tree for execution, by evaluating the cost of the path.
To evaluate the cost from the current node to the goal, each
generated node corresponds with both a lower and an upper
bound cost-to-go (CLB , CUB , respectively), which is defined
in a similar way as in [31].

CLB is calculated as the direct Euclidean distance between a
specified node and the goal. Once a new node is generated, the
algorithm attempts to predict a probabilistic feasible trajectory
that connects the node to the goal. If such a trajectory is
available, the cost associated with this trajectory is as the CUB .
After that, the upper bound cost-to-go of all its preceding
nodes is updated by propagating backward to the root to check
for lower cost paths to the goal. CLB and CUB are defined
by:

CUB,i =

 +∞ no path to the goal
minc(cNi,c + CUBc

) path to the goal exists
CLB node inside goal region

CLB,i = EuclideanDistance(Ni, Ngoal)
(29)

To incorporate the perception uncertainty-related operation
risk, we make extensions to the cost metrics when calculating
ec (cost from a node Ni to its child node indexed by Nc):

ec(Ni) = kcc∆it + kdist
Cdist(Ni, Nc)

v
(30)

The total CUB of each feasible path to the goal is calculated,
and the sequence of nodes with the lowest cost-to-goal is
identified as the best path (line 11), which is then sent to
the controller for execution.

VI. EVALUATION

A. Training and Implementation of Bayesian-PointRCNN

We trained the proposed Bayesian PointRCNN on a plat-
form with 2 NVIDIA Tesla V100 GPUs. The training dataset
consists of 6000 frames of LiDAR point clouds, including
selected frames from the KITTI dataset [33] and LiDAR
measurements simulated by the CARLA simulator. The former
consists of LiDAR point clouds recorded from real-world sce-
narios, and the latter contains simulated LiDAR measurement
in virtual scenarios (Fig. 5 (c)).

For training, the dropout rate is fixed as 0.5 for intermediate
layers, and the number of dropout-enabled forward passes
is set as 25. We trained the RPN using 40 epochs, and the
RCNN is trained firstly with regular loss function using 40
epochs, followed by another 120 epochs using attenuated loss
function (Eq. 12). We utilized adam-onecycle optimization

Algorithm 2 PU-RRT, Path Execution

Input: x0, xgoal, B̂t, Qt, psafe,
1: while the vehicle does not reach goal do
2: Initialize the state of ego-vehicle at x0

3: Initialize tree T ← treeInitialize(x0)
4: Update configuration space C using B̂t, filter out false

detection using classification uncertainty Qt

5: while time limit ∆t is not reached do
6: Expand the tree by (Algorithm 1)
7: end while
8: if no feasible path to goal then
9: Initiate a fallback trajectory to steer the vehicle to a

safe state
fallBackTraj(xt, B̂t)

10: else
11: Evaluate each path by cost metric (Eq. (29)), choose

the best sequence of nodes {N0...Ni}
12: end if
13: Apply best path {N0...Ni} and send corresponding

control sequence to controller
14: end while
Output: Current best path {N0...Ni}t

with a weight decay of 0.001 and a momentum of 0.9. The
initial learning rate is 0.002 and decays by 0.5 every 40 epochs.

For inference, we use a dropout rate of 6 and run the
experiments on a platform with a GTX 1070 GPU.

B. Implementation on the Integrated CARLA-ROS Simulator

We implemented the proposed Bayesian PointRCNN detec-
tor and PU-RRT motion planner as functional nodes of the
ROS (Robotics Operating System) architecture.

We utilized the CARLA simulator [34] to create simulated
scenarios with static entities and traffic participants. The
simulated 3D LiDAR point clouds are generated and fed
to the proposed Bayesian PointRCNN-based perception node
for object detection. The ego-vehicle is steered to follow
the reference trajectory generated by the PU-RRT node. The
behavior and motion of the vehicle are simulated by the
dynamics model in CARLA. Data exchange between ROS
nodes and CARLA is achieved via the CARLA-ROS Bridge.

C. Experiment Results

1) Object Detection and Uncertainty Modeling of DNN:
We validate the proposed Bayesian PointRCNN detector on
detecting objects of the ’car’ category using the KITII dataset,
the nuScenes dataset [35] and our self-built simulated CARLA
dataset. To evaluate the impact of environmental factors on the
perception uncertainties of DNN, we tested the object detector
in scenarios with settings of varying observation distance and
occlusion. Fig. 8 (a) depicts the evolution of aleatoric and
epistemic uncertainties in terms of lateral and longitudinal
scale, position, and SE of classification w.r.t the distance of
objects. We observed a consistent increase of spatial regression
uncertainty with a larger distance, and the uncertainty ellipse
enlarges as the detected target vehicle moves away from the
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(a) Simulated Scenario #1

(b) Simulated Scenario #2 (c) Simulated LiDAR point clouds

Fig. 5. Simulated scenarios for evaluating the proposed perception-planning
framework: (a) scenario 1: multi-lane changing in dense traffic: (b) scenario
1: left-turn in unsignalized intersection (c) simulated LiDAR point clouds of
scenarios 2. Trajectories planned by the proposed PU-RRT are colored in red,
and the goal states are represented by black dots.

LiDAR (Fig. 6), due to the fact that distant objects typically
result in sparse point cloud observations.

Fig. 6. Object detection and uncertainty quantification results w.r.t. to
distance. The 2-σ uncertainty ellipse is colored in blue. (better view with
magnification).

Fig. 7 shows an exemplary testing scenario from the nuS-
cences dataset: the target vehicle (red) is gradually occluded
by an in-between vehicle (white). As shown in Fig. 7 (b),
the uncertainties in the detection of the target vehicle grow
(especially in its longitudinal direction) as the degree of
occlusion increases. The variation of aleatoric uncertainties
w.r.t the portion of occlusion is depicted in Fig. 8 (b). It also
shows an increase of uncertainties with a higher degree of
occlusion, indicating that LiDAR provides limited observation
of occluded objects.

To investigate the relationship of epistemic uncertainty and
detection accuracy, we utilize the Intersection over Union
(IoU, higher IoU indicates more accurate detection) as the
metric of accuracy and plot the SE (for EU) w.r.t IoU in Figure
9. It shows that inaccurate detection typically yields high

epistemic uncertainty, indicating that the DNN is unconfident
about such detection.

In conclusion, these results indicate that the proposed
uncertainty-aware detector can effectively capture the impact
of various physical factors and model reasonable uncertainty
inherent in observations and the DNN model.

(a)

(b)

Fig. 7. Object detection and uncertainty quantification results in the presence
of occlusion. The 2-σ uncertainty ellipse is colored in blue. (better view with
magnification)

2) Motion Planning: We evaluate the proposed PU-RRT
motion planner in two typical complex scenarios simulated in
CARLA:

Scenario #1: multi-lane changing in dense traffic. (Figure. 5
(a)) This scenario simulates a multi-lane freeway with dense
traffic, where the ego-vehicle shall perceive the surrounding
vehicles and plan a safe and cost-efficient trajectory to traverse
the traffic and reach a goal position across multiple lanes.

Scenario #2: left-turn in unsignalized intersection. (Figure.
5 (b)) In this scenario, the ego-vehicle must make a left turn in
an unsignalized intersection with oncoming traffic and vehicles
already in the intersection.

Factors that induce perception uncertainties in these sce-
narios include variations of observation distance and azimuth,
occlusion, and sparsity of point clouds. For comparison pur-
poses, we tested the following three motion planners in the
above-mentioned scenarios:

• PU-RRT: The proposed uncertainty-aware motion plan-
ner.

• CC-RRT: Nominal Chance-constrained RRT [23] which
assigns a constant scale of spatial uncertainty of detected
obstacles rather than using an explicit estimate of the
perception uncertainties in DNNs.

• CL-RRT: Basic Closed-loop RRT [31] which utilizes de-
terministic bounding boxes without modeling uncertainty.

The evaluation criteria for motion planners are as follows:
• Goal achievement: We utilize three criteria to evaluate the

motion planner’s capability of finding safe trajectories to
the goal:

– ρ1 (Collision-free path): Ratio of trials where
collision-free paths are found, regardless if the Goal
is reached or not.
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(a) Evolution of regression and classification uncertainty w.r.t. distance of detection

(b) Evolution of regression and classification uncertainty w.r.t. degree of occlusion

Fig. 8. Evolution of regression and classification uncertainty with respect to the distance of detection and degree of occlusion. (PCC: Pearson Correlation
Coefficient)

Fig. 9. Averaged Shannon Entropy (epistemic uncertainty) w.r.t. different
Intersection over Union (IoU) intervals.

– ρ2 (Collision-free path to Goal): Ratio of trials where
collision-free paths to the Goal are found.

– ρ3 (Risk-bounded path to Goal): Ratio of trials where
paths to the goal are found, and the risk of collision
at every waypoint satisfies the chance constraint.

• Risk of collision: The risk of colliding with any of the
surrounding obstacles along the generated trajectories.
The averaged, maximum and minimum risk along a
trajectory are collected as statistics.

• Cost of trajectories: The following criteria are used to
evaluate the operation cost of a planned path:

– Number of waypoints: Total number of waypoints
along a path to the goal.

– Length of a trajectory: Overall Dubin’s distance of
a path to the goal.

Figure 10 shows an example of trees generated by the PU-

RRT planner. As aforementioned, The probability of collision
at each node is evaluated based on the quantified spatial
uncertainty (Section V. A) during motion planning, and the
magnitude of their corresponding risk is marked using color
range. For all simulation trials, we used a safety threshold of
psafe = 0.95.

Snapshots of planned trajectories generated by the motion
planners in Scenario #1 and Scenario #2 are depicted in
Figure 11 and 12, respectively. As shown in the figures,
since the nominal CL-RRT relies on deterministic bounding
boxes for checking the binary collision-avoidance constraint
(i.e. collision-free or non-collision-free), it generates paths that
result in occasional near-misses or even collisions (rightmost
sub-figures in Figure 11 (a)-(d)) in the presence of uncertain
detection. The CC-RRT typically outputs longer paths that de-
tour around obstacles, due to the over-conservative estimation
of uncertainty. Whereas the proposed PU-RRT can incorporate
the spatial perception uncertainty to generate risk-bounded
paths without sacrificing optimality.

Table I presents the averaged statistics of performance
evaluation of the three planners over 100 trials in the two
scenarios. As shown in the table, although the nominal CL-
RRT can achieve comparatively lower cost, it performs poorly
on guaranteeing operation safety, as it outputs paths with the
highest risk, and achieves the lowest ratio of probabilistic
feasible paths(success rate #3). In contrast, the CC-RRT
demonstrates the highest level of conservatism as it lowers the
operation risk at the expense of longer paths. The experiment
results indicate that by explicitly quantifying and propagating
the uncertainty of DNN, the proposed PU-RRT can effectively
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(a) Scenario #1

(b) Scenario #2

Fig. 10. Example of trajectory trees generated by the proposed PU-RRT and
the estimated risk at each node. Magnitude of risk is marked by color range.
The probability of collision is evaluated using the quantified uncertainties in
object detection.

bound the operation risk, without inducing an adverse impact
on the optimality of paths.

VII. CONCLUSION

This paper has proposed a coherent autonomous driving
framework featuring the quantification and transfer of uncer-
tainties in DNN-based perception. The proposed probabilistic
3D object detector can provide robust vehicle detection along
with an explicit estimation of the inherent aleatoric and
epistemic uncertainties in DNN. Taking advantage of the trans-
ferred quantified DNN perception uncertainties, the proposed
chance-constrained motion planner can effectively bound the
risk of collision and improve the operation safety. Experiment
results show that the proposed framework outperforms existing
perception-planning approaches without explicit uncertainty
modeling.

Potential future work will focus on the following topics:
for more accurate risk evaluation, a more proper spatial
representation of quantified uncertainty will be developed. As
there is no available ground truth of uncertainty in existing
open datasets, metrics and methods for evaluating the quality
of predicted uncertainty should be investigated. In addition,
it is also necessary to investigate how perception uncertainty

evolves over time and affects the uncertainty in the motion
prediction of traffic participants.
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Fig. 11. Examples of planned trajectories generated by the PU-RRT (ours), CC-RRT, and CL-RRT planner in Scenario #1, snapshot are captured at 4
consecutive time steps. Locations of collisions are marked with purple rectangles and zoomed in for better illustration (better view with magnification)

PU-RRT(ours) CC-RRT CL-RRT

collision!

(a) t = t1
PU-RRT(ours) CC-RRT CL-RRT

(b) t = t2

Fig. 12. Examples of planned trajectories generated by the PU-RRT (ours), CC-RRT, and CL-RRT planner in Scenario #2, snapshot are captured at 2
consecutive time steps (better view with magnification)
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TABLE I
PERFORMANCE COMPARISON OF MOTION PLANNERS

Scenario #1: Multiple lane changing in dense traffic∗

Motion planner Goal achievement ↑ Operation risk ↓ Operation cost ↓
ρ1 ρ2 ρ3 Ave. Max. Nnode Length(m)

t = t1

PU-RRT(ours) 94% 53.19% 53.19% 0.00802 0.0236 29.89 39.33
CC-RRT 100% 24.15% 24.15% 0.00124 0.00667 39.77 47.18
CL-RRT 79% 83.33% 53% 0.01490 0.0385 26.92 36.92

t = t2

PU-RRT(ours) 97% 100% 100% 0.00293 0.00890 23.94 35.35
CC-RRT 100% 95.23% 95.23% 0.00190 0.00716 27.87 36.06
CL-RRT 80% 77.51% 68% 0.00376 0.0135 24.97 35.30

t = t3

PU-RRT(ours) 93% 99.01% 99.01% 0.00182 0.00884 26.29 36.75
CC-RRT 99% 100% 100% 0.000836 0.00525 29.43 38.17
CL-RRT 86% 91.74% 64% 0.00231 0.0103 27.69 37.23

t = t4

PU-RRT(ours) 99% 98.04% 98.04% 0.00208 0.00983 24.12 33.62
CC-RRT 100% 100% 100% 0.000916 0.00490 24.86 33.99
CL-RRT 90% 86.96% 80% 0.00415 0.0164 25.47 33.34

Scenario #2: Left turn in unsignalized intersection∗

t = t1

PU-RRT(ours) 97% 99.01% 99.01% 0.00204 0.00794 18.11 20.59
CC-RRT 97% 94.34% 94.34% 0.00123 0.00745 19.43 21.14
CL-RRT 93% 90.91% 0.78% 0.00219 0.0108 19.90 21.57

t = t2

PU-RRT(ours) 98% 99.01% 99.01% 0.00628 0.0152 17.37 20.61
CC-RRT 97% 88.50% 88.50% 0.00470 0.0114 18.34 20.99
CL-RRT 94% 96.15% 82% 0.00876 0.0228 17.32 20.70

*ρ1: ratio of collision-free paths among all trials; ρ2: ratio of collision-free paths to the Goal among all trials; ρ3: ratio of risk-bounded path to Goal among
all trials; Ave. and Max. operation riks indicate the average and maximum probability of colliding with surrounding obstacles along the planned trajectories;

Nnode: averaged number of waypoints along the planned paths; Length: averaged length (in Dubin’s distance) of planned paths to the goal.
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